]> git.saurik.com Git - apple/xnu.git/blob - bsd/dev/random/randomdev.c
63d66a6ea79ea727bb41302a58fbb25af75f7d85
[apple/xnu.git] / bsd / dev / random / randomdev.c
1 /*
2 * Copyright (c) 1999, 2000-2003 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_LICENSE_HEADER_START@
5 *
6 * Copyright (c) 1999-2003 Apple Computer, Inc. All Rights Reserved.
7 *
8 * This file contains Original Code and/or Modifications of Original Code
9 * as defined in and that are subject to the Apple Public Source License
10 * Version 2.0 (the 'License'). You may not use this file except in
11 * compliance with the License. Please obtain a copy of the License at
12 * http://www.opensource.apple.com/apsl/ and read it before using this
13 * file.
14 *
15 * The Original Code and all software distributed under the License are
16 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
17 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
18 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
20 * Please see the License for the specific language governing rights and
21 * limitations under the License.
22 *
23 * @APPLE_LICENSE_HEADER_END@
24 */
25
26 #include <sys/param.h>
27 #include <sys/systm.h>
28 #include <sys/proc.h>
29 #include <sys/errno.h>
30 #include <sys/ioctl.h>
31 #include <sys/conf.h>
32 #include <sys/fcntl.h>
33 #include <miscfs/devfs/devfs.h>
34 #include <kern/lock.h>
35 #include <sys/time.h>
36 #include <sys/malloc.h>
37
38 #include <dev/random/randomdev.h>
39 #include <dev/random/YarrowCoreLib/include/yarrow.h>
40
41 #define RANDOM_MAJOR -1 /* let the kernel pick the device number */
42
43 d_ioctl_t random_ioctl;
44
45 /*
46 * A struct describing which functions will get invoked for certain
47 * actions.
48 */
49 static struct cdevsw random_cdevsw =
50 {
51 random_open, /* open */
52 random_close, /* close */
53 random_read, /* read */
54 random_write, /* write */
55 random_ioctl, /* ioctl */
56 nulldev, /* stop */
57 nulldev, /* reset */
58 NULL, /* tty's */
59 eno_select, /* select */
60 eno_mmap, /* mmap */
61 eno_strat, /* strategy */
62 eno_getc, /* getc */
63 eno_putc, /* putc */
64 0 /* type */
65 };
66
67 /* Used to detect whether we've already been initialized */
68 static int gRandomInstalled = 0;
69 static PrngRef gPrngRef;
70 static int gRandomError = 1;
71 static mutex_t *gYarrowMutex = 0;
72
73 #define RESEED_TICKS 50 /* how long a reseed operation can take */
74
75 /*
76 *Initialize ONLY the Yarrow generator.
77 */
78 void PreliminarySetup ()
79 {
80 prng_error_status perr;
81 struct timeval tt;
82 char buffer [16];
83
84 /* create a Yarrow object */
85 perr = prngInitialize(&gPrngRef);
86 if (perr != 0) {
87 printf ("Couldn't initialize Yarrow, /dev/random will not work.\n");
88 return;
89 }
90
91 /* clear the error flag, reads and write should then work */
92 gRandomError = 0;
93
94 /* get a little non-deterministic data as an initial seed. */
95 microtime(&tt);
96
97 /*
98 * So how much of the system clock is entropic?
99 * It's hard to say, but assume that at least the
100 * least significant byte of a 64 bit structure
101 * is entropic. It's probably more, how can you figure
102 * the exact time the user turned the computer on, for example.
103 */
104 perr = prngInput(gPrngRef, (BYTE*) &tt, sizeof (tt), SYSTEM_SOURCE, 8);
105 if (perr != 0) {
106 /* an error, complain */
107 printf ("Couldn't seed Yarrow.\n");
108 return;
109 }
110
111 /* turn the data around */
112 perr = prngOutput(gPrngRef, (BYTE*) buffer, sizeof (buffer));
113
114 /* and scramble it some more */
115 perr = prngForceReseed(gPrngRef, RESEED_TICKS);
116
117 /* make a mutex to control access */
118 gYarrowMutex = mutex_alloc(0);
119 }
120
121 /*
122 * Called to initialize our device,
123 * and to register ourselves with devfs
124 */
125 void
126 random_init()
127 {
128 int ret;
129
130 if (gRandomInstalled)
131 return;
132
133 /* install us in the file system */
134 gRandomInstalled = 1;
135
136 /* setup yarrow and the mutex */
137 PreliminarySetup();
138
139 ret = cdevsw_add(RANDOM_MAJOR, &random_cdevsw);
140 if (ret < 0) {
141 printf("random_init: failed to allocate a major number!\n");
142 gRandomInstalled = 0;
143 return;
144 }
145
146 devfs_make_node(makedev (ret, 0), DEVFS_CHAR,
147 UID_ROOT, GID_WHEEL, 0666, "random", 0);
148
149 /*
150 * also make urandom
151 * (which is exactly the same thing in our context)
152 */
153 devfs_make_node(makedev (ret, 1), DEVFS_CHAR,
154 UID_ROOT, GID_WHEEL, 0666, "urandom", 0);
155 }
156
157 int
158 random_ioctl(dev, cmd, data, flag, p)
159 dev_t dev;
160 u_long cmd;
161 caddr_t data;
162 int flag;
163 struct proc *p;
164 {
165 switch (cmd) {
166 case FIONBIO:
167 case FIOASYNC:
168 break;
169 default:
170 return ENODEV;
171 }
172
173 return (0);
174 }
175
176 /*
177 * Open the device. Make sure init happened, and make sure the caller is
178 * authorized.
