2 * Copyright (c) 2003-2012 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
32 * Mach Operating System
33 * Copyright (c) 1991,1990,1989, 1988 Carnegie Mellon University
34 * All Rights Reserved.
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
46 * Carnegie Mellon requests users of this software to return to
48 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
49 * School of Computer Science
50 * Carnegie Mellon University
51 * Pittsburgh PA 15213-3890
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
58 #include <mach/i386/vm_param.h>
61 #include <mach/vm_param.h>
62 #include <mach/vm_prot.h>
63 #include <mach/machine.h>
64 #include <mach/time_value.h>
66 #include <kern/assert.h>
67 #include <kern/debug.h>
68 #include <kern/misc_protos.h>
69 #include <kern/cpu_data.h>
70 #include <kern/processor.h>
71 #include <vm/vm_page.h>
73 #include <vm/vm_kern.h>
74 #include <i386/pmap.h>
75 #include <i386/misc_protos.h>
76 #include <i386/cpuid.h>
77 #include <mach/thread_status.h>
78 #include <pexpert/i386/efi.h>
79 #include <i386/i386_lowmem.h>
80 #include <x86_64/lowglobals.h>
81 #include <i386/pal_routines.h>
83 #include <mach-o/loader.h>
84 #include <libkern/kernel_mach_header.h>
87 vm_size_t mem_size
= 0;
88 pmap_paddr_t first_avail
= 0;/* first after page tables */
90 uint64_t max_mem
; /* Size of physical memory (bytes), adjusted by maxmem */
92 uint64_t sane_size
= 0; /* Memory size for defaults calculations */
97 ppnum_t vm_kernel_base_page
;
98 vm_offset_t vm_kernel_base
;
99 vm_offset_t vm_kernel_top
;
100 vm_offset_t vm_kernel_stext
;
101 vm_offset_t vm_kernel_etext
;
102 vm_offset_t vm_kernel_slide
;
103 vm_offset_t vm_kernel_slid_base
;
104 vm_offset_t vm_kernel_slid_top
;
105 vm_offset_t vm_hib_base
;
106 vm_offset_t vm_kext_base
= VM_MIN_KERNEL_AND_KEXT_ADDRESS
;
107 vm_offset_t vm_kext_top
= VM_MIN_KERNEL_ADDRESS
;
109 vm_offset_t vm_prelink_stext
;
110 vm_offset_t vm_prelink_etext
;
111 vm_offset_t vm_prelink_sinfo
;
112 vm_offset_t vm_prelink_einfo
;
113 vm_offset_t vm_slinkedit
;
114 vm_offset_t vm_elinkedit
;
116 vm_offset_t vm_kernel_builtinkmod_text
;
117 vm_offset_t vm_kernel_builtinkmod_text_end
;
119 #define MAXLORESERVE (32 * 1024 * 1024)
121 ppnum_t max_ppnum
= 0;
122 ppnum_t lowest_lo
= 0;
123 ppnum_t lowest_hi
= 0;
124 ppnum_t highest_hi
= 0;
126 enum {PMAP_MAX_RESERVED_RANGES
= 32};
127 uint32_t pmap_reserved_pages_allocated
= 0;
128 uint32_t pmap_reserved_range_indices
[PMAP_MAX_RESERVED_RANGES
];
129 uint32_t pmap_last_reserved_range_index
= 0;
130 uint32_t pmap_reserved_ranges
= 0;
132 extern unsigned int bsd_mbuf_cluster_reserve(boolean_t
*);
134 pmap_paddr_t avail_start
, avail_end
;
135 vm_offset_t virtual_avail
, virtual_end
;
136 static pmap_paddr_t avail_remaining
;
137 vm_offset_t static_memory_end
= 0;
139 vm_offset_t sHIB
, eHIB
