2 * Copyright (c) 2000-2008 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
30 * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org>
31 * All rights reserved.
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
42 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
43 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
44 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
45 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
46 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
47 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
48 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
49 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
50 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
51 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 * @(#)kern_event.c 1.0 (3/31/2000)
59 #include <sys/param.h>
60 #include <sys/systm.h>
61 #include <sys/filedesc.h>
62 #include <sys/kernel.h>
63 #include <sys/proc_internal.h>
64 #include <sys/kauth.h>
65 #include <sys/malloc.h>
66 #include <sys/unistd.h>
67 #include <sys/file_internal.h>
68 #include <sys/fcntl.h>
69 #include <sys/select.h>
70 #include <sys/queue.h>
71 #include <sys/event.h>
72 #include <sys/eventvar.h>
73 #include <sys/protosw.h>
74 #include <sys/socket.h>
75 #include <sys/socketvar.h>
77 #include <sys/sysctl.h>
79 #include <sys/sysproto.h>
81 #include <sys/vnode_internal.h>
83 #include <sys/proc_info.h>
85 #include <kern/lock.h>
86 #include <kern/clock.h>
87 #include <kern/thread_call.h>
88 #include <kern/sched_prim.h>
89 #include <kern/zalloc.h>
90 #include <kern/assert.h>
92 #include <libkern/libkern.h>
93 #include "net/net_str_id.h"
95 MALLOC_DEFINE(M_KQUEUE
, "kqueue", "memory for kqueue system");
99 static inline void kqlock(struct kqueue
*kq
);
100 static inline void kqunlock(struct kqueue
*kq
);
102 static int kqlock2knoteuse(struct kqueue
*kq
, struct knote
*kn
);
103 static int kqlock2knoteusewait(struct kqueue
*kq
, struct knote
*kn
);
104 static int kqlock2knotedrop(struct kqueue
*kq
, struct knote
*kn
);
105 static int knoteuse2kqlock(struct kqueue
*kq
, struct knote
*kn
);
107 static void kqueue_wakeup(struct kqueue
*kq
, int closed
);
108 static int kqueue_read(struct fileproc
*fp
, struct uio
*uio
,
109 int flags
, vfs_context_t ctx
);
110 static int kqueue_write(struct fileproc
*fp
, struct uio
*uio
,
111 int flags
, vfs_context_t ctx
);
112 static int kqueue_ioctl(struct fileproc
*fp
, u_long com
, caddr_t data
,
114 static int kqueue_select(struct fileproc
*fp
, int which
, void *wql
,
116 static int kqueue_close(struct fileglob
*fg
, vfs_context_t ctx
);
117 static int kqueue_kqfilter(struct fileproc
*fp
, struct knote
*kn
, vfs_context_t ctx
);
118 static int kqueue_drain(struct fileproc
*fp
, vfs_context_t ctx
);
119 extern int kqueue_stat(struct fileproc
*fp
, void *ub
, int isstat64
, vfs_context_t ctx
);
121 static struct fileops kqueueops
= {
122 .fo_read
= kqueue_read
,
123 .fo_write
= kqueue_write
,
124 .fo_ioctl
= kqueue_ioctl
,
125 .fo_select
= kqueue_select
,
126 .fo_close
= kqueue_close
,
127 .fo_kqfilter
= kqueue_kqfilter
,
128 .fo_drain
= kqueue_drain
,
131 static int kevent_internal(struct proc
*p
, int iskev64
, user_addr_t changelist
,
132 int nchanges
, user_addr_t eventlist
, int nevents
, int fd
,
133 user_addr_t utimeout
, unsigned int flags
, int32_t *retval
);
134 static int kevent_copyin(user_addr_t
*addrp
, struct kevent64_s
*kevp
, struct proc
*p
, int iskev64
);
135 static int kevent_copyout(struct kevent64_s
*kevp
, user_addr_t
*addrp
, struct proc
*p
, int iskev64
);
136 char * kevent_description(struct kevent64_s
*kevp
, char *s
, size_t n
);
138 static int kevent_callback(struct kqueue
*kq
, struct kevent64_s
*kevp
, void *data
);
139 static void kevent_continue(struct kqueue
*kq
, void *data
, int error
);
140 static void kqueue_scan_continue(void *contp
, wait_result_t wait_result
);
141 static int kqueue_process(struct kqueue
*kq
, kevent_callback_t callback
,
142 void *data
, int *countp
, struct proc
*p
);
143 static int knote_process(struct knote
*kn
, kevent_callback_t callback
,
144 void *data
, struct kqtailq
*inprocessp
, struct proc
*p
);
145 static void knote_put(struct knote
*kn
);
146 static int knote_fdpattach(struct knote
*kn
, struct filedesc
*fdp
, struct proc
*p
);
147 static void knote_drop(struct knote
*kn
, struct proc
*p
);
148 static void knote_activate(struct knote
*kn
, int);
149 static void knote_deactivate(struct knote
*kn
);
150 static void knote_enqueue(struct knote
*kn
);
151 static void knote_dequeue(struct knote
*kn
);
152 static struct knote
*knote_alloc(void);
153 static void knote_free(struct knote
*kn
);
155 static int filt_fileattach(struct knote
*kn
);
156 static struct filterops file_filtops
= {
158 .f_attach
= filt_fileattach
,
161 static void filt_kqdetach(struct knote
*kn
);
