2 * Copyright (c) 2000-2013 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
29 #include <vm/vm_compressor.h>
31 #if CONFIG_PHANTOM_CACHE
32 #include <vm/vm_phantom_cache.h>
35 #include <vm/vm_map.h>
36 #include <vm/vm_pageout.h>
37 #include <vm/memory_object.h>
38 #include <mach/mach_host.h> /* for host_info() */
39 #include <kern/ledger.h>
41 #include <i386/misc_protos.h>
43 #include <default_pager/default_pager_alerts.h>
44 #include <default_pager/default_pager_object_server.h>
46 #include <IOKit/IOHibernatePrivate.h>
49 * vm_compressor_mode has a heirarchy of control to set its value.
50 * boot-args are checked first, then device-tree, and finally
51 * the default value that is defined below. See vm_fault_init() for
52 * the boot-arg & device-tree code.
56 int vm_compressor_mode
= VM_PAGER_COMPRESSOR_WITH_SWAP
;
60 int vm_compressor_is_active
= 0;
61 int vm_compression_limit
= 0;
62 int vm_compressor_available
= 0;
64 extern boolean_t vm_swap_up
;
65 extern void vm_pageout_io_throttle(void);
66 extern int not_in_kdp
;
68 #if CHECKSUM_THE_DATA || CHECKSUM_THE_SWAP || CHECKSUM_THE_COMPRESSED_DATA
69 extern unsigned int hash_string(char *cp
, int len
);
72 #define UNPACK_C_SIZE(cs) ((cs->c_size == (PAGE_SIZE-1)) ? PAGE_SIZE : cs->c_size)
73 #define PACK_C_SIZE(cs, size) (cs->c_size = ((size == PAGE_SIZE) ? PAGE_SIZE - 1 : size))
76 struct c_sv_hash_entry
{
80 uint32_t c_sv_he_data
;
82 uint64_t c_sv_he_record
;
87 #define he_ref c_sv_he_un.c_sv_he.c_sv_he_ref
88 #define he_data c_sv_he_un.c_sv_he.c_sv_he_data
89 #define he_record c_sv_he_un.c_sv_he_record
91 #define C_SV_HASH_MAX_MISS 32
92 #define C_SV_HASH_SIZE ((1 << 10))
93 #define C_SV_HASH_MASK ((1 << 10) - 1)
94 #define C_SV_CSEG_ID ((1 << 22) - 1)
97 struct c_slot_mapping
{
98 uint32_t s_cseg
:22, /* segment number + 1 */
99 s_cindx
:10; /* index in the segment */
101 #define C_SLOT_MAX_INDEX (1 << 10)
103 typedef struct c_slot_mapping
*c_slot_mapping_t
;
113 #define C_SLOT_PACK_PTR(ptr) (((uintptr_t)ptr - (uintptr_t) VM_MIN_KERNEL_AND_KEXT_ADDRESS) >> 2)
114 #define C_SLOT_UNPACK_PTR(cslot) ((uintptr_t)(cslot->c_packed_ptr << 2) + (uintptr_t) VM_MIN_KERNEL_AND_KEXT_ADDRESS)
117 uint32_t c_segment_count
= 0;
118 uint32_t c_segment_count_max
= 0;
120 uint64_t c_generation_id
= 0;
121 uint64_t c_generation_id_flush_barrier
;
124 #define HIBERNATE_FLUSHING_SECS_TO_COMPLETE 120
126 boolean_t hibernate_no_swapspace
= FALSE
;
127 clock_sec_t hibernate_flushing_deadline
= 0;
130 #if RECORD_THE_COMPRESSED_DATA
131 char *c_compressed_record_sbuf
;
132 char *c_compressed_record_ebuf
;
133 char *c_compressed_record_cptr
;
137 queue_head_t c_age_list_head
;
138 queue_head_t c_swapout_list_head
;
139 queue_head_t c_swappedin_list_head
;
140 queue_head_t c_swappedout_list_head
;
141 queue_head_t c_swappedout_sparse_list_head
;
142 queue_head_t c_major_list_head
;
143 queue_head_t c_filling_list_head
;
144 queue_head_t c_bad_list_head
;
146 uint32_t c_age_count
= 0;
147 uint32_t c_swapout_count
= 0;
148 uint32_t c_swappedin_count
= 0;
149 uint32_t c_swappedout_count
= 0;
150 uint32_t c_swappedout_sparse_count
= 0;
151 uint32_t c_major_count
= 0;
152 uint32_t c_filling_count
= 0;
153 uint32_t c_empty_count
= 0;
154 uint32_t c_bad_count
= 0;
157 queue_head_t c_minor_list_head
;
158 uint32_t c_minor_count
= 0;
160 int c_overage_swapped_count
= 0;
161 int c_overage_swapped_limit
= 0;
163 int c_seg_fixed_array_len
;
164 union c_segu
*c_segments
;
165 vm_offset_t c_buffers
;
166 vm_size_t c_buffers_size
;
167 caddr_t c_segments_next_page
;
168 boolean_t c_segments_busy
;
169 uint32_t c_segments_available
;
170 uint32_t c_segments_limit
;
171 uint32_t c_segments_nearing_limit
;
173 uint32_t c_segment_svp_in_hash
;
174 uint32_t c_segment_svp_hash_succeeded
;
175 uint32_t c_segment_svp_hash_failed
;
176 uint32_t c_segment_svp_zero_compressions
;
177 uint32_t c_segment_svp_nonzero_compressions
;
178 uint32_t c_segment_svp_zero_decompressions
;
179 uint32_t c_segment_svp_nonzero_decompressions
;
181 uint32_t c_segment_noncompressible_pages
;
183 uint32_t c_segment_pages_compressed
;
184 uint32_t c_segment_pages_compressed_limit
;
185 uint32_t c_segment_pages_compressed_nearing_limit
;
186 uint32_t c_free_segno_head
= (uint32_t)-1;
188 uint32_t vm_compressor_minorcompact_threshold_divisor
= 10;
189 uint32_t vm_compressor_majorcompact_threshold_divisor
= 10;
190 uint32_t vm_compressor_unthrottle_threshold_divisor
= 10;
191 uint32_t vm_compressor_catchup_threshold_divisor
= 10;
193 #define C_SEGMENTS_PER_PAGE (PAGE_SIZE / sizeof(union c_segu))
196 lck_grp_attr_t vm_compressor_lck_grp_attr
;
197 lck_attr_t vm_compressor_lck_attr
;
198 lck_grp_t vm_compressor_lck_grp
;
200 #if __i386__ || __x86_64__
201 lck_mtx_t
*c_list_lock
;
202 #else /* __i386__ || __x86_64__ */
203 lck_spin_t
*c_list_lock
;
204 #endif /* __i386__ || __x86_64__ */
206 lck_rw_t c_master_lock
;
207 boolean_t decompressions_blocked
= FALSE
;
209 zone_t compressor_segment_zone
;
210 int c_compressor_swap_trigger
= 0;
212 uint32_t compressor_cpus
;
213 char *compressor_scratch_bufs
;
214 char *kdp_compressor_scratch_buf
;
215 char *kdp_compressor_decompressed_page
;
216 addr64_t kdp_compressor_decompressed_page_paddr
;
217 ppnum_t kdp_compressor_decompressed_page_ppnum
;
219 clock_sec_t start_of_sample_period_sec
= 0;
220 clock_nsec_t start_of_sample_period_nsec
= 0;
221 clock_sec_t start_of_eval_period_sec
= 0;
222 clock_nsec_t start_of_eval_period_nsec
= 0;
223 uint32_t sample_period_decompression_count
= 0;
224 uint32_t sample_period_compression_count
= 0;
225 uint32_t last_eval_decompression_count
= 0;
226 uint32_t last_eval_compression_count
= 0;
228 #define DECOMPRESSION_SAMPLE_MAX_AGE (60 * 30)
230 boolean_t vm_swapout_ripe_segments
= FALSE
;
231 uint32_t vm_ripe_target_age
= (60 * 60 * 48);
233 uint32_t swapout_target_age
= 0;
234 uint32_t age_of_decompressions_during_sample_period
[DECOMPRESSION_SAMPLE_MAX_AGE
];
235 uint32_t overage_decompressions_during_sample_period
= 0;
237 void do_fastwake_warmup(void);
238 boolean_t fastwake_warmup
= FALSE
;
239 boolean_t fastwake_recording_in_progress
= FALSE
;
240 clock_sec_t dont_trim_until_ts
= 0;
242 uint64_t c_segment_warmup_count
;
243 uint64_t first_c_segment_to_warm_generation_id
= 0;
244 uint64_t last_c_segment_to_warm_generation_id
= 0;
245 boolean_t hibernate_flushing
= FALSE
;
247 int64_t c_segment_input_bytes
__attribute__((aligned(8))) = 0;
248 int64_t c_segment_compressed_bytes
__attribute__((aligned(8))) = 0;
249 int64_t compressor_bytes_used
__attribute__((aligned(8))) = 0;
252 struct c_sv_hash_entry c_segment_sv_hash_table
[C_SV_HASH_SIZE
] __attribute__ ((aligned (8)));
255 static boolean_t
compressor_needs_to_swap(void);
256 static void vm_compressor_swap_trigger_thread(void);
257 static void vm_compressor_do_delayed_compactions(boolean_t
);
258 static void vm_compressor_compact_and_swap(boolean_t
);
259 static void vm_compressor_age_swapped_in_segments(boolean_t
);
261 static void vm_compressor_take_paging_space_action(void);
263 boolean_t
vm_compressor_low_on_space(void);
265 void compute_swapout_target_age(void);
267 boolean_t
c_seg_major_compact(c_segment_t
, c_segment_t
);
268 boolean_t
c_seg_major_compact_ok(c_segment_t
, c_segment_t
);
270 int c_seg_minor_compaction_and_unlock(c_segment_t
, boolean_t
);
271 int c_seg_do_minor_compaction_and_unlock(c_segment_t
, boolean_t
, boolean_t
, boolean_t
);
272 void c_seg_try_minor_compaction_and_unlock(c_segment_t c_seg
);
273 void c_seg_need_delayed_compaction(c_segment_t
);
275 void c_seg_move_to_sparse_list(c_segment_t
);
276 void c_seg_insert_into_q(queue_head_t
*, c_segment_t
);
278 uint64_t vm_available_memory(void);
279 uint64_t vm_compressor_pages_compressed(void);
281 extern unsigned int dp_pages_free
, dp_pages_reserve
;
284 vm_available_memory(void)
286 return (((uint64_t)AVAILABLE_NON_COMPRESSED_MEMORY
) * PAGE_SIZE_64
);
291 vm_compressor_pages_compressed(void)
293 return (c_segment_pages_compressed
* PAGE_SIZE_64
);
298 vm_compression_available(void)
300 if ( !(COMPRESSED_PAGER_IS_ACTIVE
|| DEFAULT_FREEZER_COMPRESSED_PAGER_IS_ACTIVE
))
303 if (c_segments_available
>= c_segments_limit
|| c_segment_pages_compressed
>= c_segment_pages_compressed_limit
)
311 vm_compressor_low_on_space(void)
313 if ((c_segment_pages_compressed
> c_segment_pages_compressed_nearing_limit
) ||
314 (c_segment_count
> c_segments_nearing_limit
))
322 vm_wants_task_throttled(task_t task
)
324 if (task
== kernel_task
)
327 if (COMPRESSED_PAGER_IS_SWAPLESS
|| DEFAULT_FREEZER_COMPRESSED_PAGER_IS_SWAPLESS
)
330 if (COMPRESSED_PAGER_IS_SWAPBACKED
|| DEFAULT_FREEZER_COMPRESSED_PAGER_IS_SWAPBACKED
) {
331 if ((vm_compressor_low_on_space() || HARD_THROTTLE_LIMIT_REACHED()) &&
332 (unsigned int)pmap_compressed(task
->map
->pmap
) > (c_segment_pages_compressed
/ 4))
335 if (((dp_pages_free
+ dp_pages_reserve
< 2000) && VM_DYNAMIC_PAGING_ENABLED(memory_manager_default
)) &&
336 get_task_resident_size(task
) > (((AVAILABLE_NON_COMPRESSED_MEMORY
) * PAGE_SIZE
) / 5))
344 static uint32_t no_paging_space_action_in_progress
= 0;
345 extern void memorystatus_send_low_swap_note(void);
348 vm_compressor_take_paging_space_action(void)
350 if (no_paging_space_action_in_progress
== 0) {
352 if (OSCompareAndSwap(0, 1, (UInt32
*)&no_paging_space_action_in_progress
)) {
354 if (no_paging_space_action()) {
355 memorystatus_send_low_swap_note();
358 no_paging_space_action_in_progress
= 0;
366 vm_compressor_init_locks(void)
368 lck_grp_attr_setdefault(&vm_compressor_lck_grp_attr
);
369 lck_grp_init(&vm_compressor_lck_grp
, "vm_compressor", &vm_compressor_lck_grp_attr
);
370 lck_attr_setdefault(&vm_compressor_lck_attr
);
372 lck_rw_init(&c_master_lock
, &vm_compressor_lck_grp
, &vm_compressor_lck_attr
);
377 vm_decompressor_lock(void)
379 PAGE_REPLACEMENT_ALLOWED(TRUE
);
381 decompressions_blocked
= TRUE
;
383 PAGE_REPLACEMENT_ALLOWED(FALSE
);
387 vm_decompressor_unlock(void)
389 PAGE_REPLACEMENT_ALLOWED(TRUE
);
391 decompressions_blocked
= FALSE
;
393 PAGE_REPLACEMENT_ALLOWED(FALSE
);
395 thread_wakeup((event_t
)&decompressions_blocked
);
401 vm_compressor_init(void)
404 struct c_slot cs_dummy
;
405 c_slot_t cs
= &cs_dummy
;
406 int c_segment_min_size
;
407 int c_segment_padded_size
;
410 * ensure that any pointer that gets created from
411 * the vm_page zone can be packed properly
413 cs
->c_packed_ptr
= C_SLOT_PACK_PTR(zone_map_min_address
);
415 if (C_SLOT_UNPACK_PTR(cs
) != (uintptr_t)zone_map_min_address
)
416 panic("C_SLOT_UNPACK_PTR failed on zone_map_min_address - %p", (void *)zone_map_min_address
);
418 cs
->c_packed_ptr
= C_SLOT_PACK_PTR(zone_map_max_address
);
420 if (C_SLOT_UNPACK_PTR(cs
) != (uintptr_t)zone_map_max_address
)
421 panic("C_SLOT_UNPACK_PTR failed on zone_map_max_address - %p", (void *)zone_map_max_address
);
424 assert((C_SEGMENTS_PER_PAGE
* sizeof(union c_segu
)) == PAGE_SIZE
);
426 PE_parse_boot_argn("vm_compression_limit", &vm_compression_limit
, sizeof (vm_compression_limit
));
428 if (max_mem
<= (3ULL * 1024ULL * 1024ULL * 1024ULL)) {
429 vm_compressor_minorcompact_threshold_divisor
= 11;
430 vm_compressor_majorcompact_threshold_divisor
= 13;
431 vm_compressor_unthrottle_threshold_divisor
= 20;
432 vm_compressor_catchup_threshold_divisor
= 35;
434 vm_compressor_minorcompact_threshold_divisor
= 20;
435 vm_compressor_majorcompact_threshold_divisor
= 25;
436 vm_compressor_unthrottle_threshold_divisor
= 35;
437 vm_compressor_catchup_threshold_divisor
= 50;
440 * vm_page_init_lck_grp is now responsible for calling vm_compressor_init_locks
441 * c_master_lock needs to be available early so that "vm_page_find_contiguous" can
442 * use PAGE_REPLACEMENT_ALLOWED to coordinate with the compressor.
