]> git.saurik.com Git - apple/xnu.git/blob - osfmk/vm/vm_pageout.c
63dd004ea1de41ae93fe6a1c0a68d764cf75cee8
[apple/xnu.git] / osfmk / vm / vm_pageout.c
1 /*
2 * Copyright (c) 2000-2020 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * @OSF_COPYRIGHT@
30 */
31 /*
32 * Mach Operating System
33 * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University
34 * All Rights Reserved.
35 *
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
41 *
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
45 *
46 * Carnegie Mellon requests users of this software to return to
47 *
48 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
49 * School of Computer Science
50 * Carnegie Mellon University
51 * Pittsburgh PA 15213-3890
52 *
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
55 */
56 /*
57 */
58 /*
59 * File: vm/vm_pageout.c
60 * Author: Avadis Tevanian, Jr., Michael Wayne Young
61 * Date: 1985
62 *
63 * The proverbial page-out daemon.
64 */
65
66 #include <stdint.h>
67 #include <ptrauth.h>
68
69 #include <debug.h>
70 #include <mach_pagemap.h>
71 #include <mach_cluster_stats.h>
72
73 #include <mach/mach_types.h>
74 #include <mach/memory_object.h>
75 #include <mach/memory_object_default.h>
76 #include <mach/memory_object_control_server.h>
77 #include <mach/mach_host_server.h>
78 #include <mach/upl.h>
79 #include <mach/vm_map.h>
80 #include <mach/vm_param.h>
81 #include <mach/vm_statistics.h>
82 #include <mach/sdt.h>
83
84 #include <kern/kern_types.h>
85 #include <kern/counters.h>
86 #include <kern/host_statistics.h>
87 #include <kern/machine.h>
88 #include <kern/misc_protos.h>
89 #include <kern/sched.h>
90 #include <kern/thread.h>
91 #include <kern/kalloc.h>
92 #include <kern/zalloc_internal.h>
93 #include <kern/policy_internal.h>
94 #include <kern/thread_group.h>
95
96 #include <machine/vm_tuning.h>
97 #include <machine/commpage.h>
98
99 #include <vm/pmap.h>
100 #include <vm/vm_compressor_pager.h>
101 #include <vm/vm_fault.h>
102 #include <vm/vm_map.h>
103 #include <vm/vm_object.h>
104 #include <vm/vm_page.h>
105 #include <vm/vm_pageout.h>
106 #include <vm/vm_protos.h> /* must be last */
107 #include <vm/memory_object.h>
108 #include <vm/vm_purgeable_internal.h>
109 #include <vm/vm_shared_region.h>
110 #include <vm/vm_compressor.h>
111
112 #include <san/kasan.h>
113
114 #if CONFIG_PHANTOM_CACHE
115 #include <vm/vm_phantom_cache.h>
116 #endif
117
118 #if UPL_DEBUG
119 #include <libkern/OSDebug.h>
120 #endif
121
122 extern int cs_debug;
123
124 extern void mbuf_drain(boolean_t);
125
126 #if VM_PRESSURE_EVENTS
127 #if CONFIG_JETSAM
128 extern unsigned int memorystatus_available_pages;
129 extern unsigned int memorystatus_available_pages_pressure;
130 extern unsigned int memorystatus_available_pages_critical;
131 #else /* CONFIG_JETSAM */
132 extern uint64_t memorystatus_available_pages;
133 extern uint64_t memorystatus_available_pages_pressure;
134 extern uint64_t memorystatus_available_pages_critical;
135 #endif /* CONFIG_JETSAM */
136
137 extern unsigned int memorystatus_frozen_count;
138 extern unsigned int memorystatus_suspended_count;
139 extern vm_pressure_level_t memorystatus_vm_pressure_level;
140
141 extern lck_mtx_t memorystatus_jetsam_fg_band_lock;
142 extern uint32_t memorystatus_jetsam_fg_band_waiters;
143
144 void vm_pressure_response(void);
145 extern void consider_vm_pressure_events(void);
146
147 #define MEMORYSTATUS_SUSPENDED_THRESHOLD 4
148 #endif /* VM_PRESSURE_EVENTS */
149
150 thread_t vm_pageout_scan_thread = THREAD_NULL;
151 boolean_t vps_dynamic_priority_enabled = FALSE;
152
153 #ifndef VM_PAGEOUT_BURST_INACTIVE_THROTTLE /* maximum iterations of the inactive queue w/o stealing/cleaning a page */
154 #ifdef CONFIG_EMBEDDED
155 #define VM_PAGEOUT_BURST_INACTIVE_THROTTLE 1024
156 #else
157 #define VM_PAGEOUT_BURST_INACTIVE_THROTTLE 4096
158 #endif
159 #endif
160
161 #ifndef VM_PAGEOUT_DEADLOCK_RELIEF
162 #define VM_PAGEOUT_DEADLOCK_RELIEF 100 /* number of pages to move to break deadlock */
163 #endif
164
165 #ifndef VM_PAGE_LAUNDRY_MAX
166 #define VM_PAGE_LAUNDRY_MAX 128UL /* maximum pageouts on a given pageout queue */
167 #endif /* VM_PAGEOUT_LAUNDRY_MAX */
168
169 #ifndef VM_PAGEOUT_BURST_WAIT
170 #define VM_PAGEOUT_BURST_WAIT 1 /* milliseconds */
171 #endif /* VM_PAGEOUT_BURST_WAIT */
172
173 #ifndef VM_PAGEOUT_EMPTY_WAIT
174 #define VM_PAGEOUT_EMPTY_WAIT 50 /* milliseconds */
175 #endif /* VM_PAGEOUT_EMPTY_WAIT */
176
177 #ifndef VM_PAGEOUT_DEADLOCK_WAIT
178 #define VM_PAGEOUT_DEADLOCK_WAIT 100 /* milliseconds */
179 #endif /* VM_PAGEOUT_DEADLOCK_WAIT */
180
181 #ifndef VM_PAGEOUT_IDLE_WAIT
182 #define VM_PAGEOUT_IDLE_WAIT 10 /* milliseconds */
183 #endif /* VM_PAGEOUT_IDLE_WAIT */
184
185 #ifndef VM_PAGEOUT_SWAP_WAIT
186 #define VM_PAGEOUT_SWAP_WAIT 10 /* milliseconds */
187 #endif /* VM_PAGEOUT_SWAP_WAIT */
188
189
190 #ifndef VM_PAGE_SPECULATIVE_TARGET
191 #define VM_PAGE_SPECULATIVE_TARGET(total) ((total) * 1 / (100 / vm_pageout_state.vm_page_speculative_percentage))
192 #endif /* VM_PAGE_SPECULATIVE_TARGET */
193
194
195 /*
196 * To obtain a reasonable LRU approximation, the inactive queue
197 * needs to be large enough to give pages on it a chance to be
198 * referenced a second time. This macro defines the fraction
199 * of active+inactive pages that should be inactive.
200 * The pageout daemon uses it to update vm_page_inactive_target.
201 *
202 * If vm_page_free_count falls below vm_page_free_target and
203 * vm_page_inactive_count is below vm_page_inactive_target,
204 * then the pageout daemon starts running.
205 */
206
207 #ifndef VM_PAGE_INACTIVE_TARGET
208 #define VM_PAGE_INACTIVE_TARGET(avail) ((avail) * 1 / 2)
209 #endif /* VM_PAGE_INACTIVE_TARGET */
210
211 /*
212 * Once the pageout daemon starts running, it keeps going
213 * until vm_page_free_count meets or exceeds vm_page_free_target.
214 */
215
216 #ifndef VM_PAGE_FREE_TARGET
217 #ifdef CONFIG_EMBEDDED
218 #define VM_PAGE_FREE_TARGET(free) (15 + (free) / 100)
219 #else
220 #define VM_PAGE_FREE_TARGET(free) (15 + (free) / 80)
221 #endif
222 #endif /* VM_PAGE_FREE_TARGET */
223
224
225 /*
226 * The pageout daemon always starts running once vm_page_free_count
227 * falls below vm_page_free_min.
228 */
229
230 #ifndef VM_PAGE_FREE_MIN
231 #ifdef CONFIG_EMBEDDED
232 #define VM_PAGE_FREE_MIN(free) (10 + (free) / 200)
233 #else
234 #define VM_PAGE_FREE_MIN(free) (10 + (free) / 100)
235 #endif
236 #endif /* VM_PAGE_FREE_MIN */
237
238 #ifdef CONFIG_EMBEDDED
239 #define VM_PAGE_FREE_RESERVED_LIMIT 100
240 #define VM_PAGE_FREE_MIN_LIMIT 1500
241 #define VM_PAGE_FREE_TARGET_LIMIT 2000
242 #else
243 #define VM_PAGE_FREE_RESERVED_LIMIT 1700
244 #define VM_PAGE_FREE_MIN_LIMIT 3500
245 #define VM_PAGE_FREE_TARGET_LIMIT 4000
246 #endif
247
248 /*
249 * When vm_page_free_count falls below vm_page_free_reserved,
250 * only vm-privileged threads can allocate pages. vm-privilege
251 * allows the pageout daemon and default pager (and any other
252 * associated threads needed for default pageout) to continue
253 * operation by dipping into the reserved pool of pages.
254 */
255
256 #ifndef VM_PAGE_FREE_RESERVED
257 #define VM_PAGE_FREE_RESERVED(n) \
258 ((unsigned) (6 * VM_PAGE_LAUNDRY_MAX) + (n))
259 #endif /* VM_PAGE_FREE_RESERVED */
260
261 /*
262 * When we dequeue pages from the inactive list, they are
263 * reactivated (ie, put back on the active queue) if referenced.
264 * However, it is possible to starve the free list if other
265 * processors are referencing pages faster than we can turn off
266 * the referenced bit. So we limit the number of reactivations
267 * we will make per call of vm_pageout_scan().
268 */
269 #define VM_PAGE_REACTIVATE_LIMIT_MAX 20000
270
271 #ifndef VM_PAGE_REACTIVATE_LIMIT
272 #ifdef CONFIG_EMBEDDED
273 #define VM_PAGE_REACTIVATE_LIMIT(avail) (VM_PAGE_INACTIVE_TARGET(avail) / 2)
274 #else
275 #define VM_PAGE_REACTIVATE_LIMIT(avail) (MAX((avail) * 1 / 20,VM_PAGE_REACTIVATE_LIMIT_MAX))
276 #endif
277 #endif /* VM_PAGE_REACTIVATE_LIMIT */
278 #define VM_PAGEOUT_INACTIVE_FORCE_RECLAIM 1000
279
280 extern boolean_t hibernate_cleaning_in_progress;
281
282 /*
283 * Forward declarations for internal routines.
284 */
285 struct cq {
286 struct vm_pageout_queue *q;
287 void *current_chead;
288 char *scratch_buf;
289 int id;
290 };
291
292 struct cq ciq[MAX_COMPRESSOR_THREAD_COUNT];
293
294
295 #if VM_PRESSURE_EVENTS
296 void vm_pressure_thread(void);
297
298 boolean_t VM_PRESSURE_NORMAL_TO_WARNING(void);
299 boolean_t VM_PRESSURE_WARNING_TO_CRITICAL(void);
300
301 boolean_t VM_PRESSURE_WARNING_TO_NORMAL(void);
302 boolean_t VM_PRESSURE_CRITICAL_TO_WARNING(void);
303 #endif
304
305 void vm_pageout_garbage_collect(int);
306 static void vm_pageout_iothread_external(void);
307 static void vm_pageout_iothread_internal(struct cq *cq);
308 static void vm_pageout_adjust_eq_iothrottle(struct vm_pageout_queue *, boolean_t);
309
310 extern void vm_pageout_continue(void);
311 extern void vm_pageout_scan(void);
312
313 boolean_t vm_pageout_running = FALSE;
314
315 uint32_t vm_page_upl_tainted = 0;
316 uint32_t vm_page_iopl_tainted = 0;
317
318 #if !CONFIG_EMBEDDED
319 static boolean_t vm_pageout_waiter = FALSE;
320 #endif /* !CONFIG_EMBEDDED */
321
322
323 #if DEVELOPMENT || DEBUG
324 struct vm_pageout_debug vm_pageout_debug;
325 #endif
326 struct vm_pageout_vminfo vm_pageout_vminfo;
327 struct vm_pageout_state vm_pageout_state;
328 struct vm_config vm_config;
329
330 struct vm_pageout_queue vm_pageout_queue_internal VM_PAGE_PACKED_ALIGNED;
331 struct vm_pageout_queue vm_pageout_queue_external VM_PAGE_PACKED_ALIGNED;
332
333 int vm_upl_wait_for_pages = 0;
334 vm_object_t vm_pageout_scan_wants_object = VM_OBJECT_NULL;
335
336 boolean_t(*volatile consider_buffer_cache_collect)(int) = NULL;
337
338 int vm_debug_events = 0;
339
340 LCK_GRP_DECLARE(vm_pageout_lck_grp, "vm_pageout");
341
342 #if CONFIG_MEMORYSTATUS
343 extern boolean_t memorystatus_kill_on_VM_page_shortage(boolean_t async);
344
345 uint32_t vm_pageout_memorystatus_fb_factor_nr = 5;
346 uint32_t vm_pageout_memorystatus_fb_factor_dr = 2;
347
348 #endif
349
350 #if __AMP__
351 int vm_compressor_ebound = 1;
352 int vm_pgo_pbound = 0;
353 extern void thread_bind_cluster_type(thread_t, char, bool);
354 #endif /* __AMP__ */
355
356
357 /*
358 * Routine: vm_pageout_object_terminate
359 * Purpose:
360 * Destroy the pageout_object, and perform all of the
361 * required cleanup actions.
362 *
363 * In/Out conditions:
364 * The object must be locked, and will be returned locked.
365 */
366 void
367 vm_pageout_object_terminate(
368 vm_object_t object)
369 {
370 vm_object_t shadow_object;
371
372 /*
373 * Deal with the deallocation (last reference) of a pageout object
374 * (used for cleaning-in-place) by dropping the paging references/
375 * freeing pages in the original object.
376 */
377
378 assert(object->pageout);
379 shadow_object = object->shadow;
380 vm_object_lock(shadow_object);
381
382 while (!vm_page_queue_empty(&object->memq)) {
383 vm_page_t p, m;
384 vm_object_offset_t offset;
385
386 p = (vm_page_t) vm_page_queue_first(&object->memq);
387
388 assert(p->vmp_private);
389 assert(p->vmp_free_when_done);
390 p->vmp_free_when_done = FALSE;
391 assert(!p->vmp_cleaning);
392 assert(!p->vmp_laundry);
393
394 offset = p->vmp_offset;
395 VM_PAGE_FREE(p);
396 p = VM_PAGE_NULL;
397
398 m = vm_page_lookup(shadow_object,
399 offset + object->vo_shadow_offset);
400
401 if (m == VM_PAGE_NULL) {
402 continue;
403 }
404
405 assert((m->vmp_dirty) || (m->vmp_precious) ||
406 (m->vmp_busy && m->vmp_cleaning));
407
408 /*
409 * Handle the trusted pager throttle.
410 * Also decrement the burst throttle (if external).
411 */
412 vm_page_lock_queues();
413 if (m->vmp_q_state == VM_PAGE_ON_PAGEOUT_Q) {
414 vm_pageout_throttle_up(m);
415 }
416
417 /*
418 * Handle the "target" page(s). These pages are to be freed if
419 * successfully cleaned. Target pages are always busy, and are
420 * wired exactly once. The initial target pages are not mapped,
421 * (so cannot be referenced or modified) but converted target
422 * pages may have been modified between the selection as an
423 * adjacent page and conversion to a target.
424 */
425 if (m->vmp_free_when_done) {
426 assert(m->vmp_busy);
427 assert(m->vmp_q_state == VM_PAGE_IS_WIRED);
428 assert(m->vmp_wire_count == 1);
429 m->vmp_cleaning = FALSE;
430 m->vmp_free_when_done = FALSE;
431 /*
432 * Revoke all access to the page. Since the object is
433 * locked, and the page is busy, this prevents the page
434 * from being dirtied after the pmap_disconnect() call
435 * returns.
436 *
437 * Since the page is left "dirty" but "not modifed", we
438 * can detect whether the page was redirtied during
439 * pageout by checking the modify state.
440 */
441 if (pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(m)) & VM_MEM_MODIFIED) {
442 SET_PAGE_DIRTY(m, FALSE);
443 } else {
444 m->vmp_dirty = FALSE;
445 }
446
447 if (m->vmp_dirty) {
448 vm_page_unwire(m, TRUE); /* reactivates */
449 VM_STAT_INCR(reactivations);
450 PAGE_WAKEUP_DONE(m);
451 } else {
452 vm_page_free(m); /* clears busy, etc. */
453 }
454 vm_page_unlock_queues();
455 continue;
456 }
457 /*
458 * Handle the "adjacent" pages. These pages were cleaned in
459 * place, and should be left alone.
460 * If prep_pin_count is nonzero, then someone is using the
461 * page, so make it active.
462 */
463 if ((m->vmp_q_state == VM_PAGE_NOT_ON_Q) && !m->vmp_private) {
464 if (m->vmp_reference) {
465 vm_page_activate(m);
466 } else {
467 vm_page_deactivate(m);
468 }
469 }
470 if (m->vmp_overwriting) {
471 /*
472 * the (COPY_OUT_FROM == FALSE) request_page_list case
473 */
474 if (m->vmp_busy) {
475 /*
476 * We do not re-set m->vmp_dirty !
477 * The page was busy so no extraneous activity
478 * could have occurred. COPY_INTO is a read into the
479 * new pages. CLEAN_IN_PLACE does actually write
480 * out the pages but handling outside of this code
481 * will take care of resetting dirty. We clear the
482 * modify however for the Programmed I/O case.
483 */
484 pmap_clear_modify(VM_PAGE_GET_PHYS_PAGE(m));
485
486 m->vmp_busy = FALSE;
487 m->vmp_absent = FALSE;
488 } else {
489 /*
490 * alternate (COPY_OUT_FROM == FALSE) request_page_list case
491 * Occurs when the original page was wired
492 * at the time of the list request
493 */
494 assert(VM_PAGE_WIRED(m));
495 vm_page_unwire(m, TRUE); /* reactivates */
496 }
497 m->vmp_overwriting = FALSE;
498 } else {
499 m->vmp_dirty = FALSE;
500 }
501 m->vmp_cleaning = FALSE;
502
503 /*
504 * Wakeup any thread waiting for the page to be un-cleaning.
505 */
506 PAGE_WAKEUP(m);
507 vm_page_unlock_queues();
508 }
509 /*
510 * Account for the paging reference taken in vm_paging_object_allocate.
511 */
512 vm_object_activity_end(shadow_object);
513 vm_object_unlock(shadow_object);
514
515 assert(object->ref_count == 0);
516 assert(object->paging_in_progress == 0);
517 assert(object->activity_in_progress == 0);
518 assert(object->resident_page_count == 0);
519 return;
520 }
521
522 /*
523 * Routine: vm_pageclean_setup
524 *
525 * Purpose: setup a page to be cleaned (made non-dirty), but not
526 * necessarily flushed from the VM page cache.
527 * This is accomplished by cleaning in place.
528 *
529 * The page must not be busy, and new_object
530 * must be locked.
531 *
532 */
533 static void
534 vm_pageclean_setup(
535 vm_page_t m,
536 vm_page_t new_m,
537 vm_object_t new_object,
538 vm_object_offset_t new_offset)
539 {
540 assert(!m->vmp_busy);
541 #if 0
542 assert(!m->vmp_cleaning);
543 #endif
544
545 pmap_clear_modify(VM_PAGE_GET_PHYS_PAGE(m));
546
547 /*
548 * Mark original page as cleaning in place.
549 */
550 m->vmp_cleaning = TRUE;
551 SET_PAGE_DIRTY(m, FALSE);
552 m->vmp_precious = FALSE;
553
554 /*
555 * Convert the fictitious page to a private shadow of
556 * the real page.
557 */
558 assert(new_m->vmp_fictitious);
559 assert(VM_PAGE_GET_PHYS_PAGE(new_m) == vm_page_fictitious_addr);
560 new_m->vmp_fictitious = FALSE;
561 new_m->vmp_private = TRUE;
562 new_m->vmp_free_when_done = TRUE;
563 VM_PAGE_SET_PHYS_PAGE(new_m, VM_PAGE_GET_PHYS_PAGE(m));
564
565 vm_page_lockspin_queues();
566 vm_page_wire(new_m, VM_KERN_MEMORY_NONE, TRUE);
567 vm_page_unlock_queues();
568
569 vm_page_insert_wired(new_m, new_object, new_offset, VM_KERN_MEMORY_NONE);
570 assert(!new_m->vmp_wanted);
571 new_m->vmp_busy = FALSE;
572 }
573
574 /*
575 * Routine: vm_pageout_initialize_page
576 * Purpose:
577 * Causes the specified page to be initialized in
578 * the appropriate memory object. This routine is used to push
579 * pages into a copy-object when they are modified in the
580 * permanent object.
581 *
582 * The page is moved to a temporary object and paged out.
583 *
584 * In/out conditions:
585 * The page in question must not be on any pageout queues.
586 * The object to which it belongs must be locked.
587 * The page must be busy, but not hold a paging reference.
588 *
589 * Implementation:
590 * Move this page to a completely new object.
591 */
592 void
593 vm_pageout_initialize_page(
594 vm_page_t m)
595 {
596 vm_object_t object;
597 vm_object_offset_t paging_offset;
598 memory_object_t pager;
599
600 assert(VM_CONFIG_COMPRESSOR_IS_PRESENT);
601
602 object = VM_PAGE_OBJECT(m);
603
604 assert(m->vmp_busy);
605 assert(object->internal);
606
607 /*
608 * Verify that we really want to clean this page
609 */
610 assert(!m->vmp_absent);
611 assert(!m->vmp_error);
612 assert(m->vmp_dirty);
613
614 /*
615 * Create a paging reference to let us play with the object.
616 */
617 paging_offset = m->vmp_offset + object->paging_offset;
618
619 if (m->vmp_absent || m->vmp_error || m->vmp_restart || (!m->vmp_dirty && !m->vmp_precious)) {
620 panic("reservation without pageout?"); /* alan */
621
622 VM_PAGE_FREE(m);
623 vm_object_unlock(object);
624
625 return;
626 }
627
628 /*
629 * If there's no pager, then we can't clean the page. This should
630 * never happen since this should be a copy object and therefore not
631 * an external object, so the pager should always be there.
632 */
633
634 pager = object->pager;
635
636 if (pager == MEMORY_OBJECT_NULL) {
637 panic("missing pager for copy object");
638
639 VM_PAGE_FREE(m);
640 return;
641 }
642
643 /*
644 * set the page for future call to vm_fault_list_request
645 */
646 pmap_clear_modify(VM_PAGE_GET_PHYS_PAGE(m));
647 SET_PAGE_DIRTY(m, FALSE);
648
649 /*
650 * keep the object from collapsing or terminating
651 */
652 vm_object_paging_begin(object);
653 vm_object_unlock(object);
654
655 /*
656 * Write the data to its pager.
657 * Note that the data is passed by naming the new object,
658 * not a virtual address; the pager interface has been
659 * manipulated to use the "internal memory" data type.
660 * [The object reference from its allocation is donated
661 * to the eventual recipient.]
662 */
663 memory_object_data_initialize(pager, paging_offset, PAGE_SIZE);
664
665 vm_object_lock(object);
666 vm_object_paging_end(object);
667 }
668
669
670 /*
671 * vm_pageout_cluster:
672 *
673 * Given a page, queue it to the appropriate I/O thread,
674 * which will page it out and attempt to clean adjacent pages
675 * in the same operation.
676 *
677 * The object and queues must be locked. We will take a
678 * paging reference to prevent deallocation or collapse when we
679 * release the object lock back at the call site. The I/O thread
680 * is responsible for consuming this reference
681 *
682 * The page must not be on any pageout queue.
683 */
684 #if DEVELOPMENT || DEBUG
685 vmct_stats_t vmct_stats;
686
687 int32_t vmct_active = 0;
688 uint64_t vm_compressor_epoch_start = 0;
689 uint64_t vm_compressor_epoch_stop = 0;
690
691 typedef enum vmct_state_t {
692 VMCT_IDLE,
693 VMCT_AWAKENED,
694 VMCT_ACTIVE,
695 } vmct_state_t;
696 vmct_state_t vmct_state[MAX_COMPRESSOR_THREAD_COUNT];
697 #endif
698
699
700 void
701 vm_pageout_cluster(vm_page_t m)
702 {
703 vm_object_t object = VM_PAGE_OBJECT(m);
704 struct vm_pageout_queue *q;
705
706 VM_PAGE_CHECK(m);
707 LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED);
708 vm_object_lock_assert_exclusive(object);
709
710 /*
711 * Only a certain kind of page is appreciated here.
712 */
713 assert((m->vmp_dirty || m->vmp_precious) && (!VM_PAGE_WIRED(m)));
714 assert(!m->vmp_cleaning && !m->vmp_laundry);
715 assert(m->vmp_q_state == VM_PAGE_NOT_ON_Q);
716
717 /*
718 * protect the object from collapse or termination
719 */
720 vm_object_activity_begin(object);
721
722 if (object->internal == TRUE) {
723 assert(VM_CONFIG_COMPRESSOR_IS_PRESENT);
724
725 m->vmp_busy = TRUE;
726
727 q = &vm_pageout_queue_internal;
728 } else {
729 q = &vm_pageout_queue_external;
730 }
731
732 /*
733 * pgo_laundry count is tied to the laundry bit
734 */
735 m->vmp_laundry = TRUE;
736 q->pgo_laundry++;
737
738 m->vmp_q_state = VM_PAGE_ON_PAGEOUT_Q;
739 vm_page_queue_enter(&q->pgo_pending, m, vmp_pageq);
740
741 if (q->pgo_idle == TRUE) {
742 q->pgo_idle = FALSE;
743 thread_wakeup((event_t) &q->pgo_pending);
744 }
745 VM_PAGE_CHECK(m);
746 }
747
748
749 /*
750 * A page is back from laundry or we are stealing it back from
751 * the laundering state. See if there are some pages waiting to
752 * go to laundry and if we can let some of them go now.
753 *
754 * Object and page queues must be locked.
755 */
756 void
757 vm_pageout_throttle_up(
758 vm_page_t m)
759 {
760 struct vm_pageout_queue *q;
761 vm_object_t m_object;
762
763 m_object = VM_PAGE_OBJECT(m);
764
765 assert(m_object != VM_OBJECT_NULL);
766 assert(m_object != kernel_object);
767
768 LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED);
769 vm_object_lock_assert_exclusive(m_object);
770
771 if (m_object->internal == TRUE) {
772 q = &vm_pageout_queue_internal;
773 } else {
774 q = &vm_pageout_queue_external;
775 }
776
777 if (m->vmp_q_state == VM_PAGE_ON_PAGEOUT_Q) {
778 vm_page_queue_remove(&q->pgo_pending, m, vmp_pageq);
779 m->vmp_q_state = VM_PAGE_NOT_ON_Q;
780
781 VM_PAGE_ZERO_PAGEQ_ENTRY(m);
782
783 vm_object_activity_end(m_object);
784
785 VM_PAGEOUT_DEBUG(vm_page_steal_pageout_page, 1);
786 }
787 if (m->vmp_laundry == TRUE) {
788 m->vmp_laundry = FALSE;
789 q->pgo_laundry--;
790
791 if (q->pgo_throttled == TRUE) {
792 q->pgo_throttled = FALSE;
793 thread_wakeup((event_t) &q->pgo_laundry);
794 }
795 if (q->pgo_draining == TRUE && q->pgo_laundry == 0) {
796 q->pgo_draining = FALSE;
797 thread_wakeup((event_t) (&q->pgo_laundry + 1));
798 }
799 VM_PAGEOUT_DEBUG(vm_pageout_throttle_up_count, 1);
800 }
801 }
802
803
804 static void
805 vm_pageout_throttle_up_batch(
806 struct vm_pageout_queue *q,
807 int batch_cnt)
808 {
809 LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED);
810
811 VM_PAGEOUT_DEBUG(vm_pageout_throttle_up_count, batch_cnt);
812
813 q->pgo_laundry -= batch_cnt;
814
815 if (q->pgo_throttled == TRUE) {
816 q->pgo_throttled = FALSE;
817 thread_wakeup((event_t) &q->pgo_laundry);
818 }
819 if (q->pgo_draining == TRUE && q->pgo_laundry == 0) {
820 q->pgo_draining = FALSE;
821 thread_wakeup((event_t) (&q->pgo_laundry + 1));
822 }
823 }
824
825
826
827 /*
828 * VM memory pressure monitoring.
829 *
830 * vm_pageout_scan() keeps track of the number of pages it considers and
831 * reclaims, in the currently active vm_pageout_stat[vm_pageout_stat_now].
832 *
833 * compute_memory_pressure() is called every second from compute_averages()
834 * and moves "vm_pageout_stat_now" forward, to start accumulating the number
835 * of recalimed pages in a new vm_pageout_stat[] bucket.
836 *
837 * mach_vm_pressure_monitor() collects past statistics about memory pressure.
838 * The caller provides the number of seconds ("nsecs") worth of statistics
839 * it wants, up to 30 seconds.
840 * It computes the number of pages reclaimed in the past "nsecs" seconds and
841 * also returns the number of pages the system still needs to reclaim at this
842 * moment in time.
843 */
844 #if DEVELOPMENT || DEBUG
845 #define VM_PAGEOUT_STAT_SIZE (30 * 8) + 1
846 #else
847 #define VM_PAGEOUT_STAT_SIZE (1 * 8) + 1
848 #endif
849 struct vm_pageout_stat {
850 unsigned long vm_page_active_count;
851 unsigned long vm_page_speculative_count;
852 unsigned long vm_page_inactive_count;
853 unsigned long vm_page_anonymous_count;
854
855 unsigned long vm_page_free_count;
856 unsigned long vm_page_wire_count;
857 unsigned long vm_page_compressor_count;
858
859 unsigned long vm_page_pages_compressed;
860 unsigned long vm_page_pageable_internal_count;
861 unsigned long vm_page_pageable_external_count;
862 unsigned long vm_page_xpmapped_external_count;
863
864 unsigned int pages_grabbed;
865 unsigned int pages_freed;
866
867 unsigned int pages_compressed;
868 unsigned int pages_grabbed_by_compressor;
869 unsigned int failed_compressions;
870
871 unsigned int pages_evicted;
872 unsigned int pages_purged;
873
874 unsigned int considered;
875 unsigned int considered_bq_internal;
876 unsigned int considered_bq_external;
877
878 unsigned int skipped_external;
879 unsigned int filecache_min_reactivations;
880
881 unsigned int freed_speculative;
882 unsigned int freed_cleaned;
883 unsigned int freed_internal;
884 unsigned int freed_external;
885
886 unsigned int cleaned_dirty_external;
887 unsigned int cleaned_dirty_internal;
888
889 unsigned int inactive_referenced;
890 unsigned int inactive_nolock;
891 unsigned int reactivation_limit_exceeded;
892 unsigned int forced_inactive_reclaim;
893
894 unsigned int throttled_internal_q;
895 unsigned int throttled_external_q;
896
897 unsigned int phantom_ghosts_found;
898 unsigned int phantom_ghosts_added;
899 } vm_pageout_stats[VM_PAGEOUT_STAT_SIZE] = {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, };
900
901 unsigned int vm_pageout_stat_now = 0;
902
903 #define VM_PAGEOUT_STAT_BEFORE(i) \
904 (((i) == 0) ? VM_PAGEOUT_STAT_SIZE - 1 : (i) - 1)
905 #define VM_PAGEOUT_STAT_AFTER(i) \
906 (((i) == VM_PAGEOUT_STAT_SIZE - 1) ? 0 : (i) + 1)
907
908 #if VM_PAGE_BUCKETS_CHECK
909 int vm_page_buckets_check_interval = 80; /* in eighths of a second */
910 #endif /* VM_PAGE_BUCKETS_CHECK */
911
912
913 void
914 record_memory_pressure(void);
915 void
916 record_memory_pressure(void)
917 {
918 unsigned int vm_pageout_next;
919
920 #if VM_PAGE_BUCKETS_CHECK
921 /* check the consistency of VM page buckets at regular interval */
922 static int counter = 0;
923 if ((++counter % vm_page_buckets_check_interval) == 0) {
924 vm_page_buckets_check();
925 }
926 #endif /* VM_PAGE_BUCKETS_CHECK */
927
928 vm_pageout_state.vm_memory_pressure =
929 vm_pageout_stats[VM_PAGEOUT_STAT_BEFORE(vm_pageout_stat_now)].freed_speculative +
930 vm_pageout_stats[VM_PAGEOUT_STAT_BEFORE(vm_pageout_stat_now)].freed_cleaned +
931 vm_pageout_stats[VM_PAGEOUT_STAT_BEFORE(vm_pageout_stat_now)].freed_internal +
932 vm_pageout_stats[VM_PAGEOUT_STAT_BEFORE(vm_pageout_stat_now)].freed_external;
933
934 commpage_set_memory_pressure((unsigned int)vm_pageout_state.vm_memory_pressure );
935
936 /* move "now" forward */
937 vm_pageout_next = VM_PAGEOUT_STAT_AFTER(vm_pageout_stat_now);
938
939 bzero(&vm_pageout_stats[vm_pageout_next], sizeof(struct vm_pageout_stat));
940
941 vm_pageout_stat_now = vm_pageout_next;
942 }
943
944
945 /*
946 * IMPORTANT
947 * mach_vm_ctl_page_free_wanted() is called indirectly, via
948 * mach_vm_pressure_monitor(), when taking a stackshot. Therefore,
949 * it must be safe in the restricted stackshot context. Locks and/or
950 * blocking are not allowable.
951 */
952 unsigned int
953 mach_vm_ctl_page_free_wanted(void)
954 {
955 unsigned int page_free_target, page_free_count, page_free_wanted;
956
957 page_free_target = vm_page_free_target;
958 page_free_count = vm_page_free_count;
959 if (page_free_target > page_free_count) {
960 page_free_wanted = page_free_target - page_free_count;
961 } else {
962 page_free_wanted = 0;
963 }
964
965 return page_free_wanted;
966 }
967
968
969 /*
970 * IMPORTANT:
971 * mach_vm_pressure_monitor() is called when taking a stackshot, with
972 * wait_for_pressure FALSE, so that code path must remain safe in the
973 * restricted stackshot context. No blocking or locks are allowable.
974 * on that code path.
975 */
976
977 kern_return_t
978 mach_vm_pressure_monitor(
979 boolean_t wait_for_pressure,
980 unsigned int nsecs_monitored,
981 unsigned int *pages_reclaimed_p,
982 unsigned int *pages_wanted_p)
983 {
984 wait_result_t wr;
985 unsigned int vm_pageout_then, vm_pageout_now;
986 unsigned int pages_reclaimed;
987 unsigned int units_of_monitor;
988
989 units_of_monitor = 8 * nsecs_monitored;
990 /*
991 * We don't take the vm_page_queue_lock here because we don't want
992 * vm_pressure_monitor() to get in the way of the vm_pageout_scan()
993 * thread when it's trying to reclaim memory. We don't need fully
994 * accurate monitoring anyway...
995 */
996
997 if (wait_for_pressure) {
998 /* wait until there's memory pressure */
999 while (vm_page_free_count >= vm_page_free_target) {
1000 wr = assert_wait((event_t) &vm_page_free_wanted,
1001 THREAD_INTERRUPTIBLE);
1002 if (wr == THREAD_WAITING) {
1003 wr = thread_block(THREAD_CONTINUE_NULL);
1004 }
1005 if (wr == THREAD_INTERRUPTED) {
1006 return KERN_ABORTED;
1007 }
1008 if (wr == THREAD_AWAKENED) {
1009 /*
1010 * The memory pressure might have already
1011 * been relieved but let's not block again
1012 * and let's report that there was memory
1013 * pressure at some point.
1014 */
1015 break;
1016 }
1017 }
1018 }
1019
1020 /* provide the number of pages the system wants to reclaim */
1021 if (pages_wanted_p != NULL) {
1022 *pages_wanted_p = mach_vm_ctl_page_free_wanted();
1023 }
1024
1025 if (pages_reclaimed_p == NULL) {
1026 return KERN_SUCCESS;
1027 }
1028
1029 /* provide number of pages reclaimed in the last "nsecs_monitored" */
1030 vm_pageout_now = vm_pageout_stat_now;
1031 pages_reclaimed = 0;
1032 for (vm_pageout_then =
1033 VM_PAGEOUT_STAT_BEFORE(vm_pageout_now);
1034 vm_pageout_then != vm_pageout_now &&
1035 units_of_monitor-- != 0;
1036 vm_pageout_then =
1037 VM_PAGEOUT_STAT_BEFORE(vm_pageout_then)) {
1038 pages_reclaimed += vm_pageout_stats[vm_pageout_then].freed_speculative;
1039 pages_reclaimed += vm_pageout_stats[vm_pageout_then].freed_cleaned;
1040 pages_reclaimed += vm_pageout_stats[vm_pageout_then].freed_internal;
1041 pages_reclaimed += vm_pageout_stats[vm_pageout_then].freed_external;
1042 }
1043 *pages_reclaimed_p = pages_reclaimed;
1044
1045 return KERN_SUCCESS;
1046 }
1047
1048
1049
1050 #if DEVELOPMENT || DEBUG
1051
1052 static void
1053 vm_pageout_disconnect_all_pages_in_queue(vm_page_queue_head_t *, int);
1054
1055 /*
1056 * condition variable used to make sure there is
1057 * only a single sweep going on at a time
1058 */
1059 boolean_t vm_pageout_disconnect_all_pages_active = FALSE;
1060
1061
1062 void
1063 vm_pageout_disconnect_all_pages()
1064 {
1065 vm_page_lock_queues();
1066
1067 if (vm_pageout_disconnect_all_pages_active == TRUE) {
1068 vm_page_unlock_queues();
1069 return;
1070 }
1071 vm_pageout_disconnect_all_pages_active = TRUE;
1072 vm_page_unlock_queues();
1073
1074 vm_pageout_disconnect_all_pages_in_queue(&vm_page_queue_throttled, vm_page_throttled_count);
1075 vm_pageout_disconnect_all_pages_in_queue(&vm_page_queue_anonymous, vm_page_anonymous_count);
1076 vm_pageout_disconnect_all_pages_in_queue(&vm_page_queue_active, vm_page_active_count);
1077
1078 vm_pageout_disconnect_all_pages_active = FALSE;
1079 }
1080
1081
1082 void
1083 vm_pageout_disconnect_all_pages_in_queue(vm_page_queue_head_t *q, int qcount)
1084 {
1085 vm_page_t m;
1086 vm_object_t t_object = NULL;
1087 vm_object_t l_object = NULL;
1088 vm_object_t m_object = NULL;
1089 int delayed_unlock = 0;
1090 int try_failed_count = 0;
1091 int disconnected_count = 0;
1092 int paused_count = 0;
1093 int object_locked_count = 0;
1094
1095 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, (MACHDBG_CODE(DBG_MACH_WORKINGSET, VM_DISCONNECT_ALL_PAGE_MAPPINGS)) | DBG_FUNC_START,
1096 q, qcount, 0, 0, 0);
1097
1098 vm_page_lock_queues();
1099
1100 while (qcount && !vm_page_queue_empty(q)) {
1101 LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED);
1102
1103 m = (vm_page_t) vm_page_queue_first(q);
1104 m_object = VM_PAGE_OBJECT(m);
1105
1106 /*
1107 * check to see if we currently are working
1108 * with the same object... if so, we've
1109 * already got the lock
1110 */
1111 if (m_object != l_object) {
1112 /*
1113 * the object associated with candidate page is
1114 * different from the one we were just working
1115 * with... dump the lock if we still own it
1116 */
1117 if (l_object != NULL) {
1118 vm_object_unlock(l_object);
1119 l_object = NULL;
1120 }
1121 if (m_object != t_object) {
1122 try_failed_count = 0;
1123 }
1124
1125 /*
1126 * Try to lock object; since we've alread got the
1127 * page queues lock, we can only 'try' for this one.
1128 * if the 'try' fails, we need to do a mutex_pause
1129 * to allow the owner of the object lock a chance to
1130 * run...
1131 */
1132 if (!vm_object_lock_try_scan(m_object)) {
1133 if (try_failed_count > 20) {
1134 goto reenter_pg_on_q;
1135 }
1136 vm_page_unlock_queues();
1137 mutex_pause(try_failed_count++);
1138 vm_page_lock_queues();
1139 delayed_unlock = 0;
1140
1141 paused_count++;
1142
1143 t_object = m_object;
1144 continue;
1145 }
1146 object_locked_count++;
1147
1148 l_object = m_object;
1149 }
1150 if (!m_object->alive || m->vmp_cleaning || m->vmp_laundry || m->vmp_busy || m->vmp_absent || m->vmp_error || m->vmp_free_when_done) {
1151 /*
1152 * put it back on the head of its queue
1153 */
1154 goto reenter_pg_on_q;
1155 }
1156 if (m->vmp_pmapped == TRUE) {
1157 pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(m));
1158
1159 disconnected_count++;
1160 }
1161 reenter_pg_on_q:
1162 vm_page_queue_remove(q, m, vmp_pageq);
1163 vm_page_queue_enter(q, m, vmp_pageq);
1164
1165 qcount--;
1166 try_failed_count = 0;
1167
1168 if (delayed_unlock++ > 128) {
1169 if (l_object != NULL) {
1170 vm_object_unlock(l_object);
1171 l_object = NULL;
1172 }
1173 lck_mtx_yield(&vm_page_queue_lock);
1174 delayed_unlock = 0;
1175 }
1176 }
1177 if (l_object != NULL) {
1178 vm_object_unlock(l_object);
1179 l_object = NULL;
1180 }
1181 vm_page_unlock_queues();
1182
1183 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, (MACHDBG_CODE(DBG_MACH_WORKINGSET, VM_DISCONNECT_ALL_PAGE_MAPPINGS)) | DBG_FUNC_END,
1184 q, disconnected_count, object_locked_count, paused_count, 0);
1185 }
1186
1187 #endif
1188
1189
1190 static void
1191 vm_pageout_page_queue(vm_page_queue_head_t *, int);
1192
1193 /*
1194 * condition variable used to make sure there is
1195 * only a single sweep going on at a time
1196 */
1197 boolean_t vm_pageout_anonymous_pages_active = FALSE;
1198
1199
1200 void
1201 vm_pageout_anonymous_pages()
1202 {
1203 if (VM_CONFIG_COMPRESSOR_IS_PRESENT) {
1204 vm_page_lock_queues();
1205
1206 if (vm_pageout_anonymous_pages_active == TRUE) {
1207 vm_page_unlock_queues();
1208 return;
1209 }
1210 vm_pageout_anonymous_pages_active = TRUE;
1211 vm_page_unlock_queues();
1212
1213 vm_pageout_page_queue(&vm_page_queue_throttled, vm_page_throttled_count);
1214 vm_pageout_page_queue(&vm_page_queue_anonymous, vm_page_anonymous_count);
1215 vm_pageout_page_queue(&vm_page_queue_active, vm_page_active_count);
1216
1217 if (VM_CONFIG_SWAP_IS_PRESENT) {
1218 vm_consider_swapping();
1219 }
1220
1221 vm_page_lock_queues();
1222 vm_pageout_anonymous_pages_active = FALSE;
1223 vm_page_unlock_queues();
1224 }
1225 }
1226
1227
1228 void
1229 vm_pageout_page_queue(vm_page_queue_head_t *q, int qcount)
1230 {
1231 vm_page_t m;
1232 vm_object_t t_object = NULL;
1233 vm_object_t l_object = NULL;
1234 vm_object_t m_object = NULL;
1235 int delayed_unlock = 0;
1236 int try_failed_count = 0;
1237 int refmod_state;
1238 int pmap_options;
1239 struct vm_pageout_queue *iq;
1240 ppnum_t phys_page;
1241
1242
1243 iq = &vm_pageout_queue_internal;
1244
1245 vm_page_lock_queues();
1246
1247 while (qcount && !vm_page_queue_empty(q)) {
1248 LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED);
1249
1250 if (VM_PAGE_Q_THROTTLED(iq)) {
1251 if (l_object != NULL) {
1252 vm_object_unlock(l_object);
1253 l_object = NULL;
1254 }
1255 iq->pgo_draining = TRUE;
1256
1257 assert_wait((event_t) (&iq->pgo_laundry + 1), THREAD_INTERRUPTIBLE);
1258 vm_page_unlock_queues();
1259
1260 thread_block(THREAD_CONTINUE_NULL);
1261
1262 vm_page_lock_queues();
1263 delayed_unlock = 0;
1264 continue;
1265 }
1266 m = (vm_page_t) vm_page_queue_first(q);
1267 m_object = VM_PAGE_OBJECT(m);
1268
1269 /*
1270 * check to see if we currently are working
1271 * with the same object... if so, we've
1272 * already got the lock
1273 */
1274 if (m_object != l_object) {
1275 if (!m_object->internal) {
1276 goto reenter_pg_on_q;
1277 }
1278
1279 /*
1280 * the object associated with candidate page is
1281 * different from the one we were just working
1282 * with... dump the lock if we still own it
1283 */
1284 if (l_object != NULL) {
1285 vm_object_unlock(l_object);
1286 l_object = NULL;
1287 }
1288 if (m_object != t_object) {
1289 try_failed_count = 0;
1290 }
1291
1292 /*
1293 * Try to lock object; since we've alread got the
1294 * page queues lock, we can only 'try' for this one.
1295 * if the 'try' fails, we need to do a mutex_pause
1296 * to allow the owner of the object lock a chance to
1297 * run...
