2 * Copyright (c) 2000-2008 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
30 * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org>
31 * All rights reserved.
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
42 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
43 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
44 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
45 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
46 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
47 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
48 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
49 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
50 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
51 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 * @(#)kern_event.c 1.0 (3/31/2000)
59 #include <sys/param.h>
60 #include <sys/systm.h>
61 #include <sys/filedesc.h>
62 #include <sys/kernel.h>
63 #include <sys/proc_internal.h>
64 #include <sys/kauth.h>
65 #include <sys/malloc.h>
66 #include <sys/unistd.h>
67 #include <sys/file_internal.h>
68 #include <sys/fcntl.h>
69 #include <sys/select.h>
70 #include <sys/queue.h>
71 #include <sys/event.h>
72 #include <sys/eventvar.h>
73 #include <sys/protosw.h>
74 #include <sys/socket.h>
75 #include <sys/socketvar.h>
77 #include <sys/sysctl.h>
79 #include <sys/sysproto.h>
81 #include <sys/vnode_internal.h>
83 #include <sys/proc_info.h>
85 #include <kern/lock.h>
86 #include <kern/clock.h>
87 #include <kern/thread_call.h>
88 #include <kern/sched_prim.h>
89 #include <kern/zalloc.h>
90 #include <kern/assert.h>
92 #include <libkern/libkern.h>
93 #include "net/net_str_id.h"
95 #include <mach/task.h>
96 #include <kern/vm_pressure.h>
98 MALLOC_DEFINE(M_KQUEUE
, "kqueue", "memory for kqueue system");
100 #define KQ_EVENT NULL
102 static inline void kqlock(struct kqueue
*kq
);
103 static inline void kqunlock(struct kqueue
*kq
);
105 static int kqlock2knoteuse(struct kqueue
*kq
, struct knote
*kn
);
106 static int kqlock2knoteusewait(struct kqueue
*kq
, struct knote
*kn
);
107 static int kqlock2knotedrop(struct kqueue
*kq
, struct knote
*kn
);
108 static int knoteuse2kqlock(struct kqueue
*kq
, struct knote
*kn
);
110 static void kqueue_wakeup(struct kqueue
*kq
, int closed
);
111 static int kqueue_read(struct fileproc
*fp
, struct uio
*uio
,
112 int flags
, vfs_context_t ctx
);
113 static int kqueue_write(struct fileproc
*fp
, struct uio
*uio
,
114 int flags
, vfs_context_t ctx
);
115 static int kqueue_ioctl(struct fileproc
*fp
, u_long com
, caddr_t data
,
117 static int kqueue_select(struct fileproc
*fp
, int which
, void *wql
,
119 static int kqueue_close(struct fileglob
*fg
, vfs_context_t ctx
);
120 static int kqueue_kqfilter(struct fileproc
*fp
, struct knote
*kn
, vfs_context_t ctx
);
121 static int kqueue_drain(struct fileproc
*fp
, vfs_context_t ctx
);
122 extern int kqueue_stat(struct fileproc
*fp
, void *ub
, int isstat64
, vfs_context_t ctx
);
124 static struct fileops kqueueops
= {
125 .fo_read
= kqueue_read
,
126 .fo_write
= kqueue_write
,
127 .fo_ioctl
= kqueue_ioctl
,
128 .fo_select
= kqueue_select
,
129 .fo_close
= kqueue_close
,
130 .fo_kqfilter
= kqueue_kqfilter
,
131 .fo_drain
= kqueue_drain
,
134 static int kevent_internal(struct proc
*p
, int iskev64
, user_addr_t changelist
,
135 int nchanges
, user_addr_t eventlist
, int nevents
, int fd
,
136 user_addr_t utimeout
, unsigned int flags
, int32_t *retval
);
137 static int kevent_copyin(user_addr_t
*addrp
, struct kevent64_s
*kevp
, struct proc
*p
, int iskev64
);
138 static int kevent_copyout(struct kevent64_s
*kevp
, user_addr_t
*addrp
, struct proc
*p
, int iskev64
);
139 char * kevent_description(struct kevent64_s
*kevp
, char *s
, size_t n
);
141 static int kevent_callback(struct kqueue
*kq
, struct kevent64_s
*kevp
, void *data
);
142 static void kevent_continue(struct kqueue
*kq
, void *data
, int error
);
143 static void kqueue_scan_continue(void *contp
, wait_result_t wait_result
);
144 static int kqueue_process(struct kqueue
*kq
, kevent_callback_t callback
,
145 void *data
, int *countp
, struct proc
*p
);
146 static int kqueue_begin_processing(struct kqueue
*kq
);
147 static void kqueue_end_processing(struct kqueue
*kq
);
148 static int knote_process(struct knote
*kn
, kevent_callback_t callback
,
149 void *data
, struct kqtailq
*inprocessp
, struct proc
*p
);
150 static void knote_put(struct knote
*kn
);
151 static int knote_fdpattach(struct knote
*kn
, struct filedesc
*fdp
, struct proc
*p
);
152 static void knote_drop(struct knote
*kn
, struct proc
*p
);
153 static void knote_activate(struct knote
*kn
, int);
154 static void knote_deactivate(struct knote
*kn
);
155 static void knote_enqueue(struct knote
*kn
);
156 static void knote_dequeue(struct knote
*kn
);
157 static struct knote
*knote_alloc(void);
158 static void knote_free(struct knote
*kn
);
160 static int filt_fileattach(struct knote
*kn
);
161 static struct filterops file_filtops
= {
163 .f_attach
= filt_fileattach
,
166 static void filt_kqdetach(struct knote
*kn
);
167 static int filt_kqueue(struct knote
*kn
, long hint
);
168 static struct filterops kqread_filtops
= {
170 .f_detach
= filt_kqdetach
,
171 .f_event
= filt_kqueue
,
175 * placeholder for not-yet-implemented filters
177 static int filt_badattach(struct knote
*kn
);
178 static struct filterops bad_filtops
= {
179 .f_attach
= filt_badattach
,
182 static int filt_procattach(struct knote
*kn
);
183 static void filt_procdetach(struct knote
*kn
);
184 static int filt_proc(struct knote
*kn
, long hint
);
185 static struct filterops proc_filtops
= {
186 .f_attach
= filt_procattach
,
187 .f_detach
= filt_procdetach
,
188 .f_event
= filt_proc
,
191 static int filt_vmattach(struct knote
*kn
);
192 static void filt_vmdetach(struct knote
*kn
);
193 static int filt_vm(struct knote
*kn
, long hint
);
194 static struct filterops vm_filtops
= {
195 .f_attach
= filt_vmattach
,
196 .f_detach
= filt_vmdetach
,
200 extern struct filterops fs_filtops
;
202 extern struct filterops sig_filtops
;
205 static int filt_timerattach(struct knote
*kn
);
206 static void filt_timerdetach(struct knote
*kn
);
207 static int filt_timer(struct knote
*kn
, long hint
);
208 static void filt_timertouch(struct knote
*kn
, struct kevent64_s
*kev
,
210 static struct filterops timer_filtops
= {
211 .f_attach
= filt_timerattach
,
212 .f_detach
= filt_timerdetach
,
213 .f_event
= filt_timer
,
214 .f_touch
= filt_timertouch
,
219 static void filt_timerexpire(void *knx
, void *param1
);
220 static int filt_timervalidate(struct knote
*kn
);
221 static void filt_timerupdate(struct knote
*kn
);
222 static void filt_timercancel(struct knote
*kn
);
224 #define TIMER_RUNNING 0x1
225 #define TIMER_CANCELWAIT 0x2
227 static lck_mtx_t _filt_timerlock
;
228 static void filt_timerlock(void);
229 static void filt_timerunlock(void);
231 static zone_t knote_zone
;
233 #define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask))
236 extern struct filterops aio_filtops
;
239 /* Mach portset filter */
240 extern struct filterops machport_filtops
;
243 static int filt_userattach(struct knote
*kn
);
244 static void filt_userdetach(struct knote
*kn
);
245 static int filt_user(struct knote
*kn
, long hint
);
246 static void filt_usertouch(struct knote
*kn
, struct kevent64_s
*kev
,
248 static struct filterops user_filtops
= {
249 .f_attach
= filt_userattach
,
250 .f_detach
= filt_userdetach
,
251 .f_event
= filt_user
,
252 .f_touch
= filt_usertouch
,
256 * Table for for all system-defined filters.
258 static struct filterops
*sysfilt_ops
[] = {
259 &file_filtops
, /* EVFILT_READ */
260 &file_filtops
, /* EVFILT_WRITE */
262 &aio_filtops
, /* EVFILT_AIO */
264 &bad_filtops
, /* EVFILT_AIO */
266 &file_filtops
, /* EVFILT_VNODE */
267 &proc_filtops
, /* EVFILT_PROC */
268 &sig_filtops
, /* EVFILT_SIGNAL */
269 &timer_filtops
, /* EVFILT_TIMER */
270 &machport_filtops
, /* EVFILT_MACHPORT */
271 &fs_filtops
, /* EVFILT_FS */
272 &user_filtops
, /* EVFILT_USER */
273 &bad_filtops
, /* unused */
274 &vm_filtops
, /* EVFILT_VM */
278 * kqueue/note lock attributes and implementations
280 * kqueues have locks, while knotes have use counts
281 * Most of the knote state is guarded by the object lock.
282 * the knote "inuse" count and status use the kqueue lock.
284 lck_grp_attr_t
* kq_lck_grp_attr
;
285 lck_grp_t
* kq_lck_grp
;
286 lck_attr_t
* kq_lck_attr
;
289 kqlock(struct kqueue
*kq
)
291 lck_spin_lock(&kq
->kq_lock
);
295 kqunlock(struct kqueue
*kq
)
297 lck_spin_unlock(&kq
->kq_lock
);
301 * Convert a kq lock to a knote use referece.
303 * If the knote is being dropped, we can't get
304 * a use reference, so just return with it
307 * - kq locked at entry
308 * - unlock on exit if we get the use reference
311 kqlock2knoteuse(struct kqueue
*kq
, struct knote
*kn
)
313 if (kn
->kn_status
& KN_DROPPING
)
321 * Convert a kq lock to a knote use referece,
322 * but wait for attach and drop events to complete.