, stext
, etext
, sdata
, edata
, end
, sconst
, econst
;
142 * _mh_execute_header is the mach_header for the currently executing kernel
144 vm_offset_t segTEXTB
; unsigned long segSizeTEXT
;
145 vm_offset_t segDATAB
; unsigned long segSizeDATA
;
146 vm_offset_t segLINKB
; unsigned long segSizeLINK
;
147 vm_offset_t segPRELINKTEXTB
; unsigned long segSizePRELINKTEXT
;
148 vm_offset_t segPRELINKINFOB
; unsigned long segSizePRELINKINFO
;
149 vm_offset_t segHIBB
; unsigned long segSizeHIB
;
150 unsigned long segSizeConst
;
152 static kernel_segment_command_t
*segTEXT
, *segDATA
;
153 static kernel_section_t
*cursectTEXT
, *lastsectTEXT
;
154 static kernel_segment_command_t
*segCONST
;
156 extern uint64_t firmware_Conventional_bytes
;
157 extern uint64_t firmware_RuntimeServices_bytes
;
158 extern uint64_t firmware_ACPIReclaim_bytes
;
159 extern uint64_t firmware_ACPINVS_bytes
;
160 extern uint64_t firmware_PalCode_bytes
;
161 extern uint64_t firmware_Reserved_bytes
;
162 extern uint64_t firmware_Unusable_bytes
;
163 extern uint64_t firmware_other_bytes
;
164 uint64_t firmware_MMIO_bytes
;
167 * Linker magic to establish the highest address in the kernel.
169 extern void *last_kernel_symbol
;
171 boolean_t memmap
= FALSE
;
172 #if DEBUG || DEVELOPMENT
174 kprint_memmap(vm_offset_t maddr
, unsigned int msize
, unsigned int mcount
)
178 pmap_memory_region_t
*p
= pmap_memory_regions
;
179 EfiMemoryRange
*mptr
;
180 addr64_t region_start
, region_end
;
181 addr64_t efi_start
, efi_end
;
183 for (j
= 0; j
< pmap_memory_region_count
; j
++, p
++) {
184 kprintf("pmap region %d type %d base 0x%llx alloc_up 0x%llx alloc_down 0x%llx top 0x%llx\n",
186 (addr64_t
) p
->base
<< I386_PGSHIFT
,
187 (addr64_t
) p
->alloc_up
<< I386_PGSHIFT
,
188 (addr64_t
) p
->alloc_down
<< I386_PGSHIFT
,
189 (addr64_t
) p
->end
<< I386_PGSHIFT
);
190 region_start
= (addr64_t
) p
->base
<< I386_PGSHIFT
;
191 region_end
= ((addr64_t
) p
->end
<< I386_PGSHIFT
) - 1;
192 mptr
= (EfiMemoryRange
*) maddr
;
195 i
++, mptr
= (EfiMemoryRange
*)(((vm_offset_t
)mptr
) + msize
)) {
196 if (mptr
->Type
!= kEfiLoaderCode
&&
197 mptr
->Type
!= kEfiLoaderData
&&
198 mptr
->Type
!= kEfiBootServicesCode
&&
199 mptr
->Type
!= kEfiBootServicesData
&&
200 mptr
->Type
!= kEfiConventionalMemory
) {
201 efi_start
= (addr64_t
)mptr
->PhysicalStart
;
202 efi_end
= efi_start
+ ((vm_offset_t
)mptr
->NumberOfPages
<< I386_PGSHIFT
) - 1;
203 if ((efi_start
>= region_start
&& efi_start
<= region_end
) ||
204 (efi_end
>= region_start
&& efi_end
<= region_end
)) {
205 kprintf(" *** Overlapping region with EFI runtime region %d\n", i
);
211 #define DPRINTF(x...) do { if (memmap) kprintf(x); } while (0)
216 kprint_memmap(vm_offset_t maddr
, unsigned int msize
, unsigned int mcount
)
218 #pragma unused(maddr, msize, mcount)
221 #define DPRINTF(x...)