179 */
180
181 int
182 random_open(dev_t dev, int flags, int devtype, struct proc *p)
183 {
184 if (gRandomError != 0) {
185 /* forget it, yarrow didn't come up */
186 return (ENOTSUP);
187 }
188
189 /*
190 * if we are being opened for write,
191 * make sure that we have privledges do so
192 */
193 if (flags & FWRITE) {
194 if (securelevel >= 2)
195 return (EPERM);
196 #ifndef __APPLE__
197 if ((securelevel >= 1) && suser(p->p_ucred, &p->p_acflag))
198 return (EPERM);
199 #endif /* !__APPLE__ */
200 }
201
202 return (0);
203 }
204
205
206 /*
207 * close the device.
208 */
209
210 int
211 random_close(dev_t dev, int flags, int mode, struct proc *p)
212 {
213 return (0);
214 }
215
216
217 /*
218 * Get entropic data from the Security Server, and use it to reseed the
219 * prng.
220 */
221 int
222 random_write (dev_t dev, struct uio *uio, int ioflag)
223 {
224 int retCode = 0;
225 char rdBuffer[256];
226
227 if (gRandomError != 0) {
228 return (ENOTSUP);
229 }
230
231 /* get control of the Yarrow instance, Yarrow is NOT thread safe */
232 mutex_lock(gYarrowMutex);
233
234 /* Security server is sending us entropy */
235
236 while (uio->uio_resid > 0 && retCode == 0) {
237 /* get the user's data */
238 int bytesToInput = min(uio->uio_resid, sizeof (rdBuffer));
239 retCode = uiomove(rdBuffer, bytesToInput, uio);
240 if (retCode != 0)
241 goto /*ugh*/ error_exit;
242
243 /* put it in Yarrow */
244 if (prngInput(gPrngRef, (BYTE*) rdBuffer,
245 sizeof (rdBuffer), SYSTEM_SOURCE,
246 sizeof (rdBuffer) * 8) != 0) {
247 retCode = EIO;
248 goto error_exit;
249 }
250 }
251
252 /* force a reseed */
253 if (prngForceReseed(gPrngRef, RESEED_TICKS) != 0) {
254 retCode = EIO;
255 goto error_exit;
256 }
257
258 /* retCode should be 0 at this point */
259
260 error_exit: /* do this to make sure the mutex unlocks. */
261 mutex_unlock(gYarrowMutex);
262 return (retCode);
263 }
264
265 /*
266 * return data to the caller. Results unpredictable.
267 */
268 int
269 random_read(dev_t dev, struct uio *uio, int ioflag)
270 {
271 int retCode = 0;
272 char wrBuffer[512];
273
274 if (gRandomError != 0)
275 return (ENOTSUP);
276
277 /* lock down the mutex */
278 mutex_lock(gYarrowMutex);
279
280 while (uio->uio_resid > 0 && retCode == 0) {
281 /* get the user's data */
282 int bytesToRead = min(uio->uio_resid, sizeof (wrBuffer));
283
284 /* get the data from Yarrow */
285 if (prngOutput(gPrngRef, (BYTE *) wrBuffer, sizeof (wrBuffer)) != 0) {
286 printf ("Couldn't read data from Yarrow.\n");
287
288 /* something's really weird */
289 retCode = EIO;
290 goto error_exit;
291 }
292
293 retCode = uiomove(wrBuffer, bytesToRead, uio);
294
295 if (retCode != 0)
296 goto error_exit;
297 }
298
299 retCode = 0;
300
301 error_exit:
302 mutex_unlock(gYarrowMutex);
303 return retCode;
304 }
305
306 /* export good random numbers to the rest of the kernel */
307 void
308 read_random(void* buffer, u_int numbytes)
309 {
310 if (gYarrowMutex == 0) { /* are we initialized? */
311 PreliminarySetup ();
312 }
313
314 mutex_lock(gYarrowMutex);
315 prngOutput(gPrngRef, (BYTE *) buffer, numbytes);
316 mutex_unlock(gYarrowMutex);
317 }
318
319 /*
320 * Return an unsigned long pseudo-random number.
321 */
322 u_long
323 RandomULong()
324 {
325 u_long buf;
326 read_random(&buf, sizeof (buf));
327 return (buf);
328 }
329