1298 */
1299 if (!vm_object_lock_try_scan(m_object)) {
1300 if (try_failed_count > 20) {
1301 goto reenter_pg_on_q;
1302 }
1303 vm_page_unlock_queues();
1304 mutex_pause(try_failed_count++);
1305 vm_page_lock_queues();
1306 delayed_unlock = 0;
1307
1308 t_object = m_object;
1309 continue;
1310 }
1311 l_object = m_object;
1312 }
1313 if (!m_object->alive || m->vmp_cleaning || m->vmp_laundry || m->vmp_busy || m->vmp_absent || m->vmp_error || m->vmp_free_when_done) {
1314 /*
1315 * page is not to be cleaned
1316 * put it back on the head of its queue
1317 */
1318 goto reenter_pg_on_q;
1319 }
1320 phys_page = VM_PAGE_GET_PHYS_PAGE(m);
1321
1322 if (m->vmp_reference == FALSE && m->vmp_pmapped == TRUE) {
1323 refmod_state = pmap_get_refmod(phys_page);
1324
1325 if (refmod_state & VM_MEM_REFERENCED) {
1326 m->vmp_reference = TRUE;
1327 }
1328 if (refmod_state & VM_MEM_MODIFIED) {
1329 SET_PAGE_DIRTY(m, FALSE);
1330 }
1331 }
1332 if (m->vmp_reference == TRUE) {
1333 m->vmp_reference = FALSE;
1334 pmap_clear_refmod_options(phys_page, VM_MEM_REFERENCED, PMAP_OPTIONS_NOFLUSH, (void *)NULL);
1335 goto reenter_pg_on_q;
1336 }
1337 if (m->vmp_pmapped == TRUE) {
1338 if (m->vmp_dirty || m->vmp_precious) {
1339 pmap_options = PMAP_OPTIONS_COMPRESSOR;
1340 } else {
1341 pmap_options = PMAP_OPTIONS_COMPRESSOR_IFF_MODIFIED;
1342 }
1343 refmod_state = pmap_disconnect_options(phys_page, pmap_options, NULL);
1344 if (refmod_state & VM_MEM_MODIFIED) {
1345 SET_PAGE_DIRTY(m, FALSE);
1346 }
1347 }
1348
1349 if (!m->vmp_dirty && !m->vmp_precious) {
1350 vm_page_unlock_queues();
1351 VM_PAGE_FREE(m);
1352 vm_page_lock_queues();
1353 delayed_unlock = 0;
1354
1355 goto next_pg;
1356 }
1357 if (!m_object->pager_initialized || m_object->pager == MEMORY_OBJECT_NULL) {
1358 if (!m_object->pager_initialized) {
1359 vm_page_unlock_queues();
1360
1361 vm_object_collapse(m_object, (vm_object_offset_t) 0, TRUE);
1362
1363 if (!m_object->pager_initialized) {
1364 vm_object_compressor_pager_create(m_object);
1365 }
1366
1367 vm_page_lock_queues();
1368 delayed_unlock = 0;
1369 }
1370 if (!m_object->pager_initialized || m_object->pager == MEMORY_OBJECT_NULL) {
1371 goto reenter_pg_on_q;
1372 }
1373 /*
1374 * vm_object_compressor_pager_create will drop the object lock
1375 * which means 'm' may no longer be valid to use
1376 */
1377 continue;
1378 }
1379 /*
1380 * we've already factored out pages in the laundry which
1381 * means this page can't be on the pageout queue so it's
1382 * safe to do the vm_page_queues_remove
1383 */
1384 vm_page_queues_remove(m, TRUE);
1385
1386 LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED);
1387
1388 vm_pageout_cluster(m);
1389
1390 goto next_pg;
1391
1392 reenter_pg_on_q:
1393 vm_page_queue_remove(q, m, vmp_pageq);
1394 vm_page_queue_enter(q, m, vmp_pageq);
1395 next_pg:
1396 qcount--;
1397 try_failed_count = 0;
1398
1399 if (delayed_unlock++ > 128) {
1400 if (l_object != NULL) {
1401 vm_object_unlock(l_object);
1402 l_object = NULL;
1403 }
1404 lck_mtx_yield(&vm_page_queue_lock);
1405 delayed_unlock = 0;
1406 }
1407 }
1408 if (l_object != NULL) {
1409 vm_object_unlock(l_object);
1410 l_object = NULL;
1411 }
1412 vm_page_unlock_queues();
1413 }
1414
1415
1416
1417 /*
1418 * function in BSD to apply I/O throttle to the pageout thread
1419 */
1420 extern void vm_pageout_io_throttle(void);
1421
1422 #define VM_PAGEOUT_SCAN_HANDLE_REUSABLE_PAGE(m, obj) \
1423 MACRO_BEGIN \
1424 /* \
1425 * If a "reusable" page somehow made it back into \
1426 * the active queue, it's been re-used and is not \
1427 * quite re-usable. \
1428 * If the VM object was "all_reusable", consider it \
1429 * as "all re-used" instead of converting it to \
1430 * "partially re-used", which could be expensive. \
1431 */ \
1432 assert(VM_PAGE_OBJECT((m)) == (obj)); \
1433 if ((m)->vmp_reusable || \
1434 (obj)->all_reusable) { \
1435 vm_object_reuse_pages((obj), \
1436 (m)->vmp_offset, \
1437 (m)->vmp_offset + PAGE_SIZE_64, \
1438 FALSE); \
1439 } \
1440 MACRO_END
1441
1442
1443 #define VM_PAGEOUT_DELAYED_UNLOCK_LIMIT 64
1444 #define VM_PAGEOUT_DELAYED_UNLOCK_LIMIT_MAX 1024
1445
1446 #define FCS_IDLE 0
1447 #define FCS_DELAYED 1
1448 #define FCS_DEADLOCK_DETECTED 2
1449
1450 struct flow_control {
1451 int state;
1452 mach_timespec_t ts;
1453 };
1454
1455
1456 #if CONFIG_BACKGROUND_QUEUE
1457 uint64_t vm_pageout_rejected_bq_internal = 0;
1458 uint64_t vm_pageout_rejected_bq_external = 0;
1459 uint64_t vm_pageout_skipped_bq_internal = 0;
1460 #endif
1461
1462 #define ANONS_GRABBED_LIMIT 2
1463
1464
1465 #if 0
1466 static void vm_pageout_delayed_unlock(int *, int *, vm_page_t *);
1467 #endif
1468 static void vm_pageout_prepare_to_block(vm_object_t *, int *, vm_page_t *, int *, int);
1469
1470 #define VM_PAGEOUT_PB_NO_ACTION 0
1471 #define VM_PAGEOUT_PB_CONSIDER_WAKING_COMPACTOR_SWAPPER 1
1472 #define VM_PAGEOUT_PB_THREAD_YIELD 2
1473
1474
1475 #if 0
1476 static void
1477 vm_pageout_delayed_unlock(int *delayed_unlock, int *local_freed, vm_page_t *local_freeq)
1478 {
1479 if (*local_freeq) {
1480 vm_page_unlock_queues();
1481
1482 VM_DEBUG_CONSTANT_EVENT(
1483 vm_pageout_freelist, VM_PAGEOUT_FREELIST, DBG_FUNC_START,
1484 vm_page_free_count, 0, 0, 1);
1485
1486 vm_page_free_list(*local_freeq, TRUE);
1487
1488 VM_DEBUG_CONSTANT_EVENT(vm_pageout_freelist, VM_PAGEOUT_FREELIST, DBG_FUNC_END,
1489 vm_page_free_count, *local_freed, 0, 1);
1490
1491 *local_freeq = NULL;
1492 *local_freed = 0;
1493
1494 vm_page_lock_queues();
1495 } else {
1496 lck_mtx_yield(&vm_page_queue_lock);
1497 }
1498 *delayed_unlock = 1;
1499 }
1500 #endif
1501
1502
1503 static void
1504 vm_pageout_prepare_to_block(vm_object_t *object, int *delayed_unlock,
1505 vm_page_t *local_freeq, int *local_freed, int action)
1506 {
1507 vm_page_unlock_queues();
1508
1509 if (*object != NULL) {
1510 vm_object_unlock(*object);
1511 *object = NULL;
1512 }
1513 if (*local_freeq) {
1514 vm_page_free_list(*local_freeq, TRUE);
1515
1516 *local_freeq = NULL;
1517 *local_freed = 0;
1518 }
1519 *delayed_unlock = 1;
1520
1521 switch (action) {
1522 case VM_PAGEOUT_PB_CONSIDER_WAKING_COMPACTOR_SWAPPER:
1523 vm_consider_waking_compactor_swapper();
1524 break;
1525 case VM_PAGEOUT_PB_THREAD_YIELD:
1526 thread_yield_internal(1);
1527 break;
1528 case VM_PAGEOUT_PB_NO_ACTION:
1529 default:
1530 break;
1531 }
1532 vm_page_lock_queues();
1533 }
1534
1535
1536 static struct vm_pageout_vminfo last;
1537
1538 uint64_t last_vm_page_pages_grabbed = 0;
1539
1540 extern uint32_t c_segment_pages_compressed;
1541
1542 extern uint64_t shared_region_pager_reclaimed;
1543 extern struct memory_object_pager_ops shared_region_pager_ops;
1544
1545 void
1546 update_vm_info(void)
1547 {
1548 unsigned long tmp;
1549 uint64_t tmp64;
1550
1551 vm_pageout_stats[vm_pageout_stat_now].vm_page_active_count = vm_page_active_count;
1552 vm_pageout_stats[vm_pageout_stat_now].vm_page_speculative_count = vm_page_speculative_count;
1553 vm_pageout_stats[vm_pageout_stat_now].vm_page_inactive_count = vm_page_inactive_count;
1554 vm_pageout_stats[vm_pageout_stat_now].vm_page_anonymous_count = vm_page_anonymous_count;
1555
1556 vm_pageout_stats[vm_pageout_stat_now].vm_page_free_count = vm_page_free_count;
1557 vm_pageout_stats[vm_pageout_stat_now].vm_page_wire_count = vm_page_wire_count;
1558 vm_pageout_stats[vm_pageout_stat_now].vm_page_compressor_count = VM_PAGE_COMPRESSOR_COUNT;
1559
1560 vm_pageout_stats[vm_pageout_stat_now].vm_page_pages_compressed = c_segment_pages_compressed;
1561 vm_pageout_stats[vm_pageout_stat_now].vm_page_pageable_internal_count = vm_page_pageable_internal_count;
1562 vm_pageout_stats[vm_pageout_stat_now].vm_page_pageable_external_count = vm_page_pageable_external_count;
1563 vm_pageout_stats[vm_pageout_stat_now].vm_page_xpmapped_external_count = vm_page_xpmapped_external_count;
1564
1565
1566 tmp = vm_pageout_vminfo.vm_pageout_considered_page;
1567 vm_pageout_stats[vm_pageout_stat_now].considered = (unsigned int)(tmp - last.vm_pageout_considered_page);
1568 last.vm_pageout_considered_page = tmp;
1569
1570 tmp64 = vm_pageout_vminfo.vm_pageout_compressions;
1571 vm_pageout_stats[vm_pageout_stat_now].pages_compressed = (unsigned int)(tmp64 - last.vm_pageout_compressions);
1572 last.vm_pageout_compressions = tmp64;
1573
1574 tmp = vm_pageout_vminfo.vm_compressor_failed;
1575 vm_pageout_stats[vm_pageout_stat_now].failed_compressions = (unsigned int)(tmp - last.vm_compressor_failed);
1576 last.vm_compressor_failed = tmp;
1577
1578 tmp64 = vm_pageout_vminfo.vm_compressor_pages_grabbed;
1579 vm_pageout_stats[vm_pageout_stat_now].pages_grabbed_by_compressor = (unsigned int)(tmp64 - last.vm_compressor_pages_grabbed);
1580 last.vm_compressor_pages_grabbed = tmp64;
1581
1582 tmp = vm_pageout_vminfo.vm_phantom_cache_found_ghost;
1583 vm_pageout_stats[vm_pageout_stat_now].phantom_ghosts_found = (unsigned int)(tmp - last.vm_phantom_cache_found_ghost);
1584 last.vm_phantom_cache_found_ghost = tmp;
1585
1586 tmp = vm_pageout_vminfo.vm_phantom_cache_added_ghost;
1587 vm_pageout_stats[vm_pageout_stat_now].phantom_ghosts_added = (unsigned int)(tmp - last.vm_phantom_cache_added_ghost);
1588 last.vm_phantom_cache_added_ghost = tmp;
1589
1590 tmp64 = get_pages_grabbed_count();
1591 vm_pageout_stats[vm_pageout_stat_now].pages_grabbed = (unsigned int)(tmp64 - last_vm_page_pages_grabbed);
1592 last_vm_page_pages_grabbed = tmp64;
1593
1594 tmp = vm_pageout_vminfo.vm_page_pages_freed;
1595 vm_pageout_stats[vm_pageout_stat_now].pages_freed = (unsigned int)(tmp - last.vm_page_pages_freed);
1596 last.vm_page_pages_freed = tmp;
1597
1598
1599 if (vm_pageout_stats[vm_pageout_stat_now].considered) {
1600 tmp = vm_pageout_vminfo.vm_pageout_pages_evicted;
1601 vm_pageout_stats[vm_pageout_stat_now].pages_evicted = (unsigned int)(tmp - last.vm_pageout_pages_evicted);
1602 last.vm_pageout_pages_evicted = tmp;
1603
1604 tmp = vm_pageout_vminfo.vm_pageout_pages_purged;
1605 vm_pageout_stats[vm_pageout_stat_now].pages_purged = (unsigned int)(tmp - last.vm_pageout_pages_purged);
1606 last.vm_pageout_pages_purged = tmp;
1607
1608 tmp = vm_pageout_vminfo.vm_pageout_freed_speculative;
1609 vm_pageout_stats[vm_pageout_stat_now].freed_speculative = (unsigned int)(tmp - last.vm_pageout_freed_speculative);
1610 last.vm_pageout_freed_speculative = tmp;
1611
1612 tmp = vm_pageout_vminfo.vm_pageout_freed_external;
1613 vm_pageout_stats[vm_pageout_stat_now].freed_external = (unsigned int)(tmp - last.vm_pageout_freed_external);
1614 last.vm_pageout_freed_external = tmp;
1615
1616 tmp = vm_pageout_vminfo.vm_pageout_inactive_referenced;
1617 vm_pageout_stats[vm_pageout_stat_now].inactive_referenced = (unsigned int)(tmp - last.vm_pageout_inactive_referenced);
1618 last.vm_pageout_inactive_referenced = tmp;
1619
1620 tmp = vm_pageout_vminfo.vm_pageout_scan_inactive_throttled_external;
1621 vm_pageout_stats[vm_pageout_stat_now].throttled_external_q = (unsigned int)(tmp - last.vm_pageout_scan_inactive_throttled_external);
1622 last.vm_pageout_scan_inactive_throttled_external = tmp;
1623
1624 tmp = vm_pageout_vminfo.vm_pageout_inactive_dirty_external;
1625 vm_pageout_stats[vm_pageout_stat_now].cleaned_dirty_external = (unsigned int)(tmp - last.vm_pageout_inactive_dirty_external);
1626 last.vm_pageout_inactive_dirty_external = tmp;
1627
1628 tmp = vm_pageout_vminfo.vm_pageout_freed_cleaned;
1629 vm_pageout_stats[vm_pageout_stat_now].freed_cleaned = (unsigned int)(tmp - last.vm_pageout_freed_cleaned);
1630 last.vm_pageout_freed_cleaned = tmp;
1631
1632 tmp = vm_pageout_vminfo.vm_pageout_inactive_nolock;
1633 vm_pageout_stats[vm_pageout_stat_now].inactive_nolock = (unsigned int)(tmp - last.vm_pageout_inactive_nolock);
1634 last.vm_pageout_inactive_nolock = tmp;
1635
1636 tmp = vm_pageout_vminfo.vm_pageout_scan_inactive_throttled_internal;
1637 vm_pageout_stats[vm_pageout_stat_now].throttled_internal_q = (unsigned int)(tmp - last.vm_pageout_scan_inactive_throttled_internal);
1638 last.vm_pageout_scan_inactive_throttled_internal = tmp;
1639
1640 tmp = vm_pageout_vminfo.vm_pageout_skipped_external;
1641 vm_pageout_stats[vm_pageout_stat_now].skipped_external = (unsigned int)(tmp - last.vm_pageout_skipped_external);
1642 last.vm_pageout_skipped_external = tmp;
1643
1644 tmp = vm_pageout_vminfo.vm_pageout_reactivation_limit_exceeded;
1645 vm_pageout_stats[vm_pageout_stat_now].reactivation_limit_exceeded = (unsigned int)(tmp - last.vm_pageout_reactivation_limit_exceeded);
1646 last.vm_pageout_reactivation_limit_exceeded = tmp;
1647
1648 tmp = vm_pageout_vminfo.vm_pageout_inactive_force_reclaim;
1649 vm_pageout_stats[vm_pageout_stat_now].forced_inactive_reclaim = (unsigned int)(tmp - last.vm_pageout_inactive_force_reclaim);
1650 last.vm_pageout_inactive_force_reclaim = tmp;
1651
1652 tmp = vm_pageout_vminfo.vm_pageout_freed_internal;
1653 vm_pageout_stats[vm_pageout_stat_now].freed_internal = (unsigned int)(tmp - last.vm_pageout_freed_internal);
1654 last.vm_pageout_freed_internal = tmp;
1655
1656 tmp = vm_pageout_vminfo.vm_pageout_considered_bq_internal;
1657 vm_pageout_stats[vm_pageout_stat_now].considered_bq_internal = (unsigned int)(tmp - last.vm_pageout_considered_bq_internal);
1658 last.vm_pageout_considered_bq_internal = tmp;
1659
1660 tmp = vm_pageout_vminfo.vm_pageout_considered_bq_external;
1661 vm_pageout_stats[vm_pageout_stat_now].considered_bq_external = (unsigned int)(tmp - last.vm_pageout_considered_bq_external);
1662 last.vm_pageout_considered_bq_external = tmp;
1663
1664 tmp = vm_pageout_vminfo.vm_pageout_filecache_min_reactivated;
1665 vm_pageout_stats[vm_pageout_stat_now].filecache_min_reactivations = (unsigned int)(tmp - last.vm_pageout_filecache_min_reactivated);
1666 last.vm_pageout_filecache_min_reactivated = tmp;
1667
1668 tmp = vm_pageout_vminfo.vm_pageout_inactive_dirty_internal;
1669 vm_pageout_stats[vm_pageout_stat_now].cleaned_dirty_internal = (unsigned int)(tmp - last.vm_pageout_inactive_dirty_internal);
1670 last.vm_pageout_inactive_dirty_internal = tmp;
1671 }
1672
1673 KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, VM_INFO1)) | DBG_FUNC_NONE,
1674 vm_pageout_stats[vm_pageout_stat_now].vm_page_active_count,
1675 vm_pageout_stats[vm_pageout_stat_now].vm_page_speculative_count,
1676 vm_pageout_stats[vm_pageout_stat_now].vm_page_inactive_count,
1677 vm_pageout_stats[vm_pageout_stat_now].vm_page_anonymous_count,
1678 0);
1679
1680 KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, VM_INFO2)) | DBG_FUNC_NONE,
1681 vm_pageout_stats[vm_pageout_stat_now].vm_page_free_count,
1682 vm_pageout_stats[vm_pageout_stat_now].vm_page_wire_count,
1683 vm_pageout_stats[vm_pageout_stat_now].vm_page_compressor_count,
1684 0,
1685 0);
1686
1687 KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, VM_INFO3)) | DBG_FUNC_NONE,
1688 vm_pageout_stats[vm_pageout_stat_now].vm_page_pages_compressed,
1689 vm_pageout_stats[vm_pageout_stat_now].vm_page_pageable_internal_count,
1690 vm_pageout_stats[vm_pageout_stat_now].vm_page_pageable_external_count,
1691 vm_pageout_stats[vm_pageout_stat_now].vm_page_xpmapped_external_count,
1692 0);
1693
1694 if (vm_pageout_stats[vm_pageout_stat_now].considered ||
1695 vm_pageout_stats[vm_pageout_stat_now].pages_compressed ||
1696 vm_pageout_stats[vm_pageout_stat_now].failed_compressions) {
1697 KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, VM_INFO4)) | DBG_FUNC_NONE,
1698 vm_pageout_stats[vm_pageout_stat_now].considered,
1699 vm_pageout_stats[vm_pageout_stat_now].freed_speculative,
1700 vm_pageout_stats[vm_pageout_stat_now].freed_external,
1701 vm_pageout_stats[vm_pageout_stat_now].inactive_referenced,
1702 0);
1703
1704 KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, VM_INFO5)) | DBG_FUNC_NONE,
1705 vm_pageout_stats[vm_pageout_stat_now].throttled_external_q,
1706 vm_pageout_stats[vm_pageout_stat_now].cleaned_dirty_external,
1707 vm_pageout_stats[vm_pageout_stat_now].freed_cleaned,
1708 vm_pageout_stats[vm_pageout_stat_now].inactive_nolock,
1709 0);
1710
1711 KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, VM_INFO6)) | DBG_FUNC_NONE,
1712 vm_pageout_stats[vm_pageout_stat_now].throttled_internal_q,
1713 vm_pageout_stats[vm_pageout_stat_now].pages_compressed,
1714 vm_pageout_stats[vm_pageout_stat_now].pages_grabbed_by_compressor,
1715 vm_pageout_stats[vm_pageout_stat_now].skipped_external,
1716 0);
1717
1718 KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, VM_INFO7)) | DBG_FUNC_NONE,
1719 vm_pageout_stats[vm_pageout_stat_now].reactivation_limit_exceeded,
1720 vm_pageout_stats[vm_pageout_stat_now].forced_inactive_reclaim,
1721 vm_pageout_stats[vm_pageout_stat_now].failed_compressions,
1722 vm_pageout_stats[vm_pageout_stat_now].freed_internal,
1723 0);
1724
1725 KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, VM_INFO8)) | DBG_FUNC_NONE,
1726 vm_pageout_stats[vm_pageout_stat_now].considered_bq_internal,
1727 vm_pageout_stats[vm_pageout_stat_now].considered_bq_external,
1728 vm_pageout_stats[vm_pageout_stat_now].filecache_min_reactivations,
1729 vm_pageout_stats[vm_pageout_stat_now].cleaned_dirty_internal,
1730 0);
1731 }
1732 KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, VM_INFO9)) | DBG_FUNC_NONE,
1733 vm_pageout_stats[vm_pageout_stat_now].pages_grabbed,
1734 vm_pageout_stats[vm_pageout_stat_now].pages_freed,
1735 vm_pageout_stats[vm_pageout_stat_now].phantom_ghosts_found,
1736 vm_pageout_stats[vm_pageout_stat_now].phantom_ghosts_added,
1737 0);
1738
1739 record_memory_pressure();
1740 }
1741
1742 extern boolean_t hibernation_vmqueues_inspection;
1743
1744 /*
1745 * Return values for functions called by vm_pageout_scan
1746 * that control its flow.
1747 *
1748 * PROCEED -- vm_pageout_scan will keep making forward progress.
1749 * DONE_RETURN -- page demand satisfied, work is done -> vm_pageout_scan returns.
1750 * NEXT_ITERATION -- restart the 'for' loop in vm_pageout_scan aka continue.
1751 */
1752
1753 #define VM_PAGEOUT_SCAN_PROCEED (0)
1754 #define VM_PAGEOUT_SCAN_DONE_RETURN (1)
1755 #define VM_PAGEOUT_SCAN_NEXT_ITERATION (2)
1756
1757 /*
1758 * This function is called only from vm_pageout_scan and
1759 * it moves overflow secluded pages (one-at-a-time) to the
1760 * batched 'local' free Q or active Q.
1761 */
1762 static void
1763 vps_deal_with_secluded_page_overflow(vm_page_t *local_freeq, int *local_freed)
1764 {
1765 #if CONFIG_SECLUDED_MEMORY
1766 /*
1767 * Deal with secluded_q overflow.
1768 */
1769 if (vm_page_secluded_count > vm_page_secluded_target) {
1770 vm_page_t secluded_page;
1771
1772 /*
1773 * SECLUDED_AGING_BEFORE_ACTIVE:
1774 * Excess secluded pages go to the active queue and
1775 * will later go to the inactive queue.
1776 */
1777 assert((vm_page_secluded_count_free +
1778 vm_page_secluded_count_inuse) ==
1779 vm_page_secluded_count);
1780 secluded_page = (vm_page_t)vm_page_queue_first(&vm_page_queue_secluded);
1781 assert(secluded_page->vmp_q_state == VM_PAGE_ON_SECLUDED_Q);
1782
1783 vm_page_queues_remove(secluded_page, FALSE);
1784 assert(!secluded_page->vmp_fictitious);
1785 assert(!VM_PAGE_WIRED(secluded_page));
1786
1787 if (secluded_page->vmp_object == 0) {
1788 /* transfer to free queue */
1789 assert(secluded_page->vmp_busy);
1790 secluded_page->vmp_snext = *local_freeq;
1791 *local_freeq = secluded_page;
1792 *local_freed += 1;
1793 } else {
1794 /* transfer to head of active queue */
1795 vm_page_enqueue_active(secluded_page, FALSE);
1796 secluded_page = VM_PAGE_NULL;
1797 }
1798 }
1799 #else /* CONFIG_SECLUDED_MEMORY */
1800
1801 #pragma unused(local_freeq)
1802 #pragma unused(local_freed)
1803
1804 return;
1805
1806 #endif /* CONFIG_SECLUDED_MEMORY */
1807 }
1808
1809 /*
1810 * This function is called only from vm_pageout_scan and
1811 * it initializes the loop targets for vm_pageout_scan().
1812 */
1813 static void
1814 vps_init_page_targets(void)
1815 {
1816 /*
1817 * LD TODO: Other page targets should be calculated here too.
1818 */
1819 vm_page_anonymous_min = vm_page_inactive_target / 20;
1820
1821 if (vm_pageout_state.vm_page_speculative_percentage > 50) {
1822 vm_pageout_state.vm_page_speculative_percentage = 50;
1823 } else if (vm_pageout_state.vm_page_speculative_percentage <= 0) {
1824 vm_pageout_state.vm_page_speculative_percentage = 1;
1825 }
1826
1827 vm_pageout_state.vm_page_speculative_target = VM_PAGE_SPECULATIVE_TARGET(vm_page_active_count +
1828 vm_page_inactive_count);
1829 }
1830
1831 /*
1832 * This function is called only from vm_pageout_scan and
1833 * it purges a single VM object at-a-time and will either
1834 * make vm_pageout_scan() restart the loop or keeping moving forward.
1835 */
1836 static int
1837 vps_purge_object()
1838 {
1839 int force_purge;
1840
1841 assert(available_for_purge >= 0);
1842 force_purge = 0; /* no force-purging */
1843
1844 #if VM_PRESSURE_EVENTS
1845 vm_pressure_level_t pressure_level;
1846
1847 pressure_level = memorystatus_vm_pressure_level;
1848
1849 if (pressure_level > kVMPressureNormal) {
1850 if (pressure_level >= kVMPressureCritical) {
1851 force_purge = vm_pageout_state.memorystatus_purge_on_critical;
1852 } else if (pressure_level >= kVMPressureUrgent) {
1853 force_purge = vm_pageout_state.memorystatus_purge_on_urgent;
1854 } else if (pressure_level >= kVMPressureWarning) {
1855 force_purge = vm_pageout_state.memorystatus_purge_on_warning;
1856 }
1857 }
1858 #endif /* VM_PRESSURE_EVENTS */
1859
1860 if (available_for_purge || force_purge) {
1861 memoryshot(VM_PAGEOUT_PURGEONE, DBG_FUNC_START);
1862
1863 VM_DEBUG_EVENT(vm_pageout_purgeone, VM_PAGEOUT_PURGEONE, DBG_FUNC_START, vm_page_free_count, 0, 0, 0);
1864 if (vm_purgeable_object_purge_one(force_purge, C_DONT_BLOCK)) {
1865 VM_PAGEOUT_DEBUG(vm_pageout_purged_objects, 1);
1866 VM_DEBUG_EVENT(vm_pageout_purgeone, VM_PAGEOUT_PURGEONE, DBG_FUNC_END, vm_page_free_count, 0, 0, 0);
1867 memoryshot(VM_PAGEOUT_PURGEONE, DBG_FUNC_END);
1868
1869 return VM_PAGEOUT_SCAN_NEXT_ITERATION;
1870 }
1871 VM_DEBUG_EVENT(vm_pageout_purgeone, VM_PAGEOUT_PURGEONE, DBG_FUNC_END, 0, 0, 0, -1);
1872 memoryshot(VM_PAGEOUT_PURGEONE, DBG_FUNC_END);
1873 }
1874
1875 return VM_PAGEOUT_SCAN_PROCEED;
1876 }
1877
1878 /*
1879 * This function is called only from vm_pageout_scan and
1880 * it will try to age the next speculative Q if the oldest
1881 * one is empty.
1882 */
1883 static int
1884 vps_age_speculative_queue(boolean_t force_speculative_aging)
1885 {
1886 #define DELAY_SPECULATIVE_AGE 1000
1887
1888 /*
1889 * try to pull pages from the aging bins...
1890 * see vm_page.h for an explanation of how
1891 * this mechanism works
1892 */
1893 boolean_t can_steal = FALSE;
1894 int num_scanned_queues;
1895 static int delay_speculative_age = 0; /* depends the # of times we go through the main pageout_scan loop.*/
1896 mach_timespec_t ts;
1897 struct vm_speculative_age_q *aq;
1898 struct vm_speculative_age_q *sq;
1899
1900 sq = &vm_page_queue_speculative[VM_PAGE_SPECULATIVE_AGED_Q];
1901
1902 aq = &vm_page_queue_speculative[speculative_steal_index];
1903
1904 num_scanned_queues = 0;
1905 while (vm_page_queue_empty(&aq->age_q) &&
1906 num_scanned_queues++ != VM_PAGE_MAX_SPECULATIVE_AGE_Q) {
1907 speculative_steal_index++;
1908
1909 if (speculative_steal_index > VM_PAGE_MAX_SPECULATIVE_AGE_Q) {
1910 speculative_steal_index = VM_PAGE_MIN_SPECULATIVE_AGE_Q;
1911 }
1912
1913 aq = &vm_page_queue_speculative[speculative_steal_index];
1914 }
1915
1916 if (num_scanned_queues == VM_PAGE_MAX_SPECULATIVE_AGE_Q + 1) {
1917 /*
1918 * XXX We've scanned all the speculative
1919 * queues but still haven't found one
1920 * that is not empty, even though
1921 * vm_page_speculative_count is not 0.
1922 */
1923 if (!vm_page_queue_empty(&sq->age_q)) {
1924 return VM_PAGEOUT_SCAN_NEXT_ITERATION;
1925 }
1926 #if DEVELOPMENT || DEBUG
1927 panic("vm_pageout_scan: vm_page_speculative_count=%d but queues are empty", vm_page_speculative_count);
1928 #endif
1929 /* readjust... */
1930 vm_page_speculative_count = 0;
1931 /* ... and continue */
1932 return VM_PAGEOUT_SCAN_NEXT_ITERATION;
1933 }
1934
1935 if (vm_page_speculative_count > vm_pageout_state.vm_page_speculative_target || force_speculative_aging == TRUE) {
1936 can_steal = TRUE;
1937 } else {
1938 if (!delay_speculative_age) {
1939 mach_timespec_t ts_fully_aged;
1940
1941 ts_fully_aged.tv_sec = (VM_PAGE_MAX_SPECULATIVE_AGE_Q * vm_pageout_state.vm_page_speculative_q_age_ms) / 1000;
1942 ts_fully_aged.tv_nsec = ((VM_PAGE_MAX_SPECULATIVE_AGE_Q * vm_pageout_state.vm_page_speculative_q_age_ms) % 1000)
1943 * 1000 * NSEC_PER_USEC;
1944
1945 ADD_MACH_TIMESPEC(&ts_fully_aged, &aq->age_ts);
1946
1947 clock_sec_t sec;
1948 clock_nsec_t nsec;
1949 clock_get_system_nanotime(&sec, &nsec);
1950 ts.tv_sec = (unsigned int) sec;
1951 ts.tv_nsec = nsec;
1952
1953 if (CMP_MACH_TIMESPEC(&ts, &ts_fully_aged) >= 0) {
1954 can_steal = TRUE;
1955 } else {
1956 delay_speculative_age++;
1957 }
1958 } else {
1959 delay_speculative_age++;
1960 if (delay_speculative_age == DELAY_SPECULATIVE_AGE) {
1961 delay_speculative_age = 0;
1962 }
1963 }
1964 }
1965 if (can_steal == TRUE) {
1966 vm_page_speculate_ageit(aq);
1967 }
1968
1969 return VM_PAGEOUT_SCAN_PROCEED;
1970 }
1971
1972 /*
1973 * This function is called only from vm_pageout_scan and
1974 * it evicts a single VM object from the cache.
1975 */
1976 static int inline
1977 vps_object_cache_evict(vm_object_t *object_to_unlock)
1978 {
1979 static int cache_evict_throttle = 0;
1980 struct vm_speculative_age_q *sq;
1981
1982 sq = &vm_page_queue_speculative[VM_PAGE_SPECULATIVE_AGED_Q];
1983
1984 if (vm_page_queue_empty(&sq->age_q) && cache_evict_throttle == 0) {
1985 int pages_evicted;
1986
1987 if (*object_to_unlock != NULL) {
1988 vm_object_unlock(*object_to_unlock);
1989 *object_to_unlock = NULL;
1990 }
1991 KERNEL_DEBUG_CONSTANT(0x13001ec | DBG_FUNC_START, 0, 0, 0, 0, 0);
1992
1993 pages_evicted = vm_object_cache_evict(100, 10);
1994
1995 KERNEL_DEBUG_CONSTANT(0x13001ec | DBG_FUNC_END, pages_evicted, 0, 0, 0, 0);
1996
1997 if (pages_evicted) {
1998 vm_pageout_vminfo.vm_pageout_pages_evicted += pages_evicted;
1999
2000 VM_DEBUG_EVENT(vm_pageout_cache_evict, VM_PAGEOUT_CACHE_EVICT, DBG_FUNC_NONE,
2001 vm_page_free_count, pages_evicted, vm_pageout_vminfo.vm_pageout_pages_evicted, 0);
2002 memoryshot(VM_PAGEOUT_CACHE_EVICT, DBG_FUNC_NONE);
2003
2004 /*
2005 * we just freed up to 100 pages,
2006 * so go back to the top of the main loop
2007 * and re-evaulate the memory situation
2008 */
2009 return VM_PAGEOUT_SCAN_NEXT_ITERATION;
2010 } else {
2011 cache_evict_throttle = 1000;
2012 }
2013 }
2014 if (cache_evict_throttle) {
2015 cache_evict_throttle--;
2016 }
2017
2018 return VM_PAGEOUT_SCAN_PROCEED;
2019 }
2020
2021
2022 /*
2023 * This function is called only from vm_pageout_scan and
2024 * it calculates the filecache min. that needs to be maintained
2025 * as we start to steal pages.
2026 */
2027 static void
2028 vps_calculate_filecache_min(void)
2029 {
2030 int divisor = vm_pageout_state.vm_page_filecache_min_divisor;
2031
2032 #if CONFIG_JETSAM
2033 /*
2034 * don't let the filecache_min fall below 15% of available memory
2035 * on systems with an active compressor that isn't nearing its
2036 * limits w/r to accepting new data
2037 *
2038 * on systems w/o the compressor/swapper, the filecache is always
2039 * a very large percentage of the AVAILABLE_NON_COMPRESSED_MEMORY
2040 * since most (if not all) of the anonymous pages are in the
2041 * throttled queue (which isn't counted as available) which
2042 * effectively disables this filter
2043 */
2044 if (vm_compressor_low_on_space() || divisor == 0) {
2045 vm_pageout_state.vm_page_filecache_min = 0;
2046 } else {
2047 vm_pageout_state.vm_page_filecache_min =
2048 ((AVAILABLE_NON_COMPRESSED_MEMORY) * 10) / divisor;
2049 }
2050 #else
2051 if (vm_compressor_out_of_space() || divisor == 0) {
2052 vm_pageout_state.vm_page_filecache_min = 0;
2053 } else {
2054 /*
2055 * don't let the filecache_min fall below the specified critical level
2056 */
2057 vm_pageout_state.vm_page_filecache_min =
2058 ((AVAILABLE_NON_COMPRESSED_MEMORY) * 10) / divisor;
2059 }
2060 #endif
2061 if (vm_page_free_count < (vm_page_free_reserved / 4)) {
2062 vm_pageout_state.vm_page_filecache_min = 0;
2063 }
2064 }
2065
2066 /*
2067 * This function is called only from vm_pageout_scan and
2068 * it updates the flow control time to detect if VM pageoutscan
2069 * isn't making progress.
2070 */
2071 static void
2072 vps_flow_control_reset_deadlock_timer(struct flow_control *flow_control)
2073 {
2074 mach_timespec_t ts;
2075 clock_sec_t sec;
2076 clock_nsec_t nsec;
2077
2078 ts.tv_sec = vm_pageout_state.vm_pageout_deadlock_wait / 1000;
2079 ts.tv_nsec = (vm_pageout_state.vm_pageout_deadlock_wait % 1000) * 1000 * NSEC_PER_USEC;
2080 clock_get_system_nanotime(&sec, &nsec);
2081 flow_control->ts.tv_sec = (unsigned int) sec;
2082 flow_control->ts.tv_nsec = nsec;
2083 ADD_MACH_TIMESPEC(&flow_control->ts, &ts);
2084
2085 flow_control->state = FCS_DELAYED;
2086
2087 vm_pageout_vminfo.vm_pageout_scan_inactive_throttled_internal++;
2088 }
2089
2090 /*
2091 * This function is called only from vm_pageout_scan and
2092 * it is the flow control logic of VM pageout scan which
2093 * controls if it should block and for how long.
2094 * Any blocking of vm_pageout_scan happens ONLY in this function.
2095 */
2096 static int
2097 vps_flow_control(struct flow_control *flow_control, int *anons_grabbed, vm_object_t *object, int *delayed_unlock,
2098 vm_page_t *local_freeq, int *local_freed, int *vm_pageout_deadlock_target, unsigned int inactive_burst_count)
2099 {
2100 boolean_t exceeded_burst_throttle = FALSE;
2101 unsigned int msecs = 0;
2102 uint32_t inactive_external_count;
2103 mach_timespec_t ts;
2104 struct vm_pageout_queue *iq;
2105 struct vm_pageout_queue *eq;
2106 struct vm_speculative_age_q *sq;
2107
2108 iq = &vm_pageout_queue_internal;
2109 eq = &vm_pageout_queue_external;
2110 sq = &vm_page_queue_speculative[VM_PAGE_SPECULATIVE_AGED_Q];
2111
2112 /*
2113 * Sometimes we have to pause:
2114 * 1) No inactive pages - nothing to do.
2115 * 2) Loop control - no acceptable pages found on the inactive queue
2116 * within the last vm_pageout_burst_inactive_throttle iterations
2117 * 3) Flow control - default pageout queue is full
2118 */
2119 if (vm_page_queue_empty(&vm_page_queue_inactive) &&
2120 vm_page_queue_empty(&vm_page_queue_anonymous) &&
2121 vm_page_queue_empty(&vm_page_queue_cleaned) &&
2122 vm_page_queue_empty(&sq->age_q)) {
2123 VM_PAGEOUT_DEBUG(vm_pageout_scan_empty_throttle, 1);
2124 msecs = vm_pageout_state.vm_pageout_empty_wait;
2125 } else if (inactive_burst_count >=
2126 MIN(vm_pageout_state.vm_pageout_burst_inactive_throttle,
2127 (vm_page_inactive_count +
2128 vm_page_speculative_count))) {
2129 VM_PAGEOUT_DEBUG(vm_pageout_scan_burst_throttle, 1);
2130 msecs = vm_pageout_state.vm_pageout_burst_wait;
2131
2132 exceeded_burst_throttle = TRUE;
2133 } else if (VM_PAGE_Q_THROTTLED(iq) &&
2134 VM_DYNAMIC_PAGING_ENABLED()) {
2135 clock_sec_t sec;
2136 clock_nsec_t nsec;
2137
2138 switch (flow_control->state) {
2139 case FCS_IDLE:
2140 if ((vm_page_free_count + *local_freed) < vm_page_free_target &&
2141 vm_pageout_state.vm_restricted_to_single_processor == FALSE) {
2142 /*
2143 * since the compressor is running independently of vm_pageout_scan
2144 * let's not wait for it just yet... as long as we have a healthy supply
2145 * of filecache pages to work with, let's keep stealing those.
2146 */
2147 inactive_external_count = vm_page_inactive_count - vm_page_anonymous_count;
2148
2149 if (vm_page_pageable_external_count > vm_pageout_state.vm_page_filecache_min &&
2150 (inactive_external_count >= VM_PAGE_INACTIVE_TARGET(vm_page_pageable_external_count))) {
2151 *anons_grabbed = ANONS_GRABBED_LIMIT;
2152 VM_PAGEOUT_DEBUG(vm_pageout_scan_throttle_deferred, 1);
2153 return VM_PAGEOUT_SCAN_PROCEED;
2154 }
2155 }
2156
2157 vps_flow_control_reset_deadlock_timer(flow_control);
2158 msecs = vm_pageout_state.vm_pageout_deadlock_wait;
2159
2160 break;
2161
2162 case FCS_DELAYED:
2163 clock_get_system_nanotime(&sec, &nsec);
2164 ts.tv_sec = (unsigned int) sec;
2165 ts.tv_nsec = nsec;
2166
2167 if (CMP_MACH_TIMESPEC(&ts, &flow_control->ts) >= 0) {
2168 /*
2169 * the pageout thread for the default pager is potentially
2170 * deadlocked since the
2171 * default pager queue has been throttled for more than the
2172 * allowable time... we need to move some clean pages or dirty
2173 * pages belonging to the external pagers if they aren't throttled
2174 * vm_page_free_wanted represents the number of threads currently
2175 * blocked waiting for pages... we'll move one page for each of
2176 * these plus a fixed amount to break the logjam... once we're done
2177 * moving this number of pages, we'll re-enter the FSC_DELAYED state
2178 * with a new timeout target since we have no way of knowing
2179 * whether we've broken the deadlock except through observation
2180 * of the queue associated with the default pager... we need to
2181 * stop moving pages and allow the system to run to see what
2182 * state it settles into.
2183 */
2184
2185 *vm_pageout_deadlock_target = vm_pageout_state.vm_pageout_deadlock_relief +
2186 vm_page_free_wanted + vm_page_free_wanted_privileged;
2187 VM_PAGEOUT_DEBUG(vm_pageout_scan_deadlock_detected, 1);
2188 flow_control->state = FCS_DEADLOCK_DETECTED;
2189 thread_wakeup((event_t) &vm_pageout_garbage_collect);
2190 return VM_PAGEOUT_SCAN_PROCEED;
2191 }
2192 /*
2193 * just resniff instead of trying
2194 * to compute a new delay time... we're going to be
2195 * awakened immediately upon a laundry completion,
2196 * so we won't wait any longer than necessary
2197 */
2198 msecs = vm_pageout_state.vm_pageout_idle_wait;
2199 break;
2200
2201 case FCS_DEADLOCK_DETECTED:
2202 if (*vm_pageout_deadlock_target) {
2203 return VM_PAGEOUT_SCAN_PROCEED;
2204 }
2205
2206 vps_flow_control_reset_deadlock_timer(flow_control);
2207 msecs = vm_pageout_state.vm_pageout_deadlock_wait;
2208
2209 break;
2210 }
2211 } else {
2212 /*
2213 * No need to pause...
2214 */
2215 return VM_PAGEOUT_SCAN_PROCEED;
2216 }
2217
2218 vm_pageout_scan_wants_object = VM_OBJECT_NULL;
2219
2220 vm_pageout_prepare_to_block(object, delayed_unlock, local_freeq, local_freed,
2221 VM_PAGEOUT_PB_CONSIDER_WAKING_COMPACTOR_SWAPPER);
2222
2223 if (vm_page_free_count >= vm_page_free_target) {
2224 /*
2225 * we're here because
2226 * 1) someone else freed up some pages while we had
2227 * the queues unlocked above
2228 * and we've hit one of the 3 conditions that
2229 * cause us to pause the pageout scan thread
2230 *
2231 * since we already have enough free pages,
2232 * let's avoid stalling and return normally
2233 *
2234 * before we return, make sure the pageout I/O threads
2235 * are running throttled in case there are still requests
2236 * in the laundry... since we have enough free pages
2237 * we don't need the laundry to be cleaned in a timely
2238 * fashion... so let's avoid interfering with foreground
2239 * activity
2240 *
2241 * we don't want to hold vm_page_queue_free_lock when
2242 * calling vm_pageout_adjust_eq_iothrottle (since it
2243 * may cause other locks to be taken), we do the intitial
2244 * check outside of the lock. Once we take the lock,
2245 * we recheck the condition since it may have changed.
2246 * if it has, no problem, we will make the threads
2247 * non-throttled before actually blocking
2248 */
2249 vm_pageout_adjust_eq_iothrottle(eq, TRUE);
2250 }
2251 lck_mtx_lock(&vm_page_queue_free_lock);
2252
2253 if (vm_page_free_count >= vm_page_free_target &&
2254 (vm_page_free_wanted == 0) && (vm_page_free_wanted_privileged == 0)) {
2255 return VM_PAGEOUT_SCAN_DONE_RETURN;
2256 }
2257 lck_mtx_unlock(&vm_page_queue_free_lock);
2258
2259 if ((vm_page_free_count + vm_page_cleaned_count) < vm_page_free_target) {
2260 /*
2261 * we're most likely about to block due to one of
2262 * the 3 conditions that cause vm_pageout_scan to
2263 * not be able to make forward progress w/r
2264 * to providing new pages to the free queue,
2265 * so unthrottle the I/O threads in case we
2266 * have laundry to be cleaned... it needs
2267 * to be completed ASAP.
2268 *
2269 * even if we don't block, we want the io threads
2270 * running unthrottled since the sum of free +
2271 * clean pages is still under our free target
2272 */
2273 vm_pageout_adjust_eq_iothrottle(eq, FALSE);
2274 }
2275 if (vm_page_cleaned_count > 0 && exceeded_burst_throttle == FALSE) {
2276 /*
2277 * if we get here we're below our free target and
2278 * we're stalling due to a full laundry queue or
2279 * we don't have any inactive pages other then
2280 * those in the clean queue...
2281 * however, we have pages on the clean queue that
2282 * can be moved to the free queue, so let's not
2283 * stall the pageout scan
2284 */
2285 flow_control->state = FCS_IDLE;
2286 return VM_PAGEOUT_SCAN_PROCEED;
2287 }
2288 if (flow_control->state == FCS_DELAYED && !VM_PAGE_Q_THROTTLED(iq)) {
2289 flow_control->state = FCS_IDLE;
2290 return VM_PAGEOUT_SCAN_PROCEED;
2291 }
2292
2293 VM_CHECK_MEMORYSTATUS;
2294
2295 if (flow_control->state != FCS_IDLE) {
2296 VM_PAGEOUT_DEBUG(vm_pageout_scan_throttle, 1);
2297 }
2298
2299 iq->pgo_throttled = TRUE;
2300 assert_wait_timeout((event_t) &iq->pgo_laundry, THREAD_INTERRUPTIBLE, msecs, 1000 * NSEC_PER_USEC);
2301
2302 counter(c_vm_pageout_scan_block++);
2303
2304 vm_page_unlock_queues();
2305
2306 assert(vm_pageout_scan_wants_object == VM_OBJECT_NULL);
2307
2308 VM_DEBUG_EVENT(vm_pageout_thread_block, VM_PAGEOUT_THREAD_BLOCK, DBG_FUNC_START,
2309 iq->pgo_laundry, iq->pgo_maxlaundry, msecs, 0);
2310 memoryshot(VM_PAGEOUT_THREAD_BLOCK, DBG_FUNC_START);
2311
2312 thread_block(THREAD_CONTINUE_NULL);
2313
2314 VM_DEBUG_EVENT(vm_pageout_thread_block, VM_PAGEOUT_THREAD_BLOCK, DBG_FUNC_END,
2315 iq->pgo_laundry, iq->pgo_maxlaundry, msecs, 0);
2316 memoryshot(VM_PAGEOUT_THREAD_BLOCK, DBG_FUNC_END);
2317
2318 vm_page_lock_queues();
2319
2320 iq->pgo_throttled = FALSE;
2321
2322 vps_init_page_targets();
2323
2324 return VM_PAGEOUT_SCAN_NEXT_ITERATION;
2325 }
2326
2327 /*
2328 * This function is called only from vm_pageout_scan and
2329 * it will find and return the most appropriate page to be
2330 * reclaimed.
2331 */
2332 static int
2333 vps_choose_victim_page(vm_page_t *victim_page, int *anons_grabbed, boolean_t *grab_anonymous, boolean_t force_anonymous,
2334 boolean_t *is_page_from_bg_q, unsigned int *reactivated_this_call)
2335 {
2336 vm_page_t m = NULL;
2337 vm_object_t m_object = VM_OBJECT_NULL;
2338 uint32_t inactive_external_count;
2339 struct vm_speculative_age_q *sq;
2340 struct vm_pageout_queue *iq;
2341 int retval = VM_PAGEOUT_SCAN_PROCEED;
2342
2343 sq = &vm_page_queue_speculative[VM_PAGE_SPECULATIVE_AGED_Q];
2344 iq = &vm_pageout_queue_internal;
2345
2346 *is_page_from_bg_q = FALSE;
2347
2348 m = NULL;
2349 m_object = VM_OBJECT_NULL;
2350
2351 if (VM_DYNAMIC_PAGING_ENABLED()) {
2352 assert(vm_page_throttled_count == 0);
2353 assert(vm_page_queue_empty(&vm_page_queue_throttled));
2354 }
2355
2356 /*
2357 * Try for a clean-queue inactive page.
2358 * These are pages that vm_pageout_scan tried to steal earlier, but
2359 * were dirty and had to be cleaned. Pick them up now that they are clean.
2360 */
2361 if (!vm_page_queue_empty(&vm_page_queue_cleaned)) {
2362 m = (vm_page_t) vm_page_queue_first(&vm_page_queue_cleaned);
2363
2364 assert(m->vmp_q_state == VM_PAGE_ON_INACTIVE_CLEANED_Q);
2365
2366 goto found_page;
2367 }
2368
2369 /*
2370 * The next most eligible pages are ones we paged in speculatively,
2371 * but which have not yet been touched and have been aged out.
2372 */
2373 if (!vm_page_queue_empty(&sq->age_q)) {
2374 m = (vm_page_t) vm_page_queue_first(&sq->age_q);
2375
2376 assert(m->vmp_q_state == VM_PAGE_ON_SPECULATIVE_Q);
2377
2378 if (!m->vmp_dirty || force_anonymous == FALSE) {
2379 goto found_page;
2380 } else {
2381 m = NULL;
2382 }
2383 }
2384
2385 #if CONFIG_BACKGROUND_QUEUE
2386 if (vm_page_background_mode != VM_PAGE_BG_DISABLED && (vm_page_background_count > vm_page_background_target)) {
2387 vm_object_t bg_m_object = NULL;
2388
2389 m = (vm_page_t) vm_page_queue_first(&vm_page_queue_background);
2390
2391 bg_m_object = VM_PAGE_OBJECT(m);
2392
2393 if (!VM_PAGE_PAGEABLE(m)) {
2394 /*
2395 * This page is on the background queue
2396 * but not on a pageable queue. This is
2397 * likely a transient state and whoever
2398 * took it out of its pageable queue
2399 * will likely put it back on a pageable
2400 * queue soon but we can't deal with it
2401 * at this point, so let's ignore this
2402 * page.
2403 */
2404 } else if (force_anonymous == FALSE || bg_m_object->internal) {
2405 if (bg_m_object->internal &&
2406 (VM_PAGE_Q_THROTTLED(iq) ||
2407 vm_compressor_out_of_space() == TRUE ||
2408 vm_page_free_count < (vm_page_free_reserved / 4))) {
2409 vm_pageout_skipped_bq_internal++;
2410 } else {
2411 *is_page_from_bg_q = TRUE;
2412
2413 if (bg_m_object->internal) {
2414 vm_pageout_vminfo.vm_pageout_considered_bq_internal++;
2415 } else {
2416 vm_pageout_vminfo.vm_pageout_considered_bq_external++;
2417 }
2418 goto found_page;
2419 }
2420 }
2421 }
2422 #endif /* CONFIG_BACKGROUND_QUEUE */
2423
2424 inactive_external_count = vm_page_inactive_count - vm_page_anonymous_count;
2425
2426 if ((vm_page_pageable_external_count < vm_pageout_state.vm_page_filecache_min || force_anonymous == TRUE) ||
2427 (inactive_external_count < VM_PAGE_INACTIVE_TARGET(vm_page_pageable_external_count))) {
2428 *grab_anonymous = TRUE;
2429 *anons_grabbed = 0;
2430
2431 vm_pageout_vminfo.vm_pageout_skipped_external++;
2432 goto want_anonymous;
2433 }
2434 *grab_anonymous = (vm_page_anonymous_count > vm_page_anonymous_min);
2435
2436 #if CONFIG_JETSAM
2437 /* If the file-backed pool has accumulated
2438 * significantly more pages than the jetsam
2439 * threshold, prefer to reclaim those
2440 * inline to minimise compute overhead of reclaiming
2441 * anonymous pages.
2442 * This calculation does not account for the CPU local
2443 * external page queues, as those are expected to be
2444 * much smaller relative to the global pools.
2445 */
2446
2447 struct vm_pageout_queue *eq = &vm_pageout_queue_external;
2448
2449 if (*grab_anonymous == TRUE && !VM_PAGE_Q_THROTTLED(eq)) {
2450 if (vm_page_pageable_external_count >
2451 vm_pageout_state.vm_page_filecache_min) {
2452 if ((vm_page_pageable_external_count *
2453 vm_pageout_memorystatus_fb_factor_dr) >
2454 (memorystatus_available_pages_critical *
2455 vm_pageout_memorystatus_fb_factor_nr)) {
2456 *grab_anonymous = FALSE;
2457
2458 VM_PAGEOUT_DEBUG(vm_grab_anon_overrides, 1);
2459 }
2460 }
2461 if (*grab_anonymous) {
2462 VM_PAGEOUT_DEBUG(vm_grab_anon_nops, 1);
2463 }
2464 }
2465 #endif /* CONFIG_JETSAM */
2466
2467 want_anonymous:
2468 if (*grab_anonymous == FALSE || *anons_grabbed >= ANONS_GRABBED_LIMIT || vm_page_queue_empty(&vm_page_queue_anonymous)) {
2469 if (!vm_page_queue_empty(&vm_page_queue_inactive)) {
2470 m = (vm_page_t) vm_page_queue_first(&vm_page_queue_inactive);
2471
2472 assert(m->vmp_q_state == VM_PAGE_ON_INACTIVE_EXTERNAL_Q);
2473 *anons_grabbed = 0;
2474
2475 if (vm_page_pageable_external_count < vm_pageout_state.vm_page_filecache_min) {
2476 if (!vm_page_queue_empty(&vm_page_queue_anonymous)) {
2477 if ((++(*reactivated_this_call) % 100)) {
2478 vm_pageout_vminfo.vm_pageout_filecache_min_reactivated++;
2479
2480 vm_page_activate(m);
2481 VM_STAT_INCR(reactivations);
2482 #if CONFIG_BACKGROUND_QUEUE
2483 #if DEVELOPMENT || DEBUG
2484 if (*is_page_from_bg_q == TRUE) {
2485 if (m_object->internal) {
2486 vm_pageout_rejected_bq_internal++;
2487 } else {
2488 vm_pageout_rejected_bq_external++;
2489 }
2490 }
2491 #endif /* DEVELOPMENT || DEBUG */
2492 #endif /* CONFIG_BACKGROUND_QUEUE */
2493 vm_pageout_state.vm_pageout_inactive_used++;
2494
2495 m = NULL;
2496 retval = VM_PAGEOUT_SCAN_NEXT_ITERATION;
2497
2498 goto found_page;
2499 }
2500
2501 /*
2502 * steal 1 of the file backed pages even if
2503 * we are under the limit that has been set
2504 * for a healthy filecache
2505 */
2506 }
2507 }
2508 goto found_page;
2509 }
2510 }
2511 if (!vm_page_queue_empty(&vm_page_queue_anonymous)) {
2512 m = (vm_page_t) vm_page_queue_first(&vm_page_queue_anonymous);
2513
2514 assert(m->vmp_q_state == VM_PAGE_ON_INACTIVE_INTERNAL_Q);
2515 *anons_grabbed += 1;
2516
2517 goto found_page;
2518 }
2519
2520 m = NULL;
2521
2522 found_page:
2523 *victim_page = m;
2524
2525 return retval;
2526 }
2527
2528 /*
2529 * This function is called only from vm_pageout_scan and
2530 * it will put a page back on the active/inactive queue
2531 * if we can't reclaim it for some reason.
2532 */
2533 static void
2534 vps_requeue_page(vm_page_t m, int page_prev_q_state, __unused boolean_t page_from_bg_q)
2535 {
2536 if (page_prev_q_state == VM_PAGE_ON_SPECULATIVE_Q) {
2537 vm_page_enqueue_inactive(m, FALSE);
2538 } else {
2539 vm_page_activate(m);
2540 }
2541
2542 #if CONFIG_BACKGROUND_QUEUE
2543 #if DEVELOPMENT || DEBUG
2544 vm_object_t m_object = VM_PAGE_OBJECT(m);
2545
2546 if (page_from_bg_q == TRUE) {
2547 if (m_object->internal) {
2548 vm_pageout_rejected_bq_internal++;
2549 } else {
2550 vm_pageout_rejected_bq_external++;
2551 }
2552 }
2553 #endif /* DEVELOPMENT || DEBUG */
2554 #endif /* CONFIG_BACKGROUND_QUEUE */
2555 }
2556
2557 /*
2558 * This function is called only from vm_pageout_scan and
2559 * it will try to grab the victim page's VM object (m_object)
2560 * which differs from the previous victim page's object (object).
2561 */
2562 static int
2563 vps_switch_object(vm_page_t m, vm_object_t m_object, vm_object_t *object, int page_prev_q_state, boolean_t avoid_anon_pages, boolean_t page_from_bg_q)
2564 {
2565 struct vm_speculative_age_q *sq;
2566
2567 sq = &vm_page_queue_speculative[VM_PAGE_SPECULATIVE_AGED_Q];
2568
2569 /*
2570 * the object associated with candidate page is
2571 * different from the one we were just working
2572 * with... dump the lock if we still own it
2573 */
2574 if (*object != NULL) {
2575 vm_object_unlock(*object);
2576 *object = NULL;
2577 }
2578 /*
2579 * Try to lock object; since we've alread got the
2580 * page queues lock, we can only 'try' for this one.
2581 * if the 'try' fails, we need to do a mutex_pause
2582 * to allow the owner of the object lock a chance to
2583 * run... otherwise, we're likely to trip over this
2584 * object in the same state as we work our way through
2585 * the queue... clumps of pages associated with the same
2586 * object are fairly typical on the inactive and active queues
2587 */
2588 if (!vm_object_lock_try_scan(m_object)) {
2589 vm_page_t m_want = NULL;
2590
2591 vm_pageout_vminfo.vm_pageout_inactive_nolock++;
2592
2593 if (page_prev_q_state == VM_PAGE_ON_INACTIVE_CLEANED_Q) {
2594 VM_PAGEOUT_DEBUG(vm_pageout_cleaned_nolock, 1);
2595 }
2596
2597 pmap_clear_reference(VM_PAGE_GET_PHYS_PAGE(m));
2598
2599 m->vmp_reference = FALSE;
2600
2601 if (!m_object->object_is_shared_cache) {
2602 /*
2603 * don't apply this optimization if this is the shared cache
2604 * object, it's too easy to get rid of very hot and important
2605 * pages...
2606 * m->vmp_object must be stable since we hold the page queues lock...
2607 * we can update the scan_collisions field sans the object lock
2608 * since it is a separate field and this is the only spot that does
2609 * a read-modify-write operation and it is never executed concurrently...
2610 * we can asynchronously set this field to 0 when creating a UPL, so it
2611 * is possible for the value to be a bit non-determistic, but that's ok
2612 * since it's only used as a hint
2613 */
2614 m_object->scan_collisions = 1;
2615 }
2616 if (!vm_page_queue_empty(&vm_page_queue_cleaned)) {
2617 m_want = (vm_page_t) vm_page_queue_first(&vm_page_queue_cleaned);
2618 } else if (!vm_page_queue_empty(&sq->age_q)) {
2619 m_want = (vm_page_t) vm_page_queue_first(&sq->age_q);
2620 } else if ((avoid_anon_pages || vm_page_queue_empty(&vm_page_queue_anonymous)) &&
2621 !vm_page_queue_empty(&vm_page_queue_inactive)) {
2622 m_want = (vm_page_t) vm_page_queue_first(&vm_page_queue_inactive);
2623 } else if (!vm_page_queue_empty(&vm_page_queue_anonymous)) {
2624 m_want = (vm_page_t) vm_page_queue_first(&vm_page_queue_anonymous);
2625 }
2626
2627 /*
2628 * this is the next object we're going to be interested in
2629 * try to make sure its available after the mutex_pause
2630 * returns control
2631 */
2632 if (m_want) {
2633 vm_pageout_scan_wants_object = VM_PAGE_OBJECT(m_want);
2634 }
2635
2636 vps_requeue_page(m, page_prev_q_state, page_from_bg_q);
2637
2638 return VM_PAGEOUT_SCAN_NEXT_ITERATION;
2639 } else {
2640 *object = m_object;
2641 vm_pageout_scan_wants_object = VM_OBJECT_NULL;
2642 }
2643
2644 return VM_PAGEOUT_SCAN_PROCEED;
2645 }
2646
2647 /*
2648 * This function is called only from vm_pageout_scan and
2649 * it notices that pageout scan may be rendered ineffective
2650 * due to a FS deadlock and will jetsam a process if possible.
2651 * If jetsam isn't supported, it'll move the page to the active
2652 * queue to try and get some different pages pushed onwards so
2653 * we can try to get out of this scenario.
2654 */
2655 static void
2656 vps_deal_with_throttled_queues(vm_page_t m, vm_object_t *object, uint32_t *vm_pageout_inactive_external_forced_reactivate_limit,
2657 int *delayed_unlock, boolean_t *force_anonymous, __unused boolean_t is_page_from_bg_q)
2658 {
2659 struct vm_pageout_queue *eq;
2660 vm_object_t cur_object = VM_OBJECT_NULL;
2661
2662 cur_object = *object;
2663
2664 eq = &vm_pageout_queue_external;
2665
2666 if (cur_object->internal == FALSE) {
2667 /*
2668 * we need to break up the following potential deadlock case...