225 * Basic VM initialization.
228 i386_vm_init(uint64_t maxmem
,
232 pmap_memory_region_t
*pmptr
;
233 pmap_memory_region_t
*prev_pmptr
;
234 EfiMemoryRange
*mptr
;
242 uint32_t maxloreserve
;
244 uint32_t mbuf_reserve
= 0;
245 boolean_t mbuf_override
= FALSE
;
246 boolean_t coalescing_permitted
;
247 vm_kernel_base_page
= i386_btop(args
->kaddr
);
248 vm_offset_t base_address
;
249 vm_offset_t static_base_address
;
251 PE_parse_boot_argn("memmap", &memmap
, sizeof(memmap
));
254 * Establish the KASLR parameters.
256 static_base_address
= ml_static_ptovirt(KERNEL_BASE_OFFSET
);
257 base_address
= ml_static_ptovirt(args
->kaddr
);
258 vm_kernel_slide
= base_address
- static_base_address
;
260 kprintf("KASLR slide: 0x%016lx dynamic\n", vm_kernel_slide
);
261 if (vm_kernel_slide
!= ((vm_offset_t
)args
->kslide
)) {
262 panic("Kernel base inconsistent with slide - rebased?");
265 /* No slide relative to on-disk symbols */
266 kprintf("KASLR slide: 0x%016lx static and ignored\n",
272 * Zero out local relocations to avoid confusing kxld.
273 * TODO: might be better to move this code to OSKext::initialize
275 if (_mh_execute_header
.flags
& MH_PIE
) {
276 struct load_command
*loadcmd
;
279 loadcmd
= (struct load_command
*)((uintptr_t)&_mh_execute_header
+
280 sizeof(_mh_execute_header
));
282 for (cmd
= 0; cmd
< _mh_execute_header
.ncmds
; cmd
++) {
283 if (loadcmd
->cmd
== LC_DYSYMTAB
) {
284 struct dysymtab_command
*dysymtab
;
286 dysymtab
= (struct dysymtab_command
*)loadcmd
;
287 dysymtab
->nlocrel
= 0;
288 dysymtab
->locreloff
= 0;
289 kprintf("Hiding local relocations\n");
292 loadcmd
= (struct load_command
*)((uintptr_t)loadcmd
+ loadcmd
->cmdsize
);
297 * Now retrieve addresses for end, edata, and etext
298 * from MACH-O headers.
300 segTEXTB
= (vm_offset_t
) getsegdatafromheader(&_mh_execute_header
,
301 "__TEXT", &segSizeTEXT
);
302 segDATAB
= (vm_offset_t
) getsegdatafromheader(&_mh_execute_header
,
303 "__DATA", &segSizeDATA
);
304 segLINKB
= (vm_offset_t
) getsegdatafromheader(&_mh_execute_header
,
305 "__LINKEDIT", &segSizeLINK
);
306 segHIBB
= (vm_offset_t
) getsegdatafromheader(&_mh_execute_header
,
307 "__HIB", &segSizeHIB
);
308 segPRELINKTEXTB
= (vm_offset_t
) getsegdatafromheader(&_mh_execute_header
,
309 "__PRELINK_TEXT", &segSizePRELINKTEXT
);
310 segPRELINKINFOB
= (vm_offset_t
) getsegdatafromheader(&_mh_execute_header
,
311 "__PRELINK_INFO", &segSizePRELINKINFO
);
312 segTEXT
= getsegbynamefromheader(&_mh_execute_header
,
314 segDATA
= getsegbynamefromheader(&_mh_execute_header
,
316 segCONST
= getsegbynamefromheader(&_mh_execute_header
,
318 cursectTEXT
= lastsectTEXT
= firstsect(segTEXT
);
319 /* Discover the last TEXT section within the TEXT segment */
320 while ((cursectTEXT
= nextsect(segTEXT
, cursectTEXT
)) != NULL
) {
321 lastsectTEXT
= cursectTEXT
;
325 eHIB
= segHIBB
+ segSizeHIB
;
