2 * Copyright (c) 2000-2014 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
28 /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */
31 * The Regents of the University of California. All rights reserved.
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 * 3. All advertising materials mentioning features or use of this software
42 * must display the following acknowledgement:
43 * This product includes software developed by the University of
44 * California, Berkeley and its contributors.
45 * 4. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 * @(#)vfs_cluster.c 8.10 (Berkeley) 3/28/95
64 #include <sys/param.h>
65 #include <sys/proc_internal.h>
66 #include <sys/buf_internal.h>
67 #include <sys/mount_internal.h>
68 #include <sys/vnode_internal.h>
69 #include <sys/trace.h>
70 #include <sys/malloc.h>
72 #include <sys/kernel.h>
73 #include <sys/resourcevar.h>
74 #include <miscfs/specfs/specdev.h>
75 #include <sys/uio_internal.h>
76 #include <libkern/libkern.h>
77 #include <machine/machine_routines.h>
79 #include <sys/ubc_internal.h>
80 #include <vm/vnode_pager.h>
82 #include <mach/mach_types.h>
83 #include <mach/memory_object_types.h>
84 #include <mach/vm_map.h>
86 #include <kern/task.h>
88 #include <vm/vm_kern.h>
89 #include <vm/vm_map.h>
90 #include <vm/vm_pageout.h>
91 #include <vm/vm_fault.h>
93 #include <sys/kdebug.h>
94 #include <libkern/OSAtomic.h>
100 #define KERNEL_DEBUG KERNEL_DEBUG_CONSTANT
105 #define CL_WRITE 0x02
106 #define CL_ASYNC 0x04
107 #define CL_COMMIT 0x08
108 #define CL_PAGEOUT 0x10
110 #define CL_NOZERO 0x40
111 #define CL_PAGEIN 0x80
112 #define CL_DEV_MEMORY 0x100
113 #define CL_PRESERVE 0x200
114 #define CL_THROTTLE 0x400
115 #define CL_KEEPCACHED 0x800
116 #define CL_DIRECT_IO 0x1000
117 #define CL_PASSIVE 0x2000
118 #define CL_IOSTREAMING 0x4000
119 #define CL_CLOSE 0x8000
120 #define CL_ENCRYPTED 0x10000
121 #define CL_RAW_ENCRYPTED 0x20000
122 #define CL_NOCACHE 0x40000
124 #define MAX_VECTOR_UPL_ELEMENTS 8
125 #define MAX_VECTOR_UPL_SIZE (2 * MAX_UPL_SIZE_BYTES)
127 extern upl_t
vector_upl_create(vm_offset_t
);
128 extern boolean_t
vector_upl_is_valid(upl_t
);
129 extern boolean_t
vector_upl_set_subupl(upl_t
,upl_t
, u_int32_t
);
130 extern void vector_upl_set_pagelist(upl_t
);
131 extern void vector_upl_set_iostate(upl_t
, upl_t
, vm_offset_t
, u_int32_t
);
135 u_int io_completed
; /* amount of io that has currently completed */
136 u_int io_issued
; /* amount of io that was successfully issued */
137 int io_error
; /* error code of first error encountered */
138 int io_wanted
; /* someone is sleeping waiting for a change in state */
141 static lck_grp_t
*cl_mtx_grp
;
142 static lck_attr_t
*cl_mtx_attr
;
143 static lck_grp_attr_t
*cl_mtx_grp_attr
;
144 static lck_mtx_t
*cl_transaction_mtxp
;
152 #define PUSH_DELAY 0x01
153 #define PUSH_ALL 0x02
154 #define PUSH_SYNC 0x04
157 static void cluster_EOT(buf_t cbp_head
, buf_t cbp_tail
, int zero_offset
);
158 static void cluster_wait_IO(buf_t cbp_head
, int async
);
159 static void cluster_complete_transaction(buf_t
*cbp_head
, void *callback_arg
, int *retval
, int flags
, int needwait
);
161 static int cluster_io_type(struct uio
*uio
, int *io_type
, u_int32_t
*io_length
, u_int32_t min_length
);
163 static int cluster_io(vnode_t vp
, upl_t upl
, vm_offset_t upl_offset
, off_t f_offset
, int non_rounded_size
,
164 int flags
, buf_t real_bp
, struct clios
*iostate
, int (*)(buf_t
, void *), void *callback_arg
);
165 static int cluster_iodone(buf_t bp
, void *callback_arg
);
166 static int cluster_ioerror(upl_t upl
, int upl_offset
, int abort_size
, int error
, int io_flags
, vnode_t vp
);
167 static int cluster_is_throttled(vnode_t vp
);
169 static void cluster_iostate_wait(struct clios
*iostate
, u_int target
, const char *wait_name
);
171 static void cluster_syncup(vnode_t vp
, off_t newEOF
, int (*)(buf_t
, void *), void *callback_arg
, int flags
);
173 static void cluster_read_upl_release(upl_t upl
, int start_pg
, int last_pg
, int take_reference
);
174 static int cluster_copy_ubc_data_internal(vnode_t vp
, struct uio
*uio
, int *io_resid
, int mark_dirty
, int take_reference
);
176 static int cluster_read_copy(vnode_t vp
, struct uio
*uio
, u_int32_t io_req_size
, off_t filesize
, int flags
,
177 int (*)(buf_t
, void *), void *callback_arg
);
178 static int cluster_read_direct(vnode_t vp
, struct uio
*uio
, off_t filesize
, int *read_type
, u_int32_t
*read_length
,
179 int flags
, int (*)(buf_t
, void *), void *callback_arg
);
180 static int cluster_read_contig(vnode_t vp
, struct uio
*uio
, off_t filesize
, int *read_type
, u_int32_t
*read_length
,
181 int (*)(buf_t
, void *), void *callback_arg
, int flags
);
183 static int cluster_write_copy(vnode_t vp
, struct uio
*uio
, u_int32_t io_req_size
, off_t oldEOF
, off_t newEOF
,
184 off_t headOff
, off_t tailOff
, int flags
, int (*)(buf_t
, void *), void *callback_arg
);
185 static int cluster_write_direct(vnode_t vp
, struct uio
*uio
, off_t oldEOF
, off_t newEOF
,
186 int *write_type
, u_int32_t
*write_length
, int flags
, int (*)(buf_t
, void *), void *callback_arg
);
187 static int cluster_write_contig(vnode_t vp
, struct uio
*uio
, off_t newEOF
,
188 int *write_type
, u_int32_t
*write_length
, int (*)(buf_t
, void *), void *callback_arg
, int bflag
);
190 static int cluster_align_phys_io(vnode_t vp
, struct uio
*uio
, addr64_t usr_paddr
, u_int32_t xsize
, int flags
, int (*)(buf_t
, void *), void *callback_arg
);
192 static int cluster_read_prefetch(vnode_t vp
, off_t f_offset
, u_int size
, off_t filesize
, int (*callback
)(buf_t
, void *), void *callback_arg
, int bflag
);
193 static void cluster_read_ahead(vnode_t vp
, struct cl_extent
*extent
, off_t filesize
, struct cl_readahead
*ra
, int (*callback
)(buf_t
, void *), void *callback_arg
, int bflag
);
195 static int cluster_push_now(vnode_t vp
, struct cl_extent
*, off_t EOF
, int flags
, int (*)(buf_t
, void *), void *callback_arg
);
197 static int cluster_try_push(struct cl_writebehind
*, vnode_t vp
, off_t EOF
, int push_flag
, int flags
, int (*)(buf_t
, void *), void *callback_arg
);
199 static void sparse_cluster_switch(struct cl_writebehind
*, vnode_t vp
, off_t EOF
, int (*)(buf_t
, void *), void *callback_arg
);
200 static void sparse_cluster_push(void **cmapp
, vnode_t vp
, off_t EOF
, int push_flag
, int io_flags
, int (*)(buf_t
, void *), void *callback_arg
);
201 static void sparse_cluster_add(void **cmapp
, vnode_t vp
, struct cl_extent
*, off_t EOF
, int (*)(buf_t
, void *), void *callback_arg
);
203 static kern_return_t
vfs_drt_mark_pages(void **cmapp
, off_t offset
, u_int length
, u_int
*setcountp
);
204 static kern_return_t
vfs_drt_get_cluster(void **cmapp
, off_t
*offsetp
, u_int
*lengthp
);
205 static kern_return_t
vfs_drt_control(void **cmapp
, int op_type
);
209 * For throttled IO to check whether
210 * a block is cached by the boot cache
211 * and thus it can avoid delaying the IO.
213 * bootcache_contains_block is initially
214 * NULL. The BootCache will set it while
215 * the cache is active and clear it when
216 * the cache is jettisoned.
218 * Returns 0 if the block is not
219 * contained in the cache, 1 if it is
222 * The function pointer remains valid
223 * after the cache has been evicted even
224 * if bootcache_contains_block has been
227 * See rdar://9974130 The new throttling mechanism breaks the boot cache for throttled IOs
229 int (*bootcache_contains_block
)(dev_t device
, u_int64_t blkno
) = NULL
;
233 * limit the internal I/O size so that we
234 * can represent it in a 32 bit int
236 #define MAX_IO_REQUEST_SIZE (1024 * 1024 * 512)
237 #define MAX_IO_CONTIG_SIZE MAX_UPL_SIZE_BYTES
239 #define MIN_DIRECT_WRITE_SIZE (4 * PAGE_SIZE)
241 #define WRITE_THROTTLE 6
242 #define WRITE_THROTTLE_SSD 2
243 #define WRITE_BEHIND 1
244 #define WRITE_BEHIND_SSD 1
247 #define PREFETCH_SSD 2
248 uint32_t speculative_prefetch_max
= (MAX_UPL_SIZE_BYTES
* 3); /* maximum bytes in a specluative read-ahead */
249 uint32_t speculative_prefetch_max_iosize
= (512 * 1024); /* maximum I/O size to use in a specluative read-ahead on SSDs*/
252 #define IO_SCALE(vp, base) (vp->v_mount->mnt_ioscale * (base))
253 #define MAX_CLUSTER_SIZE(vp) (cluster_max_io_size(vp->v_mount, CL_WRITE))
254 #define MAX_PREFETCH(vp, size, is_ssd) (size * IO_SCALE(vp, ((is_ssd && !ignore_is_ssd) ? PREFETCH_SSD : PREFETCH)))
256 int ignore_is_ssd
= 0;
257 int speculative_reads_disabled
= 0;
260 * throttle the number of async writes that
261 * can be outstanding on a single vnode
262 * before we issue a synchronous write
264 #define THROTTLE_MAXCNT 0
266 uint32_t throttle_max_iosize
= (128 * 1024);
268 #define THROTTLE_MAX_IOSIZE (throttle_max_iosize)
270 SYSCTL_INT(_debug
, OID_AUTO
, lowpri_throttle_max_iosize
, CTLFLAG_RW
| CTLFLAG_LOCKED
, &throttle_max_iosize
, 0, "");
276 * allocate lock group attribute and group
278 cl_mtx_grp_attr
= lck_grp_attr_alloc_init();
279 cl_mtx_grp
= lck_grp_alloc_init("cluster I/O", cl_mtx_grp_attr
);
282 * allocate the lock attribute
284 cl_mtx_attr
= lck_attr_alloc_init();
286 cl_transaction_mtxp
= lck_mtx_alloc_init(cl_mtx_grp
, cl_mtx_attr
);
288 if (cl_transaction_mtxp
== NULL
)
289 panic("cluster_init: failed to allocate cl_transaction_mtxp");
294 cluster_max_io_size(mount_t mp
, int type
)
296 uint32_t max_io_size
;
303 segcnt
= mp
->mnt_segreadcnt
;
304 maxcnt
= mp
->mnt_maxreadcnt
;
307 segcnt
= mp
->mnt_segwritecnt
;
308 maxcnt
= mp
->mnt_maxwritecnt
;
311 segcnt
= min(mp
->mnt_segreadcnt
, mp
->mnt_segwritecnt
);
312 maxcnt
= min(mp
->mnt_maxreadcnt
, mp
->mnt_maxwritecnt
);
315 if (segcnt
> (MAX_UPL_SIZE_BYTES
>> PAGE_SHIFT
)) {
317 * don't allow a size beyond the max UPL size we can create
319 segcnt
= MAX_UPL_SIZE_BYTES
>> PAGE_SHIFT
;
321 max_io_size
= min((segcnt
* PAGE_SIZE
), maxcnt
);
323 if (max_io_size
< MAX_UPL_TRANSFER_BYTES
) {
325 * don't allow a size smaller than the old fixed limit
327 max_io_size
= MAX_UPL_TRANSFER_BYTES
;
330 * make sure the size specified is a multiple of PAGE_SIZE
332 max_io_size
&= ~PAGE_MASK
;
334 return (max_io_size
);
340 #define CLW_ALLOCATE 0x01
341 #define CLW_RETURNLOCKED 0x02
342 #define CLW_IONOCACHE 0x04
343 #define CLW_IOPASSIVE 0x08
346 * if the read ahead context doesn't yet exist,
347 * allocate and initialize it...
348 * the vnode lock serializes multiple callers
349 * during the actual assignment... first one
350 * to grab the lock wins... the other callers
351 * will release the now unnecessary storage
353 * once the context is present, try to grab (but don't block on)
354 * the lock associated with it... if someone
355 * else currently owns it, than the read
356 * will run without read-ahead. this allows
357 * multiple readers to run in parallel and
358 * since there's only 1 read ahead context,
359 * there's no real loss in only allowing 1
360 * reader to have read-ahead enabled.
362 static struct cl_readahead
*
363 cluster_get_rap(vnode_t vp
)
365 struct ubc_info
*ubc
;
366 struct cl_readahead
*rap
;
370 if ((rap
= ubc
->cl_rahead
) == NULL
) {
371 MALLOC_ZONE(rap
, struct cl_readahead
*, sizeof *rap
, M_CLRDAHEAD
, M_WAITOK
);
373 bzero(rap
, sizeof *rap
);
375 lck_mtx_init(&rap
->cl_lockr
, cl_mtx_grp
, cl_mtx_attr
);
379 if (ubc
->cl_rahead
== NULL
)
380 ubc
->cl_rahead
= rap
;
382 lck_mtx_destroy(&rap
->cl_lockr
, cl_mtx_grp
);
383 FREE_ZONE((void *)rap
, sizeof *rap
, M_CLRDAHEAD
);
384 rap
= ubc
->cl_rahead
;
388 if (lck_mtx_try_lock(&rap
->cl_lockr
) == TRUE
)
391 return ((struct cl_readahead
*)NULL
);
396 * if the write behind context doesn't yet exist,
397 * and CLW_ALLOCATE is specified, allocate and initialize it...
398 * the vnode lock serializes multiple callers
399 * during the actual assignment... first one
400 * to grab the lock wins... the other callers
401 * will release the now unnecessary storage
403 * if CLW_RETURNLOCKED is set, grab (blocking if necessary)
404 * the lock associated with the write behind context before
408 static struct cl_writebehind
*
409 cluster_get_wbp(vnode_t vp
, int flags
)
411 struct ubc_info
*ubc
;
412 struct cl_writebehind
*wbp
;
416 if ((wbp
= ubc
->cl_wbehind
) == NULL
) {
418 if ( !(flags
& CLW_ALLOCATE
))
419 return ((struct cl_writebehind
*)NULL
);
421 MALLOC_ZONE(wbp
, struct cl_writebehind
*, sizeof *wbp
, M_CLWRBEHIND
, M_WAITOK
);
423 bzero(wbp
, sizeof *wbp
);
424 lck_mtx_init(&wbp
->cl_lockw
, cl_mtx_grp
, cl_mtx_attr
);
428 if (ubc
->cl_wbehind
== NULL
)
429 ubc
->cl_wbehind
= wbp
;
431 lck_mtx_destroy(&wbp
->cl_lockw
, cl_mtx_grp
);
432 FREE_ZONE((void *)wbp
, sizeof *wbp
, M_CLWRBEHIND
);
433 wbp
= ubc
->cl_wbehind
;
437 if (flags
& CLW_RETURNLOCKED
)
438 lck_mtx_lock(&wbp
->cl_lockw
);
445 cluster_syncup(vnode_t vp
, off_t newEOF
, int (*callback
)(buf_t
, void *), void *callback_arg
, int flags
)
447 struct cl_writebehind
*wbp
;
449 if ((wbp
= cluster_get_wbp(vp
, 0)) != NULL
) {
451 if (wbp
->cl_number
) {
452 lck_mtx_lock(&wbp
->cl_lockw
);
454 cluster_try_push(wbp
, vp
, newEOF
, PUSH_ALL
| flags
, 0, callback
, callback_arg
);
456 lck_mtx_unlock(&wbp
->cl_lockw
);
463 cluster_io_present_in_BC(vnode_t vp
, off_t f_offset
)
467 int (*bootcache_check_fn
)(dev_t device
, u_int64_t blkno
) = bootcache_contains_block
;
469 if (bootcache_check_fn
) {
470 if (VNOP_BLOCKMAP(vp
, f_offset
, PAGE_SIZE
, &blkno
, &io_size
, NULL
, VNODE_READ
, NULL
))
476 if (bootcache_check_fn(vp
->v_mount
->mnt_devvp
->v_rdev
, blkno
))
484 cluster_is_throttled(vnode_t vp
)
486 return (throttle_io_will_be_throttled(-1, vp
->v_mount
));
491 cluster_iostate_wait(struct clios
*iostate
, u_int target
, const char *wait_name
)
494 lck_mtx_lock(&iostate
->io_mtxp
);
496 while ((iostate
->io_issued
- iostate
->io_completed
) > target
) {
498 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 95)) | DBG_FUNC_START
,
499 iostate
->io_issued
, iostate
->io_completed
, target
, 0, 0);
501 iostate
->io_wanted
= 1;
502 msleep((caddr_t
)&iostate
->io_wanted
, &iostate
->io_mtxp
, PRIBIO
+ 1, wait_name
, NULL
);
504 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 95)) | DBG_FUNC_END
,
505 iostate
->io_issued
, iostate
->io_completed
, target
, 0, 0);
507 lck_mtx_unlock(&iostate
->io_mtxp
);
512 cluster_ioerror(upl_t upl
, int upl_offset
, int abort_size
, int error
, int io_flags
, vnode_t vp
)
514 int upl_abort_code
= 0;
518 if ((io_flags
& (B_PHYS
| B_CACHE
)) == (B_PHYS
| B_CACHE
))
520 * direct write of any flavor, or a direct read that wasn't aligned
522 ubc_upl_commit_range(upl
, upl_offset
, abort_size
, UPL_COMMIT_FREE_ON_EMPTY
);
524 if (io_flags
& B_PAGEIO
) {
525 if (io_flags
& B_READ
)
530 if (io_flags
& B_CACHE
)
532 * leave pages in the cache unchanged on error
534 upl_abort_code
= UPL_ABORT_FREE_ON_EMPTY
;
535 else if (page_out
&& ((error
!= ENXIO
) || vnode_isswap(vp
)))
537 * transient error... leave pages unchanged
539 upl_abort_code
= UPL_ABORT_FREE_ON_EMPTY
;
541 upl_abort_code
= UPL_ABORT_FREE_ON_EMPTY
| UPL_ABORT_ERROR
;
543 upl_abort_code
= UPL_ABORT_FREE_ON_EMPTY
| UPL_ABORT_DUMP_PAGES
;
545 ubc_upl_abort_range(upl
, upl_offset
, abort_size
, upl_abort_code
);
547 return (upl_abort_code
);
552 cluster_iodone(buf_t bp
, void *callback_arg
)
563 int transaction_size
= 0;
570 struct clios
*iostate
;
571 boolean_t transaction_complete
= FALSE
;
573 cbp_head
= (buf_t
)(bp
->b_trans_head
);
575 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 20)) | DBG_FUNC_START
,
576 cbp_head
, bp
->b_lblkno
, bp
->b_bcount
, bp
->b_flags
, 0);
578 if (cbp_head
->b_trans_next
|| !(cbp_head
->b_flags
& B_EOT
)) {
579 boolean_t need_wakeup
= FALSE
;
581 lck_mtx_lock_spin(cl_transaction_mtxp
);
583 bp
->b_flags
|= B_TDONE
;
585 if (bp
->b_flags
& B_TWANTED
) {
586 CLR(bp
->b_flags
, B_TWANTED
);
589 for (cbp
= cbp_head
; cbp
; cbp
= cbp
->b_trans_next
) {
591 * all I/O requests that are part of this transaction
592 * have to complete before we can process it
594 if ( !(cbp
->b_flags
& B_TDONE
)) {
596 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 20)) | DBG_FUNC_END
,
597 cbp_head
, cbp
, cbp
->b_bcount
, cbp
->b_flags
, 0);
599 lck_mtx_unlock(cl_transaction_mtxp
);
601 if (need_wakeup
== TRUE
)
606 if (cbp
->b_flags
& B_EOT
)
607 transaction_complete
= TRUE
;
609 lck_mtx_unlock(cl_transaction_mtxp
);
611 if (need_wakeup
== TRUE
)
614 if (transaction_complete
== FALSE
) {
615 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 20)) | DBG_FUNC_END
,
616 cbp_head
, 0, 0, 0, 0);
626 upl_offset
= cbp
->b_uploffset
;
628 b_flags
= cbp
->b_flags
;
629 real_bp
= cbp
->b_real_bp
;
630 zero_offset
= cbp
->b_validend
;
631 iostate
= (struct clios
*)cbp
->b_iostate
;
634 real_bp
->b_dev
= cbp
->b_dev
;
637 if ((cbp
->b_flags
& B_ERROR
) && error
== 0)
638 error
= cbp
->b_error
;
640 total_resid
+= cbp
->b_resid
;
641 total_size
+= cbp
->b_bcount
;
643 cbp_next
= cbp
->b_trans_next
;
645 if (cbp_next
== NULL
)
647 * compute the overall size of the transaction
648 * in case we created one that has 'holes' in it
649 * 'total_size' represents the amount of I/O we
650 * did, not the span of the transaction w/r to the UPL
652 transaction_size
= cbp
->b_uploffset
+ cbp
->b_bcount
- upl_offset
;
659 if (error
== 0 && total_resid
)
663 int (*cliodone_func
)(buf_t
, void *) = (int (*)(buf_t
, void *))(cbp_head
->b_cliodone
);
665 if (cliodone_func
!= NULL
) {
666 cbp_head
->b_bcount
= transaction_size
;
668 error
= (*cliodone_func
)(cbp_head
, callback_arg
);
672 cluster_zero(upl
, zero_offset
, PAGE_SIZE
- (zero_offset
& PAGE_MASK
), real_bp
);
674 free_io_buf(cbp_head
);
680 * someone has issued multiple I/Os asynchrounsly
681 * and is waiting for them to complete (streaming)
683 lck_mtx_lock_spin(&iostate
->io_mtxp
);
685 if (error
&& iostate
->io_error
== 0)
686 iostate
->io_error
= error
;
688 iostate
->io_completed
+= total_size
;
690 if (iostate
->io_wanted
) {
692 * someone is waiting for the state of
693 * this io stream to change
695 iostate
->io_wanted
= 0;
698 lck_mtx_unlock(&iostate
->io_mtxp
);
701 wakeup((caddr_t
)&iostate
->io_wanted
);
704 if (b_flags
& B_COMMIT_UPL
) {
706 pg_offset
= upl_offset
& PAGE_MASK
;
707 commit_size
= (pg_offset
+ transaction_size
+ (PAGE_SIZE
- 1)) & ~PAGE_MASK
;
710 upl_flags
= cluster_ioerror(upl
, upl_offset
- pg_offset
, commit_size
, error
, b_flags
, vp
);
712 upl_flags
= UPL_COMMIT_FREE_ON_EMPTY
;
714 if ((b_flags
& B_PHYS
) && (b_flags
& B_READ
))
715 upl_flags
|= UPL_COMMIT_SET_DIRTY
;
718 upl_flags
|= UPL_COMMIT_INACTIVATE
;
720 ubc_upl_commit_range(upl
, upl_offset
- pg_offset
, commit_size
, upl_flags
);
725 real_bp
->b_flags
|= B_ERROR
;
726 real_bp
->b_error
= error
;
728 real_bp
->b_resid
= total_resid
;
730 buf_biodone(real_bp
);
732 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 20)) | DBG_FUNC_END
,
733 upl
, upl_offset
- pg_offset
, commit_size
, (error
<< 24) | upl_flags
, 0);
740 cluster_throttle_io_limit(vnode_t vp
, uint32_t *limit
)
742 if (cluster_is_throttled(vp
)) {
743 *limit
= THROTTLE_MAX_IOSIZE
;
751 cluster_zero(upl_t upl
, upl_offset_t upl_offset
, int size
, buf_t bp
)
754 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 23)) | DBG_FUNC_START
,
755 upl_offset
, size
, bp
, 0, 0);
757 if (bp
== NULL
|| bp
->b_datap
== 0) {
761 pl
= ubc_upl_pageinfo(upl
);
763 if (upl_device_page(pl
) == TRUE
) {
764 zero_addr
= ((addr64_t
)upl_phys_page(pl
, 0) << PAGE_SHIFT
) + upl_offset
;
766 bzero_phys_nc(zero_addr
, size
);
773 page_index
= upl_offset
/ PAGE_SIZE
;
774 page_offset
= upl_offset
& PAGE_MASK
;
776 zero_addr
= ((addr64_t
)upl_phys_page(pl
, page_index
) << PAGE_SHIFT
) + page_offset
;
777 zero_cnt
= min(PAGE_SIZE
- page_offset
, size
);
779 bzero_phys(zero_addr
, zero_cnt
);
782 upl_offset
+= zero_cnt
;
786 bzero((caddr_t
)((vm_offset_t
)bp
->b_datap
+ upl_offset
), size
);
788 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 23)) | DBG_FUNC_END
,
789 upl_offset
, size
, 0, 0, 0);
794 cluster_EOT(buf_t cbp_head
, buf_t cbp_tail
, int zero_offset
)
796 cbp_head
->b_validend
= zero_offset
;
797 cbp_tail
->b_flags
|= B_EOT
;
801 cluster_wait_IO(buf_t cbp_head
, int async
)
807 * async callback completion will not normally
808 * generate a wakeup upon I/O completion...
809 * by setting B_TWANTED, we will force a wakeup
810 * to occur as any outstanding I/Os complete...