324 * If the knote is being dropped, we can't get
325 * a use reference, so just return with it
328 * - kq locked at entry
329 * - kq always unlocked on exit
332 kqlock2knoteusewait(struct kqueue
*kq
, struct knote
*kn
)
334 if ((kn
->kn_status
& (KN_DROPPING
| KN_ATTACHING
)) != 0) {
335 kn
->kn_status
|= KN_USEWAIT
;
336 wait_queue_assert_wait((wait_queue_t
)kq
->kq_wqs
, &kn
->kn_status
, THREAD_UNINT
, 0);
338 thread_block(THREAD_CONTINUE_NULL
);
348 * Convert from a knote use reference back to kq lock.
350 * Drop a use reference and wake any waiters if
351 * this is the last one.
353 * The exit return indicates if the knote is
354 * still alive - but the kqueue lock is taken
358 knoteuse2kqlock(struct kqueue
*kq
, struct knote
*kn
)
361 if (--kn
->kn_inuse
== 0) {
362 if ((kn
->kn_status
& KN_ATTACHING
) != 0) {
363 kn
->kn_status
&= ~KN_ATTACHING
;
365 if ((kn
->kn_status
& KN_USEWAIT
) != 0) {
366 kn
->kn_status
&= ~KN_USEWAIT
;
367 wait_queue_wakeup_all((wait_queue_t
)kq
->kq_wqs
, &kn
->kn_status
, THREAD_AWAKENED
);
370 return ((kn
->kn_status
& KN_DROPPING
) == 0);
374 * Convert a kq lock to a knote drop referece.
376 * If the knote is in use, wait for the use count
377 * to subside. We first mark our intention to drop
378 * it - keeping other users from "piling on."
379 * If we are too late, we have to wait for the
380 * other drop to complete.
382 * - kq locked at entry
383 * - always unlocked on exit.
384 * - caller can't hold any locks that would prevent
385 * the other dropper from completing.
388 kqlock2knotedrop(struct kqueue
*kq
, struct knote
*kn
)
392 oktodrop
= ((kn
->kn_status
& (KN_DROPPING
| KN_ATTACHING
)) == 0);
393 kn
->kn_status
|= KN_DROPPING
;
395 if (kn
->kn_inuse
== 0) {
400 kn
->kn_status
|= KN_USEWAIT
;
401 wait_queue_assert_wait((wait_queue_t
)kq
->kq_wqs
, &kn
->kn_status
, THREAD_UNINT
, 0);
403 thread_block(THREAD_CONTINUE_NULL
);
408 * Release a knote use count reference.
411 knote_put(struct knote
*kn
)
413 struct kqueue
*kq
= kn
->kn_kq
;
416 if (--kn
->kn_inuse
== 0) {
417 if ((kn
->kn_status
& KN_USEWAIT
) != 0) {
418 kn
->kn_status
&= ~KN_USEWAIT
;
419 wait_queue_wakeup_all((wait_queue_t
)kq
->kq_wqs
, &kn
->kn_status
, THREAD_AWAKENED
);
426 filt_fileattach(struct knote
*kn
)
429 return (fo_kqfilter(kn
->kn_fp
, kn
, vfs_context_current()));
432 #define f_flag f_fglob->fg_flag
433 #define f_type f_fglob->fg_type
434 #define f_msgcount f_fglob->fg_msgcount
435 #define f_cred f_fglob->fg_cred
436 #define f_ops f_fglob->fg_ops
437 #define f_offset f_fglob->fg_offset
438 #define f_data f_fglob->fg_data
441 filt_kqdetach(struct knote
*kn
)
443 struct kqueue
*kq
= (struct kqueue
*)kn
->kn_fp
->f_data
;
446 KNOTE_DETACH(&kq
->kq_sel
.si_note
, kn
);
452 filt_kqueue(struct knote
*kn
, __unused
long hint
)
454 struct kqueue
*kq
= (struct kqueue
*)kn
->kn_fp
->f_data
;
456 kn
->kn_data
= kq
->kq_count
;
457 return (kn
->kn_data
> 0);
461 filt_procattach(struct knote
*kn
)
464 pid_t selfpid
= (pid_t
)0;
466 assert(PID_MAX
< NOTE_PDATAMASK
);
468 if ((kn
->kn_sfflags
& (NOTE_TRACK
| NOTE_TRACKERR
| NOTE_CHILD
)) != 0)
471 p
= proc_find(kn
->kn_id
);
476 if ((kn
->kn_sfflags
& NOTE_EXIT
) != 0) {
477 selfpid
= proc_selfpid();
478 /* check for validity of NOTE_EXISTATUS */
479 if (((kn
->kn_sfflags
& NOTE_EXITSTATUS
) != 0) &&
480 ((p
->p_ppid
!= selfpid
) && (((p
->p_lflag
& P_LTRACED
) == 0) || (p
->p_oppid
!= selfpid
)))) {
488 kn
->kn_flags
|= EV_CLEAR
; /* automatically set */
489 kn
->kn_ptr
.p_proc
= p
; /* store the proc handle */
491 KNOTE_ATTACH(&p
->p_klist
, kn
);
501 * The knote may be attached to a different process, which may exit,
502 * leaving nothing for the knote to be attached to. In that case,
503 * the pointer to the process will have already been nulled out.
506 filt_procdetach(struct knote
*kn
)
512 p
= kn
->kn_ptr
.p_proc
;
513 if (p
!= PROC_NULL
) {
514 kn
->kn_ptr
.p_proc
= PROC_NULL
;
515 KNOTE_DETACH(&p
->p_klist
, kn
);
522 filt_proc(struct knote
*kn
, long hint
)
524 /* hint is 0 when called from above */
528 /* ALWAYS CALLED WITH proc_klist_lock when (hint != 0) */
531 * mask off extra data
533 event
= (u_int
)hint
& NOTE_PCTRLMASK
;
536 * if the user is interested in this event, record it.
538 if (kn
->kn_sfflags
& event
)
539 kn
->kn_fflags
|= event
;
541 if (event
== NOTE_REAP
|| (event
== NOTE_EXIT
&& !(kn
->kn_sfflags
& NOTE_REAP
))) {
542 kn
->kn_flags
|= (EV_EOF
| EV_ONESHOT
);
544 if ((event
== NOTE_EXIT
) && ((kn
->kn_sfflags
& NOTE_EXITSTATUS
) != 0)) {
545 kn
->kn_fflags
|= NOTE_EXITSTATUS
;
546 kn
->kn_data
= (hint
& NOTE_PDATAMASK
);
548 if ((event
== NOTE_RESOURCEEND
) && ((kn
->kn_sfflags
& NOTE_RESOURCEEND
) != 0)) {
549 kn
->kn_fflags
|= NOTE_RESOURCEEND
;
550 kn
->kn_data
= (hint
& NOTE_PDATAMASK
);
554 /* atomic check, no locking need when called from above */
555 return (kn
->kn_fflags
!= 0);
559 * Virtual memory kevents
561 * author: Matt Jacobson [matthew_jacobson@apple.com]
565 filt_vmattach(struct knote
*kn
)
568 * The note will be cleared once the information has been flushed to the client.
569 * If there is still pressure, we will be re-alerted.
571 kn
->kn_flags
|= EV_CLEAR
;
573 return vm_knote_register(kn
);
577 filt_vmdetach(struct knote
*kn
)
579 vm_knote_unregister(kn
);
583 filt_vm(struct knote
*kn
, long hint
)
585 /* hint == 0 means this is just an alive? check (always true) */
587 /* If this knote is interested in the event specified in hint... */
588 if ((kn
->kn_sfflags
& hint
) != 0) {
589 kn
->kn_fflags
|= hint
;
593 return (kn
->kn_fflags
!= 0);
597 * filt_timervalidate - process data from user
599 * Converts to either interval or deadline format.
601 * The saved-data field in the knote contains the
602 * time value. The saved filter-flags indicates
603 * the unit of measurement.
605 * After validation, either the saved-data field
606 * contains the interval in absolute time, or ext[0]
607 * contains the expected deadline. If that deadline
608 * is in the past, ext[0] is 0.
610 * Returns EINVAL for unrecognized units of time.
612 * Timer filter lock is held.
616 filt_timervalidate(struct knote
*kn
)
621 switch (kn
->kn_sfflags
& (NOTE_SECONDS
|NOTE_USECONDS
|NOTE_NSECONDS
)) {
623 multiplier
= NSEC_PER_SEC
;
626 multiplier
= NSEC_PER_USEC
;
631 case 0: /* milliseconds (default) */
632 multiplier
= NSEC_PER_SEC
/ 1000;
638 nanoseconds_to_absolutetime((uint64_t)kn
->kn_sdata
* multiplier
, &raw
);
643 if (kn
->kn_sfflags
& NOTE_ABSOLUTE
) {
645 clock_nsec_t nanoseconds
;
648 clock_get_calendar_nanotime(&seconds
, &nanoseconds
);
649 nanoseconds_to_absolutetime((uint64_t)seconds
* NSEC_PER_SEC
+
653 /* time has already passed */
657 clock_absolutetime_interval_to_deadline(raw
,
668 * filt_timerupdate - compute the next deadline
670 * Repeating timers store their interval in kn_sdata. Absolute
671 * timers have already calculated the deadline, stored in ext[0].
673 * On return, the next deadline (or zero if no deadline is needed)
674 * is stored in kn_ext[0].
676 * Timer filter lock is held.
679 filt_timerupdate(struct knote
*kn
)
681 /* if there's no interval, deadline is just in kn_ext[0] */
682 if (kn
->kn_sdata
== 0)
685 /* if timer hasn't fired before, fire in interval nsecs */
686 if (kn
->kn_ext
[0] == 0) {
687 clock_absolutetime_interval_to_deadline(kn
->kn_sdata
,
691 * If timer has fired before, schedule the next pop
692 * relative to the last intended deadline.
694 * We could check for whether the deadline has expired,
695 * but the thread call layer can handle that.
697 kn
->kn_ext
[0] += kn
->kn_sdata
;
702 * filt_timerexpire - the timer callout routine
704 * Just propagate the timer event into the knote
705 * filter routine (by going through the knote
706 * synchronization point). Pass a hint to
707 * indicate this is a real event, not just a
711 filt_timerexpire(void *knx
, __unused
void *spare
)
713 struct klist timer_list
;
714 struct knote
*kn
= knx
;
718 kn
->kn_hookid
&= ~TIMER_RUNNING
;
720 /* no "object" for timers, so fake a list */
721 SLIST_INIT(&timer_list
);
722 SLIST_INSERT_HEAD(&timer_list
, kn
, kn_selnext
);
723 KNOTE(&timer_list
, 1);
725 /* if someone is waiting for timer to pop */
726 if (kn
->kn_hookid
& TIMER_CANCELWAIT
) {
727 struct kqueue
*kq
= kn
->kn_kq
;
728 wait_queue_wakeup_all((wait_queue_t
)kq
->kq_wqs
, &kn
->kn_hook
,
736 * Cancel a running timer (or wait for the pop).