327 /* Zero-padded from ehib to stext if text is 2M-aligned */
329 lowGlo
.lgStext
= stext
;
330 etext
= (vm_offset_t
) round_page_64(lastsectTEXT
->addr
+ lastsectTEXT
->size
);
331 /* Zero-padded from etext to sdata if text is 2M-aligned */
333 edata
= segDATAB
+ segSizeDATA
;
335 sconst
= segCONST
->vmaddr
;
336 segSizeConst
= segCONST
->vmsize
;
337 econst
= sconst
+ segSizeConst
;
339 assert(((sconst
| econst
) & PAGE_MASK
) == 0);
341 DPRINTF("segTEXTB = %p\n", (void *) segTEXTB
);
342 DPRINTF("segDATAB = %p\n", (void *) segDATAB
);
343 DPRINTF("segLINKB = %p\n", (void *) segLINKB
);
344 DPRINTF("segHIBB = %p\n", (void *) segHIBB
);
345 DPRINTF("segPRELINKTEXTB = %p\n", (void *) segPRELINKTEXTB
);
346 DPRINTF("segPRELINKINFOB = %p\n", (void *) segPRELINKINFOB
);
347 DPRINTF("sHIB = %p\n", (void *) sHIB
);
348 DPRINTF("eHIB = %p\n", (void *) eHIB
);
349 DPRINTF("stext = %p\n", (void *) stext
);
350 DPRINTF("etext = %p\n", (void *) etext
);
351 DPRINTF("sdata = %p\n", (void *) sdata
);
352 DPRINTF("edata = %p\n", (void *) edata
);
353 DPRINTF("sconst = %p\n", (void *) sconst
);
354 DPRINTF("econst = %p\n", (void *) econst
);
355 DPRINTF("kernel_top = %p\n", (void *) &last_kernel_symbol
);
357 vm_kernel_base
= sHIB
;
358 vm_kernel_top
= (vm_offset_t
) &last_kernel_symbol
;
359 vm_kernel_stext
= stext
;
360 vm_kernel_etext
= etext
;
361 vm_prelink_stext
= segPRELINKTEXTB
;
362 vm_prelink_etext
= segPRELINKTEXTB
+ segSizePRELINKTEXT
;
363 vm_prelink_sinfo
= segPRELINKINFOB
;
364 vm_prelink_einfo
= segPRELINKINFOB
+ segSizePRELINKINFO
;
365 vm_slinkedit
= segLINKB
;
366 vm_elinkedit
= segLINKB
+ segSizeLINK
;
367 vm_kernel_slid_base
= vm_kext_base
+ vm_kernel_slide
;
368 vm_kernel_slid_top
= vm_prelink_einfo
;
373 * Compute the memory size.
378 pmptr
= pmap_memory_regions
;
380 pmap_memory_region_count
= pmap_memory_region_current
= 0;
381 fap
= (ppnum_t
) i386_btop(first_avail
);
383 maddr
= ml_static_ptovirt((vm_offset_t
)args
->MemoryMap
);
384 mptr
= (EfiMemoryRange
*)maddr
;
385 if (args
->MemoryMapDescriptorSize
== 0) {
386 panic("Invalid memory map descriptor size");
388 msize
= args
->MemoryMapDescriptorSize
;
389 mcount
= args
->MemoryMapSize
/ msize
;
391 #define FOURGIG 0x0000000100000000ULL
392 #define ONEGIG 0x0000000040000000ULL
394 for (i
= 0; i
< mcount
; i
++, mptr
= (EfiMemoryRange
*)(((vm_offset_t
)mptr
) + msize
)) {
396 uint64_t region_bytes
= 0;
398 if (pmap_memory_region_count
>= PMAP_MEMORY_REGIONS_SIZE
) {
399 kprintf("WARNING: truncating memory region count at %d\n", pmap_memory_region_count
);
402 base
= (ppnum_t
) (mptr
->PhysicalStart
>> I386_PGSHIFT
);
403 top
= (ppnum_t
) (((mptr
->PhysicalStart
) >> I386_PGSHIFT
) + mptr
->NumberOfPages
- 1);
407 * Avoid having to deal with the edge case of the
408 * very first possible physical page and the roll-over
409 * to -1; just ignore that page.