811 * I/Os already completed will have B_TDONE already
812 * set and we won't cause us to block
813 * note that we're actually waiting for the bp to have
814 * completed the callback function... only then
815 * can we safely take back ownership of the bp
817 lck_mtx_lock_spin(cl_transaction_mtxp
);
819 for (cbp
= cbp_head
; cbp
; cbp
= cbp
->b_trans_next
)
820 cbp
->b_flags
|= B_TWANTED
;
822 lck_mtx_unlock(cl_transaction_mtxp
);
824 for (cbp
= cbp_head
; cbp
; cbp
= cbp
->b_trans_next
) {
827 while (!ISSET(cbp
->b_flags
, B_TDONE
)) {
829 lck_mtx_lock_spin(cl_transaction_mtxp
);
831 if (!ISSET(cbp
->b_flags
, B_TDONE
)) {
832 DTRACE_IO1(wait__start
, buf_t
, cbp
);
833 (void) msleep(cbp
, cl_transaction_mtxp
, PDROP
| (PRIBIO
+1), "cluster_wait_IO", NULL
);
834 DTRACE_IO1(wait__done
, buf_t
, cbp
);
836 lck_mtx_unlock(cl_transaction_mtxp
);
844 cluster_complete_transaction(buf_t
*cbp_head
, void *callback_arg
, int *retval
, int flags
, int needwait
)
848 boolean_t isswapout
= FALSE
;
851 * cluster_complete_transaction will
852 * only be called if we've issued a complete chain in synchronous mode
853 * or, we've already done a cluster_wait_IO on an incomplete chain
856 for (cbp
= *cbp_head
; cbp
; cbp
= cbp
->b_trans_next
)
860 * we've already waited on all of the I/Os in this transaction,
861 * so mark all of the buf_t's in this transaction as B_TDONE
862 * so that cluster_iodone sees the transaction as completed
864 for (cbp
= *cbp_head
; cbp
; cbp
= cbp
->b_trans_next
)
865 cbp
->b_flags
|= B_TDONE
;
868 if ((flags
& (CL_ASYNC
| CL_PAGEOUT
)) == CL_PAGEOUT
&& vnode_isswap(cbp
->b_vp
))
871 error
= cluster_iodone(cbp
, callback_arg
);
873 if ( !(flags
& CL_ASYNC
) && error
&& *retval
== 0) {
874 if (((flags
& (CL_PAGEOUT
| CL_KEEPCACHED
)) != CL_PAGEOUT
) || (error
!= ENXIO
))
876 else if (isswapout
== TRUE
)
879 *cbp_head
= (buf_t
)NULL
;
884 cluster_io(vnode_t vp
, upl_t upl
, vm_offset_t upl_offset
, off_t f_offset
, int non_rounded_size
,
885 int flags
, buf_t real_bp
, struct clios
*iostate
, int (*callback
)(buf_t
, void *), void *callback_arg
)
894 buf_t cbp_head
= NULL
;
895 buf_t cbp_tail
= NULL
;
904 int async_throttle
= 0;
906 vm_offset_t upl_end_offset
;
907 boolean_t need_EOT
= FALSE
;
910 * we currently don't support buffers larger than a page
912 if (real_bp
&& non_rounded_size
> PAGE_SIZE
)
913 panic("%s(): Called with real buffer of size %d bytes which "
914 "is greater than the maximum allowed size of "
915 "%d bytes (the system PAGE_SIZE).\n",
916 __FUNCTION__
, non_rounded_size
, PAGE_SIZE
);
921 * we don't want to do any funny rounding of the size for IO requests
922 * coming through the DIRECT or CONTIGUOUS paths... those pages don't
923 * belong to us... we can't extend (nor do we need to) the I/O to fill
926 if (mp
->mnt_devblocksize
> 1 && !(flags
& (CL_DEV_MEMORY
| CL_DIRECT_IO
))) {
928 * round the requested size up so that this I/O ends on a
929 * page boundary in case this is a 'write'... if the filesystem
930 * has blocks allocated to back the page beyond the EOF, we want to
931 * make sure to write out the zero's that are sitting beyond the EOF
932 * so that in case the filesystem doesn't explicitly zero this area
933 * if a hole is created via a lseek/write beyond the current EOF,
934 * it will return zeros when it's read back from the disk. If the
935 * physical allocation doesn't extend for the whole page, we'll
936 * only write/read from the disk up to the end of this allocation
937 * via the extent info returned from the VNOP_BLOCKMAP call.
939 pg_offset
= upl_offset
& PAGE_MASK
;
941 size
= (((non_rounded_size
+ pg_offset
) + (PAGE_SIZE
- 1)) & ~PAGE_MASK
) - pg_offset
;
944 * anyone advertising a blocksize of 1 byte probably
945 * can't deal with us rounding up the request size
946 * AFP is one such filesystem/device
948 size
= non_rounded_size
;
950 upl_end_offset
= upl_offset
+ size
;
952 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 22)) | DBG_FUNC_START
, (int)f_offset
, size
, upl_offset
, flags
, 0);
955 * Set the maximum transaction size to the maximum desired number of
959 if (flags
& CL_DEV_MEMORY
)
960 max_trans_count
= 16;
962 if (flags
& CL_READ
) {
964 bmap_flags
= VNODE_READ
;
966 max_iosize
= mp
->mnt_maxreadcnt
;
967 max_vectors
= mp
->mnt_segreadcnt
;
970 bmap_flags
= VNODE_WRITE
;
972 max_iosize
= mp
->mnt_maxwritecnt
;
973 max_vectors
= mp
->mnt_segwritecnt
;
975 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 22)) | DBG_FUNC_NONE
, max_iosize
, max_vectors
, mp
->mnt_devblocksize
, 0, 0);
978 * make sure the maximum iosize is a
979 * multiple of the page size
981 max_iosize
&= ~PAGE_MASK
;
984 * Ensure the maximum iosize is sensible.
987 max_iosize
= PAGE_SIZE
;
989 if (flags
& CL_THROTTLE
) {
990 if ( !(flags
& CL_PAGEOUT
) && cluster_is_throttled(vp
)) {
991 if (max_iosize
> THROTTLE_MAX_IOSIZE
)
992 max_iosize
= THROTTLE_MAX_IOSIZE
;
993 async_throttle
= THROTTLE_MAXCNT
;
995 if ( (flags
& CL_DEV_MEMORY
) )
996 async_throttle
= IO_SCALE(vp
, VNODE_ASYNC_THROTTLE
);
999 u_int max_cluster_size
;
1002 max_cluster_size
= MAX_CLUSTER_SIZE(vp
);
1004 if (max_iosize
> max_cluster_size
)
1005 max_cluster
= max_cluster_size
;
1007 max_cluster
= max_iosize
;
1009 if (size
< max_cluster
)
1012 if ((vp
->v_mount
->mnt_kern_flag
& MNTK_SSD
) && !ignore_is_ssd
)
1013 scale
= WRITE_THROTTLE_SSD
;
1015 scale
= WRITE_THROTTLE
;
1017 if (flags
& CL_CLOSE
)
1018 scale
+= MAX_CLUSTERS
;
1020 async_throttle
= min(IO_SCALE(vp
, VNODE_ASYNC_THROTTLE
), ((scale
* max_cluster_size
) / max_cluster
) - 1);
1026 if (flags
& (CL_PAGEIN
| CL_PAGEOUT
))
1027 io_flags
|= B_PAGEIO
;
1028 if (flags
& (CL_IOSTREAMING
))
1029 io_flags
|= B_IOSTREAMING
;
1030 if (flags
& CL_COMMIT
)
1031 io_flags
|= B_COMMIT_UPL
;
1032 if (flags
& CL_DIRECT_IO
)
1034 if (flags
& (CL_PRESERVE
| CL_KEEPCACHED
))
1035 io_flags
|= B_CACHE
;
1036 if (flags
& CL_PASSIVE
)
1037 io_flags
|= B_PASSIVE
;
1038 if (flags
& CL_ENCRYPTED
)
1039 io_flags
|= B_ENCRYPTED_IO
;
1040 if (vp
->v_flag
& VSYSTEM
)
1043 if ((flags
& CL_READ
) && ((upl_offset
+ non_rounded_size
) & PAGE_MASK
) && (!(flags
& CL_NOZERO
))) {
1045 * then we are going to end up
1046 * with a page that we can't complete (the file size wasn't a multiple
1047 * of PAGE_SIZE and we're trying to read to the end of the file
1048 * so we'll go ahead and zero out the portion of the page we can't
1049 * read in from the file
1051 zero_offset
= upl_offset
+ non_rounded_size
;
1056 u_int io_size_wanted
;
1059 if (size
> max_iosize
)
1060 io_size
= max_iosize
;
1064 io_size_wanted
= io_size
;
1065 io_size_tmp
= (size_t)io_size
;
1067 if ((error
= VNOP_BLOCKMAP(vp
, f_offset
, io_size
, &blkno
, &io_size_tmp
, NULL
, bmap_flags
, NULL
)))
1070 if (io_size_tmp
> io_size_wanted
)
1071 io_size
= io_size_wanted
;
1073 io_size
= (u_int
)io_size_tmp
;
1075 if (real_bp
&& (real_bp
->b_blkno
== real_bp
->b_lblkno
))
1076 real_bp
->b_blkno
= blkno
;
1078 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 24)) | DBG_FUNC_NONE
,
1079 (int)f_offset
, (int)(blkno
>>32), (int)blkno
, io_size
, 0);
1083 * vnop_blockmap didn't return an error... however, it did
1084 * return an extent size of 0 which means we can't
1085 * make forward progress on this I/O... a hole in the
1086 * file would be returned as a blkno of -1 with a non-zero io_size
1087 * a real extent is returned with a blkno != -1 and a non-zero io_size
1092 if ( !(flags
& CL_READ
) && blkno
== -1) {
1096 if (upl_get_internal_vectorupl(upl
))
1097 panic("Vector UPLs should not take this code-path\n");
1099 * we're writing into a 'hole'
1101 if (flags
& CL_PAGEOUT
) {
1103 * if we got here via cluster_pageout
1104 * then just error the request and return
1105 * the 'hole' should already have been covered
1111 * we can get here if the cluster code happens to
1112 * pick up a page that was dirtied via mmap vs
1113 * a 'write' and the page targets a 'hole'...
1114 * i.e. the writes to the cluster were sparse
1115 * and the file was being written for the first time
1117 * we can also get here if the filesystem supports
1118 * 'holes' that are less than PAGE_SIZE.... because
1119 * we can't know if the range in the page that covers
1120 * the 'hole' has been dirtied via an mmap or not,
1121 * we have to assume the worst and try to push the
1122 * entire page to storage.
1124 * Try paging out the page individually before
1125 * giving up entirely and dumping it (the pageout
1126 * path will insure that the zero extent accounting
1127 * has been taken care of before we get back into cluster_io)
1129 * go direct to vnode_pageout so that we don't have to
1130 * unbusy the page from the UPL... we used to do this
1131 * so that we could call ubc_msync, but that results
1132 * in a potential deadlock if someone else races us to acquire
1133 * that page and wins and in addition needs one of the pages
1134 * we're continuing to hold in the UPL
1136 pageout_flags
= UPL_MSYNC
| UPL_VNODE_PAGER
| UPL_NESTED_PAGEOUT
;
1138 if ( !(flags
& CL_ASYNC
))
1139 pageout_flags
|= UPL_IOSYNC
;
1140 if ( !(flags
& CL_COMMIT
))
1141 pageout_flags
|= UPL_NOCOMMIT
;
1147 * first we have to wait for the the current outstanding I/Os
1148 * to complete... EOT hasn't been set yet on this transaction
1149 * so the pages won't be released just because all of the current
1150 * I/O linked to this transaction has completed...
1152 cluster_wait_IO(cbp_head
, (flags
& CL_ASYNC
));
1155 * we've got a transcation that
1156 * includes the page we're about to push out through vnode_pageout...
1157 * find the last bp in the list which will be the one that
1158 * includes the head of this page and round it's iosize down
1159 * to a page boundary...
1161 for (last_cbp
= cbp
= cbp_head
; cbp
->b_trans_next
; cbp
= cbp
->b_trans_next
)
1164 cbp
->b_bcount
&= ~PAGE_MASK
;
1166 if (cbp
->b_bcount
== 0) {
1168 * this buf no longer has any I/O associated with it
1172 if (cbp
== cbp_head
) {
1174 * the buf we just freed was the only buf in
1175 * this transaction... so there's no I/O to do
1180 * remove the buf we just freed from
1181 * the transaction list
1183 last_cbp
->b_trans_next
= NULL
;
1184 cbp_tail
= last_cbp
;
1189 * there was more to the current transaction
1190 * than just the page we are pushing out via vnode_pageout...
1191 * mark it as finished and complete it... we've already
1192 * waited for the I/Os to complete above in the call to cluster_wait_IO
1194 cluster_EOT(cbp_head
, cbp_tail
, 0);
1196 cluster_complete_transaction(&cbp_head
, callback_arg
, &retval
, flags
, 0);
1201 if (vnode_pageout(vp
, upl
, trunc_page(upl_offset
), trunc_page_64(f_offset
), PAGE_SIZE
, pageout_flags
, NULL
) != PAGER_SUCCESS
) {
1204 e_offset
= round_page_64(f_offset
+ 1);
1205 io_size
= e_offset
- f_offset
;
1207 f_offset
+= io_size
;
1208 upl_offset
+= io_size
;
1210 if (size
>= io_size
)
1215 * keep track of how much of the original request
1216 * that we've actually completed... non_rounded_size
1217 * may go negative due to us rounding the request
1218 * to a page size multiple (i.e. size > non_rounded_size)
1220 non_rounded_size
-= io_size
;
1222 if (non_rounded_size
<= 0) {
1224 * we've transferred all of the data in the original
1225 * request, but we were unable to complete the tail
1226 * of the last page because the file didn't have
1227 * an allocation to back that portion... this is ok.
1233 flags
&= ~CL_COMMIT
;
1238 lblkno
= (daddr64_t
)(f_offset
/ 0x1000);
1240 * we have now figured out how much I/O we can do - this is in 'io_size'
1241 * pg_offset is the starting point in the first page for the I/O
1242 * pg_count is the number of full and partial pages that 'io_size' encompasses
1244 pg_offset
= upl_offset
& PAGE_MASK
;
1246 if (flags
& CL_DEV_MEMORY
) {
1248 * treat physical requests as one 'giant' page
1252 pg_count
= (io_size
+ pg_offset
+ (PAGE_SIZE
- 1)) / PAGE_SIZE
;
1254 if ((flags
& CL_READ
) && blkno
== -1) {
1255 vm_offset_t commit_offset
;
1257 int complete_transaction_now
= 0;
1260 * if we're reading and blkno == -1, then we've got a
1261 * 'hole' in the file that we need to deal with by zeroing
1262 * out the affected area in the upl
1264 if (io_size
>= (u_int
)non_rounded_size
) {
1266 * if this upl contains the EOF and it is not a multiple of PAGE_SIZE
1267 * than 'zero_offset' will be non-zero
1268 * if the 'hole' returned by vnop_blockmap extends all the way to the eof
1269 * (indicated by the io_size finishing off the I/O request for this UPL)
1270 * than we're not going to issue an I/O for the
1271 * last page in this upl... we need to zero both the hole and the tail
1272 * of the page beyond the EOF, since the delayed zero-fill won't kick in
1274 bytes_to_zero
= non_rounded_size
;
1275 if (!(flags
& CL_NOZERO
))
1276 bytes_to_zero
= (((upl_offset
+ io_size
) + (PAGE_SIZE
- 1)) & ~PAGE_MASK
) - upl_offset
;
1280 bytes_to_zero
= io_size
;
1284 cluster_zero(upl
, upl_offset
, bytes_to_zero
, real_bp
);
1290 * if there is a current I/O chain pending
1291 * then the first page of the group we just zero'd
1292 * will be handled by the I/O completion if the zero
1293 * fill started in the middle of the page
1295 commit_offset
= (upl_offset
+ (PAGE_SIZE
- 1)) & ~PAGE_MASK
;
1297 pg_resid
= commit_offset
- upl_offset
;
1299 if (bytes_to_zero
>= pg_resid
) {
1301 * the last page of the current I/O
1302 * has been completed...
1303 * compute the number of fully zero'd
1304 * pages that are beyond it
1305 * plus the last page if its partial
1306 * and we have no more I/O to issue...
1307 * otherwise a partial page is left
1308 * to begin the next I/O
1310 if ((int)io_size
>= non_rounded_size
)
1311 pg_count
= (bytes_to_zero
- pg_resid
+ (PAGE_SIZE
- 1)) / PAGE_SIZE
;
1313 pg_count
= (bytes_to_zero
- pg_resid
) / PAGE_SIZE
;
1315 complete_transaction_now
= 1;
1319 * no pending I/O to deal with
1320 * so, commit all of the fully zero'd pages
1321 * plus the last page if its partial
1322 * and we have no more I/O to issue...
1323 * otherwise a partial page is left
1324 * to begin the next I/O
1326 if ((int)io_size
>= non_rounded_size
)
1327 pg_count
= (pg_offset
+ bytes_to_zero
+ (PAGE_SIZE
- 1)) / PAGE_SIZE
;
1329 pg_count
= (pg_offset
+ bytes_to_zero
) / PAGE_SIZE
;
1331 commit_offset
= upl_offset
& ~PAGE_MASK
;
1333 if ( (flags
& CL_COMMIT
) && pg_count
) {
1334 ubc_upl_commit_range(upl
, commit_offset
, pg_count
* PAGE_SIZE
,
1335 UPL_COMMIT_CLEAR_DIRTY
| UPL_COMMIT_FREE_ON_EMPTY
);
1337 upl_offset
+= io_size
;
1338 f_offset
+= io_size
;
1342 * keep track of how much of the original request
1343 * that we've actually completed... non_rounded_size
1344 * may go negative due to us rounding the request
1345 * to a page size multiple (i.e. size > non_rounded_size)
1347 non_rounded_size
-= io_size
;
1349 if (non_rounded_size
<= 0) {
1351 * we've transferred all of the data in the original
1352 * request, but we were unable to complete the tail
1353 * of the last page because the file didn't have
1354 * an allocation to back that portion... this is ok.
1358 if (cbp_head
&& (complete_transaction_now
|| size
== 0)) {
1359 cluster_wait_IO(cbp_head
, (flags
& CL_ASYNC
));
1361 cluster_EOT(cbp_head
, cbp_tail
, size
== 0 ? zero_offset
: 0);
1363 cluster_complete_transaction(&cbp_head
, callback_arg
, &retval
, flags
, 0);
1369 if (pg_count
> max_vectors
) {
1370 if (((pg_count
- max_vectors
) * PAGE_SIZE
) > io_size
) {
1371 io_size
= PAGE_SIZE
- pg_offset
;
1374 io_size
-= (pg_count
- max_vectors
) * PAGE_SIZE
;
1375 pg_count
= max_vectors
;
1379 * If the transaction is going to reach the maximum number of
1380 * desired elements, truncate the i/o to the nearest page so
1381 * that the actual i/o is initiated after this buffer is
1382 * created and added to the i/o chain.
1384 * I/O directed to physically contiguous memory
1385 * doesn't have a requirement to make sure we 'fill' a page
1387 if ( !(flags
& CL_DEV_MEMORY
) && trans_count
>= max_trans_count
&&
1388 ((upl_offset
+ io_size
) & PAGE_MASK
)) {
1389 vm_offset_t aligned_ofs
;
1391 aligned_ofs
= (upl_offset
+ io_size
) & ~PAGE_MASK
;
1393 * If the io_size does not actually finish off even a
1394 * single page we have to keep adding buffers to the
1395 * transaction despite having reached the desired limit.
1397 * Eventually we get here with the page being finished
1398 * off (and exceeded) and then we truncate the size of
1399 * this i/o request so that it is page aligned so that
1400 * we can finally issue the i/o on the transaction.
1402 if (aligned_ofs
> upl_offset
) {
1403 io_size
= aligned_ofs
- upl_offset
;
1408 if ( !(mp
->mnt_kern_flag
& MNTK_VIRTUALDEV
))
1410 * if we're not targeting a virtual device i.e. a disk image
1411 * it's safe to dip into the reserve pool since real devices
1412 * can complete this I/O request without requiring additional
1413 * bufs from the alloc_io_buf pool
1416 else if ((flags
& CL_ASYNC
) && !(flags
& CL_PAGEOUT
))
1418 * Throttle the speculative IO
1424 cbp
= alloc_io_buf(vp
, priv
);
1426 if (flags
& CL_PAGEOUT
) {
1429 for (i
= 0; i
< pg_count
; i
++) {
1430 if (buf_invalblkno(vp
, lblkno
+ i
, 0) == EBUSY
)
1431 panic("BUSY bp found in cluster_io");
1434 if (flags
& CL_ASYNC
) {
1435 if (buf_setcallback(cbp
, (void *)cluster_iodone
, callback_arg
))
1436 panic("buf_setcallback failed\n");
1438 cbp
->b_cliodone
= (void *)callback
;
1439 cbp
->b_flags
|= io_flags
;
1440 if (flags
& CL_NOCACHE
)
1441 cbp
->b_attr
.ba_flags
|= BA_NOCACHE
;
1443 cbp
->b_lblkno
= lblkno
;
1444 cbp
->b_blkno
= blkno
;
1445 cbp
->b_bcount
= io_size
;
1447 if (buf_setupl(cbp
, upl
, upl_offset
))
1448 panic("buf_setupl failed\n");
1450 upl_set_blkno(upl
, upl_offset
, io_size
, blkno
);
1452 cbp
->b_trans_next
= (buf_t
)NULL
;
1454 if ((cbp
->b_iostate
= (void *)iostate
))
1456 * caller wants to track the state of this
1457 * io... bump the amount issued against this stream
1459 iostate
->io_issued
+= io_size
;
1461 if (flags
& CL_READ
) {
1462 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 26)) | DBG_FUNC_NONE
,
1463 (int)cbp
->b_lblkno
, (int)cbp
->b_blkno
, upl_offset
, io_size
, 0);
1466 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 27)) | DBG_FUNC_NONE
,
1467 (int)cbp
->b_lblkno
, (int)cbp
->b_blkno
, upl_offset
, io_size
, 0);
1471 cbp_tail
->b_trans_next
= cbp
;
1477 if ( (cbp_head
->b_real_bp
= real_bp
) )
1478 real_bp
= (buf_t
)NULL
;
1480 *(buf_t
*)(&cbp
->b_trans_head
) = cbp_head
;
1484 upl_offset
+= io_size
;
1485 f_offset
+= io_size
;
1488 * keep track of how much of the original request
1489 * that we've actually completed... non_rounded_size
1490 * may go negative due to us rounding the request
1491 * to a page size multiple (i.e. size > non_rounded_size)
1493 non_rounded_size
-= io_size
;
1495 if (non_rounded_size
<= 0) {
1497 * we've transferred all of the data in the original
1498 * request, but we were unable to complete the tail
1499 * of the last page because the file didn't have
1500 * an allocation to back that portion... this is ok.
1506 * we have no more I/O to issue, so go
1507 * finish the final transaction
1510 } else if ( ((flags
& CL_DEV_MEMORY
) || (upl_offset
& PAGE_MASK
) == 0) &&
1511 ((flags
& CL_ASYNC
) || trans_count
> max_trans_count
) ) {
1513 * I/O directed to physically contiguous memory...
1514 * which doesn't have a requirement to make sure we 'fill' a page
1516 * the current I/O we've prepared fully
1517 * completes the last page in this request
1519 * it's either an ASYNC request or
1520 * we've already accumulated more than 8 I/O's into
1521 * this transaction so mark it as complete so that
1522 * it can finish asynchronously or via the cluster_complete_transaction
1523 * below if the request is synchronous
1527 if (need_EOT
== TRUE
)
1528 cluster_EOT(cbp_head
, cbp_tail
, size
== 0 ? zero_offset
: 0);
1530 if (flags
& CL_THROTTLE
)
1531 (void)vnode_waitforwrites(vp
, async_throttle
, 0, 0, "cluster_io");
1533 if ( !(io_flags
& B_READ
))
1534 vnode_startwrite(vp
);
1536 if (flags
& CL_RAW_ENCRYPTED
) {
1538 * User requested raw encrypted bytes.
1539 * Twiddle the bit in the ba_flags for the buffer
1541 cbp
->b_attr
.ba_flags
|= BA_RAW_ENCRYPTED_IO
;
1544 (void) VNOP_STRATEGY(cbp
);
1546 if (need_EOT
== TRUE
) {
1547 if ( !(flags
& CL_ASYNC
))
1548 cluster_complete_transaction(&cbp_head
, callback_arg
, &retval
, flags
, 1);
1562 * first wait until all of the outstanding I/O
1563 * for this partial transaction has completed
1565 cluster_wait_IO(cbp_head
, (flags
& CL_ASYNC
));
1568 * Rewind the upl offset to the beginning of the
1571 upl_offset
= cbp_head
->b_uploffset
;
1573 for (cbp
= cbp_head
; cbp
;) {
1576 size
+= cbp
->b_bcount
;
1577 io_size
+= cbp
->b_bcount
;
1579 cbp_next
= cbp
->b_trans_next
;
1585 int need_wakeup
= 0;
1588 * update the error condition for this stream
1589 * since we never really issued the io
1590 * just go ahead and adjust it back
1592 lck_mtx_lock_spin(&iostate
->io_mtxp
);
1594 if (iostate
->io_error
== 0)
1595 iostate
->io_error
= error
;
1596 iostate
->io_issued
-= io_size
;
1598 if (iostate
->io_wanted
) {
1600 * someone is waiting for the state of
1601 * this io stream to change
1603 iostate
->io_wanted
= 0;
1606 lck_mtx_unlock(&iostate
->io_mtxp
);
1609 wakeup((caddr_t
)&iostate
->io_wanted
);
1611 if (flags
& CL_COMMIT
) {
1614 pg_offset
= upl_offset
& PAGE_MASK
;
1615 abort_size
= (upl_end_offset
- upl_offset
+ PAGE_MASK
) & ~PAGE_MASK
;
1617 upl_flags
= cluster_ioerror(upl
, upl_offset
- pg_offset
, abort_size
, error
, io_flags
, vp
);
1619 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 28)) | DBG_FUNC_NONE
,
1620 upl
, upl_offset
- pg_offset
, abort_size
, (error
<< 24) | upl_flags
, 0);
1624 } else if (cbp_head
)
1625 panic("%s(): cbp_head is not NULL.\n", __FUNCTION__
);
1629 * can get here if we either encountered an error
1630 * or we completely zero-filled the request and
1634 real_bp
->b_flags
|= B_ERROR
;
1635 real_bp
->b_error
= error
;
1637 buf_biodone(real_bp
);
1639 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 22)) | DBG_FUNC_END
, (int)f_offset
, size
, upl_offset
, retval
, 0);
1644 #define reset_vector_run_state() \
1645 issueVectorUPL = vector_upl_offset = vector_upl_index = vector_upl_iosize = vector_upl_size = 0;
1648 vector_cluster_io(vnode_t vp
, upl_t vector_upl
, vm_offset_t vector_upl_offset
, off_t v_upl_uio_offset
, int vector_upl_iosize
,
1649 int io_flag
, buf_t real_bp
, struct clios
*iostate
, int (*callback
)(buf_t
, void *), void *callback_arg
)
1651 vector_upl_set_pagelist(vector_upl
);
1653 if(io_flag
& CL_READ
) {
1654 if(vector_upl_offset
== 0 && ((vector_upl_iosize
& PAGE_MASK
)==0))
1655 io_flag
&= ~CL_PRESERVE
; /*don't zero fill*/
1657 io_flag
|= CL_PRESERVE
; /*zero fill*/
1659 return (cluster_io(vp
, vector_upl
, vector_upl_offset
, v_upl_uio_offset
, vector_upl_iosize
, io_flag
, real_bp
, iostate
, callback
, callback_arg
));
1664 cluster_read_prefetch(vnode_t vp
, off_t f_offset
, u_int size
, off_t filesize
, int (*callback
)(buf_t
, void *), void *callback_arg
, int bflag
)
1666 int pages_in_prefetch
;
1668 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 49)) | DBG_FUNC_START
,
1669 (int)f_offset
, size
, (int)filesize
, 0, 0);
1671 if (f_offset
>= filesize
) {
1672 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 49)) | DBG_FUNC_END
,
1673 (int)f_offset
, 0, 0, 0, 0);
1676 if ((off_t
)size
> (filesize
- f_offset
))
1677 size
= filesize
- f_offset
;
1678 pages_in_prefetch
= (size
+ (PAGE_SIZE
- 1)) / PAGE_SIZE
;
1680 advisory_read_ext(vp
, filesize
, f_offset
, size
, callback
, callback_arg
, bflag
);
1682 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 49)) | DBG_FUNC_END
,
1683 (int)f_offset
+ size
, pages_in_prefetch
, 0, 1, 0);
1685 return (pages_in_prefetch
);
1691 cluster_read_ahead(vnode_t vp
, struct cl_extent
*extent
, off_t filesize
, struct cl_readahead
*rap
, int (*callback
)(buf_t
, void *), void *callback_arg
,
1696 int size_of_prefetch
;
1700 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 48)) | DBG_FUNC_START
,
1701 (int)extent
->b_addr
, (int)extent
->e_addr
, (int)rap
->cl_lastr
, 0, 0);
1703 if (extent
->b_addr
== rap
->cl_lastr
&& extent
->b_addr
== extent
->e_addr
) {
1704 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 48)) | DBG_FUNC_END
,
1705 rap
->cl_ralen
, (int)rap
->cl_maxra
, (int)rap
->cl_lastr
, 0, 0);
1708 if (rap
->cl_lastr
== -1 || (extent
->b_addr
!= rap
->cl_lastr
&& extent
->b_addr
!= (rap
->cl_lastr
+ 1))) {
1712 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 48)) | DBG_FUNC_END
,
1713 rap
->cl_ralen
, (int)rap
->cl_maxra
, (int)rap
->cl_lastr
, 1, 0);
1717 max_prefetch
= MAX_PREFETCH(vp
, cluster_max_io_size(vp
->v_mount
, CL_READ
), (vp
->v_mount
->mnt_kern_flag
& MNTK_SSD
));
1719 if (max_prefetch
> speculative_prefetch_max
)
1720 max_prefetch
= speculative_prefetch_max
;
1722 if (max_prefetch
<= PAGE_SIZE
) {
1723 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 48)) | DBG_FUNC_END
,
1724 rap
->cl_ralen
, (int)rap
->cl_maxra
, (int)rap
->cl_lastr
, 6, 0);
1727 if (extent
->e_addr
< rap
->cl_maxra
&& rap
->cl_ralen
>= 4) {
1728 if ((rap
->cl_maxra
- extent
->e_addr
) > (rap
->cl_ralen
/ 4)) {
1730 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 48)) | DBG_FUNC_END
,
1731 rap
->cl_ralen
, (int)rap
->cl_maxra
, (int)rap
->cl_lastr
, 2, 0);
1735 r_addr
= max(extent
->e_addr
, rap
->cl_maxra
) + 1;
1736 f_offset
= (off_t
)(r_addr
* PAGE_SIZE_64
);
1738 size_of_prefetch
= 0;
1740 ubc_range_op(vp
, f_offset
, f_offset
+ PAGE_SIZE_64
, UPL_ROP_PRESENT
, &size_of_prefetch
);
1742 if (size_of_prefetch
) {
1743 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 48)) | DBG_FUNC_END
,
1744 rap
->cl_ralen
, (int)rap
->cl_maxra
, (int)rap
->cl_lastr
, 3, 0);
1747 if (f_offset
< filesize
) {
1748 daddr64_t read_size
;
1750 rap
->cl_ralen
= rap
->cl_ralen
? min(max_prefetch
/ PAGE_SIZE
, rap
->cl_ralen
<< 1) : 1;
1752 read_size
= (extent
->e_addr
+ 1) - extent
->b_addr
;
1754 if (read_size
> rap
->cl_ralen
) {
1755 if (read_size
> max_prefetch
/ PAGE_SIZE
)
1756 rap
->cl_ralen
= max_prefetch
/ PAGE_SIZE
;
1758 rap
->cl_ralen
= read_size
;
1760 size_of_prefetch
= cluster_read_prefetch(vp
, f_offset
, rap
->cl_ralen
* PAGE_SIZE
, filesize
, callback
, callback_arg
, bflag
);
1762 if (size_of_prefetch
)
1763 rap
->cl_maxra
= (r_addr
+ size_of_prefetch
) - 1;
1765 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 48)) | DBG_FUNC_END
,
1766 rap
->cl_ralen
, (int)rap
->cl_maxra
, (int)rap
->cl_lastr
, 4, 0);
1771 cluster_pageout(vnode_t vp
, upl_t upl
, upl_offset_t upl_offset
, off_t f_offset
,
1772 int size
, off_t filesize
, int flags
)
1774 return cluster_pageout_ext(vp
, upl
, upl_offset
, f_offset
, size
, filesize
, flags
, NULL
, NULL
);
1780 cluster_pageout_ext(vnode_t vp
, upl_t upl
, upl_offset_t upl_offset
, off_t f_offset
,
1781 int size
, off_t filesize
, int flags
, int (*callback
)(buf_t
, void *), void *callback_arg
)
1788 local_flags
= CL_PAGEOUT
| CL_THROTTLE
;
1790 if ((flags
& UPL_IOSYNC
) == 0)
1791 local_flags
|= CL_ASYNC
;
1792 if ((flags
& UPL_NOCOMMIT
) == 0)
1793 local_flags
|= CL_COMMIT
;
1794 if ((flags
& UPL_KEEPCACHED
))
1795 local_flags
|= CL_KEEPCACHED
;
1796 if (flags
& UPL_PAGING_ENCRYPTED
)
1797 local_flags
|= CL_ENCRYPTED
;
1800 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 52)) | DBG_FUNC_NONE
,
1801 (int)f_offset
, size
, (int)filesize
, local_flags
, 0);
1804 * If they didn't specify any I/O, then we are done...