737 * Timer filter lock is held.
740 filt_timercancel(struct knote
*kn
)
742 struct kqueue
*kq
= kn
->kn_kq
;
743 thread_call_t callout
= kn
->kn_hook
;
746 if (kn
->kn_hookid
& TIMER_RUNNING
) {
747 /* cancel the callout if we can */
748 cancelled
= thread_call_cancel(callout
);
750 kn
->kn_hookid
&= ~TIMER_RUNNING
;
752 /* we have to wait for the expire routine. */
753 kn
->kn_hookid
|= TIMER_CANCELWAIT
;
754 wait_queue_assert_wait((wait_queue_t
)kq
->kq_wqs
,
755 &kn
->kn_hook
, THREAD_UNINT
, 0);
757 thread_block(THREAD_CONTINUE_NULL
);
759 assert((kn
->kn_hookid
& TIMER_RUNNING
) == 0);
765 * Allocate a thread call for the knote's lifetime, and kick off the timer.
768 filt_timerattach(struct knote
*kn
)
770 thread_call_t callout
;
773 callout
= thread_call_allocate(filt_timerexpire
, kn
);
778 error
= filt_timervalidate(kn
);
784 kn
->kn_hook
= (void*)callout
;
787 /* absolute=EV_ONESHOT */
788 if (kn
->kn_sfflags
& NOTE_ABSOLUTE
)
789 kn
->kn_flags
|= EV_ONESHOT
;
791 filt_timerupdate(kn
);
793 kn
->kn_flags
|= EV_CLEAR
;
794 thread_call_enter_delayed(callout
, kn
->kn_ext
[0]);
795 kn
->kn_hookid
|= TIMER_RUNNING
;
806 * Shut down the timer if it's running, and free the callout.
809 filt_timerdetach(struct knote
*kn
)
811 thread_call_t callout
;
815 callout
= (thread_call_t
)kn
->kn_hook
;
816 filt_timercancel(kn
);
820 thread_call_free(callout
);
826 filt_timer(struct knote
*kn
, long hint
)
831 /* real timer pop -- timer lock held by filt_timerexpire */
835 if (((kn
->kn_hookid
& TIMER_CANCELWAIT
) == 0) &&
836 ((kn
->kn_flags
& EV_ONESHOT
) == 0)) {
838 /* evaluate next time to fire */
839 filt_timerupdate(kn
);
842 /* keep the callout and re-arm */
843 thread_call_enter_delayed(kn
->kn_hook
,
845 kn
->kn_hookid
|= TIMER_RUNNING
;
855 result
= (kn
->kn_data
!= 0);
863 * filt_timertouch - update knote with new user input
865 * Cancel and restart the timer based on new user data. When
866 * the user picks up a knote, clear the count of how many timer
867 * pops have gone off (in kn_data).
870 filt_timertouch(struct knote
*kn
, struct kevent64_s
*kev
, long type
)
877 /* cancel current call */
878 filt_timercancel(kn
);
880 /* recalculate deadline */
881 kn
->kn_sdata
= kev
->data
;
882 kn
->kn_sfflags
= kev
->fflags
;
884 error
= filt_timervalidate(kn
);
886 /* no way to report error, so mark it in the knote */
887 kn
->kn_flags
|= EV_ERROR
;
892 /* start timer if necessary */
893 filt_timerupdate(kn
);
895 thread_call_enter_delayed(kn
->kn_hook
, kn
->kn_ext
[0]);
896 kn
->kn_hookid
|= TIMER_RUNNING
;
898 /* pretend the timer has fired */
905 /* reset the timer pop count in kn_data */
906 *kev
= kn
->kn_kevent
;
909 if (kn
->kn_flags
& EV_CLEAR
)
913 panic("filt_timertouch() - invalid type (%ld)", type
);
923 lck_mtx_lock(&_filt_timerlock
);
927 filt_timerunlock(void)
929 lck_mtx_unlock(&_filt_timerlock
);
933 filt_userattach(struct knote
*kn
)
935 /* EVFILT_USER knotes are not attached to anything in the kernel */
937 if (kn
->kn_fflags
& NOTE_TRIGGER
) {
946 filt_userdetach(__unused
struct knote
*kn
)
948 /* EVFILT_USER knotes are not attached to anything in the kernel */
952 filt_user(struct knote
*kn
, __unused
long hint
)
954 return kn
->kn_hookid
;
958 filt_usertouch(struct knote
*kn
, struct kevent64_s
*kev
, long type
)
963 if (kev
->fflags
& NOTE_TRIGGER
) {
967 ffctrl
= kev
->fflags
& NOTE_FFCTRLMASK
;
968 kev
->fflags
&= NOTE_FFLAGSMASK
;
973 OSBitAndAtomic(kev
->fflags
, &kn
->kn_sfflags
);
976 OSBitOrAtomic(kev
->fflags
, &kn
->kn_sfflags
);
979 kn
->kn_sfflags
= kev
->fflags
;
982 kn
->kn_sdata
= kev
->data
;
985 *kev
= kn
->kn_kevent
;
986 kev
->fflags
= (volatile UInt32
)kn
->kn_sfflags
;
987 kev
->data
= kn
->kn_sdata
;
988 if (kn
->kn_flags
& EV_CLEAR
) {
995 panic("filt_usertouch() - invalid type (%ld)", type
);
1001 * JMM - placeholder for not-yet-implemented filters
1004 filt_badattach(__unused
struct knote
*kn
)
1011 kqueue_alloc(struct proc
*p
)
1013 struct filedesc
*fdp
= p
->p_fd
;
1016 MALLOC_ZONE(kq
, struct kqueue
*, sizeof(struct kqueue
), M_KQUEUE
, M_WAITOK
);
1018 wait_queue_set_t wqs
;
1020 wqs
= wait_queue_set_alloc(SYNC_POLICY_FIFO
| SYNC_POLICY_PREPOST
);
1022 bzero(kq
, sizeof(struct kqueue
));
1023 lck_spin_init(&kq
->kq_lock
, kq_lck_grp
, kq_lck_attr
);
1024 TAILQ_INIT(&kq
->kq_head
);
1028 FREE_ZONE(kq
, sizeof(struct kqueue
), M_KQUEUE
);
1032 if (fdp
->fd_knlistsize
< 0) {
1034 if (fdp
->fd_knlistsize
< 0)
1035 fdp
->fd_knlistsize
= 0; /* this process has had a kq */
1044 * kqueue_dealloc - detach all knotes from a kqueue and free it
1046 * We walk each list looking for knotes referencing this
1047 * this kqueue. If we find one, we try to drop it. But
1048 * if we fail to get a drop reference, that will wait
1049 * until it is dropped. So, we can just restart again
1050 * safe in the assumption that the list will eventually
1051 * not contain any more references to this kqueue (either
1052 * we dropped them all, or someone else did).
1054 * Assumes no new events are being added to the kqueue.
1055 * Nothing locked on entry or exit.
1058 kqueue_dealloc(struct kqueue
*kq
)
1060 struct proc
*p
= kq
->kq_p
;
1061 struct filedesc
*fdp
= p
->p_fd
;
1066 for (i
= 0; i
< fdp
->fd_knlistsize
; i
++) {
1067 kn
= SLIST_FIRST(&fdp
->fd_knlist
[i
]);
1068 while (kn
!= NULL
) {
1069 if (kq
== kn
->kn_kq
) {
1072 /* drop it ourselves or wait */
1073 if (kqlock2knotedrop(kq
, kn
)) {
1074 kn
->kn_fop
->f_detach(kn
);
1078 /* start over at beginning of list */
1079 kn
= SLIST_FIRST(&fdp
->fd_knlist
[i
]);
1082 kn
= SLIST_NEXT(kn
, kn_link
);
1085 if (fdp
->fd_knhashmask
!= 0) {
1086 for (i
= 0; i
< (int)fdp
->fd_knhashmask
+ 1; i
++) {
1087 kn
= SLIST_FIRST(&fdp
->fd_knhash
[i
]);
1088 while (kn
!= NULL
) {
1089 if (kq
== kn
->kn_kq
) {
1092 /* drop it ourselves or wait */
1093 if (kqlock2knotedrop(kq
, kn
)) {
1094 kn
->kn_fop
->f_detach(kn
);
1098 /* start over at beginning of list */
1099 kn
= SLIST_FIRST(&fdp
->fd_knhash
[i
]);
1102 kn
= SLIST_NEXT(kn
, kn_link
);
1109 * before freeing the wait queue set for this kqueue,
1110 * make sure it is unlinked from all its containing (select) sets.