445 #if __i386__ || __x86_64__
446 c_list_lock
= lck_mtx_alloc_init(&vm_compressor_lck_grp
, &vm_compressor_lck_attr
);
447 #else /* __i386__ || __x86_64__ */
448 c_list_lock
= lck_spin_alloc_init(&vm_compressor_lck_grp
, &vm_compressor_lck_attr
);
449 #endif /* __i386__ || __x86_64__ */
452 queue_init(&c_bad_list_head
);
453 queue_init(&c_age_list_head
);
454 queue_init(&c_minor_list_head
);
455 queue_init(&c_major_list_head
);
456 queue_init(&c_filling_list_head
);
457 queue_init(&c_swapout_list_head
);
458 queue_init(&c_swappedin_list_head
);
459 queue_init(&c_swappedout_list_head
);
460 queue_init(&c_swappedout_sparse_list_head
);
462 c_segment_min_size
= sizeof(struct c_segment
) + (C_SEG_SLOT_VAR_ARRAY_MIN_LEN
* sizeof(struct c_slot
));
464 for (c_segment_padded_size
= 128; c_segment_padded_size
< c_segment_min_size
; c_segment_padded_size
= c_segment_padded_size
<< 1);
466 compressor_segment_zone
= zinit(c_segment_padded_size
, 128000 * c_segment_padded_size
, PAGE_SIZE
, "compressor_segment");
467 zone_change(compressor_segment_zone
, Z_CALLERACCT
, FALSE
);
468 zone_change(compressor_segment_zone
, Z_NOENCRYPT
, TRUE
);
470 c_seg_fixed_array_len
= (c_segment_padded_size
- sizeof(struct c_segment
)) / sizeof(struct c_slot
);
472 c_free_segno_head
= -1;
473 c_segments_available
= 0;
475 if (vm_compression_limit
== 0) {
476 c_segment_pages_compressed_limit
= (uint32_t)((max_mem
/ PAGE_SIZE
)) * vm_scale
;
478 #define OLD_SWAP_LIMIT (1024 * 1024 * 16)
479 #define MAX_SWAP_LIMIT (1024 * 1024 * 128)
481 if (c_segment_pages_compressed_limit
> (OLD_SWAP_LIMIT
))
482 c_segment_pages_compressed_limit
= OLD_SWAP_LIMIT
;
484 if (c_segment_pages_compressed_limit
< (uint32_t)(max_mem
/ PAGE_SIZE_64
))
485 c_segment_pages_compressed_limit
= (uint32_t)(max_mem
/ PAGE_SIZE_64
);
487 if (vm_compression_limit
< MAX_SWAP_LIMIT
)
488 c_segment_pages_compressed_limit
= vm_compression_limit
;
490 c_segment_pages_compressed_limit
= MAX_SWAP_LIMIT
;
492 if ((c_segments_limit
= c_segment_pages_compressed_limit
/ (C_SEG_BUFSIZE
/ PAGE_SIZE
)) > C_SEG_MAX_LIMIT
)
493 c_segments_limit
= C_SEG_MAX_LIMIT
;
495 c_segment_pages_compressed_nearing_limit
= (c_segment_pages_compressed_limit
* 98) / 100;
496 c_segments_nearing_limit
= (c_segments_limit
* 98) / 100;
498 c_segments_busy
= FALSE
;
500 if (kernel_memory_allocate(kernel_map
, (vm_offset_t
*)(&c_segments
), (sizeof(union c_segu
) * c_segments_limit
), 0, KMA_KOBJECT
| KMA_VAONLY
| KMA_PERMANENT
, VM_KERN_MEMORY_COMPRESSOR
) != KERN_SUCCESS
)
501 panic("vm_compressor_init: kernel_memory_allocate failed - c_segments\n");
502 c_buffers_size
= (vm_size_t
)C_SEG_ALLOCSIZE
* (vm_size_t
)c_segments_limit
;
503 if (kernel_memory_allocate(kernel_map
, &c_buffers
, c_buffers_size
, 0, KMA_COMPRESSOR
| KMA_VAONLY
| KMA_PERMANENT
, VM_KERN_MEMORY_COMPRESSOR
) != KERN_SUCCESS
)
504 panic("vm_compressor_init: kernel_memory_allocate failed - c_buffers\n");
506 c_segments_next_page
= (caddr_t
)c_segments
;
509 host_basic_info_data_t hinfo
;
510 mach_msg_type_number_t count
= HOST_BASIC_INFO_COUNT
;
513 host_info((host_t
)BSD_HOST
, HOST_BASIC_INFO
, (host_info_t
)&hinfo
, &count
);
515 compressor_cpus
= hinfo
.max_cpus
;
517 compressor_scratch_bufs
= kalloc_tag(compressor_cpus
* WKdm_SCRATCH_BUF_SIZE
, VM_KERN_MEMORY_COMPRESSOR
);
519 kdp_compressor_scratch_buf
= kalloc_tag(WKdm_SCRATCH_BUF_SIZE
, VM_KERN_MEMORY_COMPRESSOR
);
520 kdp_compressor_decompressed_page
= kalloc_tag(PAGE_SIZE
, VM_KERN_MEMORY_COMPRESSOR
);
521 kdp_compressor_decompressed_page_paddr
= kvtophys((vm_offset_t
)kdp_compressor_decompressed_page
);
522 kdp_compressor_decompressed_page_ppnum
= (ppnum_t
) atop(kdp_compressor_decompressed_page_paddr
);
525 freezer_compressor_scratch_buf
= kalloc_tag(WKdm_SCRATCH_BUF_SIZE
, VM_KERN_MEMORY_COMPRESSOR
);
528 #if RECORD_THE_COMPRESSED_DATA
529 if (kernel_memory_allocate(kernel_map
, (vm_offset_t
*)&c_compressed_record_sbuf
, (vm_size_t
)C_SEG_ALLOCSIZE
+ (PAGE_SIZE
* 2), 0, KMA_KOBJECT
, VM_KERN_MEMORY_COMPRESSOR
) != KERN_SUCCESS
)
530 panic("vm_compressor_init: kernel_memory_allocate failed - c_compressed_record_sbuf\n");
532 c_compressed_record_cptr
= c_compressed_record_sbuf
;
533 c_compressed_record_ebuf
= c_compressed_record_sbuf
+ C_SEG_ALLOCSIZE
+ (PAGE_SIZE
* 2);
536 if (kernel_thread_start_priority((thread_continue_t
)vm_compressor_swap_trigger_thread
, NULL
,
537 BASEPRI_PREEMPT
- 1, &thread
) != KERN_SUCCESS
) {
538 panic("vm_compressor_swap_trigger_thread: create failed");
540 thread_deallocate(thread
);
542 assert(default_pager_init_flag
== 0);
544 if (vm_pageout_internal_start() != KERN_SUCCESS
) {
545 panic("vm_compressor_init: Failed to start the internal pageout thread.\n");
547 if (COMPRESSED_PAGER_IS_ACTIVE
|| DEFAULT_FREEZER_COMPRESSED_PAGER_IS_ACTIVE
)
548 vm_compressor_swap_init();
550 if (COMPRESSED_PAGER_IS_ACTIVE
|| DEFAULT_FREEZER_COMPRESSED_PAGER_IS_SWAPBACKED
)
551 vm_compressor_is_active
= 1;
554 memorystatus_freeze_enabled
= TRUE
;
555 #endif /* CONFIG_FREEZE */
557 default_pager_init_flag
= 1;
558 vm_compressor_available
= 1;
560 vm_page_reactivate_all_throttled();
564 #if VALIDATE_C_SEGMENTS
567 c_seg_validate(c_segment_t c_seg
, boolean_t must_be_compact
)
571 int32_t bytes_unused
;
572 uint32_t c_rounded_size
;
576 if (c_seg
->c_firstemptyslot
< c_seg
->c_nextslot
) {
577 c_indx
= c_seg
->c_firstemptyslot
;
578 cs
= C_SEG_SLOT_FROM_INDEX(c_seg
, c_indx
);
581 panic("c_seg_validate: no slot backing c_firstemptyslot");
584 panic("c_seg_validate: c_firstemptyslot has non-zero size (%d)\n", cs
->c_size
);
589 for (c_indx
= 0; c_indx
< c_seg
->c_nextslot
; c_indx
++) {
591 cs
= C_SEG_SLOT_FROM_INDEX(c_seg
, c_indx
);
593 c_size
= UNPACK_C_SIZE(cs
);
595 c_rounded_size
= (c_size
+ C_SEG_OFFSET_ALIGNMENT_MASK
) & ~C_SEG_OFFSET_ALIGNMENT_MASK
;
597 bytes_used
+= c_rounded_size
;
599 #if CHECKSUM_THE_COMPRESSED_DATA
600 if (c_size
&& cs
->c_hash_compressed_data
!= hash_string((char *)&c_seg
->c_store
.c_buffer
[cs
->c_offset
], c_size
))
601 panic("compressed data doesn't match original");
605 if (bytes_used
!= c_seg
->c_bytes_used
)
606 panic("c_seg_validate: bytes_used mismatch - found %d, segment has %d\n", bytes_used
, c_seg
->c_bytes_used
);
608 if (c_seg
->c_bytes_used
> C_SEG_OFFSET_TO_BYTES((int32_t)c_seg
->c_nextoffset
))
609 panic("c_seg_validate: c_bytes_used > c_nextoffset - c_nextoffset = %d, c_bytes_used = %d\n",
610 (int32_t)C_SEG_OFFSET_TO_BYTES((int32_t)c_seg
->c_nextoffset
), c_seg
->c_bytes_used
);
612 if (must_be_compact
) {
613 if (c_seg
->c_bytes_used
!= C_SEG_OFFSET_TO_BYTES((int32_t)c_seg
->c_nextoffset
))
614 panic("c_seg_validate: c_bytes_used doesn't match c_nextoffset - c_nextoffset = %d, c_bytes_used = %d\n",
615 (int32_t)C_SEG_OFFSET_TO_BYTES((int32_t)c_seg
->c_nextoffset
), c_seg
->c_bytes_used
);
623 c_seg_need_delayed_compaction(c_segment_t c_seg
)
625 boolean_t clear_busy
= FALSE
;
627 if ( !lck_mtx_try_lock_spin_always(c_list_lock
)) {
630 lck_mtx_unlock_always(&c_seg
->c_lock
);
631 lck_mtx_lock_spin_always(c_list_lock
);
632 lck_mtx_lock_spin_always(&c_seg
->c_lock
);
636 assert(c_seg
->c_state
!= C_IS_FILLING
);
638 if (!c_seg
->c_on_minorcompact_q
&& !(C_SEG_IS_ONDISK(c_seg
))) {
639 queue_enter(&c_minor_list_head
, c_seg
, c_segment_t
, c_list
);
640 c_seg
->c_on_minorcompact_q
= 1;
643 lck_mtx_unlock_always(c_list_lock
);
645 if (clear_busy
== TRUE
)
646 C_SEG_WAKEUP_DONE(c_seg
);
650 unsigned int c_seg_moved_to_sparse_list
= 0;
653 c_seg_move_to_sparse_list(c_segment_t c_seg
)
655 boolean_t clear_busy
= FALSE
;
657 if ( !lck_mtx_try_lock_spin_always(c_list_lock
)) {
660 lck_mtx_unlock_always(&c_seg
->c_lock
);
661 lck_mtx_lock_spin_always(c_list_lock
);
662 lck_mtx_lock_spin_always(&c_seg
->c_lock
);
666 c_seg_switch_state(c_seg
, C_ON_SWAPPEDOUTSPARSE_Q
, FALSE
);
668 c_seg_moved_to_sparse_list
++;
670 lck_mtx_unlock_always(c_list_lock
);
672 if (clear_busy
== TRUE
)
673 C_SEG_WAKEUP_DONE(c_seg
);
678 c_seg_insert_into_q(queue_head_t
*qhead
, c_segment_t c_seg
)
680 c_segment_t c_seg_next
;
682 if (queue_empty(qhead
)) {
683 queue_enter(qhead
, c_seg
, c_segment_t
, c_age_list
);
685 c_seg_next
= (c_segment_t
)queue_first(qhead
);
689 if (c_seg
->c_generation_id
< c_seg_next
->c_generation_id
) {
690 queue_insert_before(qhead
, c_seg
, c_seg_next
, c_segment_t
, c_age_list
);
693 c_seg_next
= (c_segment_t
) queue_next(&c_seg_next
->c_age_list
);
695 if (queue_end(qhead
, (queue_entry_t
) c_seg_next
)) {
696 queue_enter(qhead
, c_seg
, c_segment_t
, c_age_list
);
704 int try_minor_compaction_failed
= 0;
705 int try_minor_compaction_succeeded
= 0;
708 c_seg_try_minor_compaction_and_unlock(c_segment_t c_seg
)
711 assert(c_seg
->c_on_minorcompact_q
);
713 * c_seg is currently on the delayed minor compaction
714 * queue and we have c_seg locked... if we can get the
715 * c_list_lock w/o blocking (if we blocked we could deadlock
716 * because the lock order is c_list_lock then c_seg's lock)
717 * we'll pull it from the delayed list and free it directly
719 if ( !lck_mtx_try_lock_spin_always(c_list_lock
)) {
721 * c_list_lock is held, we need to bail
723 try_minor_compaction_failed
++;
725 lck_mtx_unlock_always(&c_seg
->c_lock
);
727 try_minor_compaction_succeeded
++;
730 c_seg_do_minor_compaction_and_unlock(c_seg
, TRUE
, FALSE
, FALSE
);
736 c_seg_do_minor_compaction_and_unlock(c_segment_t c_seg
, boolean_t clear_busy
, boolean_t need_list_lock
, boolean_t disallow_page_replacement
)
740 assert(c_seg
->c_busy
);
743 * check for the case that can occur when we are not swapping
744 * and this segment has been major compacted in the past
745 * and moved to the majorcompact q to remove it from further
746 * consideration... if the occupancy falls too low we need
747 * to put it back on the age_q so that it will be considered
748 * in the next major compaction sweep... if we don't do this
749 * we will eventually run into the c_segments_limit
751 if (c_seg
->c_state
== C_ON_MAJORCOMPACT_Q
&& C_SEG_SHOULD_MAJORCOMPACT(c_seg
)) {
753 c_seg_switch_state(c_seg
, C_ON_AGE_Q
, FALSE
);
755 if (!c_seg
->c_on_minorcompact_q
) {
756 if (clear_busy
== TRUE
)
757 C_SEG_WAKEUP_DONE(c_seg
);
759 lck_mtx_unlock_always(&c_seg
->c_lock
);
763 queue_remove(&c_minor_list_head
, c_seg
, c_segment_t
, c_list
);
764 c_seg
->c_on_minorcompact_q
= 0;
767 lck_mtx_unlock_always(c_list_lock
);
769 if (disallow_page_replacement
== TRUE
) {
770 lck_mtx_unlock_always(&c_seg
->c_lock
);
772 PAGE_REPLACEMENT_DISALLOWED(TRUE
);
774 lck_mtx_lock_spin_always(&c_seg
->c_lock
);
776 c_seg_freed
= c_seg_minor_compaction_and_unlock(c_seg
, clear_busy
);
778 if (disallow_page_replacement
== TRUE
)
779 PAGE_REPLACEMENT_DISALLOWED(FALSE
);
781 if (need_list_lock
== TRUE
)
782 lck_mtx_lock_spin_always(c_list_lock
);
784 return (c_seg_freed
);
789 c_seg_wait_on_busy(c_segment_t c_seg
)
792 assert_wait((event_t
) (c_seg
), THREAD_UNINT
);
794 lck_mtx_unlock_always(&c_seg
->c_lock
);
795 thread_block(THREAD_CONTINUE_NULL
);
800 c_seg_switch_state(c_segment_t c_seg
, int new_state
, boolean_t insert_head
)
802 int old_state
= c_seg
->c_state
;
804 #if DEVELOPMENT || DEBUG
805 #if __i386__ || __x86_64__
806 if (new_state
!= C_IS_FILLING
)
807 lck_mtx_assert(&c_seg
->c_lock
, LCK_MTX_ASSERT_OWNED
);
808 lck_mtx_assert(c_list_lock
, LCK_MTX_ASSERT_OWNED
);
814 assert(new_state
== C_IS_FILLING
|| new_state
== C_IS_FREE
);
820 assert(new_state
== C_ON_AGE_Q
|| new_state
== C_ON_SWAPOUT_Q
);
822 queue_remove(&c_filling_list_head
, c_seg
, c_segment_t
, c_age_list
);
827 assert(new_state
== C_ON_SWAPOUT_Q
|| new_state
== C_ON_MAJORCOMPACT_Q
||
828 new_state
== C_IS_FREE
);
830 queue_remove(&c_age_list_head
, c_seg
, c_segment_t
, c_age_list
);
834 case C_ON_SWAPPEDIN_Q
:
835 assert(new_state
== C_ON_AGE_Q
|| new_state