1805 * we can't issue an abort because we don't know how
1806 * big the upl really is
1811 if (vp
->v_mount
->mnt_flag
& MNT_RDONLY
) {
1812 if (local_flags
& CL_COMMIT
)
1813 ubc_upl_abort_range(upl
, upl_offset
, size
, UPL_ABORT_FREE_ON_EMPTY
);
1817 * can't page-in from a negative offset
1818 * or if we're starting beyond the EOF
1819 * or if the file offset isn't page aligned
1820 * or the size requested isn't a multiple of PAGE_SIZE
1822 if (f_offset
< 0 || f_offset
>= filesize
||
1823 (f_offset
& PAGE_MASK_64
) || (size
& PAGE_MASK
)) {
1824 if (local_flags
& CL_COMMIT
)
1825 ubc_upl_abort_range(upl
, upl_offset
, size
, UPL_ABORT_FREE_ON_EMPTY
);
1828 max_size
= filesize
- f_offset
;
1830 if (size
< max_size
)
1835 rounded_size
= (io_size
+ (PAGE_SIZE
- 1)) & ~PAGE_MASK
;
1837 if (size
> rounded_size
) {
1838 if (local_flags
& CL_COMMIT
)
1839 ubc_upl_abort_range(upl
, upl_offset
+ rounded_size
, size
- rounded_size
,
1840 UPL_ABORT_FREE_ON_EMPTY
);
1842 return (cluster_io(vp
, upl
, upl_offset
, f_offset
, io_size
,
1843 local_flags
, (buf_t
)NULL
, (struct clios
*)NULL
, callback
, callback_arg
));
1848 cluster_pagein(vnode_t vp
, upl_t upl
, upl_offset_t upl_offset
, off_t f_offset
,
1849 int size
, off_t filesize
, int flags
)
1851 return cluster_pagein_ext(vp
, upl
, upl_offset
, f_offset
, size
, filesize
, flags
, NULL
, NULL
);
1856 cluster_pagein_ext(vnode_t vp
, upl_t upl
, upl_offset_t upl_offset
, off_t f_offset
,
1857 int size
, off_t filesize
, int flags
, int (*callback
)(buf_t
, void *), void *callback_arg
)
1863 int local_flags
= 0;
1865 if (upl
== NULL
|| size
< 0)
1866 panic("cluster_pagein: NULL upl passed in");
1868 if ((flags
& UPL_IOSYNC
) == 0)
1869 local_flags
|= CL_ASYNC
;
1870 if ((flags
& UPL_NOCOMMIT
) == 0)
1871 local_flags
|= CL_COMMIT
;
1872 if (flags
& UPL_IOSTREAMING
)
1873 local_flags
|= CL_IOSTREAMING
;
1874 if (flags
& UPL_PAGING_ENCRYPTED
)
1875 local_flags
|= CL_ENCRYPTED
;
1878 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 56)) | DBG_FUNC_NONE
,
1879 (int)f_offset
, size
, (int)filesize
, local_flags
, 0);
1882 * can't page-in from a negative offset
1883 * or if we're starting beyond the EOF
1884 * or if the file offset isn't page aligned
1885 * or the size requested isn't a multiple of PAGE_SIZE
1887 if (f_offset
< 0 || f_offset
>= filesize
||
1888 (f_offset
& PAGE_MASK_64
) || (size
& PAGE_MASK
) || (upl_offset
& PAGE_MASK
)) {
1889 if (local_flags
& CL_COMMIT
)
1890 ubc_upl_abort_range(upl
, upl_offset
, size
, UPL_ABORT_FREE_ON_EMPTY
| UPL_ABORT_ERROR
);
1893 max_size
= filesize
- f_offset
;
1895 if (size
< max_size
)
1900 rounded_size
= (io_size
+ (PAGE_SIZE
- 1)) & ~PAGE_MASK
;
1902 if (size
> rounded_size
&& (local_flags
& CL_COMMIT
))
1903 ubc_upl_abort_range(upl
, upl_offset
+ rounded_size
,
1904 size
- rounded_size
, UPL_ABORT_FREE_ON_EMPTY
| UPL_ABORT_ERROR
);
1906 retval
= cluster_io(vp
, upl
, upl_offset
, f_offset
, io_size
,
1907 local_flags
| CL_READ
| CL_PAGEIN
, (buf_t
)NULL
, (struct clios
*)NULL
, callback
, callback_arg
);
1914 cluster_bp(buf_t bp
)
1916 return cluster_bp_ext(bp
, NULL
, NULL
);
1921 cluster_bp_ext(buf_t bp
, int (*callback
)(buf_t
, void *), void *callback_arg
)
1926 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 19)) | DBG_FUNC_START
,
1927 bp
, (int)bp
->b_lblkno
, bp
->b_bcount
, bp
->b_flags
, 0);
1929 if (bp
->b_flags
& B_READ
)
1930 flags
= CL_ASYNC
| CL_READ
;
1933 if (bp
->b_flags
& B_PASSIVE
)
1934 flags
|= CL_PASSIVE
;
1936 f_offset
= ubc_blktooff(bp
->b_vp
, bp
->b_lblkno
);
1938 return (cluster_io(bp
->b_vp
, bp
->b_upl
, 0, f_offset
, bp
->b_bcount
, flags
, bp
, (struct clios
*)NULL
, callback
, callback_arg
));
1944 cluster_write(vnode_t vp
, struct uio
*uio
, off_t oldEOF
, off_t newEOF
, off_t headOff
, off_t tailOff
, int xflags
)
1946 return cluster_write_ext(vp
, uio
, oldEOF
, newEOF
, headOff
, tailOff
, xflags
, NULL
, NULL
);
1951 cluster_write_ext(vnode_t vp
, struct uio
*uio
, off_t oldEOF
, off_t newEOF
, off_t headOff
, off_t tailOff
,
1952 int xflags
, int (*callback
)(buf_t
, void *), void *callback_arg
)
1954 user_ssize_t cur_resid
;
1959 int write_type
= IO_COPY
;
1960 u_int32_t write_length
;
1964 if (flags
& IO_PASSIVE
)
1969 if (vp
->v_flag
& VNOCACHE_DATA
){
1970 flags
|= IO_NOCACHE
;
1971 bflag
|= CL_NOCACHE
;
1976 * this call is being made to zero-fill some range in the file
1978 retval
= cluster_write_copy(vp
, NULL
, (u_int32_t
)0, oldEOF
, newEOF
, headOff
, tailOff
, flags
, callback
, callback_arg
);
1983 * do a write through the cache if one of the following is true....
1984 * NOCACHE is not true or NODIRECT is true
1985 * the uio request doesn't target USERSPACE
1986 * otherwise, find out if we want the direct or contig variant for
1987 * the first vector in the uio request
1989 if ( ((flags
& (IO_NOCACHE
| IO_NODIRECT
)) == IO_NOCACHE
) && UIO_SEG_IS_USER_SPACE(uio
->uio_segflg
) )
1990 retval
= cluster_io_type(uio
, &write_type
, &write_length
, MIN_DIRECT_WRITE_SIZE
);
1992 if ( (flags
& (IO_TAILZEROFILL
| IO_HEADZEROFILL
)) && write_type
== IO_DIRECT
)
1994 * must go through the cached variant in this case
1996 write_type
= IO_COPY
;
1998 while ((cur_resid
= uio_resid(uio
)) && uio
->uio_offset
< newEOF
&& retval
== 0) {
2000 switch (write_type
) {
2004 * make sure the uio_resid isn't too big...
2005 * internally, we want to handle all of the I/O in
2006 * chunk sizes that fit in a 32 bit int
2008 if (cur_resid
> (user_ssize_t
)(MAX_IO_REQUEST_SIZE
)) {
2010 * we're going to have to call cluster_write_copy
2013 * only want the last call to cluster_write_copy to
2014 * have the IO_TAILZEROFILL flag set and only the
2015 * first call should have IO_HEADZEROFILL
2017 zflags
= flags
& ~IO_TAILZEROFILL
;
2018 flags
&= ~IO_HEADZEROFILL
;
2020 write_length
= MAX_IO_REQUEST_SIZE
;
2023 * last call to cluster_write_copy
2027 write_length
= (u_int32_t
)cur_resid
;
2029 retval
= cluster_write_copy(vp
, uio
, write_length
, oldEOF
, newEOF
, headOff
, tailOff
, zflags
, callback
, callback_arg
);
2033 zflags
= flags
& ~(IO_TAILZEROFILL
| IO_HEADZEROFILL
);
2035 if (flags
& IO_HEADZEROFILL
) {
2037 * only do this once per request
2039 flags
&= ~IO_HEADZEROFILL
;
2041 retval
= cluster_write_copy(vp
, (struct uio
*)0, (u_int32_t
)0, (off_t
)0, uio
->uio_offset
,
2042 headOff
, (off_t
)0, zflags
| IO_HEADZEROFILL
| IO_SYNC
, callback
, callback_arg
);
2046 retval
= cluster_write_contig(vp
, uio
, newEOF
, &write_type
, &write_length
, callback
, callback_arg
, bflag
);
2048 if (retval
== 0 && (flags
& IO_TAILZEROFILL
) && uio_resid(uio
) == 0) {
2050 * we're done with the data from the user specified buffer(s)
2051 * and we've been requested to zero fill at the tail
2052 * treat this as an IO_HEADZEROFILL which doesn't require a uio
2053 * by rearranging the args and passing in IO_HEADZEROFILL
2055 retval
= cluster_write_copy(vp
, (struct uio
*)0, (u_int32_t
)0, (off_t
)0, tailOff
, uio
->uio_offset
,
2056 (off_t
)0, zflags
| IO_HEADZEROFILL
| IO_SYNC
, callback
, callback_arg
);
2062 * cluster_write_direct is never called with IO_TAILZEROFILL || IO_HEADZEROFILL
2064 retval
= cluster_write_direct(vp
, uio
, oldEOF
, newEOF
, &write_type
, &write_length
, flags
, callback
, callback_arg
);
2068 retval
= cluster_io_type(uio
, &write_type
, &write_length
, MIN_DIRECT_WRITE_SIZE
);
2072 * in case we end up calling cluster_write_copy (from cluster_write_direct)
2073 * multiple times to service a multi-vector request that is not aligned properly
2074 * we need to update the oldEOF so that we
2075 * don't zero-fill the head of a page if we've successfully written
2076 * data to that area... 'cluster_write_copy' will zero-fill the head of a
2077 * page that is beyond the oldEOF if the write is unaligned... we only
2078 * want that to happen for the very first page of the cluster_write,
2079 * NOT the first page of each vector making up a multi-vector write.
2081 if (uio
->uio_offset
> oldEOF
)
2082 oldEOF
= uio
->uio_offset
;
2089 cluster_write_direct(vnode_t vp
, struct uio
*uio
, off_t oldEOF
, off_t newEOF
, int *write_type
, u_int32_t
*write_length
,
2090 int flags
, int (*callback
)(buf_t
, void *), void *callback_arg
)
2093 upl_page_info_t
*pl
;
2094 vm_offset_t upl_offset
;
2095 vm_offset_t vector_upl_offset
= 0;
2096 u_int32_t io_req_size
;
2097 u_int32_t offset_in_file
;
2098 u_int32_t offset_in_iovbase
;
2101 upl_size_t upl_size
, vector_upl_size
= 0;
2102 vm_size_t upl_needed_size
;
2103 mach_msg_type_number_t pages_in_pl
;
2106 mach_msg_type_number_t i
;
2107 int force_data_sync
;
2110 struct clios iostate
;
2111 user_addr_t iov_base
;
2112 u_int32_t mem_alignment_mask
;
2113 u_int32_t devblocksize
;
2114 u_int32_t max_io_size
;
2115 u_int32_t max_upl_size
;
2116 u_int32_t max_vector_size
;
2117 boolean_t io_throttled
= FALSE
;
2119 u_int32_t vector_upl_iosize
= 0;
2120 int issueVectorUPL
= 0,useVectorUPL
= (uio
->uio_iovcnt
> 1);
2121 off_t v_upl_uio_offset
= 0;
2122 int vector_upl_index
=0;
2123 upl_t vector_upl
= NULL
;
2127 * When we enter this routine, we know
2128 * -- the resid will not exceed iov_len
2130 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 75)) | DBG_FUNC_START
,
2131 (int)uio
->uio_offset
, *write_length
, (int)newEOF
, 0, 0);
2133 max_upl_size
= cluster_max_io_size(vp
->v_mount
, CL_WRITE
);
2135 io_flag
= CL_ASYNC
| CL_PRESERVE
| CL_COMMIT
| CL_THROTTLE
| CL_DIRECT_IO
;
2137 if (flags
& IO_PASSIVE
)
2138 io_flag
|= CL_PASSIVE
;
2140 if (flags
& IO_NOCACHE
)
2141 io_flag
|= CL_NOCACHE
;
2143 if (flags
& IO_SKIP_ENCRYPTION
)
2144 io_flag
|= CL_ENCRYPTED
;
2146 iostate
.io_completed
= 0;
2147 iostate
.io_issued
= 0;
2148 iostate
.io_error
= 0;
2149 iostate
.io_wanted
= 0;
2151 lck_mtx_init(&iostate
.io_mtxp
, cl_mtx_grp
, cl_mtx_attr
);
2153 mem_alignment_mask
= (u_int32_t
)vp
->v_mount
->mnt_alignmentmask
;
2154 devblocksize
= (u_int32_t
)vp
->v_mount
->mnt_devblocksize
;
2156 if (devblocksize
== 1) {
2158 * the AFP client advertises a devblocksize of 1
2159 * however, its BLOCKMAP routine maps to physical
2160 * blocks that are PAGE_SIZE in size...
2161 * therefore we can't ask for I/Os that aren't page aligned
2162 * or aren't multiples of PAGE_SIZE in size
2163 * by setting devblocksize to PAGE_SIZE, we re-instate
2164 * the old behavior we had before the mem_alignment_mask
2165 * changes went in...
2167 devblocksize
= PAGE_SIZE
;
2171 io_req_size
= *write_length
;
2172 iov_base
= uio_curriovbase(uio
);
2174 offset_in_file
= (u_int32_t
)uio
->uio_offset
& PAGE_MASK
;
2175 offset_in_iovbase
= (u_int32_t
)iov_base
& mem_alignment_mask
;
2177 if (offset_in_file
|| offset_in_iovbase
) {
2179 * one of the 2 important offsets is misaligned
2180 * so fire an I/O through the cache for this entire vector
2182 goto wait_for_dwrites
;
2184 if (iov_base
& (devblocksize
- 1)) {
2186 * the offset in memory must be on a device block boundary
2187 * so that we can guarantee that we can generate an
2188 * I/O that ends on a page boundary in cluster_io
2190 goto wait_for_dwrites
;
2193 while (io_req_size
>= PAGE_SIZE
&& uio
->uio_offset
< newEOF
&& retval
== 0) {
2196 if ( (throttle_type
= cluster_is_throttled(vp
)) ) {
2198 * we're in the throttle window, at the very least
2199 * we want to limit the size of the I/O we're about
2202 if ( (flags
& IO_RETURN_ON_THROTTLE
) && throttle_type
== THROTTLE_NOW
) {
2204 * we're in the throttle window and at least 1 I/O
2205 * has already been issued by a throttleable thread
2206 * in this window, so return with EAGAIN to indicate
2207 * to the FS issuing the cluster_write call that it
2208 * should now throttle after dropping any locks
2210 throttle_info_update_by_mount(vp
->v_mount
);
2212 io_throttled
= TRUE
;
2213 goto wait_for_dwrites
;
2215 max_vector_size
= THROTTLE_MAX_IOSIZE
;
2216 max_io_size
= THROTTLE_MAX_IOSIZE
;
2218 max_vector_size
= MAX_VECTOR_UPL_SIZE
;
2219 max_io_size
= max_upl_size
;
2223 cluster_syncup(vp
, newEOF
, callback
, callback_arg
, callback
? PUSH_SYNC
: 0);
2226 io_size
= io_req_size
& ~PAGE_MASK
;
2227 iov_base
= uio_curriovbase(uio
);
2229 if (io_size
> max_io_size
)
2230 io_size
= max_io_size
;
2232 if(useVectorUPL
&& (iov_base
& PAGE_MASK
)) {
2234 * We have an iov_base that's not page-aligned.
2235 * Issue all I/O's that have been collected within
2236 * this Vectored UPL.
2238 if(vector_upl_index
) {
2239 retval
= vector_cluster_io(vp
, vector_upl
, vector_upl_offset
, v_upl_uio_offset
, vector_upl_iosize
, io_flag
, (buf_t
)NULL
, &iostate
, callback
, callback_arg
);
2240 reset_vector_run_state();
2244 * After this point, if we are using the Vector UPL path and the base is
2245 * not page-aligned then the UPL with that base will be the first in the vector UPL.
2249 upl_offset
= (vm_offset_t
)((u_int32_t
)iov_base
& PAGE_MASK
);
2250 upl_needed_size
= (upl_offset
+ io_size
+ (PAGE_SIZE
-1)) & ~PAGE_MASK
;
2252 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 76)) | DBG_FUNC_START
,
2253 (int)upl_offset
, upl_needed_size
, (int)iov_base
, io_size
, 0);
2255 for (force_data_sync
= 0; force_data_sync
< 3; force_data_sync
++) {
2257 upl_size
= upl_needed_size
;
2258 upl_flags
= UPL_FILE_IO
| UPL_COPYOUT_FROM
| UPL_NO_SYNC
|
2259 UPL_CLEAN_IN_PLACE
| UPL_SET_INTERNAL
| UPL_SET_LITE
| UPL_SET_IO_WIRE
;
2261 kret
= vm_map_get_upl(current_map(),
2262 (vm_map_offset_t
)(iov_base
& ~((user_addr_t
)PAGE_MASK
)),
2270 if (kret
!= KERN_SUCCESS
) {
2271 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 76)) | DBG_FUNC_END
,
2274 * failed to get pagelist
2276 * we may have already spun some portion of this request
2277 * off as async requests... we need to wait for the I/O
2278 * to complete before returning
2280 goto wait_for_dwrites
;
2282 pl
= UPL_GET_INTERNAL_PAGE_LIST(upl
);
2283 pages_in_pl
= upl_size
/ PAGE_SIZE
;
2285 for (i
= 0; i
< pages_in_pl
; i
++) {
2286 if (!upl_valid_page(pl
, i
))
2289 if (i
== pages_in_pl
)
2293 * didn't get all the pages back that we
2294 * needed... release this upl and try again
2296 ubc_upl_abort(upl
, 0);
2298 if (force_data_sync
>= 3) {
2299 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 76)) | DBG_FUNC_END
,
2300 i
, pages_in_pl
, upl_size
, kret
, 0);
2302 * for some reason, we couldn't acquire a hold on all
2303 * the pages needed in the user's address space
2305 * we may have already spun some portion of this request
2306 * off as async requests... we need to wait for the I/O
2307 * to complete before returning
2309 goto wait_for_dwrites
;
2313 * Consider the possibility that upl_size wasn't satisfied.
2315 if (upl_size
< upl_needed_size
) {
2316 if (upl_size
&& upl_offset
== 0)
2321 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 76)) | DBG_FUNC_END
,
2322 (int)upl_offset
, upl_size
, (int)iov_base
, io_size
, 0);
2325 ubc_upl_abort(upl
, 0);
2327 * we may have already spun some portion of this request
2328 * off as async requests... we need to wait for the I/O
2329 * to complete before returning
2331 goto wait_for_dwrites
;
2335 vm_offset_t end_off
= ((iov_base
+ io_size
) & PAGE_MASK
);
2339 * After this point, if we are using a vector UPL, then
2340 * either all the UPL elements end on a page boundary OR
2341 * this UPL is the last element because it does not end
2342 * on a page boundary.
2347 * Now look for pages already in the cache
2348 * and throw them away.
2349 * uio->uio_offset is page aligned within the file
2350 * io_size is a multiple of PAGE_SIZE
2352 ubc_range_op(vp
, uio
->uio_offset
, uio
->uio_offset
+ io_size
, UPL_ROP_DUMP
, NULL
);
2355 * we want push out these writes asynchronously so that we can overlap
2356 * the preparation of the next I/O
2357 * if there are already too many outstanding writes
2358 * wait until some complete before issuing the next
2360 cluster_iostate_wait(&iostate
, max_upl_size
* IO_SCALE(vp
, 2), "cluster_write_direct");
2362 if (iostate
.io_error
) {
2364 * one of the earlier writes we issued ran into a hard error
2365 * don't issue any more writes, cleanup the UPL
2366 * that was just created but not used, then
2367 * go wait for all writes that are part of this stream
2368 * to complete before returning the error to the caller
2370 ubc_upl_abort(upl
, 0);
2372 goto wait_for_dwrites
;
2375 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 77)) | DBG_FUNC_START
,
2376 (int)upl_offset
, (int)uio
->uio_offset
, io_size
, io_flag
, 0);
2379 retval
= cluster_io(vp
, upl
, upl_offset
, uio
->uio_offset
,
2380 io_size
, io_flag
, (buf_t
)NULL
, &iostate
, callback
, callback_arg
);
2383 if(!vector_upl_index
) {
2384 vector_upl
= vector_upl_create(upl_offset
);
2385 v_upl_uio_offset
= uio
->uio_offset
;
2386 vector_upl_offset
= upl_offset
;
2389 vector_upl_set_subupl(vector_upl
,upl
,upl_size
);
2390 vector_upl_set_iostate(vector_upl
, upl
, vector_upl_size
, upl_size
);
2392 vector_upl_iosize
+= io_size
;
2393 vector_upl_size
+= upl_size
;
2395 if(issueVectorUPL
|| vector_upl_index
== MAX_VECTOR_UPL_ELEMENTS
|| vector_upl_size
>= max_vector_size
) {
2396 retval
= vector_cluster_io(vp
, vector_upl
, vector_upl_offset
, v_upl_uio_offset
, vector_upl_iosize
, io_flag
, (buf_t
)NULL
, &iostate
, callback
, callback_arg
);
2397 reset_vector_run_state();
2402 * update the uio structure to
2403 * reflect the I/O that we just issued
2405 uio_update(uio
, (user_size_t
)io_size
);
2408 * in case we end up calling through to cluster_write_copy to finish
2409 * the tail of this request, we need to update the oldEOF so that we
2410 * don't zero-fill the head of a page if we've successfully written
2411 * data to that area... 'cluster_write_copy' will zero-fill the head of a
2412 * page that is beyond the oldEOF if the write is unaligned... we only
2413 * want that to happen for the very first page of the cluster_write,
2414 * NOT the first page of each vector making up a multi-vector write.