411 kprintf("WARNING: ignoring first page in [0x%llx:0x%llx]\n", (uint64_t) base
, (uint64_t) top
);
416 * Avoid having to deal with the edge case of the
417 * very last possible physical page and the roll-over
418 * to 0; just ignore that page.
420 kprintf("WARNING: ignoring last page in [0x%llx:0x%llx]\n", (uint64_t) base
, (uint64_t) top
);
425 * That was the only page in that region, so
426 * ignore the whole region.
432 static uint32_t nmr
= 0;
433 if ((base
> 0x20000) && (nmr
++ < 4)) {
434 mptr
->Attribute
|= EFI_MEMORY_KERN_RESERVED
;
437 region_bytes
= (uint64_t)(mptr
->NumberOfPages
<< I386_PGSHIFT
);
438 pmap_type
= mptr
->Type
;
440 switch (mptr
->Type
) {
443 case kEfiBootServicesCode
:
444 case kEfiBootServicesData
:
445 case kEfiConventionalMemory
:
447 * Consolidate usable memory types into one.
449 pmap_type
= kEfiConventionalMemory
;
450 sane_size
+= region_bytes
;
451 firmware_Conventional_bytes
+= region_bytes
;
454 * sane_size should reflect the total amount of physical
455 * RAM in the system, not just the amount that is
456 * available for the OS to use.
457 * We now get this value from SMBIOS tables
458 * rather than reverse engineering the memory map.
459 * But the legacy computation of "sane_size" is kept
460 * for diagnostic information.
463 case kEfiRuntimeServicesCode
:
464 case kEfiRuntimeServicesData
:
465 firmware_RuntimeServices_bytes
+= region_bytes
;
466 sane_size
+= region_bytes
;
468 case kEfiACPIReclaimMemory
:
469 firmware_ACPIReclaim_bytes
+= region_bytes
;
470 sane_size
+= region_bytes
;
472 case kEfiACPIMemoryNVS
:
473 firmware_ACPINVS_bytes
+= region_bytes
;
474 sane_size
+= region_bytes
;
477 firmware_PalCode_bytes
+= region_bytes
;
478 sane_size
+= region_bytes
;
481 case kEfiReservedMemoryType
:
482 firmware_Reserved_bytes
+= region_bytes
;
484 case kEfiUnusableMemory
:
485 firmware_Unusable_bytes
+= region_bytes
;
487 case kEfiMemoryMappedIO
:
488 case kEfiMemoryMappedIOPortSpace
:
489 firmware_MMIO_bytes
+= region_bytes
;
492 firmware_other_bytes
+= region_bytes
;
496 DPRINTF("EFI region %d: type %u/%d, base 0x%x, top 0x%x %s\n",
497 i
, mptr
->Type
, pmap_type
, base
, top
,
498 (mptr
->Attribute
& EFI_MEMORY_KERN_RESERVED
)? "RESERVED" :
499 (mptr
->Attribute
& EFI_MEMORY_RUNTIME
)? "RUNTIME" : "");
505 top
= (top
> maxpg
) ? maxpg
: top
;
511 if ((mptr
->Attribute
& EFI_MEMORY_RUNTIME
) == EFI_MEMORY_RUNTIME
||
512 pmap_type
!= kEfiConventionalMemory
) {
517 * Usable memory region
519 if (top
< I386_LOWMEM_RESERVED
||
520 !pal_is_usable_memory(base
, top
)) {
525 * A range may be marked with with the
526 * EFI_MEMORY_KERN_RESERVED attribute
527 * on some systems, to indicate that the range
528 * must not be made available to devices.