== C_IS_FREE
);
837 queue_remove(&c_swappedin_list_head
, c_seg
, c_segment_t
, c_age_list
);
842 assert(new_state
== C_ON_SWAPPEDOUT_Q
|| new_state
== C_ON_SWAPPEDOUTSPARSE_Q
||
843 new_state
== C_ON_AGE_Q
|| new_state
== C_IS_FREE
|| new_state
== C_IS_EMPTY
);
845 queue_remove(&c_swapout_list_head
, c_seg
, c_segment_t
, c_age_list
);
846 thread_wakeup((event_t
)&compaction_swapper_running
);
850 case C_ON_SWAPPEDOUT_Q
:
851 assert(new_state
== C_ON_SWAPPEDIN_Q
|| new_state
== C_ON_SWAPPEDOUTSPARSE_Q
||
852 new_state
== C_ON_BAD_Q
|| new_state
== C_IS_EMPTY
|| new_state
== C_IS_FREE
);
854 queue_remove(&c_swappedout_list_head
, c_seg
, c_segment_t
, c_age_list
);
855 c_swappedout_count
--;
858 case C_ON_SWAPPEDOUTSPARSE_Q
:
859 assert(new_state
== C_ON_SWAPPEDIN_Q
||
860 new_state
== C_ON_BAD_Q
|| new_state
== C_IS_EMPTY
|| new_state
== C_IS_FREE
);
862 queue_remove(&c_swappedout_sparse_list_head
, c_seg
, c_segment_t
, c_age_list
);
863 c_swappedout_sparse_count
--;
866 case C_ON_MAJORCOMPACT_Q
:
867 assert(new_state
== C_ON_AGE_Q
|| new_state
== C_IS_FREE
);
869 queue_remove(&c_major_list_head
, c_seg
, c_segment_t
, c_age_list
);
874 assert(new_state
== C_IS_FREE
);
876 queue_remove(&c_bad_list_head
, c_seg
, c_segment_t
, c_age_list
);
881 panic("c_seg %p has bad c_state = %d\n", c_seg
, old_state
);
886 assert(old_state
!= C_IS_FILLING
);
891 assert(old_state
== C_ON_SWAPOUT_Q
|| old_state
== C_ON_SWAPPEDOUT_Q
|| old_state
== C_ON_SWAPPEDOUTSPARSE_Q
);
897 assert(old_state
== C_IS_EMPTY
);
899 queue_enter(&c_filling_list_head
, c_seg
, c_segment_t
, c_age_list
);
904 assert(old_state
== C_IS_FILLING
|| old_state
== C_ON_SWAPPEDIN_Q
||
905 old_state
== C_ON_MAJORCOMPACT_Q
|| old_state
== C_ON_SWAPOUT_Q
);
907 if (old_state
== C_IS_FILLING
)
908 queue_enter(&c_age_list_head
, c_seg
, c_segment_t
, c_age_list
);
910 c_seg_insert_into_q(&c_age_list_head
, c_seg
);
914 case C_ON_SWAPPEDIN_Q
:
915 assert(c_seg
->c_state
== C_ON_SWAPPEDOUT_Q
|| c_seg
->c_state
== C_ON_SWAPPEDOUTSPARSE_Q
);
917 if (insert_head
== TRUE
)
918 queue_enter_first(&c_swappedin_list_head
, c_seg
, c_segment_t
, c_age_list
);
920 queue_enter(&c_swappedin_list_head
, c_seg
, c_segment_t
, c_age_list
);
925 assert(old_state
== C_ON_AGE_Q
|| old_state
== C_IS_FILLING
);
927 if (insert_head
== TRUE
)
928 queue_enter_first(&c_swapout_list_head
, c_seg
, c_segment_t
, c_age_list
);
930 queue_enter(&c_swapout_list_head
, c_seg
, c_segment_t
, c_age_list
);
934 case C_ON_SWAPPEDOUT_Q
:
935 assert(c_seg
->c_state
== C_ON_SWAPOUT_Q
);
937 if (insert_head
== TRUE
)
938 queue_enter_first(&c_swappedout_list_head
, c_seg
, c_segment_t
, c_age_list
);
940 queue_enter(&c_swappedout_list_head
, c_seg
, c_segment_t
, c_age_list
);
941 c_swappedout_count
++;
944 case C_ON_SWAPPEDOUTSPARSE_Q
:
945 assert(c_seg
->c_state
== C_ON_SWAPOUT_Q
|| c_seg
->c_state
== C_ON_SWAPPEDOUT_Q
);
947 c_seg_insert_into_q(&c_swappedout_sparse_list_head
, c_seg
);
948 c_swappedout_sparse_count
++;
951 case C_ON_MAJORCOMPACT_Q
:
952 assert(c_seg
->c_state
== C_ON_AGE_Q
);
954 if (insert_head
== TRUE
)
955 queue_enter_first(&c_major_list_head
, c_seg
, c_segment_t
, c_age_list
);
957 queue_enter(&c_major_list_head
, c_seg
, c_segment_t
, c_age_list
);
962 assert(c_seg
->c_state
== C_ON_SWAPPEDOUT_Q
|| c_seg
->c_state
== C_ON_SWAPPEDOUTSPARSE_Q
);
964 if (insert_head
== TRUE
)
965 queue_enter_first(&c_bad_list_head
, c_seg
, c_segment_t
, c_age_list
);
967 queue_enter(&c_bad_list_head
, c_seg
, c_segment_t
, c_age_list
);
972 panic("c_seg %p requesting bad c_state = %d\n", c_seg
, new_state
);
974 c_seg
->c_state
= new_state
;
980 c_seg_free(c_segment_t c_seg
)
982 assert(c_seg
->c_busy
);
984 lck_mtx_unlock_always(&c_seg
->c_lock
);
985 lck_mtx_lock_spin_always(c_list_lock
);
986 lck_mtx_lock_spin_always(&c_seg
->c_lock
);
988 c_seg_free_locked(c_seg
);
993 c_seg_free_locked(c_segment_t c_seg
)
996 int pages_populated
= 0;
997 int32_t *c_buffer
= NULL
;
998 uint64_t c_swap_handle
= 0;
1000 assert(c_seg
->c_busy
);
1001 assert(!c_seg
->c_on_minorcompact_q
);
1002 assert(!c_seg
->c_busy_swapping
);
1004 if (c_seg
->c_overage_swap
== TRUE
) {
1005 c_overage_swapped_count
--;
1006 c_seg
->c_overage_swap
= FALSE
;
1008 if ( !(C_SEG_IS_ONDISK(c_seg
)))
1009 c_buffer
= c_seg
->c_store
.c_buffer
;
1011 c_swap_handle
= c_seg
->c_store
.c_swap_handle
;
1013 c_seg_switch_state(c_seg
, C_IS_FREE
, FALSE
);
1015 lck_mtx_unlock_always(c_list_lock
);
1018 pages_populated
= (round_page_32(C_SEG_OFFSET_TO_BYTES(c_seg
->c_populated_offset
))) / PAGE_SIZE
;
1019 c_seg
->c_store
.c_buffer
= NULL
;
1021 c_seg
->c_store
.c_swap_handle
= (uint64_t)-1;
1023 lck_mtx_unlock_always(&c_seg
->c_lock
);
1026 if (pages_populated
)
1027 kernel_memory_depopulate(kernel_map
, (vm_offset_t
) c_buffer
, pages_populated
* PAGE_SIZE
, KMA_COMPRESSOR
);
1029 } else if (c_swap_handle
) {
1031 * Free swap space on disk.
1033 vm_swap_free(c_swap_handle
);
1035 lck_mtx_lock_spin_always(&c_seg
->c_lock
);
1037 C_SEG_WAKEUP_DONE(c_seg
);
1038 lck_mtx_unlock_always(&c_seg
->c_lock
);
1040 segno
= c_seg
->c_mysegno
;
1042 lck_mtx_lock_spin_always(c_list_lock
);
1044 * because the c_buffer is now associated with the segno,
1045 * we can't put the segno back on the free list until
1046 * after we have depopulated the c_buffer range, or
1047 * we run the risk of depopulating a range that is
1048 * now being used in one of the compressor heads
1050 c_segments
[segno
].c_segno
= c_free_segno_head
;
1051 c_free_segno_head
= segno
;
1054 lck_mtx_unlock_always(c_list_lock
);
1056 #if __i386__ || __x86_64__
1057 lck_mtx_destroy(&c_seg
->c_lock
, &vm_compressor_lck_grp
);
1058 #else /* __i386__ || __x86_64__ */
1059 lck_spin_destroy(&c_seg
->c_lock
, &vm_compressor_lck_grp
);
1060 #endif /* __i386__ || __x86_64__ */
1062 if (c_seg
->c_slot_var_array_len
)
1063 kfree(c_seg
->c_slot_var_array
, sizeof(struct c_slot
) * c_seg
->c_slot_var_array_len
);
1065 zfree(compressor_segment_zone
, c_seg
);
1069 int c_seg_trim_page_count
= 0;
1072 c_seg_trim_tail(c_segment_t c_seg
)
1077 uint32_t c_rounded_size
;
1078 uint16_t current_nextslot
;
1079 uint32_t current_populated_offset
;
1081 if (c_seg
->c_bytes_used
== 0)
1083 current_nextslot
= c_seg
->c_nextslot
;
1084 current_populated_offset
= c_seg
->c_populated_offset
;
1086 while (c_seg
->c_nextslot
) {
1088 cs
= C_SEG_SLOT_FROM_INDEX(c_seg
, (c_seg
->c_nextslot
- 1));
1090 c_size
= UNPACK_C_SIZE(cs
);
1093 if (current_nextslot
!= c_seg
->c_nextslot
) {
1094 c_rounded_size
= (c_size
+ C_SEG_OFFSET_ALIGNMENT_MASK
) & ~C_SEG_OFFSET_ALIGNMENT_MASK
;
1095 c_offset
= cs
->c_offset
+ C_SEG_BYTES_TO_OFFSET(c_rounded_size
);
1097 c_seg
->c_nextoffset
= c_offset
;
1098 c_seg
->c_populated_offset
= (c_offset
+ (C_SEG_BYTES_TO_OFFSET(PAGE_SIZE
) - 1)) & ~(C_SEG_BYTES_TO_OFFSET(PAGE_SIZE
) - 1);
1100 if (c_seg
->c_firstemptyslot
> c_seg
->c_nextslot
)
1101 c_seg
->c_firstemptyslot
= c_seg
->c_nextslot
;
1103 c_seg_trim_page_count
+= ((round_page_32(C_SEG_OFFSET_TO_BYTES(current_populated_offset
)) -
1104 round_page_32(C_SEG_OFFSET_TO_BYTES(c_seg
->c_populated_offset
))) / PAGE_SIZE
);
1108 c_seg
->c_nextslot
--;
1110 assert(c_seg
->c_nextslot
);
1115 c_seg_minor_compaction_and_unlock(c_segment_t c_seg
, boolean_t clear_busy
)
1117 c_slot_mapping_t slot_ptr
;
1118 uint32_t c_offset
= 0;
1119 uint32_t old_populated_offset
;
1120 uint32_t c_rounded_size
;
1126 boolean_t need_unlock
= TRUE
;
1128 assert(c_seg
->c_busy
);
1130 #if VALIDATE_C_SEGMENTS
1131 c_seg_validate(c_seg
, FALSE
);
1133 if (c_seg
->c_bytes_used
== 0) {
1137 if (c_seg
->c_firstemptyslot
>= c_seg
->c_nextslot
|| C_SEG_UNUSED_BYTES(c_seg
) < PAGE_SIZE
)
1140 #if VALIDATE_C_SEGMENTS
1141 c_seg
->c_was_minor_compacted
++;
1143 c_indx
= c_seg
->c_firstemptyslot
;
1144 c_dst
= C_SEG_SLOT_FROM_INDEX(c_seg
, c_indx
);
1146 old_populated_offset
= c_seg
->c_populated_offset
;
1147 c_offset
= c_dst
->c_offset
;
1149 for (i
= c_indx
+ 1; i
< c_seg
->c_nextslot
&& c_offset
< c_seg
->c_nextoffset
; i
++) {
1151 c_src
= C_SEG_SLOT_FROM_INDEX(c_seg
, i
);
1153 c_size
= UNPACK_C_SIZE(c_src
);
1158 memcpy(&c_seg
->c_store
.c_buffer
[c_offset
], &c_seg
->c_store
.c_buffer
[c_src
->c_offset
], c_size
);
1160 #if CHECKSUM_THE_DATA
1161 c_dst
->c_hash_data
= c_src
->c_hash_data
;
1163 #if CHECKSUM_THE_COMPRESSED_DATA
1164 c_dst
->c_hash_compressed_data
= c_src
->c_hash_compressed_data
;
1166 c_dst
->c_size
= c_src
->c_size
;
1167 c_dst
->c_packed_ptr
= c_src
->c_packed_ptr
;
1168 c_dst
->c_offset
= c_offset
;
1170 slot_ptr
= (c_slot_mapping_t
)C_SLOT_UNPACK_PTR(c_dst
);
1171 slot_ptr
->s_cindx
= c_indx
;
1173 c_rounded_size
= (c_size
+ C_SEG_OFFSET_ALIGNMENT_MASK
) & ~C_SEG_OFFSET_ALIGNMENT_MASK
;
1175 c_offset
+= C_SEG_BYTES_TO_OFFSET(c_rounded_size
);
1176 PACK_C_SIZE(c_src
, 0);
1179 c_dst
= C_SEG_SLOT_FROM_INDEX(c_seg
, c_indx
);
1181 c_seg
->c_firstemptyslot
= c_indx
;
1182 c_seg
->c_nextslot
= c_indx
;
1183 c_seg
->c_nextoffset
= c_offset
;
1184 c_seg
->c_populated_offset
= (c_offset
+ (C_SEG_BYTES_TO_OFFSET(PAGE_SIZE
) - 1)) & ~(C_SEG_BYTES_TO_OFFSET(PAGE_SIZE
) - 1);
1185 c_seg
->c_bytes_unused
= 0;
1187 #if VALIDATE_C_SEGMENTS
1188 c_seg_validate(c_seg
, TRUE
);
1191 if (old_populated_offset
> c_seg
->c_populated_offset
) {
1195 gc_size
= C_SEG_OFFSET_TO_BYTES(old_populated_offset
- c_seg
->c_populated_offset
);
1196 gc_ptr
= &c_seg
->c_store
.c_buffer
[c_seg
->c_populated_offset
];
1198 lck_mtx_unlock_always(&c_seg
->c_lock
);
1200 kernel_memory_depopulate(kernel_map
, (vm_offset_t
)gc_ptr
, gc_size
, KMA_COMPRESSOR
);
1202 if (clear_busy
== TRUE
)
1203 lck_mtx_lock_spin_always(&c_seg
->c_lock
);
1205 need_unlock
= FALSE
;
1208 if (need_unlock
== TRUE
) {
1209 if (clear_busy
== TRUE
)
1210 C_SEG_WAKEUP_DONE(c_seg
);
1212 lck_mtx_unlock_always(&c_seg
->c_lock
);
1219 c_seg_alloc_nextslot(c_segment_t c_seg
)
1221 struct c_slot
*old_slot_array
= NULL
;
1222 struct c_slot
*new_slot_array
= NULL
;
1226 if (c_seg
->c_nextslot
< c_seg_fixed_array_len
)
1229 if ((c_seg
->c_nextslot
- c_seg_fixed_array_len
) >= c_seg
->c_slot_var_array_len
) {
1231 oldlen
= c_seg
->c_slot_var_array_len
;
1232 old_slot_array
= c_seg
->c_slot_var_array
;
1235 newlen
= C_SEG_SLOT_VAR_ARRAY_MIN_LEN
;
1237 newlen
= oldlen
* 2;
1239 new_slot_array
= (struct c_slot
*)kalloc(sizeof(struct c_slot
) * newlen
);
1241 lck_mtx_lock_spin_always(&c_seg
->c_lock
);
1244 memcpy((char *)new_slot_array
, (char *)old_slot_array
, sizeof(struct c_slot
) * oldlen
);
1246 c_seg
->c_slot_var_array_len
= newlen
;
1247 c_seg
->c_slot_var_array
= new_slot_array
;
1249 lck_mtx_unlock_always(&c_seg
->c_lock
);
1252 kfree(old_slot_array
, sizeof(struct c_slot
) * oldlen
);
1259 uint64_t asked_permission
;
1260 uint64_t compactions
;
1261 uint64_t moved_slots
;
1262 uint64_t moved_bytes
;
1263 uint64_t wasted_space_in_swapouts
;
1264 uint64_t count_of_swapouts
;
1265 uint64_t count_of_freed_segs
;
1266 } c_seg_major_compact_stats
;
1269 #define C_MAJOR_COMPACTION_SIZE_APPROPRIATE ((C_SEG_BUFSIZE * 90) / 100)
1273 c_seg_major_compact_ok(
1274 c_segment_t c_seg_dst
,
1275 c_segment_t c_seg_src
)
1278 c_seg_major_compact_stats
.asked_permission
++;
1280 if (c_seg_src
->c_bytes_used
>= C_MAJOR_COMPACTION_SIZE_APPROPRIATE
&&
1281 c_seg_dst
->c_bytes_used
>= C_MAJOR_COMPACTION_SIZE_APPROPRIATE
)
1284 if (c_seg_dst
->c_nextoffset
>= C_SEG_OFF_LIMIT
|| c_seg_dst
->c_nextslot
>= C_SLOT_MAX_INDEX
) {
1286 * destination segment is full... can't compact
1296 c_seg_major_compact(
1297 c_segment_t c_seg_dst
,
1298 c_segment_t c_seg_src
)
1300 c_slot_mapping_t slot_ptr
;
1301 uint32_t c_rounded_size
;
1307 boolean_t keep_compacting
= TRUE
;
1310 * segments are not locked but they are both marked c_busy
1311 * which keeps c_decompress from working on them...