2416 if (uio
->uio_offset
> oldEOF
)
2417 oldEOF
= uio
->uio_offset
;
2419 io_req_size
-= io_size
;
2421 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 77)) | DBG_FUNC_END
,
2422 (int)upl_offset
, (int)uio
->uio_offset
, io_req_size
, retval
, 0);
2426 if (retval
== 0 && iostate
.io_error
== 0 && io_req_size
== 0) {
2428 retval
= cluster_io_type(uio
, write_type
, write_length
, MIN_DIRECT_WRITE_SIZE
);
2430 if (retval
== 0 && *write_type
== IO_DIRECT
) {
2432 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 75)) | DBG_FUNC_NONE
,
2433 (int)uio
->uio_offset
, *write_length
, (int)newEOF
, 0, 0);
2441 if (retval
== 0 && iostate
.io_error
== 0 && useVectorUPL
&& vector_upl_index
) {
2442 retval
= vector_cluster_io(vp
, vector_upl
, vector_upl_offset
, v_upl_uio_offset
, vector_upl_iosize
, io_flag
, (buf_t
)NULL
, &iostate
, callback
, callback_arg
);
2443 reset_vector_run_state();
2446 * make sure all async writes issued as part of this stream
2447 * have completed before we return
2449 cluster_iostate_wait(&iostate
, 0, "cluster_write_direct");
2451 if (iostate
.io_error
)
2452 retval
= iostate
.io_error
;
2454 lck_mtx_destroy(&iostate
.io_mtxp
, cl_mtx_grp
);
2456 if (io_throttled
== TRUE
&& retval
== 0)
2459 if (io_req_size
&& retval
== 0) {
2461 * we couldn't handle the tail of this request in DIRECT mode
2462 * so fire it through the copy path
2464 * note that flags will never have IO_HEADZEROFILL or IO_TAILZEROFILL set
2465 * so we can just pass 0 in for the headOff and tailOff
2467 if (uio
->uio_offset
> oldEOF
)
2468 oldEOF
= uio
->uio_offset
;
2470 retval
= cluster_write_copy(vp
, uio
, io_req_size
, oldEOF
, newEOF
, (off_t
)0, (off_t
)0, flags
, callback
, callback_arg
);
2472 *write_type
= IO_UNKNOWN
;
2474 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 75)) | DBG_FUNC_END
,
2475 (int)uio
->uio_offset
, io_req_size
, retval
, 4, 0);
2482 cluster_write_contig(vnode_t vp
, struct uio
*uio
, off_t newEOF
, int *write_type
, u_int32_t
*write_length
,
2483 int (*callback
)(buf_t
, void *), void *callback_arg
, int bflag
)
2485 upl_page_info_t
*pl
;
2486 addr64_t src_paddr
= 0;
2487 upl_t upl
[MAX_VECTS
];
2488 vm_offset_t upl_offset
;
2489 u_int32_t tail_size
= 0;
2492 upl_size_t upl_size
;
2493 vm_size_t upl_needed_size
;
2494 mach_msg_type_number_t pages_in_pl
;
2497 struct clios iostate
;
2502 user_addr_t iov_base
;
2503 u_int32_t devblocksize
;
2504 u_int32_t mem_alignment_mask
;
2507 * When we enter this routine, we know
2508 * -- the io_req_size will not exceed iov_len
2509 * -- the target address is physically contiguous
2511 cluster_syncup(vp
, newEOF
, callback
, callback_arg
, callback
? PUSH_SYNC
: 0);
2513 devblocksize
= (u_int32_t
)vp
->v_mount
->mnt_devblocksize
;
2514 mem_alignment_mask
= (u_int32_t
)vp
->v_mount
->mnt_alignmentmask
;
2516 iostate
.io_completed
= 0;
2517 iostate
.io_issued
= 0;
2518 iostate
.io_error
= 0;
2519 iostate
.io_wanted
= 0;
2521 lck_mtx_init(&iostate
.io_mtxp
, cl_mtx_grp
, cl_mtx_attr
);
2524 io_size
= *write_length
;
2526 iov_base
= uio_curriovbase(uio
);
2528 upl_offset
= (vm_offset_t
)((u_int32_t
)iov_base
& PAGE_MASK
);
2529 upl_needed_size
= upl_offset
+ io_size
;
2532 upl_size
= upl_needed_size
;
2533 upl_flags
= UPL_FILE_IO
| UPL_COPYOUT_FROM
| UPL_NO_SYNC
|
2534 UPL_CLEAN_IN_PLACE
| UPL_SET_INTERNAL
| UPL_SET_LITE
| UPL_SET_IO_WIRE
;
2536 kret
= vm_map_get_upl(current_map(),
2537 (vm_map_offset_t
)(iov_base
& ~((user_addr_t
)PAGE_MASK
)),
2538 &upl_size
, &upl
[cur_upl
], NULL
, &pages_in_pl
, &upl_flags
, 0);
2540 if (kret
!= KERN_SUCCESS
) {
2542 * failed to get pagelist
2545 goto wait_for_cwrites
;
2550 * Consider the possibility that upl_size wasn't satisfied.
2552 if (upl_size
< upl_needed_size
) {
2554 * This is a failure in the physical memory case.
2557 goto wait_for_cwrites
;
2559 pl
= ubc_upl_pageinfo(upl
[cur_upl
]);
2561 src_paddr
= ((addr64_t
)upl_phys_page(pl
, 0) << PAGE_SHIFT
) + (addr64_t
)upl_offset
;
2563 while (((uio
->uio_offset
& (devblocksize
- 1)) || io_size
< devblocksize
) && io_size
) {
2564 u_int32_t head_size
;
2566 head_size
= devblocksize
- (u_int32_t
)(uio
->uio_offset
& (devblocksize
- 1));
2568 if (head_size
> io_size
)
2569 head_size
= io_size
;
2571 error
= cluster_align_phys_io(vp
, uio
, src_paddr
, head_size
, 0, callback
, callback_arg
);
2574 goto wait_for_cwrites
;
2576 upl_offset
+= head_size
;
2577 src_paddr
+= head_size
;
2578 io_size
-= head_size
;
2580 iov_base
+= head_size
;
2582 if ((u_int32_t
)iov_base
& mem_alignment_mask
) {
2584 * request doesn't set up on a memory boundary
2585 * the underlying DMA engine can handle...
2586 * return an error instead of going through
2587 * the slow copy path since the intent of this
2588 * path is direct I/O from device memory
2591 goto wait_for_cwrites
;
2594 tail_size
= io_size
& (devblocksize
- 1);
2595 io_size
-= tail_size
;
2597 while (io_size
&& error
== 0) {
2599 if (io_size
> MAX_IO_CONTIG_SIZE
)
2600 xsize
= MAX_IO_CONTIG_SIZE
;
2604 * request asynchronously so that we can overlap
2605 * the preparation of the next I/O... we'll do
2606 * the commit after all the I/O has completed
2607 * since its all issued against the same UPL
2608 * if there are already too many outstanding writes
2609 * wait until some have completed before issuing the next
2611 cluster_iostate_wait(&iostate
, MAX_IO_CONTIG_SIZE
* IO_SCALE(vp
, 2), "cluster_write_contig");
2613 if (iostate
.io_error
) {
2615 * one of the earlier writes we issued ran into a hard error
2616 * don't issue any more writes...
2617 * go wait for all writes that are part of this stream
2618 * to complete before returning the error to the caller
2620 goto wait_for_cwrites
;
2623 * issue an asynchronous write to cluster_io
2625 error
= cluster_io(vp
, upl
[cur_upl
], upl_offset
, uio
->uio_offset
,
2626 xsize
, CL_DEV_MEMORY
| CL_ASYNC
| bflag
, (buf_t
)NULL
, (struct clios
*)&iostate
, callback
, callback_arg
);
2630 * The cluster_io write completed successfully,
2631 * update the uio structure
2633 uio_update(uio
, (user_size_t
)xsize
);
2635 upl_offset
+= xsize
;
2640 if (error
== 0 && iostate
.io_error
== 0 && tail_size
== 0 && num_upl
< MAX_VECTS
) {
2642 error
= cluster_io_type(uio
, write_type
, write_length
, 0);
2644 if (error
== 0 && *write_type
== IO_CONTIG
) {
2649 *write_type
= IO_UNKNOWN
;
2653 * make sure all async writes that are part of this stream
2654 * have completed before we proceed
2656 cluster_iostate_wait(&iostate
, 0, "cluster_write_contig");
2658 if (iostate
.io_error
)
2659 error
= iostate
.io_error
;
2661 lck_mtx_destroy(&iostate
.io_mtxp
, cl_mtx_grp
);
2663 if (error
== 0 && tail_size
)
2664 error
= cluster_align_phys_io(vp
, uio
, src_paddr
, tail_size
, 0, callback
, callback_arg
);
2666 for (n
= 0; n
< num_upl
; n
++)
2668 * just release our hold on each physically contiguous
2669 * region without changing any state
2671 ubc_upl_abort(upl
[n
], 0);
2678 * need to avoid a race between an msync of a range of pages dirtied via mmap
2679 * vs a filesystem such as HFS deciding to write a 'hole' to disk via cluster_write's
2680 * zerofill mechanism before it has seen the VNOP_PAGEOUTs for the pages being msync'd
2682 * we should never force-zero-fill pages that are already valid in the cache...
2683 * the entire page contains valid data (either from disk, zero-filled or dirtied
2684 * via an mmap) so we can only do damage by trying to zero-fill
2688 cluster_zero_range(upl_t upl
, upl_page_info_t
*pl
, int flags
, int io_offset
, off_t zero_off
, off_t upl_f_offset
, int bytes_to_zero
)
2691 boolean_t need_cluster_zero
= TRUE
;
2693 if ((flags
& (IO_NOZEROVALID
| IO_NOZERODIRTY
))) {
2695 bytes_to_zero
= min(bytes_to_zero
, PAGE_SIZE
- (int)(zero_off
& PAGE_MASK_64
));
2696 zero_pg_index
= (int)((zero_off
- upl_f_offset
) / PAGE_SIZE_64
);
2698 if (upl_valid_page(pl
, zero_pg_index
)) {
2700 * never force zero valid pages - dirty or clean
2701 * we'll leave these in the UPL for cluster_write_copy to deal with
2703 need_cluster_zero
= FALSE
;
2706 if (need_cluster_zero
== TRUE
)
2707 cluster_zero(upl
, io_offset
, bytes_to_zero
, NULL
);
2709 return (bytes_to_zero
);
2714 cluster_write_copy(vnode_t vp
, struct uio
*uio
, u_int32_t io_req_size
, off_t oldEOF
, off_t newEOF
, off_t headOff
,
2715 off_t tailOff
, int flags
, int (*callback
)(buf_t
, void *), void *callback_arg
)
2717 upl_page_info_t
*pl
;
2719 vm_offset_t upl_offset
= 0;
2732 long long total_size
;
2735 long long zero_cnt1
;
2737 off_t write_off
= 0;
2739 boolean_t first_pass
= FALSE
;
2740 struct cl_extent cl
;
2741 struct cl_writebehind
*wbp
;
2743 u_int max_cluster_pgcount
;
2747 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 40)) | DBG_FUNC_START
,
2748 (int)uio
->uio_offset
, io_req_size
, (int)oldEOF
, (int)newEOF
, 0);
2750 io_resid
= io_req_size
;
2752 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 40)) | DBG_FUNC_START
,
2753 0, 0, (int)oldEOF
, (int)newEOF
, 0);
2757 if (flags
& IO_PASSIVE
)
2761 if (flags
& IO_NOCACHE
)
2762 bflag
|= CL_NOCACHE
;
2764 if (flags
& IO_SKIP_ENCRYPTION
)
2765 bflag
|= CL_ENCRYPTED
;
2772 max_cluster_pgcount
= MAX_CLUSTER_SIZE(vp
) / PAGE_SIZE
;
2773 max_io_size
= cluster_max_io_size(vp
->v_mount
, CL_WRITE
);
2775 if (flags
& IO_HEADZEROFILL
) {
2777 * some filesystems (HFS is one) don't support unallocated holes within a file...
2778 * so we zero fill the intervening space between the old EOF and the offset
2779 * where the next chunk of real data begins.... ftruncate will also use this
2780 * routine to zero fill to the new EOF when growing a file... in this case, the
2781 * uio structure will not be provided
2784 if (headOff
< uio
->uio_offset
) {
2785 zero_cnt
= uio
->uio_offset
- headOff
;
2788 } else if (headOff
< newEOF
) {
2789 zero_cnt
= newEOF
- headOff
;
2793 if (uio
&& uio
->uio_offset
> oldEOF
) {
2794 zero_off
= uio
->uio_offset
& ~PAGE_MASK_64
;
2796 if (zero_off
>= oldEOF
) {
2797 zero_cnt
= uio
->uio_offset
- zero_off
;
2799 flags
|= IO_HEADZEROFILL
;
2803 if (flags
& IO_TAILZEROFILL
) {
2805 zero_off1
= uio
->uio_offset
+ io_req_size
;
2807 if (zero_off1
< tailOff
)
2808 zero_cnt1
= tailOff
- zero_off1
;
2811 if (uio
&& newEOF
> oldEOF
) {
2812 zero_off1
= uio
->uio_offset
+ io_req_size
;
2814 if (zero_off1
== newEOF
&& (zero_off1
& PAGE_MASK_64
)) {
2815 zero_cnt1
= PAGE_SIZE_64
- (zero_off1
& PAGE_MASK_64
);
2817 flags
|= IO_TAILZEROFILL
;
2821 if (zero_cnt
== 0 && uio
== (struct uio
*) 0) {
2822 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 40)) | DBG_FUNC_END
,
2823 retval
, 0, 0, 0, 0);
2827 write_off
= uio
->uio_offset
;
2828 write_cnt
= uio_resid(uio
);
2830 * delay updating the sequential write info
2831 * in the control block until we've obtained
2836 while ((total_size
= (io_resid
+ zero_cnt
+ zero_cnt1
)) && retval
== 0) {
2838 * for this iteration of the loop, figure out where our starting point is
2841 start_offset
= (int)(zero_off
& PAGE_MASK_64
);
2842 upl_f_offset
= zero_off
- start_offset
;
2843 } else if (io_resid
) {
2844 start_offset
= (int)(uio
->uio_offset
& PAGE_MASK_64
);
2845 upl_f_offset
= uio
->uio_offset
- start_offset
;
2847 start_offset
= (int)(zero_off1
& PAGE_MASK_64
);
2848 upl_f_offset
= zero_off1
- start_offset
;
2850 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 46)) | DBG_FUNC_NONE
,
2851 (int)zero_off
, (int)zero_cnt
, (int)zero_off1
, (int)zero_cnt1
, 0);
2853 if (total_size
> max_io_size
)
2854 total_size
= max_io_size
;
2856 cl
.b_addr
= (daddr64_t
)(upl_f_offset
/ PAGE_SIZE_64
);
2858 if (uio
&& ((flags
& (IO_SYNC
| IO_HEADZEROFILL
| IO_TAILZEROFILL
)) == 0)) {
2860 * assumption... total_size <= io_resid
2861 * because IO_HEADZEROFILL and IO_TAILZEROFILL not set
2863 if ((start_offset
+ total_size
) > max_io_size
)
2864 total_size
= max_io_size
- start_offset
;
2865 xfer_resid
= total_size
;
2867 retval
= cluster_copy_ubc_data_internal(vp
, uio
, &xfer_resid
, 1, 1);
2872 io_resid
-= (total_size
- xfer_resid
);
2873 total_size
= xfer_resid
;
2874 start_offset
= (int)(uio
->uio_offset
& PAGE_MASK_64
);
2875 upl_f_offset
= uio
->uio_offset
- start_offset
;
2877 if (total_size
== 0) {
2880 * the write did not finish on a page boundary
2881 * which will leave upl_f_offset pointing to the
2882 * beginning of the last page written instead of
2883 * the page beyond it... bump it in this case
2884 * so that the cluster code records the last page
2887 upl_f_offset
+= PAGE_SIZE_64
;
2895 * compute the size of the upl needed to encompass
2896 * the requested write... limit each call to cluster_io
2897 * to the maximum UPL size... cluster_io will clip if
2898 * this exceeds the maximum io_size for the device,
2899 * make sure to account for
2900 * a starting offset that's not page aligned
2902 upl_size
= (start_offset
+ total_size
+ (PAGE_SIZE
- 1)) & ~PAGE_MASK
;
2904 if (upl_size
> max_io_size
)
2905 upl_size
= max_io_size
;
2907 pages_in_upl
= upl_size
/ PAGE_SIZE
;
2908 io_size
= upl_size
- start_offset
;
2910 if ((long long)io_size
> total_size
)
2911 io_size
= total_size
;
2913 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 41)) | DBG_FUNC_START
, upl_size
, io_size
, total_size
, 0, 0);
2917 * Gather the pages from the buffer cache.
2918 * The UPL_WILL_MODIFY flag lets the UPL subsystem know
2919 * that we intend to modify these pages.
2921 kret
= ubc_create_upl(vp
,
2926 UPL_SET_LITE
| (( uio
!=NULL
&& (uio
->uio_flags
& UIO_FLAGS_IS_COMPRESSED_FILE
)) ? 0 : UPL_WILL_MODIFY
));
2927 if (kret
!= KERN_SUCCESS
)
2928 panic("cluster_write_copy: failed to get pagelist");
2930 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 41)) | DBG_FUNC_END
,
2931 upl
, (int)upl_f_offset
, start_offset
, 0, 0);
2933 if (start_offset
&& upl_f_offset
< oldEOF
&& !upl_valid_page(pl
, 0)) {
2937 * we're starting in the middle of the first page of the upl
2938 * and the page isn't currently valid, so we're going to have
2939 * to read it in first... this is a synchronous operation
2941 read_size
= PAGE_SIZE
;
2943 if ((upl_f_offset
+ read_size
) > oldEOF
)
2944 read_size
= oldEOF
- upl_f_offset
;
2946 retval
= cluster_io(vp
, upl
, 0, upl_f_offset
, read_size
,
2947 CL_READ
| bflag
, (buf_t
)NULL
, (struct clios
*)NULL
, callback
, callback_arg
);
2950 * we had an error during the read which causes us to abort
2951 * the current cluster_write request... before we do, we need
2952 * to release the rest of the pages in the upl without modifying
2953 * there state and mark the failed page in error
2955 ubc_upl_abort_range(upl
, 0, PAGE_SIZE
, UPL_ABORT_DUMP_PAGES
|UPL_ABORT_FREE_ON_EMPTY
);
2957 if (upl_size
> PAGE_SIZE
)
2958 ubc_upl_abort_range(upl
, 0, upl_size
, UPL_ABORT_FREE_ON_EMPTY
);
2960 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 45)) | DBG_FUNC_NONE
,
2961 upl
, 0, 0, retval
, 0);
2965 if ((start_offset
== 0 || upl_size
> PAGE_SIZE
) && ((start_offset
+ io_size
) & PAGE_MASK
)) {
2967 * the last offset we're writing to in this upl does not end on a page
2968 * boundary... if it's not beyond the old EOF, then we'll also need to
2969 * pre-read this page in if it isn't already valid
2971 upl_offset
= upl_size
- PAGE_SIZE
;
2973 if ((upl_f_offset
+ start_offset
+ io_size
) < oldEOF
&&
2974 !upl_valid_page(pl
, upl_offset
/ PAGE_SIZE
)) {
2977 read_size
= PAGE_SIZE
;
2979 if ((off_t
)(upl_f_offset
+ upl_offset
+ read_size
) > oldEOF
)
2980 read_size
= oldEOF
- (upl_f_offset
+ upl_offset
);
2982 retval
= cluster_io(vp
, upl
, upl_offset
, upl_f_offset
+ upl_offset
, read_size
,
2983 CL_READ
| bflag
, (buf_t
)NULL
, (struct clios
*)NULL
, callback
, callback_arg
);
2986 * we had an error during the read which causes us to abort
2987 * the current cluster_write request... before we do, we
2988 * need to release the rest of the pages in the upl without
2989 * modifying there state and mark the failed page in error
2991 ubc_upl_abort_range(upl
, upl_offset
, PAGE_SIZE
, UPL_ABORT_DUMP_PAGES
|UPL_ABORT_FREE_ON_EMPTY
);
2993 if (upl_size
> PAGE_SIZE
)
2994 ubc_upl_abort_range(upl
, 0, upl_size
, UPL_ABORT_FREE_ON_EMPTY
);
2996 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 45)) | DBG_FUNC_NONE
,
2997 upl
, 0, 0, retval
, 0);
3002 xfer_resid
= io_size
;
3003 io_offset
= start_offset
;
3005 while (zero_cnt
&& xfer_resid
) {
3007 if (zero_cnt
< (long long)xfer_resid
)
3008 bytes_to_zero
= zero_cnt
;
3010 bytes_to_zero
= xfer_resid
;
3012 bytes_to_zero
= cluster_zero_range(upl
, pl
, flags
, io_offset
, zero_off
, upl_f_offset
, bytes_to_zero
);
3014 xfer_resid
-= bytes_to_zero
;
3015 zero_cnt
-= bytes_to_zero
;
3016 zero_off
+= bytes_to_zero
;
3017 io_offset
+= bytes_to_zero
;
3019 if (xfer_resid
&& io_resid
) {
3020 u_int32_t io_requested
;
3022 bytes_to_move
= min(io_resid
, xfer_resid
);
3023 io_requested
= bytes_to_move
;
3025 retval
= cluster_copy_upl_data(uio
, upl
, io_offset
, (int *)&io_requested
);
3028 ubc_upl_abort_range(upl
, 0, upl_size
, UPL_ABORT_DUMP_PAGES
| UPL_ABORT_FREE_ON_EMPTY
);
3030 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 45)) | DBG_FUNC_NONE
,
3031 upl
, 0, 0, retval
, 0);
3033 io_resid
-= bytes_to_move
;
3034 xfer_resid
-= bytes_to_move
;
3035 io_offset
+= bytes_to_move
;
3038 while (xfer_resid
&& zero_cnt1
&& retval
== 0) {
3040 if (zero_cnt1
< (long long)xfer_resid
)
3041 bytes_to_zero
= zero_cnt1
;
3043 bytes_to_zero
= xfer_resid
;
3045 bytes_to_zero
= cluster_zero_range(upl
, pl
, flags
, io_offset
, zero_off1
, upl_f_offset
, bytes_to_zero
);
3047 xfer_resid
-= bytes_to_zero
;
3048 zero_cnt1
-= bytes_to_zero
;
3049 zero_off1
+= bytes_to_zero
;
3050 io_offset
+= bytes_to_zero
;
3054 int ret_cluster_try_push
;
3056 io_size
+= start_offset
;
3058 if ((upl_f_offset
+ io_size
) >= newEOF
&& (u_int
)io_size
< upl_size
) {
3060 * if we're extending the file with this write
3061 * we'll zero fill the rest of the page so that
3062 * if the file gets extended again in such a way as to leave a
3063 * hole starting at this EOF, we'll have zero's in the correct spot
3065 cluster_zero(upl
, io_size
, upl_size
- io_size
, NULL
);
3068 * release the upl now if we hold one since...
3069 * 1) pages in it may be present in the sparse cluster map
3070 * and may span 2 separate buckets there... if they do and
3071 * we happen to have to flush a bucket to make room and it intersects
3072 * this upl, a deadlock may result on page BUSY
3073 * 2) we're delaying the I/O... from this point forward we're just updating
3074 * the cluster state... no need to hold the pages, so commit them
3075 * 3) IO_SYNC is set...
3076 * because we had to ask for a UPL that provides currenty non-present pages, the
3077 * UPL has been automatically set to clear the dirty flags (both software and hardware)
3078 * upon committing it... this is not the behavior we want since it's possible for
3079 * pages currently present as part of a mapped file to be dirtied while the I/O is in flight.
3080 * we'll pick these pages back up later with the correct behavior specified.
3081 * 4) we don't want to hold pages busy in a UPL and then block on the cluster lock... if a flush
3082 * of this vnode is in progress, we will deadlock if the pages being flushed intersect the pages
3083 * we hold since the flushing context is holding the cluster lock.
3085 ubc_upl_commit_range(upl
, 0, upl_size
,
3086 UPL_COMMIT_SET_DIRTY
| UPL_COMMIT_INACTIVATE
| UPL_COMMIT_FREE_ON_EMPTY
);
3089 * calculate the last logical block number
3090 * that this delayed I/O encompassed
3092 cl
.e_addr
= (daddr64_t
)((upl_f_offset
+ (off_t
)upl_size
) / PAGE_SIZE_64
);
3094 if (flags
& IO_SYNC
) {
3096 * if the IO_SYNC flag is set than we need to
3097 * bypass any clusters and immediately issue
3103 * take the lock to protect our accesses
3104 * of the writebehind and sparse cluster state
3106 wbp
= cluster_get_wbp(vp
, CLW_ALLOCATE
| CLW_RETURNLOCKED
);
3108 if (wbp
->cl_scmap
) {
3110 if ( !(flags
& IO_NOCACHE
)) {
3112 * we've fallen into the sparse
3113 * cluster method of delaying dirty pages
3115 sparse_cluster_add(&(wbp
->cl_scmap
), vp
, &cl
, newEOF
, callback
, callback_arg
);
3117 lck_mtx_unlock(&wbp
->cl_lockw
);
3122 * must have done cached writes that fell into
3123 * the sparse cluster mechanism... we've switched
3124 * to uncached writes on the file, so go ahead
3125 * and push whatever's in the sparse map
3126 * and switch back to normal clustering
3130 sparse_cluster_push(&(wbp
->cl_scmap
), vp
, newEOF
, PUSH_ALL
, 0, callback
, callback_arg
);
3132 * no clusters of either type present at this point
3133 * so just go directly to start_new_cluster since
3134 * we know we need to delay this I/O since we've
3135 * already released the pages back into the cache
3136 * to avoid the deadlock with sparse_cluster_push
3138 goto start_new_cluster
;
3141 if (write_off
== wbp
->cl_last_write
)
3142 wbp
->cl_seq_written
+= write_cnt
;
3144 wbp
->cl_seq_written
= write_cnt
;
3146 wbp
->cl_last_write
= write_off
+ write_cnt
;
3150 if (wbp
->cl_number
== 0)
3152 * no clusters currently present
3154 goto start_new_cluster
;
3156 for (cl_index
= 0; cl_index
< wbp
->cl_number
; cl_index
++) {
3158 * check each cluster that we currently hold
3159 * try to merge some or all of this write into
3160 * one or more of the existing clusters... if
3161 * any portion of the write remains, start a
3164 if (cl
.b_addr
>= wbp
->cl_clusters
[cl_index
].b_addr
) {
3166 * the current write starts at or after the current cluster
3168 if (cl
.e_addr
<= (wbp
->cl_clusters
[cl_index
].b_addr
+ max_cluster_pgcount
)) {
3170 * we have a write that fits entirely
3171 * within the existing cluster limits
3173 if (cl
.e_addr
> wbp
->cl_clusters
[cl_index
].e_addr
)
3175 * update our idea of where the cluster ends
3177 wbp
->cl_clusters
[cl_index
].e_addr
= cl
.e_addr
;
3180 if (cl
.b_addr
< (wbp
->cl_clusters
[cl_index
].b_addr
+ max_cluster_pgcount
)) {
3182 * we have a write that starts in the middle of the current cluster
3183 * but extends beyond the cluster's limit... we know this because
3184 * of the previous checks
3185 * we'll extend the current cluster to the max
3186 * and update the b_addr for the current write to reflect that
3187 * the head of it was absorbed into this cluster...
3188 * note that we'll always have a leftover tail in this case since
3189 * full absorbtion would have occurred in the clause above
3191 wbp
->cl_clusters
[cl_index
].e_addr
= wbp
->cl_clusters
[cl_index
].b_addr
+ max_cluster_pgcount
;
3193 cl
.b_addr
= wbp
->cl_clusters
[cl_index
].e_addr
;
3196 * we come here for the case where the current write starts
3197 * beyond the limit of the existing cluster or we have a leftover
3198 * tail after a partial absorbtion
3200 * in either case, we'll check the remaining clusters before
3201 * starting a new one
3205 * the current write starts in front of the cluster we're currently considering
3207 if ((wbp
->cl_clusters
[cl_index
].e_addr
- cl
.b_addr
) <= max_cluster_pgcount
) {
3209 * we can just merge the new request into
3210 * this cluster and leave it in the cache
3211 * since the resulting cluster is still
3212 * less than the maximum allowable size
3214 wbp
->cl_clusters
[cl_index
].b_addr
= cl
.b_addr
;
3216 if (cl
.e_addr
> wbp
->cl_clusters
[cl_index
].e_addr
) {
3218 * the current write completely
3219 * envelops the existing cluster and since
3220 * each write is limited to at most max_cluster_pgcount pages
3221 * we can just use the start and last blocknos of the write
3222 * to generate the cluster limits
3224 wbp
->cl_clusters
[cl_index
].e_addr
= cl
.e_addr
;
3230 * if we were to combine this write with the current cluster
3231 * we would exceed the cluster size limit.... so,
3232 * let's see if there's any overlap of the new I/O with
3233 * the cluster we're currently considering... in fact, we'll
3234 * stretch the cluster out to it's full limit and see if we
3235 * get an intersection with the current write
3238 if (cl
.e_addr
> wbp
->cl_clusters
[cl_index
].e_addr
- max_cluster_pgcount
) {
3240 * the current write extends into the proposed cluster
3241 * clip the length of the current write after first combining it's
3242 * tail with the newly shaped cluster
3244 wbp
->cl_clusters
[cl_index
].b_addr
= wbp
->cl_clusters
[cl_index
].e_addr
- max_cluster_pgcount
;
3246 cl
.e_addr
= wbp
->cl_clusters
[cl_index
].b_addr
;
3249 * if we get here, there was no way to merge
3250 * any portion of this write with this cluster
3251 * or we could only merge part of it which
3252 * will leave a tail...