2669 * a) The external pageout thread is stuck on the truncate lock for a file that is being extended i.e. written.
2670 * b) The thread doing the writing is waiting for pages while holding the truncate lock
2671 * c) Most of the pages in the inactive queue belong to this file.
2672 *
2673 * we are potentially in this deadlock because...
2674 * a) the external pageout queue is throttled
2675 * b) we're done with the active queue and moved on to the inactive queue
2676 * c) we've got a dirty external page
2677 *
2678 * since we don't know the reason for the external pageout queue being throttled we
2679 * must suspect that we are deadlocked, so move the current page onto the active queue
2680 * in an effort to cause a page from the active queue to 'age' to the inactive queue
2681 *
2682 * if we don't have jetsam configured (i.e. we have a dynamic pager), set
2683 * 'force_anonymous' to TRUE to cause us to grab a page from the cleaned/anonymous
2684 * pool the next time we select a victim page... if we can make enough new free pages,
2685 * the deadlock will break, the external pageout queue will empty and it will no longer
2686 * be throttled
2687 *
2688 * if we have jetsam configured, keep a count of the pages reactivated this way so
2689 * that we can try to find clean pages in the active/inactive queues before
2690 * deciding to jetsam a process
2691 */
2692 vm_pageout_vminfo.vm_pageout_scan_inactive_throttled_external++;
2693
2694 vm_page_check_pageable_safe(m);
2695 assert(m->vmp_q_state == VM_PAGE_NOT_ON_Q);
2696 vm_page_queue_enter(&vm_page_queue_active, m, vmp_pageq);
2697 m->vmp_q_state = VM_PAGE_ON_ACTIVE_Q;
2698 vm_page_active_count++;
2699 vm_page_pageable_external_count++;
2700
2701 vm_pageout_adjust_eq_iothrottle(eq, FALSE);
2702
2703 #if CONFIG_MEMORYSTATUS && CONFIG_JETSAM
2704
2705 #pragma unused(force_anonymous)
2706
2707 *vm_pageout_inactive_external_forced_reactivate_limit -= 1;
2708
2709 if (*vm_pageout_inactive_external_forced_reactivate_limit <= 0) {
2710 *vm_pageout_inactive_external_forced_reactivate_limit = vm_page_active_count + vm_page_inactive_count;
2711 /*
2712 * Possible deadlock scenario so request jetsam action
2713 */
2714
2715 assert(cur_object);
2716 vm_object_unlock(cur_object);
2717
2718 cur_object = VM_OBJECT_NULL;
2719
2720 /*
2721 * VM pageout scan needs to know we have dropped this lock and so set the
2722 * object variable we got passed in to NULL.
2723 */
2724 *object = VM_OBJECT_NULL;
2725
2726 vm_page_unlock_queues();
2727
2728 VM_DEBUG_CONSTANT_EVENT(vm_pageout_jetsam, VM_PAGEOUT_JETSAM, DBG_FUNC_START,
2729 vm_page_active_count, vm_page_inactive_count, vm_page_free_count, vm_page_free_count);
2730
2731 /* Kill first suitable process. If this call returned FALSE, we might have simply purged a process instead. */
2732 if (memorystatus_kill_on_VM_page_shortage(FALSE) == TRUE) {
2733 VM_PAGEOUT_DEBUG(vm_pageout_inactive_external_forced_jetsam_count, 1);
2734 }
2735
2736 VM_DEBUG_CONSTANT_EVENT(vm_pageout_jetsam, VM_PAGEOUT_JETSAM, DBG_FUNC_END,
2737 vm_page_active_count, vm_page_inactive_count, vm_page_free_count, vm_page_free_count);
2738
2739 vm_page_lock_queues();
2740 *delayed_unlock = 1;
2741 }
2742 #else /* CONFIG_MEMORYSTATUS && CONFIG_JETSAM */
2743
2744 #pragma unused(vm_pageout_inactive_external_forced_reactivate_limit)
2745 #pragma unused(delayed_unlock)
2746
2747 *force_anonymous = TRUE;
2748 #endif /* CONFIG_MEMORYSTATUS && CONFIG_JETSAM */
2749 } else {
2750 vm_page_activate(m);
2751 VM_STAT_INCR(reactivations);
2752
2753 #if CONFIG_BACKGROUND_QUEUE
2754 #if DEVELOPMENT || DEBUG
2755 if (is_page_from_bg_q == TRUE) {
2756 if (cur_object->internal) {
2757 vm_pageout_rejected_bq_internal++;
2758 } else {
2759 vm_pageout_rejected_bq_external++;
2760 }
2761 }
2762 #endif /* DEVELOPMENT || DEBUG */
2763 #endif /* CONFIG_BACKGROUND_QUEUE */
2764
2765 vm_pageout_state.vm_pageout_inactive_used++;
2766 }
2767 }
2768
2769
2770 void
2771 vm_page_balance_inactive(int max_to_move)
2772 {
2773 vm_page_t m;
2774
2775 LCK_MTX_ASSERT(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED);
2776
2777 if (hibernation_vmqueues_inspection || hibernate_cleaning_in_progress) {
2778 /*
2779 * It is likely that the hibernation code path is
2780 * dealing with these very queues as we are about
2781 * to move pages around in/from them and completely
2782 * change the linkage of the pages.
2783 *
2784 * And so we skip the rebalancing of these queues.
2785 */
2786 return;
2787 }
2788 vm_page_inactive_target = VM_PAGE_INACTIVE_TARGET(vm_page_active_count +
2789 vm_page_inactive_count +
2790 vm_page_speculative_count);
2791
2792 while (max_to_move-- && (vm_page_inactive_count + vm_page_speculative_count) < vm_page_inactive_target) {
2793 VM_PAGEOUT_DEBUG(vm_pageout_balanced, 1);
2794
2795 m = (vm_page_t) vm_page_queue_first(&vm_page_queue_active);
2796
2797 assert(m->vmp_q_state == VM_PAGE_ON_ACTIVE_Q);
2798 assert(!m->vmp_laundry);
2799 assert(VM_PAGE_OBJECT(m) != kernel_object);
2800 assert(VM_PAGE_GET_PHYS_PAGE(m) != vm_page_guard_addr);
2801
2802 DTRACE_VM2(scan, int, 1, (uint64_t *), NULL);
2803
2804 /*
2805 * by not passing in a pmap_flush_context we will forgo any TLB flushing, local or otherwise...
2806 *
2807 * a TLB flush isn't really needed here since at worst we'll miss the reference bit being
2808 * updated in the PTE if a remote processor still has this mapping cached in its TLB when the
2809 * new reference happens. If no futher references happen on the page after that remote TLB flushes
2810 * we'll see a clean, non-referenced page when it eventually gets pulled out of the inactive queue
2811 * by pageout_scan, which is just fine since the last reference would have happened quite far
2812 * in the past (TLB caches don't hang around for very long), and of course could just as easily
2813 * have happened before we moved the page
2814 */
2815 if (m->vmp_pmapped == TRUE) {
2816 pmap_clear_refmod_options(VM_PAGE_GET_PHYS_PAGE(m), VM_MEM_REFERENCED, PMAP_OPTIONS_NOFLUSH, (void *)NULL);
2817 }
2818
2819 /*
2820 * The page might be absent or busy,
2821 * but vm_page_deactivate can handle that.
2822 * FALSE indicates that we don't want a H/W clear reference
2823 */
2824 vm_page_deactivate_internal(m, FALSE);
2825 }
2826 }
2827
2828
2829 /*
2830 * vm_pageout_scan does the dirty work for the pageout daemon.
2831 * It returns with both vm_page_queue_free_lock and vm_page_queue_lock
2832 * held and vm_page_free_wanted == 0.
2833 */
2834 void
2835 vm_pageout_scan(void)
2836 {
2837 unsigned int loop_count = 0;
2838 unsigned int inactive_burst_count = 0;
2839 unsigned int reactivated_this_call;
2840 unsigned int reactivate_limit;
2841 vm_page_t local_freeq = NULL;
2842 int local_freed = 0;
2843 int delayed_unlock;
2844 int delayed_unlock_limit = 0;
2845 int refmod_state = 0;
2846 int vm_pageout_deadlock_target = 0;
2847 struct vm_pageout_queue *iq;
2848 struct vm_pageout_queue *eq;
2849 struct vm_speculative_age_q *sq;
2850 struct flow_control flow_control = { .state = 0, .ts = { .tv_sec = 0, .tv_nsec = 0 } };
2851 boolean_t inactive_throttled = FALSE;
2852 vm_object_t object = NULL;
2853 uint32_t inactive_reclaim_run;
2854 boolean_t grab_anonymous = FALSE;
2855 boolean_t force_anonymous = FALSE;
2856 boolean_t force_speculative_aging = FALSE;
2857 int anons_grabbed = 0;
2858 int page_prev_q_state = 0;
2859 boolean_t page_from_bg_q = FALSE;
2860 uint32_t vm_pageout_inactive_external_forced_reactivate_limit = 0;
2861 vm_object_t m_object = VM_OBJECT_NULL;
2862 int retval = 0;
2863 boolean_t lock_yield_check = FALSE;
2864
2865
2866 VM_DEBUG_CONSTANT_EVENT(vm_pageout_scan, VM_PAGEOUT_SCAN, DBG_FUNC_START,
2867 vm_pageout_vminfo.vm_pageout_freed_speculative,
2868 vm_pageout_state.vm_pageout_inactive_clean,
2869 vm_pageout_vminfo.vm_pageout_inactive_dirty_internal,
2870 vm_pageout_vminfo.vm_pageout_inactive_dirty_external);
2871
2872 flow_control.state = FCS_IDLE;
2873 iq = &vm_pageout_queue_internal;
2874 eq = &vm_pageout_queue_external;
2875 sq = &vm_page_queue_speculative[VM_PAGE_SPECULATIVE_AGED_Q];
2876
2877 /* Ask the pmap layer to return any pages it no longer needs. */
2878 uint64_t pmap_wired_pages_freed = pmap_release_pages_fast();
2879
2880 vm_page_lock_queues();
2881
2882 vm_page_wire_count -= pmap_wired_pages_freed;
2883
2884 delayed_unlock = 1;
2885
2886 /*
2887 * Calculate the max number of referenced pages on the inactive
2888 * queue that we will reactivate.
2889 */
2890 reactivated_this_call = 0;
2891 reactivate_limit = VM_PAGE_REACTIVATE_LIMIT(vm_page_active_count +
2892 vm_page_inactive_count);
2893 inactive_reclaim_run = 0;
2894
2895 vm_pageout_inactive_external_forced_reactivate_limit = vm_page_active_count + vm_page_inactive_count;
2896
2897 /*
2898 * We must limit the rate at which we send pages to the pagers
2899 * so that we don't tie up too many pages in the I/O queues.
2900 * We implement a throttling mechanism using the laundry count
2901 * to limit the number of pages outstanding to the default
2902 * and external pagers. We can bypass the throttles and look
2903 * for clean pages if the pageout queues don't drain in a timely
2904 * fashion since this may indicate that the pageout paths are
2905 * stalled waiting for memory, which only we can provide.
2906 */
2907
2908 vps_init_page_targets();
2909 assert(object == NULL);
2910 assert(delayed_unlock != 0);
2911
2912 for (;;) {
2913 vm_page_t m;
2914
2915 DTRACE_VM2(rev, int, 1, (uint64_t *), NULL);
2916
2917 if (lock_yield_check) {
2918 lock_yield_check = FALSE;
2919
2920 if (delayed_unlock++ > delayed_unlock_limit) {
2921 int freed = local_freed;
2922
2923 vm_pageout_prepare_to_block(&object, &delayed_unlock, &local_freeq, &local_freed,
2924 VM_PAGEOUT_PB_CONSIDER_WAKING_COMPACTOR_SWAPPER);
2925 if (freed == 0) {
2926 lck_mtx_yield(&vm_page_queue_lock);
2927 }
2928 } else if (vm_pageout_scan_wants_object) {
2929 vm_page_unlock_queues();
2930 mutex_pause(0);
2931 vm_page_lock_queues();
2932 }
2933 }
2934
2935 if (vm_upl_wait_for_pages < 0) {
2936 vm_upl_wait_for_pages = 0;
2937 }
2938
2939 delayed_unlock_limit = VM_PAGEOUT_DELAYED_UNLOCK_LIMIT + vm_upl_wait_for_pages;
2940
2941 if (delayed_unlock_limit > VM_PAGEOUT_DELAYED_UNLOCK_LIMIT_MAX) {
2942 delayed_unlock_limit = VM_PAGEOUT_DELAYED_UNLOCK_LIMIT_MAX;
2943 }
2944
2945 vps_deal_with_secluded_page_overflow(&local_freeq, &local_freed);
2946
2947 assert(delayed_unlock);
2948
2949 /*
2950 * maintain our balance
2951 */
2952 vm_page_balance_inactive(1);
2953
2954
2955 /**********************************************************************
2956 * above this point we're playing with the active and secluded queues
2957 * below this point we're playing with the throttling mechanisms
2958 * and the inactive queue
2959 **********************************************************************/
2960
2961 if (vm_page_free_count + local_freed >= vm_page_free_target) {
2962 vm_pageout_scan_wants_object = VM_OBJECT_NULL;
2963
2964 vm_pageout_prepare_to_block(&object, &delayed_unlock, &local_freeq, &local_freed,
2965 VM_PAGEOUT_PB_CONSIDER_WAKING_COMPACTOR_SWAPPER);
2966 /*
2967 * make sure the pageout I/O threads are running
2968 * throttled in case there are still requests
2969 * in the laundry... since we have met our targets
2970 * we don't need the laundry to be cleaned in a timely
2971 * fashion... so let's avoid interfering with foreground
2972 * activity
2973 */
2974 vm_pageout_adjust_eq_iothrottle(eq, TRUE);
2975
2976 lck_mtx_lock(&vm_page_queue_free_lock);
2977
2978 if ((vm_page_free_count >= vm_page_free_target) &&
2979 (vm_page_free_wanted == 0) && (vm_page_free_wanted_privileged == 0)) {
2980 /*
2981 * done - we have met our target *and*
2982 * there is no one waiting for a page.
2983 */
2984 return_from_scan:
2985 assert(vm_pageout_scan_wants_object == VM_OBJECT_NULL);
2986
2987 VM_DEBUG_CONSTANT_EVENT(vm_pageout_scan, VM_PAGEOUT_SCAN, DBG_FUNC_NONE,
2988 vm_pageout_state.vm_pageout_inactive,
2989 vm_pageout_state.vm_pageout_inactive_used, 0, 0);
2990 VM_DEBUG_CONSTANT_EVENT(vm_pageout_scan, VM_PAGEOUT_SCAN, DBG_FUNC_END,
2991 vm_pageout_vminfo.vm_pageout_freed_speculative,
2992 vm_pageout_state.vm_pageout_inactive_clean,
2993 vm_pageout_vminfo.vm_pageout_inactive_dirty_internal,
2994 vm_pageout_vminfo.vm_pageout_inactive_dirty_external);
2995
2996 return;
2997 }
2998 lck_mtx_unlock(&vm_page_queue_free_lock);
2999 }
3000
3001 /*
3002 * Before anything, we check if we have any ripe volatile
3003 * objects around. If so, try to purge the first object.
3004 * If the purge fails, fall through to reclaim a page instead.
3005 * If the purge succeeds, go back to the top and reevalute
3006 * the new memory situation.
3007 */
3008 retval = vps_purge_object();
3009
3010 if (retval == VM_PAGEOUT_SCAN_NEXT_ITERATION) {
3011 /*
3012 * Success
3013 */
3014 if (object != NULL) {
3015 vm_object_unlock(object);
3016 object = NULL;
3017 }
3018
3019 lock_yield_check = FALSE;
3020 continue;
3021 }
3022
3023 /*
3024 * If our 'aged' queue is empty and we have some speculative pages
3025 * in the other queues, let's go through and see if we need to age
3026 * them.
3027 *
3028 * If we succeeded in aging a speculative Q or just that everything
3029 * looks normal w.r.t queue age and queue counts, we keep going onward.
3030 *
3031 * If, for some reason, we seem to have a mismatch between the spec.
3032 * page count and the page queues, we reset those variables and
3033 * restart the loop (LD TODO: Track this better?).
3034 */
3035 if (vm_page_queue_empty(&sq->age_q) && vm_page_speculative_count) {
3036 retval = vps_age_speculative_queue(force_speculative_aging);
3037
3038 if (retval == VM_PAGEOUT_SCAN_NEXT_ITERATION) {
3039 lock_yield_check = FALSE;
3040 continue;
3041 }
3042 }
3043 force_speculative_aging = FALSE;
3044
3045 /*
3046 * Check to see if we need to evict objects from the cache.
3047 *
3048 * Note: 'object' here doesn't have anything to do with
3049 * the eviction part. We just need to make sure we have dropped
3050 * any object lock we might be holding if we need to go down
3051 * into the eviction logic.
3052 */
3053 retval = vps_object_cache_evict(&object);
3054
3055 if (retval == VM_PAGEOUT_SCAN_NEXT_ITERATION) {
3056 lock_yield_check = FALSE;
3057 continue;
3058 }
3059
3060
3061 /*
3062 * Calculate our filecache_min that will affect the loop
3063 * going forward.
3064 */
3065 vps_calculate_filecache_min();
3066
3067 /*
3068 * LD TODO: Use a structure to hold all state variables for a single
3069 * vm_pageout_scan iteration and pass that structure to this function instead.
3070 */
3071 retval = vps_flow_control(&flow_control, &anons_grabbed, &object,
3072 &delayed_unlock, &local_freeq, &local_freed,
3073 &vm_pageout_deadlock_target, inactive_burst_count);
3074
3075 if (retval == VM_PAGEOUT_SCAN_NEXT_ITERATION) {
3076 if (loop_count >= vm_page_inactive_count) {
3077 loop_count = 0;
3078 }
3079
3080 inactive_burst_count = 0;
3081
3082 assert(object == NULL);
3083 assert(delayed_unlock != 0);
3084
3085 lock_yield_check = FALSE;
3086 continue;
3087 } else if (retval == VM_PAGEOUT_SCAN_DONE_RETURN) {
3088 goto return_from_scan;
3089 }
3090
3091 flow_control.state = FCS_IDLE;
3092
3093 vm_pageout_inactive_external_forced_reactivate_limit = MIN((vm_page_active_count + vm_page_inactive_count),
3094 vm_pageout_inactive_external_forced_reactivate_limit);
3095 loop_count++;
3096 inactive_burst_count++;
3097 vm_pageout_state.vm_pageout_inactive++;
3098
3099 /*
3100 * Choose a victim.
3101 */
3102
3103 m = NULL;
3104 retval = vps_choose_victim_page(&m, &anons_grabbed, &grab_anonymous, force_anonymous, &page_from_bg_q, &reactivated_this_call);
3105
3106 if (m == NULL) {
3107 if (retval == VM_PAGEOUT_SCAN_NEXT_ITERATION) {
3108 inactive_burst_count = 0;
3109
3110 if (page_prev_q_state == VM_PAGE_ON_INACTIVE_CLEANED_Q) {
3111 VM_PAGEOUT_DEBUG(vm_pageout_cleaned_reactivated, 1);
3112 }
3113
3114 lock_yield_check = TRUE;
3115 continue;
3116 }
3117
3118 /*
3119 * if we've gotten here, we have no victim page.
3120 * check to see if we've not finished balancing the queues
3121 * or we have a page on the aged speculative queue that we
3122 * skipped due to force_anonymous == TRUE.. or we have
3123 * speculative pages that we can prematurely age... if
3124 * one of these cases we'll keep going, else panic
3125 */
3126 force_anonymous = FALSE;
3127 VM_PAGEOUT_DEBUG(vm_pageout_no_victim, 1);
3128
3129 if (!vm_page_queue_empty(&sq->age_q)) {
3130 lock_yield_check = TRUE;
3131 continue;
3132 }
3133
3134 if (vm_page_speculative_count) {
3135 force_speculative_aging = TRUE;
3136 lock_yield_check = TRUE;
3137 continue;
3138 }
3139 panic("vm_pageout: no victim");
3140
3141 /* NOTREACHED */
3142 }
3143
3144 assert(VM_PAGE_PAGEABLE(m));
3145 m_object = VM_PAGE_OBJECT(m);
3146 force_anonymous = FALSE;
3147
3148 page_prev_q_state = m->vmp_q_state;
3149 /*
3150 * we just found this page on one of our queues...
3151 * it can't also be on the pageout queue, so safe
3152 * to call vm_page_queues_remove
3153 */
3154 vm_page_queues_remove(m, TRUE);
3155
3156 assert(!m->vmp_laundry);
3157 assert(!m->vmp_private);
3158 assert(!m->vmp_fictitious);
3159 assert(m_object != kernel_object);
3160 assert(VM_PAGE_GET_PHYS_PAGE(m) != vm_page_guard_addr);
3161
3162 vm_pageout_vminfo.vm_pageout_considered_page++;
3163
3164 DTRACE_VM2(scan, int, 1, (uint64_t *), NULL);
3165
3166 /*
3167 * check to see if we currently are working
3168 * with the same object... if so, we've
3169 * already got the lock
3170 */
3171 if (m_object != object) {
3172 boolean_t avoid_anon_pages = (grab_anonymous == FALSE || anons_grabbed >= ANONS_GRABBED_LIMIT);
3173
3174 /*
3175 * vps_switch_object() will always drop the 'object' lock first
3176 * and then try to acquire the 'm_object' lock. So 'object' has to point to
3177 * either 'm_object' or NULL.
3178 */
3179 retval = vps_switch_object(m, m_object, &object, page_prev_q_state, avoid_anon_pages, page_from_bg_q);
3180
3181 if (retval == VM_PAGEOUT_SCAN_NEXT_ITERATION) {
3182 lock_yield_check = TRUE;
3183 continue;
3184 }
3185 }
3186 assert(m_object == object);
3187 assert(VM_PAGE_OBJECT(m) == m_object);
3188
3189 if (m->vmp_busy) {
3190 /*
3191 * Somebody is already playing with this page.
3192 * Put it back on the appropriate queue
3193 *
3194 */
3195 VM_PAGEOUT_DEBUG(vm_pageout_inactive_busy, 1);
3196
3197 if (page_prev_q_state == VM_PAGE_ON_INACTIVE_CLEANED_Q) {
3198 VM_PAGEOUT_DEBUG(vm_pageout_cleaned_busy, 1);
3199 }
3200
3201 vps_requeue_page(m, page_prev_q_state, page_from_bg_q);
3202
3203 lock_yield_check = TRUE;
3204 continue;
3205 }
3206
3207 /*
3208 * if (m->vmp_cleaning && !m->vmp_free_when_done)
3209 * If already cleaning this page in place
3210 * just leave if off the paging queues.
3211 * We can leave the page mapped, and upl_commit_range
3212 * will put it on the clean queue.
3213 *
3214 * if (m->vmp_free_when_done && !m->vmp_cleaning)
3215 * an msync INVALIDATE is in progress...
3216 * this page has been marked for destruction
3217 * after it has been cleaned,
3218 * but not yet gathered into a UPL
3219 * where 'cleaning' will be set...
3220 * just leave it off the paging queues
3221 *
3222 * if (m->vmp_free_when_done && m->vmp_clenaing)
3223 * an msync INVALIDATE is in progress
3224 * and the UPL has already gathered this page...
3225 * just leave it off the paging queues
3226 */
3227 if (m->vmp_free_when_done || m->vmp_cleaning) {
3228 lock_yield_check = TRUE;
3229 continue;
3230 }
3231
3232
3233 /*
3234 * If it's absent, in error or the object is no longer alive,
3235 * we can reclaim the page... in the no longer alive case,
3236 * there are 2 states the page can be in that preclude us
3237 * from reclaiming it - busy or cleaning - that we've already
3238 * dealt with
3239 */
3240 if (m->vmp_absent || m->vmp_error || !object->alive) {
3241 if (m->vmp_absent) {
3242 VM_PAGEOUT_DEBUG(vm_pageout_inactive_absent, 1);
3243 } else if (!object->alive) {
3244 VM_PAGEOUT_DEBUG(vm_pageout_inactive_notalive, 1);
3245 } else {
3246 VM_PAGEOUT_DEBUG(vm_pageout_inactive_error, 1);
3247 }
3248 reclaim_page:
3249 if (vm_pageout_deadlock_target) {
3250 VM_PAGEOUT_DEBUG(vm_pageout_scan_inactive_throttle_success, 1);
3251 vm_pageout_deadlock_target--;
3252 }
3253
3254 DTRACE_VM2(dfree, int, 1, (uint64_t *), NULL);
3255
3256 if (object->internal) {
3257 DTRACE_VM2(anonfree, int, 1, (uint64_t *), NULL);
3258 } else {
3259 DTRACE_VM2(fsfree, int, 1, (uint64_t *), NULL);
3260 }
3261 assert(!m->vmp_cleaning);
3262 assert(!m->vmp_laundry);
3263
3264 if (!object->internal &&
3265 object->pager != NULL &&
3266 object->pager->mo_pager_ops == &shared_region_pager_ops) {
3267 shared_region_pager_reclaimed++;
3268 }
3269
3270 m->vmp_busy = TRUE;
3271
3272 /*
3273 * remove page from object here since we're already
3274 * behind the object lock... defer the rest of the work
3275 * we'd normally do in vm_page_free_prepare_object
3276 * until 'vm_page_free_list' is called
3277 */
3278 if (m->vmp_tabled) {
3279 vm_page_remove(m, TRUE);
3280 }
3281
3282 assert(m->vmp_pageq.next == 0 && m->vmp_pageq.prev == 0);
3283 m->vmp_snext = local_freeq;
3284 local_freeq = m;
3285 local_freed++;
3286
3287 if (page_prev_q_state == VM_PAGE_ON_SPECULATIVE_Q) {
3288 vm_pageout_vminfo.vm_pageout_freed_speculative++;
3289 } else if (page_prev_q_state == VM_PAGE_ON_INACTIVE_CLEANED_Q) {
3290 vm_pageout_vminfo.vm_pageout_freed_cleaned++;
3291 } else if (page_prev_q_state == VM_PAGE_ON_INACTIVE_INTERNAL_Q) {
3292 vm_pageout_vminfo.vm_pageout_freed_internal++;
3293 } else {
3294 vm_pageout_vminfo.vm_pageout_freed_external++;
3295 }
3296
3297 inactive_burst_count = 0;
3298
3299 lock_yield_check = TRUE;
3300 continue;
3301 }
3302 if (object->copy == VM_OBJECT_NULL) {
3303 /*
3304 * No one else can have any interest in this page.
3305 * If this is an empty purgable object, the page can be
3306 * reclaimed even if dirty.
3307 * If the page belongs to a volatile purgable object, we
3308 * reactivate it if the compressor isn't active.
3309 */
3310 if (object->purgable == VM_PURGABLE_EMPTY) {
3311 if (m->vmp_pmapped == TRUE) {
3312 /* unmap the page */
3313 refmod_state = pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(m));
3314 if (refmod_state & VM_MEM_MODIFIED) {
3315 SET_PAGE_DIRTY(m, FALSE);
3316 }
3317 }
3318 if (m->vmp_dirty || m->vmp_precious) {
3319 /* we saved the cost of cleaning this page ! */
3320 vm_page_purged_count++;
3321 }
3322 goto reclaim_page;
3323 }
3324
3325 if (VM_CONFIG_COMPRESSOR_IS_ACTIVE) {
3326 /*
3327 * With the VM compressor, the cost of
3328 * reclaiming a page is much lower (no I/O),
3329 * so if we find a "volatile" page, it's better
3330 * to let it get compressed rather than letting
3331 * it occupy a full page until it gets purged.
3332 * So no need to check for "volatile" here.
3333 */
3334 } else if (object->purgable == VM_PURGABLE_VOLATILE) {
3335 /*
3336 * Avoid cleaning a "volatile" page which might
3337 * be purged soon.
3338 */
3339
3340 /* if it's wired, we can't put it on our queue */
3341 assert(!VM_PAGE_WIRED(m));
3342
3343 /* just stick it back on! */
3344 reactivated_this_call++;
3345
3346 if (page_prev_q_state == VM_PAGE_ON_INACTIVE_CLEANED_Q) {
3347 VM_PAGEOUT_DEBUG(vm_pageout_cleaned_volatile_reactivated, 1);
3348 }
3349
3350 goto reactivate_page;
3351 }
3352 }
3353 /*
3354 * If it's being used, reactivate.
3355 * (Fictitious pages are either busy or absent.)
3356 * First, update the reference and dirty bits
3357 * to make sure the page is unreferenced.
3358 */
3359 refmod_state = -1;
3360
3361 if (m->vmp_reference == FALSE && m->vmp_pmapped == TRUE) {
3362 refmod_state = pmap_get_refmod(VM_PAGE_GET_PHYS_PAGE(m));
3363
3364 if (refmod_state & VM_MEM_REFERENCED) {
3365 m->vmp_reference = TRUE;
3366 }
3367 if (refmod_state & VM_MEM_MODIFIED) {
3368 SET_PAGE_DIRTY(m, FALSE);
3369 }
3370 }
3371
3372 if (m->vmp_reference || m->vmp_dirty) {
3373 /* deal with a rogue "reusable" page */
3374 VM_PAGEOUT_SCAN_HANDLE_REUSABLE_PAGE(m, m_object);
3375 }
3376
3377 if (vm_pageout_state.vm_page_xpmapped_min_divisor == 0) {
3378 vm_pageout_state.vm_page_xpmapped_min = 0;
3379 } else {
3380 vm_pageout_state.vm_page_xpmapped_min = (vm_page_external_count * 10) / vm_pageout_state.vm_page_xpmapped_min_divisor;
3381 }
3382
3383 if (!m->vmp_no_cache &&
3384 page_from_bg_q == FALSE &&
3385 (m->vmp_reference || (m->vmp_xpmapped && !object->internal &&
3386 (vm_page_xpmapped_external_count < vm_pageout_state.vm_page_xpmapped_min)))) {
3387 /*
3388 * The page we pulled off the inactive list has
3389 * been referenced. It is possible for other
3390 * processors to be touching pages faster than we
3391 * can clear the referenced bit and traverse the
3392 * inactive queue, so we limit the number of
3393 * reactivations.
3394 */
3395 if (++reactivated_this_call >= reactivate_limit) {
3396 vm_pageout_vminfo.vm_pageout_reactivation_limit_exceeded++;
3397 } else if (++inactive_reclaim_run >= VM_PAGEOUT_INACTIVE_FORCE_RECLAIM) {
3398 vm_pageout_vminfo.vm_pageout_inactive_force_reclaim++;
3399 } else {
3400 uint32_t isinuse;
3401
3402 if (page_prev_q_state == VM_PAGE_ON_INACTIVE_CLEANED_Q) {
3403 VM_PAGEOUT_DEBUG(vm_pageout_cleaned_reference_reactivated, 1);
3404 }
3405
3406 vm_pageout_vminfo.vm_pageout_inactive_referenced++;
3407 reactivate_page:
3408 if (!object->internal && object->pager != MEMORY_OBJECT_NULL &&
3409 vnode_pager_get_isinuse(object->pager, &isinuse) == KERN_SUCCESS && !isinuse) {
3410 /*
3411 * no explict mappings of this object exist
3412 * and it's not open via the filesystem
3413 */
3414 vm_page_deactivate(m);
3415 VM_PAGEOUT_DEBUG(vm_pageout_inactive_deactivated, 1);
3416 } else {
3417 /*
3418 * The page was/is being used, so put back on active list.
3419 */
3420 vm_page_activate(m);
3421 VM_STAT_INCR(reactivations);
3422 inactive_burst_count = 0;
3423 }
3424 #if CONFIG_BACKGROUND_QUEUE
3425 #if DEVELOPMENT || DEBUG
3426 if (page_from_bg_q == TRUE) {
3427 if (m_object->internal) {
3428 vm_pageout_rejected_bq_internal++;
3429 } else {
3430 vm_pageout_rejected_bq_external++;
3431 }
3432 }
3433 #endif /* DEVELOPMENT || DEBUG */
3434 #endif /* CONFIG_BACKGROUND_QUEUE */
3435
3436 if (page_prev_q_state == VM_PAGE_ON_INACTIVE_CLEANED_Q) {
3437 VM_PAGEOUT_DEBUG(vm_pageout_cleaned_reactivated, 1);
3438 }
3439 vm_pageout_state.vm_pageout_inactive_used++;
3440
3441 lock_yield_check = TRUE;
3442 continue;
3443 }
3444 /*
3445 * Make sure we call pmap_get_refmod() if it
3446 * wasn't already called just above, to update
3447 * the dirty bit.
3448 */
3449 if ((refmod_state == -1) && !m->vmp_dirty && m->vmp_pmapped) {
3450 refmod_state = pmap_get_refmod(VM_PAGE_GET_PHYS_PAGE(m));
3451 if (refmod_state & VM_MEM_MODIFIED) {
3452 SET_PAGE_DIRTY(m, FALSE);
3453 }
3454 }
3455 }
3456
3457 /*
3458 * we've got a candidate page to steal...
3459 *
3460 * m->vmp_dirty is up to date courtesy of the
3461 * preceding check for m->vmp_reference... if
3462 * we get here, then m->vmp_reference had to be
3463 * FALSE (or possibly "reactivate_limit" was
3464 * exceeded), but in either case we called
3465 * pmap_get_refmod() and updated both
3466 * m->vmp_reference and m->vmp_dirty
3467 *
3468 * if it's dirty or precious we need to
3469 * see if the target queue is throtttled
3470 * it if is, we need to skip over it by moving it back
3471 * to the end of the inactive queue
3472 */
3473
3474 inactive_throttled = FALSE;
3475
3476 if (m->vmp_dirty || m->vmp_precious) {
3477 if (object->internal) {
3478 if (VM_PAGE_Q_THROTTLED(iq)) {
3479 inactive_throttled = TRUE;
3480 }
3481 } else if (VM_PAGE_Q_THROTTLED(eq)) {
3482 inactive_throttled = TRUE;
3483 }
3484 }
3485 throttle_inactive:
3486 if (!VM_DYNAMIC_PAGING_ENABLED() &&
3487 object->internal && m->vmp_dirty &&
3488 (object->purgable == VM_PURGABLE_DENY ||
3489 object->purgable == VM_PURGABLE_NONVOLATILE ||
3490 object->purgable == VM_PURGABLE_VOLATILE)) {
3491 vm_page_check_pageable_safe(m);
3492 assert(m->vmp_q_state == VM_PAGE_NOT_ON_Q);
3493 vm_page_queue_enter(&vm_page_queue_throttled, m, vmp_pageq);
3494 m->vmp_q_state = VM_PAGE_ON_THROTTLED_Q;
3495 vm_page_throttled_count++;
3496
3497 VM_PAGEOUT_DEBUG(vm_pageout_scan_reclaimed_throttled, 1);
3498
3499 inactive_burst_count = 0;
3500
3501 lock_yield_check = TRUE;
3502 continue;
3503 }
3504 if (inactive_throttled == TRUE) {
3505 vps_deal_with_throttled_queues(m, &object, &vm_pageout_inactive_external_forced_reactivate_limit,
3506 &delayed_unlock, &force_anonymous, page_from_bg_q);
3507
3508 inactive_burst_count = 0;
3509
3510 if (page_prev_q_state == VM_PAGE_ON_INACTIVE_CLEANED_Q) {
3511 VM_PAGEOUT_DEBUG(vm_pageout_cleaned_reactivated, 1);
3512 }
3513
3514 lock_yield_check = TRUE;
3515 continue;
3516 }
3517
3518 /*
3519 * we've got a page that we can steal...
3520 * eliminate all mappings and make sure
3521 * we have the up-to-date modified state
3522 *
3523 * if we need to do a pmap_disconnect then we
3524 * need to re-evaluate m->vmp_dirty since the pmap_disconnect
3525 * provides the true state atomically... the
3526 * page was still mapped up to the pmap_disconnect
3527 * and may have been dirtied at the last microsecond
3528 *
3529 * Note that if 'pmapped' is FALSE then the page is not
3530 * and has not been in any map, so there is no point calling
3531 * pmap_disconnect(). m->vmp_dirty could have been set in anticipation
3532 * of likely usage of the page.
3533 */
3534 if (m->vmp_pmapped == TRUE) {
3535 int pmap_options;
3536
3537 /*
3538 * Don't count this page as going into the compressor
3539 * if any of these are true:
3540 * 1) compressed pager isn't enabled
3541 * 2) Freezer enabled device with compressed pager
3542 * backend (exclusive use) i.e. most of the VM system
3543 * (including vm_pageout_scan) has no knowledge of
3544 * the compressor
3545 * 3) This page belongs to a file and hence will not be
3546 * sent into the compressor
3547 */
3548 if (!VM_CONFIG_COMPRESSOR_IS_ACTIVE ||
3549 object->internal == FALSE) {
3550 pmap_options = 0;
3551 } else if (m->vmp_dirty || m->vmp_precious) {
3552 /*
3553 * VM knows that this page is dirty (or
3554 * precious) and needs to be compressed
3555 * rather than freed.
3556 * Tell the pmap layer to count this page
3557 * as "compressed".
3558 */
3559 pmap_options = PMAP_OPTIONS_COMPRESSOR;
3560 } else {
3561 /*
3562 * VM does not know if the page needs to
3563 * be preserved but the pmap layer might tell
3564 * us if any mapping has "modified" it.
3565 * Let's the pmap layer to count this page
3566 * as compressed if and only if it has been
3567 * modified.
3568 */
3569 pmap_options =
3570 PMAP_OPTIONS_COMPRESSOR_IFF_MODIFIED;
3571 }
3572 refmod_state = pmap_disconnect_options(VM_PAGE_GET_PHYS_PAGE(m),
3573 pmap_options,
3574 NULL);
3575 if (refmod_state & VM_MEM_MODIFIED) {
3576 SET_PAGE_DIRTY(m, FALSE);
3577 }
3578 }
3579
3580 /*
3581 * reset our count of pages that have been reclaimed
3582 * since the last page was 'stolen'
3583 */
3584 inactive_reclaim_run = 0;
3585
3586 /*
3587 * If it's clean and not precious, we can free the page.
3588 */
3589 if (!m->vmp_dirty && !m->vmp_precious) {
3590 vm_pageout_state.vm_pageout_inactive_clean++;
3591
3592 /*
3593 * OK, at this point we have found a page we are going to free.
3594 */
3595 #if CONFIG_PHANTOM_CACHE
3596 if (!object->internal) {
3597 vm_phantom_cache_add_ghost(m);
3598 }
3599 #endif
3600 goto reclaim_page;
3601 }
3602
3603 /*
3604 * The page may have been dirtied since the last check
3605 * for a throttled target queue (which may have been skipped
3606 * if the page was clean then). With the dirty page
3607 * disconnected here, we can make one final check.
3608 */
3609 if (object->internal) {
3610 if (VM_PAGE_Q_THROTTLED(iq)) {
3611 inactive_throttled = TRUE;
3612 }
3613 } else if (VM_PAGE_Q_THROTTLED(eq)) {
3614 inactive_throttled = TRUE;
3615 }
3616
3617 if (inactive_throttled == TRUE) {
3618 goto throttle_inactive;
3619 }
3620
3621 #if VM_PRESSURE_EVENTS
3622 #if CONFIG_JETSAM
3623
3624 /*
3625 * If Jetsam is enabled, then the sending
3626 * of memory pressure notifications is handled
3627 * from the same thread that takes care of high-water
3628 * and other jetsams i.e. the memorystatus_thread.
3629 */
3630
3631 #else /* CONFIG_JETSAM */
3632
3633 vm_pressure_response();
3634
3635 #endif /* CONFIG_JETSAM */
3636 #endif /* VM_PRESSURE_EVENTS */
3637
3638 if (page_prev_q_state == VM_PAGE_ON_SPECULATIVE_Q) {
3639 VM_PAGEOUT_DEBUG(vm_pageout_speculative_dirty, 1);
3640 }
3641
3642 if (object->internal) {
3643 vm_pageout_vminfo.vm_pageout_inactive_dirty_internal++;
3644 } else {
3645 vm_pageout_vminfo.vm_pageout_inactive_dirty_external++;
3646 }
3647
3648 /*
3649 * internal pages will go to the compressor...
3650 * external pages will go to the appropriate pager to be cleaned
3651 * and upon completion will end up on 'vm_page_queue_cleaned' which
3652 * is a preferred queue to steal from
3653 */
3654 vm_pageout_cluster(m);
3655 inactive_burst_count = 0;
3656
3657 /*
3658 * back to top of pageout scan loop
3659 */
3660 }
3661 }
3662
3663
3664 void
3665 vm_page_free_reserve(
3666 int pages)
3667 {
3668 int free_after_reserve;
3669
3670 if (VM_CONFIG_COMPRESSOR_IS_PRESENT) {
3671 if ((vm_page_free_reserved + pages + COMPRESSOR_FREE_RESERVED_LIMIT) >= (VM_PAGE_FREE_RESERVED_LIMIT + COMPRESSOR_FREE_RESERVED_LIMIT)) {
3672 vm_page_free_reserved = VM_PAGE_FREE_RESERVED_LIMIT + COMPRESSOR_FREE_RESERVED_LIMIT;
3673 } else {
3674 vm_page_free_reserved += (pages + COMPRESSOR_FREE_RESERVED_LIMIT);
3675 }
3676 } else {
3677 if ((vm_page_free_reserved + pages) >= VM_PAGE_FREE_RESERVED_LIMIT) {
3678 vm_page_free_reserved = VM_PAGE_FREE_RESERVED_LIMIT;
3679 } else {
3680 vm_page_free_reserved += pages;
3681 }
3682 }
3683 free_after_reserve = vm_pageout_state.vm_page_free_count_init - vm_page_free_reserved;
3684
3685 vm_page_free_min = vm_page_free_reserved +
3686 VM_PAGE_FREE_MIN(free_after_reserve);
3687
3688 if (vm_page_free_min > VM_PAGE_FREE_MIN_LIMIT) {
3689 vm_page_free_min = VM_PAGE_FREE_MIN_LIMIT;
3690 }
3691
3692 vm_page_free_target = vm_page_free_reserved +
3693 VM_PAGE_FREE_TARGET(free_after_reserve);
3694
3695 if (vm_page_free_target > VM_PAGE_FREE_TARGET_LIMIT) {
3696 vm_page_free_target = VM_PAGE_FREE_TARGET_LIMIT;
3697 }
3698
3699 if (vm_page_free_target < vm_page_free_min + 5) {
3700 vm_page_free_target = vm_page_free_min + 5;
3701 }
3702
3703 vm_page_throttle_limit = vm_page_free_target - (vm_page_free_target / 2);
3704 }
3705
3706 /*
3707 * vm_pageout is the high level pageout daemon.
3708 */
3709
3710 void
3711 vm_pageout_continue(void)
3712 {
3713 DTRACE_VM2(pgrrun, int, 1, (uint64_t *), NULL);
3714 VM_PAGEOUT_DEBUG(vm_pageout_scan_event_counter, 1);
3715
3716 lck_mtx_lock(&vm_page_queue_free_lock);
3717 vm_pageout_running = TRUE;
3718 lck_mtx_unlock(&vm_page_queue_free_lock);
3719
3720 vm_pageout_scan();
3721 /*
3722 * we hold both the vm_page_queue_free_lock
3723 * and the vm_page_queues_lock at this point
3724 */
3725 assert(vm_page_free_wanted == 0);
3726 assert(vm_page_free_wanted_privileged == 0);
3727 assert_wait((event_t) &vm_page_free_wanted, THREAD_UNINT);
3728
3729 vm_pageout_running = FALSE;
3730 #if !CONFIG_EMBEDDED
3731 if (vm_pageout_waiter) {
3732 vm_pageout_waiter = FALSE;
3733 thread_wakeup((event_t)&vm_pageout_waiter);
3734 }
3735 #endif /* !CONFIG_EMBEDDED */
3736
3737 lck_mtx_unlock(&vm_page_queue_free_lock);
3738 vm_page_unlock_queues();
3739
3740 counter(c_vm_pageout_block++);
3741 thread_block((thread_continue_t)vm_pageout_continue);
3742 /*NOTREACHED*/
3743 }
3744
3745 #if !CONFIG_EMBEDDED
3746 kern_return_t
3747 vm_pageout_wait(uint64_t deadline)
3748 {
3749 kern_return_t kr;
3750
3751 lck_mtx_lock(&vm_page_queue_free_lock);
3752 for (kr = KERN_SUCCESS; vm_pageout_running && (KERN_SUCCESS == kr);) {
3753 vm_pageout_waiter = TRUE;
3754 if (THREAD_AWAKENED != lck_mtx_sleep_deadline(
3755 &vm_page_queue_free_lock, LCK_SLEEP_DEFAULT,
3756 (event_t) &vm_pageout_waiter, THREAD_UNINT, deadline)) {
3757 kr = KERN_OPERATION_TIMED_OUT;
3758 }
3759 }
3760 lck_mtx_unlock(&vm_page_queue_free_lock);
3761
3762 return kr;
3763 }
3764 #endif /* !CONFIG_EMBEDDED */
3765
3766
3767 static void
3768 vm_pageout_iothread_external_continue(struct vm_pageout_queue *q)
3769 {
3770 vm_page_t m = NULL;
3771 vm_object_t object;
3772 vm_object_offset_t offset;
3773 memory_object_t pager;
3774
3775 /* On systems with a compressor, the external IO thread clears its
3776 * VM privileged bit to accommodate large allocations (e.g. bulk UPL
3777 * creation)
3778 */
3779 if (vm_pageout_state.vm_pageout_internal_iothread != THREAD_NULL) {
3780 current_thread()->options &= ~TH_OPT_VMPRIV;
3781 }
3782
3783 vm_page_lockspin_queues();
3784
3785 while (!vm_page_queue_empty(&q->pgo_pending)) {
3786 q->pgo_busy = TRUE;
3787 vm_page_queue_remove_first(&q->pgo_pending, m, vmp_pageq);
3788
3789 assert(m->vmp_q_state == VM_PAGE_ON_PAGEOUT_Q);
3790 VM_PAGE_CHECK(m);
3791 /*
3792 * grab a snapshot of the object and offset this
3793 * page is tabled in so that we can relookup this
3794 * page after we've taken the object lock - these
3795 * fields are stable while we hold the page queues lock
3796 * but as soon as we drop it, there is nothing to keep
3797 * this page in this object... we hold an activity_in_progress
3798 * on this object which will keep it from terminating
3799 */
3800 object = VM_PAGE_OBJECT(m);
3801 offset = m->vmp_offset;
3802
3803 m->vmp_q_state = VM_PAGE_NOT_ON_Q;
3804 VM_PAGE_ZERO_PAGEQ_ENTRY(m);
3805
3806 vm_page_unlock_queues();
3807
3808 vm_object_lock(object);
3809
3810 m = vm_page_lookup(object, offset);
3811
3812 if (m == NULL || m->vmp_busy || m->vmp_cleaning ||
3813 !m->vmp_laundry || (m->vmp_q_state != VM_PAGE_NOT_ON_Q)) {
3814 /*
3815 * it's either the same page that someone else has
3816 * started cleaning (or it's finished cleaning or
3817 * been put back on the pageout queue), or
3818 * the page has been freed or we have found a
3819 * new page at this offset... in all of these cases
3820 * we merely need to release the activity_in_progress
3821 * we took when we put the page on the pageout queue
3822 */
3823 vm_object_activity_end(object);
3824 vm_object_unlock(object);
3825
3826 vm_page_lockspin_queues();
3827 continue;
3828 }
3829 pager = object->pager;
3830
3831 if (pager == MEMORY_OBJECT_NULL) {
3832 /*
3833 * This pager has been destroyed by either
3834 * memory_object_destroy or vm_object_destroy, and
3835 * so there is nowhere for the page to go.
3836 */
3837 if (m->vmp_free_when_done) {
3838 /*
3839 * Just free the page... VM_PAGE_FREE takes
3840 * care of cleaning up all the state...
3841 * including doing the vm_pageout_throttle_up
3842 */
3843 VM_PAGE_FREE(m);
3844 } else {
3845 vm_page_lockspin_queues();
3846
3847 vm_pageout_throttle_up(m);
3848 vm_page_activate(m);
3849
3850 vm_page_unlock_queues();
3851
3852 /*
3853 * And we are done with it.
3854 */
3855 }
3856 vm_object_activity_end(object);
3857 vm_object_unlock(object);
3858
3859 vm_page_lockspin_queues();
3860 continue;
3861 }
3862 #if 0
3863 /*
3864 * we don't hold the page queue lock
3865 * so this check isn't safe to make
3866 */
3867 VM_PAGE_CHECK(m);
3868 #endif
3869 /*
3870 * give back the activity_in_progress reference we
3871 * took when we queued up this page and replace it
3872 * it with a paging_in_progress reference that will
3873 * also hold the paging offset from changing and
3874 * prevent the object from terminating
3875 */
3876 vm_object_activity_end(object);
3877 vm_object_paging_begin(object);
3878 vm_object_unlock(object);
3879
3880 /*
3881 * Send the data to the pager.
3882 * any pageout clustering happens there
3883 */
3884 memory_object_data_return(pager,
3885 m->vmp_offset + object->paging_offset,
3886 PAGE_SIZE,
3887 NULL,
3888 NULL,
3889 FALSE,
3890 FALSE,
3891 0);
3892
3893 vm_object_lock(object);
3894 vm_object_paging_end(object);
3895 vm_object_unlock(object);
3896
3897 vm_pageout_io_throttle();
3898
3899 vm_page_lockspin_queues();
3900 }
3901 q->pgo_busy = FALSE;
3902 q->pgo_idle = TRUE;
3903
3904 assert_wait((event_t) &q->pgo_pending, THREAD_UNINT);
3905 vm_page_unlock_queues();
3906
3907 thread_block_parameter((thread_continue_t)vm_pageout_iothread_external_continue, (void *) q);
3908 /*NOTREACHED*/
3909 }
3910
3911
3912 #define MAX_FREE_BATCH 32
3913 uint32_t vm_compressor_time_thread; /* Set via sysctl to record time accrued by
3914 * this thread.