1312 * we can safely allocate new pages, move compressed data
1313 * from c_seg_src to c_seg_dst and update both c_segment's
1314 * state w/o holding the master lock
1317 #if VALIDATE_C_SEGMENTS
1318 c_seg_dst
->c_was_major_compacted
++;
1319 c_seg_src
->c_was_major_donor
++;
1321 c_seg_major_compact_stats
.compactions
++;
1323 dst_slot
= c_seg_dst
->c_nextslot
;
1325 for (i
= 0; i
< c_seg_src
->c_nextslot
; i
++) {
1327 c_src
= C_SEG_SLOT_FROM_INDEX(c_seg_src
, i
);
1329 c_size
= UNPACK_C_SIZE(c_src
);
1332 /* BATCH: move what we have so far; */
1336 if (C_SEG_OFFSET_TO_BYTES(c_seg_dst
->c_populated_offset
- c_seg_dst
->c_nextoffset
) < (unsigned) c_size
) {
1337 int size_to_populate
;
1340 size_to_populate
= C_SEG_BUFSIZE
- C_SEG_OFFSET_TO_BYTES(c_seg_dst
->c_populated_offset
);
1342 if (size_to_populate
== 0) {
1344 keep_compacting
= FALSE
;
1347 if (size_to_populate
> C_SEG_MAX_POPULATE_SIZE
)
1348 size_to_populate
= C_SEG_MAX_POPULATE_SIZE
;
1350 kernel_memory_populate(kernel_map
,
1351 (vm_offset_t
) &c_seg_dst
->c_store
.c_buffer
[c_seg_dst
->c_populated_offset
],
1354 VM_KERN_MEMORY_COMPRESSOR
);
1356 c_seg_dst
->c_populated_offset
+= C_SEG_BYTES_TO_OFFSET(size_to_populate
);
1357 assert(C_SEG_OFFSET_TO_BYTES(c_seg_dst
->c_populated_offset
) <= C_SEG_BUFSIZE
);
1359 c_seg_alloc_nextslot(c_seg_dst
);
1361 c_dst
= C_SEG_SLOT_FROM_INDEX(c_seg_dst
, c_seg_dst
->c_nextslot
);
1363 memcpy(&c_seg_dst
->c_store
.c_buffer
[c_seg_dst
->c_nextoffset
], &c_seg_src
->c_store
.c_buffer
[c_src
->c_offset
], c_size
);
1365 c_rounded_size
= (c_size
+ C_SEG_OFFSET_ALIGNMENT_MASK
) & ~C_SEG_OFFSET_ALIGNMENT_MASK
;
1367 c_seg_major_compact_stats
.moved_slots
++;
1368 c_seg_major_compact_stats
.moved_bytes
+= c_size
;
1370 #if CHECKSUM_THE_DATA
1371 c_dst
->c_hash_data
= c_src
->c_hash_data
;
1373 #if CHECKSUM_THE_COMPRESSED_DATA
1374 c_dst
->c_hash_compressed_data
= c_src
->c_hash_compressed_data
;
1376 c_dst
->c_size
= c_src
->c_size
;
1377 c_dst
->c_packed_ptr
= c_src
->c_packed_ptr
;
1378 c_dst
->c_offset
= c_seg_dst
->c_nextoffset
;
1380 if (c_seg_dst
->c_firstemptyslot
== c_seg_dst
->c_nextslot
)
1381 c_seg_dst
->c_firstemptyslot
++;
1382 c_seg_dst
->c_nextslot
++;
1383 c_seg_dst
->c_bytes_used
+= c_rounded_size
;
1384 c_seg_dst
->c_nextoffset
+= C_SEG_BYTES_TO_OFFSET(c_rounded_size
);
1386 PACK_C_SIZE(c_src
, 0);
1388 c_seg_src
->c_bytes_used
-= c_rounded_size
;
1389 c_seg_src
->c_bytes_unused
+= c_rounded_size
;
1390 c_seg_src
->c_firstemptyslot
= 0;
1392 if (c_seg_dst
->c_nextoffset
>= C_SEG_OFF_LIMIT
|| c_seg_dst
->c_nextslot
>= C_SLOT_MAX_INDEX
) {
1393 /* dest segment is now full */
1394 keep_compacting
= FALSE
;
1398 if (dst_slot
< c_seg_dst
->c_nextslot
) {
1400 PAGE_REPLACEMENT_ALLOWED(TRUE
);
1402 * we've now locked out c_decompress from
1403 * converting the slot passed into it into
1404 * a c_segment_t which allows us to use
1405 * the backptr to change which c_segment and
1406 * index the slot points to
1408 while (dst_slot
< c_seg_dst
->c_nextslot
) {
1410 c_dst
= C_SEG_SLOT_FROM_INDEX(c_seg_dst
, dst_slot
);
1412 slot_ptr
= (c_slot_mapping_t
)C_SLOT_UNPACK_PTR(c_dst
);
1413 /* <csegno=0,indx=0> would mean "empty slot", so use csegno+1 */
1414 slot_ptr
->s_cseg
= c_seg_dst
->c_mysegno
+ 1;
1415 slot_ptr
->s_cindx
= dst_slot
++;
1417 PAGE_REPLACEMENT_ALLOWED(FALSE
);
1419 return (keep_compacting
);
1424 vm_compressor_compute_elapsed_msecs(clock_sec_t end_sec
, clock_nsec_t end_nsec
, clock_sec_t start_sec
, clock_nsec_t start_nsec
)
1427 uint64_t start_msecs
;
1429 end_msecs
= (end_sec
* 1000) + end_nsec
/ 1000000;
1430 start_msecs
= (start_sec
* 1000) + start_nsec
/ 1000000;
1432 return (end_msecs
- start_msecs
);
1437 uint32_t compressor_eval_period_in_msecs
= 250;
1438 uint32_t compressor_sample_min_in_msecs
= 500;
1439 uint32_t compressor_sample_max_in_msecs
= 10000;
1440 uint32_t compressor_thrashing_threshold_per_10msecs
= 50;
1441 uint32_t compressor_thrashing_min_per_10msecs
= 20;
1443 /* When true, reset sample data next chance we get. */
1444 static boolean_t compressor_need_sample_reset
= FALSE
;
1446 extern uint32_t vm_page_filecache_min
;
1450 compute_swapout_target_age(void)
1452 clock_sec_t cur_ts_sec
;
1453 clock_nsec_t cur_ts_nsec
;
1454 uint32_t min_operations_needed_in_this_sample
;
1455 uint64_t elapsed_msecs_in_eval
;
1456 uint64_t elapsed_msecs_in_sample
;
1457 boolean_t need_eval_reset
= FALSE
;
1459 clock_get_system_nanotime(&cur_ts_sec
, &cur_ts_nsec
);
1461 elapsed_msecs_in_sample
= vm_compressor_compute_elapsed_msecs(cur_ts_sec
, cur_ts_nsec
, start_of_sample_period_sec
, start_of_sample_period_nsec
);
1463 if (compressor_need_sample_reset
||
1464 elapsed_msecs_in_sample
>= compressor_sample_max_in_msecs
) {
1465 compressor_need_sample_reset
= TRUE
;
1466 need_eval_reset
= TRUE
;
1469 elapsed_msecs_in_eval
= vm_compressor_compute_elapsed_msecs(cur_ts_sec
, cur_ts_nsec
, start_of_eval_period_sec
, start_of_eval_period_nsec
);
1471 if (elapsed_msecs_in_eval
< compressor_eval_period_in_msecs
)
1473 need_eval_reset
= TRUE
;
1475 KERNEL_DEBUG(0xe0400020 | DBG_FUNC_START
, elapsed_msecs_in_eval
, sample_period_compression_count
, sample_period_decompression_count
, 0, 0);
1477 min_operations_needed_in_this_sample
= (compressor_thrashing_min_per_10msecs
* (uint32_t)elapsed_msecs_in_eval
) / 10;
1479 if ((sample_period_compression_count
- last_eval_compression_count
) < min_operations_needed_in_this_sample
||
1480 (sample_period_decompression_count
- last_eval_decompression_count
) < min_operations_needed_in_this_sample
) {
1482 KERNEL_DEBUG(0xe0400020 | DBG_FUNC_END
, sample_period_compression_count
- last_eval_compression_count
,
1483 sample_period_decompression_count
- last_eval_decompression_count
, 0, 1, 0);
1485 swapout_target_age
= 0;
1487 compressor_need_sample_reset
= TRUE
;
1488 need_eval_reset
= TRUE
;
1491 last_eval_compression_count
= sample_period_compression_count
;
1492 last_eval_decompression_count
= sample_period_decompression_count
;
1494 if (elapsed_msecs_in_sample
< compressor_sample_min_in_msecs
) {
1496 KERNEL_DEBUG(0xe0400020 | DBG_FUNC_END
, swapout_target_age
, 0, 0, 5, 0);
1499 if (sample_period_decompression_count
> ((compressor_thrashing_threshold_per_10msecs
* elapsed_msecs_in_sample
) / 10)) {
1501 uint64_t running_total
;
1502 uint64_t working_target
;
1503 uint64_t aging_target
;
1504 uint32_t oldest_age_of_csegs_sampled
= 0;
1505 uint64_t working_set_approximation
= 0;
1507 swapout_target_age
= 0;
1509 working_target
= (sample_period_decompression_count
/ 100) * 95; /* 95 percent */
1510 aging_target
= (sample_period_decompression_count
/ 100) * 1; /* 1 percent */
1513 for (oldest_age_of_csegs_sampled
= 0; oldest_age_of_csegs_sampled
< DECOMPRESSION_SAMPLE_MAX_AGE
; oldest_age_of_csegs_sampled
++) {
1515 running_total
+= age_of_decompressions_during_sample_period
[oldest_age_of_csegs_sampled
];
1517 working_set_approximation
+= oldest_age_of_csegs_sampled
* age_of_decompressions_during_sample_period
[oldest_age_of_csegs_sampled
];
1519 if (running_total
>= working_target
)
1522 if (oldest_age_of_csegs_sampled
< DECOMPRESSION_SAMPLE_MAX_AGE
) {
1524 working_set_approximation
= (working_set_approximation
* 1000) / elapsed_msecs_in_sample
;
1526 if (working_set_approximation
< VM_PAGE_COMPRESSOR_COUNT
) {
1528 running_total
= overage_decompressions_during_sample_period
;
1530 for (oldest_age_of_csegs_sampled
= DECOMPRESSION_SAMPLE_MAX_AGE
- 1; oldest_age_of_csegs_sampled
; oldest_age_of_csegs_sampled
--) {
1531 running_total
+= age_of_decompressions_during_sample_period
[oldest_age_of_csegs_sampled
];
1533 if (running_total
>= aging_target
)
1536 swapout_target_age
= (uint32_t)cur_ts_sec
- oldest_age_of_csegs_sampled
;
1538 KERNEL_DEBUG(0xe0400020 | DBG_FUNC_END
, swapout_target_age
, working_set_approximation
, VM_PAGE_COMPRESSOR_COUNT
, 2, 0);
1540 KERNEL_DEBUG(0xe0400020 | DBG_FUNC_END
, working_set_approximation
, VM_PAGE_COMPRESSOR_COUNT
, 0, 3, 0);
1543 KERNEL_DEBUG(0xe0400020 | DBG_FUNC_END
, working_target
, running_total
, 0, 4, 0);
1545 compressor_need_sample_reset
= TRUE
;
1546 need_eval_reset
= TRUE
;
1548 KERNEL_DEBUG(0xe0400020 | DBG_FUNC_END
, sample_period_decompression_count
, (compressor_thrashing_threshold_per_10msecs
* elapsed_msecs_in_sample
) / 10, 0, 6, 0);
1550 if (compressor_need_sample_reset
== TRUE
) {
1551 bzero(age_of_decompressions_during_sample_period
, sizeof(age_of_decompressions_during_sample_period
));
1552 overage_decompressions_during_sample_period
= 0;
1554 start_of_sample_period_sec
= cur_ts_sec
;
1555 start_of_sample_period_nsec
= cur_ts_nsec
;
1556 sample_period_decompression_count
= 0;
1557 sample_period_compression_count
= 0;
1558 last_eval_decompression_count
= 0;
1559 last_eval_compression_count
= 0;
1560 compressor_need_sample_reset
= FALSE
;
1562 if (need_eval_reset
== TRUE
) {
1563 start_of_eval_period_sec
= cur_ts_sec
;
1564 start_of_eval_period_nsec
= cur_ts_nsec
;
1569 int compaction_swapper_inited
= 0;
1570 int compaction_swapper_init_now
= 0;
1571 int compaction_swapper_running
= 0;
1572 int compaction_swapper_abort
= 0;
1576 boolean_t
memorystatus_kill_on_VM_thrashing(boolean_t
);
1577 boolean_t
memorystatus_kill_on_FC_thrashing(boolean_t
);
1578 int compressor_thrashing_induced_jetsam
= 0;
1579 int filecache_thrashing_induced_jetsam
= 0;
1580 static boolean_t vm_compressor_thrashing_detected
= FALSE
;
1581 #endif /* CONFIG_JETSAM */
1584 compressor_needs_to_swap(void)
1586 boolean_t should_swap
= FALSE
;
1588 if (vm_swapout_ripe_segments
== TRUE
&& c_overage_swapped_count
< c_overage_swapped_limit
) {
1594 clock_get_system_nanotime(&now
, &nsec
);
1597 lck_mtx_lock_spin_always(c_list_lock
);
1599 if ( !queue_empty(&c_age_list_head
)) {
1600 c_seg
= (c_segment_t
) queue_first(&c_age_list_head
);
1602 age
= now
- c_seg
->c_creation_ts
;
1604 lck_mtx_unlock_always(c_list_lock
);
1606 if (age
>= vm_ripe_target_age
)
1609 if ((vm_compressor_mode
== VM_PAGER_COMPRESSOR_WITH_SWAP
) && vm_swap_up
== TRUE
) {
1610 if (COMPRESSOR_NEEDS_TO_SWAP()) {
1613 if (VM_PAGE_Q_THROTTLED(&vm_pageout_queue_external
) && vm_page_anonymous_count
< (vm_page_inactive_count
/ 20)) {
1616 if (vm_page_free_count
< (vm_page_free_reserved
- (COMPRESSOR_FREE_RESERVED_LIMIT
* 2)))
1619 compute_swapout_target_age();
1621 if (swapout_target_age
) {
1624 lck_mtx_lock_spin_always(c_list_lock
);
1626 if (!queue_empty(&c_age_list_head
)) {
1628 c_seg
= (c_segment_t
) queue_first(&c_age_list_head
);
1630 if (c_seg
->c_creation_ts
> swapout_target_age
)
1631 swapout_target_age
= 0;
1633 lck_mtx_unlock_always(c_list_lock
);
1635 #if CONFIG_PHANTOM_CACHE
1636 if (vm_phantom_cache_check_pressure())
1639 if (swapout_target_age
)
1643 if (should_swap
|| c_segment_pages_compressed
> c_segment_pages_compressed_nearing_limit
) {
1645 if (vm_compressor_thrashing_detected
== FALSE
) {
1646 vm_compressor_thrashing_detected
= TRUE
;
1648 if (swapout_target_age
|| c_segment_pages_compressed
> c_segment_pages_compressed_nearing_limit
) {
1649 memorystatus_kill_on_VM_thrashing(TRUE
/* async */);
1650 compressor_thrashing_induced_jetsam
++;
1652 memorystatus_kill_on_FC_thrashing(TRUE
/* async */);
1653 filecache_thrashing_induced_jetsam
++;
1657 * let the jetsam take precedence over
1658 * any major compactions we might have
1659 * been able to do... otherwise we run
1660 * the risk of doing major compactions
1661 * on segments we're about to free up
1662 * due to the jetsam activity.
1664 should_swap
= FALSE
;
1667 #endif /* CONFIG_JETSAM */
1669 if (should_swap
== FALSE
) {
1671 * COMPRESSOR_NEEDS_TO_MAJOR_COMPACT returns true only if we're
1672 * about to run out of available compressor segments... in this
1673 * case, we absolutely need to run a major compaction even if
1674 * we've just kicked off a jetsam or we don't otherwise need to
1675 * swap... terminating objects releases
1676 * pages back to the uncompressed cache, but does not guarantee
1677 * that we will free up even a single compression segment
1679 should_swap
= COMPRESSOR_NEEDS_TO_MAJOR_COMPACT();
1683 * returning TRUE when swap_supported == FALSE
1684 * will cause the major compaction engine to
1685 * run, but will not trigger any swapping...
1686 * segments that have been major compacted
1687 * will be moved to the majorcompact queue
1689 return (should_swap
);
1694 * This function is called from the jetsam thread after killing something to
1695 * mitigate thrashing.
1697 * We need to restart our thrashing detection heuristics since memory pressure
1698 * has potentially changed significantly, and we don't want to detect on old
1699 * data from before the jetsam.