3253 * we'll check the remaining clusters before starting a new one
3257 if (cl_index
< wbp
->cl_number
)
3259 * we found an existing cluster(s) that we
3260 * could entirely merge this I/O into
3264 if (!((unsigned int)vfs_flags(vp
->v_mount
) & MNT_DEFWRITE
) &&
3265 wbp
->cl_number
== MAX_CLUSTERS
&&
3266 wbp
->cl_seq_written
>= (MAX_CLUSTERS
* (max_cluster_pgcount
* PAGE_SIZE
))) {
3269 if (vp
->v_mount
->mnt_kern_flag
& MNTK_SSD
)
3270 n
= WRITE_BEHIND_SSD
;
3275 cluster_try_push(wbp
, vp
, newEOF
, 0, 0, callback
, callback_arg
);
3277 if (wbp
->cl_number
< MAX_CLUSTERS
) {
3279 * we didn't find an existing cluster to
3280 * merge into, but there's room to start
3283 goto start_new_cluster
;
3286 * no exisitng cluster to merge with and no
3287 * room to start a new one... we'll try
3288 * pushing one of the existing ones... if none of
3289 * them are able to be pushed, we'll switch
3290 * to the sparse cluster mechanism
3291 * cluster_try_push updates cl_number to the
3292 * number of remaining clusters... and
3293 * returns the number of currently unused clusters
3295 ret_cluster_try_push
= 0;
3298 * if writes are not deferred, call cluster push immediately
3300 if (!((unsigned int)vfs_flags(vp
->v_mount
) & MNT_DEFWRITE
)) {
3302 ret_cluster_try_push
= cluster_try_push(wbp
, vp
, newEOF
, (flags
& IO_NOCACHE
) ? 0 : PUSH_DELAY
, 0, callback
, callback_arg
);
3306 * execute following regardless of writes being deferred or not
3308 if (ret_cluster_try_push
== 0) {
3310 * no more room in the normal cluster mechanism
3311 * so let's switch to the more expansive but expensive
3312 * sparse mechanism....
3314 sparse_cluster_switch(wbp
, vp
, newEOF
, callback
, callback_arg
);
3315 sparse_cluster_add(&(wbp
->cl_scmap
), vp
, &cl
, newEOF
, callback
, callback_arg
);
3317 lck_mtx_unlock(&wbp
->cl_lockw
);
3322 wbp
->cl_clusters
[wbp
->cl_number
].b_addr
= cl
.b_addr
;
3323 wbp
->cl_clusters
[wbp
->cl_number
].e_addr
= cl
.e_addr
;
3325 wbp
->cl_clusters
[wbp
->cl_number
].io_flags
= 0;
3327 if (flags
& IO_NOCACHE
)
3328 wbp
->cl_clusters
[wbp
->cl_number
].io_flags
|= CLW_IONOCACHE
;
3330 if (bflag
& CL_PASSIVE
)
3331 wbp
->cl_clusters
[wbp
->cl_number
].io_flags
|= CLW_IOPASSIVE
;
3335 lck_mtx_unlock(&wbp
->cl_lockw
);
3340 * we don't hold the lock at this point
3342 * we've already dropped the current upl, so pick it back up with COPYOUT_FROM set
3343 * so that we correctly deal with a change in state of the hardware modify bit...
3344 * we do this via cluster_push_now... by passing along the IO_SYNC flag, we force
3345 * cluster_push_now to wait until all the I/Os have completed... cluster_push_now is also
3346 * responsible for generating the correct sized I/O(s)
3348 retval
= cluster_push_now(vp
, &cl
, newEOF
, flags
, callback
, callback_arg
);
3351 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 40)) | DBG_FUNC_END
, retval
, 0, io_resid
, 0, 0);
3359 cluster_read(vnode_t vp
, struct uio
*uio
, off_t filesize
, int xflags
)
3361 return cluster_read_ext(vp
, uio
, filesize
, xflags
, NULL
, NULL
);
3366 cluster_read_ext(vnode_t vp
, struct uio
*uio
, off_t filesize
, int xflags
, int (*callback
)(buf_t
, void *), void *callback_arg
)
3370 user_ssize_t cur_resid
;
3372 u_int32_t read_length
= 0;
3373 int read_type
= IO_COPY
;
3377 if (vp
->v_flag
& VNOCACHE_DATA
)
3378 flags
|= IO_NOCACHE
;
3379 if ((vp
->v_flag
& VRAOFF
) || speculative_reads_disabled
)
3382 if (flags
& IO_SKIP_ENCRYPTION
)
3383 flags
|= IO_ENCRYPTED
;
3385 * If we're doing an encrypted IO, then first check to see
3386 * if the IO requested was page aligned. If not, then bail
3389 if (flags
& IO_ENCRYPTED
) {
3390 if (read_length
& PAGE_MASK
) {
3397 * do a read through the cache if one of the following is true....
3398 * NOCACHE is not true
3399 * the uio request doesn't target USERSPACE
3400 * Alternatively, if IO_ENCRYPTED is set, then we want to bypass the cache as well.
3401 * Reading encrypted data from a CP filesystem should never result in the data touching
3404 * otherwise, find out if we want the direct or contig variant for
3405 * the first vector in the uio request
3407 if ( ((flags
& IO_NOCACHE
) && UIO_SEG_IS_USER_SPACE(uio
->uio_segflg
)) || (flags
& IO_ENCRYPTED
) ) {
3409 retval
= cluster_io_type(uio
, &read_type
, &read_length
, 0);
3412 while ((cur_resid
= uio_resid(uio
)) && uio
->uio_offset
< filesize
&& retval
== 0) {
3414 switch (read_type
) {
3418 * make sure the uio_resid isn't too big...
3419 * internally, we want to handle all of the I/O in
3420 * chunk sizes that fit in a 32 bit int
3422 if (cur_resid
> (user_ssize_t
)(MAX_IO_REQUEST_SIZE
))
3423 io_size
= MAX_IO_REQUEST_SIZE
;
3425 io_size
= (u_int32_t
)cur_resid
;
3427 retval
= cluster_read_copy(vp
, uio
, io_size
, filesize
, flags
, callback
, callback_arg
);
3431 retval
= cluster_read_direct(vp
, uio
, filesize
, &read_type
, &read_length
, flags
, callback
, callback_arg
);
3435 retval
= cluster_read_contig(vp
, uio
, filesize
, &read_type
, &read_length
, callback
, callback_arg
, flags
);
3439 retval
= cluster_io_type(uio
, &read_type
, &read_length
, 0);
3449 cluster_read_upl_release(upl_t upl
, int start_pg
, int last_pg
, int take_reference
)
3452 int abort_flags
= UPL_ABORT_FREE_ON_EMPTY
;
3454 if ((range
= last_pg
- start_pg
)) {
3456 abort_flags
|= UPL_ABORT_REFERENCE
;
3458 ubc_upl_abort_range(upl
, start_pg
* PAGE_SIZE
, range
* PAGE_SIZE
, abort_flags
);
3464 cluster_read_copy(vnode_t vp
, struct uio
*uio
, u_int32_t io_req_size
, off_t filesize
, int flags
, int (*callback
)(buf_t
, void *), void *callback_arg
)
3466 upl_page_info_t
*pl
;
3468 vm_offset_t upl_offset
;
3477 off_t last_ioread_offset
;
3478 off_t last_request_offset
;
3482 u_int32_t size_of_prefetch
;
3485 u_int32_t max_rd_size
;
3486 u_int32_t max_io_size
;
3487 u_int32_t max_prefetch
;
3488 u_int rd_ahead_enabled
= 1;
3489 u_int prefetch_enabled
= 1;
3490 struct cl_readahead
* rap
;
3491 struct clios iostate
;
3492 struct cl_extent extent
;
3494 int take_reference
= 1;
3495 int policy
= IOPOL_DEFAULT
;
3496 boolean_t iolock_inited
= FALSE
;
3498 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 32)) | DBG_FUNC_START
,
3499 (int)uio
->uio_offset
, io_req_size
, (int)filesize
, flags
, 0);
3501 if (flags
& IO_ENCRYPTED
) {
3502 panic ("encrypted blocks will hit UBC!");
3505 policy
= throttle_get_io_policy(NULL
);
3507 if (policy
== THROTTLE_LEVEL_TIER3
|| policy
== THROTTLE_LEVEL_TIER2
|| (flags
& IO_NOCACHE
))
3510 if (flags
& IO_PASSIVE
)
3515 if (flags
& IO_NOCACHE
)
3516 bflag
|= CL_NOCACHE
;
3518 if (flags
& IO_SKIP_ENCRYPTION
)
3519 bflag
|= CL_ENCRYPTED
;
3521 max_io_size
= cluster_max_io_size(vp
->v_mount
, CL_READ
);
3522 max_prefetch
= MAX_PREFETCH(vp
, max_io_size
, (vp
->v_mount
->mnt_kern_flag
& MNTK_SSD
));
3523 max_rd_size
= max_prefetch
;
3525 last_request_offset
= uio
->uio_offset
+ io_req_size
;
3527 if (last_request_offset
> filesize
)
3528 last_request_offset
= filesize
;
3530 if ((flags
& (IO_RAOFF
|IO_NOCACHE
)) || ((last_request_offset
& ~PAGE_MASK_64
) == (uio
->uio_offset
& ~PAGE_MASK_64
))) {
3531 rd_ahead_enabled
= 0;
3534 if (cluster_is_throttled(vp
)) {
3536 * we're in the throttle window, at the very least
3537 * we want to limit the size of the I/O we're about
3540 rd_ahead_enabled
= 0;
3541 prefetch_enabled
= 0;
3543 max_rd_size
= THROTTLE_MAX_IOSIZE
;
3545 if ((rap
= cluster_get_rap(vp
)) == NULL
)
3546 rd_ahead_enabled
= 0;
3548 extent
.b_addr
= uio
->uio_offset
/ PAGE_SIZE_64
;
3549 extent
.e_addr
= (last_request_offset
- 1) / PAGE_SIZE_64
;
3552 if (rap
!= NULL
&& rap
->cl_ralen
&& (rap
->cl_lastr
== extent
.b_addr
|| (rap
->cl_lastr
+ 1) == extent
.b_addr
)) {
3554 * determine if we already have a read-ahead in the pipe courtesy of the
3555 * last read systemcall that was issued...
3556 * if so, pick up it's extent to determine where we should start
3557 * with respect to any read-ahead that might be necessary to
3558 * garner all the data needed to complete this read systemcall
3560 last_ioread_offset
= (rap
->cl_maxra
* PAGE_SIZE_64
) + PAGE_SIZE_64
;
3562 if (last_ioread_offset
< uio
->uio_offset
)
3563 last_ioread_offset
= (off_t
)0;
3564 else if (last_ioread_offset
> last_request_offset
)
3565 last_ioread_offset
= last_request_offset
;
3567 last_ioread_offset
= (off_t
)0;
3569 while (io_req_size
&& uio
->uio_offset
< filesize
&& retval
== 0) {
3571 max_size
= filesize
- uio
->uio_offset
;
3573 if ((off_t
)(io_req_size
) < max_size
)
3574 io_size
= io_req_size
;
3578 if (!(flags
& IO_NOCACHE
)) {
3582 u_int32_t io_requested
;
3585 * if we keep finding the pages we need already in the cache, then
3586 * don't bother to call cluster_read_prefetch since it costs CPU cycles
3587 * to determine that we have all the pages we need... once we miss in
3588 * the cache and have issued an I/O, than we'll assume that we're likely
3589 * to continue to miss in the cache and it's to our advantage to try and prefetch
3591 if (last_request_offset
&& last_ioread_offset
&& (size_of_prefetch
= (last_request_offset
- last_ioread_offset
))) {
3592 if ((last_ioread_offset
- uio
->uio_offset
) <= max_rd_size
&& prefetch_enabled
) {
3594 * we've already issued I/O for this request and
3595 * there's still work to do and
3596 * our prefetch stream is running dry, so issue a
3597 * pre-fetch I/O... the I/O latency will overlap
3598 * with the copying of the data
3600 if (size_of_prefetch
> max_rd_size
)
3601 size_of_prefetch
= max_rd_size
;
3603 size_of_prefetch
= cluster_read_prefetch(vp
, last_ioread_offset
, size_of_prefetch
, filesize
, callback
, callback_arg
, bflag
);
3605 last_ioread_offset
+= (off_t
)(size_of_prefetch
* PAGE_SIZE
);
3607 if (last_ioread_offset
> last_request_offset
)
3608 last_ioread_offset
= last_request_offset
;
3612 * limit the size of the copy we're about to do so that
3613 * we can notice that our I/O pipe is running dry and
3614 * get the next I/O issued before it does go dry
3616 if (last_ioread_offset
&& io_size
> (max_io_size
/ 4))
3617 io_resid
= (max_io_size
/ 4);
3621 io_requested
= io_resid
;
3623 retval
= cluster_copy_ubc_data_internal(vp
, uio
, (int *)&io_resid
, 0, take_reference
);
3625 xsize
= io_requested
- io_resid
;
3628 io_req_size
-= xsize
;
3630 if (retval
|| io_resid
)
3632 * if we run into a real error or
3633 * a page that is not in the cache
3634 * we need to leave streaming mode
3638 if (rd_ahead_enabled
&& (io_size
== 0 || last_ioread_offset
== last_request_offset
)) {
3640 * we're already finished the I/O for this read request
3641 * let's see if we should do a read-ahead
3643 cluster_read_ahead(vp
, &extent
, filesize
, rap
, callback
, callback_arg
, bflag
);
3650 if (extent
.e_addr
< rap
->cl_lastr
)
3652 rap
->cl_lastr
= extent
.e_addr
;
3657 * recompute max_size since cluster_copy_ubc_data_internal
3658 * may have advanced uio->uio_offset
3660 max_size
= filesize
- uio
->uio_offset
;
3663 iostate
.io_completed
= 0;
3664 iostate
.io_issued
= 0;
3665 iostate
.io_error
= 0;
3666 iostate
.io_wanted
= 0;
3668 if ( (flags
& IO_RETURN_ON_THROTTLE
) ) {
3669 if (cluster_is_throttled(vp
) == THROTTLE_NOW
) {
3670 if ( !cluster_io_present_in_BC(vp
, uio
->uio_offset
)) {
3672 * we're in the throttle window and at least 1 I/O
3673 * has already been issued by a throttleable thread
3674 * in this window, so return with EAGAIN to indicate
3675 * to the FS issuing the cluster_read call that it
3676 * should now throttle after dropping any locks
3678 throttle_info_update_by_mount(vp
->v_mount
);
3687 * compute the size of the upl needed to encompass
3688 * the requested read... limit each call to cluster_io
3689 * to the maximum UPL size... cluster_io will clip if
3690 * this exceeds the maximum io_size for the device,
3691 * make sure to account for
3692 * a starting offset that's not page aligned
3694 start_offset
= (int)(uio
->uio_offset
& PAGE_MASK_64
);
3695 upl_f_offset
= uio
->uio_offset
- (off_t
)start_offset
;
3697 if (io_size
> max_rd_size
)
3698 io_size
= max_rd_size
;
3700 upl_size
= (start_offset
+ io_size
+ (PAGE_SIZE
- 1)) & ~PAGE_MASK
;
3702 if (flags
& IO_NOCACHE
) {
3703 if (upl_size
> max_io_size
)
3704 upl_size
= max_io_size
;
3706 if (upl_size
> max_io_size
/ 4) {
3707 upl_size
= max_io_size
/ 4;
3708 upl_size
&= ~PAGE_MASK
;
3711 upl_size
= PAGE_SIZE
;
3714 pages_in_upl
= upl_size
/ PAGE_SIZE
;
3716 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 33)) | DBG_FUNC_START
,
3717 upl
, (int)upl_f_offset
, upl_size
, start_offset
, 0);
3719 kret
= ubc_create_upl(vp
,
3724 UPL_FILE_IO
| UPL_SET_LITE
);
3725 if (kret
!= KERN_SUCCESS
)
3726 panic("cluster_read_copy: failed to get pagelist");
3728 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 33)) | DBG_FUNC_END
,
3729 upl
, (int)upl_f_offset
, upl_size
, start_offset
, 0);
3732 * scan from the beginning of the upl looking for the first
3733 * non-valid page.... this will become the first page in
3734 * the request we're going to make to 'cluster_io'... if all
3735 * of the pages are valid, we won't call through to 'cluster_io'
3737 for (start_pg
= 0; start_pg
< pages_in_upl
; start_pg
++) {
3738 if (!upl_valid_page(pl
, start_pg
))
3743 * scan from the starting invalid page looking for a valid
3744 * page before the end of the upl is reached, if we
3745 * find one, then it will be the last page of the request to
3748 for (last_pg
= start_pg
; last_pg
< pages_in_upl
; last_pg
++) {
3749 if (upl_valid_page(pl
, last_pg
))
3753 if (start_pg
< last_pg
) {
3755 * we found a range of 'invalid' pages that must be filled
3756 * if the last page in this range is the last page of the file
3757 * we may have to clip the size of it to keep from reading past
3758 * the end of the last physical block associated with the file
3760 if (iolock_inited
== FALSE
) {
3761 lck_mtx_init(&iostate
.io_mtxp
, cl_mtx_grp
, cl_mtx_attr
);
3763 iolock_inited
= TRUE
;
3765 upl_offset
= start_pg
* PAGE_SIZE
;
3766 io_size
= (last_pg
- start_pg
) * PAGE_SIZE
;
3768 if ((off_t
)(upl_f_offset
+ upl_offset
+ io_size
) > filesize
)
3769 io_size
= filesize
- (upl_f_offset
+ upl_offset
);
3772 * issue an asynchronous read to cluster_io
3775 error
= cluster_io(vp
, upl
, upl_offset
, upl_f_offset
+ upl_offset
,
3776 io_size
, CL_READ
| CL_ASYNC
| bflag
, (buf_t
)NULL
, &iostate
, callback
, callback_arg
);
3779 if (extent
.e_addr
< rap
->cl_maxra
) {
3781 * we've just issued a read for a block that should have been
3782 * in the cache courtesy of the read-ahead engine... something
3783 * has gone wrong with the pipeline, so reset the read-ahead
3784 * logic which will cause us to restart from scratch
3792 * if the read completed successfully, or there was no I/O request
3793 * issued, than copy the data into user land via 'cluster_upl_copy_data'
3794 * we'll first add on any 'valid'
3795 * pages that were present in the upl when we acquired it.
3799 for (uio_last
= last_pg
; uio_last
< pages_in_upl
; uio_last
++) {
3800 if (!upl_valid_page(pl
, uio_last
))
3803 if (uio_last
< pages_in_upl
) {
3805 * there were some invalid pages beyond the valid pages
3806 * that we didn't issue an I/O for, just release them
3807 * unchanged now, so that any prefetch/readahed can
3810 ubc_upl_abort_range(upl
, uio_last
* PAGE_SIZE
,
3811 (pages_in_upl
- uio_last
) * PAGE_SIZE
, UPL_ABORT_FREE_ON_EMPTY
);
3815 * compute size to transfer this round, if io_req_size is
3816 * still non-zero after this attempt, we'll loop around and
3817 * set up for another I/O.
3819 val_size
= (uio_last
* PAGE_SIZE
) - start_offset
;
3821 if (val_size
> max_size
)
3822 val_size
= max_size
;
3824 if (val_size
> io_req_size
)
3825 val_size
= io_req_size
;
3827 if ((uio
->uio_offset
+ val_size
) > last_ioread_offset
)
3828 last_ioread_offset
= uio
->uio_offset
+ val_size
;
3830 if ((size_of_prefetch
= (last_request_offset
- last_ioread_offset
)) && prefetch_enabled
) {
3832 if ((last_ioread_offset
- (uio
->uio_offset
+ val_size
)) <= upl_size
) {
3834 * if there's still I/O left to do for this request, and...
3835 * we're not in hard throttle mode, and...
3836 * we're close to using up the previous prefetch, then issue a
3837 * new pre-fetch I/O... the I/O latency will overlap
3838 * with the copying of the data
3840 if (size_of_prefetch
> max_rd_size
)
3841 size_of_prefetch
= max_rd_size
;
3843 size_of_prefetch
= cluster_read_prefetch(vp
, last_ioread_offset
, size_of_prefetch
, filesize
, callback
, callback_arg
, bflag
);
3845 last_ioread_offset
+= (off_t
)(size_of_prefetch
* PAGE_SIZE
);
3847 if (last_ioread_offset
> last_request_offset
)
3848 last_ioread_offset
= last_request_offset
;
3851 } else if ((uio
->uio_offset
+ val_size
) == last_request_offset
) {
3853 * this transfer will finish this request, so...
3854 * let's try to read ahead if we're in
3855 * a sequential access pattern and we haven't
3856 * explicitly disabled it
3858 if (rd_ahead_enabled
)
3859 cluster_read_ahead(vp
, &extent
, filesize
, rap
, callback
, callback_arg
, bflag
);
3862 if (extent
.e_addr
< rap
->cl_lastr
)
3864 rap
->cl_lastr
= extent
.e_addr
;
3867 if (iolock_inited
== TRUE
)
3868 cluster_iostate_wait(&iostate
, 0, "cluster_read_copy");
3870 if (iostate
.io_error
)
3871 error
= iostate
.io_error
;
3873 u_int32_t io_requested
;
3875 io_requested
= val_size
;
3877 retval
= cluster_copy_upl_data(uio
, upl
, start_offset
, (int *)&io_requested
);
3879 io_req_size
-= (val_size
- io_requested
);
3882 if (iolock_inited
== TRUE
)
3883 cluster_iostate_wait(&iostate
, 0, "cluster_read_copy");
3885 if (start_pg
< last_pg
) {
3887 * compute the range of pages that we actually issued an I/O for
3888 * and either commit them as valid if the I/O succeeded
3889 * or abort them if the I/O failed or we're not supposed to
3890 * keep them in the cache
3892 io_size
= (last_pg
- start_pg
) * PAGE_SIZE
;
3894 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 35)) | DBG_FUNC_START
, upl
, start_pg
* PAGE_SIZE
, io_size
, error
, 0);
3896 if (error
|| (flags
& IO_NOCACHE
))
3897 ubc_upl_abort_range(upl
, start_pg
* PAGE_SIZE
, io_size
,
3898 UPL_ABORT_DUMP_PAGES
| UPL_ABORT_FREE_ON_EMPTY
);
3900 int commit_flags
= UPL_COMMIT_CLEAR_DIRTY
| UPL_COMMIT_FREE_ON_EMPTY
;
3903 commit_flags
|= UPL_COMMIT_INACTIVATE
;
3905 commit_flags
|= UPL_COMMIT_SPECULATE
;
3907 ubc_upl_commit_range(upl
, start_pg
* PAGE_SIZE
, io_size
, commit_flags
);
3909 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 35)) | DBG_FUNC_END
, upl
, start_pg
* PAGE_SIZE
, io_size
, error
, 0);
3911 if ((last_pg
- start_pg
) < pages_in_upl
) {
3913 * the set of pages that we issued an I/O for did not encompass
3914 * the entire upl... so just release these without modifying
3918 ubc_upl_abort_range(upl
, 0, upl_size
, UPL_ABORT_FREE_ON_EMPTY
);
3921 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 35)) | DBG_FUNC_START
,
3922 upl
, -1, pages_in_upl
- (last_pg
- start_pg
), 0, 0);
3925 * handle any valid pages at the beginning of
3926 * the upl... release these appropriately
3928 cluster_read_upl_release(upl
, 0, start_pg
, take_reference
);
3931 * handle any valid pages immediately after the
3932 * pages we issued I/O for... ... release these appropriately
3934 cluster_read_upl_release(upl
, last_pg
, uio_last
, take_reference
);
3936 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 35)) | DBG_FUNC_END
, upl
, -1, -1, 0, 0);
3943 if (cluster_is_throttled(vp
)) {
3945 * we're in the throttle window, at the very least
3946 * we want to limit the size of the I/O we're about
3949 rd_ahead_enabled
= 0;
3950 prefetch_enabled
= 0;
3951 max_rd_size
= THROTTLE_MAX_IOSIZE
;
3953 if (max_rd_size
== THROTTLE_MAX_IOSIZE
) {
3955 * coming out of throttled state
3957 if (policy
!= THROTTLE_LEVEL_TIER3
&& policy
!= THROTTLE_LEVEL_TIER2
) {
3959 rd_ahead_enabled
= 1;
3960 prefetch_enabled
= 1;
3962 max_rd_size
= max_prefetch
;
3963 last_ioread_offset
= 0;
3968 if (iolock_inited
== TRUE
) {
3970 * cluster_io returned an error after it
3971 * had already issued some I/O. we need
3972 * to wait for that I/O to complete before
3973 * we can destroy the iostate mutex...
3974 * 'retval' already contains the early error
3975 * so no need to pick it up from iostate.io_error
3977 cluster_iostate_wait(&iostate
, 0, "cluster_read_copy");
3979 lck_mtx_destroy(&iostate
.io_mtxp
, cl_mtx_grp
);
3982 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 32)) | DBG_FUNC_END
,
3983 (int)uio
->uio_offset
, io_req_size
, rap
->cl_lastr
, retval
, 0);
3985 lck_mtx_unlock(&rap
->cl_lockr
);
3987 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 32)) | DBG_FUNC_END
,
3988 (int)uio
->uio_offset
, io_req_size
, 0, retval
, 0);
3995 cluster_read_direct(vnode_t vp
, struct uio
*uio
, off_t filesize
, int *read_type
, u_int32_t
*read_length
,
3996 int flags
, int (*callback
)(buf_t
, void *), void *callback_arg
)
3999 upl_page_info_t
*pl
;
4001 vm_offset_t upl_offset
, vector_upl_offset
= 0;
4002 upl_size_t upl_size
, vector_upl_size
= 0;
4003 vm_size_t upl_needed_size
;
4004 unsigned int pages_in_pl
;
4008 int force_data_sync
;
4010 int no_zero_fill
= 0;
4013 struct clios iostate
;
4014 user_addr_t iov_base
;
4015 u_int32_t io_req_size
;
4016 u_int32_t offset_in_file
;
4017 u_int32_t offset_in_iovbase
;
4021 u_int32_t devblocksize
;
4022 u_int32_t mem_alignment_mask
;
4023 u_int32_t max_upl_size
;
4024 u_int32_t max_rd_size
;
4025 u_int32_t max_rd_ahead
;
4026 u_int32_t max_vector_size
;
4027 boolean_t strict_uncached_IO
= FALSE
;
4028 boolean_t io_throttled
= FALSE
;
4030 u_int32_t vector_upl_iosize
= 0;
4031 int issueVectorUPL
= 0,useVectorUPL
= (uio
->uio_iovcnt
> 1);
4032 off_t v_upl_uio_offset
= 0;
4033 int vector_upl_index
=0;
4034 upl_t vector_upl
= NULL
;
4036 user_addr_t orig_iov_base
= 0;
4037 user_addr_t last_iov_base
= 0;
4038 user_addr_t next_iov_base
= 0;
4040 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 70)) | DBG_FUNC_START
,
4041 (int)uio
->uio_offset
, (int)filesize
, *read_type
, *read_length
, 0);
4043 max_upl_size
= cluster_max_io_size(vp
->v_mount
, CL_READ
);
4045 max_rd_size
= max_upl_size
;
4046 max_rd_ahead
= max_rd_size
* IO_SCALE(vp
, 2);
4048 io_flag
= CL_COMMIT
| CL_READ
| CL_ASYNC
| CL_NOZERO
| CL_DIRECT_IO
;
4050 if (flags
& IO_PASSIVE
)
4051 io_flag
|= CL_PASSIVE
;
4053 if (flags
& IO_ENCRYPTED
) {
4054 io_flag
|= CL_RAW_ENCRYPTED
;
4057 if (flags
& IO_NOCACHE
) {
4058 io_flag
|= CL_NOCACHE
;
4061 if (flags
& IO_SKIP_ENCRYPTION
)
4062 io_flag
|= CL_ENCRYPTED
;
4064 iostate
.io_completed
= 0;
4065 iostate
.io_issued
= 0;
4066 iostate
.io_error
= 0;
4067 iostate
.io_wanted
= 0;
4069 lck_mtx_init(&iostate
.io_mtxp
, cl_mtx_grp
, cl_mtx_attr
);
4071 devblocksize
= (u_int32_t
)vp
->v_mount
->mnt_devblocksize
;
4072 mem_alignment_mask
= (u_int32_t
)vp
->v_mount
->mnt_alignmentmask
;
4074 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 70)) | DBG_FUNC_NONE
,
4075 (int)devblocksize
, (int)mem_alignment_mask
, 0, 0, 0);
4077 if (devblocksize
== 1) {
4079 * the AFP client advertises a devblocksize of 1
4080 * however, its BLOCKMAP routine maps to physical
4081 * blocks that are PAGE_SIZE in size...