3915 */
3916
3917
3918 void
3919 vm_pageout_iothread_internal_continue(struct cq *);
3920 void
3921 vm_pageout_iothread_internal_continue(struct cq *cq)
3922 {
3923 struct vm_pageout_queue *q;
3924 vm_page_t m = NULL;
3925 boolean_t pgo_draining;
3926 vm_page_t local_q;
3927 int local_cnt;
3928 vm_page_t local_freeq = NULL;
3929 int local_freed = 0;
3930 int local_batch_size;
3931 #if DEVELOPMENT || DEBUG
3932 int ncomps = 0;
3933 boolean_t marked_active = FALSE;
3934 #endif
3935 KERNEL_DEBUG(0xe040000c | DBG_FUNC_END, 0, 0, 0, 0, 0);
3936
3937 q = cq->q;
3938 #if __AMP__
3939 if (vm_compressor_ebound && (vm_pageout_state.vm_compressor_thread_count > 1)) {
3940 local_batch_size = (q->pgo_maxlaundry >> 3);
3941 local_batch_size = MAX(local_batch_size, 16);
3942 } else {
3943 local_batch_size = q->pgo_maxlaundry / (vm_pageout_state.vm_compressor_thread_count * 2);
3944 }
3945 #else
3946 local_batch_size = q->pgo_maxlaundry / (vm_pageout_state.vm_compressor_thread_count * 2);
3947 #endif
3948
3949 #if RECORD_THE_COMPRESSED_DATA
3950 if (q->pgo_laundry) {
3951 c_compressed_record_init();
3952 }
3953 #endif
3954 while (TRUE) {
3955 int pages_left_on_q = 0;
3956
3957 local_cnt = 0;
3958 local_q = NULL;
3959
3960 KERNEL_DEBUG(0xe0400014 | DBG_FUNC_START, 0, 0, 0, 0, 0);
3961
3962 vm_page_lock_queues();
3963 #if DEVELOPMENT || DEBUG
3964 if (marked_active == FALSE) {
3965 vmct_active++;
3966 vmct_state[cq->id] = VMCT_ACTIVE;
3967 marked_active = TRUE;
3968 if (vmct_active == 1) {
3969 vm_compressor_epoch_start = mach_absolute_time();
3970 }
3971 }
3972 #endif
3973 KERNEL_DEBUG(0xe0400014 | DBG_FUNC_END, 0, 0, 0, 0, 0);
3974
3975 KERNEL_DEBUG(0xe0400018 | DBG_FUNC_START, q->pgo_laundry, 0, 0, 0, 0);
3976
3977 while (!vm_page_queue_empty(&q->pgo_pending) && local_cnt < local_batch_size) {
3978 vm_page_queue_remove_first(&q->pgo_pending, m, vmp_pageq);
3979 assert(m->vmp_q_state == VM_PAGE_ON_PAGEOUT_Q);
3980 VM_PAGE_CHECK(m);
3981
3982 m->vmp_q_state = VM_PAGE_NOT_ON_Q;
3983 VM_PAGE_ZERO_PAGEQ_ENTRY(m);
3984 m->vmp_laundry = FALSE;
3985
3986 m->vmp_snext = local_q;
3987 local_q = m;
3988 local_cnt++;
3989 }
3990 if (local_q == NULL) {
3991 break;
3992 }
3993
3994 q->pgo_busy = TRUE;
3995
3996 if ((pgo_draining = q->pgo_draining) == FALSE) {
3997 vm_pageout_throttle_up_batch(q, local_cnt);
3998 pages_left_on_q = q->pgo_laundry;
3999 } else {
4000 pages_left_on_q = q->pgo_laundry - local_cnt;
4001 }
4002
4003 vm_page_unlock_queues();
4004
4005 #if !RECORD_THE_COMPRESSED_DATA
4006 if (pages_left_on_q >= local_batch_size && cq->id < (vm_pageout_state.vm_compressor_thread_count - 1)) {
4007 thread_wakeup((event_t) ((uintptr_t)&q->pgo_pending + cq->id + 1));
4008 }
4009 #endif
4010 KERNEL_DEBUG(0xe0400018 | DBG_FUNC_END, q->pgo_laundry, 0, 0, 0, 0);
4011
4012 while (local_q) {
4013 KERNEL_DEBUG(0xe0400024 | DBG_FUNC_START, local_cnt, 0, 0, 0, 0);
4014
4015 m = local_q;
4016 local_q = m->vmp_snext;
4017 m->vmp_snext = NULL;
4018
4019 if (vm_pageout_compress_page(&cq->current_chead, cq->scratch_buf, m) == KERN_SUCCESS) {
4020 #if DEVELOPMENT || DEBUG
4021 ncomps++;
4022 #endif
4023 KERNEL_DEBUG(0xe0400024 | DBG_FUNC_END, local_cnt, 0, 0, 0, 0);
4024
4025 m->vmp_snext = local_freeq;
4026 local_freeq = m;
4027 local_freed++;
4028
4029 if (local_freed >= MAX_FREE_BATCH) {
4030 OSAddAtomic64(local_freed, &vm_pageout_vminfo.vm_pageout_compressions);
4031
4032 vm_page_free_list(local_freeq, TRUE);
4033
4034 local_freeq = NULL;
4035 local_freed = 0;
4036 }
4037 }
4038 #if !CONFIG_JETSAM
4039 while (vm_page_free_count < COMPRESSOR_FREE_RESERVED_LIMIT) {
4040 kern_return_t wait_result;
4041 int need_wakeup = 0;
4042
4043 if (local_freeq) {
4044 OSAddAtomic64(local_freed, &vm_pageout_vminfo.vm_pageout_compressions);
4045
4046 vm_page_free_list(local_freeq, TRUE);
4047 local_freeq = NULL;
4048 local_freed = 0;
4049
4050 continue;
4051 }
4052 lck_mtx_lock_spin(&vm_page_queue_free_lock);
4053
4054 if (vm_page_free_count < COMPRESSOR_FREE_RESERVED_LIMIT) {
4055 if (vm_page_free_wanted_privileged++ == 0) {
4056 need_wakeup = 1;
4057 }
4058 wait_result = assert_wait((event_t)&vm_page_free_wanted_privileged, THREAD_UNINT);
4059
4060 lck_mtx_unlock(&vm_page_queue_free_lock);
4061
4062 if (need_wakeup) {
4063 thread_wakeup((event_t)&vm_page_free_wanted);
4064 }
4065
4066 if (wait_result == THREAD_WAITING) {
4067 thread_block(THREAD_CONTINUE_NULL);
4068 }
4069 } else {
4070 lck_mtx_unlock(&vm_page_queue_free_lock);
4071 }
4072 }
4073 #endif
4074 }
4075 if (local_freeq) {
4076 OSAddAtomic64(local_freed, &vm_pageout_vminfo.vm_pageout_compressions);
4077
4078 vm_page_free_list(local_freeq, TRUE);
4079 local_freeq = NULL;
4080 local_freed = 0;
4081 }
4082 if (pgo_draining == TRUE) {
4083 vm_page_lockspin_queues();
4084 vm_pageout_throttle_up_batch(q, local_cnt);
4085 vm_page_unlock_queues();
4086 }
4087 }
4088 KERNEL_DEBUG(0xe040000c | DBG_FUNC_START, 0, 0, 0, 0, 0);
4089
4090 /*
4091 * queue lock is held and our q is empty
4092 */
4093 q->pgo_busy = FALSE;
4094 q->pgo_idle = TRUE;
4095
4096 assert_wait((event_t) ((uintptr_t)&q->pgo_pending + cq->id), THREAD_UNINT);
4097 #if DEVELOPMENT || DEBUG
4098 if (marked_active == TRUE) {
4099 vmct_active--;
4100 vmct_state[cq->id] = VMCT_IDLE;
4101
4102 if (vmct_active == 0) {
4103 vm_compressor_epoch_stop = mach_absolute_time();
4104 assertf(vm_compressor_epoch_stop >= vm_compressor_epoch_start,
4105 "Compressor epoch non-monotonic: 0x%llx -> 0x%llx",
4106 vm_compressor_epoch_start, vm_compressor_epoch_stop);
4107 /* This interval includes intervals where one or more
4108 * compressor threads were pre-empted
4109 */
4110 vmct_stats.vmct_cthreads_total += vm_compressor_epoch_stop - vm_compressor_epoch_start;
4111 }
4112 }
4113 #endif
4114 vm_page_unlock_queues();
4115 #if DEVELOPMENT || DEBUG
4116 if (__improbable(vm_compressor_time_thread)) {
4117 vmct_stats.vmct_runtimes[cq->id] = thread_get_runtime_self();
4118 vmct_stats.vmct_pages[cq->id] += ncomps;
4119 vmct_stats.vmct_iterations[cq->id]++;
4120 if (ncomps > vmct_stats.vmct_maxpages[cq->id]) {
4121 vmct_stats.vmct_maxpages[cq->id] = ncomps;
4122 }
4123 if (ncomps < vmct_stats.vmct_minpages[cq->id]) {
4124 vmct_stats.vmct_minpages[cq->id] = ncomps;
4125 }
4126 }
4127 #endif
4128
4129 KERNEL_DEBUG(0xe0400018 | DBG_FUNC_END, 0, 0, 0, 0, 0);
4130
4131 thread_block_parameter((thread_continue_t)vm_pageout_iothread_internal_continue, (void *) cq);
4132 /*NOTREACHED*/
4133 }
4134
4135
4136 kern_return_t
4137 vm_pageout_compress_page(void **current_chead, char *scratch_buf, vm_page_t m)
4138 {
4139 vm_object_t object;
4140 memory_object_t pager;
4141 int compressed_count_delta;
4142 kern_return_t retval;
4143
4144 object = VM_PAGE_OBJECT(m);
4145
4146 assert(!m->vmp_free_when_done);
4147 assert(!m->vmp_laundry);
4148
4149 pager = object->pager;
4150
4151 if (!object->pager_initialized || pager == MEMORY_OBJECT_NULL) {
4152 KERNEL_DEBUG(0xe0400010 | DBG_FUNC_START, object, pager, 0, 0, 0);
4153
4154 vm_object_lock(object);
4155
4156 /*
4157 * If there is no memory object for the page, create
4158 * one and hand it to the compression pager.
4159 */
4160
4161 if (!object->pager_initialized) {
4162 vm_object_collapse(object, (vm_object_offset_t) 0, TRUE);
4163 }
4164 if (!object->pager_initialized) {
4165 vm_object_compressor_pager_create(object);
4166 }
4167
4168 pager = object->pager;
4169
4170 if (!object->pager_initialized || pager == MEMORY_OBJECT_NULL) {
4171 /*
4172 * Still no pager for the object,
4173 * or the pager has been destroyed.
4174 * Reactivate the page.
4175 *
4176 * Should only happen if there is no
4177 * compression pager
4178 */
4179 PAGE_WAKEUP_DONE(m);
4180
4181 vm_page_lockspin_queues();
4182 vm_page_activate(m);
4183 VM_PAGEOUT_DEBUG(vm_pageout_dirty_no_pager, 1);
4184 vm_page_unlock_queues();
4185
4186 /*
4187 * And we are done with it.
4188 */
4189 vm_object_activity_end(object);
4190 vm_object_unlock(object);
4191
4192 return KERN_FAILURE;
4193 }
4194 vm_object_unlock(object);
4195
4196 KERNEL_DEBUG(0xe0400010 | DBG_FUNC_END, object, pager, 0, 0, 0);
4197 }
4198 assert(object->pager_initialized && pager != MEMORY_OBJECT_NULL);
4199 assert(object->activity_in_progress > 0);
4200
4201 retval = vm_compressor_pager_put(
4202 pager,
4203 m->vmp_offset + object->paging_offset,
4204 VM_PAGE_GET_PHYS_PAGE(m),
4205 current_chead,
4206 scratch_buf,
4207 &compressed_count_delta);
4208
4209 vm_object_lock(object);
4210
4211 assert(object->activity_in_progress > 0);
4212 assert(VM_PAGE_OBJECT(m) == object);
4213 assert( !VM_PAGE_WIRED(m));
4214
4215 vm_compressor_pager_count(pager,
4216 compressed_count_delta,
4217 FALSE, /* shared_lock */
4218 object);
4219
4220 if (retval == KERN_SUCCESS) {
4221 /*
4222 * If the object is purgeable, its owner's
4223 * purgeable ledgers will be updated in
4224 * vm_page_remove() but the page still
4225 * contributes to the owner's memory footprint,
4226 * so account for it as such.
4227 */
4228 if ((object->purgable != VM_PURGABLE_DENY ||
4229 object->vo_ledger_tag) &&
4230 object->vo_owner != NULL) {
4231 /* one more compressed purgeable/tagged page */
4232 vm_object_owner_compressed_update(object,
4233 +1);
4234 }
4235 VM_STAT_INCR(compressions);
4236
4237 if (m->vmp_tabled) {
4238 vm_page_remove(m, TRUE);
4239 }
4240 } else {
4241 PAGE_WAKEUP_DONE(m);
4242
4243 vm_page_lockspin_queues();
4244
4245 vm_page_activate(m);
4246 vm_pageout_vminfo.vm_compressor_failed++;
4247
4248 vm_page_unlock_queues();
4249 }
4250 vm_object_activity_end(object);
4251 vm_object_unlock(object);
4252
4253 return retval;
4254 }
4255
4256
4257 static void
4258 vm_pageout_adjust_eq_iothrottle(struct vm_pageout_queue *eq, boolean_t req_lowpriority)
4259 {
4260 uint32_t policy;
4261
4262 if (hibernate_cleaning_in_progress == TRUE) {
4263 req_lowpriority = FALSE;
4264 }
4265
4266 if (eq->pgo_inited == TRUE && eq->pgo_lowpriority != req_lowpriority) {
4267 vm_page_unlock_queues();
4268
4269 if (req_lowpriority == TRUE) {
4270 policy = THROTTLE_LEVEL_PAGEOUT_THROTTLED;
4271 DTRACE_VM(laundrythrottle);
4272 } else {
4273 policy = THROTTLE_LEVEL_PAGEOUT_UNTHROTTLED;
4274 DTRACE_VM(laundryunthrottle);
4275 }
4276 proc_set_thread_policy_with_tid(kernel_task, eq->pgo_tid,
4277 TASK_POLICY_EXTERNAL, TASK_POLICY_IO, policy);
4278
4279 vm_page_lock_queues();
4280 eq->pgo_lowpriority = req_lowpriority;
4281 }
4282 }
4283
4284
4285 static void
4286 vm_pageout_iothread_external(void)
4287 {
4288 thread_t self = current_thread();
4289
4290 self->options |= TH_OPT_VMPRIV;
4291
4292 DTRACE_VM2(laundrythrottle, int, 1, (uint64_t *), NULL);
4293
4294 proc_set_thread_policy(self, TASK_POLICY_EXTERNAL,
4295 TASK_POLICY_IO, THROTTLE_LEVEL_PAGEOUT_THROTTLED);
4296
4297 vm_page_lock_queues();
4298
4299 vm_pageout_queue_external.pgo_tid = self->thread_id;
4300 vm_pageout_queue_external.pgo_lowpriority = TRUE;
4301 vm_pageout_queue_external.pgo_inited = TRUE;
4302
4303 vm_page_unlock_queues();
4304
4305 vm_pageout_iothread_external_continue(&vm_pageout_queue_external);
4306
4307 /*NOTREACHED*/
4308 }
4309
4310
4311 static void
4312 vm_pageout_iothread_internal(struct cq *cq)
4313 {
4314 thread_t self = current_thread();
4315
4316 self->options |= TH_OPT_VMPRIV;
4317
4318 vm_page_lock_queues();
4319
4320 vm_pageout_queue_internal.pgo_tid = self->thread_id;
4321 vm_pageout_queue_internal.pgo_lowpriority = TRUE;
4322 vm_pageout_queue_internal.pgo_inited = TRUE;
4323
4324 vm_page_unlock_queues();
4325
4326 if (vm_pageout_state.vm_restricted_to_single_processor == TRUE) {
4327 thread_vm_bind_group_add();
4328 }
4329
4330 #if CONFIG_THREAD_GROUPS
4331 thread_group_vm_add();
4332 #endif /* CONFIG_THREAD_GROUPS */
4333
4334 #if __AMP__
4335 if (vm_compressor_ebound) {
4336 /*
4337 * Use the soft bound option for vm_compressor to allow it to run on
4338 * P-cores if E-cluster is unavailable.
4339 */
4340 thread_bind_cluster_type(self, 'E', true);
4341 }
4342 #endif /* __AMP__ */
4343
4344 thread_set_thread_name(current_thread(), "VM_compressor");
4345 #if DEVELOPMENT || DEBUG
4346 vmct_stats.vmct_minpages[cq->id] = INT32_MAX;
4347 #endif
4348 vm_pageout_iothread_internal_continue(cq);
4349
4350 /*NOTREACHED*/
4351 }
4352
4353 kern_return_t
4354 vm_set_buffer_cleanup_callout(boolean_t (*func)(int))
4355 {
4356 if (OSCompareAndSwapPtr(NULL, ptrauth_nop_cast(void *, func), (void * volatile *) &consider_buffer_cache_collect)) {
4357 return KERN_SUCCESS;
4358 } else {
4359 return KERN_FAILURE; /* Already set */
4360 }
4361 }
4362
4363 extern boolean_t memorystatus_manual_testing_on;
4364 extern unsigned int memorystatus_level;
4365
4366
4367 #if VM_PRESSURE_EVENTS
4368
4369 boolean_t vm_pressure_events_enabled = FALSE;
4370
4371 void
4372 vm_pressure_response(void)
4373 {
4374 vm_pressure_level_t old_level = kVMPressureNormal;
4375 int new_level = -1;
4376 unsigned int total_pages;
4377 uint64_t available_memory = 0;
4378
4379 if (vm_pressure_events_enabled == FALSE) {
4380 return;
4381 }
4382
4383 #if CONFIG_EMBEDDED
4384
4385 available_memory = (uint64_t) memorystatus_available_pages;
4386
4387 #else /* CONFIG_EMBEDDED */
4388
4389 available_memory = (uint64_t) AVAILABLE_NON_COMPRESSED_MEMORY;
4390 memorystatus_available_pages = (uint64_t) AVAILABLE_NON_COMPRESSED_MEMORY;
4391
4392 #endif /* CONFIG_EMBEDDED */
4393
4394 total_pages = (unsigned int) atop_64(max_mem);
4395 #if CONFIG_SECLUDED_MEMORY
4396 total_pages -= vm_page_secluded_count;
4397 #endif /* CONFIG_SECLUDED_MEMORY */
4398 memorystatus_level = (unsigned int) ((available_memory * 100) / total_pages);
4399
4400 if (memorystatus_manual_testing_on) {
4401 return;
4402 }
4403
4404 old_level = memorystatus_vm_pressure_level;
4405
4406 switch (memorystatus_vm_pressure_level) {
4407 case kVMPressureNormal:
4408 {
4409 if (VM_PRESSURE_WARNING_TO_CRITICAL()) {
4410 new_level = kVMPressureCritical;
4411 } else if (VM_PRESSURE_NORMAL_TO_WARNING()) {
4412 new_level = kVMPressureWarning;
4413 }
4414 break;
4415 }
4416
4417 case kVMPressureWarning:
4418 case kVMPressureUrgent:
4419 {
4420 if (VM_PRESSURE_WARNING_TO_NORMAL()) {
4421 new_level = kVMPressureNormal;
4422 } else if (VM_PRESSURE_WARNING_TO_CRITICAL()) {
4423 new_level = kVMPressureCritical;
4424 }
4425 break;
4426 }
4427
4428 case kVMPressureCritical:
4429 {
4430 if (VM_PRESSURE_WARNING_TO_NORMAL()) {
4431 new_level = kVMPressureNormal;
4432 } else if (VM_PRESSURE_CRITICAL_TO_WARNING()) {
4433 new_level = kVMPressureWarning;
4434 }
4435 break;
4436 }
4437
4438 default:
4439 return;
4440 }
4441
4442 if (new_level != -1) {
4443 memorystatus_vm_pressure_level = (vm_pressure_level_t) new_level;
4444
4445 if (new_level != (int) old_level) {
4446 VM_DEBUG_CONSTANT_EVENT(vm_pressure_level_change, VM_PRESSURE_LEVEL_CHANGE, DBG_FUNC_NONE,
4447 new_level, old_level, 0, 0);
4448 }
4449
4450 if ((memorystatus_vm_pressure_level != kVMPressureNormal) || (old_level != memorystatus_vm_pressure_level)) {
4451 if (vm_pageout_state.vm_pressure_thread_running == FALSE) {
4452 thread_wakeup(&vm_pressure_thread);
4453 }
4454
4455 if (old_level != memorystatus_vm_pressure_level) {
4456 thread_wakeup(&vm_pageout_state.vm_pressure_changed);
4457 }
4458 }
4459 }
4460 }
4461 #endif /* VM_PRESSURE_EVENTS */
4462
4463 /*
4464 * Function called by a kernel thread to either get the current pressure level or
4465 * wait until memory pressure changes from a given level.
4466 */
4467 kern_return_t
4468 mach_vm_pressure_level_monitor(__unused boolean_t wait_for_pressure, __unused unsigned int *pressure_level)
4469 {
4470 #if !VM_PRESSURE_EVENTS
4471
4472 return KERN_FAILURE;
4473
4474 #else /* VM_PRESSURE_EVENTS */
4475
4476 wait_result_t wr = 0;
4477 vm_pressure_level_t old_level = memorystatus_vm_pressure_level;
4478
4479 if (pressure_level == NULL) {
4480 return KERN_INVALID_ARGUMENT;
4481 }
4482
4483 if (*pressure_level == kVMPressureJetsam) {
4484 if (!wait_for_pressure) {
4485 return KERN_INVALID_ARGUMENT;
4486 }
4487
4488 lck_mtx_lock(&memorystatus_jetsam_fg_band_lock);
4489 wr = assert_wait((event_t)&memorystatus_jetsam_fg_band_waiters,
4490 THREAD_INTERRUPTIBLE);
4491 if (wr == THREAD_WAITING) {
4492 ++memorystatus_jetsam_fg_band_waiters;
4493 lck_mtx_unlock(&memorystatus_jetsam_fg_band_lock);
4494 wr = thread_block(THREAD_CONTINUE_NULL);
4495 } else {
4496 lck_mtx_unlock(&memorystatus_jetsam_fg_band_lock);
4497 }
4498 if (wr != THREAD_AWAKENED) {
4499 return KERN_ABORTED;
4500 }
4501 *pressure_level = kVMPressureJetsam;
4502 return KERN_SUCCESS;
4503 }
4504
4505 if (wait_for_pressure == TRUE) {
4506 while (old_level == *pressure_level) {
4507 wr = assert_wait((event_t) &vm_pageout_state.vm_pressure_changed,
4508 THREAD_INTERRUPTIBLE);
4509 if (wr == THREAD_WAITING) {
4510 wr = thread_block(THREAD_CONTINUE_NULL);
4511 }
4512 if (wr == THREAD_INTERRUPTED) {
4513 return KERN_ABORTED;
4514 }
4515
4516 if (wr == THREAD_AWAKENED) {
4517 old_level = memorystatus_vm_pressure_level;
4518 }
4519 }
4520 }
4521
4522 *pressure_level = old_level;
4523 return KERN_SUCCESS;
4524 #endif /* VM_PRESSURE_EVENTS */
4525 }
4526
4527 #if VM_PRESSURE_EVENTS
4528 void
4529 vm_pressure_thread(void)
4530 {
4531 static boolean_t thread_initialized = FALSE;
4532
4533 if (thread_initialized == TRUE) {
4534 vm_pageout_state.vm_pressure_thread_running = TRUE;
4535 consider_vm_pressure_events();
4536 vm_pageout_state.vm_pressure_thread_running = FALSE;
4537 }
4538
4539 thread_set_thread_name(current_thread(), "VM_pressure");
4540 thread_initialized = TRUE;
4541 assert_wait((event_t) &vm_pressure_thread, THREAD_UNINT);
4542 thread_block((thread_continue_t)vm_pressure_thread);
4543 }
4544 #endif /* VM_PRESSURE_EVENTS */
4545
4546
4547 /*
4548 * called once per-second via "compute_averages"
4549 */
4550 void
4551 compute_pageout_gc_throttle(__unused void *arg)
4552 {
4553 if (vm_pageout_vminfo.vm_pageout_considered_page != vm_pageout_state.vm_pageout_considered_page_last) {
4554 vm_pageout_state.vm_pageout_considered_page_last = vm_pageout_vminfo.vm_pageout_considered_page;
4555
4556 thread_wakeup((event_t) &vm_pageout_garbage_collect);
4557 }
4558 }
4559
4560 /*
4561 * vm_pageout_garbage_collect can also be called when the zone allocator needs
4562 * to call zone_gc on a different thread in order to trigger zone-map-exhaustion
4563 * jetsams. We need to check if the zone map size is above its jetsam limit to
4564 * decide if this was indeed the case.
4565 *
4566 * We need to do this on a different thread because of the following reasons:
4567 *
4568 * 1. In the case of synchronous jetsams, the leaking process can try to jetsam
4569 * itself causing the system to hang. We perform synchronous jetsams if we're
4570 * leaking in the VM map entries zone, so the leaking process could be doing a
4571 * zalloc for a VM map entry while holding its vm_map lock, when it decides to
4572 * jetsam itself. We also need the vm_map lock on the process termination path,
4573 * which would now lead the dying process to deadlock against itself.
4574 *
4575 * 2. The jetsam path might need to allocate zone memory itself. We could try
4576 * using the non-blocking variant of zalloc for this path, but we can still
4577 * end up trying to do a kernel_memory_allocate when the zone maps are almost
4578 * full.
4579 */
4580
4581 void
4582 vm_pageout_garbage_collect(int collect)
4583 {
4584 if (collect) {
4585 if (is_zone_map_nearing_exhaustion()) {
4586 /*
4587 * Woken up by the zone allocator for zone-map-exhaustion jetsams.
4588 *
4589 * Bail out after calling zone_gc (which triggers the
4590 * zone-map-exhaustion jetsams). If we fall through, the subsequent
4591 * operations that clear out a bunch of caches might allocate zone
4592 * memory themselves (for eg. vm_map operations would need VM map
4593 * entries). Since the zone map is almost full at this point, we
4594 * could end up with a panic. We just need to quickly jetsam a
4595 * process and exit here.
4596 *
4597 * It could so happen that we were woken up to relieve memory
4598 * pressure and the zone map also happened to be near its limit at
4599 * the time, in which case we'll skip out early. But that should be
4600 * ok; if memory pressure persists, the thread will simply be woken
4601 * up again.
4602 */
4603 consider_zone_gc(TRUE);
4604 } else {
4605 /* Woken up by vm_pageout_scan or compute_pageout_gc_throttle. */
4606 boolean_t buf_large_zfree = FALSE;
4607 boolean_t first_try = TRUE;
4608
4609 stack_collect();
4610
4611 consider_machine_collect();
4612 mbuf_drain(FALSE);
4613
4614 do {
4615 if (consider_buffer_cache_collect != NULL) {
4616 buf_large_zfree = (*consider_buffer_cache_collect)(0);
4617 }
4618 if (first_try == TRUE || buf_large_zfree == TRUE) {
4619 /*
4620 * consider_zone_gc should be last, because the other operations
4621 * might return memory to zones.
4622 */
4623 consider_zone_gc(FALSE);
4624 }
4625 first_try = FALSE;
4626 } while (buf_large_zfree == TRUE && vm_page_free_count < vm_page_free_target);
4627
4628 consider_machine_adjust();
4629 }
4630 }
4631
4632 assert_wait((event_t) &vm_pageout_garbage_collect, THREAD_UNINT);
4633
4634 thread_block_parameter((thread_continue_t) vm_pageout_garbage_collect, (void *)1);
4635 /*NOTREACHED*/
4636 }
4637
4638
4639 #if VM_PAGE_BUCKETS_CHECK
4640 #if VM_PAGE_FAKE_BUCKETS
4641 extern vm_map_offset_t vm_page_fake_buckets_start, vm_page_fake_buckets_end;
4642 #endif /* VM_PAGE_FAKE_BUCKETS */
4643 #endif /* VM_PAGE_BUCKETS_CHECK */
4644
4645
4646
4647 void
4648 vm_set_restrictions(unsigned int num_cpus)
4649 {
4650 int vm_restricted_to_single_processor = 0;
4651
4652 if (PE_parse_boot_argn("vm_restricted_to_single_processor", &vm_restricted_to_single_processor, sizeof(vm_restricted_to_single_processor))) {
4653 kprintf("Overriding vm_restricted_to_single_processor to %d\n", vm_restricted_to_single_processor);
4654 vm_pageout_state.vm_restricted_to_single_processor = (vm_restricted_to_single_processor ? TRUE : FALSE);
4655 } else {
4656 assert(num_cpus > 0);
4657
4658 if (num_cpus <= 3) {
4659 /*
4660 * on systems with a limited number of CPUS, bind the
4661 * 4 major threads that can free memory and that tend to use
4662 * a fair bit of CPU under pressured conditions to a single processor.
4663 * This insures that these threads don't hog all of the available CPUs
4664 * (important for camera launch), while allowing them to run independently
4665 * w/r to locks... the 4 threads are
4666 * vm_pageout_scan, vm_pageout_iothread_internal (compressor),
4667 * vm_compressor_swap_trigger_thread (minor and major compactions),
4668 * memorystatus_thread (jetsams).
4669 *
4670 * the first time the thread is run, it is responsible for checking the
4671 * state of vm_restricted_to_single_processor, and if TRUE it calls
4672 * thread_bind_master... someday this should be replaced with a group
4673 * scheduling mechanism and KPI.
4674 */
4675 vm_pageout_state.vm_restricted_to_single_processor = TRUE;
4676 } else {
4677 vm_pageout_state.vm_restricted_to_single_processor = FALSE;
4678 }
4679 }
4680 }
4681
4682 void
4683 vm_pageout(void)
4684 {
4685 thread_t self = current_thread();
4686 thread_t thread;
4687 kern_return_t result;
4688 spl_t s;
4689
4690 /*
4691 * Set thread privileges.
4692 */
4693 s = splsched();
4694
4695 vm_pageout_scan_thread = self;
4696
4697 #if CONFIG_VPS_DYNAMIC_PRIO
4698
4699 int vps_dynprio_bootarg = 0;
4700
4701 if (PE_parse_boot_argn("vps_dynamic_priority_enabled", &vps_dynprio_bootarg, sizeof(vps_dynprio_bootarg))) {
4702 vps_dynamic_priority_enabled = (vps_dynprio_bootarg ? TRUE : FALSE);
4703 kprintf("Overriding vps_dynamic_priority_enabled to %d\n", vps_dynamic_priority_enabled);
4704 } else {
4705 if (vm_pageout_state.vm_restricted_to_single_processor == TRUE) {
4706 vps_dynamic_priority_enabled = TRUE;
4707 } else {
4708 vps_dynamic_priority_enabled = FALSE;
4709 }
4710 }
4711
4712 if (vps_dynamic_priority_enabled) {
4713 sched_set_kernel_thread_priority(self, MAXPRI_THROTTLE);
4714 thread_set_eager_preempt(self);
4715 } else {
4716 sched_set_kernel_thread_priority(self, BASEPRI_VM);
4717 }
4718
4719 #else /* CONFIG_VPS_DYNAMIC_PRIO */
4720
4721 vps_dynamic_priority_enabled = FALSE;
4722 sched_set_kernel_thread_priority(self, BASEPRI_VM);
4723
4724 #endif /* CONFIG_VPS_DYNAMIC_PRIO */
4725
4726 thread_lock(self);
4727 self->options |= TH_OPT_VMPRIV;
4728 thread_unlock(self);
4729
4730 if (!self->reserved_stack) {
4731 self->reserved_stack = self->kernel_stack;
4732 }
4733
4734 if (vm_pageout_state.vm_restricted_to_single_processor == TRUE &&
4735 vps_dynamic_priority_enabled == FALSE) {
4736 thread_vm_bind_group_add();
4737 }
4738
4739
4740 #if CONFIG_THREAD_GROUPS
4741 thread_group_vm_add();
4742 #endif /* CONFIG_THREAD_GROUPS */
4743
4744 #if __AMP__
4745 PE_parse_boot_argn("vmpgo_pcluster", &vm_pgo_pbound, sizeof(vm_pgo_pbound));
4746 if (vm_pgo_pbound) {
4747 /*
4748 * Use the soft bound option for vm pageout to allow it to run on
4749 * E-cores if P-cluster is unavailable.
4750 */
4751 thread_bind_cluster_type(self, 'P', true);
4752 }
4753 #endif /* __AMP__ */
4754
4755 splx(s);
4756
4757 thread_set_thread_name(current_thread(), "VM_pageout_scan");
4758
4759 /*
4760 * Initialize some paging parameters.
4761 */
4762
4763 vm_pageout_state.vm_pressure_thread_running = FALSE;
4764 vm_pageout_state.vm_pressure_changed = FALSE;
4765 vm_pageout_state.memorystatus_purge_on_warning = 2;
4766 vm_pageout_state.memorystatus_purge_on_urgent = 5;
4767 vm_pageout_state.memorystatus_purge_on_critical = 8;
4768 vm_pageout_state.vm_page_speculative_q_age_ms = VM_PAGE_SPECULATIVE_Q_AGE_MS;
4769 vm_pageout_state.vm_page_speculative_percentage = 5;
4770 vm_pageout_state.vm_page_speculative_target = 0;
4771
4772 vm_pageout_state.vm_pageout_external_iothread = THREAD_NULL;
4773 vm_pageout_state.vm_pageout_internal_iothread = THREAD_NULL;
4774
4775 vm_pageout_state.vm_pageout_swap_wait = 0;
4776 vm_pageout_state.vm_pageout_idle_wait = 0;
4777 vm_pageout_state.vm_pageout_empty_wait = 0;
4778 vm_pageout_state.vm_pageout_burst_wait = 0;
4779 vm_pageout_state.vm_pageout_deadlock_wait = 0;
4780 vm_pageout_state.vm_pageout_deadlock_relief = 0;
4781 vm_pageout_state.vm_pageout_burst_inactive_throttle = 0;
4782
4783 vm_pageout_state.vm_pageout_inactive = 0;
4784 vm_pageout_state.vm_pageout_inactive_used = 0;
4785 vm_pageout_state.vm_pageout_inactive_clean = 0;
4786
4787 vm_pageout_state.vm_memory_pressure = 0;
4788 vm_pageout_state.vm_page_filecache_min = 0;
4789 #if CONFIG_JETSAM
4790 vm_pageout_state.vm_page_filecache_min_divisor = 70;
4791 vm_pageout_state.vm_page_xpmapped_min_divisor = 40;
4792 #else
4793 vm_pageout_state.vm_page_filecache_min_divisor = 27;
4794 vm_pageout_state.vm_page_xpmapped_min_divisor = 36;
4795 #endif
4796 vm_pageout_state.vm_page_free_count_init = vm_page_free_count;
4797
4798 vm_pageout_state.vm_pageout_considered_page_last = 0;
4799
4800 if (vm_pageout_state.vm_pageout_swap_wait == 0) {
4801 vm_pageout_state.vm_pageout_swap_wait = VM_PAGEOUT_SWAP_WAIT;
4802 }
4803
4804 if (vm_pageout_state.vm_pageout_idle_wait == 0) {
4805 vm_pageout_state.vm_pageout_idle_wait = VM_PAGEOUT_IDLE_WAIT;
4806 }
4807
4808 if (vm_pageout_state.vm_pageout_burst_wait == 0) {
4809 vm_pageout_state.vm_pageout_burst_wait = VM_PAGEOUT_BURST_WAIT;
4810 }
4811
4812 if (vm_pageout_state.vm_pageout_empty_wait == 0) {
4813 vm_pageout_state.vm_pageout_empty_wait = VM_PAGEOUT_EMPTY_WAIT;
4814 }
4815
4816 if (vm_pageout_state.vm_pageout_deadlock_wait == 0) {
4817 vm_pageout_state.vm_pageout_deadlock_wait = VM_PAGEOUT_DEADLOCK_WAIT;
4818 }
4819
4820 if (vm_pageout_state.vm_pageout_deadlock_relief == 0) {
4821 vm_pageout_state.vm_pageout_deadlock_relief = VM_PAGEOUT_DEADLOCK_RELIEF;
4822 }
4823
4824 if (vm_pageout_state.vm_pageout_burst_inactive_throttle == 0) {
4825 vm_pageout_state.vm_pageout_burst_inactive_throttle = VM_PAGEOUT_BURST_INACTIVE_THROTTLE;
4826 }
4827 /*
4828 * even if we've already called vm_page_free_reserve
4829 * call it again here to insure that the targets are
4830 * accurately calculated (it uses vm_page_free_count_init)
4831 * calling it with an arg of 0 will not change the reserve
4832 * but will re-calculate free_min and free_target
4833 */
4834 if (vm_page_free_reserved < VM_PAGE_FREE_RESERVED(processor_count)) {
4835 vm_page_free_reserve((VM_PAGE_FREE_RESERVED(processor_count)) - vm_page_free_reserved);
4836 } else {
4837 vm_page_free_reserve(0);
4838 }
4839
4840
4841 vm_page_queue_init(&vm_pageout_queue_external.pgo_pending);
4842 vm_pageout_queue_external.pgo_maxlaundry = VM_PAGE_LAUNDRY_MAX;
4843 vm_pageout_queue_external.pgo_laundry = 0;
4844 vm_pageout_queue_external.pgo_idle = FALSE;
4845 vm_pageout_queue_external.pgo_busy = FALSE;
4846 vm_pageout_queue_external.pgo_throttled = FALSE;
4847 vm_pageout_queue_external.pgo_draining = FALSE;
4848 vm_pageout_queue_external.pgo_lowpriority = FALSE;
4849 vm_pageout_queue_external.pgo_tid = -1;
4850 vm_pageout_queue_external.pgo_inited = FALSE;
4851
4852 vm_page_queue_init(&vm_pageout_queue_internal.pgo_pending);
4853 vm_pageout_queue_internal.pgo_maxlaundry = 0;
4854 vm_pageout_queue_internal.pgo_laundry = 0;
4855 vm_pageout_queue_internal.pgo_idle = FALSE;
4856 vm_pageout_queue_internal.pgo_busy = FALSE;
4857 vm_pageout_queue_internal.pgo_throttled = FALSE;
4858 vm_pageout_queue_internal.pgo_draining = FALSE;
4859 vm_pageout_queue_internal.pgo_lowpriority = FALSE;
4860 vm_pageout_queue_internal.pgo_tid = -1;
4861 vm_pageout_queue_internal.pgo_inited = FALSE;
4862
4863 /* internal pageout thread started when default pager registered first time */
4864 /* external pageout and garbage collection threads started here */
4865
4866 result = kernel_thread_start_priority((thread_continue_t)vm_pageout_iothread_external, NULL,
4867 BASEPRI_VM,
4868 &vm_pageout_state.vm_pageout_external_iothread);
4869 if (result != KERN_SUCCESS) {
4870 panic("vm_pageout_iothread_external: create failed");
4871 }
4872 thread_set_thread_name(vm_pageout_state.vm_pageout_external_iothread, "VM_pageout_external_iothread");
4873 thread_deallocate(vm_pageout_state.vm_pageout_external_iothread);
4874
4875 result = kernel_thread_start_priority((thread_continue_t)vm_pageout_garbage_collect, NULL,
4876 BASEPRI_DEFAULT,
4877 &thread);
4878 if (result != KERN_SUCCESS) {
4879 panic("vm_pageout_garbage_collect: create failed");
4880 }
4881 thread_set_thread_name(thread, "VM_pageout_garbage_collect");
4882 thread_deallocate(thread);
4883
4884 #if VM_PRESSURE_EVENTS
4885 result = kernel_thread_start_priority((thread_continue_t)vm_pressure_thread, NULL,
4886 BASEPRI_DEFAULT,
4887 &thread);
4888
4889 if (result != KERN_SUCCESS) {
4890 panic("vm_pressure_thread: create failed");
4891 }
4892
4893 thread_deallocate(thread);
4894 #endif
4895
4896 vm_object_reaper_init();
4897
4898
4899 bzero(&vm_config, sizeof(vm_config));
4900
4901 switch (vm_compressor_mode) {
4902 case VM_PAGER_DEFAULT:
4903 printf("mapping deprecated VM_PAGER_DEFAULT to VM_PAGER_COMPRESSOR_WITH_SWAP\n");
4904 OS_FALLTHROUGH;
4905
4906 case VM_PAGER_COMPRESSOR_WITH_SWAP:
4907 vm_config.compressor_is_present = TRUE;
4908 vm_config.swap_is_present = TRUE;
4909 vm_config.compressor_is_active = TRUE;
4910 vm_config.swap_is_active = TRUE;
4911 break;
4912
4913 case VM_PAGER_COMPRESSOR_NO_SWAP:
4914 vm_config.compressor_is_present = TRUE;
4915 vm_config.swap_is_present = TRUE;
4916 vm_config.compressor_is_active = TRUE;
4917 break;
4918
4919 case VM_PAGER_FREEZER_DEFAULT:
4920 printf("mapping deprecated VM_PAGER_FREEZER_DEFAULT to VM_PAGER_FREEZER_COMPRESSOR_NO_SWAP\n");
4921 OS_FALLTHROUGH;
4922
4923 case VM_PAGER_FREEZER_COMPRESSOR_NO_SWAP:
4924 vm_config.compressor_is_present = TRUE;
4925 vm_config.swap_is_present = TRUE;
4926 break;
4927
4928 case VM_PAGER_COMPRESSOR_NO_SWAP_PLUS_FREEZER_COMPRESSOR_WITH_SWAP:
4929 vm_config.compressor_is_present = TRUE;
4930 vm_config.swap_is_present = TRUE;
4931 vm_config.compressor_is_active = TRUE;
4932 vm_config.freezer_swap_is_active = TRUE;
4933 break;
4934
4935 case VM_PAGER_NOT_CONFIGURED:
4936 break;
4937
4938 default:
4939 printf("unknown compressor mode - %x\n", vm_compressor_mode);
4940 break;
4941 }
4942 if (VM_CONFIG_COMPRESSOR_IS_PRESENT) {
4943 vm_compressor_pager_init();
4944 }
4945
4946 #if VM_PRESSURE_EVENTS
4947 vm_pressure_events_enabled = TRUE;
4948 #endif /* VM_PRESSURE_EVENTS */
4949
4950 #if CONFIG_PHANTOM_CACHE
4951 vm_phantom_cache_init();
4952 #endif
4953 #if VM_PAGE_BUCKETS_CHECK
4954 #if VM_PAGE_FAKE_BUCKETS
4955 printf("**** DEBUG: protecting fake buckets [0x%llx:0x%llx]\n",
4956 (uint64_t) vm_page_fake_buckets_start,
4957 (uint64_t) vm_page_fake_buckets_end);
4958 pmap_protect(kernel_pmap,
4959 vm_page_fake_buckets_start,
4960 vm_page_fake_buckets_end,
4961 VM_PROT_READ);
4962 // *(char *) vm_page_fake_buckets_start = 'x'; /* panic! */
4963 #endif /* VM_PAGE_FAKE_BUCKETS */
4964 #endif /* VM_PAGE_BUCKETS_CHECK */
4965
4966 #if VM_OBJECT_TRACKING
4967 vm_object_tracking_init();
4968 #endif /* VM_OBJECT_TRACKING */
4969
4970 vm_pageout_continue();
4971
4972 /*
4973 * Unreached code!
4974 *
4975 * The vm_pageout_continue() call above never returns, so the code below is never
4976 * executed. We take advantage of this to declare several DTrace VM related probe
4977 * points that our kernel doesn't have an analog for. These are probe points that
4978 * exist in Solaris and are in the DTrace documentation, so people may have written
4979 * scripts that use them. Declaring the probe points here means their scripts will
4980 * compile and execute which we want for portability of the scripts, but since this
4981 * section of code is never reached, the probe points will simply never fire. Yes,
4982 * this is basically a hack. The problem is the DTrace probe points were chosen with
4983 * Solaris specific VM events in mind, not portability to different VM implementations.
4984 */
4985
4986 DTRACE_VM2(execfree, int, 1, (uint64_t *), NULL);
4987 DTRACE_VM2(execpgin, int, 1, (uint64_t *), NULL);
4988 DTRACE_VM2(execpgout, int, 1, (uint64_t *), NULL);
4989 DTRACE_VM2(pgswapin, int, 1, (uint64_t *), NULL);
4990 DTRACE_VM2(pgswapout, int, 1, (uint64_t *), NULL);
4991 DTRACE_VM2(swapin, int, 1, (uint64_t *), NULL);
4992 DTRACE_VM2(swapout, int, 1, (uint64_t *), NULL);
4993 /*NOTREACHED*/
4994 }
4995
4996
4997
4998 kern_return_t
4999 vm_pageout_internal_start(void)
5000 {
5001 kern_return_t result;
5002 host_basic_info_data_t hinfo;
5003 vm_offset_t buf, bufsize;
5004
5005 assert(VM_CONFIG_COMPRESSOR_IS_PRESENT);
5006
5007 mach_msg_type_number_t count = HOST_BASIC_INFO_COUNT;
5008 #define BSD_HOST 1
5009 host_info((host_t)BSD_HOST, HOST_BASIC_INFO, (host_info_t)&hinfo, &count);
5010
5011 assert(hinfo.max_cpus > 0);
5012
5013 #if CONFIG_EMBEDDED
5014 vm_pageout_state.vm_compressor_thread_count = 1;
5015 #else
5016 if (hinfo.max_cpus > 4) {
5017 vm_pageout_state.vm_compressor_thread_count = 2;
5018 } else {
5019 vm_pageout_state.vm_compressor_thread_count = 1;
5020 }
5021 #endif
5022 PE_parse_boot_argn("vmcomp_threads", &vm_pageout_state.vm_compressor_thread_count,
5023 sizeof(vm_pageout_state.vm_compressor_thread_count));
5024
5025 #if __AMP__
5026 PE_parse_boot_argn("vmcomp_ecluster", &vm_compressor_ebound, sizeof(vm_compressor_ebound));
5027 if (vm_compressor_ebound) {
5028 vm_pageout_state.vm_compressor_thread_count = 2;
5029 }
5030 #endif
5031 if (vm_pageout_state.vm_compressor_thread_count >= hinfo.max_cpus) {
5032 vm_pageout_state.vm_compressor_thread_count = hinfo.max_cpus - 1;
5033 }
5034 if (vm_pageout_state.vm_compressor_thread_count <= 0) {
5035 vm_pageout_state.vm_compressor_thread_count = 1;
5036 } else if (vm_pageout_state.vm_compressor_thread_count > MAX_COMPRESSOR_THREAD_COUNT) {
5037 vm_pageout_state.vm_compressor_thread_count = MAX_COMPRESSOR_THREAD_COUNT;
5038 }
5039
5040 vm_pageout_queue_internal.pgo_maxlaundry =
5041 (vm_pageout_state.vm_compressor_thread_count * 4) * VM_PAGE_LAUNDRY_MAX;
5042
5043 PE_parse_boot_argn("vmpgoi_maxlaundry",
5044 &vm_pageout_queue_internal.pgo_maxlaundry,
5045 sizeof(vm_pageout_queue_internal.pgo_maxlaundry));
5046
5047 bufsize = COMPRESSOR_SCRATCH_BUF_SIZE;
5048 if (kernel_memory_allocate(kernel_map, &buf,
5049 bufsize * vm_pageout_state.vm_compressor_thread_count,
5050 0, KMA_KOBJECT | KMA_PERMANENT, VM_KERN_MEMORY_COMPRESSOR)) {
5051 panic("vm_pageout_internal_start: Unable to allocate %zd bytes",
5052 (size_t)(bufsize * vm_pageout_state.vm_compressor_thread_count));
5053 }
5054
5055 for (int i = 0; i < vm_pageout_state.vm_compressor_thread_count; i++) {
5056 ciq[i].id = i;
5057 ciq[i].q = &vm_pageout_queue_internal;
5058 ciq[i].current_chead = NULL;
5059 ciq[i].scratch_buf = (char *)(buf + i * bufsize);
5060
5061 result = kernel_thread_start_priority((thread_continue_t)vm_pageout_iothread_internal,
5062 (void *)&ciq[i], BASEPRI_VM,
5063 &vm_pageout_state.vm_pageout_internal_iothread);
5064
5065 if (result == KERN_SUCCESS) {
5066 thread_deallocate(vm_pageout_state.vm_pageout_internal_iothread);
5067 } else {
5068 break;
5069 }
5070 }
5071 return result;
5072 }
5073
5074 #if CONFIG_IOSCHED
5075 /*
5076 * To support I/O Expedite for compressed files we mark the upls with special flags.
5077 * The way decmpfs works is that we create a big upl which marks all the pages needed to
5078 * represent the compressed file as busy. We tag this upl with the flag UPL_DECMP_REQ. Decmpfs
5079 * then issues smaller I/Os for compressed I/Os, deflates them and puts the data into the pages
5080 * being held in the big original UPL. We mark each of these smaller UPLs with the flag
5081 * UPL_DECMP_REAL_IO. Any outstanding real I/O UPL is tracked by the big req upl using the
5082 * decmp_io_upl field (in the upl structure). This link is protected in the forward direction
5083 * by the req upl lock (the reverse link doesnt need synch. since we never inspect this link
5084 * unless the real I/O upl is being destroyed).
5085 */
5086
5087
5088 static void
5089 upl_set_decmp_info(upl_t upl, upl_t src_upl)
5090 {
5091 assert((src_upl->flags & UPL_DECMP_REQ) != 0);
5092
5093 upl_lock(src_upl);
5094 if (src_upl->decmp_io_upl) {
5095 /*
5096 * If there is already an alive real I/O UPL, ignore this new UPL.
5097 * This case should rarely happen and even if it does, it just means
5098 * that we might issue a spurious expedite which the driver is expected
5099 * to handle.
5100 */
5101 upl_unlock(src_upl);
5102 return;
5103 }
5104 src_upl->decmp_io_upl = (void *)upl;
5105 src_upl->ref_count++;
5106
5107 upl->flags |= UPL_DECMP_REAL_IO;
5108 upl->decmp_io_upl = (void *)src_upl;
5109 upl_unlock(src_upl);
5110 }
5111 #endif /* CONFIG_IOSCHED */
5112
5113 #if UPL_DEBUG
5114 int upl_debug_enabled = 1;
5115 #else
5116 int upl_debug_enabled = 0;
5117 #endif
5118
5119 static upl_t
5120 upl_create(int type, int flags, upl_size_t size)
5121 {
5122 upl_t upl;
5123 vm_size_t page_field_size = 0;
5124 int upl_flags = 0;
5125 vm_size_t upl_size = sizeof(struct upl);
5126
5127 assert(page_aligned(size));
5128
5129 size = round_page_32(size);
5130
5131 if (type & UPL_CREATE_LITE) {
5132 page_field_size = (atop(size) + 7) >> 3;
5133 page_field_size = (page_field_size + 3) & 0xFFFFFFFC;
5134
5135 upl_flags |= UPL_LITE;
5136 }
5137 if (type & UPL_CREATE_INTERNAL) {
5138 upl_size += sizeof(struct upl_page_info) * atop(size);
5139
5140 upl_flags |= UPL_INTERNAL;
5141 }
5142 upl = (upl_t)kalloc(upl_size + page_field_size);
5143
5144 if (page_field_size) {
5145 bzero((char *)upl + upl_size, page_field_size);
5146 }
5147
5148 upl->flags = upl_flags | flags;
5149 upl->kaddr = (vm_offset_t)0;
5150 upl->u_offset = 0;
5151 upl->u_size = 0;
5152 upl->map_object = NULL;
5153 upl->ref_count = 1;
5154 upl->ext_ref_count = 0;
5155 upl->highest_page = 0;
5156 upl_lock_init(upl);
5157 upl->vector_upl = NULL;
5158 upl->associated_upl = NULL;
5159 upl->upl_iodone = NULL;
5160 #if CONFIG_IOSCHED
5161 if (type & UPL_CREATE_IO_TRACKING) {
5162 upl->upl_priority = proc_get_effective_thread_policy(current_thread(), TASK_POLICY_IO);
5163 }
5164
5165 upl->upl_reprio_info = 0;
5166 upl->decmp_io_upl = 0;
5167 if ((type & UPL_CREATE_INTERNAL) && (type & UPL_CREATE_EXPEDITE_SUP)) {
5168 /* Only support expedite on internal UPLs */
5169 thread_t curthread = current_thread();
5170 upl->upl_reprio_info = (uint64_t *)kalloc(sizeof(uint64_t) * atop(size));
5171 bzero(upl->upl_reprio_info, (sizeof(uint64_t) * atop(size)));
5172 upl->flags |= UPL_EXPEDITE_SUPPORTED;
5173 if (curthread->decmp_upl != NULL) {
5174 upl_set_decmp_info(upl, curthread->decmp_upl);
5175 }
5176 }
5177 #endif
5178 #if CONFIG_IOSCHED || UPL_DEBUG
5179 if ((type & UPL_CREATE_IO_TRACKING) || upl_debug_enabled) {
5180 upl->upl_creator = current_thread();
5181 upl->uplq.next = 0;
5182 upl->uplq.prev = 0;
5183 upl->flags |= UPL_TRACKED_BY_OBJECT;
5184 }
5185 #endif
5186
5187 #if UPL_DEBUG
5188 upl->ubc_alias1 = 0;
5189 upl->ubc_alias2 = 0;
5190
5191 upl->upl_state = 0;
5192 upl->upl_commit_index = 0;
5193 bzero(&upl->upl_commit_records[0], sizeof(upl->upl_commit_records));
5194
5195 (void) OSBacktrace(&upl->upl_create_retaddr[0], UPL_DEBUG_STACK_FRAMES);
5196 #endif /* UPL_DEBUG */
5197
5198 return upl;
5199 }
5200
5201 static void
5202 upl_destroy(upl_t upl)
5203 {
5204 int page_field_size; /* bit field in word size buf */
5205 int size;
5206
5207 // DEBUG4K_UPL("upl %p (u_offset 0x%llx u_size 0x%llx) object %p\n", upl, (uint64_t)upl->u_offset, (uint64_t)upl->u_size, upl->map_object);
5208
5209 if (upl->ext_ref_count) {
5210 panic("upl(%p) ext_ref_count", upl);
5211 }
5212
5213 #if CONFIG_IOSCHED
5214 if ((upl->flags & UPL_DECMP_REAL_IO) && upl->decmp_io_upl) {
5215 upl_t src_upl;
5216 src_upl = upl->decmp_io_upl;
5217 assert((src_upl->flags & UPL_DECMP_REQ) != 0);
5218 upl_lock(src_upl);
5219 src_upl->decmp_io_upl = NULL;
5220 upl_unlock(src_upl);
5221 upl_deallocate(src_upl);
5222 }
5223 #endif /* CONFIG_IOSCHED */
5224
5225 #if CONFIG_IOSCHED || UPL_DEBUG
5226 if (((upl->flags & UPL_TRACKED_BY_OBJECT) || upl_debug_enabled) &&
5227 !(upl->flags & UPL_VECTOR)) {
5228 vm_object_t object;
5229
5230 if (upl->flags & UPL_SHADOWED) {
5231 object = upl->map_object->shadow;
5232 } else {
5233 object = upl->map_object;
5234 }
5235
5236 vm_object_lock(object);
5237 queue_remove(&object->uplq, upl, upl_t, uplq);
5238 vm_object_activity_end(object);
5239 vm_object_collapse(object, 0, TRUE);
5240 vm_object_unlock(object);
5241 }
5242 #endif
5243 /*
5244 * drop a reference on the map_object whether or
5245 * not a pageout object is inserted
5246 */
5247 if (upl->flags & UPL_SHADOWED) {
5248 vm_object_deallocate(upl->map_object);
5249 }
5250
5251 if (upl->flags & UPL_DEVICE_MEMORY) {
5252 size = PAGE_SIZE;
5253 } else {
5254 size = upl_adjusted_size(upl, PAGE_MASK);
5255 }
5256 page_field_size = 0;
5257
5258 if (upl->flags & UPL_LITE) {
5259 page_field_size = ((size / PAGE_SIZE) + 7) >> 3;
5260 page_field_size = (page_field_size + 3) & 0xFFFFFFFC;
5261 }
5262 upl_lock_destroy(upl);
5263 upl->vector_upl = (vector_upl_t) 0xfeedbeef;
5264
5265 #if CONFIG_IOSCHED
5266 if (upl->flags & UPL_EXPEDITE_SUPPORTED) {
5267 kfree(upl->upl_reprio_info, sizeof(uint64_t) * (size / PAGE_SIZE));
5268 }
5269 #endif
5270
5271 if (upl->flags & UPL_INTERNAL) {
5272 kfree(upl,
5273 sizeof(struct upl) +
5274 (sizeof(struct upl_page_info) * (size / PAGE_SIZE))
5275 + page_field_size);
5276 } else {
5277 kfree(upl, sizeof(struct upl) + page_field_size);
5278 }
5279 }
5280
5281 void
5282 upl_deallocate(upl_t upl)
5283 {
5284 upl_lock(upl);
5285
5286 if (--upl->ref_count == 0) {
5287 if (vector_upl_is_valid(upl)) {
5288 vector_upl_deallocate(upl);
5289 }
5290 upl_unlock(upl);
5291
5292 if (upl->upl_iodone) {
5293 upl_callout_iodone(upl);
5294 }
5295
5296 upl_destroy(upl);
5297 } else {
5298 upl_unlock(upl);
5299 }
5300 }
5301
5302 #if CONFIG_IOSCHED
5303 void
5304 upl_mark_decmp(upl_t upl)
5305 {
5306 if (upl->flags & UPL_TRACKED_BY_OBJECT) {
5307 upl->flags |= UPL_DECMP_REQ;
5308 upl->upl_creator->decmp_upl = (void *)upl;
5309 }
5310 }
5311
5312 void
5313 upl_unmark_decmp(upl_t upl)
5314 {
5315 if (upl && (upl->flags & UPL_DECMP_REQ)) {
5316 upl->upl_creator->decmp_upl = NULL;
5317 }
5318 }
5319
5320 #endif /* CONFIG_IOSCHED */
5321
5322 #define VM_PAGE_Q_BACKING_UP(q) \
5323 ((q)->pgo_laundry >= (((q)->pgo_maxlaundry * 8) / 10))
5324
5325 boolean_t must_throttle_writes(void);
5326
5327 boolean_t
5328 must_throttle_writes()
5329 {
5330 if (VM_PAGE_Q_BACKING_UP(&vm_pageout_queue_external) &&
5331 vm_page_pageable_external_count > (AVAILABLE_NON_COMPRESSED_MEMORY * 6) / 10) {
5332 return TRUE;
5333 }
5334
5335 return FALSE;
5336 }
5337
5338 #define MIN_DELAYED_WORK_CTX_ALLOCATED (16)
5339 #define MAX_DELAYED_WORK_CTX_ALLOCATED (512)
5340
5341 int vm_page_delayed_work_ctx_needed = 0;
5342 zone_t dw_ctx_zone = ZONE_NULL;
5343
5344 void
5345 vm_page_delayed_work_init_ctx(void)
5346 {
5347 int nelems = 0, elem_size = 0;
5348
5349 elem_size = sizeof(struct vm_page_delayed_work_ctx);
5350
5351 dw_ctx_zone = zone_create_ext("delayed-work-ctx", elem_size,
5352 ZC_NOGC, ZONE_ID_ANY, ^(zone_t z) {
5353 zone_set_exhaustible(z, MAX_DELAYED_WORK_CTX_ALLOCATED * elem_size);
5354 });
5355
5356 nelems = zfill(dw_ctx_zone, MIN_DELAYED_WORK_CTX_ALLOCATED);
5357 if (nelems < MIN_DELAYED_WORK_CTX_ALLOCATED) {
5358 printf("vm_page_delayed_work_init_ctx: Failed to preallocate minimum delayed work contexts (%d vs %d).\n", nelems, MIN_DELAYED_WORK_CTX_ALLOCATED);
5359 #if DEVELOPMENT || DEBUG
5360 panic("Failed to preallocate minimum delayed work contexts (%d vs %d).\n", nelems, MIN_DELAYED_WORK_CTX_ALLOCATED);
5361 #endif /* DEVELOPMENT || DEBUG */
5362 }
5363 }
5364
5365 struct vm_page_delayed_work*
5366 vm_page_delayed_work_get_ctx(void)
5367 {
5368 struct vm_page_delayed_work_ctx * dw_ctx = NULL;
5369
5370 dw_ctx = (struct vm_page_delayed_work_ctx*) zalloc_noblock(dw_ctx_zone);
5371
5372 if (dw_ctx) {
5373 dw_ctx->delayed_owner = current_thread();
5374 } else {
5375 vm_page_delayed_work_ctx_needed++;
5376 }
5377 return dw_ctx ? dw_ctx->dwp : NULL;
5378 }
5379
5380 void
5381 vm_page_delayed_work_finish_ctx(struct vm_page_delayed_work* dwp)
5382 {
5383 struct vm_page_delayed_work_ctx *ldw_ctx;
5384
5385 ldw_ctx = (struct vm_page_delayed_work_ctx *)dwp;
5386 ldw_ctx->delayed_owner = NULL;
5387
5388 zfree(dw_ctx_zone, ldw_ctx);
5389 }
5390
5391 /*
5392 * Routine: vm_object_upl_request
5393 * Purpose:
5394 * Cause the population of a portion of a vm_object.