531 if (mptr
->Attribute
& EFI_MEMORY_KERN_RESERVED
) {
532 if (++pmap_reserved_ranges
> PMAP_MAX_RESERVED_RANGES
) {
533 panic("Too many reserved ranges %u\n", pmap_reserved_ranges
);
539 * entire range below first_avail
540 * salvage some low memory pages
541 * we use some very low memory at startup
542 * mark as already allocated here
544 if (base
>= I386_LOWMEM_RESERVED
) {
547 pmptr
->base
= I386_LOWMEM_RESERVED
;
553 if ((mptr
->Attribute
& EFI_MEMORY_KERN_RESERVED
) &&
554 (top
< vm_kernel_base_page
)) {
555 pmptr
->alloc_up
= pmptr
->base
;
556 pmptr
->alloc_down
= pmptr
->end
;
557 pmap_reserved_range_indices
[pmap_last_reserved_range_index
++] = pmap_memory_region_count
;
560 * mark as already mapped
562 pmptr
->alloc_up
= top
+ 1;
563 pmptr
->alloc_down
= top
;
565 pmptr
->type
= pmap_type
;
566 pmptr
->attribute
= mptr
->Attribute
;
567 } else if ((base
< fap
) && (top
> fap
)) {
570 * put mem below first avail in table but
571 * mark already allocated
574 pmptr
->end
= (fap
- 1);
575 pmptr
->alloc_up
= pmptr
->end
+ 1;
576 pmptr
->alloc_down
= pmptr
->end
;
577 pmptr
->type
= pmap_type
;
578 pmptr
->attribute
= mptr
->Attribute
;
580 * we bump these here inline so the accounting
581 * below works correctly
584 pmap_memory_region_count
++;
586 pmptr
->alloc_up
= pmptr
->base
= fap
;
587 pmptr
->type
= pmap_type
;
588 pmptr
->attribute
= mptr
->Attribute
;
589 pmptr
->alloc_down
= pmptr
->end
= top
;
591 if (mptr
->Attribute
& EFI_MEMORY_KERN_RESERVED
) {
592 pmap_reserved_range_indices
[pmap_last_reserved_range_index
++] = pmap_memory_region_count
;
596 * entire range useable
598 pmptr
->alloc_up
= pmptr
->base
= base
;
599 pmptr
->type
= pmap_type
;
600 pmptr
->attribute
= mptr
->Attribute
;
601 pmptr
->alloc_down
= pmptr
->end
= top
;
602 if (mptr
->Attribute
& EFI_MEMORY_KERN_RESERVED
) {
603 pmap_reserved_range_indices
[pmap_last_reserved_range_index
++] = pmap_memory_region_count
;
607 if (i386_ptob(pmptr
->end
) > avail_end
) {
608 avail_end
= i386_ptob(pmptr
->end
);
611 avail_remaining
+= (pmptr
->end
- pmptr
->base
);
612 coalescing_permitted
= (prev_pmptr
&& (pmptr
->attribute
== prev_pmptr
->attribute
) && ((pmptr
->attribute
& EFI_MEMORY_KERN_RESERVED
) == 0));
614 * Consolidate contiguous memory regions, if possible
617 (pmptr
->type
== prev_pmptr
->type
) &&
618 (coalescing_permitted
) &&
619 (pmptr
->base
== pmptr
->alloc_up
) &&
620 (prev_pmptr
->end
== prev_pmptr
->alloc_down
) &&
621 (pmptr
->base
== (prev_pmptr
->end
+ 1))) {
622 prev_pmptr
->end
= pmptr
->end
;
623 prev_pmptr
->alloc_down
= pmptr
->alloc_down
;
625 pmap_memory_region_count
++;
633 kprint_memmap(maddr
, msize
, mcount
);
636 avail_start
= first_avail
;
637 mem_actual
= args
->PhysicalMemorySize
;
640 * For user visible memory size, round up to 128 Mb
641 * - accounting for the various stolen memory not reported by EFI.