4082 * therefore we can't ask for I/Os that aren't page aligned
4083 * or aren't multiples of PAGE_SIZE in size
4084 * by setting devblocksize to PAGE_SIZE, we re-instate
4085 * the old behavior we had before the mem_alignment_mask
4086 * changes went in...
4088 devblocksize
= PAGE_SIZE
;
4091 strict_uncached_IO
= ubc_strict_uncached_IO(vp
);
4093 orig_iov_base
= uio_curriovbase(uio
);
4094 last_iov_base
= orig_iov_base
;
4097 io_req_size
= *read_length
;
4098 iov_base
= uio_curriovbase(uio
);
4100 max_io_size
= filesize
- uio
->uio_offset
;
4102 if ((off_t
)io_req_size
> max_io_size
)
4103 io_req_size
= max_io_size
;
4105 offset_in_file
= (u_int32_t
)uio
->uio_offset
& (devblocksize
- 1);
4106 offset_in_iovbase
= (u_int32_t
)iov_base
& mem_alignment_mask
;
4108 if (offset_in_file
|| offset_in_iovbase
) {
4110 * one of the 2 important offsets is misaligned
4111 * so fire an I/O through the cache for this entire vector
4115 if (iov_base
& (devblocksize
- 1)) {
4117 * the offset in memory must be on a device block boundary
4118 * so that we can guarantee that we can generate an
4119 * I/O that ends on a page boundary in cluster_io
4125 * The user must request IO in aligned chunks. If the
4126 * offset into the file is bad, or the userland pointer
4127 * is non-aligned, then we cannot service the encrypted IO request.
4129 if ((flags
& IO_ENCRYPTED
) && (misaligned
)) {
4134 * When we get to this point, we know...
4135 * -- the offset into the file is on a devblocksize boundary
4138 while (io_req_size
&& retval
== 0) {
4141 if (cluster_is_throttled(vp
)) {
4143 * we're in the throttle window, at the very least
4144 * we want to limit the size of the I/O we're about
4147 max_rd_size
= THROTTLE_MAX_IOSIZE
;
4148 max_rd_ahead
= THROTTLE_MAX_IOSIZE
- 1;
4149 max_vector_size
= THROTTLE_MAX_IOSIZE
;
4151 max_rd_size
= max_upl_size
;
4152 max_rd_ahead
= max_rd_size
* IO_SCALE(vp
, 2);
4153 max_vector_size
= MAX_VECTOR_UPL_SIZE
;
4155 io_start
= io_size
= io_req_size
;
4158 * First look for pages already in the cache
4159 * and move them to user space. But only do this
4160 * check if we are not retrieving encrypted data directly
4161 * from the filesystem; those blocks should never
4164 * cluster_copy_ubc_data returns the resid
4167 if ((strict_uncached_IO
== FALSE
) && ((flags
& IO_ENCRYPTED
) == 0)) {
4168 retval
= cluster_copy_ubc_data_internal(vp
, uio
, (int *)&io_size
, 0, 0);
4171 * calculate the number of bytes actually copied
4172 * starting size - residual
4174 xsize
= io_start
- io_size
;
4176 io_req_size
-= xsize
;
4178 if(useVectorUPL
&& (xsize
|| (iov_base
& PAGE_MASK
))) {
4180 * We found something in the cache or we have an iov_base that's not
4183 * Issue all I/O's that have been collected within this Vectored UPL.
4185 if(vector_upl_index
) {
4186 retval
= vector_cluster_io(vp
, vector_upl
, vector_upl_offset
, v_upl_uio_offset
, vector_upl_iosize
, io_flag
, (buf_t
)NULL
, &iostate
, callback
, callback_arg
);
4187 reset_vector_run_state();
4194 * After this point, if we are using the Vector UPL path and the base is
4195 * not page-aligned then the UPL with that base will be the first in the vector UPL.
4200 * check to see if we are finished with this request.
4202 * If we satisfied this IO already, then io_req_size will be 0.
4203 * Otherwise, see if the IO was mis-aligned and needs to go through
4204 * the UBC to deal with the 'tail'.
4207 if (io_req_size
== 0 || (misaligned
)) {
4209 * see if there's another uio vector to
4210 * process that's of type IO_DIRECT
4212 * break out of while loop to get there
4217 * assume the request ends on a device block boundary
4219 io_min
= devblocksize
;
4222 * we can handle I/O's in multiples of the device block size
4223 * however, if io_size isn't a multiple of devblocksize we
4224 * want to clip it back to the nearest page boundary since
4225 * we are going to have to go through cluster_read_copy to
4226 * deal with the 'overhang'... by clipping it to a PAGE_SIZE
4227 * multiple, we avoid asking the drive for the same physical
4228 * blocks twice.. once for the partial page at the end of the
4229 * request and a 2nd time for the page we read into the cache
4230 * (which overlaps the end of the direct read) in order to
4231 * get at the overhang bytes
4233 if (io_size
& (devblocksize
- 1)) {
4234 if (flags
& IO_ENCRYPTED
) {
4236 * Normally, we'd round down to the previous page boundary to
4237 * let the UBC manage the zero-filling of the file past the EOF.
4238 * But if we're doing encrypted IO, we can't let any of
4239 * the data hit the UBC. This means we have to do the full
4240 * IO to the upper block boundary of the device block that
4241 * contains the EOF. The user will be responsible for not
4242 * interpreting data PAST the EOF in its buffer.
4244 * So just bump the IO back up to a multiple of devblocksize
4246 io_size
= ((io_size
+ devblocksize
) & ~(devblocksize
- 1));
4251 * Clip the request to the previous page size boundary
4252 * since request does NOT end on a device block boundary
4254 io_size
&= ~PAGE_MASK
;
4259 if (retval
|| io_size
< io_min
) {
4261 * either an error or we only have the tail left to
4262 * complete via the copy path...
4263 * we may have already spun some portion of this request
4264 * off as async requests... we need to wait for the I/O
4265 * to complete before returning
4267 goto wait_for_dreads
;
4271 * Don't re-check the UBC data if we are looking for uncached IO
4272 * or asking for encrypted blocks.
4274 if ((strict_uncached_IO
== FALSE
) && ((flags
& IO_ENCRYPTED
) == 0)) {
4276 if ((xsize
= io_size
) > max_rd_size
)
4277 xsize
= max_rd_size
;
4281 ubc_range_op(vp
, uio
->uio_offset
, uio
->uio_offset
+ xsize
, UPL_ROP_ABSENT
, (int *)&io_size
);
4285 * a page must have just come into the cache
4286 * since the first page in this range is no
4287 * longer absent, go back and re-evaluate
4292 if ( (flags
& IO_RETURN_ON_THROTTLE
) ) {
4293 if (cluster_is_throttled(vp
) == THROTTLE_NOW
) {
4294 if ( !cluster_io_present_in_BC(vp
, uio
->uio_offset
)) {
4296 * we're in the throttle window and at least 1 I/O
4297 * has already been issued by a throttleable thread
4298 * in this window, so return with EAGAIN to indicate
4299 * to the FS issuing the cluster_read call that it
4300 * should now throttle after dropping any locks
4302 throttle_info_update_by_mount(vp
->v_mount
);
4304 io_throttled
= TRUE
;
4305 goto wait_for_dreads
;
4309 if (io_size
> max_rd_size
)
4310 io_size
= max_rd_size
;
4312 iov_base
= uio_curriovbase(uio
);
4314 upl_offset
= (vm_offset_t
)((u_int32_t
)iov_base
& PAGE_MASK
);
4315 upl_needed_size
= (upl_offset
+ io_size
+ (PAGE_SIZE
-1)) & ~PAGE_MASK
;
4317 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 72)) | DBG_FUNC_START
,
4318 (int)upl_offset
, upl_needed_size
, (int)iov_base
, io_size
, 0);
4320 if (upl_offset
== 0 && ((io_size
& PAGE_MASK
) == 0))
4325 for (force_data_sync
= 0; force_data_sync
< 3; force_data_sync
++) {
4327 upl_size
= upl_needed_size
;
4328 upl_flags
= UPL_FILE_IO
| UPL_NO_SYNC
| UPL_SET_INTERNAL
| UPL_SET_LITE
| UPL_SET_IO_WIRE
;
4331 upl_flags
|= UPL_NOZEROFILL
;
4332 if (force_data_sync
)
4333 upl_flags
|= UPL_FORCE_DATA_SYNC
;
4335 kret
= vm_map_create_upl(current_map(),
4336 (vm_map_offset_t
)(iov_base
& ~((user_addr_t
)PAGE_MASK
)),
4337 &upl_size
, &upl
, NULL
, &pages_in_pl
, &upl_flags
);
4339 if (kret
!= KERN_SUCCESS
) {
4340 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 72)) | DBG_FUNC_END
,
4341 (int)upl_offset
, upl_size
, io_size
, kret
, 0);
4343 * failed to get pagelist
4345 * we may have already spun some portion of this request
4346 * off as async requests... we need to wait for the I/O
4347 * to complete before returning
4349 goto wait_for_dreads
;
4351 pages_in_pl
= upl_size
/ PAGE_SIZE
;
4352 pl
= UPL_GET_INTERNAL_PAGE_LIST(upl
);
4354 for (i
= 0; i
< pages_in_pl
; i
++) {
4355 if (!upl_page_present(pl
, i
))
4358 if (i
== pages_in_pl
)
4361 ubc_upl_abort(upl
, 0);
4363 if (force_data_sync
>= 3) {
4364 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 72)) | DBG_FUNC_END
,
4365 (int)upl_offset
, upl_size
, io_size
, kret
, 0);
4367 goto wait_for_dreads
;
4370 * Consider the possibility that upl_size wasn't satisfied.
4372 if (upl_size
< upl_needed_size
) {
4373 if (upl_size
&& upl_offset
== 0)
4379 ubc_upl_abort(upl
, 0);
4380 goto wait_for_dreads
;
4382 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 72)) | DBG_FUNC_END
,
4383 (int)upl_offset
, upl_size
, io_size
, kret
, 0);
4386 vm_offset_t end_off
= ((iov_base
+ io_size
) & PAGE_MASK
);
4390 * After this point, if we are using a vector UPL, then
4391 * either all the UPL elements end on a page boundary OR
4392 * this UPL is the last element because it does not end
4393 * on a page boundary.
4398 * request asynchronously so that we can overlap
4399 * the preparation of the next I/O
4400 * if there are already too many outstanding reads
4401 * wait until some have completed before issuing the next read
4403 cluster_iostate_wait(&iostate
, max_rd_ahead
, "cluster_read_direct");
4405 if (iostate
.io_error
) {
4407 * one of the earlier reads we issued ran into a hard error
4408 * don't issue any more reads, cleanup the UPL
4409 * that was just created but not used, then
4410 * go wait for any other reads to complete before
4411 * returning the error to the caller
4413 ubc_upl_abort(upl
, 0);
4415 goto wait_for_dreads
;
4417 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 73)) | DBG_FUNC_START
,
4418 upl
, (int)upl_offset
, (int)uio
->uio_offset
, io_size
, 0);
4423 io_flag
&= ~CL_PRESERVE
;
4425 io_flag
|= CL_PRESERVE
;
4427 retval
= cluster_io(vp
, upl
, upl_offset
, uio
->uio_offset
, io_size
, io_flag
, (buf_t
)NULL
, &iostate
, callback
, callback_arg
);
4431 if(!vector_upl_index
) {
4432 vector_upl
= vector_upl_create(upl_offset
);
4433 v_upl_uio_offset
= uio
->uio_offset
;
4434 vector_upl_offset
= upl_offset
;
4437 vector_upl_set_subupl(vector_upl
,upl
, upl_size
);
4438 vector_upl_set_iostate(vector_upl
, upl
, vector_upl_size
, upl_size
);
4440 vector_upl_size
+= upl_size
;
4441 vector_upl_iosize
+= io_size
;
4443 if(issueVectorUPL
|| vector_upl_index
== MAX_VECTOR_UPL_ELEMENTS
|| vector_upl_size
>= max_vector_size
) {
4444 retval
= vector_cluster_io(vp
, vector_upl
, vector_upl_offset
, v_upl_uio_offset
, vector_upl_iosize
, io_flag
, (buf_t
)NULL
, &iostate
, callback
, callback_arg
);
4445 reset_vector_run_state();
4448 last_iov_base
= iov_base
+ io_size
;
4451 * update the uio structure
4453 if ((flags
& IO_ENCRYPTED
) && (max_io_size
< io_size
)) {
4454 uio_update(uio
, (user_size_t
)max_io_size
);
4457 uio_update(uio
, (user_size_t
)io_size
);
4460 * Under normal circumstances, the io_size should not be
4461 * bigger than the io_req_size, but we may have had to round up
4462 * to the end of the page in the encrypted IO case. In that case only,
4463 * ensure that we only decrement io_req_size to 0.
4465 if ((flags
& IO_ENCRYPTED
) && (io_size
> io_req_size
)) {
4469 io_req_size
-= io_size
;
4472 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 73)) | DBG_FUNC_END
,
4473 upl
, (int)uio
->uio_offset
, io_req_size
, retval
, 0);
4477 if (retval
== 0 && iostate
.io_error
== 0 && io_req_size
== 0 && uio
->uio_offset
< filesize
) {
4479 retval
= cluster_io_type(uio
, read_type
, read_length
, 0);
4481 if (retval
== 0 && *read_type
== IO_DIRECT
) {
4483 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 70)) | DBG_FUNC_NONE
,
4484 (int)uio
->uio_offset
, (int)filesize
, *read_type
, *read_length
, 0);
4492 if(retval
== 0 && iostate
.io_error
== 0 && useVectorUPL
&& vector_upl_index
) {
4493 retval
= vector_cluster_io(vp
, vector_upl
, vector_upl_offset
, v_upl_uio_offset
, vector_upl_iosize
, io_flag
, (buf_t
)NULL
, &iostate
, callback
, callback_arg
);
4494 reset_vector_run_state();
4497 * make sure all async reads that are part of this stream
4498 * have completed before we return
4500 cluster_iostate_wait(&iostate
, 0, "cluster_read_direct");
4502 if (iostate
.io_error
)
4503 retval
= iostate
.io_error
;
4505 lck_mtx_destroy(&iostate
.io_mtxp
, cl_mtx_grp
);
4507 if (io_throttled
== TRUE
&& retval
== 0)
4510 for (next_iov_base
= orig_iov_base
; next_iov_base
< last_iov_base
; next_iov_base
+= PAGE_SIZE
) {
4512 * This is specifically done for pmap accounting purposes.
4513 * vm_pre_fault() will call vm_fault() to enter the page into
4514 * the pmap if there isn't _a_ physical page for that VA already.
4516 vm_pre_fault(vm_map_trunc_page(next_iov_base
, PAGE_MASK
));
4519 if (io_req_size
&& retval
== 0) {
4521 * we couldn't handle the tail of this request in DIRECT mode
4522 * so fire it through the copy path
4524 retval
= cluster_read_copy(vp
, uio
, io_req_size
, filesize
, flags
, callback
, callback_arg
);
4526 *read_type
= IO_UNKNOWN
;
4528 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 70)) | DBG_FUNC_END
,
4529 (int)uio
->uio_offset
, (int)uio_resid(uio
), io_req_size
, retval
, 0);
4536 cluster_read_contig(vnode_t vp
, struct uio
*uio
, off_t filesize
, int *read_type
, u_int32_t
*read_length
,
4537 int (*callback
)(buf_t
, void *), void *callback_arg
, int flags
)
4539 upl_page_info_t
*pl
;
4540 upl_t upl
[MAX_VECTS
];
4541 vm_offset_t upl_offset
;
4542 addr64_t dst_paddr
= 0;
4543 user_addr_t iov_base
;
4545 upl_size_t upl_size
;
4546 vm_size_t upl_needed_size
;
4547 mach_msg_type_number_t pages_in_pl
;
4550 struct clios iostate
;
4557 u_int32_t devblocksize
;
4558 u_int32_t mem_alignment_mask
;
4559 u_int32_t tail_size
= 0;
4562 if (flags
& IO_PASSIVE
)
4567 if (flags
& IO_NOCACHE
)
4568 bflag
|= CL_NOCACHE
;
4571 * When we enter this routine, we know
4572 * -- the read_length will not exceed the current iov_len
4573 * -- the target address is physically contiguous for read_length
4575 cluster_syncup(vp
, filesize
, callback
, callback_arg
, PUSH_SYNC
);
4577 devblocksize
= (u_int32_t
)vp
->v_mount
->mnt_devblocksize
;
4578 mem_alignment_mask
= (u_int32_t
)vp
->v_mount
->mnt_alignmentmask
;
4580 iostate
.io_completed
= 0;
4581 iostate
.io_issued
= 0;
4582 iostate
.io_error
= 0;
4583 iostate
.io_wanted
= 0;
4585 lck_mtx_init(&iostate
.io_mtxp
, cl_mtx_grp
, cl_mtx_attr
);
4588 io_size
= *read_length
;
4590 max_size
= filesize
- uio
->uio_offset
;
4592 if (io_size
> max_size
)
4595 iov_base
= uio_curriovbase(uio
);
4597 upl_offset
= (vm_offset_t
)((u_int32_t
)iov_base
& PAGE_MASK
);
4598 upl_needed_size
= upl_offset
+ io_size
;
4601 upl_size
= upl_needed_size
;
4602 upl_flags
= UPL_FILE_IO
| UPL_NO_SYNC
| UPL_CLEAN_IN_PLACE
| UPL_SET_INTERNAL
| UPL_SET_LITE
| UPL_SET_IO_WIRE
;
4605 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 92)) | DBG_FUNC_START
,
4606 (int)upl_offset
, (int)upl_size
, (int)iov_base
, io_size
, 0);
4608 kret
= vm_map_get_upl(current_map(),
4609 (vm_map_offset_t
)(iov_base
& ~((user_addr_t
)PAGE_MASK
)),
4610 &upl_size
, &upl
[cur_upl
], NULL
, &pages_in_pl
, &upl_flags
, 0);
4612 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 92)) | DBG_FUNC_END
,
4613 (int)upl_offset
, upl_size
, io_size
, kret
, 0);
4615 if (kret
!= KERN_SUCCESS
) {
4617 * failed to get pagelist
4620 goto wait_for_creads
;
4624 if (upl_size
< upl_needed_size
) {
4626 * The upl_size wasn't satisfied.
4629 goto wait_for_creads
;
4631 pl
= ubc_upl_pageinfo(upl
[cur_upl
]);
4633 dst_paddr
= ((addr64_t
)upl_phys_page(pl
, 0) << PAGE_SHIFT
) + (addr64_t
)upl_offset
;
4635 while (((uio
->uio_offset
& (devblocksize
- 1)) || io_size
< devblocksize
) && io_size
) {
4636 u_int32_t head_size
;
4638 head_size
= devblocksize
- (u_int32_t
)(uio
->uio_offset
& (devblocksize
- 1));
4640 if (head_size
> io_size
)
4641 head_size
= io_size
;
4643 error
= cluster_align_phys_io(vp
, uio
, dst_paddr
, head_size
, CL_READ
, callback
, callback_arg
);
4646 goto wait_for_creads
;
4648 upl_offset
+= head_size
;
4649 dst_paddr
+= head_size
;
4650 io_size
-= head_size
;
4652 iov_base
+= head_size
;
4654 if ((u_int32_t
)iov_base
& mem_alignment_mask
) {
4656 * request doesn't set up on a memory boundary
4657 * the underlying DMA engine can handle...
4658 * return an error instead of going through
4659 * the slow copy path since the intent of this
4660 * path is direct I/O to device memory
4663 goto wait_for_creads
;
4666 tail_size
= io_size
& (devblocksize
- 1);
4668 io_size
-= tail_size
;
4670 while (io_size
&& error
== 0) {
4672 if (io_size
> MAX_IO_CONTIG_SIZE
)
4673 xsize
= MAX_IO_CONTIG_SIZE
;
4677 * request asynchronously so that we can overlap
4678 * the preparation of the next I/O... we'll do
4679 * the commit after all the I/O has completed
4680 * since its all issued against the same UPL
4681 * if there are already too many outstanding reads
4682 * wait until some have completed before issuing the next
4684 cluster_iostate_wait(&iostate
, MAX_IO_CONTIG_SIZE
* IO_SCALE(vp
, 2), "cluster_read_contig");
4686 if (iostate
.io_error
) {
4688 * one of the earlier reads we issued ran into a hard error
4689 * don't issue any more reads...
4690 * go wait for any other reads to complete before
4691 * returning the error to the caller
4693 goto wait_for_creads
;
4695 error
= cluster_io(vp
, upl
[cur_upl
], upl_offset
, uio
->uio_offset
, xsize
,
4696 CL_READ
| CL_NOZERO
| CL_DEV_MEMORY
| CL_ASYNC
| bflag
,
4697 (buf_t
)NULL
, &iostate
, callback
, callback_arg
);
4699 * The cluster_io read was issued successfully,
4700 * update the uio structure
4703 uio_update(uio
, (user_size_t
)xsize
);
4706 upl_offset
+= xsize
;
4710 if (error
== 0 && iostate
.io_error
== 0 && tail_size
== 0 && num_upl
< MAX_VECTS
&& uio
->uio_offset
< filesize
) {
4712 error
= cluster_io_type(uio
, read_type
, read_length
, 0);
4714 if (error
== 0 && *read_type
== IO_CONTIG
) {
4719 *read_type
= IO_UNKNOWN
;
4723 * make sure all async reads that are part of this stream
4724 * have completed before we proceed
4726 cluster_iostate_wait(&iostate
, 0, "cluster_read_contig");
4728 if (iostate
.io_error
)
4729 error
= iostate
.io_error
;
4731 lck_mtx_destroy(&iostate
.io_mtxp
, cl_mtx_grp
);
4733 if (error
== 0 && tail_size
)
4734 error
= cluster_align_phys_io(vp
, uio
, dst_paddr
, tail_size
, CL_READ
, callback
, callback_arg
);
4736 for (n
= 0; n
< num_upl
; n
++)
4738 * just release our hold on each physically contiguous
4739 * region without changing any state
4741 ubc_upl_abort(upl
[n
], 0);
4748 cluster_io_type(struct uio
*uio
, int *io_type
, u_int32_t
*io_length
, u_int32_t min_length
)
4750 user_size_t iov_len
;
4751 user_addr_t iov_base
= 0;
4753 upl_size_t upl_size
;
4758 * skip over any emtpy vectors
4760 uio_update(uio
, (user_size_t
)0);
4762 iov_len
= uio_curriovlen(uio
);
4764 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 94)) | DBG_FUNC_START
, uio
, (int)iov_len
, 0, 0, 0);
4767 iov_base
= uio_curriovbase(uio
);
4769 * make sure the size of the vector isn't too big...
4770 * internally, we want to handle all of the I/O in
4771 * chunk sizes that fit in a 32 bit int
4773 if (iov_len
> (user_size_t
)MAX_IO_REQUEST_SIZE
)
4774 upl_size
= MAX_IO_REQUEST_SIZE
;
4776 upl_size
= (u_int32_t
)iov_len
;
4778 upl_flags
= UPL_QUERY_OBJECT_TYPE
;
4780 if ((vm_map_get_upl(current_map(),
4781 (vm_map_offset_t
)(iov_base
& ~((user_addr_t
)PAGE_MASK
)),
4782 &upl_size
, &upl
, NULL
, NULL
, &upl_flags
, 0)) != KERN_SUCCESS
) {
4784 * the user app must have passed in an invalid address
4791 *io_length
= upl_size
;
4793 if (upl_flags
& UPL_PHYS_CONTIG
)
4794 *io_type
= IO_CONTIG
;
4795 else if (iov_len
>= min_length
)
4796 *io_type
= IO_DIRECT
;
4801 * nothing left to do for this uio
4804 *io_type
= IO_UNKNOWN
;
4806 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 94)) | DBG_FUNC_END
, iov_base
, *io_type
, *io_length
, retval
, 0);
4813 * generate advisory I/O's in the largest chunks possible
4814 * the completed pages will be released into the VM cache
4817 advisory_read(vnode_t vp
, off_t filesize
, off_t f_offset
, int resid
)
4819 return advisory_read_ext(vp
, filesize
, f_offset
, resid
, NULL
, NULL
, CL_PASSIVE
);
4823 advisory_read_ext(vnode_t vp
, off_t filesize
, off_t f_offset
, int resid
, int (*callback
)(buf_t
, void *), void *callback_arg
, int bflag
)
4825 upl_page_info_t
*pl
;
4827 vm_offset_t upl_offset
;
4840 uint32_t max_io_size
;
4843 if ( !UBCINFOEXISTS(vp
))
4849 max_io_size
= cluster_max_io_size(vp
->v_mount
, CL_READ
);
4851 if ((vp
->v_mount
->mnt_kern_flag
& MNTK_SSD
) && !ignore_is_ssd
) {
4852 if (max_io_size
> speculative_prefetch_max_iosize
)
4853 max_io_size
= speculative_prefetch_max_iosize
;
4856 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 60)) | DBG_FUNC_START
,
4857 (int)f_offset
, resid
, (int)filesize
, 0, 0);
4859 while (resid
&& f_offset
< filesize
&& retval
== 0) {
4861 * compute the size of the upl needed to encompass
4862 * the requested read... limit each call to cluster_io
4863 * to the maximum UPL size... cluster_io will clip if
4864 * this exceeds the maximum io_size for the device,
4865 * make sure to account for
4866 * a starting offset that's not page aligned
4868 start_offset
= (int)(f_offset
& PAGE_MASK_64
);
4869 upl_f_offset
= f_offset
- (off_t
)start_offset
;
4870 max_size
= filesize
- f_offset
;
4872 if (resid
< max_size
)
4877 upl_size
= (start_offset
+ io_size
+ (PAGE_SIZE
- 1)) & ~PAGE_MASK
;
4878 if ((uint32_t)upl_size
> max_io_size
)
4879 upl_size
= max_io_size
;
4883 * return the number of contiguously present pages in the cache
4884 * starting at upl_f_offset within the file
4886 ubc_range_op(vp
, upl_f_offset
, upl_f_offset
+ upl_size
, UPL_ROP_PRESENT
, &skip_range
);
4890 * skip over pages already present in the cache
4892 io_size
= skip_range
- start_offset
;
4894 f_offset
+= io_size
;
4897 if (skip_range
== upl_size
)
4900 * have to issue some real I/O
4901 * at this point, we know it's starting on a page boundary
4902 * because we've skipped over at least the first page in the request
4905 upl_f_offset
+= skip_range
;
4906 upl_size
-= skip_range
;
4908 pages_in_upl
= upl_size
/ PAGE_SIZE
;
4910 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 61)) | DBG_FUNC_START
,
4911 upl
, (int)upl_f_offset
, upl_size
, start_offset
, 0);
4913 kret
= ubc_create_upl(vp
,
4918 UPL_RET_ONLY_ABSENT
| UPL_SET_LITE
);
4919 if (kret
!= KERN_SUCCESS
)
4924 * before we start marching forward, we must make sure we end on
4925 * a present page, otherwise we will be working with a freed
4928 for (last_pg
= pages_in_upl
- 1; last_pg
>= 0; last_pg
--) {
4929 if (upl_page_present(pl
, last_pg
))
4932 pages_in_upl
= last_pg
+ 1;
4935 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 61)) | DBG_FUNC_END
,
4936 upl
, (int)upl_f_offset
, upl_size
, start_offset
, 0);
4939 for (last_pg
= 0; last_pg
< pages_in_upl
; ) {
4941 * scan from the beginning of the upl looking for the first
4942 * page that is present.... this will become the first page in
4943 * the request we're going to make to 'cluster_io'... if all
4944 * of the pages are absent, we won't call through to 'cluster_io'
4946 for (start_pg
= last_pg
; start_pg
< pages_in_upl
; start_pg
++) {
4947 if (upl_page_present(pl
, start_pg
))
4952 * scan from the starting present page looking for an absent
4953 * page before the end of the upl is reached, if we
4954 * find one, then it will terminate the range of pages being
4955 * presented to 'cluster_io'
4957 for (last_pg
= start_pg
; last_pg
< pages_in_upl
; last_pg
++) {
4958 if (!upl_page_present(pl
, last_pg
))
4962 if (last_pg
> start_pg
) {
4964 * we found a range of pages that must be filled
4965 * if the last page in this range is the last page of the file
4966 * we may have to clip the size of it to keep from reading past
4967 * the end of the last physical block associated with the file
4969 upl_offset
= start_pg
* PAGE_SIZE
;
4970 io_size
= (last_pg
- start_pg
) * PAGE_SIZE
;
4972 if ((off_t
)(upl_f_offset
+ upl_offset
+ io_size
) > filesize
)
4973 io_size
= filesize
- (upl_f_offset
+ upl_offset
);
4976 * issue an asynchronous read to cluster_io
4978 retval
= cluster_io(vp
, upl
, upl_offset
, upl_f_offset
+ upl_offset
, io_size
,
4979 CL_ASYNC
| CL_READ
| CL_COMMIT
| CL_AGE
| bflag
, (buf_t
)NULL
, (struct clios
*)NULL
, callback
, callback_arg
);
4985 ubc_upl_abort(upl
, 0);
4987 io_size
= upl_size
- start_offset
;
4989 if (io_size
> resid
)
4991 f_offset
+= io_size
;
4995 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 60)) | DBG_FUNC_END
,
4996 (int)f_offset
, resid
, retval
, 0, 0);
5003 cluster_push(vnode_t vp
, int flags
)
5005 return cluster_push_ext(vp
, flags
, NULL
, NULL
);
5010 cluster_push_ext(vnode_t vp
, int flags
, int (*callback
)(buf_t
, void *), void *callback_arg
)
5013 int my_sparse_wait
= 0;
5014 struct cl_writebehind
*wbp
;
5016 if ( !UBCINFOEXISTS(vp
)) {
5017 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 53)) | DBG_FUNC_NONE
, vp
, flags
, 0, -1, 0);
5020 /* return if deferred write is set */
5021 if (((unsigned int)vfs_flags(vp
->v_mount
) & MNT_DEFWRITE
) && (flags
& IO_DEFWRITE
)) {
5024 if ((wbp
= cluster_get_wbp(vp
, CLW_RETURNLOCKED
)) == NULL
) {
5025 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 53)) | DBG_FUNC_NONE
, vp
, flags
, 0, -2, 0);
5028 if (!ISSET(flags
, IO_SYNC
) && wbp
->cl_number
== 0 && wbp
->cl_scmap
== NULL
) {
5029 lck_mtx_unlock(&wbp
->cl_lockw
);
5031 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 53)) | DBG_FUNC_NONE
, vp
, flags
, 0, -3, 0);
5034 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 53)) | DBG_FUNC_START
,
5035 wbp
->cl_scmap
, wbp
->cl_number
, flags
, 0, 0);
5038 * if we have an fsync in progress, we don't want to allow any additional
5039 * sync/fsync/close(s) to occur until it finishes.