1112 wait_queue_unlink_all((wait_queue_t
)kq
->kq_wqs
);
1113 wait_queue_set_free(kq
->kq_wqs
);
1114 lck_spin_destroy(&kq
->kq_lock
, kq_lck_grp
);
1115 FREE_ZONE(kq
, sizeof(struct kqueue
), M_KQUEUE
);
1119 kqueue(struct proc
*p
, __unused
struct kqueue_args
*uap
, int32_t *retval
)
1122 struct fileproc
*fp
;
1125 error
= falloc(p
, &fp
, &fd
, vfs_context_current());
1130 kq
= kqueue_alloc(p
);
1136 fp
->f_flag
= FREAD
| FWRITE
;
1137 fp
->f_type
= DTYPE_KQUEUE
;
1138 fp
->f_ops
= &kqueueops
;
1139 fp
->f_data
= (caddr_t
)kq
;
1142 procfdtbl_releasefd(p
, fd
, NULL
);
1143 fp_drop(p
, fd
, fp
, 1);
1151 kevent_copyin(user_addr_t
*addrp
, struct kevent64_s
*kevp
, struct proc
*p
, int iskev64
)
1157 advance
= sizeof(struct kevent64_s
);
1158 error
= copyin(*addrp
, (caddr_t
)kevp
, advance
);
1159 } else if (IS_64BIT_PROCESS(p
)) {
1160 struct user64_kevent kev64
;
1161 bzero(kevp
, sizeof(struct kevent64_s
));
1163 advance
= sizeof(kev64
);
1164 error
= copyin(*addrp
, (caddr_t
)&kev64
, advance
);
1167 kevp
->ident
= kev64
.ident
;
1168 kevp
->filter
= kev64
.filter
;
1169 kevp
->flags
= kev64
.flags
;
1170 kevp
->fflags
= kev64
.fflags
;
1171 kevp
->data
= kev64
.data
;
1172 kevp
->udata
= kev64
.udata
;
1174 struct user32_kevent kev32
;
1175 bzero(kevp
, sizeof(struct kevent64_s
));
1177 advance
= sizeof(kev32
);
1178 error
= copyin(*addrp
, (caddr_t
)&kev32
, advance
);
1181 kevp
->ident
= (uintptr_t)kev32
.ident
;
1182 kevp
->filter
= kev32
.filter
;
1183 kevp
->flags
= kev32
.flags
;
1184 kevp
->fflags
= kev32
.fflags
;
1185 kevp
->data
= (intptr_t)kev32
.data
;
1186 kevp
->udata
= CAST_USER_ADDR_T(kev32
.udata
);
1194 kevent_copyout(struct kevent64_s
*kevp
, user_addr_t
*addrp
, struct proc
*p
, int iskev64
)
1200 advance
= sizeof(struct kevent64_s
);
1201 error
= copyout((caddr_t
)kevp
, *addrp
, advance
);
1202 } else if (IS_64BIT_PROCESS(p
)) {
1203 struct user64_kevent kev64
;
1206 * deal with the special case of a user-supplied
1207 * value of (uintptr_t)-1.
1209 kev64
.ident
= (kevp
->ident
== (uintptr_t)-1) ?
1210 (uint64_t)-1LL : (uint64_t)kevp
->ident
;
1212 kev64
.filter
= kevp
->filter
;
1213 kev64
.flags
= kevp
->flags
;
1214 kev64
.fflags
= kevp
->fflags
;
1215 kev64
.data
= (int64_t) kevp
->data
;
1216 kev64
.udata
= kevp
->udata
;
1217 advance
= sizeof(kev64
);
1218 error
= copyout((caddr_t
)&kev64
, *addrp
, advance
);
1220 struct user32_kevent kev32
;
1222 kev32
.ident
= (uint32_t)kevp
->ident
;
1223 kev32
.filter
= kevp
->filter
;
1224 kev32
.flags
= kevp
->flags
;
1225 kev32
.fflags
= kevp
->fflags
;
1226 kev32
.data
= (int32_t)kevp
->data
;
1227 kev32
.udata
= kevp
->udata
;
1228 advance
= sizeof(kev32
);
1229 error
= copyout((caddr_t
)&kev32
, *addrp
, advance
);
1237 * kevent_continue - continue a kevent syscall after blocking
1239 * assume we inherit a use count on the kq fileglob.
1243 kevent_continue(__unused
struct kqueue
*kq
, void *data
, int error
)
1245 struct _kevent
*cont_args
;
1246 struct fileproc
*fp
;
1250 struct proc
*p
= current_proc();
1252 cont_args
= (struct _kevent
*)data
;
1253 noutputs
= cont_args
->eventout
;
1254 retval
= cont_args
->retval
;
1258 fp_drop(p
, fd
, fp
, 0);
1260 /* don't restart after signals... */
1261 if (error
== ERESTART
)
1263 else if (error
== EWOULDBLOCK
)
1267 unix_syscall_return(error
);
1271 * kevent - [syscall] register and wait for kernel events
1275 kevent(struct proc
*p
, struct kevent_args
*uap
, int32_t *retval
)
1277 return kevent_internal(p
,
1285 0, /* no flags from old kevent() call */
1290 kevent64(struct proc
*p
, struct kevent64_args
*uap
, int32_t *retval
)
1292 return kevent_internal(p
,
1305 kevent_internal(struct proc
*p
, int iskev64
, user_addr_t changelist
,
1306 int nchanges
, user_addr_t ueventlist
, int nevents
, int fd
,
1307 user_addr_t utimeout
, __unused
unsigned int flags
,
1310 struct _kevent
*cont_args
;
1313 struct fileproc
*fp
;
1314 struct kevent64_s kev
;
1315 int error
, noutputs
;
1318 /* convert timeout to absolute - if we have one */
1319 if (utimeout
!= USER_ADDR_NULL
) {
1321 if (IS_64BIT_PROCESS(p
)) {
1322 struct user64_timespec ts
;
1323 error
= copyin(utimeout
, &ts
, sizeof(ts
));
1324 if ((ts
.tv_sec
& 0xFFFFFFFF00000000ull
) != 0)
1327 TIMESPEC_TO_TIMEVAL(&rtv
, &ts
);
1329 struct user32_timespec ts
;
1330 error
= copyin(utimeout
, &ts
, sizeof(ts
));
1331 TIMESPEC_TO_TIMEVAL(&rtv
, &ts
);
1335 if (itimerfix(&rtv
))
1337 getmicrouptime(&atv
);
1338 timevaladd(&atv
, &rtv
);
1344 /* get a usecount for the kq itself */
1345 if ((error
= fp_getfkq(p
, fd
, &fp
, &kq
)) != 0)
1348 /* each kq should only be used for events of one type */
1350 if (kq
->kq_state
& (KQ_KEV32
| KQ_KEV64
)) {
1351 if (((iskev64
&& (kq
->kq_state
& KQ_KEV32
)) ||
1352 (!iskev64
&& (kq
->kq_state
& KQ_KEV64
)))) {
1358 kq
->kq_state
|= (iskev64
? KQ_KEV64
: KQ_KEV32
);
1362 /* register all the change requests the user provided... */
1364 while (nchanges
> 0 && error
== 0) {
1365 error
= kevent_copyin(&changelist
, &kev
, p
, iskev64
);
1369 kev
.flags
&= ~EV_SYSFLAGS
;
1370 error
= kevent_register(kq
, &kev
, p
);
1371 if ((error
|| (kev
.flags
& EV_RECEIPT
)) && nevents
> 0) {
1372 kev
.flags
= EV_ERROR
;
1374 error
= kevent_copyout(&kev
, &ueventlist
, p
, iskev64
);
1383 /* store the continuation/completion data in the uthread */
1384 ut
= (uthread_t
)get_bsdthread_info(current_thread());
1385 cont_args
= &ut
->uu_kevent
.ss_kevent
;
1388 cont_args
->retval
= retval
;
1389 cont_args
->eventlist
= ueventlist
;
1390 cont_args
->eventcount
= nevents
;
1391 cont_args
->eventout
= noutputs
;
1392 cont_args
->eventsize
= iskev64
;
1394 if (nevents
> 0 && noutputs
== 0 && error
== 0)
1395 error
= kqueue_scan(kq
, kevent_callback
,
1396 kevent_continue
, cont_args
,
1398 kevent_continue(kq
, cont_args
, error
);
1401 fp_drop(p
, fd
, fp
, 0);
1407 * kevent_callback - callback for each individual event
1409 * called with nothing locked
1410 * caller holds a reference on the kqueue
1414 kevent_callback(__unused
struct kqueue
*kq
, struct kevent64_s
*kevp
,
1417 struct _kevent
*cont_args
;
1421 cont_args
= (struct _kevent
*)data
;
1422 assert(cont_args
->eventout
< cont_args
->eventcount
);
1424 iskev64
= cont_args
->eventsize
;
1427 * Copy out the appropriate amount of event data for this user.
1429 error
= kevent_copyout(kevp
, &cont_args
->eventlist
, current_proc(), iskev64
);
1432 * If there isn't space for additional events, return
1433 * a harmless error to stop the processing here
1435 if (error
== 0 && ++cont_args
->eventout
== cont_args
->eventcount
)
1436 error
= EWOULDBLOCK
;
1441 * kevent_description - format a description of a kevent for diagnostic output
1443 * called with a 128-byte string buffer
1447 kevent_description(struct kevent64_s
*kevp
, char *s
, size_t n
)
1451 "{.ident=%#llx, .filter=%d, .flags=%#x, .fflags=%#x, .data=%#llx, .udata=%#llx, .ext[0]=%#llx, .ext[1]=%#llx}",
1464 * kevent_register - add a new event to a kqueue
1466 * Creates a mapping between the event source and
1467 * the kqueue via a knote data structure.
1469 * Because many/most the event sources are file
1470 * descriptor related, the knote is linked off
1471 * the filedescriptor table for quick access.
1473 * called with nothing locked
1474 * caller holds a reference on the kqueue
1478 kevent_register(struct kqueue
*kq
, struct kevent64_s
*kev
, __unused
struct proc
*ctxp
)
1480 struct proc
*p
= kq
->kq_p
;
1481 struct filedesc
*fdp
= p
->p_fd
;
1482 struct filterops
*fops
;
1483 struct fileproc
*fp
= NULL
;
1484 struct knote
*kn
= NULL
;
1487 if (kev
->filter
< 0) {
1488 if (kev
->filter
+ EVFILT_SYSCOUNT
< 0)
1490 fops
= sysfilt_ops
[~kev
->filter
]; /* to 0-base index */
1494 * filter attach routine is responsible for insuring that
1495 * the identifier can be attached to it.
1497 printf("unknown filter: %d\n", kev
->filter
);
1502 /* this iocount needs to be dropped if it is not registered */
1504 if (fops
->f_isfd
&& (error
= fp_lookup(p
, kev
->ident
, &fp
, 1)) != 0) {
1510 /* fd-based knotes are linked off the fd table */
1511 if (kev
->ident
< (u_int
)fdp
->fd_knlistsize
) {
1512 SLIST_FOREACH(kn
, &fdp
->fd_knlist
[kev
->ident
], kn_link
)
1513 if (kq
== kn
->kn_kq
&&
1514 kev
->filter
== kn
->kn_filter
)
1518 /* hash non-fd knotes here too */
1519 if (fdp
->fd_knhashmask
!= 0) {
1522 list
= &fdp
->fd_knhash
[
1523 KN_HASH((u_long
)kev
->ident
, fdp
->fd_knhashmask
)];
1524 SLIST_FOREACH(kn
, list
, kn_link
)
1525 if (kev
->ident
== kn
->kn_id
&&
1527 kev
->filter
== kn
->kn_filter
)
1533 * kn now contains the matching knote, or NULL if no match
1536 if ((kev
->flags
& (EV_ADD
|EV_DELETE
)) == EV_ADD
) {
1545 kn
->kn_tq
= &kq
->kq_head
;
1547 kn
->kn_sfflags
= kev
->fflags
;
1548 kn
->kn_sdata
= kev
->data
;
1551 kn
->kn_kevent
= *kev
;
1552 kn
->kn_inuse
= 1; /* for f_attach() */
1553 kn
->kn_status
= KN_ATTACHING
;
1555 /* before anyone can find it */
1556 if (kev
->flags
& EV_DISABLE
)
1557 kn
->kn_status
|= KN_DISABLED
;
1559 error
= knote_fdpattach(kn
, fdp
, p
);
1568 * apply reference count to knote structure, and
1569 * do not release it at the end of this routine.