5395 * Depending on the nature of the request, the pages
5396 * returned may be contain valid data or be uninitialized.
5397 * A page list structure, listing the physical pages
5398 * will be returned upon request.
5399 * This function is called by the file system or any other
5400 * supplier of backing store to a pager.
5401 * IMPORTANT NOTE: The caller must still respect the relationship
5402 * between the vm_object and its backing memory object. The
5403 * caller MUST NOT substitute changes in the backing file
5404 * without first doing a memory_object_lock_request on the
5405 * target range unless it is know that the pages are not
5406 * shared with another entity at the pager level.
5407 * Copy_in_to:
5408 * if a page list structure is present
5409 * return the mapped physical pages, where a
5410 * page is not present, return a non-initialized
5411 * one. If the no_sync bit is turned on, don't
5412 * call the pager unlock to synchronize with other
5413 * possible copies of the page. Leave pages busy
5414 * in the original object, if a page list structure
5415 * was specified. When a commit of the page list
5416 * pages is done, the dirty bit will be set for each one.
5417 * Copy_out_from:
5418 * If a page list structure is present, return
5419 * all mapped pages. Where a page does not exist
5420 * map a zero filled one. Leave pages busy in
5421 * the original object. If a page list structure
5422 * is not specified, this call is a no-op.
5423 *
5424 * Note: access of default pager objects has a rather interesting
5425 * twist. The caller of this routine, presumably the file system
5426 * page cache handling code, will never actually make a request
5427 * against a default pager backed object. Only the default
5428 * pager will make requests on backing store related vm_objects
5429 * In this way the default pager can maintain the relationship
5430 * between backing store files (abstract memory objects) and
5431 * the vm_objects (cache objects), they support.
5432 *
5433 */
5434
5435 __private_extern__ kern_return_t
5436 vm_object_upl_request(
5437 vm_object_t object,
5438 vm_object_offset_t offset,
5439 upl_size_t size,
5440 upl_t *upl_ptr,
5441 upl_page_info_array_t user_page_list,
5442 unsigned int *page_list_count,
5443 upl_control_flags_t cntrl_flags,
5444 vm_tag_t tag)
5445 {
5446 vm_page_t dst_page = VM_PAGE_NULL;
5447 vm_object_offset_t dst_offset;
5448 upl_size_t xfer_size;
5449 unsigned int size_in_pages;
5450 boolean_t dirty;
5451 boolean_t hw_dirty;
5452 upl_t upl = NULL;
5453 unsigned int entry;
5454 vm_page_t alias_page = NULL;
5455 int refmod_state = 0;
5456 wpl_array_t lite_list = NULL;
5457 vm_object_t last_copy_object;
5458 struct vm_page_delayed_work dw_array;
5459 struct vm_page_delayed_work *dwp, *dwp_start;
5460 bool dwp_finish_ctx = TRUE;
5461 int dw_count;
5462 int dw_limit;
5463 int io_tracking_flag = 0;
5464 int grab_options;
5465 int page_grab_count = 0;
5466 ppnum_t phys_page;
5467 pmap_flush_context pmap_flush_context_storage;
5468 boolean_t pmap_flushes_delayed = FALSE;
5469 #if DEVELOPMENT || DEBUG
5470 task_t task = current_task();
5471 #endif /* DEVELOPMENT || DEBUG */
5472
5473 dwp_start = dwp = NULL;
5474
5475 if (cntrl_flags & ~UPL_VALID_FLAGS) {
5476 /*
5477 * For forward compatibility's sake,
5478 * reject any unknown flag.
5479 */
5480 return KERN_INVALID_VALUE;
5481 }
5482 if ((!object->internal) && (object->paging_offset != 0)) {
5483 panic("vm_object_upl_request: external object with non-zero paging offset\n");
5484 }
5485 if (object->phys_contiguous) {
5486 panic("vm_object_upl_request: contiguous object specified\n");
5487 }
5488
5489 assertf(page_aligned(offset) && page_aligned(size),
5490 "offset 0x%llx size 0x%x",
5491 offset, size);
5492
5493 VM_DEBUG_CONSTANT_EVENT(vm_object_upl_request, VM_UPL_REQUEST, DBG_FUNC_START, size, cntrl_flags, 0, 0);
5494
5495 dw_count = 0;
5496 dw_limit = DELAYED_WORK_LIMIT(DEFAULT_DELAYED_WORK_LIMIT);
5497 dwp_start = vm_page_delayed_work_get_ctx();
5498 if (dwp_start == NULL) {
5499 dwp_start = &dw_array;
5500 dw_limit = 1;
5501 dwp_finish_ctx = FALSE;
5502 }
5503
5504 dwp = dwp_start;
5505
5506 if (size > MAX_UPL_SIZE_BYTES) {
5507 size = MAX_UPL_SIZE_BYTES;
5508 }
5509
5510 if ((cntrl_flags & UPL_SET_INTERNAL) && page_list_count != NULL) {
5511 *page_list_count = MAX_UPL_SIZE_BYTES >> PAGE_SHIFT;
5512 }
5513
5514 #if CONFIG_IOSCHED || UPL_DEBUG
5515 if (object->io_tracking || upl_debug_enabled) {
5516 io_tracking_flag |= UPL_CREATE_IO_TRACKING;
5517 }
5518 #endif
5519 #if CONFIG_IOSCHED
5520 if (object->io_tracking) {
5521 io_tracking_flag |= UPL_CREATE_EXPEDITE_SUP;
5522 }
5523 #endif
5524
5525 if (cntrl_flags & UPL_SET_INTERNAL) {
5526 if (cntrl_flags & UPL_SET_LITE) {
5527 upl = upl_create(UPL_CREATE_INTERNAL | UPL_CREATE_LITE | io_tracking_flag, 0, size);
5528
5529 user_page_list = (upl_page_info_t *) (((uintptr_t)upl) + sizeof(struct upl));
5530 lite_list = (wpl_array_t)
5531 (((uintptr_t)user_page_list) +
5532 ((size / PAGE_SIZE) * sizeof(upl_page_info_t)));
5533 if (size == 0) {
5534 user_page_list = NULL;
5535 lite_list = NULL;
5536 }
5537 } else {
5538 upl = upl_create(UPL_CREATE_INTERNAL | io_tracking_flag, 0, size);
5539
5540 user_page_list = (upl_page_info_t *) (((uintptr_t)upl) + sizeof(struct upl));
5541 if (size == 0) {
5542 user_page_list = NULL;
5543 }
5544 }
5545 } else {
5546 if (cntrl_flags & UPL_SET_LITE) {
5547 upl = upl_create(UPL_CREATE_EXTERNAL | UPL_CREATE_LITE | io_tracking_flag, 0, size);
5548
5549 lite_list = (wpl_array_t) (((uintptr_t)upl) + sizeof(struct upl));
5550 if (size == 0) {
5551 lite_list = NULL;
5552 }
5553 } else {
5554 upl = upl_create(UPL_CREATE_EXTERNAL | io_tracking_flag, 0, size);
5555 }
5556 }
5557 *upl_ptr = upl;
5558
5559 if (user_page_list) {
5560 user_page_list[0].device = FALSE;
5561 }
5562
5563 if (cntrl_flags & UPL_SET_LITE) {
5564 upl->map_object = object;
5565 } else {
5566 upl->map_object = vm_object_allocate(size);
5567 /*
5568 * No neeed to lock the new object: nobody else knows
5569 * about it yet, so it's all ours so far.
5570 */
5571 upl->map_object->shadow = object;
5572 upl->map_object->pageout = TRUE;
5573 upl->map_object->can_persist = FALSE;
5574 upl->map_object->copy_strategy = MEMORY_OBJECT_COPY_NONE;
5575 upl->map_object->vo_shadow_offset = offset;
5576 upl->map_object->wimg_bits = object->wimg_bits;
5577 assertf(page_aligned(upl->map_object->vo_shadow_offset),
5578 "object %p shadow_offset 0x%llx",
5579 upl->map_object, upl->map_object->vo_shadow_offset);
5580
5581 VM_PAGE_GRAB_FICTITIOUS(alias_page);
5582
5583 upl->flags |= UPL_SHADOWED;
5584 }
5585 if (cntrl_flags & UPL_FOR_PAGEOUT) {
5586 upl->flags |= UPL_PAGEOUT;
5587 }
5588
5589 vm_object_lock(object);
5590 vm_object_activity_begin(object);
5591
5592 grab_options = 0;
5593 #if CONFIG_SECLUDED_MEMORY
5594 if (object->can_grab_secluded) {
5595 grab_options |= VM_PAGE_GRAB_SECLUDED;
5596 }
5597 #endif /* CONFIG_SECLUDED_MEMORY */
5598
5599 /*
5600 * we can lock in the paging_offset once paging_in_progress is set
5601 */
5602 upl->u_size = size;
5603 upl->u_offset = offset + object->paging_offset;
5604
5605 #if CONFIG_IOSCHED || UPL_DEBUG
5606 if (object->io_tracking || upl_debug_enabled) {
5607 vm_object_activity_begin(object);
5608 queue_enter(&object->uplq, upl, upl_t, uplq);
5609 }
5610 #endif
5611 if ((cntrl_flags & UPL_WILL_MODIFY) && object->copy != VM_OBJECT_NULL) {
5612 /*
5613 * Honor copy-on-write obligations
5614 *
5615 * The caller is gathering these pages and
5616 * might modify their contents. We need to
5617 * make sure that the copy object has its own
5618 * private copies of these pages before we let
5619 * the caller modify them.
5620 */
5621 vm_object_update(object,
5622 offset,
5623 size,
5624 NULL,
5625 NULL,
5626 FALSE, /* should_return */
5627 MEMORY_OBJECT_COPY_SYNC,
5628 VM_PROT_NO_CHANGE);
5629
5630 VM_PAGEOUT_DEBUG(upl_cow, 1);
5631 VM_PAGEOUT_DEBUG(upl_cow_pages, (size >> PAGE_SHIFT));
5632 }
5633 /*
5634 * remember which copy object we synchronized with
5635 */
5636 last_copy_object = object->copy;
5637 entry = 0;
5638
5639 xfer_size = size;
5640 dst_offset = offset;
5641 size_in_pages = size / PAGE_SIZE;
5642
5643 if (vm_page_free_count > (vm_page_free_target + size_in_pages) ||
5644 object->resident_page_count < ((MAX_UPL_SIZE_BYTES * 2) >> PAGE_SHIFT)) {
5645 object->scan_collisions = 0;
5646 }
5647
5648 if ((cntrl_flags & UPL_WILL_MODIFY) && must_throttle_writes() == TRUE) {
5649 boolean_t isSSD = FALSE;
5650
5651 #if CONFIG_EMBEDDED
5652 isSSD = TRUE;
5653 #else
5654 vnode_pager_get_isSSD(object->pager, &isSSD);
5655 #endif
5656 vm_object_unlock(object);
5657
5658 OSAddAtomic(size_in_pages, &vm_upl_wait_for_pages);
5659
5660 if (isSSD == TRUE) {
5661 delay(1000 * size_in_pages);
5662 } else {
5663 delay(5000 * size_in_pages);
5664 }
5665 OSAddAtomic(-size_in_pages, &vm_upl_wait_for_pages);
5666
5667 vm_object_lock(object);
5668 }
5669
5670 while (xfer_size) {
5671 dwp->dw_mask = 0;
5672
5673 if ((alias_page == NULL) && !(cntrl_flags & UPL_SET_LITE)) {
5674 vm_object_unlock(object);
5675 VM_PAGE_GRAB_FICTITIOUS(alias_page);
5676 vm_object_lock(object);
5677 }
5678 if (cntrl_flags & UPL_COPYOUT_FROM) {
5679 upl->flags |= UPL_PAGE_SYNC_DONE;
5680
5681 if (((dst_page = vm_page_lookup(object, dst_offset)) == VM_PAGE_NULL) ||
5682 dst_page->vmp_fictitious ||
5683 dst_page->vmp_absent ||
5684 dst_page->vmp_error ||
5685 dst_page->vmp_cleaning ||
5686 (VM_PAGE_WIRED(dst_page))) {
5687 if (user_page_list) {
5688 user_page_list[entry].phys_addr = 0;
5689 }
5690
5691 goto try_next_page;
5692 }
5693 phys_page = VM_PAGE_GET_PHYS_PAGE(dst_page);
5694
5695 /*
5696 * grab this up front...
5697 * a high percentange of the time we're going to
5698 * need the hardware modification state a bit later
5699 * anyway... so we can eliminate an extra call into
5700 * the pmap layer by grabbing it here and recording it
5701 */
5702 if (dst_page->vmp_pmapped) {
5703 refmod_state = pmap_get_refmod(phys_page);
5704 } else {
5705 refmod_state = 0;
5706 }
5707
5708 if ((refmod_state & VM_MEM_REFERENCED) && VM_PAGE_INACTIVE(dst_page)) {
5709 /*
5710 * page is on inactive list and referenced...
5711 * reactivate it now... this gets it out of the
5712 * way of vm_pageout_scan which would have to
5713 * reactivate it upon tripping over it
5714 */
5715 dwp->dw_mask |= DW_vm_page_activate;
5716 }
5717 if (cntrl_flags & UPL_RET_ONLY_DIRTY) {
5718 /*
5719 * we're only asking for DIRTY pages to be returned
5720 */
5721 if (dst_page->vmp_laundry || !(cntrl_flags & UPL_FOR_PAGEOUT)) {
5722 /*
5723 * if we were the page stolen by vm_pageout_scan to be
5724 * cleaned (as opposed to a buddy being clustered in
5725 * or this request is not being driven by a PAGEOUT cluster
5726 * then we only need to check for the page being dirty or
5727 * precious to decide whether to return it
5728 */
5729 if (dst_page->vmp_dirty || dst_page->vmp_precious || (refmod_state & VM_MEM_MODIFIED)) {
5730 goto check_busy;
5731 }
5732 goto dont_return;
5733 }
5734 /*
5735 * this is a request for a PAGEOUT cluster and this page
5736 * is merely along for the ride as a 'buddy'... not only
5737 * does it have to be dirty to be returned, but it also
5738 * can't have been referenced recently...
5739 */
5740 if ((hibernate_cleaning_in_progress == TRUE ||
5741 (!((refmod_state & VM_MEM_REFERENCED) || dst_page->vmp_reference) ||
5742 (dst_page->vmp_q_state == VM_PAGE_ON_THROTTLED_Q))) &&
5743 ((refmod_state & VM_MEM_MODIFIED) || dst_page->vmp_dirty || dst_page->vmp_precious)) {
5744 goto check_busy;
5745 }
5746 dont_return:
5747 /*
5748 * if we reach here, we're not to return
5749 * the page... go on to the next one
5750 */
5751 if (dst_page->vmp_laundry == TRUE) {
5752 /*
5753 * if we get here, the page is not 'cleaning' (filtered out above).
5754 * since it has been referenced, remove it from the laundry
5755 * so we don't pay the cost of an I/O to clean a page
5756 * we're just going to take back
5757 */
5758 vm_page_lockspin_queues();
5759
5760 vm_pageout_steal_laundry(dst_page, TRUE);
5761 vm_page_activate(dst_page);
5762
5763 vm_page_unlock_queues();
5764 }
5765 if (user_page_list) {
5766 user_page_list[entry].phys_addr = 0;
5767 }
5768
5769 goto try_next_page;
5770 }
5771 check_busy:
5772 if (dst_page->vmp_busy) {
5773 if (cntrl_flags & UPL_NOBLOCK) {
5774 if (user_page_list) {
5775 user_page_list[entry].phys_addr = 0;
5776 }
5777 dwp->dw_mask = 0;
5778
5779 goto try_next_page;
5780 }
5781 /*
5782 * someone else is playing with the
5783 * page. We will have to wait.
5784 */
5785 PAGE_SLEEP(object, dst_page, THREAD_UNINT);
5786
5787 continue;
5788 }
5789 if (dst_page->vmp_q_state == VM_PAGE_ON_PAGEOUT_Q) {
5790 vm_page_lockspin_queues();
5791
5792 if (dst_page->vmp_q_state == VM_PAGE_ON_PAGEOUT_Q) {
5793 /*
5794 * we've buddied up a page for a clustered pageout
5795 * that has already been moved to the pageout
5796 * queue by pageout_scan... we need to remove
5797 * it from the queue and drop the laundry count
5798 * on that queue
5799 */
5800 vm_pageout_throttle_up(dst_page);
5801 }
5802 vm_page_unlock_queues();
5803 }
5804 hw_dirty = refmod_state & VM_MEM_MODIFIED;
5805 dirty = hw_dirty ? TRUE : dst_page->vmp_dirty;
5806
5807 if (phys_page > upl->highest_page) {
5808 upl->highest_page = phys_page;
5809 }
5810
5811 assert(!pmap_is_noencrypt(phys_page));
5812
5813 if (cntrl_flags & UPL_SET_LITE) {
5814 unsigned int pg_num;
5815
5816 pg_num = (unsigned int) ((dst_offset - offset) / PAGE_SIZE);
5817 assert(pg_num == (dst_offset - offset) / PAGE_SIZE);
5818 lite_list[pg_num >> 5] |= 1U << (pg_num & 31);
5819
5820 if (hw_dirty) {
5821 if (pmap_flushes_delayed == FALSE) {
5822 pmap_flush_context_init(&pmap_flush_context_storage);
5823 pmap_flushes_delayed = TRUE;
5824 }
5825 pmap_clear_refmod_options(phys_page,
5826 VM_MEM_MODIFIED,
5827 PMAP_OPTIONS_NOFLUSH | PMAP_OPTIONS_CLEAR_WRITE,
5828 &pmap_flush_context_storage);
5829 }
5830
5831 /*
5832 * Mark original page as cleaning
5833 * in place.
5834 */
5835 dst_page->vmp_cleaning = TRUE;
5836 dst_page->vmp_precious = FALSE;
5837 } else {
5838 /*
5839 * use pageclean setup, it is more
5840 * convenient even for the pageout
5841 * cases here
5842 */
5843 vm_object_lock(upl->map_object);
5844 vm_pageclean_setup(dst_page, alias_page, upl->map_object, size - xfer_size);
5845 vm_object_unlock(upl->map_object);
5846
5847 alias_page->vmp_absent = FALSE;
5848 alias_page = NULL;
5849 }
5850 if (dirty) {
5851 SET_PAGE_DIRTY(dst_page, FALSE);
5852 } else {
5853 dst_page->vmp_dirty = FALSE;
5854 }
5855
5856 if (!dirty) {
5857 dst_page->vmp_precious = TRUE;
5858 }
5859
5860 if (!(cntrl_flags & UPL_CLEAN_IN_PLACE)) {
5861 if (!VM_PAGE_WIRED(dst_page)) {
5862 dst_page->vmp_free_when_done = TRUE;
5863 }
5864 }
5865 } else {
5866 if ((cntrl_flags & UPL_WILL_MODIFY) && object->copy != last_copy_object) {
5867 /*
5868 * Honor copy-on-write obligations
5869 *
5870 * The copy object has changed since we
5871 * last synchronized for copy-on-write.
5872 * Another copy object might have been
5873 * inserted while we released the object's
5874 * lock. Since someone could have seen the
5875 * original contents of the remaining pages
5876 * through that new object, we have to
5877 * synchronize with it again for the remaining
5878 * pages only. The previous pages are "busy"
5879 * so they can not be seen through the new
5880 * mapping. The new mapping will see our
5881 * upcoming changes for those previous pages,
5882 * but that's OK since they couldn't see what
5883 * was there before. It's just a race anyway
5884 * and there's no guarantee of consistency or
5885 * atomicity. We just don't want new mappings
5886 * to see both the *before* and *after* pages.
5887 */
5888 if (object->copy != VM_OBJECT_NULL) {
5889 vm_object_update(
5890 object,
5891 dst_offset,/* current offset */
5892 xfer_size, /* remaining size */
5893 NULL,
5894 NULL,
5895 FALSE, /* should_return */
5896 MEMORY_OBJECT_COPY_SYNC,
5897 VM_PROT_NO_CHANGE);
5898
5899 VM_PAGEOUT_DEBUG(upl_cow_again, 1);
5900 VM_PAGEOUT_DEBUG(upl_cow_again_pages, (xfer_size >> PAGE_SHIFT));
5901 }
5902 /*
5903 * remember the copy object we synced with
5904 */
5905 last_copy_object = object->copy;
5906 }
5907 dst_page = vm_page_lookup(object, dst_offset);
5908
5909 if (dst_page != VM_PAGE_NULL) {
5910 if ((cntrl_flags & UPL_RET_ONLY_ABSENT)) {
5911 /*
5912 * skip over pages already present in the cache
5913 */
5914 if (user_page_list) {
5915 user_page_list[entry].phys_addr = 0;
5916 }
5917
5918 goto try_next_page;
5919 }
5920 if (dst_page->vmp_fictitious) {
5921 panic("need corner case for fictitious page");
5922 }
5923
5924 if (dst_page->vmp_busy || dst_page->vmp_cleaning) {
5925 /*
5926 * someone else is playing with the
5927 * page. We will have to wait.
5928 */
5929 PAGE_SLEEP(object, dst_page, THREAD_UNINT);
5930
5931 continue;
5932 }
5933 if (dst_page->vmp_laundry) {
5934 vm_pageout_steal_laundry(dst_page, FALSE);
5935 }
5936 } else {
5937 if (object->private) {
5938 /*
5939 * This is a nasty wrinkle for users
5940 * of upl who encounter device or
5941 * private memory however, it is
5942 * unavoidable, only a fault can
5943 * resolve the actual backing
5944 * physical page by asking the
5945 * backing device.
5946 */
5947 if (user_page_list) {
5948 user_page_list[entry].phys_addr = 0;
5949 }
5950
5951 goto try_next_page;
5952 }
5953 if (object->scan_collisions) {
5954 /*
5955 * the pageout_scan thread is trying to steal
5956 * pages from this object, but has run into our
5957 * lock... grab 2 pages from the head of the object...
5958 * the first is freed on behalf of pageout_scan, the
5959 * 2nd is for our own use... we use vm_object_page_grab
5960 * in both cases to avoid taking pages from the free
5961 * list since we are under memory pressure and our
5962 * lock on this object is getting in the way of
5963 * relieving it
5964 */
5965 dst_page = vm_object_page_grab(object);
5966
5967 if (dst_page != VM_PAGE_NULL) {
5968 vm_page_release(dst_page,
5969 FALSE);
5970 }
5971
5972 dst_page = vm_object_page_grab(object);
5973 }
5974 if (dst_page == VM_PAGE_NULL) {
5975 /*
5976 * need to allocate a page
5977 */
5978 dst_page = vm_page_grab_options(grab_options);
5979 if (dst_page != VM_PAGE_NULL) {
5980 page_grab_count++;
5981 }
5982 }
5983 if (dst_page == VM_PAGE_NULL) {
5984 if ((cntrl_flags & (UPL_RET_ONLY_ABSENT | UPL_NOBLOCK)) == (UPL_RET_ONLY_ABSENT | UPL_NOBLOCK)) {
5985 /*
5986 * we don't want to stall waiting for pages to come onto the free list
5987 * while we're already holding absent pages in this UPL
5988 * the caller will deal with the empty slots
5989 */
5990 if (user_page_list) {
5991 user_page_list[entry].phys_addr = 0;
5992 }
5993
5994 goto try_next_page;
5995 }
5996 /*
5997 * no pages available... wait
5998 * then try again for the same
5999 * offset...
6000 */
6001 vm_object_unlock(object);
6002
6003 OSAddAtomic(size_in_pages, &vm_upl_wait_for_pages);
6004
6005 VM_DEBUG_EVENT(vm_upl_page_wait, VM_UPL_PAGE_WAIT, DBG_FUNC_START, vm_upl_wait_for_pages, 0, 0, 0);
6006
6007 VM_PAGE_WAIT();
6008 OSAddAtomic(-size_in_pages, &vm_upl_wait_for_pages);
6009
6010 VM_DEBUG_EVENT(vm_upl_page_wait, VM_UPL_PAGE_WAIT, DBG_FUNC_END, vm_upl_wait_for_pages, 0, 0, 0);
6011
6012 vm_object_lock(object);
6013
6014 continue;
6015 }
6016 vm_page_insert(dst_page, object, dst_offset);
6017
6018 dst_page->vmp_absent = TRUE;
6019 dst_page->vmp_busy = FALSE;
6020
6021 if (cntrl_flags & UPL_RET_ONLY_ABSENT) {
6022 /*
6023 * if UPL_RET_ONLY_ABSENT was specified,
6024 * than we're definitely setting up a
6025 * upl for a clustered read/pagein
6026 * operation... mark the pages as clustered
6027 * so upl_commit_range can put them on the
6028 * speculative list
6029 */
6030 dst_page->vmp_clustered = TRUE;
6031
6032 if (!(cntrl_flags & UPL_FILE_IO)) {
6033 VM_STAT_INCR(pageins);
6034 }
6035 }
6036 }
6037 phys_page = VM_PAGE_GET_PHYS_PAGE(dst_page);
6038
6039 dst_page->vmp_overwriting = TRUE;
6040
6041 if (dst_page->vmp_pmapped) {
6042 if (!(cntrl_flags & UPL_FILE_IO)) {
6043 /*
6044 * eliminate all mappings from the
6045 * original object and its prodigy
6046 */
6047 refmod_state = pmap_disconnect(phys_page);
6048 } else {
6049 refmod_state = pmap_get_refmod(phys_page);
6050 }
6051 } else {
6052 refmod_state = 0;
6053 }
6054
6055 hw_dirty = refmod_state & VM_MEM_MODIFIED;
6056 dirty = hw_dirty ? TRUE : dst_page->vmp_dirty;
6057
6058 if (cntrl_flags & UPL_SET_LITE) {
6059 unsigned int pg_num;
6060
6061 pg_num = (unsigned int) ((dst_offset - offset) / PAGE_SIZE);
6062 assert(pg_num == (dst_offset - offset) / PAGE_SIZE);
6063 lite_list[pg_num >> 5] |= 1U << (pg_num & 31);
6064
6065 if (hw_dirty) {
6066 pmap_clear_modify(phys_page);
6067 }
6068
6069 /*
6070 * Mark original page as cleaning
6071 * in place.
6072 */
6073 dst_page->vmp_cleaning = TRUE;
6074 dst_page->vmp_precious = FALSE;
6075 } else {
6076 /*
6077 * use pageclean setup, it is more
6078 * convenient even for the pageout
6079 * cases here
6080 */
6081 vm_object_lock(upl->map_object);
6082 vm_pageclean_setup(dst_page, alias_page, upl->map_object, size - xfer_size);
6083 vm_object_unlock(upl->map_object);
6084
6085 alias_page->vmp_absent = FALSE;
6086 alias_page = NULL;
6087 }
6088
6089 if (cntrl_flags & UPL_REQUEST_SET_DIRTY) {
6090 upl->flags &= ~UPL_CLEAR_DIRTY;
6091 upl->flags |= UPL_SET_DIRTY;
6092 dirty = TRUE;
6093 /*
6094 * Page belonging to a code-signed object is about to
6095 * be written. Mark it tainted and disconnect it from
6096 * all pmaps so processes have to fault it back in and
6097 * deal with the tainted bit.
6098 */
6099 if (object->code_signed && dst_page->vmp_cs_tainted != VMP_CS_ALL_TRUE) {
6100 dst_page->vmp_cs_tainted = VMP_CS_ALL_TRUE;
6101 vm_page_upl_tainted++;
6102 if (dst_page->vmp_pmapped) {
6103 refmod_state = pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(dst_page));
6104 if (refmod_state & VM_MEM_REFERENCED) {
6105 dst_page->vmp_reference = TRUE;
6106 }
6107 }
6108 }
6109 } else if (cntrl_flags & UPL_CLEAN_IN_PLACE) {
6110 /*
6111 * clean in place for read implies
6112 * that a write will be done on all
6113 * the pages that are dirty before
6114 * a upl commit is done. The caller
6115 * is obligated to preserve the
6116 * contents of all pages marked dirty
6117 */
6118 upl->flags |= UPL_CLEAR_DIRTY;
6119 }
6120 dst_page->vmp_dirty = dirty;
6121
6122 if (!dirty) {
6123 dst_page->vmp_precious = TRUE;
6124 }
6125
6126 if (!VM_PAGE_WIRED(dst_page)) {
6127 /*
6128 * deny access to the target page while
6129 * it is being worked on
6130 */
6131 dst_page->vmp_busy = TRUE;
6132 } else {
6133 dwp->dw_mask |= DW_vm_page_wire;
6134 }
6135
6136 /*
6137 * We might be about to satisfy a fault which has been
6138 * requested. So no need for the "restart" bit.
6139 */
6140 dst_page->vmp_restart = FALSE;
6141 if (!dst_page->vmp_absent && !(cntrl_flags & UPL_WILL_MODIFY)) {
6142 /*
6143 * expect the page to be used
6144 */
6145 dwp->dw_mask |= DW_set_reference;
6146 }
6147 if (cntrl_flags & UPL_PRECIOUS) {
6148 if (object->internal) {
6149 SET_PAGE_DIRTY(dst_page, FALSE);
6150 dst_page->vmp_precious = FALSE;
6151 } else {
6152 dst_page->vmp_precious = TRUE;
6153 }
6154 } else {
6155 dst_page->vmp_precious = FALSE;
6156 }
6157 }
6158 if (dst_page->vmp_busy) {
6159 upl->flags |= UPL_HAS_BUSY;
6160 }
6161
6162 if (phys_page > upl->highest_page) {
6163 upl->highest_page = phys_page;
6164 }
6165 assert(!pmap_is_noencrypt(phys_page));
6166 if (user_page_list) {
6167 user_page_list[entry].phys_addr = phys_page;
6168 user_page_list[entry].free_when_done = dst_page->vmp_free_when_done;
6169 user_page_list[entry].absent = dst_page->vmp_absent;
6170 user_page_list[entry].dirty = dst_page->vmp_dirty;
6171 user_page_list[entry].precious = dst_page->vmp_precious;
6172 user_page_list[entry].device = FALSE;
6173 user_page_list[entry].needed = FALSE;
6174 if (dst_page->vmp_clustered == TRUE) {
6175 user_page_list[entry].speculative = (dst_page->vmp_q_state == VM_PAGE_ON_SPECULATIVE_Q) ? TRUE : FALSE;
6176 } else {
6177 user_page_list[entry].speculative = FALSE;
6178 }
6179 user_page_list[entry].cs_validated = dst_page->vmp_cs_validated;
6180 user_page_list[entry].cs_tainted = dst_page->vmp_cs_tainted;
6181 user_page_list[entry].cs_nx = dst_page->vmp_cs_nx;
6182 user_page_list[entry].mark = FALSE;
6183 }
6184 /*
6185 * if UPL_RET_ONLY_ABSENT is set, then
6186 * we are working with a fresh page and we've
6187 * just set the clustered flag on it to
6188 * indicate that it was drug in as part of a
6189 * speculative cluster... so leave it alone
6190 */
6191 if (!(cntrl_flags & UPL_RET_ONLY_ABSENT)) {
6192 /*
6193 * someone is explicitly grabbing this page...
6194 * update clustered and speculative state
6195 *
6196 */
6197 if (dst_page->vmp_clustered) {
6198 VM_PAGE_CONSUME_CLUSTERED(dst_page);
6199 }
6200 }
6201 try_next_page:
6202 if (dwp->dw_mask) {
6203 if (dwp->dw_mask & DW_vm_page_activate) {
6204 VM_STAT_INCR(reactivations);
6205 }
6206
6207 VM_PAGE_ADD_DELAYED_WORK(dwp, dst_page, dw_count);
6208
6209 if (dw_count >= dw_limit) {
6210 vm_page_do_delayed_work(object, tag, dwp_start, dw_count);
6211
6212 dwp = dwp_start;
6213 dw_count = 0;
6214 }
6215 }
6216 entry++;
6217 dst_offset += PAGE_SIZE_64;
6218 xfer_size -= PAGE_SIZE;
6219 }
6220 if (dw_count) {
6221 vm_page_do_delayed_work(object, tag, dwp_start, dw_count);
6222 dwp = dwp_start;
6223 dw_count = 0;
6224 }
6225
6226 if (alias_page != NULL) {
6227 VM_PAGE_FREE(alias_page);
6228 }
6229 if (pmap_flushes_delayed == TRUE) {
6230 pmap_flush(&pmap_flush_context_storage);
6231 }
6232
6233 if (page_list_count != NULL) {
6234 if (upl->flags & UPL_INTERNAL) {
6235 *page_list_count = 0;
6236 } else if (*page_list_count > entry) {
6237 *page_list_count = entry;
6238 }
6239 }
6240 #if UPL_DEBUG
6241 upl->upl_state = 1;
6242 #endif
6243 vm_object_unlock(object);
6244
6245 VM_DEBUG_CONSTANT_EVENT(vm_object_upl_request, VM_UPL_REQUEST, DBG_FUNC_END, page_grab_count, 0, 0, 0);
6246 #if DEVELOPMENT || DEBUG
6247 if (task != NULL) {
6248 ledger_credit(task->ledger, task_ledgers.pages_grabbed_upl, page_grab_count);
6249 }
6250 #endif /* DEVELOPMENT || DEBUG */
6251
6252 if (dwp_start && dwp_finish_ctx) {
6253 vm_page_delayed_work_finish_ctx(dwp_start);
6254 dwp_start = dwp = NULL;
6255 }
6256
6257 return KERN_SUCCESS;
6258 }
6259
6260 /*
6261 * Routine: vm_object_super_upl_request
6262 * Purpose:
6263 * Cause the population of a portion of a vm_object
6264 * in much the same way as memory_object_upl_request.
6265 * Depending on the nature of the request, the pages
6266 * returned may be contain valid data or be uninitialized.
6267 * However, the region may be expanded up to the super
6268 * cluster size provided.
6269 */
6270
6271 __private_extern__ kern_return_t
6272 vm_object_super_upl_request(
6273 vm_object_t object,
6274 vm_object_offset_t offset,
6275 upl_size_t size,
6276 upl_size_t super_cluster,
6277 upl_t *upl,
6278 upl_page_info_t *user_page_list,
6279 unsigned int *page_list_count,
6280 upl_control_flags_t cntrl_flags,
6281 vm_tag_t tag)
6282 {
6283 if (object->paging_offset > offset || ((cntrl_flags & UPL_VECTOR) == UPL_VECTOR)) {
6284 return KERN_FAILURE;
6285 }
6286
6287 assert(object->paging_in_progress);
6288 offset = offset - object->paging_offset;
6289
6290 if (super_cluster > size) {
6291 vm_object_offset_t base_offset;
6292 upl_size_t super_size;
6293 vm_object_size_t super_size_64;
6294
6295 base_offset = (offset & ~((vm_object_offset_t) super_cluster - 1));
6296 super_size = (offset + size) > (base_offset + super_cluster) ? super_cluster << 1 : super_cluster;
6297 super_size_64 = ((base_offset + super_size) > object->vo_size) ? (object->vo_size - base_offset) : super_size;
6298 super_size = (upl_size_t) super_size_64;
6299 assert(super_size == super_size_64);
6300
6301 if (offset > (base_offset + super_size)) {
6302 panic("vm_object_super_upl_request: Missed target pageout"
6303 " %#llx,%#llx, %#x, %#x, %#x, %#llx\n",
6304 offset, base_offset, super_size, super_cluster,
6305 size, object->paging_offset);
6306 }
6307 /*
6308 * apparently there is a case where the vm requests a
6309 * page to be written out who's offset is beyond the
6310 * object size
6311 */
6312 if ((offset + size) > (base_offset + super_size)) {
6313 super_size_64 = (offset + size) - base_offset;
6314 super_size = (upl_size_t) super_size_64;
6315 assert(super_size == super_size_64);
6316 }
6317
6318 offset = base_offset;
6319 size = super_size;
6320 }
6321 return vm_object_upl_request(object, offset, size, upl, user_page_list, page_list_count, cntrl_flags, tag);
6322 }
6323
6324 int cs_executable_create_upl = 0;
6325 extern int proc_selfpid(void);
6326 extern char *proc_name_address(void *p);
6327
6328 kern_return_t
6329 vm_map_create_upl(
6330 vm_map_t map,
6331 vm_map_address_t offset,
6332 upl_size_t *upl_size,
6333 upl_t *upl,
6334 upl_page_info_array_t page_list,
6335 unsigned int *count,
6336 upl_control_flags_t *flags,
6337 vm_tag_t tag)
6338 {
6339 vm_map_entry_t entry;
6340 upl_control_flags_t caller_flags;
6341 int force_data_sync;
6342 int sync_cow_data;
6343 vm_object_t local_object;
6344 vm_map_offset_t local_offset;
6345 vm_map_offset_t local_start;
6346 kern_return_t ret;
6347 vm_map_address_t original_offset;
6348 vm_map_size_t original_size, adjusted_size;
6349 vm_map_offset_t local_entry_start;
6350 vm_object_offset_t local_entry_offset;
6351 vm_object_offset_t offset_in_mapped_page;
6352 boolean_t release_map = FALSE;
6353
6354 start_with_map:
6355
6356 original_offset = offset;
6357 original_size = *upl_size;
6358 adjusted_size = original_size;
6359
6360 caller_flags = *flags;
6361
6362 if (caller_flags & ~UPL_VALID_FLAGS) {
6363 /*
6364 * For forward compatibility's sake,
6365 * reject any unknown flag.
6366 */
6367 ret = KERN_INVALID_VALUE;
6368 goto done;
6369 }
6370 force_data_sync = (caller_flags & UPL_FORCE_DATA_SYNC);
6371 sync_cow_data = !(caller_flags & UPL_COPYOUT_FROM);
6372
6373 if (upl == NULL) {
6374 ret = KERN_INVALID_ARGUMENT;
6375 goto done;
6376 }
6377
6378 REDISCOVER_ENTRY:
6379 vm_map_lock_read(map);
6380
6381 if (!vm_map_lookup_entry(map, offset, &entry)) {
6382 vm_map_unlock_read(map);
6383 ret = KERN_FAILURE;
6384 goto done;
6385 }
6386
6387 local_entry_start = entry->vme_start;
6388 local_entry_offset = VME_OFFSET(entry);
6389
6390 if (VM_MAP_PAGE_SHIFT(map) < PAGE_SHIFT) {
6391 DEBUG4K_UPL("map %p (%d) offset 0x%llx size 0x%x flags 0x%llx\n", map, VM_MAP_PAGE_SHIFT(map), (uint64_t)offset, *upl_size, *flags);
6392 }
6393
6394 if (entry->vme_end - original_offset < adjusted_size) {
6395 adjusted_size = entry->vme_end - original_offset;
6396 assert(adjusted_size > 0);
6397 *upl_size = (upl_size_t) adjusted_size;
6398 assert(*upl_size == adjusted_size);
6399 }
6400
6401 if (caller_flags & UPL_QUERY_OBJECT_TYPE) {
6402 *flags = 0;
6403
6404 if (!entry->is_sub_map &&
6405 VME_OBJECT(entry) != VM_OBJECT_NULL) {
6406 if (VME_OBJECT(entry)->private) {
6407 *flags = UPL_DEV_MEMORY;
6408 }
6409
6410 if (VME_OBJECT(entry)->phys_contiguous) {
6411 *flags |= UPL_PHYS_CONTIG;
6412 }
6413 }
6414 vm_map_unlock_read(map);
6415 ret = KERN_SUCCESS;
6416 goto done;
6417 }
6418
6419 offset_in_mapped_page = 0;
6420 if (VM_MAP_PAGE_SIZE(map) < PAGE_SIZE) {
6421 offset = vm_map_trunc_page(original_offset, VM_MAP_PAGE_MASK(map));
6422 *upl_size = (upl_size_t)
6423 (vm_map_round_page(original_offset + adjusted_size,
6424 VM_MAP_PAGE_MASK(map))
6425 - offset);
6426
6427 offset_in_mapped_page = original_offset - offset;
6428 assert(offset_in_mapped_page < VM_MAP_PAGE_SIZE(map));
6429
6430 DEBUG4K_UPL("map %p (%d) offset 0x%llx size 0x%llx flags 0x%llx -> offset 0x%llx adjusted_size 0x%llx *upl_size 0x%x offset_in_mapped_page 0x%llx\n", map, VM_MAP_PAGE_SHIFT(map), (uint64_t)original_offset, (uint64_t)original_size, *flags, (uint64_t)offset, (uint64_t)adjusted_size, *upl_size, offset_in_mapped_page);
6431 }
6432
6433 if (VME_OBJECT(entry) == VM_OBJECT_NULL ||
6434 !VME_OBJECT(entry)->phys_contiguous) {
6435 if (*upl_size > MAX_UPL_SIZE_BYTES) {
6436 *upl_size = MAX_UPL_SIZE_BYTES;
6437 }
6438 }
6439
6440 /*
6441 * Create an object if necessary.
6442 */
6443 if (VME_OBJECT(entry) == VM_OBJECT_NULL) {
6444 if (vm_map_lock_read_to_write(map)) {
6445 goto REDISCOVER_ENTRY;
6446 }
6447
6448 VME_OBJECT_SET(entry,
6449 vm_object_allocate((vm_size_t)
6450 vm_object_round_page((entry->vme_end - entry->vme_start))));
6451 VME_OFFSET_SET(entry, 0);
6452 assert(entry->use_pmap);
6453
6454 vm_map_lock_write_to_read(map);
6455 }
6456
6457 if (!(caller_flags & UPL_COPYOUT_FROM) &&
6458 !entry->is_sub_map &&
6459 !(entry->protection & VM_PROT_WRITE)) {
6460 vm_map_unlock_read(map);
6461 ret = KERN_PROTECTION_FAILURE;
6462 goto done;
6463 }
6464
6465 #if CONFIG_EMBEDDED
6466 if (map->pmap != kernel_pmap &&
6467 (caller_flags & UPL_COPYOUT_FROM) &&
6468 (entry->protection & VM_PROT_EXECUTE) &&
6469 !(entry->protection & VM_PROT_WRITE)) {
6470 vm_offset_t kaddr;
6471 vm_size_t ksize;
6472
6473 /*
6474 * We're about to create a read-only UPL backed by
6475 * memory from an executable mapping.
6476 * Wiring the pages would result in the pages being copied
6477 * (due to the "MAP_PRIVATE" mapping) and no longer
6478 * code-signed, so no longer eligible for execution.
6479 * Instead, let's copy the data into a kernel buffer and
6480 * create the UPL from this kernel buffer.
6481 * The kernel buffer is then freed, leaving the UPL holding
6482 * the last reference on the VM object, so the memory will
6483 * be released when the UPL is committed.
6484 */
6485
6486 vm_map_unlock_read(map);
6487 entry = VM_MAP_ENTRY_NULL;
6488 /* allocate kernel buffer */
6489 ksize = round_page(*upl_size);
6490 kaddr = 0;
6491 ret = kmem_alloc_pageable(kernel_map,
6492 &kaddr,
6493 ksize,
6494 tag);
6495 if (ret == KERN_SUCCESS) {
6496 /* copyin the user data */
6497 ret = copyinmap(map, offset, (void *)kaddr, *upl_size);
6498 }
6499 if (ret == KERN_SUCCESS) {
6500 if (ksize > *upl_size) {
6501 /* zero out the extra space in kernel buffer */
6502 memset((void *)(kaddr + *upl_size),
6503 0,
6504 ksize - *upl_size);
6505 }
6506 /* create the UPL from the kernel buffer */
6507 vm_object_offset_t offset_in_object;
6508 vm_object_offset_t offset_in_object_page;
6509
6510 offset_in_object = offset - local_entry_start + local_entry_offset;
6511 offset_in_object_page = offset_in_object - vm_object_trunc_page(offset_in_object);
6512 assert(offset_in_object_page < PAGE_SIZE);
6513 assert(offset_in_object_page + offset_in_mapped_page < PAGE_SIZE);
6514 *upl_size -= offset_in_object_page + offset_in_mapped_page;
6515 ret = vm_map_create_upl(kernel_map,
6516 (vm_map_address_t)(kaddr + offset_in_object_page + offset_in_mapped_page),
6517 upl_size, upl, page_list, count, flags, tag);
6518 }
6519 if (kaddr != 0) {
6520 /* free the kernel buffer */
6521 kmem_free(kernel_map, kaddr, ksize);
6522 kaddr = 0;
6523 ksize = 0;
6524 }
6525 #if DEVELOPMENT || DEBUG
6526 DTRACE_VM4(create_upl_from_executable,
6527 vm_map_t, map,
6528 vm_map_address_t, offset,
6529 upl_size_t, *upl_size,
6530 kern_return_t, ret);
6531 #endif /* DEVELOPMENT || DEBUG */
6532 goto done;
6533 }
6534 #endif /* CONFIG_EMBEDDED */
6535
6536 local_object = VME_OBJECT(entry);
6537 assert(local_object != VM_OBJECT_NULL);
6538
6539 if (!entry->is_sub_map &&
6540 !entry->needs_copy &&
6541 *upl_size != 0 &&
6542 local_object->vo_size > *upl_size && /* partial UPL */
6543 entry->wired_count == 0 && /* No COW for entries that are wired */
6544 (map->pmap != kernel_pmap) && /* alias checks */
6545 (vm_map_entry_should_cow_for_true_share(entry) /* case 1 */
6546 ||
6547 ( /* case 2 */
6548 local_object->internal &&
6549 (local_object->copy_strategy == MEMORY_OBJECT_COPY_SYMMETRIC) &&
6550 local_object->ref_count > 1))) {
6551 vm_prot_t prot;
6552
6553 /*
6554 * Case 1:
6555 * Set up the targeted range for copy-on-write to avoid
6556 * applying true_share/copy_delay to the entire object.
6557 *
6558 * Case 2:
6559 * This map entry covers only part of an internal
6560 * object. There could be other map entries covering
6561 * other areas of this object and some of these map
6562 * entries could be marked as "needs_copy", which
6563 * assumes that the object is COPY_SYMMETRIC.
6564 * To avoid marking this object as COPY_DELAY and
6565 * "true_share", let's shadow it and mark the new
6566 * (smaller) object as "true_share" and COPY_DELAY.
6567 */
6568
6569 if (vm_map_lock_read_to_write(map)) {
6570 goto REDISCOVER_ENTRY;
6571 }
6572 vm_map_lock_assert_exclusive(map);
6573 assert(VME_OBJECT(entry) == local_object);
6574
6575 vm_map_clip_start(map,
6576 entry,
6577 vm_map_trunc_page(offset,
6578 VM_MAP_PAGE_MASK(map)));
6579 vm_map_clip_end(map,
6580 entry,
6581 vm_map_round_page(offset + *upl_size,
6582 VM_MAP_PAGE_MASK(map)));
6583 if ((entry->vme_end - offset) < *upl_size) {
6584 *upl_size = (upl_size_t) (entry->vme_end - offset);
6585 assert(*upl_size == entry->vme_end - offset);
6586 }
6587
6588 prot = entry->protection & ~VM_PROT_WRITE;
6589 if (override_nx(map, VME_ALIAS(entry)) && prot) {
6590 prot |= VM_PROT_EXECUTE;
6591 }
6592 vm_object_pmap_protect(local_object,
6593 VME_OFFSET(entry),
6594 entry->vme_end - entry->vme_start,
6595 ((entry->is_shared ||
6596 map->mapped_in_other_pmaps)
6597 ? PMAP_NULL
6598 : map->pmap),
6599 VM_MAP_PAGE_SIZE(map),
6600 entry->vme_start,
6601 prot);
6602
6603 assert(entry->wired_count == 0);
6604
6605 /*
6606 * Lock the VM object and re-check its status: if it's mapped
6607 * in another address space, we could still be racing with
6608 * another thread holding that other VM map exclusively.
6609 */
6610 vm_object_lock(local_object);
6611 if (local_object->true_share) {
6612 /* object is already in proper state: no COW needed */
6613 assert(local_object->copy_strategy !=
6614 MEMORY_OBJECT_COPY_SYMMETRIC);
6615 } else {
6616 /* not true_share: ask for copy-on-write below */
6617 assert(local_object->copy_strategy ==
6618 MEMORY_OBJECT_COPY_SYMMETRIC);
6619 entry->needs_copy = TRUE;
6620 }
6621 vm_object_unlock(local_object);
6622
6623 vm_map_lock_write_to_read(map);
6624 }
6625
6626 if (entry->needs_copy) {
6627 /*
6628 * Honor copy-on-write for COPY_SYMMETRIC
6629 * strategy.
6630 */
6631 vm_map_t local_map;
6632 vm_object_t object;
6633 vm_object_offset_t new_offset;
6634 vm_prot_t prot;
6635 boolean_t wired;
6636 vm_map_version_t version;
6637 vm_map_t real_map;
6638 vm_prot_t fault_type;
6639
6640 if (entry->vme_start < VM_MAP_TRUNC_PAGE(offset, VM_MAP_PAGE_MASK(map)) ||
6641 entry->vme_end > VM_MAP_ROUND_PAGE(offset + *upl_size, VM_MAP_PAGE_MASK(map))) {
6642 /*
6643 * Clip the requested range first to minimize the
6644 * amount of potential copying...