5040 * note that its possible for writes to continue to occur to this file
5041 * while we're waiting and also once the fsync starts to clean if we're
5042 * in the sparse map case
5044 while (wbp
->cl_sparse_wait
) {
5045 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 97)) | DBG_FUNC_START
, vp
, 0, 0, 0, 0);
5047 msleep((caddr_t
)&wbp
->cl_sparse_wait
, &wbp
->cl_lockw
, PRIBIO
+ 1, "cluster_push_ext", NULL
);
5049 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 97)) | DBG_FUNC_END
, vp
, 0, 0, 0, 0);
5051 if (flags
& IO_SYNC
) {
5053 wbp
->cl_sparse_wait
= 1;
5056 * this is an fsync (or equivalent)... we must wait for any existing async
5057 * cleaning operations to complete before we evaulate the current state
5058 * and finish cleaning... this insures that all writes issued before this
5059 * fsync actually get cleaned to the disk before this fsync returns
5061 while (wbp
->cl_sparse_pushes
) {
5062 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 98)) | DBG_FUNC_START
, vp
, 0, 0, 0, 0);
5064 msleep((caddr_t
)&wbp
->cl_sparse_pushes
, &wbp
->cl_lockw
, PRIBIO
+ 1, "cluster_push_ext", NULL
);
5066 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 98)) | DBG_FUNC_END
, vp
, 0, 0, 0, 0);
5069 if (wbp
->cl_scmap
) {
5072 if (wbp
->cl_sparse_pushes
< SPARSE_PUSH_LIMIT
) {
5074 scmap
= wbp
->cl_scmap
;
5075 wbp
->cl_scmap
= NULL
;
5077 wbp
->cl_sparse_pushes
++;
5079 lck_mtx_unlock(&wbp
->cl_lockw
);
5081 sparse_cluster_push(&scmap
, vp
, ubc_getsize(vp
), PUSH_ALL
, flags
, callback
, callback_arg
);
5083 lck_mtx_lock(&wbp
->cl_lockw
);
5085 wbp
->cl_sparse_pushes
--;
5087 if (wbp
->cl_sparse_wait
&& wbp
->cl_sparse_pushes
== 0)
5088 wakeup((caddr_t
)&wbp
->cl_sparse_pushes
);
5090 sparse_cluster_push(&(wbp
->cl_scmap
), vp
, ubc_getsize(vp
), PUSH_ALL
, flags
, callback
, callback_arg
);
5094 retval
= cluster_try_push(wbp
, vp
, ubc_getsize(vp
), PUSH_ALL
, flags
, callback
, callback_arg
);
5096 lck_mtx_unlock(&wbp
->cl_lockw
);
5098 if (flags
& IO_SYNC
)
5099 (void)vnode_waitforwrites(vp
, 0, 0, 0, "cluster_push");
5101 if (my_sparse_wait
) {
5103 * I'm the owner of the serialization token
5104 * clear it and wakeup anyone that is waiting
5107 lck_mtx_lock(&wbp
->cl_lockw
);
5109 wbp
->cl_sparse_wait
= 0;
5110 wakeup((caddr_t
)&wbp
->cl_sparse_wait
);
5112 lck_mtx_unlock(&wbp
->cl_lockw
);
5114 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 53)) | DBG_FUNC_END
,
5115 wbp
->cl_scmap
, wbp
->cl_number
, retval
, 0, 0);
5121 __private_extern__
void
5122 cluster_release(struct ubc_info
*ubc
)
5124 struct cl_writebehind
*wbp
;
5125 struct cl_readahead
*rap
;
5127 if ((wbp
= ubc
->cl_wbehind
)) {
5129 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 81)) | DBG_FUNC_START
, ubc
, wbp
->cl_scmap
, 0, 0, 0);
5132 vfs_drt_control(&(wbp
->cl_scmap
), 0);
5134 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 81)) | DBG_FUNC_START
, ubc
, 0, 0, 0, 0);
5137 rap
= ubc
->cl_rahead
;
5140 lck_mtx_destroy(&wbp
->cl_lockw
, cl_mtx_grp
);
5141 FREE_ZONE((void *)wbp
, sizeof *wbp
, M_CLWRBEHIND
);
5143 if ((rap
= ubc
->cl_rahead
)) {
5144 lck_mtx_destroy(&rap
->cl_lockr
, cl_mtx_grp
);
5145 FREE_ZONE((void *)rap
, sizeof *rap
, M_CLRDAHEAD
);
5147 ubc
->cl_rahead
= NULL
;
5148 ubc
->cl_wbehind
= NULL
;
5150 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 81)) | DBG_FUNC_END
, ubc
, rap
, wbp
, 0, 0);
5155 cluster_try_push(struct cl_writebehind
*wbp
, vnode_t vp
, off_t EOF
, int push_flag
, int io_flags
, int (*callback
)(buf_t
, void *), void *callback_arg
)
5162 struct cl_wextent l_clusters
[MAX_CLUSTERS
];
5163 u_int max_cluster_pgcount
;
5166 max_cluster_pgcount
= MAX_CLUSTER_SIZE(vp
) / PAGE_SIZE
;
5168 * the write behind context exists and has
5169 * already been locked...
5171 if (wbp
->cl_number
== 0)
5173 * no clusters to push
5174 * return number of empty slots
5176 return (MAX_CLUSTERS
);
5179 * make a local 'sorted' copy of the clusters
5180 * and clear wbp->cl_number so that new clusters can
5183 for (cl_index
= 0; cl_index
< wbp
->cl_number
; cl_index
++) {
5184 for (min_index
= -1, cl_index1
= 0; cl_index1
< wbp
->cl_number
; cl_index1
++) {
5185 if (wbp
->cl_clusters
[cl_index1
].b_addr
== wbp
->cl_clusters
[cl_index1
].e_addr
)
5187 if (min_index
== -1)
5188 min_index
= cl_index1
;
5189 else if (wbp
->cl_clusters
[cl_index1
].b_addr
< wbp
->cl_clusters
[min_index
].b_addr
)
5190 min_index
= cl_index1
;
5192 if (min_index
== -1)
5195 l_clusters
[cl_index
].b_addr
= wbp
->cl_clusters
[min_index
].b_addr
;
5196 l_clusters
[cl_index
].e_addr
= wbp
->cl_clusters
[min_index
].e_addr
;
5197 l_clusters
[cl_index
].io_flags
= wbp
->cl_clusters
[min_index
].io_flags
;
5199 wbp
->cl_clusters
[min_index
].b_addr
= wbp
->cl_clusters
[min_index
].e_addr
;
5205 if ( (push_flag
& PUSH_DELAY
) && cl_len
== MAX_CLUSTERS
) {
5209 * determine if we appear to be writing the file sequentially
5210 * if not, by returning without having pushed any clusters
5211 * we will cause this vnode to be pushed into the sparse cluster mechanism
5212 * used for managing more random I/O patterns
5214 * we know that we've got all clusters currently in use and the next write doesn't fit into one of them...
5215 * that's why we're in try_push with PUSH_DELAY...
5217 * check to make sure that all the clusters except the last one are 'full'... and that each cluster
5218 * is adjacent to the next (i.e. we're looking for sequential writes) they were sorted above
5219 * so we can just make a simple pass through, up to, but not including the last one...
5220 * note that e_addr is not inclusive, so it will be equal to the b_addr of the next cluster if they
5223 * we let the last one be partial as long as it was adjacent to the previous one...
5224 * we need to do this to deal with multi-threaded servers that might write an I/O or 2 out
5225 * of order... if this occurs at the tail of the last cluster, we don't want to fall into the sparse cluster world...
5227 for (i
= 0; i
< MAX_CLUSTERS
- 1; i
++) {
5228 if ((l_clusters
[i
].e_addr
- l_clusters
[i
].b_addr
) != max_cluster_pgcount
)
5230 if (l_clusters
[i
].e_addr
!= l_clusters
[i
+1].b_addr
)
5234 for (cl_index
= 0; cl_index
< cl_len
; cl_index
++) {
5236 struct cl_extent cl
;
5238 flags
= io_flags
& (IO_PASSIVE
|IO_CLOSE
);
5241 * try to push each cluster in turn...
5243 if (l_clusters
[cl_index
].io_flags
& CLW_IONOCACHE
)
5244 flags
|= IO_NOCACHE
;
5246 if (l_clusters
[cl_index
].io_flags
& CLW_IOPASSIVE
)
5247 flags
|= IO_PASSIVE
;
5249 if (push_flag
& PUSH_SYNC
)
5252 cl
.b_addr
= l_clusters
[cl_index
].b_addr
;
5253 cl
.e_addr
= l_clusters
[cl_index
].e_addr
;
5255 cluster_push_now(vp
, &cl
, EOF
, flags
, callback
, callback_arg
);
5257 l_clusters
[cl_index
].b_addr
= 0;
5258 l_clusters
[cl_index
].e_addr
= 0;
5262 if ( !(push_flag
& PUSH_ALL
) )
5266 if (cl_len
> cl_pushed
) {
5268 * we didn't push all of the clusters, so
5269 * lets try to merge them back in to the vnode
5271 if ((MAX_CLUSTERS
- wbp
->cl_number
) < (cl_len
- cl_pushed
)) {
5273 * we picked up some new clusters while we were trying to
5274 * push the old ones... this can happen because I've dropped
5275 * the vnode lock... the sum of the
5276 * leftovers plus the new cluster count exceeds our ability
5277 * to represent them, so switch to the sparse cluster mechanism
5279 * collect the active public clusters...
5281 sparse_cluster_switch(wbp
, vp
, EOF
, callback
, callback_arg
);
5283 for (cl_index
= 0, cl_index1
= 0; cl_index
< cl_len
; cl_index
++) {
5284 if (l_clusters
[cl_index
].b_addr
== l_clusters
[cl_index
].e_addr
)
5286 wbp
->cl_clusters
[cl_index1
].b_addr
= l_clusters
[cl_index
].b_addr
;
5287 wbp
->cl_clusters
[cl_index1
].e_addr
= l_clusters
[cl_index
].e_addr
;
5288 wbp
->cl_clusters
[cl_index1
].io_flags
= l_clusters
[cl_index
].io_flags
;
5293 * update the cluster count
5295 wbp
->cl_number
= cl_index1
;
5298 * and collect the original clusters that were moved into the
5299 * local storage for sorting purposes
5301 sparse_cluster_switch(wbp
, vp
, EOF
, callback
, callback_arg
);
5305 * we've got room to merge the leftovers back in
5306 * just append them starting at the next 'hole'
5307 * represented by wbp->cl_number
5309 for (cl_index
= 0, cl_index1
= wbp
->cl_number
; cl_index
< cl_len
; cl_index
++) {
5310 if (l_clusters
[cl_index
].b_addr
== l_clusters
[cl_index
].e_addr
)
5313 wbp
->cl_clusters
[cl_index1
].b_addr
= l_clusters
[cl_index
].b_addr
;
5314 wbp
->cl_clusters
[cl_index1
].e_addr
= l_clusters
[cl_index
].e_addr
;
5315 wbp
->cl_clusters
[cl_index1
].io_flags
= l_clusters
[cl_index
].io_flags
;
5320 * update the cluster count
5322 wbp
->cl_number
= cl_index1
;
5325 return (MAX_CLUSTERS
- wbp
->cl_number
);
5331 cluster_push_now(vnode_t vp
, struct cl_extent
*cl
, off_t EOF
, int flags
, int (*callback
)(buf_t
, void *), void *callback_arg
)
5333 upl_page_info_t
*pl
;
5335 vm_offset_t upl_offset
;
5350 if (flags
& IO_PASSIVE
)
5355 if (flags
& IO_SKIP_ENCRYPTION
)
5356 bflag
|= CL_ENCRYPTED
;
5358 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 51)) | DBG_FUNC_START
,
5359 (int)cl
->b_addr
, (int)cl
->e_addr
, (int)EOF
, flags
, 0);
5361 if ((pages_in_upl
= (int)(cl
->e_addr
- cl
->b_addr
)) == 0) {
5362 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 51)) | DBG_FUNC_END
, 1, 0, 0, 0, 0);
5366 upl_size
= pages_in_upl
* PAGE_SIZE
;
5367 upl_f_offset
= (off_t
)(cl
->b_addr
* PAGE_SIZE_64
);
5369 if (upl_f_offset
+ upl_size
>= EOF
) {
5371 if (upl_f_offset
>= EOF
) {
5373 * must have truncated the file and missed
5374 * clearing a dangling cluster (i.e. it's completely
5375 * beyond the new EOF
5377 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 51)) | DBG_FUNC_END
, 1, 1, 0, 0, 0);
5381 size
= EOF
- upl_f_offset
;
5383 upl_size
= (size
+ (PAGE_SIZE
- 1)) & ~PAGE_MASK
;
5384 pages_in_upl
= upl_size
/ PAGE_SIZE
;
5388 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 41)) | DBG_FUNC_START
, upl_size
, size
, 0, 0, 0);
5391 * by asking for UPL_COPYOUT_FROM and UPL_RET_ONLY_DIRTY, we get the following desirable behavior
5393 * - only pages that are currently dirty are returned... these are the ones we need to clean
5394 * - the hardware dirty bit is cleared when the page is gathered into the UPL... the software dirty bit is set
5395 * - if we have to abort the I/O for some reason, the software dirty bit is left set since we didn't clean the page
5396 * - when we commit the page, the software dirty bit is cleared... the hardware dirty bit is untouched so that if
5397 * someone dirties this page while the I/O is in progress, we don't lose track of the new state
5399 * when the I/O completes, we no longer ask for an explicit clear of the DIRTY state (either soft or hard)
5402 if ((vp
->v_flag
& VNOCACHE_DATA
) || (flags
& IO_NOCACHE
))
5403 upl_flags
= UPL_COPYOUT_FROM
| UPL_RET_ONLY_DIRTY
| UPL_SET_LITE
| UPL_WILL_BE_DUMPED
;
5405 upl_flags
= UPL_COPYOUT_FROM
| UPL_RET_ONLY_DIRTY
| UPL_SET_LITE
;
5407 kret
= ubc_create_upl(vp
,
5413 if (kret
!= KERN_SUCCESS
)
5414 panic("cluster_push: failed to get pagelist");
5416 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 41)) | DBG_FUNC_END
, upl
, upl_f_offset
, 0, 0, 0);
5419 * since we only asked for the dirty pages back
5420 * it's possible that we may only get a few or even none, so...
5421 * before we start marching forward, we must make sure we know
5422 * where the last present page is in the UPL, otherwise we could
5423 * end up working with a freed upl due to the FREE_ON_EMPTY semantics
5424 * employed by commit_range and abort_range.
5426 for (last_pg
= pages_in_upl
- 1; last_pg
>= 0; last_pg
--) {
5427 if (upl_page_present(pl
, last_pg
))
5430 pages_in_upl
= last_pg
+ 1;
5432 if (pages_in_upl
== 0) {
5433 ubc_upl_abort(upl
, 0);
5435 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 51)) | DBG_FUNC_END
, 1, 2, 0, 0, 0);
5439 for (last_pg
= 0; last_pg
< pages_in_upl
; ) {
5441 * find the next dirty page in the UPL
5442 * this will become the first page in the
5443 * next I/O to generate
5445 for (start_pg
= last_pg
; start_pg
< pages_in_upl
; start_pg
++) {
5446 if (upl_dirty_page(pl
, start_pg
))
5448 if (upl_page_present(pl
, start_pg
))
5450 * RET_ONLY_DIRTY will return non-dirty 'precious' pages
5451 * just release these unchanged since we're not going
5452 * to steal them or change their state
5454 ubc_upl_abort_range(upl
, start_pg
* PAGE_SIZE
, PAGE_SIZE
, UPL_ABORT_FREE_ON_EMPTY
);
5456 if (start_pg
>= pages_in_upl
)
5458 * done... no more dirty pages to push
5461 if (start_pg
> last_pg
)
5463 * skipped over some non-dirty pages
5465 size
-= ((start_pg
- last_pg
) * PAGE_SIZE
);
5468 * find a range of dirty pages to write
5470 for (last_pg
= start_pg
; last_pg
< pages_in_upl
; last_pg
++) {
5471 if (!upl_dirty_page(pl
, last_pg
))
5474 upl_offset
= start_pg
* PAGE_SIZE
;
5476 io_size
= min(size
, (last_pg
- start_pg
) * PAGE_SIZE
);
5478 io_flags
= CL_THROTTLE
| CL_COMMIT
| CL_AGE
| bflag
;
5480 if ( !(flags
& IO_SYNC
))
5481 io_flags
|= CL_ASYNC
;
5483 if (flags
& IO_CLOSE
)
5484 io_flags
|= CL_CLOSE
;
5486 if (flags
& IO_NOCACHE
)
5487 io_flags
|= CL_NOCACHE
;
5489 retval
= cluster_io(vp
, upl
, upl_offset
, upl_f_offset
+ upl_offset
, io_size
,
5490 io_flags
, (buf_t
)NULL
, (struct clios
*)NULL
, callback
, callback_arg
);
5492 if (error
== 0 && retval
)
5497 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 51)) | DBG_FUNC_END
, 1, 3, 0, 0, 0);
5504 * sparse_cluster_switch is called with the write behind lock held
5507 sparse_cluster_switch(struct cl_writebehind
*wbp
, vnode_t vp
, off_t EOF
, int (*callback
)(buf_t
, void *), void *callback_arg
)
5511 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 78)) | DBG_FUNC_START
, vp
, wbp
->cl_scmap
, 0, 0, 0);
5513 for (cl_index
= 0; cl_index
< wbp
->cl_number
; cl_index
++) {
5515 struct cl_extent cl
;
5517 for (cl
.b_addr
= wbp
->cl_clusters
[cl_index
].b_addr
; cl
.b_addr
< wbp
->cl_clusters
[cl_index
].e_addr
; cl
.b_addr
++) {
5519 if (ubc_page_op(vp
, (off_t
)(cl
.b_addr
* PAGE_SIZE_64
), 0, NULL
, &flags
) == KERN_SUCCESS
) {
5520 if (flags
& UPL_POP_DIRTY
) {
5521 cl
.e_addr
= cl
.b_addr
+ 1;
5523 sparse_cluster_add(&(wbp
->cl_scmap
), vp
, &cl
, EOF
, callback
, callback_arg
);
5530 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 78)) | DBG_FUNC_END
, vp
, wbp
->cl_scmap
, 0, 0, 0);
5535 * sparse_cluster_push must be called with the write-behind lock held if the scmap is
5536 * still associated with the write-behind context... however, if the scmap has been disassociated
5537 * from the write-behind context (the cluster_push case), the wb lock is not held
5540 sparse_cluster_push(void **scmap
, vnode_t vp
, off_t EOF
, int push_flag
, int io_flags
, int (*callback
)(buf_t
, void *), void *callback_arg
)
5542 struct cl_extent cl
;
5546 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 79)) | DBG_FUNC_START
, vp
, (*scmap
), 0, push_flag
, 0);
5548 if (push_flag
& PUSH_ALL
)
5549 vfs_drt_control(scmap
, 1);
5552 if (vfs_drt_get_cluster(scmap
, &offset
, &length
) != KERN_SUCCESS
)
5555 cl
.b_addr
= (daddr64_t
)(offset
/ PAGE_SIZE_64
);
5556 cl
.e_addr
= (daddr64_t
)((offset
+ length
) / PAGE_SIZE_64
);
5558 cluster_push_now(vp
, &cl
, EOF
, io_flags
& (IO_PASSIVE
|IO_CLOSE
), callback
, callback_arg
);
5560 if ( !(push_flag
& PUSH_ALL
) )
5563 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 79)) | DBG_FUNC_END
, vp
, (*scmap
), 0, 0, 0);
5568 * sparse_cluster_add is called with the write behind lock held
5571 sparse_cluster_add(void **scmap
, vnode_t vp
, struct cl_extent
*cl
, off_t EOF
, int (*callback
)(buf_t
, void *), void *callback_arg
)
5577 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 80)) | DBG_FUNC_START
, (*scmap
), 0, cl
->b_addr
, (int)cl
->e_addr
, 0);
5579 offset
= (off_t
)(cl
->b_addr
* PAGE_SIZE_64
);
5580 length
= ((u_int
)(cl
->e_addr
- cl
->b_addr
)) * PAGE_SIZE
;
5582 while (vfs_drt_mark_pages(scmap
, offset
, length
, &new_dirty
) != KERN_SUCCESS
) {
5584 * no room left in the map
5585 * only a partial update was done
5586 * push out some pages and try again
5588 sparse_cluster_push(scmap
, vp
, EOF
, 0, 0, callback
, callback_arg
);
5590 offset
+= (new_dirty
* PAGE_SIZE_64
);
5591 length
-= (new_dirty
* PAGE_SIZE
);
5593 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 80)) | DBG_FUNC_END
, vp
, (*scmap
), 0, 0, 0);
5598 cluster_align_phys_io(vnode_t vp
, struct uio
*uio
, addr64_t usr_paddr
, u_int32_t xsize
, int flags
, int (*callback
)(buf_t
, void *), void *callback_arg
)
5600 upl_page_info_t
*pl
;
5610 if (flags
& IO_PASSIVE
)
5615 if (flags
& IO_NOCACHE
)
5616 bflag
|= CL_NOCACHE
;
5618 upl_flags
= UPL_SET_LITE
;
5620 if ( !(flags
& CL_READ
) ) {
5622 * "write" operation: let the UPL subsystem know
5623 * that we intend to modify the buffer cache pages
5626 upl_flags
|= UPL_WILL_MODIFY
;
5629 * indicate that there is no need to pull the
5630 * mapping for this page... we're only going
5631 * to read from it, not modify it.
5633 upl_flags
|= UPL_FILE_IO
;
5635 kret
= ubc_create_upl(vp
,
5636 uio
->uio_offset
& ~PAGE_MASK_64
,
5642 if (kret
!= KERN_SUCCESS
)
5645 if (!upl_valid_page(pl
, 0)) {
5647 * issue a synchronous read to cluster_io
5649 error
= cluster_io(vp
, upl
, 0, uio
->uio_offset
& ~PAGE_MASK_64
, PAGE_SIZE
,
5650 CL_READ
| bflag
, (buf_t
)NULL
, (struct clios
*)NULL
, callback
, callback_arg
);
5652 ubc_upl_abort_range(upl
, 0, PAGE_SIZE
, UPL_ABORT_DUMP_PAGES
| UPL_ABORT_FREE_ON_EMPTY
);
5658 ubc_paddr
= ((addr64_t
)upl_phys_page(pl
, 0) << PAGE_SHIFT
) + (addr64_t
)(uio
->uio_offset
& PAGE_MASK_64
);
5661 * NOTE: There is no prototype for the following in BSD. It, and the definitions
5662 * of the defines for cppvPsrc, cppvPsnk, cppvFsnk, and cppvFsrc will be found in
5663 * osfmk/ppc/mappings.h. They are not included here because there appears to be no
5664 * way to do so without exporting them to kexts as well.