162 static int filt_kqueue(struct knote
*kn
, long hint
);
163 static struct filterops kqread_filtops
= {
165 .f_detach
= filt_kqdetach
,
166 .f_event
= filt_kqueue
,
170 * placeholder for not-yet-implemented filters
172 static int filt_badattach(struct knote
*kn
);
173 static struct filterops bad_filtops
= {
174 .f_attach
= filt_badattach
,
177 static int filt_procattach(struct knote
*kn
);
178 static void filt_procdetach(struct knote
*kn
);
179 static int filt_proc(struct knote
*kn
, long hint
);
180 static struct filterops proc_filtops
= {
181 .f_attach
= filt_procattach
,
182 .f_detach
= filt_procdetach
,
183 .f_event
= filt_proc
,
186 extern struct filterops fs_filtops
;
188 extern struct filterops sig_filtops
;
191 static int filt_timerattach(struct knote
*kn
);
192 static void filt_timerdetach(struct knote
*kn
);
193 static int filt_timer(struct knote
*kn
, long hint
);
194 static void filt_timertouch(struct knote
*kn
, struct kevent64_s
*kev
,
196 static struct filterops timer_filtops
= {
197 .f_attach
= filt_timerattach
,
198 .f_detach
= filt_timerdetach
,
199 .f_event
= filt_timer
,
200 .f_touch
= filt_timertouch
,
205 static void filt_timerexpire(void *knx
, void *param1
);
206 static int filt_timervalidate(struct knote
*kn
);
207 static void filt_timerupdate(struct knote
*kn
);
208 static void filt_timercancel(struct knote
*kn
);
210 #define TIMER_RUNNING 0x1
211 #define TIMER_CANCELWAIT 0x2
213 static lck_mtx_t _filt_timerlock
;
214 static void filt_timerlock(void);
215 static void filt_timerunlock(void);
217 static zone_t knote_zone
;
219 #define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask))
222 extern struct filterops aio_filtops
;
225 /* Mach portset filter */
226 extern struct filterops machport_filtops
;
229 static int filt_userattach(struct knote
*kn
);
230 static void filt_userdetach(struct knote
*kn
);
231 static int filt_user(struct knote
*kn
, long hint
);
232 static void filt_usertouch(struct knote
*kn
, struct kevent64_s
*kev
,
234 static struct filterops user_filtops
= {
235 .f_attach
= filt_userattach
,
236 .f_detach
= filt_userdetach
,
237 .f_event
= filt_user
,
238 .f_touch
= filt_usertouch
,
242 /* Audit session filter */
243 extern struct filterops audit_session_filtops
;
247 * Table for for all system-defined filters.
249 static struct filterops
*sysfilt_ops
[] = {
250 &file_filtops
, /* EVFILT_READ */
251 &file_filtops
, /* EVFILT_WRITE */
253 &aio_filtops
, /* EVFILT_AIO */
255 &bad_filtops
, /* EVFILT_AIO */
257 &file_filtops
, /* EVFILT_VNODE */
258 &proc_filtops
, /* EVFILT_PROC */
259 &sig_filtops
, /* EVFILT_SIGNAL */
260 &timer_filtops
, /* EVFILT_TIMER */
261 &machport_filtops
, /* EVFILT_MACHPORT */
262 &fs_filtops
, /* EVFILT_FS */
263 &user_filtops
, /* EVFILT_USER */
265 &audit_session_filtops
, /* EVFILT_SESSION */
272 * kqueue/note lock attributes and implementations
274 * kqueues have locks, while knotes have use counts
275 * Most of the knote state is guarded by the object lock.
276 * the knote "inuse" count and status use the kqueue lock.
278 lck_grp_attr_t
* kq_lck_grp_attr
;
279 lck_grp_t
* kq_lck_grp
;
280 lck_attr_t
* kq_lck_attr
;
283 kqlock(struct kqueue
*kq
)
285 lck_spin_lock(&kq
->kq_lock
);
289 kqunlock(struct kqueue
*kq
)
291 lck_spin_unlock(&kq
->kq_lock
);
295 * Convert a kq lock to a knote use referece.
297 * If the knote is being dropped, we can't get
298 * a use reference, so just return with it
301 * - kq locked at entry
302 * - unlock on exit if we get the use reference
305 kqlock2knoteuse(struct kqueue
*kq
, struct knote
*kn
)
307 if (kn
->kn_status
& KN_DROPPING
)
315 * Convert a kq lock to a knote use referece,
316 * but wait for attach and drop events to complete.
318 * If the knote is being dropped, we can't get
319 * a use reference, so just return with it
322 * - kq locked at entry
323 * - kq always unlocked on exit
326 kqlock2knoteusewait(struct kqueue
*kq
, struct knote
*kn
)
328 if ((kn
->kn_status
& (KN_DROPPING
| KN_ATTACHING
)) != 0) {
329 kn
->kn_status
|= KN_USEWAIT
;
330 wait_queue_assert_wait((wait_queue_t
)kq
->kq_wqs
, &kn
->kn_status
, THREAD_UNINT
, 0);
332 thread_block(THREAD_CONTINUE_NULL
);
342 * Convert from a knote use reference back to kq lock.
344 * Drop a use reference and wake any waiters if
345 * this is the last one.
347 * The exit return indicates if the knote is
348 * still alive - but the kqueue lock is taken
352 knoteuse2kqlock(struct kqueue
*kq
, struct knote
*kn
)
355 if (--kn
->kn_inuse
== 0) {
356 if ((kn
->kn_status
& KN_ATTACHING
) != 0) {
357 kn
->kn_status
&= ~KN_ATTACHING
;
359 if ((kn
->kn_status
& KN_USEWAIT
) != 0) {
360 kn
->kn_status
&= ~KN_USEWAIT
;
361 wait_queue_wakeup_all((wait_queue_t
)kq
->kq_wqs
, &kn
->kn_status
, THREAD_AWAKENED
);
364 return ((kn
->kn_status
& KN_DROPPING
) == 0);
368 * Convert a kq lock to a knote drop referece.