1702 vm_thrashing_jetsam_done(void)
1704 vm_compressor_thrashing_detected
= FALSE
;
1706 /* Were we compressor-thrashing or filecache-thrashing? */
1707 if (swapout_target_age
) {
1708 swapout_target_age
= 0;
1709 compressor_need_sample_reset
= TRUE
;
1711 #if CONFIG_PHANTOM_CACHE
1713 vm_phantom_cache_restart_sample();
1717 #endif /* CONFIG_JETSAM */
1719 uint32_t vm_wake_compactor_swapper_calls
= 0;
1722 vm_wake_compactor_swapper(void)
1724 if (compaction_swapper_running
|| c_segment_count
== 0)
1727 if (c_minor_count
|| COMPRESSOR_NEEDS_TO_MAJOR_COMPACT()) {
1729 lck_mtx_lock_spin_always(c_list_lock
);
1731 fastwake_warmup
= FALSE
;
1733 if (compaction_swapper_running
== 0) {
1735 vm_wake_compactor_swapper_calls
++;
1737 thread_wakeup((event_t
)&c_compressor_swap_trigger
);
1739 compaction_swapper_running
= 1;
1741 lck_mtx_unlock_always(c_list_lock
);
1747 vm_consider_swapping()
1749 c_segment_t c_seg
, c_seg_next
;
1754 lck_mtx_lock_spin_always(c_list_lock
);
1756 compaction_swapper_abort
= 1;
1758 while (compaction_swapper_running
) {
1759 assert_wait((event_t
)&compaction_swapper_running
, THREAD_UNINT
);
1761 lck_mtx_unlock_always(c_list_lock
);
1763 thread_block(THREAD_CONTINUE_NULL
);
1765 lck_mtx_lock_spin_always(c_list_lock
);
1767 compaction_swapper_abort
= 0;
1768 compaction_swapper_running
= 1;
1770 vm_swapout_ripe_segments
= TRUE
;
1772 if (!queue_empty(&c_major_list_head
)) {
1774 clock_get_system_nanotime(&now
, &nsec
);
1776 c_seg
= (c_segment_t
)queue_first(&c_major_list_head
);
1778 while (!queue_end(&c_major_list_head
, (queue_entry_t
)c_seg
)) {
1780 if (c_overage_swapped_count
>= c_overage_swapped_limit
)
1783 c_seg_next
= (c_segment_t
) queue_next(&c_seg
->c_age_list
);
1785 if ((now
- c_seg
->c_creation_ts
) >= vm_ripe_target_age
) {
1787 lck_mtx_lock_spin_always(&c_seg
->c_lock
);
1789 c_seg_switch_state(c_seg
, C_ON_AGE_Q
, FALSE
);
1791 lck_mtx_unlock_always(&c_seg
->c_lock
);
1796 vm_compressor_compact_and_swap(FALSE
);
1798 compaction_swapper_running
= 0;
1800 vm_swapout_ripe_segments
= FALSE
;
1802 lck_mtx_unlock_always(c_list_lock
);
1807 vm_consider_waking_compactor_swapper(void)
1809 boolean_t need_wakeup
= FALSE
;
1811 if (compaction_swapper_running
)
1814 if (c_segment_count
== 0)
1817 if (!compaction_swapper_inited
&& !compaction_swapper_init_now
) {
1818 compaction_swapper_init_now
= 1;
1822 if (c_minor_count
&& (COMPRESSOR_NEEDS_TO_MINOR_COMPACT())) {
1826 } else if (compressor_needs_to_swap()) {
1830 } else if (c_minor_count
) {
1831 uint64_t total_bytes
;
1833 total_bytes
= compressor_object
->resident_page_count
* PAGE_SIZE_64
;
1835 if ((total_bytes
- compressor_bytes_used
) > total_bytes
/ 10)
1838 if (need_wakeup
== TRUE
) {
1840 lck_mtx_lock_spin_always(c_list_lock
);
1842 fastwake_warmup
= FALSE
;
1844 if (compaction_swapper_running
== 0) {
1845 memoryshot(VM_WAKEUP_COMPACTOR_SWAPPER
, DBG_FUNC_NONE
);
1847 thread_wakeup((event_t
)&c_compressor_swap_trigger
);
1849 compaction_swapper_running
= 1;
1851 lck_mtx_unlock_always(c_list_lock
);
1856 #define C_SWAPOUT_LIMIT 4
1857 #define DELAYED_COMPACTIONS_PER_PASS 30
1860 vm_compressor_do_delayed_compactions(boolean_t flush_all
)
1863 int number_compacted
= 0;
1864 boolean_t needs_to_swap
= FALSE
;
1867 lck_mtx_assert(c_list_lock
, LCK_MTX_ASSERT_OWNED
);
1869 while (!queue_empty(&c_minor_list_head
) && needs_to_swap
== FALSE
) {
1871 c_seg
= (c_segment_t
)queue_first(&c_minor_list_head
);
1873 lck_mtx_lock_spin_always(&c_seg
->c_lock
);
1875 if (c_seg
->c_busy
) {
1877 lck_mtx_unlock_always(c_list_lock
);
1878 c_seg_wait_on_busy(c_seg
);
1879 lck_mtx_lock_spin_always(c_list_lock
);
1885 c_seg_do_minor_compaction_and_unlock(c_seg
, TRUE
, FALSE
, TRUE
);
1887 if (vm_swap_up
== TRUE
&& (number_compacted
++ > DELAYED_COMPACTIONS_PER_PASS
)) {
1889 if ((flush_all
== TRUE
|| compressor_needs_to_swap() == TRUE
) && c_swapout_count
< C_SWAPOUT_LIMIT
)
1890 needs_to_swap
= TRUE
;
1892 number_compacted
= 0;
1894 lck_mtx_lock_spin_always(c_list_lock
);
1899 #define C_SEGMENT_SWAPPEDIN_AGE_LIMIT 10
1902 vm_compressor_age_swapped_in_segments(boolean_t flush_all
)
1908 clock_get_system_nanotime(&now
, &nsec
);
1910 while (!queue_empty(&c_swappedin_list_head
)) {
1912 c_seg
= (c_segment_t
)queue_first(&c_swappedin_list_head
);
1914 if (flush_all
== FALSE
&& (now
- c_seg
->c_swappedin_ts
) < C_SEGMENT_SWAPPEDIN_AGE_LIMIT
)
1917 lck_mtx_lock_spin_always(&c_seg
->c_lock
);
1919 c_seg_switch_state(c_seg
, C_ON_AGE_Q
, FALSE
);
1921 lck_mtx_unlock_always(&c_seg
->c_lock
);
1927 vm_compressor_flush(void)
1929 uint64_t vm_swap_put_failures_at_start
;
1930 wait_result_t wait_result
= 0;
1931 AbsoluteTime startTime
, endTime
;
1932 clock_sec_t now_sec
;
1933 clock_nsec_t now_nsec
;
1936 HIBLOG("vm_compressor_flush - starting\n");
1938 clock_get_uptime(&startTime
);
1940 lck_mtx_lock_spin_always(c_list_lock
);
1942 fastwake_warmup
= FALSE
;
1943 compaction_swapper_abort
= 1;
1945 while (compaction_swapper_running
) {
1946 assert_wait((event_t
)&compaction_swapper_running
, THREAD_UNINT
);
1948 lck_mtx_unlock_always(c_list_lock
);
1950 thread_block(THREAD_CONTINUE_NULL
);
1952 lck_mtx_lock_spin_always(c_list_lock
);
1954 compaction_swapper_abort
= 0;
1955 compaction_swapper_running
= 1;
1957 hibernate_flushing
= TRUE
;
1958 hibernate_no_swapspace
= FALSE
;
1959 c_generation_id_flush_barrier
= c_generation_id
+ 1000;
1961 clock_get_system_nanotime(&now_sec
, &now_nsec
);
1962 hibernate_flushing_deadline
= now_sec
+ HIBERNATE_FLUSHING_SECS_TO_COMPLETE
;
1964 vm_swap_put_failures_at_start
= vm_swap_put_failures
;
1966 vm_compressor_compact_and_swap(TRUE
);
1968 while (!queue_empty(&c_swapout_list_head
)) {
1970 assert_wait_timeout((event_t
) &compaction_swapper_running
, THREAD_INTERRUPTIBLE
, 5000, 1000*NSEC_PER_USEC
);
1972 lck_mtx_unlock_always(c_list_lock
);
1974 wait_result
= thread_block(THREAD_CONTINUE_NULL
);
1976 lck_mtx_lock_spin_always(c_list_lock
);
1978 if (wait_result
== THREAD_TIMED_OUT
)
1981 hibernate_flushing
= FALSE
;
1982 compaction_swapper_running
= 0;
1984 if (vm_swap_put_failures
> vm_swap_put_failures_at_start
)
1985 HIBLOG("vm_compressor_flush failed to clean %llu segments - vm_page_compressor_count(%d)\n",
1986 vm_swap_put_failures
- vm_swap_put_failures_at_start
, VM_PAGE_COMPRESSOR_COUNT
);
1988 lck_mtx_unlock_always(c_list_lock
);
1990 clock_get_uptime(&endTime
);
1991 SUB_ABSOLUTETIME(&endTime
, &startTime
);
1992 absolutetime_to_nanoseconds(endTime
, &nsec
);
1994 HIBLOG("vm_compressor_flush completed - took %qd msecs\n", nsec
/ 1000000ULL);
1998 extern void vm_swap_file_set_tuneables(void);
1999 int compaction_swap_trigger_thread_awakened
= 0;
2003 vm_compressor_swap_trigger_thread(void)
2005 current_thread()->options
|= TH_OPT_VMPRIV
;
2008 * compaction_swapper_init_now is set when the first call to
2009 * vm_consider_waking_compactor_swapper is made from
2010 * vm_pageout_scan... since this function is called upon
2011 * thread creation, we want to make sure to delay adjusting
2012 * the tuneables until we are awakened via vm_pageout_scan
2013 * so that we are at a point where the vm_swapfile_open will
2014 * be operating on the correct directory (in case the default
2015 * of /var/vm/ is overridden by the dymanic_pager
2017 if (compaction_swapper_init_now
&& !compaction_swapper_inited
) {
2018 if (vm_compressor_mode
== VM_PAGER_COMPRESSOR_WITH_SWAP
)
2019 vm_swap_file_set_tuneables();
2021 if (vm_restricted_to_single_processor
== TRUE
)
2022 thread_vm_bind_group_add();
2024 compaction_swapper_inited
= 1;
2026 lck_mtx_lock_spin_always(c_list_lock
);
2028 compaction_swap_trigger_thread_awakened
++;
2030 vm_compressor_compact_and_swap(FALSE
);
2032 assert_wait((event_t
)&c_compressor_swap_trigger
, THREAD_UNINT
);
2034 compaction_swapper_running
= 0;
2035 thread_wakeup((event_t
)&compaction_swapper_running
);
2037 lck_mtx_unlock_always(c_list_lock
);
2039 thread_block((thread_continue_t
)vm_compressor_swap_trigger_thread
);
2046 vm_compressor_record_warmup_start(void)
2050 lck_mtx_lock_spin_always(c_list_lock
);
2052 if (first_c_segment_to_warm_generation_id
== 0) {
2053 if (!queue_empty(&c_age_list_head
)) {
2055 c_seg
= (c_segment_t
)queue_last(&c_age_list_head
);
2057 first_c_segment_to_warm_generation_id
= c_seg
->c_generation_id
;
2059 first_c_segment_to_warm_generation_id
= 0;
2061 fastwake_recording_in_progress
= TRUE
;
2063 lck_mtx_unlock_always(c_list_lock
);
2068 vm_compressor_record_warmup_end(void)
2072 lck_mtx_lock_spin_always(c_list_lock
);
2074 if (fastwake_recording_in_progress
== TRUE
) {
2076 if (!queue_empty(&c_age_list_head
)) {
2078 c_seg
= (c_segment_t
)queue_last(&c_age_list_head
);
2080 last_c_segment_to_warm_generation_id
= c_seg
->c_generation_id
;
2082 last_c_segment_to_warm_generation_id
= first_c_segment_to_warm_generation_id
;
2084 fastwake_recording_in_progress
= FALSE
;
2086 HIBLOG("vm_compressor_record_warmup (%qd - %qd)\n", first_c_segment_to_warm_generation_id
, last_c_segment_to_warm_generation_id
);
2088 lck_mtx_unlock_always(c_list_lock
);
2092 #define DELAY_TRIM_ON_WAKE_SECS 4
2095 vm_compressor_delay_trim(void)
2100 clock_get_system_nanotime(&sec
, &nsec
);
2101 dont_trim_until_ts
= sec
+ DELAY_TRIM_ON_WAKE_SECS
;
2106 vm_compressor_do_warmup(void)
2108 lck_mtx_lock_spin_always(c_list_lock
);
2110 if (first_c_segment_to_warm_generation_id
== last_c_segment_to_warm_generation_id
) {
2111 first_c_segment_to_warm_generation_id
= last_c_segment_to_warm_generation_id
= 0;
2113 lck_mtx_unlock_always(c_list_lock
);
2117 if (compaction_swapper_running
== 0) {
2119 fastwake_warmup
= TRUE
;
2120 compaction_swapper_running
= 1;
2121 thread_wakeup((event_t
)&c_compressor_swap_trigger
);
2123 lck_mtx_unlock_always(c_list_lock
);
2128 do_fastwake_warmup(void)
2130 uint64_t my_thread_id
;
2131 c_segment_t c_seg
= NULL
;
2132 AbsoluteTime startTime
, endTime
;
2136 HIBLOG("vm_compressor_fastwake_warmup (%qd - %qd) - starting\n", first_c_segment_to_warm_generation_id
, last_c_segment_to_warm_generation_id
);
2138 clock_get_uptime(&startTime
);
2140 lck_mtx_unlock_always(c_list_lock
);
2142 my_thread_id
= current_thread()->thread_id
;
2143 proc_set_task_policy_thread(kernel_task
, my_thread_id
,
2144 TASK_POLICY_INTERNAL
, TASK_POLICY_IO
, THROTTLE_LEVEL_COMPRESSOR_TIER2
);
2146 PAGE_REPLACEMENT_DISALLOWED(TRUE
);
2148 lck_mtx_lock_spin_always(c_list_lock
);
2150 while (!queue_empty(&c_swappedout_list_head
) && fastwake_warmup
== TRUE
) {
2152 c_seg
= (c_segment_t
) queue_first(&c_swappedout_list_head
);
2154 if (c_seg
->c_generation_id
< first_c_segment_to_warm_generation_id
||
2155 c_seg
->c_generation_id
> last_c_segment_to_warm_generation_id
)
2158 if (vm_page_free_count
< (AVAILABLE_MEMORY
/ 4))
2161 lck_mtx_lock_spin_always(&c_seg
->c_lock
);
2162 lck_mtx_unlock_always(c_list_lock
);
2164 if (c_seg
->c_busy
) {
2165 PAGE_REPLACEMENT_DISALLOWED(FALSE
);
2166 c_seg_wait_on_busy(c_seg
);
2167 PAGE_REPLACEMENT_DISALLOWED(TRUE
);
2169 c_seg_swapin(c_seg
, TRUE
);
2171 lck_mtx_unlock_always(&c_seg
->c_lock
);
2172 c_segment_warmup_count
++;
2174 PAGE_REPLACEMENT_DISALLOWED(FALSE
);
2175 vm_pageout_io_throttle();
2176 PAGE_REPLACEMENT_DISALLOWED(TRUE
);
2178 lck_mtx_lock_spin_always(c_list_lock
);
2180 lck_mtx_unlock_always(c_list_lock
);
2182 PAGE_REPLACEMENT_DISALLOWED(FALSE
);
2184 proc_set_task_policy_thread(kernel_task
, my_thread_id
,
2185 TASK_POLICY_INTERNAL
, TASK_POLICY_IO
, THROTTLE_LEVEL_COMPRESSOR_TIER0
);
2187 clock_get_uptime(&endTime
);
2188 SUB_ABSOLUTETIME(&endTime
, &startTime
);
2189 absolutetime_to_nanoseconds(endTime
, &nsec
);
2191 HIBLOG("vm_compressor_fastwake_warmup completed - took %qd msecs\n", nsec
/ 1000000ULL);
2193 lck_mtx_lock_spin_always(c_list_lock
);
2195 first_c_segment_to_warm_generation_id
= last_c_segment_to_warm_generation_id
= 0;
2200 vm_compressor_compact_and_swap(boolean_t flush_all
)
2202 c_segment_t c_seg
, c_seg_next
;
2203 boolean_t keep_compacting
;
2208 if (fastwake_warmup
== TRUE
) {
2209 uint64_t starting_warmup_count
;
2211 starting_warmup_count
= c_segment_warmup_count
;
2213 KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE
, 11) | DBG_FUNC_START
, c_segment_warmup_count
,
2214 first_c_segment_to_warm_generation_id
, last_c_segment_to_warm_generation_id
, 0, 0);
2215 do_fastwake_warmup();
2216 KERNEL_DEBUG_CONSTANT(IOKDBG_CODE(DBG_HIBERNATE
, 11) | DBG_FUNC_END
, c_segment_warmup_count
, c_segment_warmup_count
- starting_warmup_count
, 0, 0, 0);
2218 fastwake_warmup
= FALSE
;
2222 * it's possible for the c_age_list_head to be empty if we
2223 * hit our limits for growing the compressor pool and we subsequently
2224 * hibernated... on the next hibernation we could see the queue as
2225 * empty and not proceeed even though we have a bunch of segments on
2226 * the swapped in queue that need to be dealt with.