642 * This is maintained for historical, comparison purposes but
643 * we now use the memory size reported by EFI/Booter.
645 sane_size
= (sane_size
+ 128 * MB
- 1) & ~((uint64_t)(128 * MB
- 1));
646 if (sane_size
!= mem_actual
) {
647 printf("mem_actual: 0x%llx\n legacy sane_size: 0x%llx\n",
648 mem_actual
, sane_size
);
650 sane_size
= mem_actual
;
653 * We cap at KERNEL_MAXMEM bytes (currently 32GB for K32, 96GB for K64).
654 * Unless overriden by the maxmem= boot-arg
655 * -- which is a non-zero maxmem argument to this function.
657 if (maxmem
== 0 && sane_size
> KERNEL_MAXMEM
) {
658 maxmem
= KERNEL_MAXMEM
;
659 printf("Physical memory %lld bytes capped at %dGB\n",
660 sane_size
, (uint32_t) (KERNEL_MAXMEM
/ GB
));
664 * if user set maxmem, reduce memory sizes
666 if ((maxmem
> (uint64_t)first_avail
) && (maxmem
< sane_size
)) {
667 ppnum_t discarded_pages
= (ppnum_t
)((sane_size
- maxmem
) >> I386_PGSHIFT
);
668 ppnum_t highest_pn
= 0;
670 uint64_t pages_to_use
;
671 unsigned cur_region
= 0;
675 if (avail_remaining
> discarded_pages
) {
676 avail_remaining
-= discarded_pages
;
681 pages_to_use
= avail_remaining
;
683 while (cur_region
< pmap_memory_region_count
&& pages_to_use
) {
684 for (cur_end
= pmap_memory_regions
[cur_region
].base
;
685 cur_end
< pmap_memory_regions
[cur_region
].end
&& pages_to_use
;
687 if (cur_end
> highest_pn
) {
688 highest_pn
= cur_end
;
692 if (pages_to_use
== 0) {
693 pmap_memory_regions
[cur_region
].end
= cur_end
;
694 pmap_memory_regions
[cur_region
].alloc_down
= cur_end
;
699 pmap_memory_region_count
= cur_region
;
701 avail_end
= i386_ptob(highest_pn
+ 1);
705 * mem_size is only a 32 bit container... follow the PPC route
706 * and pin it to a 2 Gbyte maximum
708 if (sane_size
> (FOURGIG
>> 1)) {
709 mem_size
= (vm_size_t
)(FOURGIG
>> 1);
711 mem_size
= (vm_size_t
)sane_size
;
715 kprintf("Physical memory %llu MB\n", sane_size
/ MB
);
717 max_valid_low_ppnum
= (2 * GB
) / PAGE_SIZE
;
719 if (!PE_parse_boot_argn("max_valid_dma_addr", &maxdmaaddr
, sizeof(maxdmaaddr
))) {
720 max_valid_dma_address
= (uint64_t)4 * (uint64_t)GB
;
722 max_valid_dma_address
= ((uint64_t) maxdmaaddr
) * MB
;
724 if ((max_valid_dma_address
/ PAGE_SIZE
) < max_valid_low_ppnum
) {
725 max_valid_low_ppnum
= (ppnum_t
)(max_valid_dma_address
/ PAGE_SIZE
);
728 if (avail_end
>= max_valid_dma_address
) {
729 if (!PE_parse_boot_argn("maxloreserve", &maxloreserve
, sizeof(maxloreserve
))) {
730 if (sane_size
>= (ONEGIG
* 15)) {
731 maxloreserve
= (MAXLORESERVE
/ PAGE_SIZE
) * 4;
732 } else if (sane_size
>= (ONEGIG
* 7)) {
733 maxloreserve
= (MAXLORESERVE
/ PAGE_SIZE
) * 2;
735 maxloreserve
= MAXLORESERVE
/ PAGE_SIZE
;
739 mbuf_reserve
= bsd_mbuf_cluster_reserve(&mbuf_override
) / PAGE_SIZE
;
742 maxloreserve
= (maxloreserve
* (1024 * 1024)) / PAGE_SIZE
;
746 vm_lopage_free_limit
= maxloreserve
;
748 if (mbuf_override
== TRUE
) {
749 vm_lopage_free_limit
+= mbuf_reserve
;
750 vm_lopage_lowater
= 0;
752 vm_lopage_lowater
= vm_lopage_free_limit
/ 16;
755 vm_lopage_refill
= TRUE
;
756 vm_lopage_needed
= TRUE
;
761 * Initialize kernel physical map.