370 * If the knote is in use, wait for the use count
371 * to subside. We first mark our intention to drop
372 * it - keeping other users from "piling on."
373 * If we are too late, we have to wait for the
374 * other drop to complete.
376 * - kq locked at entry
377 * - always unlocked on exit.
378 * - caller can't hold any locks that would prevent
379 * the other dropper from completing.
382 kqlock2knotedrop(struct kqueue
*kq
, struct knote
*kn
)
386 oktodrop
= ((kn
->kn_status
& (KN_DROPPING
| KN_ATTACHING
)) == 0);
387 kn
->kn_status
|= KN_DROPPING
;
389 if (kn
->kn_inuse
== 0) {
394 kn
->kn_status
|= KN_USEWAIT
;
395 wait_queue_assert_wait((wait_queue_t
)kq
->kq_wqs
, &kn
->kn_status
, THREAD_UNINT
, 0);
397 thread_block(THREAD_CONTINUE_NULL
);
402 * Release a knote use count reference.
405 knote_put(struct knote
*kn
)
407 struct kqueue
*kq
= kn
->kn_kq
;
410 if (--kn
->kn_inuse
== 0) {
411 if ((kn
->kn_status
& KN_USEWAIT
) != 0) {
412 kn
->kn_status
&= ~KN_USEWAIT
;
413 wait_queue_wakeup_all((wait_queue_t
)kq
->kq_wqs
, &kn
->kn_status
, THREAD_AWAKENED
);
420 filt_fileattach(struct knote
*kn
)
423 return (fo_kqfilter(kn
->kn_fp
, kn
, vfs_context_current()));
426 #define f_flag f_fglob->fg_flag
427 #define f_type f_fglob->fg_type
428 #define f_msgcount f_fglob->fg_msgcount
429 #define f_cred f_fglob->fg_cred
430 #define f_ops f_fglob->fg_ops
431 #define f_offset f_fglob->fg_offset
432 #define f_data f_fglob->fg_data
435 filt_kqdetach(struct knote
*kn
)
437 struct kqueue
*kq
= (struct kqueue
*)kn
->kn_fp
->f_data
;
440 KNOTE_DETACH(&kq
->kq_sel
.si_note
, kn
);
446 filt_kqueue(struct knote
*kn
, __unused
long hint
)
448 struct kqueue
*kq
= (struct kqueue
*)kn
->kn_fp
->f_data
;
450 kn
->kn_data
= kq
->kq_count
;
451 return (kn
->kn_data
> 0);
455 filt_procattach(struct knote
*kn
)
459 assert(PID_MAX
< NOTE_PDATAMASK
);
461 if ((kn
->kn_sfflags
& (NOTE_TRACK
| NOTE_TRACKERR
| NOTE_CHILD
)) != 0)
464 p
= proc_find(kn
->kn_id
);
471 kn
->kn_flags
|= EV_CLEAR
; /* automatically set */
472 kn
->kn_ptr
.p_proc
= p
; /* store the proc handle */
474 KNOTE_ATTACH(&p
->p_klist
, kn
);
484 * The knote may be attached to a different process, which may exit,
485 * leaving nothing for the knote to be attached to. In that case,
486 * the pointer to the process will have already been nulled out.
489 filt_procdetach(struct knote
*kn
)
495 p
= kn
->kn_ptr
.p_proc
;
496 if (p
!= PROC_NULL
) {
497 kn
->kn_ptr
.p_proc
= PROC_NULL
;
498 KNOTE_DETACH(&p
->p_klist
, kn
);
505 filt_proc(struct knote
*kn
, long hint
)
507 /* hint is 0 when called from above */
511 /* ALWAYS CALLED WITH proc_klist_lock when (hint != 0) */
514 * mask off extra data
516 event
= (u_int
)hint
& NOTE_PCTRLMASK
;
519 * if the user is interested in this event, record it.
521 if (kn
->kn_sfflags
& event
)
522 kn
->kn_fflags
|= event
;
524 if (event
== NOTE_REAP
|| (event
== NOTE_EXIT
&& !(kn
->kn_sfflags
& NOTE_REAP
))) {
525 kn
->kn_flags
|= (EV_EOF
| EV_ONESHOT
);
529 /* atomic check, no locking need when called from above */
530 return (kn
->kn_fflags
!= 0);
535 * filt_timervalidate - process data from user
537 * Converts to either interval or deadline format.
539 * The saved-data field in the knote contains the
540 * time value. The saved filter-flags indicates
541 * the unit of measurement.
543 * After validation, either the saved-data field
544 * contains the interval in absolute time, or ext[0]
545 * contains the expected deadline. If that deadline
546 * is in the past, ext[0] is 0.
548 * Returns EINVAL for unrecognized units of time.
550 * Timer filter lock is held.
554 filt_timervalidate(struct knote
*kn
)
559 switch (kn
->kn_sfflags
& (NOTE_SECONDS
|NOTE_USECONDS
|NOTE_NSECONDS
)) {
561 multiplier
= NSEC_PER_SEC
;
564 multiplier
= NSEC_PER_USEC
;
569 case 0: /* milliseconds (default) */
570 multiplier
= NSEC_PER_SEC
/ 1000;
576 nanoseconds_to_absolutetime((uint64_t)kn
->kn_sdata
* multiplier
, &raw
);
581 if (kn
->kn_sfflags
& NOTE_ABSOLUTE
) {
583 clock_nsec_t nanoseconds
;
586 clock_get_calendar_nanotime(&seconds
, &nanoseconds
);
587 nanoseconds_to_absolutetime((uint64_t)seconds
* NSEC_PER_SEC
+
591 /* time has already passed */
595 clock_absolutetime_interval_to_deadline(raw
,
606 * filt_timerupdate - compute the next deadline
608 * Repeating timers store their interval in kn_sdata. Absolute
609 * timers have already calculated the deadline, stored in ext[0].