2228 vm_compressor_do_delayed_compactions(flush_all
);
2230 vm_compressor_age_swapped_in_segments(flush_all
);
2233 * we only need to grab the timestamp once per
2234 * invocation of this function since the
2235 * timescale we're interested in is measured
2238 clock_get_system_nanotime(&now
, &nsec
);
2240 while (!queue_empty(&c_age_list_head
) && compaction_swapper_abort
== 0) {
2242 if (hibernate_flushing
== TRUE
) {
2245 if (hibernate_should_abort()) {
2246 HIBLOG("vm_compressor_flush - hibernate_should_abort returned TRUE\n");
2249 if (hibernate_no_swapspace
== TRUE
) {
2250 HIBLOG("vm_compressor_flush - out of swap space\n");
2253 clock_get_system_nanotime(&sec
, &nsec
);
2255 if (sec
> hibernate_flushing_deadline
) {
2256 HIBLOG("vm_compressor_flush - failed to finish before deadline\n");
2260 if (c_swapout_count
>= C_SWAPOUT_LIMIT
) {
2262 assert_wait_timeout((event_t
) &compaction_swapper_running
, THREAD_INTERRUPTIBLE
, 100, 1000*NSEC_PER_USEC
);
2264 lck_mtx_unlock_always(c_list_lock
);
2266 thread_block(THREAD_CONTINUE_NULL
);
2268 lck_mtx_lock_spin_always(c_list_lock
);
2273 vm_compressor_do_delayed_compactions(flush_all
);
2275 vm_compressor_age_swapped_in_segments(flush_all
);
2277 if (c_swapout_count
>= C_SWAPOUT_LIMIT
) {
2279 * we timed out on the above thread_block
2280 * let's loop around and try again
2281 * the timeout allows us to continue
2282 * to do minor compactions to make
2283 * more memory available
2289 * Swap out segments?
2291 if (flush_all
== FALSE
) {
2292 boolean_t needs_to_swap
;
2294 lck_mtx_unlock_always(c_list_lock
);
2296 needs_to_swap
= compressor_needs_to_swap();
2298 if (needs_to_swap
== TRUE
&& vm_swap_low_on_space())
2299 vm_compressor_take_paging_space_action();
2301 lck_mtx_lock_spin_always(c_list_lock
);
2303 if (needs_to_swap
== FALSE
)
2306 if (queue_empty(&c_age_list_head
))
2308 c_seg
= (c_segment_t
) queue_first(&c_age_list_head
);
2310 assert(c_seg
->c_state
== C_ON_AGE_Q
);
2312 if (flush_all
== TRUE
&& c_seg
->c_generation_id
> c_generation_id_flush_barrier
)
2315 lck_mtx_lock_spin_always(&c_seg
->c_lock
);
2317 if (c_seg
->c_busy
) {
2319 lck_mtx_unlock_always(c_list_lock
);
2320 c_seg_wait_on_busy(c_seg
);
2321 lck_mtx_lock_spin_always(c_list_lock
);
2327 if (c_seg_do_minor_compaction_and_unlock(c_seg
, FALSE
, TRUE
, TRUE
)) {
2329 * found an empty c_segment and freed it
2330 * so go grab the next guy in the queue
2332 c_seg_major_compact_stats
.count_of_freed_segs
++;
2338 keep_compacting
= TRUE
;
2340 while (keep_compacting
== TRUE
) {
2342 assert(c_seg
->c_busy
);
2344 /* look for another segment to consolidate */
2346 c_seg_next
= (c_segment_t
) queue_next(&c_seg
->c_age_list
);
2348 if (queue_end(&c_age_list_head
, (queue_entry_t
)c_seg_next
))
2351 assert(c_seg_next
->c_state
== C_ON_AGE_Q
);
2353 if (c_seg_major_compact_ok(c_seg
, c_seg_next
) == FALSE
)
2356 lck_mtx_lock_spin_always(&c_seg_next
->c_lock
);
2358 if (c_seg_next
->c_busy
) {
2360 lck_mtx_unlock_always(c_list_lock
);
2361 c_seg_wait_on_busy(c_seg_next
);
2362 lck_mtx_lock_spin_always(c_list_lock
);
2366 /* grab that segment */
2367 C_SEG_BUSY(c_seg_next
);
2369 if (c_seg_do_minor_compaction_and_unlock(c_seg_next
, FALSE
, TRUE
, TRUE
)) {
2371 * found an empty c_segment and freed it
2372 * so we can't continue to use c_seg_next
2374 c_seg_major_compact_stats
.count_of_freed_segs
++;
2378 /* unlock the list ... */
2379 lck_mtx_unlock_always(c_list_lock
);
2381 /* do the major compaction */
2383 keep_compacting
= c_seg_major_compact(c_seg
, c_seg_next
);
2385 PAGE_REPLACEMENT_DISALLOWED(TRUE
);
2387 lck_mtx_lock_spin_always(&c_seg_next
->c_lock
);
2389 * run a minor compaction on the donor segment
2390 * since we pulled at least some of it's
2391 * data into our target... if we've emptied
2392 * it, now is a good time to free it which
2393 * c_seg_minor_compaction_and_unlock also takes care of
2395 * by passing TRUE, we ask for c_busy to be cleared
2396 * and c_wanted to be taken care of
2398 if (c_seg_minor_compaction_and_unlock(c_seg_next
, TRUE
))
2399 c_seg_major_compact_stats
.count_of_freed_segs
++;
2401 PAGE_REPLACEMENT_DISALLOWED(FALSE
);
2403 /* relock the list */
2404 lck_mtx_lock_spin_always(c_list_lock
);
2406 } /* major compaction */
2408 lck_mtx_lock_spin_always(&c_seg
->c_lock
);
2410 assert(c_seg
->c_busy
);
2411 assert(!c_seg
->c_on_minorcompact_q
);
2413 if (vm_swap_up
== TRUE
) {
2415 * This mode of putting a generic c_seg on the swapout list is
2416 * only supported when we have general swap ON i.e.
2417 * we compress pages into c_segs as we process them off
2418 * the paging queues in vm_pageout_scan().
2420 if (COMPRESSED_PAGER_IS_SWAPBACKED
)
2421 c_seg_switch_state(c_seg
, C_ON_SWAPOUT_Q
, FALSE
);
2423 if ((vm_swapout_ripe_segments
== TRUE
&& c_overage_swapped_count
< c_overage_swapped_limit
)) {
2425 * we are running compressor sweeps with swap-behind
2426 * make sure the c_seg has aged enough before swapping it
2429 if ((now
- c_seg
->c_creation_ts
) >= vm_ripe_target_age
) {
2430 c_seg
->c_overage_swap
= TRUE
;
2431 c_overage_swapped_count
++;
2432 c_seg_switch_state(c_seg
, C_ON_SWAPOUT_Q
, FALSE
);
2437 if (c_seg
->c_state
== C_ON_AGE_Q
) {
2439 * this c_seg didn't get moved to the swapout queue
2440 * so we need to move it out of the way...
2441 * we just did a major compaction on it so put it
2444 c_seg_switch_state(c_seg
, C_ON_MAJORCOMPACT_Q
, FALSE
);
2446 c_seg_major_compact_stats
.wasted_space_in_swapouts
+= C_SEG_BUFSIZE
- c_seg
->c_bytes_used
;
2447 c_seg_major_compact_stats
.count_of_swapouts
++;
2449 C_SEG_WAKEUP_DONE(c_seg
);
2451 lck_mtx_unlock_always(&c_seg
->c_lock
);
2453 if (c_swapout_count
) {
2454 lck_mtx_unlock_always(c_list_lock
);
2456 thread_wakeup((event_t
)&c_swapout_list_head
);
2458 lck_mtx_lock_spin_always(c_list_lock
);
2465 c_seg_allocate(c_segment_t
*current_chead
)
2469 int size_to_populate
;
2471 if (vm_compressor_low_on_space())
2472 vm_compressor_take_paging_space_action();
2474 if ( (c_seg
= *current_chead
) == NULL
) {
2477 lck_mtx_lock_spin_always(c_list_lock
);
2479 while (c_segments_busy
== TRUE
) {
2480 assert_wait((event_t
) (&c_segments_busy
), THREAD_UNINT
);
2482 lck_mtx_unlock_always(c_list_lock
);
2484 thread_block(THREAD_CONTINUE_NULL
);
2486 lck_mtx_lock_spin_always(c_list_lock
);
2488 if (c_free_segno_head
== (uint32_t)-1) {
2489 uint32_t c_segments_available_new
;
2491 if (c_segments_available
>= c_segments_limit
|| c_segment_pages_compressed
>= c_segment_pages_compressed_limit
) {
2492 lck_mtx_unlock_always(c_list_lock
);
2496 c_segments_busy
= TRUE
;
2497 lck_mtx_unlock_always(c_list_lock
);
2499 kernel_memory_populate(kernel_map
, (vm_offset_t
)c_segments_next_page
,
2500 PAGE_SIZE
, KMA_KOBJECT
, VM_KERN_MEMORY_COMPRESSOR
);
2501 c_segments_next_page
+= PAGE_SIZE
;
2503 c_segments_available_new
= c_segments_available
+ C_SEGMENTS_PER_PAGE
;
2505 if (c_segments_available_new
> c_segments_limit
)
2506 c_segments_available_new
= c_segments_limit
;
2508 for (c_segno
= c_segments_available
+ 1; c_segno
< c_segments_available_new
; c_segno
++)
2509 c_segments
[c_segno
- 1].c_segno
= c_segno
;
2511 lck_mtx_lock_spin_always(c_list_lock
);
2513 c_segments
[c_segno
- 1].c_segno
= c_free_segno_head
;
2514 c_free_segno_head
= c_segments_available
;
2515 c_segments_available
= c_segments_available_new
;
2517 c_segments_busy
= FALSE
;
2518 thread_wakeup((event_t
) (&c_segments_busy
));
2520 c_segno
= c_free_segno_head
;
2521 assert(c_segno
>= 0 && c_segno
< c_segments_limit
);
2523 c_free_segno_head
= c_segments
[c_segno
].c_segno
;
2526 * do the rest of the bookkeeping now while we're still behind
2527 * the list lock and grab our generation id now into a local
2528 * so that we can install it once we have the c_seg allocated
2531 if (c_segment_count
> c_segment_count_max
)
2532 c_segment_count_max
= c_segment_count
;
2534 lck_mtx_unlock_always(c_list_lock
);
2536 c_seg
= (c_segment_t
)zalloc(compressor_segment_zone
);
2537 bzero((char *)c_seg
, sizeof(struct c_segment
));
2539 c_seg
->c_store
.c_buffer
= (int32_t *)C_SEG_BUFFER_ADDRESS(c_segno
);
2541 #if __i386__ || __x86_64__
2542 lck_mtx_init(&c_seg
->c_lock
, &vm_compressor_lck_grp
, &vm_compressor_lck_attr
);
2543 #else /* __i386__ || __x86_64__ */
2544 lck_spin_init(&c_seg
->c_lock
, &vm_compressor_lck_grp
, &vm_compressor_lck_attr
);
2545 #endif /* __i386__ || __x86_64__ */
2547 c_seg
->c_state
= C_IS_EMPTY
;
2548 c_seg
->c_firstemptyslot
= C_SLOT_MAX_INDEX
;
2549 c_seg
->c_mysegno
= c_segno
;
2551 lck_mtx_lock_spin_always(c_list_lock
);
2553 c_seg_switch_state(c_seg
, C_IS_FILLING
, FALSE
);
2554 c_segments
[c_segno
].c_seg
= c_seg
;
2555 lck_mtx_unlock_always(c_list_lock
);
2557 *current_chead
= c_seg
;
2559 c_seg_alloc_nextslot(c_seg
);
2561 size_to_populate
= C_SEG_ALLOCSIZE
- C_SEG_OFFSET_TO_BYTES(c_seg
->c_populated_offset
);
2563 if (size_to_populate
) {
2565 min_needed
= PAGE_SIZE
+ (C_SEG_ALLOCSIZE
- C_SEG_BUFSIZE
);
2567 if (C_SEG_OFFSET_TO_BYTES(c_seg
->c_populated_offset
- c_seg
->c_nextoffset
) < (unsigned) min_needed
) {
2569 if (size_to_populate
> C_SEG_MAX_POPULATE_SIZE
)
2570 size_to_populate
= C_SEG_MAX_POPULATE_SIZE
;
2572 kernel_memory_populate(kernel_map
,
2573 (vm_offset_t
) &c_seg
->c_store
.c_buffer
[c_seg
->c_populated_offset
],
2576 VM_KERN_MEMORY_COMPRESSOR
);
2578 size_to_populate
= 0;
2580 PAGE_REPLACEMENT_DISALLOWED(TRUE
);
2582 lck_mtx_lock_spin_always(&c_seg
->c_lock
);
2584 if (size_to_populate
)
2585 c_seg
->c_populated_offset
+= C_SEG_BYTES_TO_OFFSET(size_to_populate
);
2592 c_current_seg_filled(c_segment_t c_seg
, c_segment_t
*current_chead
)
2594 uint32_t unused_bytes
;
2595 uint32_t offset_to_depopulate
;
2596 int new_state
= C_ON_AGE_Q
;
2600 unused_bytes
= trunc_page_32(C_SEG_OFFSET_TO_BYTES(c_seg
->c_populated_offset
- c_seg
->c_nextoffset
));
2604 offset_to_depopulate
= C_SEG_BYTES_TO_OFFSET(round_page_32(C_SEG_OFFSET_TO_BYTES(c_seg
->c_nextoffset
)));
2607 * release the extra physical page(s) at the end of the segment
2609 lck_mtx_unlock_always(&c_seg
->c_lock
);
2611 kernel_memory_depopulate(
2613 (vm_offset_t
) &c_seg
->c_store
.c_buffer
[offset_to_depopulate
],
2617 lck_mtx_lock_spin_always(&c_seg
->c_lock
);
2619 c_seg
->c_populated_offset
= offset_to_depopulate
;
2621 assert(C_SEG_OFFSET_TO_BYTES(c_seg
->c_populated_offset
) <= C_SEG_BUFSIZE
);
2624 if (current_chead
== (c_segment_t
*)&freezer_chead
&& DEFAULT_FREEZER_COMPRESSED_PAGER_IS_SWAPBACKED
&&
2625 c_freezer_swapout_count
< VM_MAX_FREEZER_CSEG_SWAP_COUNT
) {
2626 new_state
= C_ON_SWAPOUT_Q
;
2628 #endif /* CONFIG_FREEZE */
2630 clock_get_system_nanotime(&sec
, &nsec
);
2631 c_seg
->c_creation_ts
= (uint32_t)sec
;
2633 lck_mtx_lock_spin_always(c_list_lock
);
2636 if (c_seg
->c_state
== C_ON_SWAPOUT_Q
)
2637 c_freezer_swapout_count
++;
2638 #endif /* CONFIG_FREEZE */
2640 c_seg
->c_generation_id
= c_generation_id
++;
2641 c_seg_switch_state(c_seg
, new_state
, FALSE
);
2643 lck_mtx_unlock_always(c_list_lock
);
2646 if (c_seg
->c_state
== C_ON_SWAPOUT_Q
)
2647 thread_wakeup((event_t
)&c_swapout_list_head
);
2648 #endif /* CONFIG_FREEZE */
2650 if (c_seg
->c_state
== C_ON_AGE_Q
&& C_SEG_UNUSED_BYTES(c_seg
) >= PAGE_SIZE
)
2651 c_seg_need_delayed_compaction(c_seg
);
2653 *current_chead
= NULL
;
2657 * returns with c_seg locked
2660 c_seg_swapin_requeue(c_segment_t c_seg
, boolean_t has_data
)
2665 clock_get_system_nanotime(&sec
, &nsec
);
2667 lck_mtx_lock_spin_always(c_list_lock
);
2668 lck_mtx_lock_spin_always(&c_seg
->c_lock
);
2670 c_seg
->c_busy_swapping
= 0;
2672 if (c_seg
->c_overage_swap
== TRUE
) {
2673 c_overage_swapped_count
--;
2674 c_seg
->c_overage_swap
= FALSE
;
2676 if (has_data
== TRUE
) {
2677 c_seg_switch_state(c_seg
, C_ON_SWAPPEDIN_Q
, FALSE
);
2679 c_seg
->c_store
.c_buffer
= (int32_t*) NULL
;
2680 c_seg
->c_populated_offset
= C_SEG_BYTES_TO_OFFSET(0);
2682 c_seg_switch_state(c_seg
, C_ON_BAD_Q
, FALSE
);
2684 c_seg
->c_swappedin_ts
= (uint32_t)sec
;
2686 lck_mtx_unlock_always(c_list_lock
);
2692 * c_seg has to be locked and is returned locked.