1573 error
= fops
->f_attach(kn
);
1579 * Failed to attach correctly, so drop.
1580 * All other possible users/droppers
1581 * have deferred to us.
1583 kn
->kn_status
|= KN_DROPPING
;
1587 } else if (kn
->kn_status
& KN_DROPPING
) {
1589 * Attach succeeded, but someone else
1590 * deferred their drop - now we have
1591 * to do it for them (after detaching).
1594 kn
->kn_fop
->f_detach(kn
);
1598 kn
->kn_status
&= ~KN_ATTACHING
;
1606 /* existing knote - get kqueue lock */
1610 if (kev
->flags
& EV_DELETE
) {
1612 kn
->kn_status
|= KN_DISABLED
;
1613 if (kqlock2knotedrop(kq
, kn
)) {
1614 kn
->kn_fop
->f_detach(kn
);
1620 /* update status flags for existing knote */
1621 if (kev
->flags
& EV_DISABLE
) {
1623 kn
->kn_status
|= KN_DISABLED
;
1624 } else if (kev
->flags
& EV_ENABLE
) {
1625 kn
->kn_status
&= ~KN_DISABLED
;
1626 if (kn
->kn_status
& KN_ACTIVE
)
1631 * The user may change some filter values after the
1632 * initial EV_ADD, but doing so will not reset any
1633 * filter which have already been triggered.
1635 kn
->kn_kevent
.udata
= kev
->udata
;
1636 if (fops
->f_isfd
|| fops
->f_touch
== NULL
) {
1637 kn
->kn_sfflags
= kev
->fflags
;
1638 kn
->kn_sdata
= kev
->data
;
1642 * If somebody is in the middle of dropping this
1643 * knote - go find/insert a new one. But we have
1644 * wait for this one to go away first. Attaches
1645 * running in parallel may also drop/modify the
1646 * knote. Wait for those to complete as well and
1647 * then start over if we encounter one.
1649 if (!kqlock2knoteusewait(kq
, kn
)) {
1650 /* kqueue, proc_fdlock both unlocked */
1655 * Call touch routine to notify filter of changes
1658 if (!fops
->f_isfd
&& fops
->f_touch
!= NULL
)
1659 fops
->f_touch(kn
, kev
, EVENT_REGISTER
);
1661 /* still have use ref on knote */
1664 * If the knote is not marked to always stay enqueued,
1665 * invoke the filter routine to see if it should be
1668 if ((kn
->kn_status
& KN_STAYQUEUED
) == 0 && kn
->kn_fop
->f_event(kn
, 0)) {
1669 if (knoteuse2kqlock(kq
, kn
))
1670 knote_activate(kn
, 1);
1678 fp_drop(p
, kev
->ident
, fp
, 0);
1684 * knote_process - process a triggered event
1686 * Validate that it is really still a triggered event
1687 * by calling the filter routines (if necessary). Hold
1688 * a use reference on the knote to avoid it being detached.
1689 * If it is still considered triggered, invoke the callback
1690 * routine provided and move it to the provided inprocess
1693 * caller holds a reference on the kqueue.
1694 * kqueue locked on entry and exit - but may be dropped
1697 knote_process(struct knote
*kn
,
1698 kevent_callback_t callback
,
1700 struct kqtailq
*inprocessp
,
1703 struct kqueue
*kq
= kn
->kn_kq
;
1704 struct kevent64_s kev
;
1710 * Determine the kevent state we want to return.
1712 * Some event states need to be revalidated before returning
1713 * them, others we take the snapshot at the time the event
1716 * Events with non-NULL f_touch operations must be touched.
1717 * Triggered events must fill in kev for the callback.
1719 * Convert our lock to a use-count and call the event's
1720 * filter routine(s) to update.
1722 if ((kn
->kn_status
& KN_DISABLED
) != 0) {
1729 revalidate
= ((kn
->kn_status
& KN_STAYQUEUED
) != 0 ||
1730 (kn
->kn_flags
& EV_ONESHOT
) == 0);
1731 touch
= (!kn
->kn_fop
->f_isfd
&& kn
->kn_fop
->f_touch
!= NULL
);
1733 if (revalidate
|| touch
) {
1735 knote_deactivate(kn
);
1737 /* call the filter/touch routines with just a ref */
1738 if (kqlock2knoteuse(kq
, kn
)) {
1740 /* if we have to revalidate, call the filter */
1742 result
= kn
->kn_fop
->f_event(kn
, 0);
1745 /* capture the kevent data - using touch if specified */
1746 if (result
&& touch
) {
1747 kn
->kn_fop
->f_touch(kn
, &kev
, EVENT_PROCESS
);
1750 /* convert back to a kqlock - bail if the knote went away */
1751 if (!knoteuse2kqlock(kq
, kn
)) {
1753 } else if (result
) {
1754 /* if revalidated as alive, make sure it's active */
1755 if (!(kn
->kn_status
& KN_ACTIVE
)) {
1756 knote_activate(kn
, 0);
1759 /* capture all events that occurred during filter */
1761 kev
= kn
->kn_kevent
;
1764 } else if ((kn
->kn_status
& KN_STAYQUEUED
) == 0) {
1765 /* was already dequeued, so just bail on this one */
1772 kev
= kn
->kn_kevent
;
1776 /* move knote onto inprocess queue */
1777 assert(kn
->kn_tq
== &kq
->kq_head
);
1778 TAILQ_REMOVE(&kq
->kq_head
, kn
, kn_tqe
);
1779 kn
->kn_tq
= inprocessp
;
1780 TAILQ_INSERT_TAIL(inprocessp
, kn
, kn_tqe
);
1783 * Determine how to dispatch the knote for future event handling.
1784 * not-fired: just return (do not callout).
1785 * One-shot: deactivate it.
1786 * Clear: deactivate and clear the state.
1787 * Dispatch: don't clear state, just deactivate it and mark it disabled.
1788 * All others: just leave where they are.
1793 } else if ((kn
->kn_flags
& EV_ONESHOT
) != 0) {
1794 knote_deactivate(kn
);
1795 if (kqlock2knotedrop(kq
, kn
)) {
1796 kn
->kn_fop
->f_detach(kn
);
1799 } else if ((kn
->kn_flags
& (EV_CLEAR
| EV_DISPATCH
)) != 0) {
1800 if ((kn
->kn_flags
& EV_DISPATCH
) != 0) {
1801 /* deactivate and disable all dispatch knotes */
1802 knote_deactivate(kn
);
1803 kn
->kn_status
|= KN_DISABLED
;
1804 } else if (!touch
|| kn
->kn_fflags
== 0) {
1805 /* only deactivate if nothing since the touch */
1806 knote_deactivate(kn
);
1808 if (!touch
&& (kn
->kn_flags
& EV_CLEAR
) != 0) {
1809 /* manually clear non-touch knotes */
1816 * leave on inprocess queue. We'll
1817 * move all the remaining ones back
1818 * the kq queue and wakeup any
1819 * waiters when we are done.
1824 /* callback to handle each event as we find it */
1825 error
= (callback
)(kq
, &kev
, data
);
1832 * Return 0 to indicate that processing should proceed,
1833 * -1 if there is nothing to process.
1835 * Called with kqueue locked and returns the same way,
1836 * but may drop lock temporarily.
1839 kqueue_begin_processing(struct kqueue
*kq
)
1842 if (kq
->kq_count
== 0) {
1846 /* if someone else is processing the queue, wait */
1847 if (kq
->kq_nprocess
!= 0) {
1848 wait_queue_assert_wait((wait_queue_t
)kq
->kq_wqs
, &kq
->kq_nprocess
, THREAD_UNINT
, 0);
1849 kq
->kq_state
|= KQ_PROCWAIT
;
1851 thread_block(THREAD_CONTINUE_NULL
);
1854 kq
->kq_nprocess
= 1;
1861 * Called with kqueue lock held.
1864 kqueue_end_processing(struct kqueue
*kq
)
1866 kq
->kq_nprocess
= 0;
1867 if (kq
->kq_state
& KQ_PROCWAIT
) {
1868 kq
->kq_state
&= ~KQ_PROCWAIT
;
1869 wait_queue_wakeup_all((wait_queue_t
)kq
->kq_wqs
, &kq
->kq_nprocess
, THREAD_AWAKENED
);
1874 * kqueue_process - process the triggered events in a kqueue
1876 * Walk the queued knotes and validate that they are
1877 * really still triggered events by calling the filter
1878 * routines (if necessary). Hold a use reference on
1879 * the knote to avoid it being detached. For each event
1880 * that is still considered triggered, invoke the
1881 * callback routine provided.
1883 * caller holds a reference on the kqueue.
1884 * kqueue locked on entry and exit - but may be dropped
1885 * kqueue list locked (held for duration of call)
1889 kqueue_process(struct kqueue
*kq
,
1890 kevent_callback_t callback
,
1895 struct kqtailq inprocess
;
1900 TAILQ_INIT(&inprocess
);
1902 if (kqueue_begin_processing(kq
) == -1) {
1904 /* Nothing to process */
1909 * Clear any pre-posted status from previous runs, so we only
1910 * detect events that occur during this run.
1912 wait_queue_sub_clearrefs(kq
->kq_wqs
);
1915 * loop through the enqueued knotes, processing each one and
1916 * revalidating those that need it. As they are processed,
1917 * they get moved to the inprocess queue (so the loop can end).
1922 while (error
== 0 &&
1923 (kn
= TAILQ_FIRST(&kq
->kq_head
)) != NULL
) {
1924 error
= knote_process(kn
, callback
, data
, &inprocess
, p
);
1925 if (error
== EJUSTRETURN
)
1932 * With the kqueue still locked, move any knotes
1933 * remaining on the inprocess queue back to the
1934 * kq's queue and wake up any waiters.