611 * On return, the next deadline (or zero if no deadline is needed)
612 * is stored in kn_ext[0].
614 * Timer filter lock is held.
617 filt_timerupdate(struct knote
*kn
)
619 /* if there's no interval, deadline is just in kn_ext[0] */
620 if (kn
->kn_sdata
== 0)
623 /* if timer hasn't fired before, fire in interval nsecs */
624 if (kn
->kn_ext
[0] == 0) {
625 clock_absolutetime_interval_to_deadline(kn
->kn_sdata
,
629 * If timer has fired before, schedule the next pop
630 * relative to the last intended deadline.
632 * We could check for whether the deadline has expired,
633 * but the thread call layer can handle that.
635 kn
->kn_ext
[0] += kn
->kn_sdata
;
640 * filt_timerexpire - the timer callout routine
642 * Just propagate the timer event into the knote
643 * filter routine (by going through the knote
644 * synchronization point). Pass a hint to
645 * indicate this is a real event, not just a
649 filt_timerexpire(void *knx
, __unused
void *spare
)
651 struct klist timer_list
;
652 struct knote
*kn
= knx
;
656 kn
->kn_hookid
&= ~TIMER_RUNNING
;
658 /* no "object" for timers, so fake a list */
659 SLIST_INIT(&timer_list
);
660 SLIST_INSERT_HEAD(&timer_list
, kn
, kn_selnext
);
661 KNOTE(&timer_list
, 1);
663 /* if someone is waiting for timer to pop */
664 if (kn
->kn_hookid
& TIMER_CANCELWAIT
) {
665 struct kqueue
*kq
= kn
->kn_kq
;
666 wait_queue_wakeup_all((wait_queue_t
)kq
->kq_wqs
, &kn
->kn_hook
,
674 * Cancel a running timer (or wait for the pop).
675 * Timer filter lock is held.
678 filt_timercancel(struct knote
*kn
)
680 struct kqueue
*kq
= kn
->kn_kq
;
681 thread_call_t callout
= kn
->kn_hook
;
684 if (kn
->kn_hookid
& TIMER_RUNNING
) {
685 /* cancel the callout if we can */
686 cancelled
= thread_call_cancel(callout
);
688 kn
->kn_hookid
&= ~TIMER_RUNNING
;
690 /* we have to wait for the expire routine. */
691 kn
->kn_hookid
|= TIMER_CANCELWAIT
;
692 wait_queue_assert_wait((wait_queue_t
)kq
->kq_wqs
,
693 &kn
->kn_hook
, THREAD_UNINT
, 0);
695 thread_block(THREAD_CONTINUE_NULL
);
697 assert((kn
->kn_hookid
& TIMER_RUNNING
) == 0);
703 * Allocate a thread call for the knote's lifetime, and kick off the timer.
706 filt_timerattach(struct knote
*kn
)
708 thread_call_t callout
;
711 callout
= thread_call_allocate(filt_timerexpire
, kn
);
716 error
= filt_timervalidate(kn
);
722 kn
->kn_hook
= (void*)callout
;
725 /* absolute=EV_ONESHOT */
726 if (kn
->kn_sfflags
& NOTE_ABSOLUTE
)
727 kn
->kn_flags
|= EV_ONESHOT
;
729 filt_timerupdate(kn
);
731 kn
->kn_flags
|= EV_CLEAR
;
732 thread_call_enter_delayed(callout
, kn
->kn_ext
[0]);
733 kn
->kn_hookid
|= TIMER_RUNNING
;
744 * Shut down the timer if it's running, and free the callout.
747 filt_timerdetach(struct knote
*kn
)
749 thread_call_t callout
;
753 callout
= (thread_call_t
)kn
->kn_hook
;
754 filt_timercancel(kn
);
758 thread_call_free(callout
);
764 filt_timer(struct knote
*kn
, long hint
)
769 /* real timer pop -- timer lock held by filt_timerexpire */
773 if (((kn
->kn_hookid
& TIMER_CANCELWAIT
) == 0) &&
774 ((kn
->kn_flags
& EV_ONESHOT
) == 0)) {
776 /* evaluate next time to fire */
777 filt_timerupdate(kn
);
780 /* keep the callout and re-arm */
781 thread_call_enter_delayed(kn
->kn_hook
,
783 kn
->kn_hookid
|= TIMER_RUNNING
;
793 result
= (kn
->kn_data
!= 0);
801 * filt_timertouch - update knote with new user input
803 * Cancel and restart the timer based on new user data. When
804 * the user picks up a knote, clear the count of how many timer
805 * pops have gone off (in kn_data).