762 * Kernel virtual address starts at VM_KERNEL_MIN_ADDRESS.
764 kprintf("avail_remaining = 0x%lx\n", (unsigned long)avail_remaining
);
765 pmap_bootstrap(0, IA32e
);
770 pmap_free_pages(void)
772 return (unsigned int)avail_remaining
;
776 boolean_t
pmap_next_page_reserved(ppnum_t
*);
779 * Pick a page from a "kernel private" reserved range; works around
780 * errata on some hardware.
783 pmap_next_page_reserved(ppnum_t
*pn
)
785 if (pmap_reserved_ranges
) {
787 pmap_memory_region_t
*region
;
788 for (n
= 0; n
< pmap_last_reserved_range_index
; n
++) {
789 uint32_t reserved_index
= pmap_reserved_range_indices
[n
];
790 region
= &pmap_memory_regions
[reserved_index
];
791 if (region
->alloc_up
<= region
->alloc_down
) {
792 *pn
= region
->alloc_up
++;
795 if (*pn
> max_ppnum
) {
799 if (lowest_lo
== 0 || *pn
< lowest_lo
) {
803 pmap_reserved_pages_allocated
++;
805 if (region
->alloc_up
> region
->alloc_down
) {
806 kprintf("Exhausted reserved range index: %u, base: 0x%x end: 0x%x, type: 0x%x, attribute: 0x%llx\n", reserved_index
, region
->base
, region
->end
, region
->type
, region
->attribute
);
821 pmap_memory_region_t
*region
;
824 if (pmap_next_page_reserved(pn
)) {
828 if (avail_remaining
) {
829 for (n
= pmap_memory_region_count
- 1; n
>= 0; n
--) {
830 region
= &pmap_memory_regions
[n
];
832 if (region
->alloc_down
>= region
->alloc_up
) {
833 *pn
= region
->alloc_down
--;
836 if (*pn
> max_ppnum
) {
840 if (lowest_lo
== 0 || *pn
< lowest_lo
) {
844 if (lowest_hi
== 0 || *pn
< lowest_hi
) {
848 if (*pn
> highest_hi
) {
864 if (avail_remaining
) {
865 while (pmap_memory_region_current
< pmap_memory_region_count
) {
866 if (pmap_memory_regions
[pmap_memory_region_current
].alloc_up
>
867 pmap_memory_regions
[pmap_memory_region_current
].alloc_down
) {
868 pmap_memory_region_current
++;
871 *pn
= pmap_memory_regions
[pmap_memory_region_current
].alloc_up
++;
874 if (*pn
> max_ppnum
) {
878 if (lowest_lo
== 0 || *pn
< lowest_lo
) {
894 pmap_memory_region_t
*pmptr
= pmap_memory_regions
;
896 for (i
= 0; i
< pmap_memory_region_count
; i
++, pmptr
++) {
897 if ((pn
>= pmptr
->base
) && (pn
<= pmptr
->end
)) {