1936 while ((kn
= TAILQ_FIRST(&inprocess
)) != NULL
) {
1937 assert(kn
->kn_tq
== &inprocess
);
1938 TAILQ_REMOVE(&inprocess
, kn
, kn_tqe
);
1939 kn
->kn_tq
= &kq
->kq_head
;
1940 TAILQ_INSERT_TAIL(&kq
->kq_head
, kn
, kn_tqe
);
1943 kqueue_end_processing(kq
);
1951 kqueue_scan_continue(void *data
, wait_result_t wait_result
)
1953 thread_t self
= current_thread();
1954 uthread_t ut
= (uthread_t
)get_bsdthread_info(self
);
1955 struct _kqueue_scan
* cont_args
= &ut
->uu_kevent
.ss_kqueue_scan
;
1956 struct kqueue
*kq
= (struct kqueue
*)data
;
1960 /* convert the (previous) wait_result to a proper error */
1961 switch (wait_result
) {
1962 case THREAD_AWAKENED
:
1964 error
= kqueue_process(kq
, cont_args
->call
, cont_args
, &count
, current_proc());
1965 if (error
== 0 && count
== 0) {
1966 wait_queue_assert_wait((wait_queue_t
)kq
->kq_wqs
, KQ_EVENT
,
1967 THREAD_ABORTSAFE
, cont_args
->deadline
);
1968 kq
->kq_state
|= KQ_SLEEP
;
1970 thread_block_parameter(kqueue_scan_continue
, kq
);
1975 case THREAD_TIMED_OUT
:
1976 error
= EWOULDBLOCK
;
1978 case THREAD_INTERRUPTED
:
1982 panic("kevent_scan_cont() - invalid wait_result (%d)", wait_result
);
1986 /* call the continuation with the results */
1987 assert(cont_args
->cont
!= NULL
);
1988 (cont_args
->cont
)(kq
, cont_args
->data
, error
);
1993 * kqueue_scan - scan and wait for events in a kqueue
1995 * Process the triggered events in a kqueue.
1997 * If there are no events triggered arrange to
1998 * wait for them. If the caller provided a
1999 * continuation routine, then kevent_scan will
2002 * The callback routine must be valid.
2003 * The caller must hold a use-count reference on the kq.
2007 kqueue_scan(struct kqueue
*kq
,
2008 kevent_callback_t callback
,
2009 kqueue_continue_t continuation
,
2011 struct timeval
*atvp
,
2014 thread_continue_t cont
= THREAD_CONTINUE_NULL
;
2019 assert(callback
!= NULL
);
2023 wait_result_t wait_result
;
2027 * Make a pass through the kq to find events already
2031 error
= kqueue_process(kq
, callback
, data
, &count
, p
);
2033 break; /* lock still held */
2035 /* looks like we have to consider blocking */
2038 /* convert the timeout to a deadline once */
2039 if (atvp
->tv_sec
|| atvp
->tv_usec
) {
2042 clock_get_uptime(&now
);
2043 nanoseconds_to_absolutetime((uint64_t)atvp
->tv_sec
* NSEC_PER_SEC
+
2044 atvp
->tv_usec
* NSEC_PER_USEC
,
2046 if (now
>= deadline
) {
2047 /* non-blocking call */
2048 error
= EWOULDBLOCK
;
2049 break; /* lock still held */
2052 clock_absolutetime_interval_to_deadline(deadline
, &deadline
);
2054 deadline
= 0; /* block forever */
2058 uthread_t ut
= (uthread_t
)get_bsdthread_info(current_thread());
2059 struct _kqueue_scan
*cont_args
= &ut
->uu_kevent
.ss_kqueue_scan
;
2061 cont_args
->call
= callback
;
2062 cont_args
->cont
= continuation
;
2063 cont_args
->deadline
= deadline
;
2064 cont_args
->data
= data
;
2065 cont
= kqueue_scan_continue
;
2069 /* go ahead and wait */
2070 wait_queue_assert_wait((wait_queue_t
)kq
->kq_wqs
, KQ_EVENT
, THREAD_ABORTSAFE
, deadline
);
2071 kq
->kq_state
|= KQ_SLEEP
;
2073 wait_result
= thread_block_parameter(cont
, kq
);
2074 /* NOTREACHED if (continuation != NULL) */
2076 switch (wait_result
) {
2077 case THREAD_AWAKENED
:
2079 case THREAD_TIMED_OUT
:
2081 case THREAD_INTERRUPTED
:
2084 panic("kevent_scan - bad wait_result (%d)",
2096 * This could be expanded to call kqueue_scan, if desired.
2100 kqueue_read(__unused
struct fileproc
*fp
,
2101 __unused
struct uio
*uio
,
2103 __unused vfs_context_t ctx
)
2110 kqueue_write(__unused
struct fileproc
*fp
,
2111 __unused
struct uio
*uio
,
2113 __unused vfs_context_t ctx
)
2120 kqueue_ioctl(__unused
struct fileproc
*fp
,
2121 __unused u_long com
,
2122 __unused caddr_t data
,
2123 __unused vfs_context_t ctx
)
2130 kqueue_select(struct fileproc
*fp
, int which
, void *wql
, __unused vfs_context_t ctx
)
2132 struct kqueue
*kq
= (struct kqueue
*)fp
->f_data
;
2134 struct kqtailq inprocessq
;
2140 TAILQ_INIT(&inprocessq
);
2144 * If this is the first pass, link the wait queue associated with the
2145 * the kqueue onto the wait queue set for the select(). Normally we
2146 * use selrecord() for this, but it uses the wait queue within the
2147 * selinfo structure and we need to use the main one for the kqueue to
2148 * catch events from KN_STAYQUEUED sources. So we do the linkage manually.
2149 * (The select() call will unlink them when it ends).
2152 thread_t cur_act
= current_thread();
2153 struct uthread
* ut
= get_bsdthread_info(cur_act
);
2155 kq
->kq_state
|= KQ_SEL
;
2156 wait_queue_link_noalloc((wait_queue_t
)kq
->kq_wqs
, ut
->uu_wqset
,
2157 (wait_queue_link_t
)wql
);
2160 if (kqueue_begin_processing(kq
) == -1) {
2165 if (kq
->kq_count
!= 0) {
2167 * there is something queued - but it might be a
2168 * KN_STAYQUEUED knote, which may or may not have
2169 * any events pending. So, we have to walk the
2170 * list of knotes to see, and peek at the stay-
2171 * queued ones to be really sure.
2173 while ((kn
= (struct knote
*)TAILQ_FIRST(&kq
->kq_head
)) != NULL
) {
2174 if ((kn
->kn_status
& KN_STAYQUEUED
) == 0) {
2179 TAILQ_REMOVE(&kq
->kq_head
, kn
, kn_tqe
);
2180 TAILQ_INSERT_TAIL(&inprocessq
, kn
, kn_tqe
);
2182 if (kqlock2knoteuse(kq
, kn
)) {
2185 peek
= kn
->kn_fop
->f_peek(kn
);
2186 if (knoteuse2kqlock(kq
, kn
)) {
2199 /* Return knotes to active queue */
2200 while ((kn
= TAILQ_FIRST(&inprocessq
)) != NULL
) {
2201 TAILQ_REMOVE(&inprocessq
, kn
, kn_tqe
);
2202 kn
->kn_tq
= &kq
->kq_head
;
2203 TAILQ_INSERT_TAIL(&kq
->kq_head
, kn
, kn_tqe
);
2206 kqueue_end_processing(kq
);
2216 kqueue_close(struct fileglob
*fg
, __unused vfs_context_t ctx
)
2218 struct kqueue
*kq
= (struct kqueue
*)fg
->fg_data
;
2227 * The callers has taken a use-count reference on this kqueue and will donate it
2228 * to the kqueue we are being added to. This keeps the kqueue from closing until
2229 * that relationship is torn down.
2232 kqueue_kqfilter(__unused
struct fileproc
*fp
, struct knote
*kn
, __unused vfs_context_t ctx
)
2234 struct kqueue
*kq
= (struct kqueue
*)kn
->kn_fp
->f_data
;
2235 struct kqueue
*parentkq
= kn
->kn_kq
;
2237 if (parentkq
== kq
||
2238 kn
->kn_filter
!= EVFILT_READ
)
2242 * We have to avoid creating a cycle when nesting kqueues
2243 * inside another. Rather than trying to walk the whole
2244 * potential DAG of nested kqueues, we just use a simple
2245 * ceiling protocol. When a kqueue is inserted into another,
2246 * we check that the (future) parent is not already nested
2247 * into another kqueue at a lower level than the potenial
2248 * child (because it could indicate a cycle). If that test
2249 * passes, we just mark the nesting levels accordingly.
2253 if (parentkq
->kq_level
> 0 &&
2254 parentkq
->kq_level
< kq
->kq_level
)
2259 /* set parent level appropriately */
2260 if (parentkq
->kq_level
== 0)
2261 parentkq
->kq_level
= 2;
2262 if (parentkq
->kq_level
< kq
->kq_level
+ 1)
2263 parentkq
->kq_level
= kq
->kq_level
+ 1;
2266 kn
->kn_fop
= &kqread_filtops
;
2268 KNOTE_ATTACH(&kq
->kq_sel
.si_note
, kn
);
2269 /* indicate nesting in child, if needed */
2270 if (kq
->kq_level
== 0)
2278 * kqueue_drain - called when kq is closed
2282 kqueue_drain(struct fileproc
*fp
, __unused vfs_context_t ctx
)
2284 struct kqueue
*kq
= (struct kqueue
*)fp
->f_fglob
->fg_data
;
2286 kqueue_wakeup(kq
, 1);
2293 kqueue_stat(struct fileproc
*fp
, void *ub
, int isstat64
, __unused vfs_context_t ctx
)
2296 struct kqueue
*kq
= (struct kqueue
*)fp
->f_data
;
2297 if (isstat64
!= 0) {
2298 struct stat64
*sb64
= (struct stat64
*)ub
;
2300 bzero((void *)sb64
, sizeof(*sb64
));
2301 sb64
->st_size
= kq
->kq_count
;
2302 if (kq
->kq_state
& KQ_KEV64
)
2303 sb64
->st_blksize
= sizeof(struct kevent64_s
);
2305 sb64
->st_blksize
= sizeof(struct kevent
);
2306 sb64
->st_mode
= S_IFIFO
;
2308 struct stat
*sb
= (struct stat
*)ub
;
2310 bzero((void *)sb
, sizeof(*sb
));
2311 sb
->st_size
= kq
->kq_count
;
2312 if (kq
->kq_state
& KQ_KEV64
)
2313 sb
->st_blksize
= sizeof(struct kevent64_s
);
2315 sb
->st_blksize
= sizeof(struct kevent
);
2316 sb
->st_mode
= S_IFIFO
;
2323 * Called with the kqueue locked
2326 kqueue_wakeup(struct kqueue
*kq
, int closed
)
2328 if ((kq
->kq_state
& (KQ_SLEEP
| KQ_SEL
)) != 0 || kq
->kq_nprocess
> 0) {
2329 kq
->kq_state
&= ~(KQ_SLEEP
| KQ_SEL
);
2330 wait_queue_wakeup_all((wait_queue_t
)kq
->kq_wqs
, KQ_EVENT
,
2331 (closed
) ? THREAD_INTERRUPTED
: THREAD_AWAKENED
);
2336 klist_init(struct klist
*list
)
2343 * Query/Post each knote in the object's list
2345 * The object lock protects the list. It is assumed
2346 * that the filter/event routine for the object can
2347 * determine that the object is already locked (via
2348 * the hint) and not deadlock itself.