808 filt_timertouch(struct knote
*kn
, struct kevent64_s
*kev
, long type
)
815 /* cancel current call */
816 filt_timercancel(kn
);
818 /* recalculate deadline */
819 kn
->kn_sdata
= kev
->data
;
820 kn
->kn_sfflags
= kev
->fflags
;
822 error
= filt_timervalidate(kn
);
824 /* no way to report error, so mark it in the knote */
825 kn
->kn_flags
|= EV_ERROR
;
830 /* start timer if necessary */
831 filt_timerupdate(kn
);
833 thread_call_enter_delayed(kn
->kn_hook
, kn
->kn_ext
[0]);
834 kn
->kn_hookid
|= TIMER_RUNNING
;
836 /* pretend the timer has fired */
843 /* reset the timer pop count in kn_data */
844 *kev
= kn
->kn_kevent
;
847 if (kn
->kn_flags
& EV_CLEAR
)
851 panic("filt_timertouch() - invalid type (%ld)", type
);
861 lck_mtx_lock(&_filt_timerlock
);
865 filt_timerunlock(void)
867 lck_mtx_unlock(&_filt_timerlock
);
871 filt_userattach(struct knote
*kn
)
873 /* EVFILT_USER knotes are not attached to anything in the kernel */
875 if (kn
->kn_fflags
& NOTE_TRIGGER
|| kn
->kn_flags
& EV_TRIGGER
) {
884 filt_userdetach(__unused
struct knote
*kn
)
886 /* EVFILT_USER knotes are not attached to anything in the kernel */
890 filt_user(struct knote
*kn
, __unused
long hint
)
892 return kn
->kn_hookid
;
896 filt_usertouch(struct knote
*kn
, struct kevent64_s
*kev
, long type
)
901 if (kev
->fflags
& NOTE_TRIGGER
|| kev
->flags
& EV_TRIGGER
) {
905 ffctrl
= kev
->fflags
& NOTE_FFCTRLMASK
;
906 kev
->fflags
&= NOTE_FFLAGSMASK
;
911 OSBitAndAtomic(kev
->fflags
, &kn
->kn_sfflags
);
914 OSBitOrAtomic(kev
->fflags
, &kn
->kn_sfflags
);
917 kn
->kn_sfflags
= kev
->fflags
;
920 kn
->kn_sdata
= kev
->data
;
923 *kev
= kn
->kn_kevent
;
924 kev
->fflags
= (volatile UInt32
)kn
->kn_sfflags
;
925 kev
->data
= kn
->kn_sdata
;
926 if (kn
->kn_flags
& EV_CLEAR
) {
933 panic("filt_usertouch() - invalid type (%ld)", type
);
939 * JMM - placeholder for not-yet-implemented filters
942 filt_badattach(__unused
struct knote
*kn
)
949 kqueue_alloc(struct proc
*p
)
951 struct filedesc
*fdp
= p
->p_fd
;
954 MALLOC_ZONE(kq
, struct kqueue
*, sizeof(struct kqueue
), M_KQUEUE
, M_WAITOK
);
956 wait_queue_set_t wqs
;
958 wqs
= wait_queue_set_alloc(SYNC_POLICY_FIFO
| SYNC_POLICY_PREPOST
);
960 bzero(kq
, sizeof(struct kqueue
));
961 lck_spin_init(&kq
->kq_lock
, kq_lck_grp
, kq_lck_attr
);
962 TAILQ_INIT(&kq
->kq_head
);
966 FREE_ZONE(kq
, sizeof(struct kqueue
), M_KQUEUE
);
970 if (fdp
->fd_knlistsize
< 0) {
972 if (fdp
->fd_knlistsize
< 0)
973 fdp
->fd_knlistsize
= 0; /* this process has had a kq */
982 * kqueue_dealloc - detach all knotes from a kqueue and free it
984 * We walk each list looking for knotes referencing this
985 * this kqueue. If we find one, we try to drop it. But
986 * if we fail to get a drop reference, that will wait
987 * until it is dropped. So, we can just restart again
988 * safe in the assumption that the list will eventually
989 * not contain any more references to this kqueue (either
990 * we dropped them all, or someone else did).
992 * Assumes no new events are being added to the kqueue.
993 * Nothing locked on entry or exit.
996 kqueue_dealloc(struct kqueue
*kq
)
998 struct proc
*p
= kq
->kq_p
;
999 struct filedesc
*fdp
= p
->p_fd
;
1004 for (i
= 0; i
< fdp
->fd_knlistsize
; i
++) {
1005 kn
= SLIST_FIRST(&fdp
->fd_knlist
[i
]);
1006 while (kn
!= NULL
) {
1007 if (kq
== kn
->kn_kq
) {
1010 /* drop it ourselves or wait */
1011 if (kqlock2knotedrop(kq
, kn
)) {
1012 kn
->kn_fop
->f_detach(kn
);
1016 /* start over at beginning of list */
1017 kn
= SLIST_FIRST(&fdp
->fd_knlist
[i
]);
1020 kn
= SLIST_NEXT(kn
, kn_link
);
1023 if (fdp
->fd_knhashmask
!= 0) {
1024 for (i
= 0; i
< (int)fdp
->fd_knhashmask
+ 1; i
++) {
1025 kn
= SLIST_FIRST(&fdp
->fd_knhash
[i
]);
1026 while (kn
!= NULL
) {
1027 if (kq
== kn
->kn_kq
) {
1030 /* drop it ourselves or wait */
1031 if (kqlock2knotedrop(kq
, kn
)) {
1032 kn
->kn_fop
->f_detach(kn
);
1036 /* start over at beginning of list */
1037 kn
= SLIST_FIRST(&fdp
->fd_knhash
[i
]);
1040 kn
= SLIST_NEXT(kn
, kn_link
);
1047 * before freeing the wait queue set for this kqueue,
1048 * make sure it is unlinked from all its containing (select) sets.