6645 */
6646 if (vm_map_lock_read_to_write(map)) {
6647 goto REDISCOVER_ENTRY;
6648 }
6649 vm_map_lock_assert_exclusive(map);
6650 assert(VME_OBJECT(entry) == local_object);
6651 vm_map_clip_start(map, entry,
6652 VM_MAP_TRUNC_PAGE(offset, VM_MAP_PAGE_MASK(map)));
6653 vm_map_clip_end(map, entry,
6654 VM_MAP_ROUND_PAGE(offset + *upl_size, VM_MAP_PAGE_MASK(map)));
6655 vm_map_lock_write_to_read(map);
6656 }
6657
6658 local_map = map;
6659
6660 if (caller_flags & UPL_COPYOUT_FROM) {
6661 fault_type = VM_PROT_READ | VM_PROT_COPY;
6662 vm_counters.create_upl_extra_cow++;
6663 vm_counters.create_upl_extra_cow_pages +=
6664 (entry->vme_end - entry->vme_start) / PAGE_SIZE;
6665 } else {
6666 fault_type = VM_PROT_WRITE;
6667 }
6668 if (vm_map_lookup_locked(&local_map,
6669 offset, fault_type,
6670 OBJECT_LOCK_EXCLUSIVE,
6671 &version, &object,
6672 &new_offset, &prot, &wired,
6673 NULL,
6674 &real_map, NULL) != KERN_SUCCESS) {
6675 if (fault_type == VM_PROT_WRITE) {
6676 vm_counters.create_upl_lookup_failure_write++;
6677 } else {
6678 vm_counters.create_upl_lookup_failure_copy++;
6679 }
6680 vm_map_unlock_read(local_map);
6681 ret = KERN_FAILURE;
6682 goto done;
6683 }
6684 if (real_map != local_map) {
6685 vm_map_unlock(real_map);
6686 }
6687 vm_map_unlock_read(local_map);
6688
6689 vm_object_unlock(object);
6690
6691 goto REDISCOVER_ENTRY;
6692 }
6693
6694 if (entry->is_sub_map) {
6695 vm_map_t submap;
6696
6697 submap = VME_SUBMAP(entry);
6698 local_start = entry->vme_start;
6699 local_offset = (vm_map_offset_t)VME_OFFSET(entry);
6700
6701 vm_map_reference(submap);
6702 vm_map_unlock_read(map);
6703
6704 DEBUG4K_UPL("map %p offset 0x%llx (0x%llx) size 0x%x (adjusted 0x%llx original 0x%llx) offset_in_mapped_page 0x%llx submap %p\n", map, (uint64_t)offset, (uint64_t)original_offset, *upl_size, (uint64_t)adjusted_size, (uint64_t)original_size, offset_in_mapped_page, submap);
6705 offset += offset_in_mapped_page;
6706 *upl_size -= offset_in_mapped_page;
6707
6708 if (release_map) {
6709 vm_map_deallocate(map);
6710 }
6711 map = submap;
6712 release_map = TRUE;
6713 offset = local_offset + (offset - local_start);
6714 goto start_with_map;
6715 }
6716
6717 if (sync_cow_data &&
6718 (VME_OBJECT(entry)->shadow ||
6719 VME_OBJECT(entry)->copy)) {
6720 local_object = VME_OBJECT(entry);
6721 local_start = entry->vme_start;
6722 local_offset = (vm_map_offset_t)VME_OFFSET(entry);
6723
6724 vm_object_reference(local_object);
6725 vm_map_unlock_read(map);
6726
6727 if (local_object->shadow && local_object->copy) {
6728 vm_object_lock_request(local_object->shadow,
6729 ((vm_object_offset_t)
6730 ((offset - local_start) +
6731 local_offset) +
6732 local_object->vo_shadow_offset),
6733 *upl_size, FALSE,
6734 MEMORY_OBJECT_DATA_SYNC,
6735 VM_PROT_NO_CHANGE);
6736 }
6737 sync_cow_data = FALSE;
6738 vm_object_deallocate(local_object);
6739
6740 goto REDISCOVER_ENTRY;
6741 }
6742 if (force_data_sync) {
6743 local_object = VME_OBJECT(entry);
6744 local_start = entry->vme_start;
6745 local_offset = (vm_map_offset_t)VME_OFFSET(entry);
6746
6747 vm_object_reference(local_object);
6748 vm_map_unlock_read(map);
6749
6750 vm_object_lock_request(local_object,
6751 ((vm_object_offset_t)
6752 ((offset - local_start) +
6753 local_offset)),
6754 (vm_object_size_t)*upl_size,
6755 FALSE,
6756 MEMORY_OBJECT_DATA_SYNC,
6757 VM_PROT_NO_CHANGE);
6758
6759 force_data_sync = FALSE;
6760 vm_object_deallocate(local_object);
6761
6762 goto REDISCOVER_ENTRY;
6763 }
6764 if (VME_OBJECT(entry)->private) {
6765 *flags = UPL_DEV_MEMORY;
6766 } else {
6767 *flags = 0;
6768 }
6769
6770 if (VME_OBJECT(entry)->phys_contiguous) {
6771 *flags |= UPL_PHYS_CONTIG;
6772 }
6773
6774 local_object = VME_OBJECT(entry);
6775 local_offset = (vm_map_offset_t)VME_OFFSET(entry);
6776 local_start = entry->vme_start;
6777
6778 /*
6779 * Wiring will copy the pages to the shadow object.
6780 * The shadow object will not be code-signed so
6781 * attempting to execute code from these copied pages
6782 * would trigger a code-signing violation.
6783 */
6784 if (entry->protection & VM_PROT_EXECUTE) {
6785 #if MACH_ASSERT
6786 printf("pid %d[%s] create_upl out of executable range from "
6787 "0x%llx to 0x%llx: side effects may include "
6788 "code-signing violations later on\n",
6789 proc_selfpid(),
6790 (current_task()->bsd_info
6791 ? proc_name_address(current_task()->bsd_info)
6792 : "?"),
6793 (uint64_t) entry->vme_start,
6794 (uint64_t) entry->vme_end);
6795 #endif /* MACH_ASSERT */
6796 DTRACE_VM2(cs_executable_create_upl,
6797 uint64_t, (uint64_t)entry->vme_start,
6798 uint64_t, (uint64_t)entry->vme_end);
6799 cs_executable_create_upl++;
6800 }
6801
6802 vm_object_lock(local_object);
6803
6804 /*
6805 * Ensure that this object is "true_share" and "copy_delay" now,
6806 * while we're still holding the VM map lock. After we unlock the map,
6807 * anything could happen to that mapping, including some copy-on-write
6808 * activity. We need to make sure that the IOPL will point at the
6809 * same memory as the mapping.
6810 */
6811 if (local_object->true_share) {
6812 assert(local_object->copy_strategy !=
6813 MEMORY_OBJECT_COPY_SYMMETRIC);
6814 } else if (local_object != kernel_object &&
6815 local_object != compressor_object &&
6816 !local_object->phys_contiguous) {
6817 #if VM_OBJECT_TRACKING_OP_TRUESHARE
6818 if (!local_object->true_share &&
6819 vm_object_tracking_inited) {
6820 void *bt[VM_OBJECT_TRACKING_BTDEPTH];
6821 int num = 0;
6822 num = OSBacktrace(bt,
6823 VM_OBJECT_TRACKING_BTDEPTH);
6824 btlog_add_entry(vm_object_tracking_btlog,
6825 local_object,
6826 VM_OBJECT_TRACKING_OP_TRUESHARE,
6827 bt,
6828 num);
6829 }
6830 #endif /* VM_OBJECT_TRACKING_OP_TRUESHARE */
6831 local_object->true_share = TRUE;
6832 if (local_object->copy_strategy ==
6833 MEMORY_OBJECT_COPY_SYMMETRIC) {
6834 local_object->copy_strategy = MEMORY_OBJECT_COPY_DELAY;
6835 }
6836 }
6837
6838 vm_object_reference_locked(local_object);
6839 vm_object_unlock(local_object);
6840
6841 vm_map_unlock_read(map);
6842
6843 offset += offset_in_mapped_page;
6844 assert(*upl_size > offset_in_mapped_page);
6845 *upl_size -= offset_in_mapped_page;
6846
6847 ret = vm_object_iopl_request(local_object,
6848 ((vm_object_offset_t)
6849 ((offset - local_start) + local_offset)),
6850 *upl_size,
6851 upl,
6852 page_list,
6853 count,
6854 caller_flags,
6855 tag);
6856 vm_object_deallocate(local_object);
6857
6858 done:
6859 if (release_map) {
6860 vm_map_deallocate(map);
6861 }
6862
6863 return ret;
6864 }
6865
6866 /*
6867 * Internal routine to enter a UPL into a VM map.
6868 *
6869 * JMM - This should just be doable through the standard
6870 * vm_map_enter() API.
6871 */
6872 kern_return_t
6873 vm_map_enter_upl(
6874 vm_map_t map,
6875 upl_t upl,
6876 vm_map_offset_t *dst_addr)
6877 {
6878 vm_map_size_t size;
6879 vm_object_offset_t offset;
6880 vm_map_offset_t addr;
6881 vm_page_t m;
6882 kern_return_t kr;
6883 int isVectorUPL = 0, curr_upl = 0;
6884 upl_t vector_upl = NULL;
6885 vm_offset_t vector_upl_dst_addr = 0;
6886 vm_map_t vector_upl_submap = NULL;
6887 upl_offset_t subupl_offset = 0;
6888 upl_size_t subupl_size = 0;
6889
6890 if (upl == UPL_NULL) {
6891 return KERN_INVALID_ARGUMENT;
6892 }
6893
6894 DEBUG4K_UPL("map %p upl %p flags 0x%x object %p offset 0x%llx size 0x%x \n", map, upl, upl->flags, upl->map_object, upl->u_offset, upl->u_size);
6895 assert(map == kernel_map);
6896
6897 if ((isVectorUPL = vector_upl_is_valid(upl))) {
6898 int mapped = 0, valid_upls = 0;
6899 vector_upl = upl;
6900
6901 upl_lock(vector_upl);
6902 for (curr_upl = 0; curr_upl < MAX_VECTOR_UPL_ELEMENTS; curr_upl++) {
6903 upl = vector_upl_subupl_byindex(vector_upl, curr_upl );
6904 if (upl == NULL) {
6905 continue;
6906 }
6907 valid_upls++;
6908 if (UPL_PAGE_LIST_MAPPED & upl->flags) {
6909 mapped++;
6910 }
6911 }
6912
6913 if (mapped) {
6914 if (mapped != valid_upls) {
6915 panic("Only %d of the %d sub-upls within the Vector UPL are alread mapped\n", mapped, valid_upls);
6916 } else {
6917 upl_unlock(vector_upl);
6918 return KERN_FAILURE;
6919 }
6920 }
6921
6922 if (VM_MAP_PAGE_MASK(map) < PAGE_MASK) {
6923 panic("TODO4K: vector UPL not implemented");
6924 }
6925
6926 kr = kmem_suballoc(map, &vector_upl_dst_addr,
6927 vector_upl->u_size,
6928 FALSE,
6929 VM_FLAGS_ANYWHERE, VM_MAP_KERNEL_FLAGS_NONE, VM_KERN_MEMORY_NONE,
6930 &vector_upl_submap);
6931 if (kr != KERN_SUCCESS) {
6932 panic("Vector UPL submap allocation failed\n");
6933 }
6934 map = vector_upl_submap;
6935 vector_upl_set_submap(vector_upl, vector_upl_submap, vector_upl_dst_addr);
6936 curr_upl = 0;
6937 } else {
6938 upl_lock(upl);
6939 }
6940
6941 process_upl_to_enter:
6942 if (isVectorUPL) {
6943 if (curr_upl == MAX_VECTOR_UPL_ELEMENTS) {
6944 *dst_addr = vector_upl_dst_addr;
6945 upl_unlock(vector_upl);
6946 return KERN_SUCCESS;
6947 }
6948 upl = vector_upl_subupl_byindex(vector_upl, curr_upl++ );
6949 if (upl == NULL) {
6950 goto process_upl_to_enter;
6951 }
6952
6953 vector_upl_get_iostate(vector_upl, upl, &subupl_offset, &subupl_size);
6954 *dst_addr = (vm_map_offset_t)(vector_upl_dst_addr + (vm_map_offset_t)subupl_offset);
6955 } else {
6956 /*
6957 * check to see if already mapped
6958 */
6959 if (UPL_PAGE_LIST_MAPPED & upl->flags) {
6960 upl_unlock(upl);
6961 return KERN_FAILURE;
6962 }
6963 }
6964
6965 size = upl_adjusted_size(upl, VM_MAP_PAGE_MASK(map));
6966
6967 if ((!(upl->flags & UPL_SHADOWED)) &&
6968 ((upl->flags & UPL_HAS_BUSY) ||
6969 !((upl->flags & (UPL_DEVICE_MEMORY | UPL_IO_WIRE)) || (upl->map_object->phys_contiguous)))) {
6970 vm_object_t object;
6971 vm_page_t alias_page;
6972 vm_object_offset_t new_offset;
6973 unsigned int pg_num;
6974 wpl_array_t lite_list;
6975
6976 if (upl->flags & UPL_INTERNAL) {
6977 lite_list = (wpl_array_t)
6978 ((((uintptr_t)upl) + sizeof(struct upl))
6979 + ((size / PAGE_SIZE) * sizeof(upl_page_info_t)));
6980 } else {
6981 lite_list = (wpl_array_t)(((uintptr_t)upl) + sizeof(struct upl));
6982 }
6983 object = upl->map_object;
6984 upl->map_object = vm_object_allocate(vm_object_round_page(size));
6985
6986 vm_object_lock(upl->map_object);
6987
6988 upl->map_object->shadow = object;
6989 upl->map_object->pageout = TRUE;
6990 upl->map_object->can_persist = FALSE;
6991 upl->map_object->copy_strategy = MEMORY_OBJECT_COPY_NONE;
6992 upl->map_object->vo_shadow_offset = upl_adjusted_offset(upl, PAGE_MASK) - object->paging_offset;
6993 assertf(page_aligned(upl->map_object->vo_shadow_offset),
6994 "object %p shadow_offset 0x%llx",
6995 upl->map_object,
6996 (uint64_t)upl->map_object->vo_shadow_offset);
6997 upl->map_object->wimg_bits = object->wimg_bits;
6998 assertf(page_aligned(upl->map_object->vo_shadow_offset),
6999 "object %p shadow_offset 0x%llx",
7000 upl->map_object, upl->map_object->vo_shadow_offset);
7001 offset = upl->map_object->vo_shadow_offset;
7002 new_offset = 0;
7003 size = upl_adjusted_size(upl, VM_MAP_PAGE_MASK(map));
7004
7005 upl->flags |= UPL_SHADOWED;
7006
7007 while (size) {
7008 pg_num = (unsigned int) (new_offset / PAGE_SIZE);
7009 assert(pg_num == new_offset / PAGE_SIZE);
7010
7011 if (lite_list[pg_num >> 5] & (1U << (pg_num & 31))) {
7012 VM_PAGE_GRAB_FICTITIOUS(alias_page);
7013
7014 vm_object_lock(object);
7015
7016 m = vm_page_lookup(object, offset);
7017 if (m == VM_PAGE_NULL) {
7018 panic("vm_upl_map: page missing\n");
7019 }
7020
7021 /*
7022 * Convert the fictitious page to a private
7023 * shadow of the real page.
7024 */
7025 assert(alias_page->vmp_fictitious);
7026 alias_page->vmp_fictitious = FALSE;
7027 alias_page->vmp_private = TRUE;
7028 alias_page->vmp_free_when_done = TRUE;
7029 /*
7030 * since m is a page in the upl it must
7031 * already be wired or BUSY, so it's
7032 * safe to assign the underlying physical
7033 * page to the alias
7034 */
7035 VM_PAGE_SET_PHYS_PAGE(alias_page, VM_PAGE_GET_PHYS_PAGE(m));
7036
7037 vm_object_unlock(object);
7038
7039 vm_page_lockspin_queues();
7040 vm_page_wire(alias_page, VM_KERN_MEMORY_NONE, TRUE);
7041 vm_page_unlock_queues();
7042
7043 vm_page_insert_wired(alias_page, upl->map_object, new_offset, VM_KERN_MEMORY_NONE);
7044
7045 assert(!alias_page->vmp_wanted);
7046 alias_page->vmp_busy = FALSE;
7047 alias_page->vmp_absent = FALSE;
7048 }
7049 size -= PAGE_SIZE;
7050 offset += PAGE_SIZE_64;
7051 new_offset += PAGE_SIZE_64;
7052 }
7053 vm_object_unlock(upl->map_object);
7054 }
7055 if (upl->flags & UPL_SHADOWED) {
7056 offset = 0;
7057 } else {
7058 offset = upl_adjusted_offset(upl, VM_MAP_PAGE_MASK(map)) - upl->map_object->paging_offset;
7059 }
7060
7061 size = upl_adjusted_size(upl, VM_MAP_PAGE_MASK(map));
7062
7063 vm_object_reference(upl->map_object);
7064
7065 if (!isVectorUPL) {
7066 *dst_addr = 0;
7067 /*
7068 * NEED A UPL_MAP ALIAS
7069 */
7070 kr = vm_map_enter(map, dst_addr, (vm_map_size_t)size, (vm_map_offset_t) 0,
7071 VM_FLAGS_ANYWHERE, VM_MAP_KERNEL_FLAGS_NONE, VM_KERN_MEMORY_OSFMK,
7072 upl->map_object, offset, FALSE,
7073 VM_PROT_DEFAULT, VM_PROT_ALL, VM_INHERIT_DEFAULT);
7074
7075 if (kr != KERN_SUCCESS) {
7076 vm_object_deallocate(upl->map_object);
7077 upl_unlock(upl);
7078 return kr;
7079 }
7080 } else {
7081 kr = vm_map_enter(map, dst_addr, (vm_map_size_t)size, (vm_map_offset_t) 0,
7082 VM_FLAGS_FIXED, VM_MAP_KERNEL_FLAGS_NONE, VM_KERN_MEMORY_OSFMK,
7083 upl->map_object, offset, FALSE,
7084 VM_PROT_DEFAULT, VM_PROT_ALL, VM_INHERIT_DEFAULT);
7085 if (kr) {
7086 panic("vm_map_enter failed for a Vector UPL\n");
7087 }
7088 }
7089 vm_object_lock(upl->map_object);
7090
7091 for (addr = *dst_addr; size > 0; size -= PAGE_SIZE, addr += PAGE_SIZE) {
7092 m = vm_page_lookup(upl->map_object, offset);
7093
7094 if (m) {
7095 m->vmp_pmapped = TRUE;
7096
7097 /* CODE SIGNING ENFORCEMENT: page has been wpmapped,
7098 * but only in kernel space. If this was on a user map,
7099 * we'd have to set the wpmapped bit. */
7100 /* m->vmp_wpmapped = TRUE; */
7101 assert(map->pmap == kernel_pmap);
7102
7103 PMAP_ENTER(map->pmap, addr, m, VM_PROT_DEFAULT, VM_PROT_NONE, 0, TRUE, kr);
7104
7105 assert(kr == KERN_SUCCESS);
7106 #if KASAN
7107 kasan_notify_address(addr, PAGE_SIZE_64);
7108 #endif
7109 }
7110 offset += PAGE_SIZE_64;
7111 }
7112 vm_object_unlock(upl->map_object);
7113
7114 /*
7115 * hold a reference for the mapping
7116 */
7117 upl->ref_count++;
7118 upl->flags |= UPL_PAGE_LIST_MAPPED;
7119 upl->kaddr = (vm_offset_t) *dst_addr;
7120 assert(upl->kaddr == *dst_addr);
7121
7122 if (isVectorUPL) {
7123 goto process_upl_to_enter;
7124 }
7125
7126 if (!isVectorUPL) {
7127 vm_map_offset_t addr_adjustment;
7128
7129 addr_adjustment = (vm_map_offset_t)(upl->u_offset - upl_adjusted_offset(upl, VM_MAP_PAGE_MASK(map)));
7130 if (addr_adjustment) {
7131 assert(VM_MAP_PAGE_MASK(map) != PAGE_MASK);
7132 DEBUG4K_UPL("dst_addr 0x%llx (+ 0x%llx) -> 0x%llx\n", (uint64_t)*dst_addr, (uint64_t)addr_adjustment, (uint64_t)(*dst_addr + addr_adjustment));
7133 *dst_addr += addr_adjustment;
7134 }
7135 }
7136
7137 upl_unlock(upl);
7138
7139 return KERN_SUCCESS;
7140 }
7141
7142 /*
7143 * Internal routine to remove a UPL mapping from a VM map.
7144 *
7145 * XXX - This should just be doable through a standard
7146 * vm_map_remove() operation. Otherwise, implicit clean-up
7147 * of the target map won't be able to correctly remove
7148 * these (and release the reference on the UPL). Having
7149 * to do this means we can't map these into user-space
7150 * maps yet.
7151 */
7152 kern_return_t
7153 vm_map_remove_upl(
7154 vm_map_t map,
7155 upl_t upl)
7156 {
7157 vm_address_t addr;
7158 upl_size_t size;
7159 int isVectorUPL = 0, curr_upl = 0;
7160 upl_t vector_upl = NULL;
7161
7162 if (upl == UPL_NULL) {
7163 return KERN_INVALID_ARGUMENT;
7164 }
7165
7166 if ((isVectorUPL = vector_upl_is_valid(upl))) {
7167 int unmapped = 0, valid_upls = 0;
7168 vector_upl = upl;
7169 upl_lock(vector_upl);
7170 for (curr_upl = 0; curr_upl < MAX_VECTOR_UPL_ELEMENTS; curr_upl++) {
7171 upl = vector_upl_subupl_byindex(vector_upl, curr_upl );
7172 if (upl == NULL) {
7173 continue;
7174 }
7175 valid_upls++;
7176 if (!(UPL_PAGE_LIST_MAPPED & upl->flags)) {
7177 unmapped++;
7178 }
7179 }
7180
7181 if (unmapped) {
7182 if (unmapped != valid_upls) {
7183 panic("%d of the %d sub-upls within the Vector UPL is/are not mapped\n", unmapped, valid_upls);
7184 } else {
7185 upl_unlock(vector_upl);
7186 return KERN_FAILURE;
7187 }
7188 }
7189 curr_upl = 0;
7190 } else {
7191 upl_lock(upl);
7192 }
7193
7194 process_upl_to_remove:
7195 if (isVectorUPL) {
7196 if (curr_upl == MAX_VECTOR_UPL_ELEMENTS) {
7197 vm_map_t v_upl_submap;
7198 vm_offset_t v_upl_submap_dst_addr;
7199 vector_upl_get_submap(vector_upl, &v_upl_submap, &v_upl_submap_dst_addr);
7200
7201 vm_map_remove(map, v_upl_submap_dst_addr,
7202 v_upl_submap_dst_addr + vector_upl->u_size,
7203 VM_MAP_REMOVE_NO_FLAGS);
7204 vm_map_deallocate(v_upl_submap);
7205 upl_unlock(vector_upl);
7206 return KERN_SUCCESS;
7207 }
7208
7209 upl = vector_upl_subupl_byindex(vector_upl, curr_upl++ );
7210 if (upl == NULL) {
7211 goto process_upl_to_remove;
7212 }
7213 }
7214
7215 if (upl->flags & UPL_PAGE_LIST_MAPPED) {
7216 addr = upl->kaddr;
7217 size = upl_adjusted_size(upl, VM_MAP_PAGE_MASK(map));
7218
7219 assert(upl->ref_count > 1);
7220 upl->ref_count--; /* removing mapping ref */
7221
7222 upl->flags &= ~UPL_PAGE_LIST_MAPPED;
7223 upl->kaddr = (vm_offset_t) 0;
7224
7225 if (!isVectorUPL) {
7226 upl_unlock(upl);
7227
7228 vm_map_remove(
7229 map,
7230 vm_map_trunc_page(addr,
7231 VM_MAP_PAGE_MASK(map)),
7232 vm_map_round_page(addr + size,
7233 VM_MAP_PAGE_MASK(map)),
7234 VM_MAP_REMOVE_NO_FLAGS);
7235 return KERN_SUCCESS;
7236 } else {
7237 /*
7238 * If it's a Vectored UPL, we'll be removing the entire
7239 * submap anyways, so no need to remove individual UPL
7240 * element mappings from within the submap
7241 */
7242 goto process_upl_to_remove;
7243 }
7244 }
7245 upl_unlock(upl);
7246
7247 return KERN_FAILURE;
7248 }
7249
7250
7251 kern_return_t
7252 upl_commit_range(
7253 upl_t upl,
7254 upl_offset_t offset,
7255 upl_size_t size,
7256 int flags,
7257 upl_page_info_t *page_list,
7258 mach_msg_type_number_t count,
7259 boolean_t *empty)
7260 {
7261 upl_size_t xfer_size, subupl_size;
7262 vm_object_t shadow_object;
7263 vm_object_t object;
7264 vm_object_t m_object;
7265 vm_object_offset_t target_offset;
7266 upl_offset_t subupl_offset = offset;
7267 int entry;
7268 wpl_array_t lite_list;
7269 int occupied;
7270 int clear_refmod = 0;
7271 int pgpgout_count = 0;
7272 struct vm_page_delayed_work dw_array;
7273 struct vm_page_delayed_work *dwp, *dwp_start;
7274 bool dwp_finish_ctx = TRUE;
7275 int dw_count;
7276 int dw_limit;
7277 int isVectorUPL = 0;
7278 upl_t vector_upl = NULL;
7279 boolean_t should_be_throttled = FALSE;
7280
7281 vm_page_t nxt_page = VM_PAGE_NULL;
7282 int fast_path_possible = 0;
7283 int fast_path_full_commit = 0;
7284 int throttle_page = 0;
7285 int unwired_count = 0;
7286 int local_queue_count = 0;
7287 vm_page_t first_local, last_local;
7288 vm_object_offset_t obj_start, obj_end, obj_offset;
7289 kern_return_t kr = KERN_SUCCESS;
7290
7291 // DEBUG4K_UPL("upl %p (u_offset 0x%llx u_size 0x%llx) object %p offset 0x%llx size 0x%llx flags 0x%x\n", upl, (uint64_t)upl->u_offset, (uint64_t)upl->u_size, upl->map_object, (uint64_t)offset, (uint64_t)size, flags);
7292
7293 dwp_start = dwp = NULL;
7294
7295 subupl_size = size;
7296 *empty = FALSE;
7297
7298 if (upl == UPL_NULL) {
7299 return KERN_INVALID_ARGUMENT;
7300 }
7301
7302 dw_count = 0;
7303 dw_limit = DELAYED_WORK_LIMIT(DEFAULT_DELAYED_WORK_LIMIT);
7304 dwp_start = vm_page_delayed_work_get_ctx();
7305 if (dwp_start == NULL) {
7306 dwp_start = &dw_array;
7307 dw_limit = 1;
7308 dwp_finish_ctx = FALSE;
7309 }
7310
7311 dwp = dwp_start;
7312
7313 if (count == 0) {
7314 page_list = NULL;
7315 }
7316
7317 if ((isVectorUPL = vector_upl_is_valid(upl))) {
7318 vector_upl = upl;
7319 upl_lock(vector_upl);
7320 } else {
7321 upl_lock(upl);
7322 }
7323
7324 process_upl_to_commit:
7325
7326 if (isVectorUPL) {
7327 size = subupl_size;
7328 offset = subupl_offset;
7329 if (size == 0) {
7330 upl_unlock(vector_upl);
7331 kr = KERN_SUCCESS;
7332 goto done;
7333 }
7334 upl = vector_upl_subupl_byoffset(vector_upl, &offset, &size);
7335 if (upl == NULL) {
7336 upl_unlock(vector_upl);
7337 kr = KERN_FAILURE;
7338 goto done;
7339 }
7340 page_list = UPL_GET_INTERNAL_PAGE_LIST_SIMPLE(upl);
7341 subupl_size -= size;
7342 subupl_offset += size;
7343 }
7344
7345 #if UPL_DEBUG
7346 if (upl->upl_commit_index < UPL_DEBUG_COMMIT_RECORDS) {
7347 (void) OSBacktrace(&upl->upl_commit_records[upl->upl_commit_index].c_retaddr[0], UPL_DEBUG_STACK_FRAMES);
7348
7349 upl->upl_commit_records[upl->upl_commit_index].c_beg = offset;
7350 upl->upl_commit_records[upl->upl_commit_index].c_end = (offset + size);
7351
7352 upl->upl_commit_index++;
7353 }
7354 #endif
7355 if (upl->flags & UPL_DEVICE_MEMORY) {
7356 xfer_size = 0;
7357 } else if ((offset + size) <= upl_adjusted_size(upl, PAGE_MASK)) {
7358 xfer_size = size;
7359 } else {
7360 if (!isVectorUPL) {
7361 upl_unlock(upl);
7362 } else {
7363 upl_unlock(vector_upl);
7364 }
7365 DEBUG4K_ERROR("upl %p (u_offset 0x%llx u_size 0x%x) offset 0x%x size 0x%x\n", upl, upl->u_offset, upl->u_size, offset, size);
7366 kr = KERN_FAILURE;
7367 goto done;
7368 }
7369 if (upl->flags & UPL_SET_DIRTY) {
7370 flags |= UPL_COMMIT_SET_DIRTY;
7371 }
7372 if (upl->flags & UPL_CLEAR_DIRTY) {
7373 flags |= UPL_COMMIT_CLEAR_DIRTY;
7374 }
7375
7376 if (upl->flags & UPL_INTERNAL) {
7377 lite_list = (wpl_array_t) ((((uintptr_t)upl) + sizeof(struct upl))
7378 + ((upl_adjusted_size(upl, PAGE_MASK) / PAGE_SIZE) * sizeof(upl_page_info_t)));
7379 } else {
7380 lite_list = (wpl_array_t) (((uintptr_t)upl) + sizeof(struct upl));
7381 }
7382
7383 object = upl->map_object;
7384
7385 if (upl->flags & UPL_SHADOWED) {
7386 vm_object_lock(object);
7387 shadow_object = object->shadow;
7388 } else {
7389 shadow_object = object;
7390 }
7391 entry = offset / PAGE_SIZE;
7392 target_offset = (vm_object_offset_t)offset;
7393
7394 if (upl->flags & UPL_KERNEL_OBJECT) {
7395 vm_object_lock_shared(shadow_object);
7396 } else {
7397 vm_object_lock(shadow_object);
7398 }
7399
7400 VM_OBJECT_WIRED_PAGE_UPDATE_START(shadow_object);
7401
7402 if (upl->flags & UPL_ACCESS_BLOCKED) {
7403 assert(shadow_object->blocked_access);
7404 shadow_object->blocked_access = FALSE;
7405 vm_object_wakeup(object, VM_OBJECT_EVENT_UNBLOCKED);
7406 }
7407
7408 if (shadow_object->code_signed) {
7409 /*
7410 * CODE SIGNING:
7411 * If the object is code-signed, do not let this UPL tell
7412 * us if the pages are valid or not. Let the pages be
7413 * validated by VM the normal way (when they get mapped or
7414 * copied).
7415 */
7416 flags &= ~UPL_COMMIT_CS_VALIDATED;
7417 }
7418 if (!page_list) {
7419 /*
7420 * No page list to get the code-signing info from !?
7421 */
7422 flags &= ~UPL_COMMIT_CS_VALIDATED;
7423 }
7424 if (!VM_DYNAMIC_PAGING_ENABLED() && shadow_object->internal) {
7425 should_be_throttled = TRUE;
7426 }
7427
7428 if ((upl->flags & UPL_IO_WIRE) &&
7429 !(flags & UPL_COMMIT_FREE_ABSENT) &&
7430 !isVectorUPL &&
7431 shadow_object->purgable != VM_PURGABLE_VOLATILE &&
7432 shadow_object->purgable != VM_PURGABLE_EMPTY) {
7433 if (!vm_page_queue_empty(&shadow_object->memq)) {
7434 if (size == shadow_object->vo_size) {
7435 nxt_page = (vm_page_t)vm_page_queue_first(&shadow_object->memq);
7436 fast_path_full_commit = 1;
7437 }
7438 fast_path_possible = 1;
7439
7440 if (!VM_DYNAMIC_PAGING_ENABLED() && shadow_object->internal &&
7441 (shadow_object->purgable == VM_PURGABLE_DENY ||
7442 shadow_object->purgable == VM_PURGABLE_NONVOLATILE ||
7443 shadow_object->purgable == VM_PURGABLE_VOLATILE)) {
7444 throttle_page = 1;
7445 }
7446 }
7447 }
7448 first_local = VM_PAGE_NULL;
7449 last_local = VM_PAGE_NULL;
7450
7451 obj_start = target_offset + upl->u_offset - shadow_object->paging_offset;
7452 obj_end = obj_start + xfer_size;
7453 obj_start = vm_object_trunc_page(obj_start);
7454 obj_end = vm_object_round_page(obj_end);
7455 for (obj_offset = obj_start;
7456 obj_offset < obj_end;
7457 obj_offset += PAGE_SIZE) {
7458 vm_page_t t, m;
7459
7460 dwp->dw_mask = 0;
7461 clear_refmod = 0;
7462
7463 m = VM_PAGE_NULL;
7464
7465 if (upl->flags & UPL_LITE) {
7466 unsigned int pg_num;
7467
7468 if (nxt_page != VM_PAGE_NULL) {
7469 m = nxt_page;
7470 nxt_page = (vm_page_t)vm_page_queue_next(&nxt_page->vmp_listq);
7471 target_offset = m->vmp_offset;
7472 }
7473 pg_num = (unsigned int) (target_offset / PAGE_SIZE);
7474 assert(pg_num == target_offset / PAGE_SIZE);
7475
7476 if (lite_list[pg_num >> 5] & (1U << (pg_num & 31))) {
7477 lite_list[pg_num >> 5] &= ~(1U << (pg_num & 31));
7478
7479 if (!(upl->flags & UPL_KERNEL_OBJECT) && m == VM_PAGE_NULL) {
7480 m = vm_page_lookup(shadow_object, obj_offset);
7481 }
7482 } else {
7483 m = NULL;
7484 }
7485 }
7486 if (upl->flags & UPL_SHADOWED) {
7487 if ((t = vm_page_lookup(object, target_offset)) != VM_PAGE_NULL) {
7488 t->vmp_free_when_done = FALSE;
7489
7490 VM_PAGE_FREE(t);
7491
7492 if (!(upl->flags & UPL_KERNEL_OBJECT) && m == VM_PAGE_NULL) {
7493 m = vm_page_lookup(shadow_object, target_offset + object->vo_shadow_offset);
7494 }
7495 }
7496 }
7497 if (m == VM_PAGE_NULL) {
7498 goto commit_next_page;
7499 }
7500
7501 m_object = VM_PAGE_OBJECT(m);
7502
7503 if (m->vmp_q_state == VM_PAGE_USED_BY_COMPRESSOR) {
7504 assert(m->vmp_busy);
7505
7506 dwp->dw_mask |= (DW_clear_busy | DW_PAGE_WAKEUP);
7507 goto commit_next_page;
7508 }
7509
7510 if (flags & UPL_COMMIT_CS_VALIDATED) {
7511 /*
7512 * CODE SIGNING:
7513 * Set the code signing bits according to
7514 * what the UPL says they should be.
7515 */
7516 m->vmp_cs_validated |= page_list[entry].cs_validated;
7517 m->vmp_cs_tainted |= page_list[entry].cs_tainted;
7518 m->vmp_cs_nx |= page_list[entry].cs_nx;
7519 }
7520 if (flags & UPL_COMMIT_WRITTEN_BY_KERNEL) {
7521 m->vmp_written_by_kernel = TRUE;
7522 }
7523
7524 if (upl->flags & UPL_IO_WIRE) {
7525 if (page_list) {
7526 page_list[entry].phys_addr = 0;
7527 }
7528
7529 if (flags & UPL_COMMIT_SET_DIRTY) {
7530 SET_PAGE_DIRTY(m, FALSE);
7531 } else if (flags & UPL_COMMIT_CLEAR_DIRTY) {
7532 m->vmp_dirty = FALSE;
7533
7534 if (!(flags & UPL_COMMIT_CS_VALIDATED) &&
7535 m->vmp_cs_validated &&
7536 m->vmp_cs_tainted != VMP_CS_ALL_TRUE) {
7537 /*
7538 * CODE SIGNING:
7539 * This page is no longer dirty
7540 * but could have been modified,
7541 * so it will need to be
7542 * re-validated.
7543 */
7544 m->vmp_cs_validated = VMP_CS_ALL_FALSE;
7545
7546 VM_PAGEOUT_DEBUG(vm_cs_validated_resets, 1);
7547
7548 pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(m));
7549 }
7550 clear_refmod |= VM_MEM_MODIFIED;
7551 }
7552 if (upl->flags & UPL_ACCESS_BLOCKED) {
7553 /*
7554 * We blocked access to the pages in this UPL.
7555 * Clear the "busy" bit and wake up any waiter
7556 * for this page.
7557 */
7558 dwp->dw_mask |= (DW_clear_busy | DW_PAGE_WAKEUP);
7559 }
7560 if (fast_path_possible) {
7561 assert(m_object->purgable != VM_PURGABLE_EMPTY);
7562 assert(m_object->purgable != VM_PURGABLE_VOLATILE);
7563 if (m->vmp_absent) {
7564 assert(m->vmp_q_state == VM_PAGE_NOT_ON_Q);
7565 assert(m->vmp_wire_count == 0);
7566 assert(m->vmp_busy);
7567
7568 m->vmp_absent = FALSE;
7569 dwp->dw_mask |= (DW_clear_busy | DW_PAGE_WAKEUP);
7570 } else {
7571 if (m->vmp_wire_count == 0) {
7572 panic("wire_count == 0, m = %p, obj = %p\n", m, shadow_object);
7573 }
7574 assert(m->vmp_q_state == VM_PAGE_IS_WIRED);
7575
7576 /*
7577 * XXX FBDP need to update some other
7578 * counters here (purgeable_wired_count)
7579 * (ledgers), ...
7580 */
7581 assert(m->vmp_wire_count > 0);
7582 m->vmp_wire_count--;
7583
7584 if (m->vmp_wire_count == 0) {
7585 m->vmp_q_state = VM_PAGE_NOT_ON_Q;
7586 unwired_count++;
7587 }
7588 }
7589 if (m->vmp_wire_count == 0) {
7590 assert(m->vmp_pageq.next == 0 && m->vmp_pageq.prev == 0);
7591
7592 if (last_local == VM_PAGE_NULL) {
7593 assert(first_local == VM_PAGE_NULL);
7594
7595 last_local = m;
7596 first_local = m;
7597 } else {
7598 assert(first_local != VM_PAGE_NULL);
7599
7600 m->vmp_pageq.next = VM_PAGE_CONVERT_TO_QUEUE_ENTRY(first_local);
7601 first_local->vmp_pageq.prev = VM_PAGE_CONVERT_TO_QUEUE_ENTRY(m);
7602 first_local = m;
7603 }
7604 local_queue_count++;
7605
7606 if (throttle_page) {
7607 m->vmp_q_state = VM_PAGE_ON_THROTTLED_Q;
7608 } else {
7609 if (flags & UPL_COMMIT_INACTIVATE) {
7610 if (shadow_object->internal) {
7611 m->vmp_q_state = VM_PAGE_ON_INACTIVE_INTERNAL_Q;
7612 } else {
7613 m->vmp_q_state = VM_PAGE_ON_INACTIVE_EXTERNAL_Q;
7614 }
7615 } else {
7616 m->vmp_q_state = VM_PAGE_ON_ACTIVE_Q;
7617 }
7618 }
7619 }
7620 } else {
7621 if (flags & UPL_COMMIT_INACTIVATE) {
7622 dwp->dw_mask |= DW_vm_page_deactivate_internal;
7623 clear_refmod |= VM_MEM_REFERENCED;
7624 }
7625 if (m->vmp_absent) {
7626 if (flags & UPL_COMMIT_FREE_ABSENT) {
7627 dwp->dw_mask |= DW_vm_page_free;
7628 } else {
7629 m->vmp_absent = FALSE;
7630 dwp->dw_mask |= (DW_clear_busy | DW_PAGE_WAKEUP);
7631
7632 if (!(dwp->dw_mask & DW_vm_page_deactivate_internal)) {
7633 dwp->dw_mask |= DW_vm_page_activate;
7634 }
7635 }
7636 } else {
7637 dwp->dw_mask |= DW_vm_page_unwire;
7638 }
7639 }
7640 goto commit_next_page;
7641 }
7642 assert(m->vmp_q_state != VM_PAGE_USED_BY_COMPRESSOR);
7643
7644 if (page_list) {
7645 page_list[entry].phys_addr = 0;
7646 }
7647
7648 /*
7649 * make sure to clear the hardware
7650 * modify or reference bits before
7651 * releasing the BUSY bit on this page
7652 * otherwise we risk losing a legitimate
7653 * change of state
7654 */
7655 if (flags & UPL_COMMIT_CLEAR_DIRTY) {
7656 m->vmp_dirty = FALSE;
7657
7658 clear_refmod |= VM_MEM_MODIFIED;
7659 }
7660 if (m->vmp_laundry) {
7661 dwp->dw_mask |= DW_vm_pageout_throttle_up;
7662 }
7663
7664 if (VM_PAGE_WIRED(m)) {
7665 m->vmp_free_when_done = FALSE;
7666 }
7667
7668 if (!(flags & UPL_COMMIT_CS_VALIDATED) &&
7669 m->vmp_cs_validated &&
7670 m->vmp_cs_tainted != VMP_CS_ALL_TRUE) {
7671 /*
7672 * CODE SIGNING:
7673 * This page is no longer dirty
7674 * but could have been modified,
7675 * so it will need to be
7676 * re-validated.
7677 */
7678 m->vmp_cs_validated = VMP_CS_ALL_FALSE;
7679
7680 VM_PAGEOUT_DEBUG(vm_cs_validated_resets, 1);
7681
7682 pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(m));
7683 }
7684 if (m->vmp_overwriting) {
7685 /*
7686 * the (COPY_OUT_FROM == FALSE) request_page_list case
7687 */
7688 if (m->vmp_busy) {
7689 #if CONFIG_PHANTOM_CACHE
7690 if (m->vmp_absent && !m_object->internal) {
7691 dwp->dw_mask |= DW_vm_phantom_cache_update;
7692 }
7693 #endif
7694 m->vmp_absent = FALSE;
7695
7696 dwp->dw_mask |= DW_clear_busy;
7697 } else {
7698 /*
7699 * alternate (COPY_OUT_FROM == FALSE) page_list case
7700 * Occurs when the original page was wired
7701 * at the time of the list request
7702 */
7703 assert(VM_PAGE_WIRED(m));
7704
7705 dwp->dw_mask |= DW_vm_page_unwire; /* reactivates */
7706 }
7707 m->vmp_overwriting = FALSE;
7708 }
7709 m->vmp_cleaning = FALSE;
7710
7711 if (m->vmp_free_when_done) {
7712 /*
7713 * With the clean queue enabled, UPL_PAGEOUT should
7714 * no longer set the pageout bit. Its pages now go
7715 * to the clean queue.
7716 *
7717 * We don't use the cleaned Q anymore and so this
7718 * assert isn't correct. The code for the clean Q
7719 * still exists and might be used in the future. If we
7720 * go back to the cleaned Q, we will re-enable this
7721 * assert.
7722 *
7723 * assert(!(upl->flags & UPL_PAGEOUT));
7724 */
7725 assert(!m_object->internal);
7726
7727 m->vmp_free_when_done = FALSE;
7728
7729 if ((flags & UPL_COMMIT_SET_DIRTY) ||
7730 (m->vmp_pmapped && (pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(m)) & VM_MEM_MODIFIED))) {
7731 /*
7732 * page was re-dirtied after we started
7733 * the pageout... reactivate it since
7734 * we don't know whether the on-disk
7735 * copy matches what is now in memory
7736 */
7737 SET_PAGE_DIRTY(m, FALSE);
7738
7739 dwp->dw_mask |= DW_vm_page_activate | DW_PAGE_WAKEUP;
7740
7741 if (upl->flags & UPL_PAGEOUT) {
7742 VM_STAT_INCR(reactivations);
7743 DTRACE_VM2(pgrec, int, 1, (uint64_t *), NULL);
7744 }
7745 } else {
7746 /*
7747 * page has been successfully cleaned
7748 * go ahead and free it for other use
7749 */
7750 if (m_object->internal) {
7751 DTRACE_VM2(anonpgout, int, 1, (uint64_t *), NULL);
7752 } else {
7753 DTRACE_VM2(fspgout, int, 1, (uint64_t *), NULL);
7754 }
7755 m->vmp_dirty = FALSE;
7756 m->vmp_busy = TRUE;
7757
7758 dwp->dw_mask |= DW_vm_page_free;
7759 }
7760 goto commit_next_page;
7761 }
7762 /*
7763 * It is a part of the semantic of COPYOUT_FROM
7764 * UPLs that a commit implies cache sync
7765 * between the vm page and the backing store
7766 * this can be used to strip the precious bit
7767 * as well as clean
7768 */
7769 if ((upl->flags & UPL_PAGE_SYNC_DONE) || (flags & UPL_COMMIT_CLEAR_PRECIOUS)) {
7770 m->vmp_precious = FALSE;
7771 }
7772
7773 if (flags & UPL_COMMIT_SET_DIRTY) {
7774 SET_PAGE_DIRTY(m, FALSE);
7775 } else {
7776 m->vmp_dirty = FALSE;
7777 }
7778
7779 /* with the clean queue on, move *all* cleaned pages to the clean queue */
7780 if (hibernate_cleaning_in_progress == FALSE && !m->vmp_dirty && (upl->flags & UPL_PAGEOUT)) {
7781 pgpgout_count++;
7782
7783 VM_STAT_INCR(pageouts);
7784 DTRACE_VM2(pgout, int, 1, (uint64_t *), NULL);
7785
7786 dwp->dw_mask |= DW_enqueue_cleaned;
7787 } else if (should_be_throttled == TRUE && (m->vmp_q_state == VM_PAGE_NOT_ON_Q)) {
7788 /*
7789 * page coming back in from being 'frozen'...
7790 * it was dirty before it was frozen, so keep it so
7791 * the vm_page_activate will notice that it really belongs
7792 * on the throttle queue and put it there
7793 */
7794 SET_PAGE_DIRTY(m, FALSE);
7795 dwp->dw_mask |= DW_vm_page_activate;
7796 } else {
7797 if ((flags & UPL_COMMIT_INACTIVATE) && !m->vmp_clustered && (m->vmp_q_state != VM_PAGE_ON_SPECULATIVE_Q)) {
7798 dwp->dw_mask |= DW_vm_page_deactivate_internal;
7799 clear_refmod |= VM_MEM_REFERENCED;
7800 } else if (!VM_PAGE_PAGEABLE(m)) {
7801 if (m->vmp_clustered || (flags & UPL_COMMIT_SPECULATE)) {
7802 dwp->dw_mask |= DW_vm_page_speculate;
7803 } else if (m->vmp_reference) {
7804 dwp->dw_mask |= DW_vm_page_activate;
7805 } else {
7806 dwp->dw_mask |= DW_vm_page_deactivate_internal;
7807 clear_refmod |= VM_MEM_REFERENCED;
7808 }
7809 }
7810 }
7811 if (upl->flags & UPL_ACCESS_BLOCKED) {
7812 /*
7813 * We blocked access to the pages in this URL.
7814 * Clear the "busy" bit on this page before we
7815 * wake up any waiter.
7816 */
7817 dwp->dw_mask |= DW_clear_busy;
7818 }
7819 /*
7820 * Wakeup any thread waiting for the page to be un-cleaning.
7821 */
7822 dwp->dw_mask |= DW_PAGE_WAKEUP;
7823
7824 commit_next_page:
7825 if (clear_refmod) {
7826 pmap_clear_refmod(VM_PAGE_GET_PHYS_PAGE(m), clear_refmod);
7827 }
7828
7829 target_offset += PAGE_SIZE_64;
7830 xfer_size -= PAGE_SIZE;
7831 entry++;
7832
7833 if (dwp->dw_mask) {
7834 if (dwp->dw_mask & ~(DW_clear_busy | DW_PAGE_WAKEUP)) {
7835 VM_PAGE_ADD_DELAYED_WORK(dwp, m, dw_count);
7836
7837 if (dw_count >= dw_limit) {
7838 vm_page_do_delayed_work(shadow_object, VM_KERN_MEMORY_NONE, dwp_start, dw_count);
7839
7840 dwp = dwp_start;
7841 dw_count = 0;
7842 }
7843 } else {
7844 if (dwp->dw_mask & DW_clear_busy) {
7845 m->vmp_busy = FALSE;
7846 }
7847
7848 if (dwp->dw_mask & DW_PAGE_WAKEUP) {
7849 PAGE_WAKEUP(m);
7850 }
7851 }
7852 }
7853 }
7854 if (dw_count) {
7855 vm_page_do_delayed_work(shadow_object, VM_KERN_MEMORY_NONE, dwp_start, dw_count);
7856 dwp = dwp_start;
7857 dw_count = 0;
7858 }
7859
7860 if (fast_path_possible) {
7861 assert(shadow_object->purgable != VM_PURGABLE_VOLATILE);
7862 assert(shadow_object->purgable != VM_PURGABLE_EMPTY);
7863
7864 if (local_queue_count || unwired_count) {
7865 if (local_queue_count) {
7866 vm_page_t first_target;
7867 vm_page_queue_head_t *target_queue;
7868
7869 if (throttle_page) {
7870 target_queue = &vm_page_queue_throttled;
7871 } else {
7872 if (flags & UPL_COMMIT_INACTIVATE) {
7873 if (shadow_object->internal) {
7874 target_queue = &vm_page_queue_anonymous;
7875 } else {
7876 target_queue = &vm_page_queue_inactive;
7877 }
7878 } else {
7879 target_queue = &vm_page_queue_active;
7880 }
7881 }
7882 /*
7883 * Transfer the entire local queue to a regular LRU page queues.
7884 */
7885 vm_page_lockspin_queues();
7886
7887 first_target = (vm_page_t) vm_page_queue_first(target_queue);
7888
7889 if (vm_page_queue_empty(target_queue)) {
7890 target_queue->prev = VM_PAGE_CONVERT_TO_QUEUE_ENTRY(last_local);
7891 } else {
7892 first_target->vmp_pageq.prev = VM_PAGE_CONVERT_TO_QUEUE_ENTRY(last_local);
7893 }
7894
7895 target_queue->next = VM_PAGE_CONVERT_TO_QUEUE_ENTRY(first_local);
7896 first_local->vmp_pageq.prev = VM_PAGE_CONVERT_TO_QUEUE_ENTRY(target_queue);
7897 last_local->vmp_pageq.next = VM_PAGE_CONVERT_TO_QUEUE_ENTRY(first_target);
7898
7899 /*
7900 * Adjust the global page counts.
7901 */
7902 if (throttle_page) {
7903 vm_page_throttled_count += local_queue_count;
7904 } else {
7905 if (flags & UPL_COMMIT_INACTIVATE) {
7906 if (shadow_object->internal) {
7907 vm_page_anonymous_count += local_queue_count;
7908 }
7909 vm_page_inactive_count += local_queue_count;
7910
7911 token_new_pagecount += local_queue_count;
7912 } else {
7913 vm_page_active_count += local_queue_count;
7914 }
7915
7916 if (shadow_object->internal) {
7917 vm_page_pageable_internal_count += local_queue_count;
7918 } else {
7919 vm_page_pageable_external_count += local_queue_count;
7920 }
7921 }
7922 } else {
7923 vm_page_lockspin_queues();
7924 }
7925 if (unwired_count) {
7926 vm_page_wire_count -= unwired_count;
7927 VM_CHECK_MEMORYSTATUS;
7928 }
7929 vm_page_unlock_queues();
7930
7931 VM_OBJECT_WIRED_PAGE_COUNT(shadow_object, -unwired_count);
7932 }
7933 }
7934 occupied = 1;
7935
7936 if (upl->flags & UPL_DEVICE_MEMORY) {
7937 occupied = 0;
7938 } else if (upl->flags & UPL_LITE) {
7939 int pg_num;
7940 int i;
7941
7942 occupied = 0;
7943
7944 if (!fast_path_full_commit) {
7945 pg_num = upl_adjusted_size(upl, PAGE_MASK) / PAGE_SIZE;
7946 pg_num = (pg_num + 31) >> 5;
7947
7948 for (i = 0; i < pg_num; i++) {
7949 if (lite_list[i] != 0) {
7950 occupied = 1;
7951 break;
7952 }
7953 }
7954 }
7955 } else {
7956 if (vm_page_queue_empty(&upl->map_object->memq)) {
7957 occupied = 0;
7958 }
7959 }
7960 if (occupied == 0) {
7961 /*
7962 * If this UPL element belongs to a Vector UPL and is
7963 * empty, then this is the right function to deallocate
7964 * it. So go ahead set the *empty variable. The flag
7965 * UPL_COMMIT_NOTIFY_EMPTY, from the caller's point of view
7966 * should be considered relevant for the Vector UPL and not
7967 * the internal UPLs.
7968 */
7969 if ((upl->flags & UPL_COMMIT_NOTIFY_EMPTY) || isVectorUPL) {
7970 *empty = TRUE;
7971 }
7972
7973 if (object == shadow_object && !(upl->flags & UPL_KERNEL_OBJECT)) {
7974 /*
7975 * this is not a paging object
7976 * so we need to drop the paging reference
7977 * that was taken when we created the UPL
7978 * against this object
7979 */
7980 vm_object_activity_end(shadow_object);
7981 vm_object_collapse(shadow_object, 0, TRUE);
7982 } else {
7983 /*
7984 * we dontated the paging reference to
7985 * the map object... vm_pageout_object_terminate
7986 * will drop this reference
7987 */
7988 }
7989 }
7990 VM_OBJECT_WIRED_PAGE_UPDATE_END(shadow_object, shadow_object->wire_tag);
7991 vm_object_unlock(shadow_object);
7992 if (object != shadow_object) {
7993 vm_object_unlock(object);
7994 }
7995
7996 if (!isVectorUPL) {
7997 upl_unlock(upl);
7998 } else {
7999 /*
8000 * If we completed our operations on an UPL that is
8001 * part of a Vectored UPL and if empty is TRUE, then
8002 * we should go ahead and deallocate this UPL element.
8003 * Then we check if this was the last of the UPL elements
8004 * within that Vectored UPL. If so, set empty to TRUE
8005 * so that in ubc_upl_commit_range or ubc_upl_commit, we
8006 * can go ahead and deallocate the Vector UPL too.