2693 * PAGE_REPLACMENT_DISALLOWED has to be TRUE on entry and is returned TRUE
2697 c_seg_swapin(c_segment_t c_seg
, boolean_t force_minor_compaction
)
2699 vm_offset_t addr
= 0;
2700 uint32_t io_size
= 0;
2703 assert(C_SEG_IS_ONDISK(c_seg
));
2705 #if !CHECKSUM_THE_SWAP
2706 c_seg_trim_tail(c_seg
);
2708 io_size
= round_page_32(C_SEG_OFFSET_TO_BYTES(c_seg
->c_populated_offset
));
2709 f_offset
= c_seg
->c_store
.c_swap_handle
;
2712 c_seg
->c_busy_swapping
= 1;
2713 lck_mtx_unlock_always(&c_seg
->c_lock
);
2715 PAGE_REPLACEMENT_DISALLOWED(FALSE
);
2717 addr
= (vm_offset_t
)C_SEG_BUFFER_ADDRESS(c_seg
->c_mysegno
);
2719 kernel_memory_populate(kernel_map
, addr
, io_size
, KMA_COMPRESSOR
, VM_KERN_MEMORY_COMPRESSOR
);
2721 if (vm_swap_get(addr
, f_offset
, io_size
) != KERN_SUCCESS
) {
2722 PAGE_REPLACEMENT_DISALLOWED(TRUE
);
2724 kernel_memory_depopulate(kernel_map
, addr
, io_size
, KMA_COMPRESSOR
);
2726 c_seg_swapin_requeue(c_seg
, FALSE
);
2728 c_seg
->c_store
.c_buffer
= (int32_t*) addr
;
2730 vm_swap_decrypt(c_seg
);
2731 #endif /* ENCRYPTED_SWAP */
2733 #if CHECKSUM_THE_SWAP
2734 if (c_seg
->cseg_swap_size
!= io_size
)
2735 panic("swapin size doesn't match swapout size");
2737 if (c_seg
->cseg_hash
!= hash_string((char*) c_seg
->c_store
.c_buffer
, (int)io_size
)) {
2738 panic("c_seg_swapin - Swap hash mismatch\n");
2740 #endif /* CHECKSUM_THE_SWAP */
2742 PAGE_REPLACEMENT_DISALLOWED(TRUE
);
2744 if (force_minor_compaction
== TRUE
) {
2745 lck_mtx_lock_spin_always(&c_seg
->c_lock
);
2747 c_seg_minor_compaction_and_unlock(c_seg
, FALSE
);
2749 OSAddAtomic64(c_seg
->c_bytes_used
, &compressor_bytes_used
);
2751 c_seg_swapin_requeue(c_seg
, TRUE
);
2753 C_SEG_WAKEUP_DONE(c_seg
);
2758 c_segment_sv_hash_drop_ref(int hash_indx
)
2760 struct c_sv_hash_entry o_sv_he
, n_sv_he
;
2764 o_sv_he
.he_record
= c_segment_sv_hash_table
[hash_indx
].he_record
;
2766 n_sv_he
.he_ref
= o_sv_he
.he_ref
- 1;
2767 n_sv_he
.he_data
= o_sv_he
.he_data
;
2769 if (OSCompareAndSwap64((UInt64
)o_sv_he
.he_record
, (UInt64
)n_sv_he
.he_record
, (UInt64
*) &c_segment_sv_hash_table
[hash_indx
].he_record
) == TRUE
) {
2770 if (n_sv_he
.he_ref
== 0)
2771 OSAddAtomic(-1, &c_segment_svp_in_hash
);
2779 c_segment_sv_hash_insert(uint32_t data
)
2783 struct c_sv_hash_entry o_sv_he
, n_sv_he
;
2784 boolean_t got_ref
= FALSE
;
2787 OSAddAtomic(1, &c_segment_svp_zero_compressions
);
2789 OSAddAtomic(1, &c_segment_svp_nonzero_compressions
);
2791 hash_sindx
= data
& C_SV_HASH_MASK
;
2793 for (misses
= 0; misses
< C_SV_HASH_MAX_MISS
; misses
++)
2795 o_sv_he
.he_record
= c_segment_sv_hash_table
[hash_sindx
].he_record
;
2797 while (o_sv_he
.he_data
== data
|| o_sv_he
.he_ref
== 0) {
2798 n_sv_he
.he_ref
= o_sv_he
.he_ref
+ 1;
2799 n_sv_he
.he_data
= data
;
2801 if (OSCompareAndSwap64((UInt64
)o_sv_he
.he_record
, (UInt64
)n_sv_he
.he_record
, (UInt64
*) &c_segment_sv_hash_table
[hash_sindx
].he_record
) == TRUE
) {
2802 if (n_sv_he
.he_ref
== 1)
2803 OSAddAtomic(1, &c_segment_svp_in_hash
);
2807 o_sv_he
.he_record
= c_segment_sv_hash_table
[hash_sindx
].he_record
;
2809 if (got_ref
== TRUE
)
2813 if (hash_sindx
== C_SV_HASH_SIZE
)
2816 if (got_ref
== FALSE
)
2819 return (hash_sindx
);
2823 #if RECORD_THE_COMPRESSED_DATA
2826 c_compressed_record_data(char *src
, int c_size
)
2828 if ((c_compressed_record_cptr
+ c_size
+ 4) >= c_compressed_record_ebuf
)
2829 panic("c_compressed_record_cptr >= c_compressed_record_ebuf");
2831 *(int *)((void *)c_compressed_record_cptr
) = c_size
;
2833 c_compressed_record_cptr
+= 4;
2835 memcpy(c_compressed_record_cptr
, src
, c_size
);
2836 c_compressed_record_cptr
+= c_size
;
2842 c_compress_page(char *src
, c_slot_mapping_t slot_ptr
, c_segment_t
*current_chead
, char *scratch_buf
)
2845 int c_rounded_size
= 0;
2850 KERNEL_DEBUG(0xe0400000 | DBG_FUNC_START
, *current_chead
, 0, 0, 0, 0);
2852 if ((c_seg
= c_seg_allocate(current_chead
)) == NULL
)
2855 * returns with c_seg lock held
2856 * and PAGE_REPLACEMENT_DISALLOWED(TRUE)...
2857 * c_nextslot has been allocated and
2858 * c_store.c_buffer populated
2860 assert(c_seg
->c_state
== C_IS_FILLING
);
2862 cs
= C_SEG_SLOT_FROM_INDEX(c_seg
, c_seg
->c_nextslot
);
2864 cs
->c_packed_ptr
= C_SLOT_PACK_PTR(slot_ptr
);
2865 assert(slot_ptr
== (c_slot_mapping_t
)C_SLOT_UNPACK_PTR(cs
));
2867 cs
->c_offset
= c_seg
->c_nextoffset
;
2869 max_csize
= C_SEG_BUFSIZE
- C_SEG_OFFSET_TO_BYTES((int32_t)cs
->c_offset
);
2871 if (max_csize
> PAGE_SIZE
)
2872 max_csize
= PAGE_SIZE
;
2874 #if CHECKSUM_THE_DATA
2875 cs
->c_hash_data
= hash_string(src
, PAGE_SIZE
);
2878 c_size
= WKdm_compress_new((const WK_word
*)(uintptr_t)src
, (WK_word
*)(uintptr_t)&c_seg
->c_store
.c_buffer
[cs
->c_offset
],
2879 (WK_word
*)(uintptr_t)scratch_buf
, max_csize
- 4);
2880 assert(c_size
<= (max_csize
- 4) && c_size
>= -1);
2884 if (max_csize
< PAGE_SIZE
) {
2885 c_current_seg_filled(c_seg
, current_chead
);
2886 assert(*current_chead
== NULL
);
2888 lck_mtx_unlock_always(&c_seg
->c_lock
);
2890 PAGE_REPLACEMENT_DISALLOWED(FALSE
);
2895 memcpy(&c_seg
->c_store
.c_buffer
[cs
->c_offset
], src
, c_size
);
2897 OSAddAtomic(1, &c_segment_noncompressible_pages
);
2899 } else if (c_size
== 0) {
2903 * special case - this is a page completely full of a single 32 bit value
2905 hash_index
= c_segment_sv_hash_insert(*(uint32_t *)(uintptr_t)src
);
2907 if (hash_index
!= -1) {
2908 slot_ptr
->s_cindx
= hash_index
;
2909 slot_ptr
->s_cseg
= C_SV_CSEG_ID
;
2911 OSAddAtomic(1, &c_segment_svp_hash_succeeded
);
2912 #if RECORD_THE_COMPRESSED_DATA
2913 c_compressed_record_data(src
, 4);
2915 goto sv_compression
;
2919 memcpy(&c_seg
->c_store
.c_buffer
[cs
->c_offset
], src
, c_size
);
2921 OSAddAtomic(1, &c_segment_svp_hash_failed
);
2924 #if RECORD_THE_COMPRESSED_DATA
2925 c_compressed_record_data((char *)&c_seg
->c_store
.c_buffer
[cs
->c_offset
], c_size
);
2928 #if CHECKSUM_THE_COMPRESSED_DATA
2929 cs
->c_hash_compressed_data
= hash_string((char *)&c_seg
->c_store
.c_buffer
[cs
->c_offset
], c_size
);
2931 c_rounded_size
= (c_size
+ C_SEG_OFFSET_ALIGNMENT_MASK
) & ~C_SEG_OFFSET_ALIGNMENT_MASK
;
2933 PACK_C_SIZE(cs
, c_size
);
2934 c_seg
->c_bytes_used
+= c_rounded_size
;
2935 c_seg
->c_nextoffset
+= C_SEG_BYTES_TO_OFFSET(c_rounded_size
);
2937 slot_ptr
->s_cindx
= c_seg
->c_nextslot
++;
2938 /* <csegno=0,indx=0> would mean "empty slot", so use csegno+1 */
2939 slot_ptr
->s_cseg
= c_seg
->c_mysegno
+ 1;
2942 if (c_seg
->c_nextoffset
>= C_SEG_OFF_LIMIT
|| c_seg
->c_nextslot
>= C_SLOT_MAX_INDEX
) {
2943 c_current_seg_filled(c_seg
, current_chead
);
2944 assert(*current_chead
== NULL
);
2946 lck_mtx_unlock_always(&c_seg
->c_lock
);
2948 PAGE_REPLACEMENT_DISALLOWED(FALSE
);
2950 #if RECORD_THE_COMPRESSED_DATA
2951 if ((c_compressed_record_cptr
- c_compressed_record_sbuf
) >= C_SEG_ALLOCSIZE
) {
2952 c_compressed_record_write(c_compressed_record_sbuf
, (int)(c_compressed_record_cptr
- c_compressed_record_sbuf
));
2953 c_compressed_record_cptr
= c_compressed_record_sbuf
;
2957 OSAddAtomic64(c_size
, &c_segment_compressed_bytes
);
2958 OSAddAtomic64(c_rounded_size
, &compressor_bytes_used
);
2960 OSAddAtomic64(PAGE_SIZE
, &c_segment_input_bytes
);
2962 OSAddAtomic(1, &c_segment_pages_compressed
);
2963 OSAddAtomic(1, &sample_period_compression_count
);
2965 KERNEL_DEBUG(0xe0400000 | DBG_FUNC_END
, *current_chead
, c_size
, c_segment_input_bytes
, c_segment_compressed_bytes
, 0);
2972 c_decompress_page(char *dst
, volatile c_slot_mapping_t slot_ptr
, int flags
, int *zeroslot
)
2980 boolean_t need_unlock
= TRUE
;
2981 boolean_t consider_defragmenting
= FALSE
;
2982 boolean_t kdp_mode
= FALSE
;
2984 if (flags
& C_KDP
) {
2986 panic("C_KDP passed to decompress page from outside of debugger context");
2989 assert((flags
& C_KEEP
) == C_KEEP
);
2990 assert((flags
& C_DONT_BLOCK
) == C_DONT_BLOCK
);
2992 if ((flags
& (C_DONT_BLOCK
| C_KEEP
)) != (C_DONT_BLOCK
| C_KEEP
)) {
3001 PAGE_REPLACEMENT_DISALLOWED(TRUE
);
3003 if (kdp_lck_rw_lock_is_acquired_exclusive(&c_master_lock
)) {
3010 * if hibernation is enabled, it indicates (via a call
3011 * to 'vm_decompressor_lock' that no further
3012 * decompressions are allowed once it reaches
3013 * the point of flushing all of the currently dirty
3014 * anonymous memory through the compressor and out
3015 * to disk... in this state we allow freeing of compressed
3016 * pages and must honor the C_DONT_BLOCK case
3018 if (dst
&& decompressions_blocked
== TRUE
) {
3019 if (flags
& C_DONT_BLOCK
) {
3022 PAGE_REPLACEMENT_DISALLOWED(FALSE
);
3029 * it's safe to atomically assert and block behind the
3030 * lock held in shared mode because "decompressions_blocked" is
3031 * only set and cleared and the thread_wakeup done when the lock
3032 * is held exclusively
3034 assert_wait((event_t
)&decompressions_blocked
, THREAD_UNINT
);
3036 PAGE_REPLACEMENT_DISALLOWED(FALSE
);
3038 thread_block(THREAD_CONTINUE_NULL
);
3043 /* s_cseg is actually "segno+1" */
3044 c_seg
= c_segments
[slot_ptr
->s_cseg
- 1].c_seg
;
3047 lck_mtx_lock_spin_always(&c_seg
->c_lock
);
3049 if (kdp_lck_mtx_lock_spin_is_acquired(&c_seg
->c_lock
)) {
3054 assert(c_seg
->c_state
!= C_IS_EMPTY
&& c_seg
->c_state
!= C_IS_FREE
);
3056 if (flags
& C_DONT_BLOCK
) {
3057 if (c_seg
->c_busy
|| (C_SEG_IS_ONDISK(c_seg
) && dst
)) {
3064 if (c_seg
->c_busy
) {
3066 PAGE_REPLACEMENT_DISALLOWED(FALSE
);
3068 c_seg_wait_on_busy(c_seg
);
3072 c_indx
= slot_ptr
->s_cindx
;
3074 cs
= C_SEG_SLOT_FROM_INDEX(c_seg
, c_indx
);
3076 c_size
= UNPACK_C_SIZE(cs
);
3078 c_rounded_size
= (c_size
+ C_SEG_OFFSET_ALIGNMENT_MASK
) & ~C_SEG_OFFSET_ALIGNMENT_MASK
;
3081 uint32_t age_of_cseg
;
3082 clock_sec_t cur_ts_sec
;
3083 clock_nsec_t cur_ts_nsec
;
3085 if (C_SEG_IS_ONDISK(c_seg
)) {
3086 assert(kdp_mode
== FALSE
);
3087 c_seg_swapin(c_seg
, FALSE
);
3091 if (c_seg
->c_state
== C_ON_BAD_Q
) {
3092 assert(c_seg
->c_store
.c_buffer
== NULL
);
3095 goto c_seg_invalid_data
;
3097 #if CHECKSUM_THE_COMPRESSED_DATA
3098 if (cs
->c_hash_compressed_data
!= hash_string((char *)&c_seg
->c_store
.c_buffer
[cs
->c_offset
], c_size
))
3099 panic("compressed data doesn't match original");
3101 if (c_rounded_size
== PAGE_SIZE
) {
3103 * page wasn't compressible... just copy it out
3105 memcpy(dst
, &c_seg
->c_store
.c_buffer
[cs
->c_offset
], PAGE_SIZE
);
3106 } else if (c_size
== 4) {
3111 * page was populated with a single value
3112 * that didn't fit into our fast hash
3113 * so we packed it in as a single non-compressed value
3114 * that we need to populate the page with
3116 dptr
= (int32_t *)(uintptr_t)dst
;
3117 data
= *(int32_t *)(&c_seg
->c_store
.c_buffer
[cs
->c_offset
]);
3119 memset_word(dptr
, data
, PAGE_SIZE
/ sizeof(int32_t));
3124 for (i
= 0; i
< (int)(PAGE_SIZE
/ sizeof(int32_t)); i
++)
3134 * we're behind the c_seg lock held in spin mode
3135 * which means pre-emption is disabled... therefore
3136 * the following sequence is atomic and safe
3138 my_cpu_no
= cpu_number();
3140 assert(my_cpu_no
< compressor_cpus
);
3142 scratch_buf
= &compressor_scratch_bufs
[my_cpu_no
* WKdm_SCRATCH_BUF_SIZE
];
3144 scratch_buf
= kdp_compressor_scratch_buf
;
3146 WKdm_decompress_new((WK_word
*)(uintptr_t)&c_seg
->c_store
.c_buffer
[cs
->c_offset
],
3147 (WK_word
*)(uintptr_t)dst
, (WK_word
*)(uintptr_t)scratch_buf
, c_size
);
3150 #if CHECKSUM_THE_DATA
3151 if (cs
->c_hash_data
!= hash_string(dst
, PAGE_SIZE
))
3152 panic("decompressed data doesn't match original");
3154 if (c_seg
->c_swappedin_ts
== 0 && !kdp_mode
) {
3156 clock_get_system_nanotime(&cur_ts_sec
, &cur_ts_nsec
);
3158 age_of_cseg
= (uint32_t)cur_ts_sec
- c_seg
->c_creation_ts
;
3160 if (age_of_cseg
< DECOMPRESSION_SAMPLE_MAX_AGE
)
3161 OSAddAtomic(1, &age_of_decompressions_during_sample_period
[age_of_cseg
]);
3163 OSAddAtomic(1, &overage_decompressions_during_sample_period
);