1050 wait_queue_unlink_all((wait_queue_t
)kq
->kq_wqs
);
1051 wait_queue_set_free(kq
->kq_wqs
);
1052 lck_spin_destroy(&kq
->kq_lock
, kq_lck_grp
);
1053 FREE_ZONE(kq
, sizeof(struct kqueue
), M_KQUEUE
);
1057 kqueue(struct proc
*p
, __unused
struct kqueue_args
*uap
, int32_t *retval
)
1060 struct fileproc
*fp
;
1063 error
= falloc(p
, &fp
, &fd
, vfs_context_current());
1068 kq
= kqueue_alloc(p
);
1074 fp
->f_flag
= FREAD
| FWRITE
;
1075 fp
->f_type
= DTYPE_KQUEUE
;
1076 fp
->f_ops
= &kqueueops
;
1077 fp
->f_data
= (caddr_t
)kq
;
1080 procfdtbl_releasefd(p
, fd
, NULL
);
1081 fp_drop(p
, fd
, fp
, 1);
1089 kevent_copyin(user_addr_t
*addrp
, struct kevent64_s
*kevp
, struct proc
*p
, int iskev64
)
1095 advance
= sizeof(struct kevent64_s
);
1096 error
= copyin(*addrp
, (caddr_t
)kevp
, advance
);
1097 } else if (IS_64BIT_PROCESS(p
)) {
1098 struct user64_kevent kev64
;
1099 bzero(kevp
, sizeof(struct kevent64_s
));
1101 advance
= sizeof(kev64
);
1102 error
= copyin(*addrp
, (caddr_t
)&kev64
, advance
);
1105 kevp
->ident
= kev64
.ident
;
1106 kevp
->filter
= kev64
.filter
;
1107 kevp
->flags
= kev64
.flags
;
1108 kevp
->fflags
= kev64
.fflags
;
1109 kevp
->data
= kev64
.data
;
1110 kevp
->udata
= kev64
.udata
;
1112 struct user32_kevent kev32
;
1113 bzero(kevp
, sizeof(struct kevent64_s
));
1115 advance
= sizeof(kev32
);
1116 error
= copyin(*addrp
, (caddr_t
)&kev32
, advance
);
1119 kevp
->ident
= (uintptr_t)kev32
.ident
;
1120 kevp
->filter
= kev32
.filter
;
1121 kevp
->flags
= kev32
.flags
;
1122 kevp
->fflags
= kev32
.fflags
;
1123 kevp
->data
= (intptr_t)kev32
.data
;
1124 kevp
->udata
= CAST_USER_ADDR_T(kev32
.udata
);
1132 kevent_copyout(struct kevent64_s
*kevp
, user_addr_t
*addrp
, struct proc
*p
, int iskev64
)
1138 advance
= sizeof(struct kevent64_s
);
1139 error
= copyout((caddr_t
)kevp
, *addrp
, advance
);
1140 } else if (IS_64BIT_PROCESS(p
)) {
1141 struct user64_kevent kev64
;
1144 * deal with the special case of a user-supplied
1145 * value of (uintptr_t)-1.
1147 kev64
.ident
= (kevp
->ident
== (uintptr_t)-1) ?
1148 (uint64_t)-1LL : (uint64_t)kevp
->ident
;
1150 kev64
.filter
= kevp
->filter
;
1151 kev64
.flags
= kevp
->flags
;
1152 kev64
.fflags
= kevp
->fflags
;
1153 kev64
.data
= (int64_t) kevp
->data
;
1154 kev64
.udata
= kevp
->udata
;
1155 advance
= sizeof(kev64
);
1156 error
= copyout((caddr_t
)&kev64
, *addrp
, advance
);
1158 struct user32_kevent kev32
;
1160 kev32
.ident
= (uint32_t)kevp
->ident
;
1161 kev32
.filter
= kevp
->filter
;
1162 kev32
.flags
= kevp
->flags
;
1163 kev32
.fflags
= kevp
->fflags
;
1164 kev32
.data
= (int32_t)kevp
->data
;
1165 kev32
.udata
= kevp
->udata
;
1166 advance
= sizeof(kev32
);
1167 error
= copyout((caddr_t
)&kev32
, *addrp
, advance
);
1175 * kevent_continue - continue a kevent syscall after blocking
1177 * assume we inherit a use count on the kq fileglob.
1181 kevent_continue(__unused
struct kqueue
*kq
, void *data
, int error
)
1183 struct _kevent
*cont_args
;
1184 struct fileproc
*fp
;
1188 struct proc
*p
= current_proc();
1190 cont_args
= (struct _kevent
*)data
;
1191 noutputs
= cont_args
->eventout
;
1192 retval
= cont_args
->retval
;
1196 fp_drop(p
, fd
, fp
, 0);
1198 /* don't restart after signals... */
1199 if (error
== ERESTART
)
1201 else if (error
== EWOULDBLOCK
)
1205 unix_syscall_return(error
);
1209 * kevent - [syscall] register and wait for kernel events
1213 kevent(struct proc
*p
, struct kevent_args
*uap
, int32_t *retval
)
1215 return kevent_internal(p
,
1223 0, /* no flags from old kevent() call */
1228 kevent64(struct proc
*p
, struct kevent64_args
*uap
, int32_t *retval
)
1230 return kevent_internal(p
,
1243 kevent_internal(struct proc
*p
, int iskev64
, user_addr_t changelist
,
1244 int nchanges
, user_addr_t ueventlist
, int nevents
, int fd
,
1245 user_addr_t utimeout
, __unused
unsigned int flags
,
1248 struct _kevent
*cont_args
;
1251 struct fileproc
*fp
;
1252 struct kevent64_s kev
;
1253 int error
, noutputs
;
1256 /* convert timeout to absolute - if we have one */
1257 if (utimeout
!= USER_ADDR_NULL
) {
1259 if (IS_64BIT_PROCESS(p
)) {
1260 struct user64_timespec ts
;
1261 error
= copyin(utimeout
, &ts
, sizeof(ts
));
1262 if ((ts
.tv_sec
& 0xFFFFFFFF00000000ull
) != 0)
1265 TIMESPEC_TO_TIMEVAL(&rtv
, &ts
);
1267 struct user32_timespec ts
;
1268 error
= copyin(utimeout
, &ts
, sizeof(ts
));
1269 TIMESPEC_TO_TIMEVAL(&rtv
, &ts
);
1273 if (itimerfix(&rtv
))
1275 getmicrouptime(&atv
);
1276 timevaladd(&atv
, &rtv
);
1282 /* get a usecount for the kq itself */
1283 if ((error
= fp_getfkq(p
, fd
, &fp