2350 * The object lock should also hold off pending
2351 * detach/drop operations. But we'll prevent it here
2352 * too - just in case.
2355 knote(struct klist
*list
, long hint
)
2359 SLIST_FOREACH(kn
, list
, kn_selnext
) {
2360 struct kqueue
*kq
= kn
->kn_kq
;
2363 if (kqlock2knoteuse(kq
, kn
)) {
2366 /* call the event with only a use count */
2367 result
= kn
->kn_fop
->f_event(kn
, hint
);
2369 /* if its not going away and triggered */
2370 if (knoteuse2kqlock(kq
, kn
) && result
)
2371 knote_activate(kn
, 1);
2372 /* lock held again */
2379 * attach a knote to the specified list. Return true if this is the first entry.
2380 * The list is protected by whatever lock the object it is associated with uses.
2383 knote_attach(struct klist
*list
, struct knote
*kn
)
2385 int ret
= SLIST_EMPTY(list
);
2386 SLIST_INSERT_HEAD(list
, kn
, kn_selnext
);
2391 * detach a knote from the specified list. Return true if that was the last entry.
2392 * The list is protected by whatever lock the object it is associated with uses.
2395 knote_detach(struct klist
*list
, struct knote
*kn
)
2397 SLIST_REMOVE(list
, kn
, knote
, kn_selnext
);
2398 return SLIST_EMPTY(list
);
2402 * For a given knote, link a provided wait queue directly with the kqueue.
2403 * Wakeups will happen via recursive wait queue support. But nothing will move
2404 * the knote to the active list at wakeup (nothing calls knote()). Instead,
2405 * we permanently enqueue them here.
2407 * kqueue and knote references are held by caller.
2410 knote_link_wait_queue(struct knote
*kn
, struct wait_queue
*wq
)
2412 struct kqueue
*kq
= kn
->kn_kq
;
2415 kr
= wait_queue_link(wq
, kq
->kq_wqs
);
2416 if (kr
== KERN_SUCCESS
) {
2417 knote_markstayqueued(kn
);
2425 * Unlink the provided wait queue from the kqueue associated with a knote.
2426 * Also remove it from the magic list of directly attached knotes.
2428 * Note that the unlink may have already happened from the other side, so
2429 * ignore any failures to unlink and just remove it from the kqueue list.
2432 knote_unlink_wait_queue(struct knote
*kn
, struct wait_queue
*wq
)
2434 struct kqueue
*kq
= kn
->kn_kq
;
2436 (void) wait_queue_unlink(wq
, kq
->kq_wqs
);
2438 kn
->kn_status
&= ~KN_STAYQUEUED
;
2444 * remove all knotes referencing a specified fd
2446 * Essentially an inlined knote_remove & knote_drop
2447 * when we know for sure that the thing is a file
2449 * Entered with the proc_fd lock already held.
2450 * It returns the same way, but may drop it temporarily.
2453 knote_fdclose(struct proc
*p
, int fd
)
2455 struct filedesc
*fdp
= p
->p_fd
;
2459 list
= &fdp
->fd_knlist
[fd
];
2460 while ((kn
= SLIST_FIRST(list
)) != NULL
) {
2461 struct kqueue
*kq
= kn
->kn_kq
;
2464 panic("knote_fdclose: proc mismatch (kq->kq_p=%p != p=%p)", kq
->kq_p
, p
);
2470 * Convert the lock to a drop ref.
2471 * If we get it, go ahead and drop it.
2472 * Otherwise, we waited for it to
2473 * be dropped by the other guy, so
2474 * it is safe to move on in the list.
2476 if (kqlock2knotedrop(kq
, kn
)) {
2477 kn
->kn_fop
->f_detach(kn
);
2483 /* the fd tables may have changed - start over */
2484 list
= &fdp
->fd_knlist
[fd
];
2488 /* proc_fdlock held on entry (and exit) */
2490 knote_fdpattach(struct knote
*kn
, struct filedesc
*fdp
, __unused
struct proc
*p
)
2492 struct klist
*list
= NULL
;
2494 if (! kn
->kn_fop
->f_isfd
) {
2495 if (fdp
->fd_knhashmask
== 0)
2496 fdp
->fd_knhash
= hashinit(CONFIG_KN_HASHSIZE
, M_KQUEUE
,
2497 &fdp
->fd_knhashmask
);
2498 list
= &fdp
->fd_knhash
[KN_HASH(kn
->kn_id
, fdp
->fd_knhashmask
)];
2500 if ((u_int
)fdp
->fd_knlistsize
<= kn
->kn_id
) {
2503 /* have to grow the fd_knlist */
2504 size
= fdp
->fd_knlistsize
;
2505 while (size
<= kn
->kn_id
)
2507 MALLOC(list
, struct klist
*,
2508 size
* sizeof(struct klist
*), M_KQUEUE
, M_WAITOK
);
2512 bcopy((caddr_t
)fdp
->fd_knlist
, (caddr_t
)list
,
2513 fdp
->fd_knlistsize
* sizeof(struct klist
*));
2514 bzero((caddr_t
)list
+
2515 fdp
->fd_knlistsize
* sizeof(struct klist
*),
2516 (size
- fdp
->fd_knlistsize
) * sizeof(struct klist
*));
2517 FREE(fdp
->fd_knlist
, M_KQUEUE
);
2518 fdp
->fd_knlist
= list
;
2519 fdp
->fd_knlistsize
= size
;
2521 list
= &fdp
->fd_knlist
[kn
->kn_id
];
2523 SLIST_INSERT_HEAD(list
, kn
, kn_link
);
2530 * should be called at spl == 0, since we don't want to hold spl
2531 * while calling fdrop and free.
2534 knote_drop(struct knote
*kn
, __unused
struct proc
*ctxp
)
2536 struct kqueue
*kq
= kn
->kn_kq
;
2537 struct proc
*p
= kq
->kq_p
;
2538 struct filedesc
*fdp
= p
->p_fd
;
2543 if (kn
->kn_fop
->f_isfd
)
2544 list
= &fdp
->fd_knlist
[kn
->kn_id
];
2546 list
= &fdp
->fd_knhash
[KN_HASH(kn
->kn_id
, fdp
->fd_knhashmask
)];
2548 SLIST_REMOVE(list
, kn
, knote
, kn_link
);
2551 needswakeup
= (kn
->kn_status
& KN_USEWAIT
);
2556 wait_queue_wakeup_all((wait_queue_t
)kq
->kq_wqs
, &kn
->kn_status
, THREAD_AWAKENED
);
2558 if (kn
->kn_fop
->f_isfd
)
2559 fp_drop(p
, kn
->kn_id
, kn
->kn_fp
, 0);
2564 /* called with kqueue lock held */
2566 knote_activate(struct knote
*kn
, int propagate
)
2568 struct kqueue
*kq
= kn
->kn_kq
;
2570 kn
->kn_status
|= KN_ACTIVE
;
2572 kqueue_wakeup(kq
, 0);
2574 /* this is a real event: wake up the parent kq, too */
2576 KNOTE(&kq
->kq_sel
.si_note
, 0);
2579 /* called with kqueue lock held */
2581 knote_deactivate(struct knote
*kn
)
2583 kn
->kn_status
&= ~KN_ACTIVE
;
2587 /* called with kqueue lock held */
2589 knote_enqueue(struct knote
*kn
)
2591 if ((kn
->kn_status
& (KN_QUEUED
| KN_STAYQUEUED
)) == KN_STAYQUEUED
||
2592 (kn
->kn_status
& (KN_QUEUED
| KN_STAYQUEUED
| KN_DISABLED
)) == 0) {
2593 struct kqtailq
*tq
= kn
->kn_tq
;
2594 struct kqueue
*kq
= kn
->kn_kq
;
2596 TAILQ_INSERT_TAIL(tq
, kn
, kn_tqe
);
2597 kn
->kn_status
|= KN_QUEUED
;
2602 /* called with kqueue lock held */
2604 knote_dequeue(struct knote
*kn
)
2606 struct kqueue
*kq
= kn
->kn_kq
;
2608 if ((kn
->kn_status
& (KN_QUEUED
| KN_STAYQUEUED
)) == KN_QUEUED
) {
2609 struct kqtailq
*tq
= kn
->kn_tq
;
2611 TAILQ_REMOVE(tq
, kn
, kn_tqe
);
2612 kn
->kn_tq
= &kq
->kq_head
;
2613 kn
->kn_status
&= ~KN_QUEUED
;
2621 knote_zone
= zinit(sizeof(struct knote
), 8192*sizeof(struct knote
), 8192, "knote zone");
2623 /* allocate kq lock group attribute and group */
2624 kq_lck_grp_attr
= lck_grp_attr_alloc_init();
2626 kq_lck_grp
= lck_grp_alloc_init("kqueue", kq_lck_grp_attr
);
2628 /* Allocate kq lock attribute */
2629 kq_lck_attr
= lck_attr_alloc_init();
2631 /* Initialize the timer filter lock */
2632 lck_mtx_init(&_filt_timerlock
, kq_lck_grp
, kq_lck_attr
);
2633 lck_mtx_init(&vm_pressure_klist_mutex
, kq_lck_grp
, kq_lck_attr
);
2635 SYSINIT(knote
, SI_SUB_PSEUDO
, SI_ORDER_ANY
, knote_init
, NULL
)
2637 static struct knote
*
2640 return ((struct knote
*)zalloc(knote_zone
));
2644 knote_free(struct knote
*kn
)
2646 zfree(knote_zone