3165 OSAddAtomic(1, &sample_period_decompression_count
);
3170 if (flags
& C_KEEP
) {
3175 assert(kdp_mode
== FALSE
);
3176 c_seg
->c_bytes_unused
+= c_rounded_size
;
3177 c_seg
->c_bytes_used
-= c_rounded_size
;
3180 if (c_indx
< c_seg
->c_firstemptyslot
)
3181 c_seg
->c_firstemptyslot
= c_indx
;
3183 OSAddAtomic(-1, &c_segment_pages_compressed
);
3185 if (c_seg
->c_state
!= C_ON_BAD_Q
&& !(C_SEG_IS_ONDISK(c_seg
))) {
3187 * C_SEG_IS_ONDISK == TRUE can occur when we're doing a
3188 * free of a compressed page (i.e. dst == NULL)
3190 OSAddAtomic64(-c_rounded_size
, &compressor_bytes_used
);
3192 if (c_seg
->c_state
!= C_IS_FILLING
) {
3193 if (c_seg
->c_bytes_used
== 0) {
3194 if ( !(C_SEG_IS_ONDISK(c_seg
))) {
3195 int pages_populated
;
3197 pages_populated
= (round_page_32(C_SEG_OFFSET_TO_BYTES(c_seg
->c_populated_offset
))) / PAGE_SIZE
;
3198 c_seg
->c_populated_offset
= C_SEG_BYTES_TO_OFFSET(0);
3200 if (pages_populated
) {
3202 assert(c_seg
->c_state
!= C_ON_BAD_Q
);
3203 assert(c_seg
->c_store
.c_buffer
!= NULL
);
3206 lck_mtx_unlock_always(&c_seg
->c_lock
);
3208 kernel_memory_depopulate(kernel_map
, (vm_offset_t
) c_seg
->c_store
.c_buffer
, pages_populated
* PAGE_SIZE
, KMA_COMPRESSOR
);
3210 lck_mtx_lock_spin_always(&c_seg
->c_lock
);
3211 C_SEG_WAKEUP_DONE(c_seg
);
3213 if (!c_seg
->c_on_minorcompact_q
)
3214 c_seg_need_delayed_compaction(c_seg
);
3216 assert(c_seg
->c_state
== C_ON_SWAPPEDOUTSPARSE_Q
);
3218 } else if (c_seg
->c_on_minorcompact_q
) {
3220 assert(c_seg
->c_state
!= C_ON_BAD_Q
);
3222 if (C_SEG_SHOULD_MINORCOMPACT(c_seg
)) {
3223 c_seg_try_minor_compaction_and_unlock(c_seg
);
3224 need_unlock
= FALSE
;
3226 } else if ( !(C_SEG_IS_ONDISK(c_seg
))) {
3228 if (c_seg
->c_state
!= C_ON_BAD_Q
&& c_seg
->c_state
!= C_ON_SWAPOUT_Q
&& C_SEG_UNUSED_BYTES(c_seg
) >= PAGE_SIZE
) {
3229 c_seg_need_delayed_compaction(c_seg
);
3231 } else if (c_seg
->c_state
!= C_ON_SWAPPEDOUTSPARSE_Q
&& C_SEG_ONDISK_IS_SPARSE(c_seg
)) {
3233 c_seg_move_to_sparse_list(c_seg
);
3234 consider_defragmenting
= TRUE
;
3242 if (need_unlock
== TRUE
)
3243 lck_mtx_unlock_always(&c_seg
->c_lock
);
3245 PAGE_REPLACEMENT_DISALLOWED(FALSE
);
3247 if (consider_defragmenting
== TRUE
)
3248 vm_swap_consider_defragmenting();
3256 vm_compressor_get(ppnum_t pn
, int *slot
, int flags
)
3258 c_slot_mapping_t slot_ptr
;
3264 dst
= PHYSMAP_PTOV((uint64_t)pn
<< (uint64_t)PAGE_SHIFT
);
3266 #error "unsupported architecture"
3268 slot_ptr
= (c_slot_mapping_t
)slot
;
3270 if (slot_ptr
->s_cseg
== C_SV_CSEG_ID
) {
3275 * page was populated with a single value
3276 * that found a home in our hash table
3277 * grab that value from the hash and populate the page
3278 * that we need to populate the page with
3280 dptr
= (int32_t *)(uintptr_t)dst
;
3281 data
= c_segment_sv_hash_table
[slot_ptr
->s_cindx
].he_data
;
3283 memset_word(dptr
, data
, PAGE_SIZE
/ sizeof(int32_t));
3288 for (i
= 0; i
< (int)(PAGE_SIZE
/ sizeof(int32_t)); i
++)
3292 c_segment_sv_hash_drop_ref(slot_ptr
->s_cindx
);
3294 if ( !(flags
& C_KEEP
)) {
3295 OSAddAtomic(-1, &c_segment_pages_compressed
);
3299 OSAddAtomic(1, &c_segment_svp_nonzero_decompressions
);
3301 OSAddAtomic(1, &c_segment_svp_zero_decompressions
);
3306 retval
= c_decompress_page(dst
, slot_ptr
, flags
, &zeroslot
);
3309 * zeroslot will be set to 0 by c_decompress_page if (flags & C_KEEP)
3310 * or (flags & C_DONT_BLOCK) and we found 'c_busy' or 'C_SEG_IS_ONDISK' to be TRUE
3316 * returns 0 if we successfully decompressed a page from a segment already in memory
3317 * returns 1 if we had to first swap in the segment, before successfully decompressing the page
3318 * returns -1 if we encountered an error swapping in the segment - decompression failed
3319 * returns -2 if (flags & C_DONT_BLOCK) and we found 'c_busy' or 'C_SEG_IS_ONDISK' to be true
3326 vm_compressor_free(int *slot
, int flags
)
3328 c_slot_mapping_t slot_ptr
;
3332 assert(flags
== 0 || flags
== C_DONT_BLOCK
);
3334 slot_ptr
= (c_slot_mapping_t
)slot
;
3336 if (slot_ptr
->s_cseg
== C_SV_CSEG_ID
) {
3338 c_segment_sv_hash_drop_ref(slot_ptr
->s_cindx
);
3339 OSAddAtomic(-1, &c_segment_pages_compressed
);
3344 retval
= c_decompress_page(NULL
, slot_ptr
, flags
, &zeroslot
);
3346 * returns 0 if we successfully freed the specified compressed page
3347 * returns -2 if (flags & C_DONT_BLOCK) and we found 'c_busy' set
3353 assert(retval
== -2);
3360 vm_compressor_put(ppnum_t pn
, int *slot
, void **current_chead
, char *scratch_buf
)
3366 src
= PHYSMAP_PTOV((uint64_t)pn
<< (uint64_t)PAGE_SHIFT
);
3368 #error "unsupported architecture"
3370 retval
= c_compress_page(src
, (c_slot_mapping_t
)slot
, (c_segment_t
*)current_chead
, scratch_buf
);
3376 vm_compressor_transfer(
3380 c_slot_mapping_t dst_slot
, src_slot
;
3385 src_slot
= (c_slot_mapping_t
) src_slot_p
;
3387 if (src_slot
->s_cseg
== C_SV_CSEG_ID
) {
3388 *dst_slot_p
= *src_slot_p
;
3392 dst_slot
= (c_slot_mapping_t
) dst_slot_p
;
3394 PAGE_REPLACEMENT_DISALLOWED(TRUE
);
3395 /* get segment for src_slot */
3396 c_seg
= c_segments
[src_slot
->s_cseg
-1].c_seg
;
3398 lck_mtx_lock_spin_always(&c_seg
->c_lock
);
3399 /* wait if it's busy */
3400 if (c_seg
->c_busy
&& !c_seg
->c_busy_swapping
) {
3401 PAGE_REPLACEMENT_DISALLOWED(FALSE
);
3402 c_seg_wait_on_busy(c_seg
);
3405 /* find the c_slot */
3406 c_indx
= src_slot
->s_cindx
;
3407 cs
= C_SEG_SLOT_FROM_INDEX(c_seg
, c_indx
);
3408 /* point the c_slot back to dst_slot instead of src_slot */
3409 cs
->c_packed_ptr
= C_SLOT_PACK_PTR(dst_slot
);
3411 *dst_slot_p
= *src_slot_p
;
3413 lck_mtx_unlock_always(&c_seg
->c_lock
);
3414 PAGE_REPLACEMENT_DISALLOWED(FALSE
);
3419 int freezer_finished_filling
= 0;
3422 vm_compressor_finished_filling(
3423 void **current_chead
)
3427 if ((c_seg
= *(c_segment_t
*)current_chead
) == NULL
)
3430 assert(c_seg
->c_state
== C_IS_FILLING
);
3432 lck_mtx_lock_spin_always(&c_seg
->c_lock
);
3434 c_current_seg_filled(c_seg
, (c_segment_t
*)current_chead
);
3436 lck_mtx_unlock_always(&c_seg
->c_lock
);
3438 freezer_finished_filling
++;
3443 * This routine is used to transfer the compressed chunks from
3444 * the c_seg/cindx pointed to by slot_p into a new c_seg headed
3445 * by the current_chead and a new cindx within that c_seg.
3447 * Currently, this routine is only used by the "freezer backed by
3448 * compressor with swap" mode to create a series of c_segs that
3449 * only contain compressed data belonging to one task. So, we
3450 * move a task's previously compressed data into a set of new
3451 * c_segs which will also hold the task's yet to be compressed data.
3455 vm_compressor_relocate(
3456 void **current_chead
,
3459 c_slot_mapping_t slot_ptr
;
3460 c_slot_mapping_t src_slot
;
3461 uint32_t c_rounded_size
;
3467 c_segment_t c_seg_dst
= NULL
;
3468 c_segment_t c_seg_src
= NULL
;
3469 kern_return_t kr
= KERN_SUCCESS
;
3472 src_slot
= (c_slot_mapping_t
) slot_p
;
3474 if (src_slot
->s_cseg
== C_SV_CSEG_ID
) {
3476 * no need to relocate... this is a page full of a single
3477 * value which is hashed to a single entry not contained
3484 c_seg_dst
= c_seg_allocate((c_segment_t
*)current_chead
);
3486 * returns with c_seg lock held
3487 * and PAGE_REPLACEMENT_DISALLOWED(TRUE)...
3488 * c_nextslot has been allocated and
3489 * c_store.c_buffer populated
3491 if (c_seg_dst
== NULL
) {
3493 * Out of compression segments?
3495 kr
= KERN_RESOURCE_SHORTAGE
;
3499 assert(c_seg_dst
->c_busy
== 0);
3501 C_SEG_BUSY(c_seg_dst
);
3503 dst_slot
= c_seg_dst
->c_nextslot
;
3505 lck_mtx_unlock_always(&c_seg_dst
->c_lock
);
3508 c_seg_src
= c_segments
[src_slot
->s_cseg
- 1].c_seg
;
3510 assert(c_seg_dst
!= c_seg_src
);
3512 lck_mtx_lock_spin_always(&c_seg_src
->c_lock
);
3514 if (C_SEG_IS_ONDISK(c_seg_src
)) {
3517 * A "thaw" can mark a process as eligible for
3518 * another freeze cycle without bringing any of
3519 * its swapped out c_segs back from disk (because
3520 * that is done on-demand).
3522 * If the src c_seg we find for our pre-compressed
3523 * data is already on-disk, then we are dealing
3524 * with an app's data that is already packed and
3525 * swapped out. Don't do anything.
3528 PAGE_REPLACEMENT_DISALLOWED(FALSE
);
3530 lck_mtx_unlock_always(&c_seg_src
->c_lock
);
3537 if (c_seg_src
->c_busy
) {
3539 PAGE_REPLACEMENT_DISALLOWED(FALSE
);
3540 c_seg_wait_on_busy(c_seg_src
);
3544 PAGE_REPLACEMENT_DISALLOWED(TRUE
);
3549 C_SEG_BUSY(c_seg_src
);
3551 lck_mtx_unlock_always(&c_seg_src
->c_lock
);
3553 PAGE_REPLACEMENT_DISALLOWED(FALSE
);
3555 /* find the c_slot */
3556 c_indx
= src_slot
->s_cindx
;
3558 c_src
= C_SEG_SLOT_FROM_INDEX(c_seg_src
, c_indx
);
3560 c_size
= UNPACK_C_SIZE(c_src
);
3564 if (c_size
> (uint32_t)(C_SEG_BUFSIZE
- C_SEG_OFFSET_TO_BYTES((int32_t)c_seg_dst
->c_nextoffset
))) {
3566 * This segment is full. We need a new one.
3569 PAGE_REPLACEMENT_DISALLOWED(TRUE
);
3571 lck_mtx_lock_spin_always(&c_seg_src
->c_lock
);
3572 C_SEG_WAKEUP_DONE(c_seg_src
);
3573 lck_mtx_unlock_always(&c_seg_src
->c_lock
);
3577 lck_mtx_lock_spin_always(&c_seg_dst
->c_lock
);
3579 assert(c_seg_dst
->c_busy
);
3580 assert(c_seg_dst
->c_state
== C_IS_FILLING
);
3581 assert(!c_seg_dst
->c_on_minorcompact_q
);
3583 c_current_seg_filled(c_seg_dst
, (c_segment_t
*)current_chead
);
3584 assert(*current_chead
== NULL
);
3586 C_SEG_WAKEUP_DONE(c_seg_dst
);
3588 lck_mtx_unlock_always(&c_seg_dst
->c_lock
);
3592 PAGE_REPLACEMENT_DISALLOWED(FALSE
);
3597 c_dst
= C_SEG_SLOT_FROM_INDEX(c_seg_dst
, c_seg_dst
->c_nextslot
);
3599 memcpy(&c_seg_dst
->c_store
.c_buffer
[c_seg_dst
->c_nextoffset
], &c_seg_src
->c_store
.c_buffer
[c_src
->c_offset
], c_size
);
3601 c_rounded_size
= (c_size
+ C_SEG_OFFSET_ALIGNMENT_MASK
) & ~C_SEG_OFFSET_ALIGNMENT_MASK
;
3603 #if CHECKSUM_THE_DATA
3604 c_dst
->c_hash_data
= c_src
->c_hash_data
;
3606 #if CHECKSUM_THE_COMPRESSED_DATA
3607 c_dst
->c_hash_compressed_data
= c_src
->c_hash_compressed_data
;
3610 c_dst
->c_size
= c_src
->c_size
;
3611 c_dst
->c_packed_ptr
= c_src
->c_packed_ptr
;
3612 c_dst
->c_offset
= c_seg_dst
->c_nextoffset
;
3614 if (c_seg_dst
->c_firstemptyslot
== c_seg_dst
->c_nextslot
)
3615 c_seg_dst
->c_firstemptyslot
++;
3617 c_seg_dst
->c_nextslot
++;
3618 c_seg_dst
->c_bytes_used
+= c_rounded_size
;
3619 c_seg_dst
->c_nextoffset
+= C_SEG_BYTES_TO_OFFSET(c_rounded_size
);
3622 PACK_C_SIZE(c_src
, 0);
3624 c_seg_src
->c_bytes_used
-= c_rounded_size
;
3625 c_seg_src
->c_bytes_unused
+= c_rounded_size
;
3627 if (c_indx
< c_seg_src
->c_firstemptyslot
) {
3628 c_seg_src
->c_firstemptyslot
= c_indx
;
3631 c_dst
= C_SEG_SLOT_FROM_INDEX(c_seg_dst
, dst_slot
);
3633 PAGE_REPLACEMENT_ALLOWED(TRUE
);
3634 slot_ptr
= (c_slot_mapping_t
)C_SLOT_UNPACK_PTR(c_dst
);
3635 /* <csegno=0,indx=0> would mean "empty slot", so use csegno+1 */
3636 slot_ptr
->s_cseg
= c_seg_dst
->c_mysegno
+ 1;
3637 slot_ptr
->s_cindx
= dst_slot
;
3639 PAGE_REPLACEMENT_ALLOWED(FALSE
);
3644 lck_mtx_lock_spin_always(&c_seg_src
->c_lock
);
3646 C_SEG_WAKEUP_DONE(c_seg_src
);
3648 if (c_seg_src
->c_bytes_used
== 0 && c_seg_src
->c_state
!= C_IS_FILLING
) {
3649 if (!c_seg_src
->c_on_minorcompact_q
)
3650 c_seg_need_delayed_compaction(c_seg_src
);
3653 lck_mtx_unlock_always(&c_seg_src
->c_lock
);
3658 PAGE_REPLACEMENT_DISALLOWED(TRUE
);
3660 lck_mtx_lock_spin_always(&c_seg_dst
->c_lock
);
3662 if (c_seg_dst
->c_nextoffset
>= C_SEG_OFF_LIMIT
|| c_seg_dst
->c_nextslot
>= C_SLOT_MAX_INDEX
) {
3664 * Nearing or exceeded maximum slot and offset capacity.
3666 assert(c_seg_dst
->c_busy
);
3667 assert(c_seg_dst
->c_state
== C_IS_FILLING
);
3668 assert(!c_seg_dst
->c_on_minorcompact_q
);
3670 c_current_seg_filled(c_seg_dst
, (c_segment_t
*)current_chead
);
3671 assert(*current_chead
== NULL
);
3674 C_SEG_WAKEUP_DONE(c_seg_dst
);
3676 lck_mtx_unlock_always(&c_seg_dst
->c_lock
);
3680 PAGE_REPLACEMENT_DISALLOWED(FALSE
);
3685 #endif /* CONFIG_FREEZE */