8007 */
8008 if (*empty == TRUE) {
8009 *empty = vector_upl_set_subupl(vector_upl, upl, 0);
8010 upl_deallocate(upl);
8011 }
8012 goto process_upl_to_commit;
8013 }
8014 if (pgpgout_count) {
8015 DTRACE_VM2(pgpgout, int, pgpgout_count, (uint64_t *), NULL);
8016 }
8017
8018 kr = KERN_SUCCESS;
8019 done:
8020 if (dwp_start && dwp_finish_ctx) {
8021 vm_page_delayed_work_finish_ctx(dwp_start);
8022 dwp_start = dwp = NULL;
8023 }
8024
8025 return kr;
8026 }
8027
8028 kern_return_t
8029 upl_abort_range(
8030 upl_t upl,
8031 upl_offset_t offset,
8032 upl_size_t size,
8033 int error,
8034 boolean_t *empty)
8035 {
8036 upl_page_info_t *user_page_list = NULL;
8037 upl_size_t xfer_size, subupl_size;
8038 vm_object_t shadow_object;
8039 vm_object_t object;
8040 vm_object_offset_t target_offset;
8041 upl_offset_t subupl_offset = offset;
8042 int entry;
8043 wpl_array_t lite_list;
8044 int occupied;
8045 struct vm_page_delayed_work dw_array;
8046 struct vm_page_delayed_work *dwp, *dwp_start;
8047 bool dwp_finish_ctx = TRUE;
8048 int dw_count;
8049 int dw_limit;
8050 int isVectorUPL = 0;
8051 upl_t vector_upl = NULL;
8052 vm_object_offset_t obj_start, obj_end, obj_offset;
8053 kern_return_t kr = KERN_SUCCESS;
8054
8055 // DEBUG4K_UPL("upl %p (u_offset 0x%llx u_size 0x%llx) object %p offset 0x%llx size 0x%llx error 0x%x\n", upl, (uint64_t)upl->u_offset, (uint64_t)upl->u_size, upl->map_object, (uint64_t)offset, (uint64_t)size, error);
8056
8057 dwp_start = dwp = NULL;
8058
8059 subupl_size = size;
8060 *empty = FALSE;
8061
8062 if (upl == UPL_NULL) {
8063 return KERN_INVALID_ARGUMENT;
8064 }
8065
8066 if ((upl->flags & UPL_IO_WIRE) && !(error & UPL_ABORT_DUMP_PAGES)) {
8067 return upl_commit_range(upl, offset, size, UPL_COMMIT_FREE_ABSENT, NULL, 0, empty);
8068 }
8069
8070 dw_count = 0;
8071 dw_limit = DELAYED_WORK_LIMIT(DEFAULT_DELAYED_WORK_LIMIT);
8072 dwp_start = vm_page_delayed_work_get_ctx();
8073 if (dwp_start == NULL) {
8074 dwp_start = &dw_array;
8075 dw_limit = 1;
8076 dwp_finish_ctx = FALSE;
8077 }
8078
8079 dwp = dwp_start;
8080
8081 if ((isVectorUPL = vector_upl_is_valid(upl))) {
8082 vector_upl = upl;
8083 upl_lock(vector_upl);
8084 } else {
8085 upl_lock(upl);
8086 }
8087
8088 process_upl_to_abort:
8089 if (isVectorUPL) {
8090 size = subupl_size;
8091 offset = subupl_offset;
8092 if (size == 0) {
8093 upl_unlock(vector_upl);
8094 kr = KERN_SUCCESS;
8095 goto done;
8096 }
8097 upl = vector_upl_subupl_byoffset(vector_upl, &offset, &size);
8098 if (upl == NULL) {
8099 upl_unlock(vector_upl);
8100 kr = KERN_FAILURE;
8101 goto done;
8102 }
8103 subupl_size -= size;
8104 subupl_offset += size;
8105 }
8106
8107 *empty = FALSE;
8108
8109 #if UPL_DEBUG
8110 if (upl->upl_commit_index < UPL_DEBUG_COMMIT_RECORDS) {
8111 (void) OSBacktrace(&upl->upl_commit_records[upl->upl_commit_index].c_retaddr[0], UPL_DEBUG_STACK_FRAMES);
8112
8113 upl->upl_commit_records[upl->upl_commit_index].c_beg = offset;
8114 upl->upl_commit_records[upl->upl_commit_index].c_end = (offset + size);
8115 upl->upl_commit_records[upl->upl_commit_index].c_aborted = 1;
8116
8117 upl->upl_commit_index++;
8118 }
8119 #endif
8120 if (upl->flags & UPL_DEVICE_MEMORY) {
8121 xfer_size = 0;
8122 } else if ((offset + size) <= upl_adjusted_size(upl, PAGE_MASK)) {
8123 xfer_size = size;
8124 } else {
8125 if (!isVectorUPL) {
8126 upl_unlock(upl);
8127 } else {
8128 upl_unlock(vector_upl);
8129 }
8130 DEBUG4K_ERROR("upl %p (u_offset 0x%llx u_size 0x%x) offset 0x%x size 0x%x\n", upl, upl->u_offset, upl->u_size, offset, size);
8131 kr = KERN_FAILURE;
8132 goto done;
8133 }
8134 if (upl->flags & UPL_INTERNAL) {
8135 lite_list = (wpl_array_t)
8136 ((((uintptr_t)upl) + sizeof(struct upl))
8137 + ((upl_adjusted_size(upl, PAGE_MASK) / PAGE_SIZE) * sizeof(upl_page_info_t)));
8138
8139 user_page_list = (upl_page_info_t *) (((uintptr_t)upl) + sizeof(struct upl));
8140 } else {
8141 lite_list = (wpl_array_t)
8142 (((uintptr_t)upl) + sizeof(struct upl));
8143 }
8144 object = upl->map_object;
8145
8146 if (upl->flags & UPL_SHADOWED) {
8147 vm_object_lock(object);
8148 shadow_object = object->shadow;
8149 } else {
8150 shadow_object = object;
8151 }
8152
8153 entry = offset / PAGE_SIZE;
8154 target_offset = (vm_object_offset_t)offset;
8155
8156 if (upl->flags & UPL_KERNEL_OBJECT) {
8157 vm_object_lock_shared(shadow_object);
8158 } else {
8159 vm_object_lock(shadow_object);
8160 }
8161
8162 if (upl->flags & UPL_ACCESS_BLOCKED) {
8163 assert(shadow_object->blocked_access);
8164 shadow_object->blocked_access = FALSE;
8165 vm_object_wakeup(object, VM_OBJECT_EVENT_UNBLOCKED);
8166 }
8167
8168 if ((error & UPL_ABORT_DUMP_PAGES) && (upl->flags & UPL_KERNEL_OBJECT)) {
8169 panic("upl_abort_range: kernel_object being DUMPED");
8170 }
8171
8172 obj_start = target_offset + upl->u_offset - shadow_object->paging_offset;
8173 obj_end = obj_start + xfer_size;
8174 obj_start = vm_object_trunc_page(obj_start);
8175 obj_end = vm_object_round_page(obj_end);
8176 for (obj_offset = obj_start;
8177 obj_offset < obj_end;
8178 obj_offset += PAGE_SIZE) {
8179 vm_page_t t, m;
8180 unsigned int pg_num;
8181 boolean_t needed;
8182
8183 pg_num = (unsigned int) (target_offset / PAGE_SIZE);
8184 assert(pg_num == target_offset / PAGE_SIZE);
8185
8186 needed = FALSE;
8187
8188 if (user_page_list) {
8189 needed = user_page_list[pg_num].needed;
8190 }
8191
8192 dwp->dw_mask = 0;
8193 m = VM_PAGE_NULL;
8194
8195 if (upl->flags & UPL_LITE) {
8196 if (lite_list[pg_num >> 5] & (1U << (pg_num & 31))) {
8197 lite_list[pg_num >> 5] &= ~(1U << (pg_num & 31));
8198
8199 if (!(upl->flags & UPL_KERNEL_OBJECT)) {
8200 m = vm_page_lookup(shadow_object, obj_offset);
8201 }
8202 }
8203 }
8204 if (upl->flags & UPL_SHADOWED) {
8205 if ((t = vm_page_lookup(object, target_offset)) != VM_PAGE_NULL) {
8206 t->vmp_free_when_done = FALSE;
8207
8208 VM_PAGE_FREE(t);
8209
8210 if (m == VM_PAGE_NULL) {
8211 m = vm_page_lookup(shadow_object, target_offset + object->vo_shadow_offset);
8212 }
8213 }
8214 }
8215 if ((upl->flags & UPL_KERNEL_OBJECT)) {
8216 goto abort_next_page;
8217 }
8218
8219 if (m != VM_PAGE_NULL) {
8220 assert(m->vmp_q_state != VM_PAGE_USED_BY_COMPRESSOR);
8221
8222 if (m->vmp_absent) {
8223 boolean_t must_free = TRUE;
8224
8225 /*
8226 * COPYOUT = FALSE case
8227 * check for error conditions which must
8228 * be passed back to the pages customer
8229 */
8230 if (error & UPL_ABORT_RESTART) {
8231 m->vmp_restart = TRUE;
8232 m->vmp_absent = FALSE;
8233 m->vmp_unusual = TRUE;
8234 must_free = FALSE;
8235 } else if (error & UPL_ABORT_UNAVAILABLE) {
8236 m->vmp_restart = FALSE;
8237 m->vmp_unusual = TRUE;
8238 must_free = FALSE;
8239 } else if (error & UPL_ABORT_ERROR) {
8240 m->vmp_restart = FALSE;
8241 m->vmp_absent = FALSE;
8242 m->vmp_error = TRUE;
8243 m->vmp_unusual = TRUE;
8244 must_free = FALSE;
8245 }
8246 if (m->vmp_clustered && needed == FALSE) {
8247 /*
8248 * This page was a part of a speculative
8249 * read-ahead initiated by the kernel
8250 * itself. No one is expecting this
8251 * page and no one will clean up its
8252 * error state if it ever becomes valid
8253 * in the future.
8254 * We have to free it here.
8255 */
8256 must_free = TRUE;
8257 }
8258 m->vmp_cleaning = FALSE;
8259
8260 if (m->vmp_overwriting && !m->vmp_busy) {
8261 /*
8262 * this shouldn't happen since
8263 * this is an 'absent' page, but
8264 * it doesn't hurt to check for
8265 * the 'alternate' method of
8266 * stabilizing the page...
8267 * we will mark 'busy' to be cleared
8268 * in the following code which will
8269 * take care of the primary stabilzation
8270 * method (i.e. setting 'busy' to TRUE)
8271 */
8272 dwp->dw_mask |= DW_vm_page_unwire;
8273 }
8274 m->vmp_overwriting = FALSE;
8275
8276 dwp->dw_mask |= (DW_clear_busy | DW_PAGE_WAKEUP);
8277
8278 if (must_free == TRUE) {
8279 dwp->dw_mask |= DW_vm_page_free;
8280 } else {
8281 dwp->dw_mask |= DW_vm_page_activate;
8282 }
8283 } else {
8284 /*
8285 * Handle the trusted pager throttle.
8286 */
8287 if (m->vmp_laundry) {
8288 dwp->dw_mask |= DW_vm_pageout_throttle_up;
8289 }
8290
8291 if (upl->flags & UPL_ACCESS_BLOCKED) {
8292 /*
8293 * We blocked access to the pages in this UPL.
8294 * Clear the "busy" bit and wake up any waiter
8295 * for this page.
8296 */
8297 dwp->dw_mask |= DW_clear_busy;
8298 }
8299 if (m->vmp_overwriting) {
8300 if (m->vmp_busy) {
8301 dwp->dw_mask |= DW_clear_busy;
8302 } else {
8303 /*
8304 * deal with the 'alternate' method
8305 * of stabilizing the page...
8306 * we will either free the page
8307 * or mark 'busy' to be cleared
8308 * in the following code which will
8309 * take care of the primary stabilzation
8310 * method (i.e. setting 'busy' to TRUE)
8311 */
8312 dwp->dw_mask |= DW_vm_page_unwire;
8313 }
8314 m->vmp_overwriting = FALSE;
8315 }
8316 m->vmp_free_when_done = FALSE;
8317 m->vmp_cleaning = FALSE;
8318
8319 if (error & UPL_ABORT_DUMP_PAGES) {
8320 pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(m));
8321
8322 dwp->dw_mask |= DW_vm_page_free;
8323 } else {
8324 if (!(dwp->dw_mask & DW_vm_page_unwire)) {
8325 if (error & UPL_ABORT_REFERENCE) {
8326 /*
8327 * we've been told to explictly
8328 * reference this page... for
8329 * file I/O, this is done by
8330 * implementing an LRU on the inactive q
8331 */
8332 dwp->dw_mask |= DW_vm_page_lru;
8333 } else if (!VM_PAGE_PAGEABLE(m)) {
8334 dwp->dw_mask |= DW_vm_page_deactivate_internal;
8335 }
8336 }
8337 dwp->dw_mask |= DW_PAGE_WAKEUP;
8338 }
8339 }
8340 }
8341 abort_next_page:
8342 target_offset += PAGE_SIZE_64;
8343 xfer_size -= PAGE_SIZE;
8344 entry++;
8345
8346 if (dwp->dw_mask) {
8347 if (dwp->dw_mask & ~(DW_clear_busy | DW_PAGE_WAKEUP)) {
8348 VM_PAGE_ADD_DELAYED_WORK(dwp, m, dw_count);
8349
8350 if (dw_count >= dw_limit) {
8351 vm_page_do_delayed_work(shadow_object, VM_KERN_MEMORY_NONE, dwp_start, dw_count);
8352
8353 dwp = dwp_start;
8354 dw_count = 0;
8355 }
8356 } else {
8357 if (dwp->dw_mask & DW_clear_busy) {
8358 m->vmp_busy = FALSE;
8359 }
8360
8361 if (dwp->dw_mask & DW_PAGE_WAKEUP) {
8362 PAGE_WAKEUP(m);
8363 }
8364 }
8365 }
8366 }
8367 if (dw_count) {
8368 vm_page_do_delayed_work(shadow_object, VM_KERN_MEMORY_NONE, dwp_start, dw_count);
8369 dwp = dwp_start;
8370 dw_count = 0;
8371 }
8372
8373 occupied = 1;
8374
8375 if (upl->flags & UPL_DEVICE_MEMORY) {
8376 occupied = 0;
8377 } else if (upl->flags & UPL_LITE) {
8378 int pg_num;
8379 int i;
8380
8381 pg_num = upl_adjusted_size(upl, PAGE_MASK) / PAGE_SIZE;
8382 pg_num = (pg_num + 31) >> 5;
8383 occupied = 0;
8384
8385 for (i = 0; i < pg_num; i++) {
8386 if (lite_list[i] != 0) {
8387 occupied = 1;
8388 break;
8389 }
8390 }
8391 } else {
8392 if (vm_page_queue_empty(&upl->map_object->memq)) {
8393 occupied = 0;
8394 }
8395 }
8396 if (occupied == 0) {
8397 /*
8398 * If this UPL element belongs to a Vector UPL and is
8399 * empty, then this is the right function to deallocate
8400 * it. So go ahead set the *empty variable. The flag
8401 * UPL_COMMIT_NOTIFY_EMPTY, from the caller's point of view
8402 * should be considered relevant for the Vector UPL and
8403 * not the internal UPLs.
8404 */
8405 if ((upl->flags & UPL_COMMIT_NOTIFY_EMPTY) || isVectorUPL) {
8406 *empty = TRUE;
8407 }
8408
8409 if (object == shadow_object && !(upl->flags & UPL_KERNEL_OBJECT)) {
8410 /*
8411 * this is not a paging object
8412 * so we need to drop the paging reference
8413 * that was taken when we created the UPL
8414 * against this object
8415 */
8416 vm_object_activity_end(shadow_object);
8417 vm_object_collapse(shadow_object, 0, TRUE);
8418 } else {
8419 /*
8420 * we dontated the paging reference to
8421 * the map object... vm_pageout_object_terminate
8422 * will drop this reference
8423 */
8424 }
8425 }
8426 vm_object_unlock(shadow_object);
8427 if (object != shadow_object) {
8428 vm_object_unlock(object);
8429 }
8430
8431 if (!isVectorUPL) {
8432 upl_unlock(upl);
8433 } else {
8434 /*
8435 * If we completed our operations on an UPL that is
8436 * part of a Vectored UPL and if empty is TRUE, then
8437 * we should go ahead and deallocate this UPL element.
8438 * Then we check if this was the last of the UPL elements
8439 * within that Vectored UPL. If so, set empty to TRUE
8440 * so that in ubc_upl_abort_range or ubc_upl_abort, we
8441 * can go ahead and deallocate the Vector UPL too.
8442 */
8443 if (*empty == TRUE) {
8444 *empty = vector_upl_set_subupl(vector_upl, upl, 0);
8445 upl_deallocate(upl);
8446 }
8447 goto process_upl_to_abort;
8448 }
8449
8450 kr = KERN_SUCCESS;
8451
8452 done:
8453 if (dwp_start && dwp_finish_ctx) {
8454 vm_page_delayed_work_finish_ctx(dwp_start);
8455 dwp_start = dwp = NULL;
8456 }
8457
8458 return kr;
8459 }
8460
8461
8462 kern_return_t
8463 upl_abort(
8464 upl_t upl,
8465 int error)
8466 {
8467 boolean_t empty;
8468
8469 if (upl == UPL_NULL) {
8470 return KERN_INVALID_ARGUMENT;
8471 }
8472
8473 return upl_abort_range(upl, 0, upl->u_size, error, &empty);
8474 }
8475
8476
8477 /* an option on commit should be wire */
8478 kern_return_t
8479 upl_commit(
8480 upl_t upl,
8481 upl_page_info_t *page_list,
8482 mach_msg_type_number_t count)
8483 {
8484 boolean_t empty;
8485
8486 if (upl == UPL_NULL) {
8487 return KERN_INVALID_ARGUMENT;
8488 }
8489
8490 return upl_commit_range(upl, 0, upl->u_size, 0,
8491 page_list, count, &empty);
8492 }
8493
8494
8495 void
8496 iopl_valid_data(
8497 upl_t upl,
8498 vm_tag_t tag)
8499 {
8500 vm_object_t object;
8501 vm_offset_t offset;
8502 vm_page_t m, nxt_page = VM_PAGE_NULL;
8503 upl_size_t size;
8504 int wired_count = 0;
8505
8506 if (upl == NULL) {
8507 panic("iopl_valid_data: NULL upl");
8508 }
8509 if (vector_upl_is_valid(upl)) {
8510 panic("iopl_valid_data: vector upl");
8511 }
8512 if ((upl->flags & (UPL_DEVICE_MEMORY | UPL_SHADOWED | UPL_ACCESS_BLOCKED | UPL_IO_WIRE | UPL_INTERNAL)) != UPL_IO_WIRE) {
8513 panic("iopl_valid_data: unsupported upl, flags = %x", upl->flags);
8514 }
8515
8516 object = upl->map_object;
8517
8518 if (object == kernel_object || object == compressor_object) {
8519 panic("iopl_valid_data: object == kernel or compressor");
8520 }
8521
8522 if (object->purgable == VM_PURGABLE_VOLATILE ||
8523 object->purgable == VM_PURGABLE_EMPTY) {
8524 panic("iopl_valid_data: object %p purgable %d",
8525 object, object->purgable);
8526 }
8527
8528 size = upl_adjusted_size(upl, PAGE_MASK);
8529
8530 vm_object_lock(object);
8531 VM_OBJECT_WIRED_PAGE_UPDATE_START(object);
8532
8533 if (object->vo_size == size && object->resident_page_count == (size / PAGE_SIZE)) {
8534 nxt_page = (vm_page_t)vm_page_queue_first(&object->memq);
8535 } else {
8536 offset = (vm_offset_t)(upl_adjusted_offset(upl, PAGE_MASK) - object->paging_offset);
8537 }
8538
8539 while (size) {
8540 if (nxt_page != VM_PAGE_NULL) {
8541 m = nxt_page;
8542 nxt_page = (vm_page_t)vm_page_queue_next(&nxt_page->vmp_listq);
8543 } else {
8544 m = vm_page_lookup(object, offset);
8545 offset += PAGE_SIZE;
8546
8547 if (m == VM_PAGE_NULL) {
8548 panic("iopl_valid_data: missing expected page at offset %lx", (long)offset);
8549 }
8550 }
8551 if (m->vmp_busy) {
8552 if (!m->vmp_absent) {
8553 panic("iopl_valid_data: busy page w/o absent");
8554 }
8555
8556 if (m->vmp_pageq.next || m->vmp_pageq.prev) {
8557 panic("iopl_valid_data: busy+absent page on page queue");
8558 }
8559 if (m->vmp_reusable) {
8560 panic("iopl_valid_data: %p is reusable", m);
8561 }
8562
8563 m->vmp_absent = FALSE;
8564 m->vmp_dirty = TRUE;
8565 assert(m->vmp_q_state == VM_PAGE_NOT_ON_Q);
8566 assert(m->vmp_wire_count == 0);
8567 m->vmp_wire_count++;
8568 assert(m->vmp_wire_count);
8569 if (m->vmp_wire_count == 1) {
8570 m->vmp_q_state = VM_PAGE_IS_WIRED;
8571 wired_count++;
8572 } else {
8573 panic("iopl_valid_data: %p already wired\n", m);
8574 }
8575
8576 PAGE_WAKEUP_DONE(m);
8577 }
8578 size -= PAGE_SIZE;
8579 }
8580 if (wired_count) {
8581 VM_OBJECT_WIRED_PAGE_COUNT(object, wired_count);
8582 assert(object->resident_page_count >= object->wired_page_count);
8583
8584 /* no need to adjust purgeable accounting for this object: */
8585 assert(object->purgable != VM_PURGABLE_VOLATILE);
8586 assert(object->purgable != VM_PURGABLE_EMPTY);
8587
8588 vm_page_lockspin_queues();
8589 vm_page_wire_count += wired_count;
8590 vm_page_unlock_queues();
8591 }
8592 VM_OBJECT_WIRED_PAGE_UPDATE_END(object, tag);
8593 vm_object_unlock(object);
8594 }
8595
8596
8597 void
8598 vm_object_set_pmap_cache_attr(
8599 vm_object_t object,
8600 upl_page_info_array_t user_page_list,
8601 unsigned int num_pages,
8602 boolean_t batch_pmap_op)
8603 {
8604 unsigned int cache_attr = 0;
8605
8606 cache_attr = object->wimg_bits & VM_WIMG_MASK;
8607 assert(user_page_list);
8608 if (cache_attr != VM_WIMG_USE_DEFAULT) {
8609 PMAP_BATCH_SET_CACHE_ATTR(object, user_page_list, cache_attr, num_pages, batch_pmap_op);
8610 }
8611 }
8612
8613
8614 boolean_t vm_object_iopl_wire_full(vm_object_t, upl_t, upl_page_info_array_t, wpl_array_t, upl_control_flags_t, vm_tag_t);
8615 kern_return_t vm_object_iopl_wire_empty(vm_object_t, upl_t, upl_page_info_array_t, wpl_array_t, upl_control_flags_t, vm_tag_t, vm_object_offset_t *, int, int*);
8616
8617
8618
8619 boolean_t
8620 vm_object_iopl_wire_full(vm_object_t object, upl_t upl, upl_page_info_array_t user_page_list,
8621 wpl_array_t lite_list, upl_control_flags_t cntrl_flags, vm_tag_t tag)
8622 {
8623 vm_page_t dst_page;
8624 unsigned int entry;
8625 int page_count;
8626 int delayed_unlock = 0;
8627 boolean_t retval = TRUE;
8628 ppnum_t phys_page;
8629
8630 vm_object_lock_assert_exclusive(object);
8631 assert(object->purgable != VM_PURGABLE_VOLATILE);
8632 assert(object->purgable != VM_PURGABLE_EMPTY);
8633 assert(object->pager == NULL);
8634 assert(object->copy == NULL);
8635 assert(object->shadow == NULL);
8636
8637 page_count = object->resident_page_count;
8638 dst_page = (vm_page_t)vm_page_queue_first(&object->memq);
8639
8640 vm_page_lock_queues();
8641
8642 while (page_count--) {
8643 if (dst_page->vmp_busy ||
8644 dst_page->vmp_fictitious ||
8645 dst_page->vmp_absent ||
8646 dst_page->vmp_error ||
8647 dst_page->vmp_cleaning ||
8648 dst_page->vmp_restart ||
8649 dst_page->vmp_laundry) {
8650 retval = FALSE;
8651 goto done;
8652 }
8653 if ((cntrl_flags & UPL_REQUEST_FORCE_COHERENCY) && dst_page->vmp_written_by_kernel == TRUE) {
8654 retval = FALSE;
8655 goto done;
8656 }
8657 dst_page->vmp_reference = TRUE;
8658
8659 vm_page_wire(dst_page, tag, FALSE);
8660
8661 if (!(cntrl_flags & UPL_COPYOUT_FROM)) {
8662 SET_PAGE_DIRTY(dst_page, FALSE);
8663 }
8664 entry = (unsigned int)(dst_page->vmp_offset / PAGE_SIZE);
8665 assert(entry >= 0 && entry < object->resident_page_count);
8666 lite_list[entry >> 5] |= 1U << (entry & 31);
8667
8668 phys_page = VM_PAGE_GET_PHYS_PAGE(dst_page);
8669
8670 if (phys_page > upl->highest_page) {
8671 upl->highest_page = phys_page;
8672 }
8673
8674 if (user_page_list) {
8675 user_page_list[entry].phys_addr = phys_page;
8676 user_page_list[entry].absent = dst_page->vmp_absent;
8677 user_page_list[entry].dirty = dst_page->vmp_dirty;
8678 user_page_list[entry].free_when_done = dst_page->vmp_free_when_done;
8679 user_page_list[entry].precious = dst_page->vmp_precious;
8680 user_page_list[entry].device = FALSE;
8681 user_page_list[entry].speculative = FALSE;
8682 user_page_list[entry].cs_validated = FALSE;
8683 user_page_list[entry].cs_tainted = FALSE;
8684 user_page_list[entry].cs_nx = FALSE;
8685 user_page_list[entry].needed = FALSE;
8686 user_page_list[entry].mark = FALSE;
8687 }
8688 if (delayed_unlock++ > 256) {
8689 delayed_unlock = 0;
8690 lck_mtx_yield(&vm_page_queue_lock);
8691
8692 VM_CHECK_MEMORYSTATUS;
8693 }
8694 dst_page = (vm_page_t)vm_page_queue_next(&dst_page->vmp_listq);
8695 }
8696 done:
8697 vm_page_unlock_queues();
8698
8699 VM_CHECK_MEMORYSTATUS;
8700
8701 return retval;
8702 }
8703
8704
8705 kern_return_t
8706 vm_object_iopl_wire_empty(vm_object_t object, upl_t upl, upl_page_info_array_t user_page_list,
8707 wpl_array_t lite_list, upl_control_flags_t cntrl_flags, vm_tag_t tag, vm_object_offset_t *dst_offset,
8708 int page_count, int* page_grab_count)
8709 {
8710 vm_page_t dst_page;
8711 boolean_t no_zero_fill = FALSE;
8712 int interruptible;
8713 int pages_wired = 0;
8714 int pages_inserted = 0;
8715 int entry = 0;
8716 uint64_t delayed_ledger_update = 0;
8717 kern_return_t ret = KERN_SUCCESS;
8718 int grab_options;
8719 ppnum_t phys_page;
8720
8721 vm_object_lock_assert_exclusive(object);
8722 assert(object->purgable != VM_PURGABLE_VOLATILE);
8723 assert(object->purgable != VM_PURGABLE_EMPTY);
8724 assert(object->pager == NULL);
8725 assert(object->copy == NULL);
8726 assert(object->shadow == NULL);
8727
8728 if (cntrl_flags & UPL_SET_INTERRUPTIBLE) {
8729 interruptible = THREAD_ABORTSAFE;
8730 } else {
8731 interruptible = THREAD_UNINT;
8732 }
8733
8734 if (cntrl_flags & (UPL_NOZEROFILL | UPL_NOZEROFILLIO)) {
8735 no_zero_fill = TRUE;
8736 }
8737
8738 grab_options = 0;
8739 #if CONFIG_SECLUDED_MEMORY
8740 if (object->can_grab_secluded) {
8741 grab_options |= VM_PAGE_GRAB_SECLUDED;
8742 }
8743 #endif /* CONFIG_SECLUDED_MEMORY */
8744
8745 while (page_count--) {
8746 while ((dst_page = vm_page_grab_options(grab_options))
8747 == VM_PAGE_NULL) {
8748 OSAddAtomic(page_count, &vm_upl_wait_for_pages);
8749
8750 VM_DEBUG_EVENT(vm_iopl_page_wait, VM_IOPL_PAGE_WAIT, DBG_FUNC_START, vm_upl_wait_for_pages, 0, 0, 0);
8751
8752 if (vm_page_wait(interruptible) == FALSE) {
8753 /*
8754 * interrupted case
8755 */
8756 OSAddAtomic(-page_count, &vm_upl_wait_for_pages);
8757
8758 VM_DEBUG_EVENT(vm_iopl_page_wait, VM_IOPL_PAGE_WAIT, DBG_FUNC_END, vm_upl_wait_for_pages, 0, 0, -1);
8759
8760 ret = MACH_SEND_INTERRUPTED;
8761 goto done;
8762 }
8763 OSAddAtomic(-page_count, &vm_upl_wait_for_pages);
8764
8765 VM_DEBUG_EVENT(vm_iopl_page_wait, VM_IOPL_PAGE_WAIT, DBG_FUNC_END, vm_upl_wait_for_pages, 0, 0, 0);
8766 }
8767 if (no_zero_fill == FALSE) {
8768 vm_page_zero_fill(dst_page);
8769 } else {
8770 dst_page->vmp_absent = TRUE;
8771 }
8772
8773 dst_page->vmp_reference = TRUE;
8774
8775 if (!(cntrl_flags & UPL_COPYOUT_FROM)) {
8776 SET_PAGE_DIRTY(dst_page, FALSE);
8777 }
8778 if (dst_page->vmp_absent == FALSE) {
8779 assert(dst_page->vmp_q_state == VM_PAGE_NOT_ON_Q);
8780 assert(dst_page->vmp_wire_count == 0);
8781 dst_page->vmp_wire_count++;
8782 dst_page->vmp_q_state = VM_PAGE_IS_WIRED;
8783 assert(dst_page->vmp_wire_count);
8784 pages_wired++;
8785 PAGE_WAKEUP_DONE(dst_page);
8786 }
8787 pages_inserted++;
8788
8789 vm_page_insert_internal(dst_page, object, *dst_offset, tag, FALSE, TRUE, TRUE, TRUE, &delayed_ledger_update);
8790
8791 lite_list[entry >> 5] |= 1U << (entry & 31);
8792
8793 phys_page = VM_PAGE_GET_PHYS_PAGE(dst_page);
8794
8795 if (phys_page > upl->highest_page) {
8796 upl->highest_page = phys_page;
8797 }
8798
8799 if (user_page_list) {
8800 user_page_list[entry].phys_addr = phys_page;
8801 user_page_list[entry].absent = dst_page->vmp_absent;
8802 user_page_list[entry].dirty = dst_page->vmp_dirty;
8803 user_page_list[entry].free_when_done = FALSE;
8804 user_page_list[entry].precious = FALSE;
8805 user_page_list[entry].device = FALSE;
8806 user_page_list[entry].speculative = FALSE;
8807 user_page_list[entry].cs_validated = FALSE;
8808 user_page_list[entry].cs_tainted = FALSE;
8809 user_page_list[entry].cs_nx = FALSE;
8810 user_page_list[entry].needed = FALSE;
8811 user_page_list[entry].mark = FALSE;
8812 }
8813 entry++;
8814 *dst_offset += PAGE_SIZE_64;
8815 }
8816 done:
8817 if (pages_wired) {
8818 vm_page_lockspin_queues();
8819 vm_page_wire_count += pages_wired;
8820 vm_page_unlock_queues();
8821 }
8822 if (pages_inserted) {
8823 if (object->internal) {
8824 OSAddAtomic(pages_inserted, &vm_page_internal_count);
8825 } else {
8826 OSAddAtomic(pages_inserted, &vm_page_external_count);
8827 }
8828 }
8829 if (delayed_ledger_update) {
8830 task_t owner;
8831 int ledger_idx_volatile;
8832 int ledger_idx_nonvolatile;
8833 int ledger_idx_volatile_compressed;
8834 int ledger_idx_nonvolatile_compressed;
8835 boolean_t do_footprint;
8836
8837 owner = VM_OBJECT_OWNER(object);
8838 assert(owner);
8839
8840 vm_object_ledger_tag_ledgers(object,
8841 &ledger_idx_volatile,
8842 &ledger_idx_nonvolatile,
8843 &ledger_idx_volatile_compressed,
8844 &ledger_idx_nonvolatile_compressed,
8845 &do_footprint);
8846
8847 /* more non-volatile bytes */
8848 ledger_credit(owner->ledger,
8849 ledger_idx_nonvolatile,
8850 delayed_ledger_update);
8851 if (do_footprint) {
8852 /* more footprint */
8853 ledger_credit(owner->ledger,
8854 task_ledgers.phys_footprint,
8855 delayed_ledger_update);
8856 }
8857 }
8858
8859 assert(page_grab_count);
8860 *page_grab_count = pages_inserted;
8861
8862 return ret;
8863 }
8864
8865
8866
8867 kern_return_t
8868 vm_object_iopl_request(
8869 vm_object_t object,
8870 vm_object_offset_t offset,
8871 upl_size_t size,
8872 upl_t *upl_ptr,
8873 upl_page_info_array_t user_page_list,
8874 unsigned int *page_list_count,
8875 upl_control_flags_t cntrl_flags,
8876 vm_tag_t tag)
8877 {
8878 vm_page_t dst_page;
8879 vm_object_offset_t dst_offset;
8880 upl_size_t xfer_size;
8881 upl_t upl = NULL;
8882 unsigned int entry;
8883 wpl_array_t lite_list = NULL;
8884 int no_zero_fill = FALSE;
8885 unsigned int size_in_pages;
8886 int page_grab_count = 0;
8887 u_int32_t psize;
8888 kern_return_t ret;
8889 vm_prot_t prot;
8890 struct vm_object_fault_info fault_info = {};
8891 struct vm_page_delayed_work dw_array;
8892 struct vm_page_delayed_work *dwp, *dwp_start;
8893 bool dwp_finish_ctx = TRUE;
8894 int dw_count;
8895 int dw_limit;
8896 int dw_index;
8897 boolean_t caller_lookup;
8898 int io_tracking_flag = 0;
8899 int interruptible;
8900 ppnum_t phys_page;
8901
8902 boolean_t set_cache_attr_needed = FALSE;
8903 boolean_t free_wired_pages = FALSE;
8904 boolean_t fast_path_empty_req = FALSE;
8905 boolean_t fast_path_full_req = FALSE;
8906
8907 #if DEVELOPMENT || DEBUG
8908 task_t task = current_task();
8909 #endif /* DEVELOPMENT || DEBUG */
8910
8911 dwp_start = dwp = NULL;
8912
8913 vm_object_offset_t original_offset = offset;
8914 upl_size_t original_size = size;
8915
8916 // DEBUG4K_UPL("object %p offset 0x%llx size 0x%llx cntrl_flags 0x%llx\n", object, (uint64_t)offset, (uint64_t)size, cntrl_flags);
8917
8918 size = (upl_size_t)(vm_object_round_page(offset + size) - vm_object_trunc_page(offset));
8919 offset = vm_object_trunc_page(offset);
8920 if (size != original_size || offset != original_offset) {
8921 DEBUG4K_IOKIT("flags 0x%llx object %p offset 0x%llx size 0x%x -> offset 0x%llx size 0x%x\n", cntrl_flags, object, original_offset, original_size, offset, size);
8922 }
8923
8924 if (cntrl_flags & ~UPL_VALID_FLAGS) {
8925 /*
8926 * For forward compatibility's sake,
8927 * reject any unknown flag.
8928 */
8929 return KERN_INVALID_VALUE;
8930 }
8931 if (vm_lopage_needed == FALSE) {
8932 cntrl_flags &= ~UPL_NEED_32BIT_ADDR;
8933 }
8934
8935 if (cntrl_flags & UPL_NEED_32BIT_ADDR) {
8936 if ((cntrl_flags & (UPL_SET_IO_WIRE | UPL_SET_LITE)) != (UPL_SET_IO_WIRE | UPL_SET_LITE)) {
8937 return KERN_INVALID_VALUE;
8938 }
8939
8940 if (object->phys_contiguous) {
8941 if ((offset + object->vo_shadow_offset) >= (vm_object_offset_t)max_valid_dma_address) {
8942 return KERN_INVALID_ADDRESS;
8943 }
8944
8945 if (((offset + object->vo_shadow_offset) + size) >= (vm_object_offset_t)max_valid_dma_address) {
8946 return KERN_INVALID_ADDRESS;
8947 }
8948 }
8949 }
8950 if (cntrl_flags & (UPL_NOZEROFILL | UPL_NOZEROFILLIO)) {
8951 no_zero_fill = TRUE;
8952 }
8953
8954 if (cntrl_flags & UPL_COPYOUT_FROM) {
8955 prot = VM_PROT_READ;
8956 } else {
8957 prot = VM_PROT_READ | VM_PROT_WRITE;
8958 }
8959
8960 if ((!object->internal) && (object->paging_offset != 0)) {
8961 panic("vm_object_iopl_request: external object with non-zero paging offset\n");
8962 }
8963
8964
8965 VM_DEBUG_CONSTANT_EVENT(vm_object_iopl_request, VM_IOPL_REQUEST, DBG_FUNC_START, size, cntrl_flags, prot, 0);
8966
8967 #if CONFIG_IOSCHED || UPL_DEBUG
8968 if ((object->io_tracking && object != kernel_object) || upl_debug_enabled) {
8969 io_tracking_flag |= UPL_CREATE_IO_TRACKING;
8970 }
8971 #endif
8972
8973 #if CONFIG_IOSCHED
8974 if (object->io_tracking) {
8975 /* Check if we're dealing with the kernel object. We do not support expedite on kernel object UPLs */
8976 if (object != kernel_object) {
8977 io_tracking_flag |= UPL_CREATE_EXPEDITE_SUP;
8978 }
8979 }
8980 #endif
8981
8982 if (object->phys_contiguous) {
8983 psize = PAGE_SIZE;
8984 } else {
8985 psize = size;
8986
8987 dw_count = 0;
8988 dw_limit = DELAYED_WORK_LIMIT(DEFAULT_DELAYED_WORK_LIMIT);
8989 dwp_start = vm_page_delayed_work_get_ctx();
8990 if (dwp_start == NULL) {
8991 dwp_start = &dw_array;
8992 dw_limit = 1;
8993 dwp_finish_ctx = FALSE;
8994 }
8995
8996 dwp = dwp_start;
8997 }
8998
8999 if (cntrl_flags & UPL_SET_INTERNAL) {
9000 upl = upl_create(UPL_CREATE_INTERNAL | UPL_CREATE_LITE | io_tracking_flag, UPL_IO_WIRE, psize);
9001
9002 user_page_list = (upl_page_info_t *) (((uintptr_t)upl) + sizeof(struct upl));
9003 lite_list = (wpl_array_t) (((uintptr_t)user_page_list) +
9004 ((psize / PAGE_SIZE) * sizeof(upl_page_info_t)));
9005 if (size == 0) {
9006 user_page_list = NULL;
9007 lite_list = NULL;
9008 }
9009 } else {
9010 upl = upl_create(UPL_CREATE_LITE | io_tracking_flag, UPL_IO_WIRE, psize);
9011
9012 lite_list = (wpl_array_t) (((uintptr_t)upl) + sizeof(struct upl));
9013 if (size == 0) {
9014 lite_list = NULL;
9015 }
9016 }
9017 if (user_page_list) {
9018 user_page_list[0].device = FALSE;
9019 }
9020 *upl_ptr = upl;
9021
9022 if (cntrl_flags & UPL_NOZEROFILLIO) {
9023 DTRACE_VM4(upl_nozerofillio,
9024 vm_object_t, object,
9025 vm_object_offset_t, offset,
9026 upl_size_t, size,
9027 upl_t, upl);
9028 }
9029
9030 upl->map_object = object;
9031 upl->u_offset = original_offset;
9032 upl->u_size = original_size;
9033
9034 size_in_pages = size / PAGE_SIZE;
9035
9036 if (object == kernel_object &&
9037 !(cntrl_flags & (UPL_NEED_32BIT_ADDR | UPL_BLOCK_ACCESS))) {
9038 upl->flags |= UPL_KERNEL_OBJECT;
9039 #if UPL_DEBUG
9040 vm_object_lock(object);
9041 #else
9042 vm_object_lock_shared(object);
9043 #endif
9044 } else {
9045 vm_object_lock(object);
9046 vm_object_activity_begin(object);
9047 }
9048 /*
9049 * paging in progress also protects the paging_offset
9050 */
9051 upl->u_offset = original_offset + object->paging_offset;
9052
9053 if (cntrl_flags & UPL_BLOCK_ACCESS) {
9054 /*
9055 * The user requested that access to the pages in this UPL
9056 * be blocked until the UPL is commited or aborted.
9057 */
9058 upl->flags |= UPL_ACCESS_BLOCKED;
9059 }
9060
9061 #if CONFIG_IOSCHED || UPL_DEBUG
9062 if ((upl->flags & UPL_TRACKED_BY_OBJECT) || upl_debug_enabled) {
9063 vm_object_activity_begin(object);
9064 queue_enter(&object->uplq, upl, upl_t, uplq);
9065 }
9066 #endif
9067
9068 if (object->phys_contiguous) {
9069 if (upl->flags & UPL_ACCESS_BLOCKED) {
9070 assert(!object->blocked_access);
9071 object->blocked_access = TRUE;
9072 }
9073
9074 vm_object_unlock(object);
9075
9076 /*
9077 * don't need any shadow mappings for this one
9078 * since it is already I/O memory
9079 */
9080 upl->flags |= UPL_DEVICE_MEMORY;
9081
9082 upl->highest_page = (ppnum_t) ((offset + object->vo_shadow_offset + size - 1) >> PAGE_SHIFT);
9083
9084 if (user_page_list) {
9085 user_page_list[0].phys_addr = (ppnum_t) ((offset + object->vo_shadow_offset) >> PAGE_SHIFT);
9086 user_page_list[0].device = TRUE;
9087 }
9088 if (page_list_count != NULL) {
9089 if (upl->flags & UPL_INTERNAL) {
9090 *page_list_count = 0;
9091 } else {
9092 *page_list_count = 1;
9093 }
9094 }
9095
9096 VM_DEBUG_CONSTANT_EVENT(vm_object_iopl_request, VM_IOPL_REQUEST, DBG_FUNC_END, page_grab_count, KERN_SUCCESS, 0, 0);
9097 #if DEVELOPMENT || DEBUG
9098 if (task != NULL) {
9099 ledger_credit(task->ledger, task_ledgers.pages_grabbed_iopl, page_grab_count);
9100 }
9101 #endif /* DEVELOPMENT || DEBUG */
9102 return KERN_SUCCESS;
9103 }
9104 if (object != kernel_object && object != compressor_object) {
9105 /*
9106 * Protect user space from future COW operations
9107 */
9108 #if VM_OBJECT_TRACKING_OP_TRUESHARE
9109 if (!object->true_share &&
9110 vm_object_tracking_inited) {
9111 void *bt[VM_OBJECT_TRACKING_BTDEPTH];
9112 int num = 0;
9113
9114 num = OSBacktrace(bt,
9115 VM_OBJECT_TRACKING_BTDEPTH);
9116 btlog_add_entry(vm_object_tracking_btlog,
9117 object,
9118 VM_OBJECT_TRACKING_OP_TRUESHARE,
9119 bt,
9120 num);
9121 }
9122 #endif /* VM_OBJECT_TRACKING_OP_TRUESHARE */
9123
9124 vm_object_lock_assert_exclusive(object);
9125 object->true_share = TRUE;
9126
9127 if (object->copy_strategy == MEMORY_OBJECT_COPY_SYMMETRIC) {
9128 object->copy_strategy = MEMORY_OBJECT_COPY_DELAY;
9129 }
9130 }
9131
9132 if (!(cntrl_flags & UPL_COPYOUT_FROM) &&
9133 object->copy != VM_OBJECT_NULL) {
9134 /*
9135 * Honor copy-on-write obligations
9136 *
9137 * The caller is gathering these pages and
9138 * might modify their contents. We need to
9139 * make sure that the copy object has its own
9140 * private copies of these pages before we let
9141 * the caller modify them.
9142 *
9143 * NOTE: someone else could map the original object
9144 * after we've done this copy-on-write here, and they
9145 * could then see an inconsistent picture of the memory
9146 * while it's being modified via the UPL. To prevent this,
9147 * we would have to block access to these pages until the
9148 * UPL is released. We could use the UPL_BLOCK_ACCESS
9149 * code path for that...
9150 */
9151 vm_object_update(object,
9152 offset,
9153 size,
9154 NULL,
9155 NULL,
9156 FALSE, /* should_return */
9157 MEMORY_OBJECT_COPY_SYNC,
9158 VM_PROT_NO_CHANGE);
9159 VM_PAGEOUT_DEBUG(iopl_cow, 1);
9160 VM_PAGEOUT_DEBUG(iopl_cow_pages, (size >> PAGE_SHIFT));
9161 }
9162 if (!(cntrl_flags & (UPL_NEED_32BIT_ADDR | UPL_BLOCK_ACCESS)) &&
9163 object->purgable != VM_PURGABLE_VOLATILE &&
9164 object->purgable != VM_PURGABLE_EMPTY &&
9165 object->copy == NULL &&
9166 size == object->vo_size &&
9167 offset == 0 &&
9168 object->shadow == NULL &&
9169 object->pager == NULL) {
9170 if (object->resident_page_count == size_in_pages) {
9171 assert(object != compressor_object);
9172 assert(object != kernel_object);
9173 fast_path_full_req = TRUE;
9174 } else if (object->resident_page_count == 0) {
9175 assert(object != compressor_object);
9176 assert(object != kernel_object);
9177 fast_path_empty_req = TRUE;
9178 set_cache_attr_needed = TRUE;
9179 }
9180 }
9181
9182 if (cntrl_flags & UPL_SET_INTERRUPTIBLE) {
9183 interruptible = THREAD_ABORTSAFE;
9184 } else {
9185 interruptible = THREAD_UNINT;
9186 }
9187
9188 entry = 0;
9189
9190 xfer_size = size;
9191 dst_offset = offset;
9192
9193 if (fast_path_full_req) {
9194 if (vm_object_iopl_wire_full(object, upl, user_page_list, lite_list, cntrl_flags, tag) == TRUE) {
9195 goto finish;
9196 }
9197 /*
9198 * we couldn't complete the processing of this request on the fast path
9199 * so fall through to the slow path and finish up
9200 */
9201 } else if (fast_path_empty_req) {
9202 if (cntrl_flags & UPL_REQUEST_NO_FAULT) {
9203 ret = KERN_MEMORY_ERROR;
9204 goto return_err;
9205 }
9206 ret = vm_object_iopl_wire_empty(object, upl, user_page_list, lite_list, cntrl_flags, tag, &dst_offset, size_in_pages, &page_grab_count);
9207
9208 if (ret) {
9209 free_wired_pages = TRUE;
9210 goto return_err;
9211 }
9212 goto finish;
9213 }
9214
9215 fault_info.behavior = VM_BEHAVIOR_SEQUENTIAL;
9216 fault_info.lo_offset = offset;
9217 fault_info.hi_offset = offset + xfer_size;
9218 fault_info.mark_zf_absent = TRUE;
9219 fault_info.interruptible = interruptible;
9220 fault_info.batch_pmap_op = TRUE;
9221
9222 while (xfer_size) {
9223 vm_fault_return_t result;
9224
9225 dwp->dw_mask = 0;
9226
9227 if (fast_path_full_req) {
9228 /*
9229 * if we get here, it means that we ran into a page
9230 * state we couldn't handle in the fast path and
9231 * bailed out to the slow path... since the order
9232 * we look at pages is different between the 2 paths,
9233 * the following check is needed to determine whether
9234 * this page was already processed in the fast path
9235 */
9236 if (lite_list[entry >> 5] & (1 << (entry & 31))) {
9237 goto skip_page;
9238 }
9239 }
9240 dst_page = vm_page_lookup(object, dst_offset);
9241
9242 if (dst_page == VM_PAGE_NULL ||
9243 dst_page->vmp_busy ||
9244 dst_page->vmp_error ||
9245 dst_page->vmp_restart ||
9246 dst_page->vmp_absent ||
9247 dst_page->vmp_fictitious) {
9248 if (object == kernel_object) {
9249 panic("vm_object_iopl_request: missing/bad page in kernel object\n");
9250 }
9251 if (object == compressor_object) {
9252 panic("vm_object_iopl_request: missing/bad page in compressor object\n");
9253 }
9254
9255 if (cntrl_flags & UPL_REQUEST_NO_FAULT) {
9256 ret = KERN_MEMORY_ERROR;
9257 goto return_err;
9258 }
9259 set_cache_attr_needed = TRUE;
9260
9261 /*
9262 * We just looked up the page and the result remains valid
9263 * until the object lock is release, so send it to
9264 * vm_fault_page() (as "dst_page"), to avoid having to
9265 * look it up again there.
9266 */
9267 caller_lookup = TRUE;
9268
9269 do {
9270 vm_page_t top_page;
9271 kern_return_t error_code;
9272
9273 fault_info.cluster_size = xfer_size;
9274
9275 vm_object_paging_begin(object);
9276
9277 result = vm_fault_page(object, dst_offset,
9278 prot | VM_PROT_WRITE, FALSE,
9279 caller_lookup,
9280 &prot, &dst_page, &top_page,
9281 (int *)0,
9282 &error_code, no_zero_fill,
9283 FALSE, &fault_info);
9284
9285 /* our lookup is no longer valid at this point */
9286 caller_lookup = FALSE;
9287
9288 switch (result) {
9289 case VM_FAULT_SUCCESS:
9290 page_grab_count++;
9291
9292 if (!dst_page->vmp_absent) {
9293 PAGE_WAKEUP_DONE(dst_page);
9294 } else {
9295 /*
9296 * we only get back an absent page if we
9297 * requested that it not be zero-filled
9298 * because we are about to fill it via I/O
9299 *
9300 * absent pages should be left BUSY
9301 * to prevent them from being faulted
9302 * into an address space before we've
9303 * had a chance to complete the I/O on
9304 * them since they may contain info that
9305 * shouldn't be seen by the faulting task
9306 */
9307 }
9308 /*
9309 * Release paging references and
9310 * top-level placeholder page, if any.
9311 */
9312 if (top_page != VM_PAGE_NULL) {
9313 vm_object_t local_object;
9314
9315 local_object = VM_PAGE_OBJECT(top_page);
9316
9317 /*
9318 * comparing 2 packed pointers
9319 */
9320 if (top_page->vmp_object != dst_page->vmp_object) {
9321 vm_object_lock(local_object);
9322 VM_PAGE_FREE(top_page);
9323 vm_object_paging_end(local_object);
9324 vm_object_unlock(local_object);
9325 } else {
9326 VM_PAGE_FREE(top_page);
9327 vm_object_paging_end(local_object);
9328 }
9329 }
9330 vm_object_paging_end(object);
9331 break;
9332
9333 case VM_FAULT_RETRY:
9334 vm_object_lock(object);
9335 break;
9336
9337 case VM_FAULT_MEMORY_SHORTAGE:
9338 OSAddAtomic((size_in_pages - entry), &vm_upl_wait_for_pages);
9339
9340 VM_DEBUG_EVENT(vm_iopl_page_wait, VM_IOPL_PAGE_WAIT, DBG_FUNC_START, vm_upl_wait_for_pages, 0, 0, 0);
9341
9342 if (vm_page_wait(interruptible)) {
9343 OSAddAtomic(-(size_in_pages - entry), &vm_upl_wait_for_pages);
9344
9345 VM_DEBUG_EVENT(vm_iopl_page_wait, VM_IOPL_PAGE_WAIT, DBG_FUNC_END, vm_upl_wait_for_pages, 0, 0, 0);
9346 vm_object_lock(object);
9347
9348 break;
9349 }
9350 OSAddAtomic(-(size_in_pages - entry), &vm_upl_wait_for_pages);
9351
9352 VM_DEBUG_EVENT(vm_iopl_page_wait, VM_IOPL_PAGE_WAIT, DBG_FUNC_END, vm_upl_wait_for_pages, 0, 0, -1);
9353
9354 OS_FALLTHROUGH;
9355
9356 case VM_FAULT_INTERRUPTED:
9357 error_code = MACH_SEND_INTERRUPTED;
9358 OS_FALLTHROUGH;
9359 case VM_FAULT_MEMORY_ERROR:
9360 memory_error:
9361 ret = (error_code ? error_code: KERN_MEMORY_ERROR);
9362
9363 vm_object_lock(object);
9364 goto return_err;
9365
9366 case VM_FAULT_SUCCESS_NO_VM_PAGE:
9367 /* success but no page: fail */
9368 vm_object_paging_end(object);
9369 vm_object_unlock(object);
9370 goto memory_error;
9371
9372 default:
9373 panic("vm_object_iopl_request: unexpected error"
9374 " 0x%x from vm_fault_page()\n", result);
9375 }
9376 } while (result != VM_FAULT_SUCCESS);
9377 }
9378 phys_page = VM_PAGE_GET_PHYS_PAGE(dst_page);
9379
9380 if (upl->flags & UPL_KERNEL_OBJECT) {
9381 goto record_phys_addr;
9382 }
9383
9384 if (dst_page->vmp_q_state == VM_PAGE_USED_BY_COMPRESSOR) {
9385 dst_page->vmp_busy = TRUE;
9386 goto record_phys_addr;
9387 }
9388
9389 if (dst_page->vmp_cleaning) {
9390 /*
9391 * Someone else is cleaning this page in place.
9392 * In theory, we should be able to proceed and use this
9393 * page but they'll probably end up clearing the "busy"
9394 * bit on it in upl_commit_range() but they didn't set
9395 * it, so they would clear our "busy" bit and open
9396 * us to race conditions.
9397 * We'd better wait for the cleaning to complete and
9398 * then try again.
9399 */
9400 VM_PAGEOUT_DEBUG(vm_object_iopl_request_sleep_for_cleaning, 1);
9401 PAGE_SLEEP(object, dst_page, THREAD_UNINT);
9402 continue;
9403 }
9404 if (dst_page->vmp_laundry) {
9405 vm_pageout_steal_laundry(dst_page, FALSE);
9406 }
9407
9408 if ((cntrl_flags & UPL_NEED_32BIT_ADDR) &&
9409 phys_page >= (max_valid_dma_address >> PAGE_SHIFT)) {
9410 vm_page_t low_page;
9411 int refmod;
9412
9413 /*
9414 * support devices that can't DMA above 32 bits
9415 * by substituting pages from a pool of low address
9416 * memory for any pages we find above the 4G mark
9417 * can't substitute if the page is already wired because
9418 * we don't know whether that physical address has been
9419 * handed out to some other 64 bit capable DMA device to use
9420 */
9421 if (VM_PAGE_WIRED(dst_page)) {
9422 ret = KERN_PROTECTION_FAILURE;
9423 goto return_err;
9424 }
9425 low_page = vm_page_grablo();
9426
9427 if (low_page == VM_PAGE_NULL) {
9428 ret = KERN_RESOURCE_SHORTAGE;
9429 goto return_err;
9430 }
9431 /*
9432 * from here until the vm_page_replace completes
9433 * we musn't drop the object lock... we don't
9434 * want anyone refaulting this page in and using
9435 * it after we disconnect it... we want the fault
9436 * to find the new page being substituted.