, &kq
)) != 0)
1286 /* each kq should only be used for events of one type */
1288 if (kq
->kq_state
& (KQ_KEV32
| KQ_KEV64
)) {
1289 if (((iskev64
&& (kq
->kq_state
& KQ_KEV32
)) ||
1290 (!iskev64
&& (kq
->kq_state
& KQ_KEV64
)))) {
1296 kq
->kq_state
|= (iskev64
? KQ_KEV64
: KQ_KEV32
);
1300 /* register all the change requests the user provided... */
1302 while (nchanges
> 0 && error
== 0) {
1303 error
= kevent_copyin(&changelist
, &kev
, p
, iskev64
);
1307 kev
.flags
&= ~EV_SYSFLAGS
;
1308 error
= kevent_register(kq
, &kev
, p
);
1309 if ((error
|| (kev
.flags
& EV_RECEIPT
)) && nevents
> 0) {
1310 kev
.flags
= EV_ERROR
;
1312 error
= kevent_copyout(&kev
, &ueventlist
, p
, iskev64
);
1321 /* store the continuation/completion data in the uthread */
1322 ut
= (uthread_t
)get_bsdthread_info(current_thread());
1323 cont_args
= &ut
->uu_kevent
.ss_kevent
;
1326 cont_args
->retval
= retval
;
1327 cont_args
->eventlist
= ueventlist
;
1328 cont_args
->eventcount
= nevents
;
1329 cont_args
->eventout
= noutputs
;
1330 cont_args
->eventsize
= iskev64
;
1332 if (nevents
> 0 && noutputs
== 0 && error
== 0)
1333 error
= kqueue_scan(kq
, kevent_callback
,
1334 kevent_continue
, cont_args
,
1336 kevent_continue(kq
, cont_args
, error
);
1339 fp_drop(p
, fd
, fp
, 0);
1345 * kevent_callback - callback for each individual event
1347 * called with nothing locked
1348 * caller holds a reference on the kqueue
1352 kevent_callback(__unused
struct kqueue
*kq
, struct kevent64_s
*kevp
,
1355 struct _kevent
*cont_args
;
1359 cont_args
= (struct _kevent
*)data
;
1360 assert(cont_args
->eventout
< cont_args
->eventcount
);
1362 iskev64
= cont_args
->eventsize
;
1365 * Copy out the appropriate amount of event data for this user.
1367 error
= kevent_copyout(kevp
, &cont_args
->eventlist
, current_proc(), iskev64
);
1370 * If there isn't space for additional events, return
1371 * a harmless error to stop the processing here
1373 if (error
== 0 && ++cont_args
->eventout
== cont_args
->eventcount
)
1374 error
= EWOULDBLOCK
;
1379 * kevent_description - format a description of a kevent for diagnostic output
1381 * called with a 128-byte string buffer
1385 kevent_description(struct kevent64_s
*kevp
, char *s
, size_t n
)
1389 "{.ident=%#llx, .filter=%d, .flags=%#x, .fflags=%#x, .data=%#llx, .udata=%#llx, .ext[0]=%#llx, .ext[1]=%#llx}",
1402 * kevent_register - add a new event to a kqueue
1404 * Creates a mapping between the event source and
1405 * the kqueue via a knote data structure.
1407 * Because many/most the event sources are file
1408 * descriptor related, the knote is linked off
1409 * the filedescriptor table for quick access.
1411 * called with nothing locked
1412 * caller holds a reference on the kqueue
1416 kevent_register(struct kqueue
*kq
, struct kevent64_s
*kev
, __unused
struct proc
*ctxp
)
1418 struct proc
*p
= kq
->kq_p
;
1419 struct filedesc
*fdp
= p
->p_fd
;
1420 struct filterops
*fops
;
1421 struct fileproc
*fp
= NULL
;
1422 struct knote
*kn
= NULL
;
1425 if (kev
->filter
< 0) {
1426 if (kev
->filter
+ EVFILT_SYSCOUNT
< 0)
1428 fops
= sysfilt_ops
[~kev
->filter
]; /* to 0-base index */
1432 * filter attach routine is responsible for insuring that
1433 * the identifier can be attached to it.
1435 printf("unknown filter: %d\n", kev
->filter
);
1440 /* this iocount needs to be dropped if it is not registered */
1442 if (fops
->f_isfd
&& (error
= fp_lookup(p
, kev
->ident
, &fp
, 1)) != 0) {
1448 /* fd-based knotes are linked off the fd table */
1449 if (kev
->ident
< (u_int
)fdp
->fd_knlistsize
) {
1450 SLIST_FOREACH(kn
, &fdp
->fd_knlist
[kev
->ident
], kn_link
)
1451 if (kq
== kn
->kn_kq
&&
1452 kev
->filter
== kn
->kn_filter
)
1456 /* hash non-fd knotes here too */
1457 if (fdp
->fd_knhashmask
!= 0) {
1460 list
= &fdp
->fd_knhash
[
1461 KN_HASH((u_long
)kev
->ident
, fdp
->fd_knhashmask
)];
1462 SLIST_FOREACH(kn
, list
, kn_link
)
1463 if (kev
->ident
== kn
->kn_id
&&
1465 kev
->filter
== kn
->kn_filter
)
1471 * kn now contains the matching knote, or NULL if no match
1474 if ((kev
->flags
& (EV_ADD
|EV_DELETE
)) == EV_ADD
) {
1483 kn
->kn_tq
= &kq
->kq_head
;
1485 kn
->kn_sfflags
= kev
->fflags
;
1486 kn
->kn_sdata
= kev
->data
;
1489 kn
->kn_kevent
= *kev
;
1490 kn
->kn_inuse
= 1; /* for f_attach() */
1491 kn
->kn_status
= KN_ATTACHING
;
1493 /* before anyone can find it */
1494 if (kev
->flags
& EV_DISABLE
)
1495 kn
->kn_status
|= KN_DISABLED
;
1497 error
= knote_fdpattach(kn
, fdp
, p
);
1506 * apply reference count to knote structure, and
1507 * do not release it at the end of this routine.