, kn
);
2650 #include <sys/param.h>
2651 #include <sys/socket.h>
2652 #include <sys/protosw.h>
2653 #include <sys/domain.h>
2654 #include <sys/mbuf.h>
2655 #include <sys/kern_event.h>
2656 #include <sys/malloc.h>
2657 #include <sys/sys_domain.h>
2658 #include <sys/syslog.h>
2661 static int kev_attach(struct socket
*so
, int proto
, struct proc
*p
);
2662 static int kev_detach(struct socket
*so
);
2663 static int kev_control(struct socket
*so
, u_long cmd
, caddr_t data
, struct ifnet
*ifp
, struct proc
*p
);
2665 struct pr_usrreqs event_usrreqs
= {
2666 pru_abort_notsupp
, pru_accept_notsupp
, kev_attach
, pru_bind_notsupp
, pru_connect_notsupp
,
2667 pru_connect2_notsupp
, kev_control
, kev_detach
, pru_disconnect_notsupp
,
2668 pru_listen_notsupp
, pru_peeraddr_notsupp
, pru_rcvd_notsupp
, pru_rcvoob_notsupp
,
2669 pru_send_notsupp
, pru_sense_null
, pru_shutdown_notsupp
, pru_sockaddr_notsupp
,
2670 pru_sosend_notsupp
, soreceive
, pru_sopoll_notsupp
2673 struct protosw eventsw
[] = {
2675 .pr_type
= SOCK_RAW
,
2676 .pr_domain
= &systemdomain
,
2677 .pr_protocol
= SYSPROTO_EVENT
,
2678 .pr_flags
= PR_ATOMIC
,
2679 .pr_usrreqs
= &event_usrreqs
,
2684 struct kern_event_head kern_event_head
;
2686 static u_int32_t static_event_id
= 0;
2687 struct domain
*sysdom
= &systemdomain
;
2688 static lck_mtx_t
*sys_mtx
;
2691 * Install the protosw's for the NKE manager. Invoked at
2692 * extension load time
2695 kern_event_init(void)
2699 if ((retval
= net_add_proto(eventsw
, &systemdomain
)) != 0) {
2700 log(LOG_WARNING
, "Can't install kernel events protocol (%d)\n", retval
);
2705 * Use the domain mutex for all system event sockets
2707 sys_mtx
= sysdom
->dom_mtx
;
2709 return(KERN_SUCCESS
);
2713 kev_attach(struct socket
*so
, __unused
int proto
, __unused
struct proc
*p
)
2716 struct kern_event_pcb
*ev_pcb
;
2718 error
= soreserve(so
, KEV_SNDSPACE
, KEV_RECVSPACE
);
2722 MALLOC(ev_pcb
, struct kern_event_pcb
*, sizeof(struct kern_event_pcb
), M_PCB
, M_WAITOK
);
2726 ev_pcb
->ev_socket
= so
;
2727 ev_pcb
->vendor_code_filter
= 0xffffffff;
2729 so
->so_pcb
= (caddr_t
) ev_pcb
;
2730 lck_mtx_lock(sys_mtx
);
2731 LIST_INSERT_HEAD(&kern_event_head
, ev_pcb
, ev_link
);
2732 lck_mtx_unlock(sys_mtx
);
2739 kev_detach(struct socket
*so
)
2741 struct kern_event_pcb
*ev_pcb
= (struct kern_event_pcb
*) so
->so_pcb
;
2744 LIST_REMOVE(ev_pcb
, ev_link
);
2745 FREE(ev_pcb
, M_PCB
);
2747 so
->so_flags
|= SOF_PCBCLEARING
;
2754 * For now, kev_vendor_code and mbuf_tags use the same
2758 errno_t
kev_vendor_code_find(
2760 u_int32_t
*out_vendor_code
)
2762 if (strlen(string
) >= KEV_VENDOR_CODE_MAX_STR_LEN
) {
2765 return net_str_id_find_internal(string
, out_vendor_code
, NSI_VENDOR_CODE
, 1);
2768 errno_t
kev_msg_post(struct kev_msg
*event_msg
)
2770 mbuf_tag_id_t min_vendor
, max_vendor
;
2772 net_str_id_first_last(&min_vendor
, &max_vendor
, NSI_VENDOR_CODE
);
2774 if (event_msg
== NULL
)
2777 /* Limit third parties to posting events for registered vendor codes only */
2778 if (event_msg
->vendor_code
< min_vendor
||
2779 event_msg
->vendor_code
> max_vendor
)
2784 return kev_post_msg(event_msg
);
2788 int kev_post_msg(struct kev_msg
*event_msg
)
2790 struct mbuf
*m
, *m2
;
2791 struct kern_event_pcb
*ev_pcb
;
2792 struct kern_event_msg
*ev
;
2794 u_int32_t total_size
;
2797 /* Verify the message is small enough to fit in one mbuf w/o cluster */
2798 total_size
= KEV_MSG_HEADER_SIZE
;
2800 for (i
= 0; i
< 5; i
++) {
2801 if (event_msg
->dv
[i
].data_length
== 0)
2803 total_size
+= event_msg
->dv
[i
].data_length
;
2806 if (total_size
> MLEN
) {
2810 m
= m_get(M_DONTWAIT
, MT_DATA
);
2814 ev
= mtod(m
, struct kern_event_msg
*);
2815 total_size
= KEV_MSG_HEADER_SIZE
;
2817 tmp
= (char *) &ev
->event_data
[0];
2818 for (i
= 0; i
< 5; i
++) {
2819 if (event_msg
->dv
[i
].data_length
== 0)
2822 total_size
+= event_msg
->dv
[i
].data_length
;
2823 bcopy(event_msg
->dv
[i
].data_ptr
, tmp
,
2824 event_msg
->dv
[i
].data_length
);
2825 tmp
+= event_msg
->dv
[i
].data_length
;
2828 ev
->id
= ++static_event_id
;
2829 ev
->total_size
= total_size
;
2830 ev
->vendor_code
= event_msg
->vendor_code
;
2831 ev
->kev_class
= event_msg
->kev_class
;
2832 ev
->kev_subclass
= event_msg
->kev_subclass
;
2833 ev
->event_code
= event_msg
->event_code
;
2835 m
->m_len
= total_size
;
2836 lck_mtx_lock(sys_mtx
);
2837 for (ev_pcb
= LIST_FIRST(&kern_event_head
);
2839 ev_pcb
= LIST_NEXT(ev_pcb
, ev_link
)) {
2841 if (ev_pcb
->vendor_code_filter
!= KEV_ANY_VENDOR
) {
2842 if (ev_pcb
->vendor_code_filter
!= ev
->vendor_code
)
2845 if (ev_pcb
->class_filter
!= KEV_ANY_CLASS
) {
2846 if (ev_pcb
->class_filter
!= ev
->kev_class
)
2849 if ((ev_pcb
->subclass_filter
!= KEV_ANY_SUBCLASS
) &&
2850 (ev_pcb
->subclass_filter
!= ev
->kev_subclass
))
2855 m2
= m_copym(m
, 0, m
->m_len
, M_NOWAIT
);
2858 lck_mtx_unlock(sys_mtx
);
2861 /* the socket is already locked because we hold the sys_mtx here */
2862 if (sbappendrecord(&ev_pcb
->ev_socket
->so_rcv
, m2
))
2863 sorwakeup(ev_pcb
->ev_socket
);
2867 lck_mtx_unlock(sys_mtx
);
2872 kev_control(struct socket
*so
,
2875 __unused
struct ifnet
*ifp
,
2876 __unused
struct proc
*p
)
2878 struct kev_request
*kev_req
= (struct kev_request
*) data
;
2879 struct kern_event_pcb
*ev_pcb
;
2880 struct kev_vendor_code
*kev_vendor
;
2881 u_int32_t
*id_value
= (u_int32_t
*) data
;
2887 *id_value
= static_event_id
;
2891 ev_pcb
= (struct kern_event_pcb
*) so
->so_pcb
;
2892 ev_pcb
->vendor_code_filter
= kev_req
->vendor_code
;
2893 ev_pcb
->class_filter
= kev_req
->kev_class
;
2894 ev_pcb
->subclass_filter
= kev_req
->kev_subclass
;
2898 ev_pcb
= (struct kern_event_pcb
*) so
->so_pcb
;
2899 kev_req
->vendor_code
= ev_pcb
->vendor_code_filter
;
2900 kev_req
->kev_class
= ev_pcb
->class_filter
;
2901 kev_req
->kev_subclass
= ev_pcb
->subclass_filter
;
2904 case SIOCGKEVVENDOR
:
2905 kev_vendor
= (struct kev_vendor_code
*)data
;
2907 /* Make sure string is NULL terminated */
2908 kev_vendor
->vendor_string
[KEV_VENDOR_CODE_MAX_STR_LEN
-1] = 0;
2910 return net_str_id_find_internal(kev_vendor
->vendor_string
,
2911 &kev_vendor
->vendor_code
, NSI_VENDOR_CODE
, 0);
2920 #endif /* SOCKETS */
2924 fill_kqueueinfo(struct kqueue
*kq
, struct kqueue_info
* kinfo
)
2926 struct vinfo_stat
* st
;
2928 /* No need for the funnel as fd is kept alive */
2930 st
= &kinfo
->kq_stat
;
2932 st
->vst_size
= kq
->kq_count
;
2933 if (kq
->kq_state
& KQ_KEV64
)
2934 st
->vst_blksize
= sizeof(struct kevent64_s
);
2936 st
->vst_blksize
= sizeof(struct kevent
);
2937 st
->vst_mode
= S_IFIFO
;
2938 if (kq
->kq_state
& KQ_SEL
)
2939 kinfo
->kq_state
|= PROC_KQUEUE_SELECT
;
2940 if (kq
->kq_state
& KQ_SLEEP
)
2941 kinfo
->kq_state
|= PROC_KQUEUE_SLEEP
;
2948 knote_markstayqueued(struct knote
*kn
)
2951 kn
->kn_status
|= KN_STAYQUEUED
;
2953 kqunlock(kn
->kn_kq
);