9437 */
9438 if (dst_page->vmp_pmapped) {
9439 refmod = pmap_disconnect(phys_page);
9440 } else {
9441 refmod = 0;
9442 }
9443
9444 if (!dst_page->vmp_absent) {
9445 vm_page_copy(dst_page, low_page);
9446 }
9447
9448 low_page->vmp_reference = dst_page->vmp_reference;
9449 low_page->vmp_dirty = dst_page->vmp_dirty;
9450 low_page->vmp_absent = dst_page->vmp_absent;
9451
9452 if (refmod & VM_MEM_REFERENCED) {
9453 low_page->vmp_reference = TRUE;
9454 }
9455 if (refmod & VM_MEM_MODIFIED) {
9456 SET_PAGE_DIRTY(low_page, FALSE);
9457 }
9458
9459 vm_page_replace(low_page, object, dst_offset);
9460
9461 dst_page = low_page;
9462 /*
9463 * vm_page_grablo returned the page marked
9464 * BUSY... we don't need a PAGE_WAKEUP_DONE
9465 * here, because we've never dropped the object lock
9466 */
9467 if (!dst_page->vmp_absent) {
9468 dst_page->vmp_busy = FALSE;
9469 }
9470
9471 phys_page = VM_PAGE_GET_PHYS_PAGE(dst_page);
9472 }
9473 if (!dst_page->vmp_busy) {
9474 dwp->dw_mask |= DW_vm_page_wire;
9475 }
9476
9477 if (cntrl_flags & UPL_BLOCK_ACCESS) {
9478 /*
9479 * Mark the page "busy" to block any future page fault
9480 * on this page in addition to wiring it.
9481 * We'll also remove the mapping
9482 * of all these pages before leaving this routine.
9483 */
9484 assert(!dst_page->vmp_fictitious);
9485 dst_page->vmp_busy = TRUE;
9486 }
9487 /*
9488 * expect the page to be used
9489 * page queues lock must be held to set 'reference'
9490 */
9491 dwp->dw_mask |= DW_set_reference;
9492
9493 if (!(cntrl_flags & UPL_COPYOUT_FROM)) {
9494 SET_PAGE_DIRTY(dst_page, TRUE);
9495 /*
9496 * Page belonging to a code-signed object is about to
9497 * be written. Mark it tainted and disconnect it from
9498 * all pmaps so processes have to fault it back in and
9499 * deal with the tainted bit.
9500 */
9501 if (object->code_signed && dst_page->vmp_cs_tainted != VMP_CS_ALL_TRUE) {
9502 dst_page->vmp_cs_tainted = VMP_CS_ALL_TRUE;
9503 vm_page_iopl_tainted++;
9504 if (dst_page->vmp_pmapped) {
9505 int refmod = pmap_disconnect(VM_PAGE_GET_PHYS_PAGE(dst_page));
9506 if (refmod & VM_MEM_REFERENCED) {
9507 dst_page->vmp_reference = TRUE;
9508 }
9509 }
9510 }
9511 }
9512 if ((cntrl_flags & UPL_REQUEST_FORCE_COHERENCY) && dst_page->vmp_written_by_kernel == TRUE) {
9513 pmap_sync_page_attributes_phys(phys_page);
9514 dst_page->vmp_written_by_kernel = FALSE;
9515 }
9516
9517 record_phys_addr:
9518 if (dst_page->vmp_busy) {
9519 upl->flags |= UPL_HAS_BUSY;
9520 }
9521
9522 lite_list[entry >> 5] |= 1U << (entry & 31);
9523
9524 if (phys_page > upl->highest_page) {
9525 upl->highest_page = phys_page;
9526 }
9527
9528 if (user_page_list) {
9529 user_page_list[entry].phys_addr = phys_page;
9530 user_page_list[entry].free_when_done = dst_page->vmp_free_when_done;
9531 user_page_list[entry].absent = dst_page->vmp_absent;
9532 user_page_list[entry].dirty = dst_page->vmp_dirty;
9533 user_page_list[entry].precious = dst_page->vmp_precious;
9534 user_page_list[entry].device = FALSE;
9535 user_page_list[entry].needed = FALSE;
9536 if (dst_page->vmp_clustered == TRUE) {
9537 user_page_list[entry].speculative = (dst_page->vmp_q_state == VM_PAGE_ON_SPECULATIVE_Q) ? TRUE : FALSE;
9538 } else {
9539 user_page_list[entry].speculative = FALSE;
9540 }
9541 user_page_list[entry].cs_validated = dst_page->vmp_cs_validated;
9542 user_page_list[entry].cs_tainted = dst_page->vmp_cs_tainted;
9543 user_page_list[entry].cs_nx = dst_page->vmp_cs_nx;
9544 user_page_list[entry].mark = FALSE;
9545 }
9546 if (object != kernel_object && object != compressor_object) {
9547 /*
9548 * someone is explicitly grabbing this page...
9549 * update clustered and speculative state
9550 *
9551 */
9552 if (dst_page->vmp_clustered) {
9553 VM_PAGE_CONSUME_CLUSTERED(dst_page);
9554 }
9555 }
9556 skip_page:
9557 entry++;
9558 dst_offset += PAGE_SIZE_64;
9559 xfer_size -= PAGE_SIZE;
9560
9561 if (dwp->dw_mask) {
9562 VM_PAGE_ADD_DELAYED_WORK(dwp, dst_page, dw_count);
9563
9564 if (dw_count >= dw_limit) {
9565 vm_page_do_delayed_work(object, tag, dwp_start, dw_count);
9566
9567 dwp = dwp_start;
9568 dw_count = 0;
9569 }
9570 }
9571 }
9572 assert(entry == size_in_pages);
9573
9574 if (dw_count) {
9575 vm_page_do_delayed_work(object, tag, dwp_start, dw_count);
9576 dwp = dwp_start;
9577 dw_count = 0;
9578 }
9579 finish:
9580 if (user_page_list && set_cache_attr_needed == TRUE) {
9581 vm_object_set_pmap_cache_attr(object, user_page_list, size_in_pages, TRUE);
9582 }
9583
9584 if (page_list_count != NULL) {
9585 if (upl->flags & UPL_INTERNAL) {
9586 *page_list_count = 0;
9587 } else if (*page_list_count > size_in_pages) {
9588 *page_list_count = size_in_pages;
9589 }
9590 }
9591 vm_object_unlock(object);
9592
9593 if (cntrl_flags & UPL_BLOCK_ACCESS) {
9594 /*
9595 * We've marked all the pages "busy" so that future
9596 * page faults will block.
9597 * Now remove the mapping for these pages, so that they
9598 * can't be accessed without causing a page fault.
9599 */
9600 vm_object_pmap_protect(object, offset, (vm_object_size_t)size,
9601 PMAP_NULL,
9602 PAGE_SIZE,
9603 0, VM_PROT_NONE);
9604 assert(!object->blocked_access);
9605 object->blocked_access = TRUE;
9606 }
9607
9608 VM_DEBUG_CONSTANT_EVENT(vm_object_iopl_request, VM_IOPL_REQUEST, DBG_FUNC_END, page_grab_count, KERN_SUCCESS, 0, 0);
9609 #if DEVELOPMENT || DEBUG
9610 if (task != NULL) {
9611 ledger_credit(task->ledger, task_ledgers.pages_grabbed_iopl, page_grab_count);
9612 }
9613 #endif /* DEVELOPMENT || DEBUG */
9614
9615 if (dwp_start && dwp_finish_ctx) {
9616 vm_page_delayed_work_finish_ctx(dwp_start);
9617 dwp_start = dwp = NULL;
9618 }
9619
9620 return KERN_SUCCESS;
9621
9622 return_err:
9623 dw_index = 0;
9624
9625 for (; offset < dst_offset; offset += PAGE_SIZE) {
9626 boolean_t need_unwire;
9627
9628 dst_page = vm_page_lookup(object, offset);
9629
9630 if (dst_page == VM_PAGE_NULL) {
9631 panic("vm_object_iopl_request: Wired page missing. \n");
9632 }
9633
9634 /*
9635 * if we've already processed this page in an earlier
9636 * dw_do_work, we need to undo the wiring... we will
9637 * leave the dirty and reference bits on if they
9638 * were set, since we don't have a good way of knowing
9639 * what the previous state was and we won't get here
9640 * under any normal circumstances... we will always
9641 * clear BUSY and wakeup any waiters via vm_page_free
9642 * or PAGE_WAKEUP_DONE
9643 */
9644 need_unwire = TRUE;
9645
9646 if (dw_count) {
9647 if ((dwp_start)[dw_index].dw_m == dst_page) {
9648 /*
9649 * still in the deferred work list
9650 * which means we haven't yet called
9651 * vm_page_wire on this page
9652 */
9653 need_unwire = FALSE;
9654
9655 dw_index++;
9656 dw_count--;
9657 }
9658 }
9659 vm_page_lock_queues();
9660
9661 if (dst_page->vmp_absent || free_wired_pages == TRUE) {
9662 vm_page_free(dst_page);
9663
9664 need_unwire = FALSE;
9665 } else {
9666 if (need_unwire == TRUE) {
9667 vm_page_unwire(dst_page, TRUE);
9668 }
9669
9670 PAGE_WAKEUP_DONE(dst_page);
9671 }
9672 vm_page_unlock_queues();
9673
9674 if (need_unwire == TRUE) {
9675 VM_STAT_INCR(reactivations);
9676 }
9677 }
9678 #if UPL_DEBUG
9679 upl->upl_state = 2;
9680 #endif
9681 if (!(upl->flags & UPL_KERNEL_OBJECT)) {
9682 vm_object_activity_end(object);
9683 vm_object_collapse(object, 0, TRUE);
9684 }
9685 vm_object_unlock(object);
9686 upl_destroy(upl);
9687
9688 VM_DEBUG_CONSTANT_EVENT(vm_object_iopl_request, VM_IOPL_REQUEST, DBG_FUNC_END, page_grab_count, ret, 0, 0);
9689 #if DEVELOPMENT || DEBUG
9690 if (task != NULL) {
9691 ledger_credit(task->ledger, task_ledgers.pages_grabbed_iopl, page_grab_count);
9692 }
9693 #endif /* DEVELOPMENT || DEBUG */
9694
9695 if (dwp_start && dwp_finish_ctx) {
9696 vm_page_delayed_work_finish_ctx(dwp_start);
9697 dwp_start = dwp = NULL;
9698 }
9699 return ret;
9700 }
9701
9702 kern_return_t
9703 upl_transpose(
9704 upl_t upl1,
9705 upl_t upl2)
9706 {
9707 kern_return_t retval;
9708 boolean_t upls_locked;
9709 vm_object_t object1, object2;
9710
9711 if (upl1 == UPL_NULL || upl2 == UPL_NULL || upl1 == upl2 || ((upl1->flags & UPL_VECTOR) == UPL_VECTOR) || ((upl2->flags & UPL_VECTOR) == UPL_VECTOR)) {
9712 return KERN_INVALID_ARGUMENT;
9713 }
9714
9715 upls_locked = FALSE;
9716
9717 /*
9718 * Since we need to lock both UPLs at the same time,
9719 * avoid deadlocks by always taking locks in the same order.
9720 */
9721 if (upl1 < upl2) {
9722 upl_lock(upl1);
9723 upl_lock(upl2);
9724 } else {
9725 upl_lock(upl2);
9726 upl_lock(upl1);
9727 }
9728 upls_locked = TRUE; /* the UPLs will need to be unlocked */
9729
9730 object1 = upl1->map_object;
9731 object2 = upl2->map_object;
9732
9733 if (upl1->u_offset != 0 || upl2->u_offset != 0 ||
9734 upl1->u_size != upl2->u_size) {
9735 /*
9736 * We deal only with full objects, not subsets.
9737 * That's because we exchange the entire backing store info
9738 * for the objects: pager, resident pages, etc... We can't do
9739 * only part of it.
9740 */
9741 retval = KERN_INVALID_VALUE;
9742 goto done;
9743 }
9744
9745 /*
9746 * Tranpose the VM objects' backing store.
9747 */
9748 retval = vm_object_transpose(object1, object2,
9749 upl_adjusted_size(upl1, PAGE_MASK));
9750
9751 if (retval == KERN_SUCCESS) {
9752 /*
9753 * Make each UPL point to the correct VM object, i.e. the
9754 * object holding the pages that the UPL refers to...
9755 */
9756 #if CONFIG_IOSCHED || UPL_DEBUG
9757 if ((upl1->flags & UPL_TRACKED_BY_OBJECT) || (upl2->flags & UPL_TRACKED_BY_OBJECT)) {
9758 vm_object_lock(object1);
9759 vm_object_lock(object2);
9760 }
9761 if ((upl1->flags & UPL_TRACKED_BY_OBJECT) || upl_debug_enabled) {
9762 queue_remove(&object1->uplq, upl1, upl_t, uplq);
9763 }
9764 if ((upl2->flags & UPL_TRACKED_BY_OBJECT) || upl_debug_enabled) {
9765 queue_remove(&object2->uplq, upl2, upl_t, uplq);
9766 }
9767 #endif
9768 upl1->map_object = object2;
9769 upl2->map_object = object1;
9770
9771 #if CONFIG_IOSCHED || UPL_DEBUG
9772 if ((upl1->flags & UPL_TRACKED_BY_OBJECT) || upl_debug_enabled) {
9773 queue_enter(&object2->uplq, upl1, upl_t, uplq);
9774 }
9775 if ((upl2->flags & UPL_TRACKED_BY_OBJECT) || upl_debug_enabled) {
9776 queue_enter(&object1->uplq, upl2, upl_t, uplq);
9777 }
9778 if ((upl1->flags & UPL_TRACKED_BY_OBJECT) || (upl2->flags & UPL_TRACKED_BY_OBJECT)) {
9779 vm_object_unlock(object2);
9780 vm_object_unlock(object1);
9781 }
9782 #endif
9783 }
9784
9785 done:
9786 /*
9787 * Cleanup.
9788 */
9789 if (upls_locked) {
9790 upl_unlock(upl1);
9791 upl_unlock(upl2);
9792 upls_locked = FALSE;
9793 }
9794
9795 return retval;
9796 }
9797
9798 void
9799 upl_range_needed(
9800 upl_t upl,
9801 int index,
9802 int count)
9803 {
9804 upl_page_info_t *user_page_list;
9805 int size_in_pages;
9806
9807 if (!(upl->flags & UPL_INTERNAL) || count <= 0) {
9808 return;
9809 }
9810
9811 size_in_pages = upl_adjusted_size(upl, PAGE_MASK) / PAGE_SIZE;
9812
9813 user_page_list = (upl_page_info_t *) (((uintptr_t)upl) + sizeof(struct upl));
9814
9815 while (count-- && index < size_in_pages) {
9816 user_page_list[index++].needed = TRUE;
9817 }
9818 }
9819
9820
9821 /*
9822 * Reserve of virtual addresses in the kernel address space.
9823 * We need to map the physical pages in the kernel, so that we
9824 * can call the code-signing or slide routines with a kernel
9825 * virtual address. We keep this pool of pre-allocated kernel
9826 * virtual addresses so that we don't have to scan the kernel's
9827 * virtaul address space each time we need to work with
9828 * a physical page.
9829 */
9830 SIMPLE_LOCK_DECLARE(vm_paging_lock, 0);
9831 #define VM_PAGING_NUM_PAGES 64
9832 vm_map_offset_t vm_paging_base_address = 0;
9833 boolean_t vm_paging_page_inuse[VM_PAGING_NUM_PAGES] = { FALSE, };
9834 int vm_paging_max_index = 0;
9835 int vm_paging_page_waiter = 0;
9836 int vm_paging_page_waiter_total = 0;
9837
9838 unsigned long vm_paging_no_kernel_page = 0;
9839 unsigned long vm_paging_objects_mapped = 0;
9840 unsigned long vm_paging_pages_mapped = 0;
9841 unsigned long vm_paging_objects_mapped_slow = 0;
9842 unsigned long vm_paging_pages_mapped_slow = 0;
9843
9844 __startup_func
9845 void
9846 vm_paging_map_init(void)
9847 {
9848 kern_return_t kr;
9849 vm_map_offset_t page_map_offset;
9850 vm_map_entry_t map_entry;
9851
9852 assert(vm_paging_base_address == 0);
9853
9854 /*
9855 * Initialize our pool of pre-allocated kernel
9856 * virtual addresses.
9857 */
9858 page_map_offset = 0;
9859 kr = vm_map_find_space(kernel_map,
9860 &page_map_offset,
9861 VM_PAGING_NUM_PAGES * PAGE_SIZE,
9862 0,
9863 0,
9864 VM_MAP_KERNEL_FLAGS_NONE,
9865 VM_KERN_MEMORY_NONE,
9866 &map_entry);
9867 if (kr != KERN_SUCCESS) {
9868 panic("vm_paging_map_init: kernel_map full\n");
9869 }
9870 VME_OBJECT_SET(map_entry, kernel_object);
9871 VME_OFFSET_SET(map_entry, page_map_offset);
9872 map_entry->protection = VM_PROT_NONE;
9873 map_entry->max_protection = VM_PROT_NONE;
9874 map_entry->permanent = TRUE;
9875 vm_object_reference(kernel_object);
9876 vm_map_unlock(kernel_map);
9877
9878 assert(vm_paging_base_address == 0);
9879 vm_paging_base_address = page_map_offset;
9880 }
9881
9882 /*
9883 * vm_paging_map_object:
9884 * Maps part of a VM object's pages in the kernel
9885 * virtual address space, using the pre-allocated
9886 * kernel virtual addresses, if possible.
9887 * Context:
9888 * The VM object is locked. This lock will get
9889 * dropped and re-acquired though, so the caller
9890 * must make sure the VM object is kept alive
9891 * (by holding a VM map that has a reference
9892 * on it, for example, or taking an extra reference).
9893 * The page should also be kept busy to prevent
9894 * it from being reclaimed.
9895 */
9896 kern_return_t
9897 vm_paging_map_object(
9898 vm_page_t page,
9899 vm_object_t object,
9900 vm_object_offset_t offset,
9901 vm_prot_t protection,
9902 boolean_t can_unlock_object,
9903 vm_map_size_t *size, /* IN/OUT */
9904 vm_map_offset_t *address, /* OUT */
9905 boolean_t *need_unmap) /* OUT */
9906 {
9907 kern_return_t kr;
9908 vm_map_offset_t page_map_offset;
9909 vm_map_size_t map_size;
9910 vm_object_offset_t object_offset;
9911 int i;
9912
9913 if (page != VM_PAGE_NULL && *size == PAGE_SIZE) {
9914 /* use permanent 1-to-1 kernel mapping of physical memory ? */
9915 *address = (vm_map_offset_t)
9916 phystokv((pmap_paddr_t)VM_PAGE_GET_PHYS_PAGE(page) << PAGE_SHIFT);
9917 *need_unmap = FALSE;
9918 return KERN_SUCCESS;
9919
9920 assert(page->vmp_busy);
9921 /*
9922 * Use one of the pre-allocated kernel virtual addresses
9923 * and just enter the VM page in the kernel address space
9924 * at that virtual address.
9925 */
9926 simple_lock(&vm_paging_lock, &vm_pageout_lck_grp);
9927
9928 /*
9929 * Try and find an available kernel virtual address
9930 * from our pre-allocated pool.
9931 */
9932 page_map_offset = 0;
9933 for (;;) {
9934 for (i = 0; i < VM_PAGING_NUM_PAGES; i++) {
9935 if (vm_paging_page_inuse[i] == FALSE) {
9936 page_map_offset =
9937 vm_paging_base_address +
9938 (i * PAGE_SIZE);
9939 break;
9940 }
9941 }
9942 if (page_map_offset != 0) {
9943 /* found a space to map our page ! */
9944 break;
9945 }
9946
9947 if (can_unlock_object) {
9948 /*
9949 * If we can afford to unlock the VM object,
9950 * let's take the slow path now...
9951 */
9952 break;
9953 }
9954 /*
9955 * We can't afford to unlock the VM object, so
9956 * let's wait for a space to become available...
9957 */
9958 vm_paging_page_waiter_total++;
9959 vm_paging_page_waiter++;
9960 kr = assert_wait((event_t)&vm_paging_page_waiter, THREAD_UNINT);
9961 if (kr == THREAD_WAITING) {
9962 simple_unlock(&vm_paging_lock);
9963 kr = thread_block(THREAD_CONTINUE_NULL);
9964 simple_lock(&vm_paging_lock, &vm_pageout_lck_grp);
9965 }
9966 vm_paging_page_waiter--;
9967 /* ... and try again */
9968 }
9969
9970 if (page_map_offset != 0) {
9971 /*
9972 * We found a kernel virtual address;
9973 * map the physical page to that virtual address.
9974 */
9975 if (i > vm_paging_max_index) {
9976 vm_paging_max_index = i;
9977 }
9978 vm_paging_page_inuse[i] = TRUE;
9979 simple_unlock(&vm_paging_lock);
9980
9981 page->vmp_pmapped = TRUE;
9982
9983 /*
9984 * Keep the VM object locked over the PMAP_ENTER
9985 * and the actual use of the page by the kernel,
9986 * or this pmap mapping might get undone by a
9987 * vm_object_pmap_protect() call...
9988 */
9989 PMAP_ENTER(kernel_pmap,
9990 page_map_offset,
9991 page,
9992 protection,
9993 VM_PROT_NONE,
9994 0,
9995 TRUE,
9996 kr);
9997 assert(kr == KERN_SUCCESS);
9998 vm_paging_objects_mapped++;
9999 vm_paging_pages_mapped++;
10000 *address = page_map_offset;
10001 *need_unmap = TRUE;
10002
10003 #if KASAN
10004 kasan_notify_address(page_map_offset, PAGE_SIZE);
10005 #endif
10006
10007 /* all done and mapped, ready to use ! */
10008 return KERN_SUCCESS;
10009 }
10010
10011 /*
10012 * We ran out of pre-allocated kernel virtual
10013 * addresses. Just map the page in the kernel
10014 * the slow and regular way.
10015 */
10016 vm_paging_no_kernel_page++;
10017 simple_unlock(&vm_paging_lock);
10018 }
10019
10020 if (!can_unlock_object) {
10021 *address = 0;
10022 *size = 0;
10023 *need_unmap = FALSE;
10024 return KERN_NOT_SUPPORTED;
10025 }
10026
10027 object_offset = vm_object_trunc_page(offset);
10028 map_size = vm_map_round_page(*size,
10029 VM_MAP_PAGE_MASK(kernel_map));
10030
10031 /*
10032 * Try and map the required range of the object
10033 * in the kernel_map
10034 */
10035
10036 vm_object_reference_locked(object); /* for the map entry */
10037 vm_object_unlock(object);
10038
10039 kr = vm_map_enter(kernel_map,
10040 address,
10041 map_size,
10042 0,
10043 VM_FLAGS_ANYWHERE,
10044 VM_MAP_KERNEL_FLAGS_NONE,
10045 VM_KERN_MEMORY_NONE,
10046 object,
10047 object_offset,
10048 FALSE,
10049 protection,
10050 VM_PROT_ALL,
10051 VM_INHERIT_NONE);
10052 if (kr != KERN_SUCCESS) {
10053 *address = 0;
10054 *size = 0;
10055 *need_unmap = FALSE;
10056 vm_object_deallocate(object); /* for the map entry */
10057 vm_object_lock(object);
10058 return kr;
10059 }
10060
10061 *size = map_size;
10062
10063 /*
10064 * Enter the mapped pages in the page table now.
10065 */
10066 vm_object_lock(object);
10067 /*
10068 * VM object must be kept locked from before PMAP_ENTER()
10069 * until after the kernel is done accessing the page(s).
10070 * Otherwise, the pmap mappings in the kernel could be
10071 * undone by a call to vm_object_pmap_protect().
10072 */
10073
10074 for (page_map_offset = 0;
10075 map_size != 0;
10076 map_size -= PAGE_SIZE_64, page_map_offset += PAGE_SIZE_64) {
10077 page = vm_page_lookup(object, offset + page_map_offset);
10078 if (page == VM_PAGE_NULL) {
10079 printf("vm_paging_map_object: no page !?");
10080 vm_object_unlock(object);
10081 kr = vm_map_remove(kernel_map, *address, *size,
10082 VM_MAP_REMOVE_NO_FLAGS);
10083 assert(kr == KERN_SUCCESS);
10084 *address = 0;
10085 *size = 0;
10086 *need_unmap = FALSE;
10087 vm_object_lock(object);
10088 return KERN_MEMORY_ERROR;
10089 }
10090 page->vmp_pmapped = TRUE;
10091
10092 //assert(pmap_verify_free(VM_PAGE_GET_PHYS_PAGE(page)));
10093 PMAP_ENTER(kernel_pmap,
10094 *address + page_map_offset,
10095 page,
10096 protection,
10097 VM_PROT_NONE,
10098 0,
10099 TRUE,
10100 kr);
10101 assert(kr == KERN_SUCCESS);
10102 #if KASAN
10103 kasan_notify_address(*address + page_map_offset, PAGE_SIZE);
10104 #endif
10105 }
10106
10107 vm_paging_objects_mapped_slow++;
10108 vm_paging_pages_mapped_slow += (unsigned long) (map_size / PAGE_SIZE_64);
10109
10110 *need_unmap = TRUE;
10111
10112 return KERN_SUCCESS;
10113 }
10114
10115 /*
10116 * vm_paging_unmap_object:
10117 * Unmaps part of a VM object's pages from the kernel
10118 * virtual address space.
10119 * Context:
10120 * The VM object is locked. This lock will get
10121 * dropped and re-acquired though.
10122 */
10123 void
10124 vm_paging_unmap_object(
10125 vm_object_t object,
10126 vm_map_offset_t start,
10127 vm_map_offset_t end)
10128 {
10129 kern_return_t kr;
10130 int i;
10131
10132 if ((vm_paging_base_address == 0) ||
10133 (start < vm_paging_base_address) ||
10134 (end > (vm_paging_base_address
10135 + (VM_PAGING_NUM_PAGES * PAGE_SIZE)))) {
10136 /*
10137 * We didn't use our pre-allocated pool of
10138 * kernel virtual address. Deallocate the
10139 * virtual memory.
10140 */
10141 if (object != VM_OBJECT_NULL) {
10142 vm_object_unlock(object);
10143 }
10144 kr = vm_map_remove(kernel_map, start, end,
10145 VM_MAP_REMOVE_NO_FLAGS);
10146 if (object != VM_OBJECT_NULL) {
10147 vm_object_lock(object);
10148 }
10149 assert(kr == KERN_SUCCESS);
10150 } else {
10151 /*
10152 * We used a kernel virtual address from our
10153 * pre-allocated pool. Put it back in the pool
10154 * for next time.
10155 */
10156 assert(end - start == PAGE_SIZE);
10157 i = (int) ((start - vm_paging_base_address) >> PAGE_SHIFT);
10158 assert(i >= 0 && i < VM_PAGING_NUM_PAGES);
10159
10160 /* undo the pmap mapping */
10161 pmap_remove(kernel_pmap, start, end);
10162
10163 simple_lock(&vm_paging_lock, &vm_pageout_lck_grp);
10164 vm_paging_page_inuse[i] = FALSE;
10165 if (vm_paging_page_waiter) {
10166 thread_wakeup(&vm_paging_page_waiter);
10167 }
10168 simple_unlock(&vm_paging_lock);
10169 }
10170 }
10171
10172
10173 /*
10174 * page->vmp_object must be locked
10175 */
10176 void
10177 vm_pageout_steal_laundry(vm_page_t page, boolean_t queues_locked)
10178 {
10179 if (!queues_locked) {
10180 vm_page_lockspin_queues();
10181 }
10182
10183 page->vmp_free_when_done = FALSE;
10184 /*
10185 * need to drop the laundry count...
10186 * we may also need to remove it
10187 * from the I/O paging queue...
10188 * vm_pageout_throttle_up handles both cases
10189 *
10190 * the laundry and pageout_queue flags are cleared...
10191 */
10192 vm_pageout_throttle_up(page);
10193
10194 if (!queues_locked) {
10195 vm_page_unlock_queues();
10196 }
10197 }
10198
10199 upl_t
10200 vector_upl_create(vm_offset_t upl_offset)
10201 {
10202 int vector_upl_size = sizeof(struct _vector_upl);
10203 int i = 0;
10204 upl_t upl;
10205 vector_upl_t vector_upl = (vector_upl_t)kalloc(vector_upl_size);
10206
10207 upl = upl_create(0, UPL_VECTOR, 0);
10208 upl->vector_upl = vector_upl;
10209 upl->u_offset = upl_offset;
10210 vector_upl->size = 0;
10211 vector_upl->offset = upl_offset;
10212 vector_upl->invalid_upls = 0;
10213 vector_upl->num_upls = 0;
10214 vector_upl->pagelist = NULL;
10215
10216 for (i = 0; i < MAX_VECTOR_UPL_ELEMENTS; i++) {
10217 vector_upl->upl_iostates[i].size = 0;
10218 vector_upl->upl_iostates[i].offset = 0;
10219 }
10220 return upl;
10221 }
10222
10223 void
10224 vector_upl_deallocate(upl_t upl)
10225 {
10226 if (upl) {
10227 vector_upl_t vector_upl = upl->vector_upl;
10228 if (vector_upl) {
10229 if (vector_upl->invalid_upls != vector_upl->num_upls) {
10230 panic("Deallocating non-empty Vectored UPL\n");
10231 }
10232 kfree(vector_upl->pagelist, (sizeof(struct upl_page_info) * (vector_upl->size / PAGE_SIZE)));
10233 vector_upl->invalid_upls = 0;
10234 vector_upl->num_upls = 0;
10235 vector_upl->pagelist = NULL;
10236 vector_upl->size = 0;
10237 vector_upl->offset = 0;
10238 kfree(vector_upl, sizeof(struct _vector_upl));
10239 vector_upl = (vector_upl_t)0xfeedfeed;
10240 } else {
10241 panic("vector_upl_deallocate was passed a non-vectored upl\n");
10242 }
10243 } else {
10244 panic("vector_upl_deallocate was passed a NULL upl\n");
10245 }
10246 }
10247
10248 boolean_t
10249 vector_upl_is_valid(upl_t upl)
10250 {
10251 if (upl && ((upl->flags & UPL_VECTOR) == UPL_VECTOR)) {
10252 vector_upl_t vector_upl = upl->vector_upl;
10253 if (vector_upl == NULL || vector_upl == (vector_upl_t)0xfeedfeed || vector_upl == (vector_upl_t)0xfeedbeef) {
10254 return FALSE;
10255 } else {
10256 return TRUE;
10257 }
10258 }
10259 return FALSE;
10260 }
10261
10262 boolean_t
10263 vector_upl_set_subupl(upl_t upl, upl_t subupl, uint32_t io_size)
10264 {
10265 if (vector_upl_is_valid(upl)) {
10266 vector_upl_t vector_upl = upl->vector_upl;
10267
10268 if (vector_upl) {
10269 if (subupl) {
10270 if (io_size) {
10271 if (io_size < PAGE_SIZE) {
10272 io_size = PAGE_SIZE;
10273 }
10274 subupl->vector_upl = (void*)vector_upl;
10275 vector_upl->upl_elems[vector_upl->num_upls++] = subupl;
10276 vector_upl->size += io_size;
10277 upl->u_size += io_size;
10278 } else {
10279 uint32_t i = 0, invalid_upls = 0;
10280 for (i = 0; i < vector_upl->num_upls; i++) {
10281 if (vector_upl->upl_elems[i] == subupl) {
10282 break;
10283 }
10284 }
10285 if (i == vector_upl->num_upls) {
10286 panic("Trying to remove sub-upl when none exists");
10287 }
10288
10289 vector_upl->upl_elems[i] = NULL;
10290 invalid_upls = os_atomic_inc(&(vector_upl)->invalid_upls,
10291 relaxed);
10292 if (invalid_upls == vector_upl->num_upls) {
10293 return TRUE;
10294 } else {
10295 return FALSE;
10296 }
10297 }
10298 } else {
10299 panic("vector_upl_set_subupl was passed a NULL upl element\n");
10300 }
10301 } else {
10302 panic("vector_upl_set_subupl was passed a non-vectored upl\n");
10303 }
10304 } else {
10305 panic("vector_upl_set_subupl was passed a NULL upl\n");
10306 }
10307
10308 return FALSE;
10309 }
10310
10311 void
10312 vector_upl_set_pagelist(upl_t upl)
10313 {
10314 if (vector_upl_is_valid(upl)) {
10315 uint32_t i = 0;
10316 vector_upl_t vector_upl = upl->vector_upl;
10317
10318 if (vector_upl) {
10319 vm_offset_t pagelist_size = 0, cur_upl_pagelist_size = 0;
10320
10321 vector_upl->pagelist = (upl_page_info_array_t)kalloc(sizeof(struct upl_page_info) * (vector_upl->size / PAGE_SIZE));
10322
10323 for (i = 0; i < vector_upl->num_upls; i++) {
10324 cur_upl_pagelist_size = sizeof(struct upl_page_info) * upl_adjusted_size(vector_upl->upl_elems[i], PAGE_MASK) / PAGE_SIZE;
10325 bcopy(UPL_GET_INTERNAL_PAGE_LIST_SIMPLE(vector_upl->upl_elems[i]), (char*)vector_upl->pagelist + pagelist_size, cur_upl_pagelist_size);
10326 pagelist_size += cur_upl_pagelist_size;
10327 if (vector_upl->upl_elems[i]->highest_page > upl->highest_page) {
10328 upl->highest_page = vector_upl->upl_elems[i]->highest_page;
10329 }
10330 }
10331 assert( pagelist_size == (sizeof(struct upl_page_info) * (vector_upl->size / PAGE_SIZE)));
10332 } else {
10333 panic("vector_upl_set_pagelist was passed a non-vectored upl\n");
10334 }
10335 } else {
10336 panic("vector_upl_set_pagelist was passed a NULL upl\n");
10337 }
10338 }
10339
10340 upl_t
10341 vector_upl_subupl_byindex(upl_t upl, uint32_t index)
10342 {
10343 if (vector_upl_is_valid(upl)) {
10344 vector_upl_t vector_upl = upl->vector_upl;
10345 if (vector_upl) {
10346 if (index < vector_upl->num_upls) {
10347 return vector_upl->upl_elems[index];
10348 }
10349 } else {
10350 panic("vector_upl_subupl_byindex was passed a non-vectored upl\n");
10351 }
10352 }
10353 return NULL;
10354 }
10355
10356 upl_t
10357 vector_upl_subupl_byoffset(upl_t upl, upl_offset_t *upl_offset, upl_size_t *upl_size)
10358 {
10359 if (vector_upl_is_valid(upl)) {
10360 uint32_t i = 0;
10361 vector_upl_t vector_upl = upl->vector_upl;
10362
10363 if (vector_upl) {
10364 upl_t subupl = NULL;
10365 vector_upl_iostates_t subupl_state;
10366
10367 for (i = 0; i < vector_upl->num_upls; i++) {
10368 subupl = vector_upl->upl_elems[i];
10369 subupl_state = vector_upl->upl_iostates[i];
10370 if (*upl_offset <= (subupl_state.offset + subupl_state.size - 1)) {
10371 /* We could have been passed an offset/size pair that belongs
10372 * to an UPL element that has already been committed/aborted.
10373 * If so, return NULL.
10374 */
10375 if (subupl == NULL) {
10376 return NULL;
10377 }
10378 if ((subupl_state.offset + subupl_state.size) < (*upl_offset + *upl_size)) {
10379 *upl_size = (subupl_state.offset + subupl_state.size) - *upl_offset;
10380 if (*upl_size > subupl_state.size) {
10381 *upl_size = subupl_state.size;
10382 }
10383 }
10384 if (*upl_offset >= subupl_state.offset) {
10385 *upl_offset -= subupl_state.offset;
10386 } else if (i) {
10387 panic("Vector UPL offset miscalculation\n");
10388 }
10389 return subupl;
10390 }
10391 }
10392 } else {
10393 panic("vector_upl_subupl_byoffset was passed a non-vectored UPL\n");
10394 }
10395 }
10396 return NULL;
10397 }
10398
10399 void
10400 vector_upl_get_submap(upl_t upl, vm_map_t *v_upl_submap, vm_offset_t *submap_dst_addr)
10401 {
10402 *v_upl_submap = NULL;
10403
10404 if (vector_upl_is_valid(upl)) {
10405 vector_upl_t vector_upl = upl->vector_upl;
10406 if (vector_upl) {
10407 *v_upl_submap = vector_upl->submap;
10408 *submap_dst_addr = vector_upl->submap_dst_addr;
10409 } else {
10410 panic("vector_upl_get_submap was passed a non-vectored UPL\n");
10411 }
10412 } else {
10413 panic("vector_upl_get_submap was passed a null UPL\n");
10414 }
10415 }
10416
10417 void
10418 vector_upl_set_submap(upl_t upl, vm_map_t submap, vm_offset_t submap_dst_addr)
10419 {
10420 if (vector_upl_is_valid(upl)) {
10421 vector_upl_t vector_upl = upl->vector_upl;
10422 if (vector_upl) {
10423 vector_upl->submap = submap;
10424 vector_upl->submap_dst_addr = submap_dst_addr;
10425 } else {
10426 panic("vector_upl_get_submap was passed a non-vectored UPL\n");
10427 }
10428 } else {
10429 panic("vector_upl_get_submap was passed a NULL UPL\n");
10430 }
10431 }
10432
10433 void
10434 vector_upl_set_iostate(upl_t upl, upl_t subupl, upl_offset_t offset, upl_size_t size)
10435 {
10436 if (vector_upl_is_valid(upl)) {
10437 uint32_t i = 0;
10438 vector_upl_t vector_upl = upl->vector_upl;
10439
10440 if (vector_upl) {
10441 for (i = 0; i < vector_upl->num_upls; i++) {
10442 if (vector_upl->upl_elems[i] == subupl) {
10443 break;
10444 }
10445 }
10446
10447 if (i == vector_upl->num_upls) {
10448 panic("setting sub-upl iostate when none exists");
10449 }
10450
10451 vector_upl->upl_iostates[i].offset = offset;
10452 if (size < PAGE_SIZE) {
10453 size = PAGE_SIZE;
10454 }
10455 vector_upl->upl_iostates[i].size = size;
10456 } else {
10457 panic("vector_upl_set_iostate was passed a non-vectored UPL\n");
10458 }
10459 } else {
10460 panic("vector_upl_set_iostate was passed a NULL UPL\n");
10461 }
10462 }
10463
10464 void
10465 vector_upl_get_iostate(upl_t upl, upl_t subupl, upl_offset_t *offset, upl_size_t *size)
10466 {
10467 if (vector_upl_is_valid(upl)) {
10468 uint32_t i = 0;
10469 vector_upl_t vector_upl = upl->vector_upl;
10470
10471 if (vector_upl) {
10472 for (i = 0; i < vector_upl->num_upls; i++) {
10473 if (vector_upl->upl_elems[i] == subupl) {
10474 break;
10475 }
10476 }
10477
10478 if (i == vector_upl->num_upls) {
10479 panic("getting sub-upl iostate when none exists");
10480 }
10481
10482 *offset = vector_upl->upl_iostates[i].offset;
10483 *size = vector_upl->upl_iostates[i].size;
10484 } else {
10485 panic("vector_upl_get_iostate was passed a non-vectored UPL\n");
10486 }
10487 } else {
10488 panic("vector_upl_get_iostate was passed a NULL UPL\n");
10489 }
10490 }
10491
10492 void
10493 vector_upl_get_iostate_byindex(upl_t upl, uint32_t index, upl_offset_t *offset, upl_size_t *size)
10494 {
10495 if (vector_upl_is_valid(upl)) {
10496 vector_upl_t vector_upl = upl->vector_upl;
10497 if (vector_upl) {
10498 if (index < vector_upl->num_upls) {
10499 *offset = vector_upl->upl_iostates[index].offset;
10500 *size = vector_upl->upl_iostates[index].size;
10501 } else {
10502 *offset = *size = 0;
10503 }
10504 } else {
10505 panic("vector_upl_get_iostate_byindex was passed a non-vectored UPL\n");
10506 }
10507 } else {
10508 panic("vector_upl_get_iostate_byindex was passed a NULL UPL\n");
10509 }
10510 }
10511
10512 upl_page_info_t *
10513 upl_get_internal_vectorupl_pagelist(upl_t upl)
10514 {
10515 return ((vector_upl_t)(upl->vector_upl))->pagelist;
10516 }
10517
10518 void *
10519 upl_get_internal_vectorupl(upl_t upl)
10520 {
10521 return upl->vector_upl;
10522 }
10523
10524 vm_size_t
10525 upl_get_internal_pagelist_offset(void)
10526 {
10527 return sizeof(struct upl);
10528 }
10529
10530 void
10531 upl_clear_dirty(
10532 upl_t upl,
10533 boolean_t value)
10534 {
10535 if (value) {
10536 upl->flags |= UPL_CLEAR_DIRTY;
10537 } else {
10538 upl->flags &= ~UPL_CLEAR_DIRTY;
10539 }
10540 }
10541
10542 void
10543 upl_set_referenced(
10544 upl_t upl,
10545 boolean_t value)
10546 {
10547 upl_lock(upl);
10548 if (value) {
10549 upl->ext_ref_count++;
10550 } else {
10551 if (!upl->ext_ref_count) {
10552 panic("upl_set_referenced not %p\n", upl);
10553 }
10554 upl->ext_ref_count--;
10555 }
10556 upl_unlock(upl);
10557 }
10558
10559 #if CONFIG_IOSCHED
10560 void
10561 upl_set_blkno(
10562 upl_t upl,
10563 vm_offset_t upl_offset,
10564 int io_size,
10565 int64_t blkno)
10566 {
10567 int i, j;
10568 if ((upl->flags & UPL_EXPEDITE_SUPPORTED) == 0) {
10569 return;
10570 }
10571
10572 assert(upl->upl_reprio_info != 0);
10573 for (i = (int)(upl_offset / PAGE_SIZE), j = 0; j < io_size; i++, j += PAGE_SIZE) {
10574 UPL_SET_REPRIO_INFO(upl, i, blkno, io_size);
10575 }
10576 }
10577 #endif
10578
10579 void inline
10580 memoryshot(unsigned int event, unsigned int control)
10581 {
10582 if (vm_debug_events) {
10583 KERNEL_DEBUG_CONSTANT1((MACHDBG_CODE(DBG_MACH_VM_PRESSURE, event)) | control,
10584 vm_page_active_count, vm_page_inactive_count,
10585 vm_page_free_count, vm_page_speculative_count,
10586 vm_page_throttled_count);
10587 } else {
10588 (void) event;
10589 (void) control;
10590 }
10591 }
10592
10593 #ifdef MACH_BSD
10594
10595 boolean_t
10596 upl_device_page(upl_page_info_t *upl)
10597 {
10598 return UPL_DEVICE_PAGE(upl);
10599 }
10600 boolean_t
10601 upl_page_present(upl_page_info_t *upl, int index)
10602 {
10603 return UPL_PAGE_PRESENT(upl, index);
10604 }
10605 boolean_t
10606 upl_speculative_page(upl_page_info_t *upl, int index)
10607 {
10608 return UPL_SPECULATIVE_PAGE(upl, index);
10609 }
10610 boolean_t
10611 upl_dirty_page(upl_page_info_t *upl, int index)
10612 {
10613 return UPL_DIRTY_PAGE(upl, index);
10614 }
10615 boolean_t
10616 upl_valid_page(upl_page_info_t *upl, int index)
10617 {
10618 return UPL_VALID_PAGE(upl, index);
10619 }
10620 ppnum_t
10621 upl_phys_page(upl_page_info_t *upl, int index)
10622 {
10623 return UPL_PHYS_PAGE(upl, index);
10624 }
10625
10626 void
10627 upl_page_set_mark(upl_page_info_t *upl, int index, boolean_t v)
10628 {
10629 upl[index].mark = v;
10630 }
10631
10632 boolean_t
10633 upl_page_get_mark(upl_page_info_t *upl, int index)
10634 {
10635 return upl[index].mark;
10636 }
10637
10638 void
10639 vm_countdirtypages(void)
10640 {
10641 vm_page_t m;
10642 int dpages;
10643 int pgopages;
10644 int precpages;
10645
10646
10647 dpages = 0;
10648 pgopages = 0;
10649 precpages = 0;
10650
10651 vm_page_lock_queues();
10652 m = (vm_page_t) vm_page_queue_first(&vm_page_queue_inactive);
10653 do {
10654 if (m == (vm_page_t)0) {
10655 break;
10656 }
10657
10658 if (m->vmp_dirty) {
10659 dpages++;
10660 }
10661 if (m->vmp_free_when_done) {
10662 pgopages++;
10663 }
10664 if (m->vmp_precious) {
10665 precpages++;
10666 }
10667
10668 assert(VM_PAGE_OBJECT(m) != kernel_object);
10669 m = (vm_page_t) vm_page_queue_next(&m->vmp_pageq);
10670 if (m == (vm_page_t)0) {
10671 break;
10672 }
10673 } while (!vm_page_queue_end(&vm_page_queue_inactive, (vm_page_queue_entry_t) m));
10674 vm_page_unlock_queues();
10675
10676 vm_page_lock_queues();
10677 m = (vm_page_t) vm_page_queue_first(&vm_page_queue_throttled);
10678 do {
10679 if (m == (vm_page_t)0) {
10680 break;
10681 }
10682
10683 dpages++;
10684 assert(m->vmp_dirty);
10685 assert(!m->vmp_free_when_done);
10686 assert(VM_PAGE_OBJECT(m) != kernel_object);
10687 m = (vm_page_t) vm_page_queue_next(&m->vmp_pageq);
10688 if (m == (vm_page_t)0) {
10689 break;
10690 }
10691 } while (!vm_page_queue_end(&vm_page_queue_throttled, (vm_page_queue_entry_t) m));
10692 vm_page_unlock_queues();
10693
10694 vm_page_lock_queues();
10695 m = (vm_page_t) vm_page_queue_first(&vm_page_queue_anonymous);
10696 do {
10697 if (m == (vm_page_t)0) {
10698 break;
10699 }
10700
10701 if (m->vmp_dirty) {
10702 dpages++;
10703 }
10704 if (m->vmp_free_when_done) {
10705 pgopages++;
10706 }
10707 if (m->vmp_precious) {
10708 precpages++;
10709 }
10710
10711 assert(VM_PAGE_OBJECT(m) != kernel_object);
10712 m = (vm_page_t) vm_page_queue_next(&m->vmp_pageq);
10713 if (m == (vm_page_t)0) {
10714 break;
10715 }
10716 } while (!vm_page_queue_end(&vm_page_queue_anonymous, (vm_page_queue_entry_t) m));
10717 vm_page_unlock_queues();
10718
10719 printf("IN Q: %d : %d : %d\n", dpages, pgopages, precpages);
10720
10721 dpages = 0;
10722 pgopages = 0;
10723 precpages = 0;
10724
10725 vm_page_lock_queues();
10726 m = (vm_page_t) vm_page_queue_first(&vm_page_queue_active);
10727
10728 do {
10729 if (m == (vm_page_t)0) {
10730 break;
10731 }
10732 if (m->vmp_dirty) {
10733 dpages++;
10734 }
10735 if (m->vmp_free_when_done) {
10736 pgopages++;
10737 }
10738 if (m->vmp_precious) {
10739 precpages++;
10740 }
10741
10742 assert(VM_PAGE_OBJECT(m) != kernel_object);
10743 m = (vm_page_t) vm_page_queue_next(&m->vmp_pageq);
10744 if (m == (vm_page_t)0) {
10745 break;
10746 }
10747 } while (!vm_page_queue_end(&vm_page_queue_active, (vm_page_queue_entry_t) m));
10748 vm_page_unlock_queues();
10749
10750 printf("AC Q: %d : %d : %d\n", dpages, pgopages, precpages);
10751 }
10752 #endif /* MACH_BSD */
10753
10754
10755 #if CONFIG_IOSCHED
10756 int
10757 upl_get_cached_tier(upl_t upl)
10758 {
10759 assert(upl);
10760 if (upl->flags & UPL_TRACKED_BY_OBJECT) {
10761 return upl->upl_priority;
10762 }
10763 return -1;
10764 }
10765 #endif /* CONFIG_IOSCHED */
10766
10767
10768 void
10769 upl_callout_iodone(upl_t upl)
10770 {
10771 struct upl_io_completion *upl_ctx = upl->upl_iodone;
10772
10773 if (upl_ctx) {
10774 void (*iodone_func)(void *, int) = upl_ctx->io_done;
10775
10776 assert(upl_ctx->io_done);
10777
10778 (*iodone_func)(upl_ctx->io_context, upl_ctx->io_error);
10779 }
10780 }
10781
10782 void
10783 upl_set_iodone(upl_t upl, void *upl_iodone)
10784 {
10785 upl->upl_iodone = (struct upl_io_completion *)upl_iodone;
10786 }
10787
10788 void
10789 upl_set_iodone_error(upl_t upl, int error)
10790 {
10791 struct upl_io_completion *upl_ctx = upl->upl_iodone;
10792
10793 if (upl_ctx) {
10794 upl_ctx->io_error = error;
10795 }
10796 }
10797
10798
10799 ppnum_t
10800 upl_get_highest_page(
10801 upl_t upl)
10802 {
10803 return upl->highest_page;
10804 }
10805
10806 upl_size_t
10807 upl_get_size(
10808 upl_t upl)
10809 {
10810 return upl_adjusted_size(upl, PAGE_MASK);
10811 }
10812
10813 upl_size_t
10814 upl_adjusted_size(
10815 upl_t upl,
10816 vm_map_offset_t pgmask)
10817 {
10818 vm_object_offset_t start_offset, end_offset;
10819
10820 start_offset = trunc_page_mask_64(upl->u_offset, pgmask);
10821 end_offset = round_page_mask_64(upl->u_offset + upl->u_size, pgmask);
10822
10823 return (upl_size_t)(end_offset - start_offset);
10824 }
10825
10826 vm_object_offset_t
10827 upl_adjusted_offset(
10828 upl_t upl,
10829 vm_map_offset_t pgmask)
10830 {
10831 return trunc_page_mask_64(upl->u_offset, pgmask);
10832 }
10833
10834 vm_object_offset_t
10835 upl_get_data_offset(
10836 upl_t upl)
10837 {
10838 return upl->u_offset - upl_adjusted_offset(upl, PAGE_MASK);
10839 }
10840
10841 upl_t
10842 upl_associated_upl(upl_t upl)
10843 {
10844 return upl->associated_upl;
10845 }
10846
10847 void
10848 upl_set_associated_upl(upl_t upl, upl_t associated_upl)
10849 {
10850 upl->associated_upl = associated_upl;
10851 }
10852
10853 struct vnode *
10854 upl_lookup_vnode(upl_t upl)
10855 {
10856 if (!upl->map_object->internal) {
10857 return vnode_pager_lookup_vnode(upl->map_object->pager);
10858 } else {
10859 return NULL;
10860 }
10861 }
10862
10863 #if UPL_DEBUG
10864 kern_return_t
10865 upl_ubc_alias_set(upl_t upl, uintptr_t alias1, uintptr_t alias2)
10866 {
10867 upl->ubc_alias1 = alias1;
10868 upl->ubc_alias2 = alias2;
10869 return KERN_SUCCESS;
10870 }
10871 int
10872 upl_ubc_alias_get(upl_t upl, uintptr_t * al, uintptr_t * al2)
10873 {
10874 if (al) {
10875 *al = upl->ubc_alias1;
10876 }
10877 if (al2) {
10878 *al2 = upl->ubc_alias2;
10879 }
10880 return KERN_SUCCESS;
10881 }
10882 #endif /* UPL_DEBUG */
10883
10884 #if VM_PRESSURE_EVENTS
10885 /*
10886 * Upward trajectory.
10887 */
10888 extern boolean_t vm_compressor_low_on_space(void);
10889
10890 boolean_t
10891 VM_PRESSURE_NORMAL_TO_WARNING(void)
10892 {
10893 if (!VM_CONFIG_COMPRESSOR_IS_ACTIVE) {
10894 /* Available pages below our threshold */
10895 if (memorystatus_available_pages < memorystatus_available_pages_pressure) {
10896 /* No frozen processes to kill */
10897 if (memorystatus_frozen_count == 0) {
10898 /* Not enough suspended processes available. */
10899 if (memorystatus_suspended_count < MEMORYSTATUS_SUSPENDED_THRESHOLD) {
10900 return TRUE;
10901 }
10902 }
10903 }
10904 return FALSE;
10905 } else {
10906 return (AVAILABLE_NON_COMPRESSED_MEMORY < VM_PAGE_COMPRESSOR_COMPACT_THRESHOLD) ? 1 : 0;
10907 }
10908 }
10909
10910 boolean_t
10911 VM_PRESSURE_WARNING_TO_CRITICAL(void)
10912 {
10913 if (!VM_CONFIG_COMPRESSOR_IS_ACTIVE) {
10914 /* Available pages below our threshold */
10915 if (memorystatus_available_pages < memorystatus_available_pages_critical) {
10916 return TRUE;
10917 }
10918 return FALSE;
10919 } else {
10920 return vm_compressor_low_on_space() || (AVAILABLE_NON_COMPRESSED_MEMORY < ((12 * VM_PAGE_COMPRESSOR_SWAP_UNTHROTTLE_THRESHOLD) / 10)) ? 1 : 0;
10921 }
10922 }
10923
10924 /*
10925 * Downward trajectory.
10926 */
10927 boolean_t
10928 VM_PRESSURE_WARNING_TO_NORMAL(void)
10929 {
10930 if (!VM_CONFIG_COMPRESSOR_IS_ACTIVE) {
10931 /* Available pages above our threshold */
10932 unsigned int target_threshold = (unsigned int) (memorystatus_available_pages_pressure + ((15 * memorystatus_available_pages_pressure) / 100));
10933 if (memorystatus_available_pages > target_threshold) {
10934 return TRUE;
10935 }
10936 return FALSE;
10937 } else {
10938 return (AVAILABLE_NON_COMPRESSED_MEMORY > ((12 * VM_PAGE_COMPRESSOR_COMPACT_THRESHOLD) / 10)) ? 1 : 0;
10939 }
10940 }
10941
10942 boolean_t
10943 VM_PRESSURE_CRITICAL_TO_WARNING(void)
10944 {
10945 if (!VM_CONFIG_COMPRESSOR_IS_ACTIVE) {
10946 /* Available pages above our threshold */
10947 unsigned int target_threshold = (unsigned int)(memorystatus_available_pages_critical + ((15 * memorystatus_available_pages_critical) / 100));
10948 if (memorystatus_available_pages > target_threshold) {
10949 return TRUE;
10950 }
10951 return FALSE;
10952 } else {
10953 return (AVAILABLE_NON_COMPRESSED_MEMORY > ((14 * VM_PAGE_COMPRESSOR_SWAP_UNTHROTTLE_THRESHOLD) / 10)) ? 1 : 0;
10954 }
10955 }
10956 #endif /* VM_PRESSURE_EVENTS */