5666 if (flags
& CL_READ
)
5667 // copypv(ubc_paddr, usr_paddr, xsize, cppvPsrc | cppvPsnk | cppvFsnk); /* Copy physical to physical and flush the destination */
5668 copypv(ubc_paddr
, usr_paddr
, xsize
, 2 | 1 | 4); /* Copy physical to physical and flush the destination */
5670 // copypv(usr_paddr, ubc_paddr, xsize, cppvPsrc | cppvPsnk | cppvFsrc); /* Copy physical to physical and flush the source */
5671 copypv(usr_paddr
, ubc_paddr
, xsize
, 2 | 1 | 8); /* Copy physical to physical and flush the source */
5673 if ( !(flags
& CL_READ
) || (upl_valid_page(pl
, 0) && upl_dirty_page(pl
, 0))) {
5675 * issue a synchronous write to cluster_io
5677 error
= cluster_io(vp
, upl
, 0, uio
->uio_offset
& ~PAGE_MASK_64
, PAGE_SIZE
,
5678 bflag
, (buf_t
)NULL
, (struct clios
*)NULL
, callback
, callback_arg
);
5681 uio_update(uio
, (user_size_t
)xsize
);
5684 abort_flags
= UPL_ABORT_FREE_ON_EMPTY
;
5686 abort_flags
= UPL_ABORT_FREE_ON_EMPTY
| UPL_ABORT_DUMP_PAGES
;
5688 ubc_upl_abort_range(upl
, 0, PAGE_SIZE
, abort_flags
);
5696 cluster_copy_upl_data(struct uio
*uio
, upl_t upl
, int upl_offset
, int *io_resid
)
5704 upl_page_info_t
*pl
;
5708 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 34)) | DBG_FUNC_START
,
5709 (int)uio
->uio_offset
, upl_offset
, xsize
, 0, 0);
5711 segflg
= uio
->uio_segflg
;
5715 case UIO_USERSPACE32
:
5716 case UIO_USERISPACE32
:
5717 uio
->uio_segflg
= UIO_PHYS_USERSPACE32
;
5721 case UIO_USERISPACE
:
5722 uio
->uio_segflg
= UIO_PHYS_USERSPACE
;
5725 case UIO_USERSPACE64
:
5726 case UIO_USERISPACE64
:
5727 uio
->uio_segflg
= UIO_PHYS_USERSPACE64
;
5731 uio
->uio_segflg
= UIO_PHYS_SYSSPACE
;
5735 pl
= ubc_upl_pageinfo(upl
);
5737 pg_index
= upl_offset
/ PAGE_SIZE
;
5738 pg_offset
= upl_offset
& PAGE_MASK
;
5739 csize
= min(PAGE_SIZE
- pg_offset
, xsize
);
5741 while (xsize
&& retval
== 0) {
5744 paddr
= ((addr64_t
)upl_phys_page(pl
, pg_index
) << PAGE_SHIFT
) + pg_offset
;
5746 retval
= uiomove64(paddr
, csize
, uio
);
5751 csize
= min(PAGE_SIZE
, xsize
);
5755 uio
->uio_segflg
= segflg
;
5757 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 34)) | DBG_FUNC_END
,
5758 (int)uio
->uio_offset
, xsize
, retval
, segflg
, 0);
5765 cluster_copy_ubc_data(vnode_t vp
, struct uio
*uio
, int *io_resid
, int mark_dirty
)
5768 return (cluster_copy_ubc_data_internal(vp
, uio
, io_resid
, mark_dirty
, 1));
5773 cluster_copy_ubc_data_internal(vnode_t vp
, struct uio
*uio
, int *io_resid
, int mark_dirty
, int take_reference
)
5780 memory_object_control_t control
;
5782 io_size
= *io_resid
;
5784 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 34)) | DBG_FUNC_START
,
5785 (int)uio
->uio_offset
, io_size
, mark_dirty
, take_reference
, 0);
5787 control
= ubc_getobject(vp
, UBC_FLAGS_NONE
);
5789 if (control
== MEMORY_OBJECT_CONTROL_NULL
) {
5790 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 34)) | DBG_FUNC_END
,
5791 (int)uio
->uio_offset
, io_size
, retval
, 3, 0);
5795 segflg
= uio
->uio_segflg
;
5799 case UIO_USERSPACE32
:
5800 case UIO_USERISPACE32
:
5801 uio
->uio_segflg
= UIO_PHYS_USERSPACE32
;
5804 case UIO_USERSPACE64
:
5805 case UIO_USERISPACE64
:
5806 uio
->uio_segflg
= UIO_PHYS_USERSPACE64
;
5810 case UIO_USERISPACE
:
5811 uio
->uio_segflg
= UIO_PHYS_USERSPACE
;
5815 uio
->uio_segflg
= UIO_PHYS_SYSSPACE
;
5819 if ( (io_size
= *io_resid
) ) {
5820 start_offset
= (int)(uio
->uio_offset
& PAGE_MASK_64
);
5821 xsize
= uio_resid(uio
);
5823 retval
= memory_object_control_uiomove(control
, uio
->uio_offset
- start_offset
, uio
,
5824 start_offset
, io_size
, mark_dirty
, take_reference
);
5825 xsize
-= uio_resid(uio
);
5828 uio
->uio_segflg
= segflg
;
5829 *io_resid
= io_size
;
5831 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 34)) | DBG_FUNC_END
,
5832 (int)uio
->uio_offset
, io_size
, retval
, 0x80000000 | segflg
, 0);
5839 is_file_clean(vnode_t vp
, off_t filesize
)
5843 int total_dirty
= 0;
5845 for (f_offset
= 0; f_offset
< filesize
; f_offset
+= PAGE_SIZE_64
) {
5846 if (ubc_page_op(vp
, f_offset
, 0, NULL
, &flags
) == KERN_SUCCESS
) {
5847 if (flags
& UPL_POP_DIRTY
) {
5861 * Dirty region tracking/clustering mechanism.
5863 * This code (vfs_drt_*) provides a mechanism for tracking and clustering
5864 * dirty regions within a larger space (file). It is primarily intended to
5865 * support clustering in large files with many dirty areas.
5867 * The implementation assumes that the dirty regions are pages.
5869 * To represent dirty pages within the file, we store bit vectors in a
5870 * variable-size circular hash.
5874 * Bitvector size. This determines the number of pages we group in a
5875 * single hashtable entry. Each hashtable entry is aligned to this
5876 * size within the file.
5878 #define DRT_BITVECTOR_PAGES 256
5881 * File offset handling.
5883 * DRT_ADDRESS_MASK is dependent on DRT_BITVECTOR_PAGES;
5884 * the correct formula is (~(DRT_BITVECTOR_PAGES * PAGE_SIZE) - 1)
5886 #define DRT_ADDRESS_MASK (~((1 << 20) - 1))
5887 #define DRT_ALIGN_ADDRESS(addr) ((addr) & DRT_ADDRESS_MASK)
5890 * Hashtable address field handling.
5892 * The low-order bits of the hashtable address are used to conserve
5895 * DRT_HASH_COUNT_MASK must be large enough to store the range
5896 * 0-DRT_BITVECTOR_PAGES inclusive, as well as have one value
5897 * to indicate that the bucket is actually unoccupied.
5899 #define DRT_HASH_GET_ADDRESS(scm, i) ((scm)->scm_hashtable[(i)].dhe_control & DRT_ADDRESS_MASK)
5900 #define DRT_HASH_SET_ADDRESS(scm, i, a) \
5902 (scm)->scm_hashtable[(i)].dhe_control = \
5903 ((scm)->scm_hashtable[(i)].dhe_control & ~DRT_ADDRESS_MASK) | DRT_ALIGN_ADDRESS(a); \
5905 #define DRT_HASH_COUNT_MASK 0x1ff
5906 #define DRT_HASH_GET_COUNT(scm, i) ((scm)->scm_hashtable[(i)].dhe_control & DRT_HASH_COUNT_MASK)
5907 #define DRT_HASH_SET_COUNT(scm, i, c) \
5909 (scm)->scm_hashtable[(i)].dhe_control = \
5910 ((scm)->scm_hashtable[(i)].dhe_control & ~DRT_HASH_COUNT_MASK) | ((c) & DRT_HASH_COUNT_MASK); \
5912 #define DRT_HASH_CLEAR(scm, i) \
5914 (scm)->scm_hashtable[(i)].dhe_control = 0; \
5916 #define DRT_HASH_VACATE(scm, i) DRT_HASH_SET_COUNT((scm), (i), DRT_HASH_COUNT_MASK)
5917 #define DRT_HASH_VACANT(scm, i) (DRT_HASH_GET_COUNT((scm), (i)) == DRT_HASH_COUNT_MASK)
5918 #define DRT_HASH_COPY(oscm, oi, scm, i) \
5920 (scm)->scm_hashtable[(i)].dhe_control = (oscm)->scm_hashtable[(oi)].dhe_control; \
5921 DRT_BITVECTOR_COPY(oscm, oi, scm, i); \
5926 * Hash table moduli.
5928 * Since the hashtable entry's size is dependent on the size of
5929 * the bitvector, and since the hashtable size is constrained to
5930 * both being prime and fitting within the desired allocation
5931 * size, these values need to be manually determined.
5933 * For DRT_BITVECTOR_SIZE = 256, the entry size is 40 bytes.
5935 * The small hashtable allocation is 1024 bytes, so the modulus is 23.
5936 * The large hashtable allocation is 16384 bytes, so the modulus is 401.
5938 #define DRT_HASH_SMALL_MODULUS 23
5939 #define DRT_HASH_LARGE_MODULUS 401
5942 * Physical memory required before the large hash modulus is permitted.
5944 * On small memory systems, the large hash modulus can lead to phsyical
5945 * memory starvation, so we avoid using it there.
5947 #define DRT_HASH_LARGE_MEMORY_REQUIRED (1024LL * 1024LL * 1024LL) /* 1GiB */
5949 #define DRT_SMALL_ALLOCATION 1024 /* 104 bytes spare */
5950 #define DRT_LARGE_ALLOCATION 16384 /* 344 bytes spare */
5952 /* *** nothing below here has secret dependencies on DRT_BITVECTOR_PAGES *** */
5955 * Hashtable bitvector handling.
5957 * Bitvector fields are 32 bits long.
5960 #define DRT_HASH_SET_BIT(scm, i, bit) \
5961 (scm)->scm_hashtable[(i)].dhe_bitvector[(bit) / 32] |= (1 << ((bit) % 32))
5963 #define DRT_HASH_CLEAR_BIT(scm, i, bit) \
5964 (scm)->scm_hashtable[(i)].dhe_bitvector[(bit) / 32] &= ~(1 << ((bit) % 32))
5966 #define DRT_HASH_TEST_BIT(scm, i, bit) \
5967 ((scm)->scm_hashtable[(i)].dhe_bitvector[(bit) / 32] & (1 << ((bit) % 32)))
5969 #define DRT_BITVECTOR_CLEAR(scm, i) \
5970 bzero(&(scm)->scm_hashtable[(i)].dhe_bitvector[0], (DRT_BITVECTOR_PAGES / 32) * sizeof(u_int32_t))
5972 #define DRT_BITVECTOR_COPY(oscm, oi, scm, i) \
5973 bcopy(&(oscm)->scm_hashtable[(oi)].dhe_bitvector[0], \
5974 &(scm)->scm_hashtable[(i)].dhe_bitvector[0], \
5975 (DRT_BITVECTOR_PAGES / 32) * sizeof(u_int32_t))
5982 struct vfs_drt_hashentry
{
5983 u_int64_t dhe_control
;
5984 u_int32_t dhe_bitvector
[DRT_BITVECTOR_PAGES
/ 32];
5988 * Dirty Region Tracking structure.
5990 * The hashtable is allocated entirely inside the DRT structure.
5992 * The hash is a simple circular prime modulus arrangement, the structure
5993 * is resized from small to large if it overflows.
5996 struct vfs_drt_clustermap
{
5997 u_int32_t scm_magic
; /* sanity/detection */
5998 #define DRT_SCM_MAGIC 0x12020003
5999 u_int32_t scm_modulus
; /* current ring size */
6000 u_int32_t scm_buckets
; /* number of occupied buckets */
6001 u_int32_t scm_lastclean
; /* last entry we cleaned */
6002 u_int32_t scm_iskips
; /* number of slot skips */
6004 struct vfs_drt_hashentry scm_hashtable
[0];
6008 #define DRT_HASH(scm, addr) ((addr) % (scm)->scm_modulus)
6009 #define DRT_HASH_NEXT(scm, addr) (((addr) + 1) % (scm)->scm_modulus)
6012 * Debugging codes and arguments.
6014 #define DRT_DEBUG_EMPTYFREE (FSDBG_CODE(DBG_FSRW, 82)) /* nil */
6015 #define DRT_DEBUG_RETCLUSTER (FSDBG_CODE(DBG_FSRW, 83)) /* offset, length */
6016 #define DRT_DEBUG_ALLOC (FSDBG_CODE(DBG_FSRW, 84)) /* copycount */
6017 #define DRT_DEBUG_INSERT (FSDBG_CODE(DBG_FSRW, 85)) /* offset, iskip */
6018 #define DRT_DEBUG_MARK (FSDBG_CODE(DBG_FSRW, 86)) /* offset, length,
6021 /* 1 (clean, no map) */
6022 /* 2 (map alloc fail) */
6023 /* 3, resid (partial) */
6024 #define DRT_DEBUG_6 (FSDBG_CODE(DBG_FSRW, 87))
6025 #define DRT_DEBUG_SCMDATA (FSDBG_CODE(DBG_FSRW, 88)) /* modulus, buckets,
6026 * lastclean, iskips */
6029 static kern_return_t
vfs_drt_alloc_map(struct vfs_drt_clustermap
**cmapp
);
6030 static kern_return_t
vfs_drt_free_map(struct vfs_drt_clustermap
*cmap
);
6031 static kern_return_t
vfs_drt_search_index(struct vfs_drt_clustermap
*cmap
,
6032 u_int64_t offset
, int *indexp
);
6033 static kern_return_t
vfs_drt_get_index(struct vfs_drt_clustermap
**cmapp
,
6037 static kern_return_t
vfs_drt_do_mark_pages(
6043 static void vfs_drt_trace(
6044 struct vfs_drt_clustermap
*cmap
,
6053 * Allocate and initialise a sparse cluster map.
6055 * Will allocate a new map, resize or compact an existing map.
6057 * XXX we should probably have at least one intermediate map size,
6058 * as the 1:16 ratio seems a bit drastic.
6060 static kern_return_t
6061 vfs_drt_alloc_map(struct vfs_drt_clustermap
**cmapp
)
6063 struct vfs_drt_clustermap
*cmap
, *ocmap
;
6067 int nsize
, active_buckets
, index
, copycount
;
6074 * Decide on the size of the new map.
6076 if (ocmap
== NULL
) {
6077 nsize
= DRT_HASH_SMALL_MODULUS
;
6079 /* count the number of active buckets in the old map */
6081 for (i
= 0; i
< ocmap
->scm_modulus
; i
++) {
6082 if (!DRT_HASH_VACANT(ocmap
, i
) &&
6083 (DRT_HASH_GET_COUNT(ocmap
, i
) != 0))
6087 * If we're currently using the small allocation, check to
6088 * see whether we should grow to the large one.
6090 if (ocmap
->scm_modulus
== DRT_HASH_SMALL_MODULUS
) {
6092 * If the ring is nearly full and we are allowed to
6093 * use the large modulus, upgrade.
6095 if ((active_buckets
> (DRT_HASH_SMALL_MODULUS
- 5)) &&
6096 (max_mem
>= DRT_HASH_LARGE_MEMORY_REQUIRED
)) {
6097 nsize
= DRT_HASH_LARGE_MODULUS
;
6099 nsize
= DRT_HASH_SMALL_MODULUS
;
6102 /* already using the large modulus */
6103 nsize
= DRT_HASH_LARGE_MODULUS
;
6105 * If the ring is completely full, there's
6106 * nothing useful for us to do. Behave as
6107 * though we had compacted into the new
6110 if (active_buckets
>= DRT_HASH_LARGE_MODULUS
)
6111 return(KERN_SUCCESS
);
6116 * Allocate and initialise the new map.
6119 kret
= kmem_alloc(kernel_map
, (vm_offset_t
*)&cmap
,
6120 (nsize
== DRT_HASH_SMALL_MODULUS
) ? DRT_SMALL_ALLOCATION
: DRT_LARGE_ALLOCATION
);
6121 if (kret
!= KERN_SUCCESS
)
6123 cmap
->scm_magic
= DRT_SCM_MAGIC
;
6124 cmap
->scm_modulus
= nsize
;
6125 cmap
->scm_buckets
= 0;
6126 cmap
->scm_lastclean
= 0;
6127 cmap
->scm_iskips
= 0;
6128 for (i
= 0; i
< cmap
->scm_modulus
; i
++) {
6129 DRT_HASH_CLEAR(cmap
, i
);
6130 DRT_HASH_VACATE(cmap
, i
);
6131 DRT_BITVECTOR_CLEAR(cmap
, i
);
6135 * If there's an old map, re-hash entries from it into the new map.
6138 if (ocmap
!= NULL
) {
6139 for (i
= 0; i
< ocmap
->scm_modulus
; i
++) {
6140 /* skip empty buckets */
6141 if (DRT_HASH_VACANT(ocmap
, i
) ||
6142 (DRT_HASH_GET_COUNT(ocmap
, i
) == 0))
6145 offset
= DRT_HASH_GET_ADDRESS(ocmap
, i
);
6146 kret
= vfs_drt_get_index(&cmap
, offset
, &index
, 1);
6147 if (kret
!= KERN_SUCCESS
) {
6148 /* XXX need to bail out gracefully here */
6149 panic("vfs_drt: new cluster map mysteriously too small");
6153 DRT_HASH_COPY(ocmap
, i
, cmap
, index
);
6158 /* log what we've done */
6159 vfs_drt_trace(cmap
, DRT_DEBUG_ALLOC
, copycount
, 0, 0, 0);
6162 * It's important to ensure that *cmapp always points to
6163 * a valid map, so we must overwrite it before freeing
6167 if (ocmap
!= NULL
) {
6168 /* emit stats into trace buffer */
6169 vfs_drt_trace(ocmap
, DRT_DEBUG_SCMDATA
,
6172 ocmap
->scm_lastclean
,
6175 vfs_drt_free_map(ocmap
);
6177 return(KERN_SUCCESS
);
6182 * Free a sparse cluster map.
6184 static kern_return_t
6185 vfs_drt_free_map(struct vfs_drt_clustermap
*cmap
)
6187 kmem_free(kernel_map
, (vm_offset_t
)cmap
,
6188 (cmap
->scm_modulus
== DRT_HASH_SMALL_MODULUS
) ? DRT_SMALL_ALLOCATION
: DRT_LARGE_ALLOCATION
);
6189 return(KERN_SUCCESS
);
6194 * Find the hashtable slot currently occupied by an entry for the supplied offset.
6196 static kern_return_t
6197 vfs_drt_search_index(struct vfs_drt_clustermap
*cmap
, u_int64_t offset
, int *indexp
)
6202 offset
= DRT_ALIGN_ADDRESS(offset
);
6203 index
= DRT_HASH(cmap
, offset
);
6205 /* traverse the hashtable */
6206 for (i
= 0; i
< cmap
->scm_modulus
; i
++) {
6209 * If the slot is vacant, we can stop.
6211 if (DRT_HASH_VACANT(cmap
, index
))
6215 * If the address matches our offset, we have success.
6217 if (DRT_HASH_GET_ADDRESS(cmap
, index
) == offset
) {
6219 return(KERN_SUCCESS
);
6223 * Move to the next slot, try again.
6225 index
= DRT_HASH_NEXT(cmap
, index
);
6230 return(KERN_FAILURE
);
6234 * Find the hashtable slot for the supplied offset. If we haven't allocated
6235 * one yet, allocate one and populate the address field. Note that it will
6236 * not have a nonzero page count and thus will still technically be free, so
6237 * in the case where we are called to clean pages, the slot will remain free.
6239 static kern_return_t
6240 vfs_drt_get_index(struct vfs_drt_clustermap
**cmapp
, u_int64_t offset
, int *indexp
, int recursed
)
6242 struct vfs_drt_clustermap
*cmap
;
6249 /* look for an existing entry */
6250 kret
= vfs_drt_search_index(cmap
, offset
, indexp
);
6251 if (kret
== KERN_SUCCESS
)
6254 /* need to allocate an entry */
6255 offset
= DRT_ALIGN_ADDRESS(offset
);
6256 index
= DRT_HASH(cmap
, offset
);
6258 /* scan from the index forwards looking for a vacant slot */
6259 for (i
= 0; i
< cmap
->scm_modulus
; i
++) {
6261 if (DRT_HASH_VACANT(cmap
, index
) || DRT_HASH_GET_COUNT(cmap
,index
) == 0) {
6262 cmap
->scm_buckets
++;
6263 if (index
< cmap
->scm_lastclean
)
6264 cmap
->scm_lastclean
= index
;
6265 DRT_HASH_SET_ADDRESS(cmap
, index
, offset
);
6266 DRT_HASH_SET_COUNT(cmap
, index
, 0);
6267 DRT_BITVECTOR_CLEAR(cmap
, index
);
6269 vfs_drt_trace(cmap
, DRT_DEBUG_INSERT
, (int)offset
, i
, 0, 0);
6270 return(KERN_SUCCESS
);
6272 cmap
->scm_iskips
+= i
;
6273 index
= DRT_HASH_NEXT(cmap
, index
);
6277 * We haven't found a vacant slot, so the map is full. If we're not
6278 * already recursed, try reallocating/compacting it.
6281 return(KERN_FAILURE
);
6282 kret
= vfs_drt_alloc_map(cmapp
);
6283 if (kret
== KERN_SUCCESS
) {
6284 /* now try to insert again */
6285 kret
= vfs_drt_get_index(cmapp
, offset
, indexp
, 1);
6291 * Implementation of set dirty/clean.
6293 * In the 'clean' case, not finding a map is OK.
6295 static kern_return_t
6296 vfs_drt_do_mark_pages(
6303 struct vfs_drt_clustermap
*cmap
, **cmapp
;
6305 int i
, index
, pgoff
, pgcount
, setcount
, ecount
;
6307 cmapp
= (struct vfs_drt_clustermap
**)private;
6310 vfs_drt_trace(cmap
, DRT_DEBUG_MARK
| DBG_FUNC_START
, (int)offset
, (int)length
, dirty
, 0);
6312 if (setcountp
!= NULL
)
6315 /* allocate a cluster map if we don't already have one */
6317 /* no cluster map, nothing to clean */
6319 vfs_drt_trace(cmap
, DRT_DEBUG_MARK
| DBG_FUNC_END
, 1, 0, 0, 0);
6320 return(KERN_SUCCESS
);
6322 kret
= vfs_drt_alloc_map(cmapp
);
6323 if (kret
!= KERN_SUCCESS
) {
6324 vfs_drt_trace(cmap
, DRT_DEBUG_MARK
| DBG_FUNC_END
, 2, 0, 0, 0);
6331 * Iterate over the length of the region.
6333 while (length
> 0) {
6335 * Get the hashtable index for this offset.
6337 * XXX this will add blank entries if we are clearing a range
6338 * that hasn't been dirtied.
6340 kret
= vfs_drt_get_index(cmapp
, offset
, &index
, 0);
6341 cmap
= *cmapp
; /* may have changed! */
6342 /* this may be a partial-success return */
6343 if (kret
!= KERN_SUCCESS
) {
6344 if (setcountp
!= NULL
)
6345 *setcountp
= setcount
;
6346 vfs_drt_trace(cmap
, DRT_DEBUG_MARK
| DBG_FUNC_END
, 3, (int)length
, 0, 0);
6352 * Work out how many pages we're modifying in this
6355 pgoff
= (offset
- DRT_ALIGN_ADDRESS(offset
)) / PAGE_SIZE
;
6356 pgcount
= min((length
/ PAGE_SIZE
), (DRT_BITVECTOR_PAGES
- pgoff
));
6359 * Iterate over pages, dirty/clearing as we go.
6361 ecount
= DRT_HASH_GET_COUNT(cmap
, index
);
6362 for (i
= 0; i
< pgcount
; i
++) {
6364 if (!DRT_HASH_TEST_BIT(cmap
, index
, pgoff
+ i
)) {
6365 DRT_HASH_SET_BIT(cmap
, index
, pgoff
+ i
);
6370 if (DRT_HASH_TEST_BIT(cmap
, index
, pgoff
+ i
)) {
6371 DRT_HASH_CLEAR_BIT(cmap
, index
, pgoff
+ i
);
6377 DRT_HASH_SET_COUNT(cmap
, index
, ecount
);
6379 offset
+= pgcount
* PAGE_SIZE
;
6380 length
-= pgcount
* PAGE_SIZE
;
6382 if (setcountp
!= NULL
)
6383 *setcountp
= setcount
;
6385 vfs_drt_trace(cmap
, DRT_DEBUG_MARK
| DBG_FUNC_END
, 0, setcount
, 0, 0);
6387 return(KERN_SUCCESS
);
6391 * Mark a set of pages as dirty/clean.
6393 * This is a public interface.
6396 * Pointer to storage suitable for holding a pointer. Note that
6397 * this must either be NULL or a value set by this function.
6400 * Current file size in bytes.
6403 * Offset of the first page to be marked as dirty, in bytes. Must be
6407 * Length of dirty region, in bytes. Must be a multiple of PAGE_SIZE.
6410 * Number of pages newly marked dirty by this call (optional).
6412 * Returns KERN_SUCCESS if all the pages were successfully marked.
6414 static kern_return_t
6415 vfs_drt_mark_pages(void **cmapp
, off_t offset
, u_int length
, u_int
*setcountp
)
6417 /* XXX size unused, drop from interface */
6418 return(vfs_drt_do_mark_pages(cmapp
, offset
, length
, setcountp
, 1));
6422 static kern_return_t
6423 vfs_drt_unmark_pages(void **cmapp
, off_t offset
, u_int length
)
6425 return(vfs_drt_do_mark_pages(cmapp
, offset
, length
, NULL
, 0));
6430 * Get a cluster of dirty pages.
6432 * This is a public interface.
6435 * Pointer to storage managed by drt_mark_pages. Note that this must
6436 * be NULL or a value set by drt_mark_pages.
6439 * Returns the byte offset into the file of the first page in the cluster.
6442 * Returns the length in bytes of the cluster of dirty pages.
6444 * Returns success if a cluster was found. If KERN_FAILURE is returned, there
6445 * are no dirty pages meeting the minmum size criteria. Private storage will
6446 * be released if there are no more dirty pages left in the map
6449 static kern_return_t
6450 vfs_drt_get_cluster(void **cmapp
, off_t
*offsetp
, u_int
*lengthp
)
6452 struct vfs_drt_clustermap
*cmap
;
6456 int index
, i
, fs
, ls
;
6459 if ((cmapp
== NULL
) || (*cmapp
== NULL
))
6460 return(KERN_FAILURE
);
6463 /* walk the hashtable */
6464 for (offset
= 0, j
= 0; j
< cmap
->scm_modulus
; offset
+= (DRT_BITVECTOR_PAGES
* PAGE_SIZE
), j
++) {
6465 index
= DRT_HASH(cmap
, offset
);
6467 if (DRT_HASH_VACANT(cmap
, index
) || (DRT_HASH_GET_COUNT(cmap
, index
) == 0))
6470 /* scan the bitfield for a string of bits */
6473 for (i
= 0; i
< DRT_BITVECTOR_PAGES
; i
++) {
6474 if (DRT_HASH_TEST_BIT(cmap
, index
, i
)) {
6480 /* didn't find any bits set */
6481 panic("vfs_drt: entry summary count > 0 but no bits set in map");
6483 for (ls
= 0; i
< DRT_BITVECTOR_PAGES
; i
++, ls
++) {
6484 if (!DRT_HASH_TEST_BIT(cmap
, index
, i
))
6488 /* compute offset and length, mark pages clean */
6489 offset
= DRT_HASH_GET_ADDRESS(cmap
, index
) + (PAGE_SIZE
* fs
);
6490 length
= ls
* PAGE_SIZE
;
6491 vfs_drt_do_mark_pages(cmapp
, offset
, length
, NULL
, 0);
6492 cmap
->scm_lastclean
= index
;
6494 /* return successful */
6495 *offsetp
= (off_t
)offset
;
6498 vfs_drt_trace(cmap
, DRT_DEBUG_RETCLUSTER
, (int)offset
, (int)length
, 0, 0);
6499 return(KERN_SUCCESS
);
6502 * We didn't find anything... hashtable is empty
6503 * emit stats into trace buffer and
6506 vfs_drt_trace(cmap
, DRT_DEBUG_SCMDATA
,
6509 cmap
->scm_lastclean
,
6512 vfs_drt_free_map(cmap
);
6515 return(KERN_FAILURE
);
6519 static kern_return_t
6520 vfs_drt_control(void **cmapp
, int op_type
)
6522 struct vfs_drt_clustermap
*cmap
;
6525 if ((cmapp
== NULL
) || (*cmapp
== NULL
))
6526 return(KERN_FAILURE
);
6531 /* emit stats into trace buffer */
6532 vfs_drt_trace(cmap
, DRT_DEBUG_SCMDATA
,
6535 cmap
->scm_lastclean
,
6538 vfs_drt_free_map(cmap
);
6543 cmap
->scm_lastclean
= 0;
6546 return(KERN_SUCCESS
);
6552 * Emit a summary of the state of the clustermap into the trace buffer
6553 * along with some caller-provided data.
6557 vfs_drt_trace(__unused
struct vfs_drt_clustermap
*cmap
, int code
, int arg1
, int arg2
, int arg3
, int arg4
)
6559 KERNEL_DEBUG(code
, arg1
, arg2
, arg3
, arg4
, 0);
6563 vfs_drt_trace(__unused
struct vfs_drt_clustermap
*cmap
, __unused
int code
,
6564 __unused
int arg1
, __unused
int arg2
, __unused
int arg3
,
6572 * Perform basic sanity check on the hash entry summary count
6573 * vs. the actual bits set in the entry.
6576 vfs_drt_sanity(struct vfs_drt_clustermap
*cmap
)
6581 for (index
= 0; index
< cmap
->scm_modulus
; index
++) {
6582 if (DRT_HASH_VACANT(cmap
, index
))
6585 for (bits_on
= 0, i
= 0; i
< DRT_BITVECTOR_PAGES
; i
++) {
6586 if (DRT_HASH_TEST_BIT(cmap
, index
, i
))
6589 if (bits_on
!= DRT_HASH_GET_COUNT(cmap
, index
))
6590 panic("bits_on = %d, index = %d\n", bits_on
, index
);