1511 error
= fops
->f_attach(kn
);
1516 * Failed to attach correctly, so drop.
1517 * All other possible users/droppers
1518 * have deferred to us.
1520 kn
->kn_status
|= KN_DROPPING
;
1524 } else if (kn
->kn_status
& KN_DROPPING
) {
1526 * Attach succeeded, but someone else
1527 * deferred their drop - now we have
1528 * to do it for them (after detaching).
1531 kn
->kn_fop
->f_detach(kn
);
1535 kn
->kn_status
&= ~KN_ATTACHING
;
1543 /* existing knote - get kqueue lock */
1547 if (kev
->flags
& EV_DELETE
) {
1549 kn
->kn_status
|= KN_DISABLED
;
1550 if (kqlock2knotedrop(kq
, kn
)) {
1551 kn
->kn_fop
->f_detach(kn
);
1557 /* update status flags for existing knote */
1558 if (kev
->flags
& EV_DISABLE
) {
1560 kn
->kn_status
|= KN_DISABLED
;
1561 } else if (kev
->flags
& EV_ENABLE
) {
1562 kn
->kn_status
&= ~KN_DISABLED
;
1563 if (kn
->kn_status
& KN_ACTIVE
)
1568 * The user may change some filter values after the
1569 * initial EV_ADD, but doing so will not reset any
1570 * filter which have already been triggered.
1572 kn
->kn_kevent
.udata
= kev
->udata
;
1573 if (fops
->f_isfd
|| fops
->f_touch
== NULL
) {
1574 kn
->kn_sfflags
= kev
->fflags
;
1575 kn
->kn_sdata
= kev
->data
;
1579 * If somebody is in the middle of dropping this
1580 * knote - go find/insert a new one. But we have
1581 * wait for this one to go away first. Attaches
1582 * running in parallel may also drop/modify the
1583 * knote. Wait for those to complete as well and
1584 * then start over if we encounter one.
1586 if (!kqlock2knoteusewait(kq
, kn
)) {
1587 /* kqueue, proc_fdlock both unlocked */
1592 * Call touch routine to notify filter of changes
1595 if (!fops
->f_isfd
&& fops
->f_touch
!= NULL
)
1596 fops
->f_touch(kn
, kev
, EVENT_REGISTER
);
1598 /* We may need to push some info down to a networked filesystem */
1599 if (kn
->kn_filter
== EVFILT_VNODE
) {
1600 vnode_knoteupdate(kn
);
1603 /* still have use ref on knote */
1606 * If the knote is not marked to always stay enqueued,
1607 * invoke the filter routine to see if it should be
1610 if ((kn
->kn_status
& KN_STAYQUEUED
) == 0 && kn
->kn_fop
->f_event(kn
, 0)) {
1611 if (knoteuse2kqlock(kq
, kn
))
1612 knote_activate(kn
, 1);
1620 fp_drop(p
, kev
->ident
, fp
, 0);
1626 * knote_process - process a triggered event
1628 * Validate that it is really still a triggered event
1629 * by calling the filter routines (if necessary). Hold
1630 * a use reference on the knote to avoid it being detached.
1631 * If it is still considered triggered, invoke the callback
1632 * routine provided and move it to the provided inprocess
1635 * caller holds a reference on the kqueue.
1636 * kqueue locked on entry and exit - but may be dropped
1639 knote_process(struct knote
*kn
,
1640 kevent_callback_t callback
,
1642 struct kqtailq
*inprocessp
,
1645 struct kqueue
*kq
= kn
->kn_kq
;
1646 struct kevent64_s kev
;
1652 * Determine the kevent state we want to return.
1654 * Some event states need to be revalidated before returning
1655 * them, others we take the snapshot at the time the event
1658 * Events with non-NULL f_touch operations must be touched.
1659 * Triggered events must fill in kev for the callback.
1661 * Convert our lock to a use-count and call the event's
1662 * filter routine(s) to update.
1664 if ((kn
->kn_status
& KN_DISABLED
) != 0) {
1671 revalidate
= ((kn
->kn_status
& KN_STAYQUEUED
) != 0 ||
1672 (kn
->kn_flags
& EV_ONESHOT
) == 0);
1673 touch
= (!kn
->kn_fop
->f_isfd
&& kn
->kn_fop
->f_touch
!= NULL
);
1675 if (revalidate
|| touch
) {
1677 knote_deactivate(kn
);
1679 /* call the filter/touch routines with just a ref */
1680 if (kqlock2knoteuse(kq
, kn
)) {
1682 /* if we have to revalidate, call the filter */
1684 result
= kn
->kn_fop
->f_event(kn
, 0);
1687 /* capture the kevent data - using touch if specified */
1688 if (result
&& touch
) {
1689 kn
->kn_fop
->f_touch(kn
, &kev
, EVENT_PROCESS
);
1692 /* convert back to a kqlock - bail if the knote went away */
1693 if (!knoteuse2kqlock(kq
, kn
)) {
1695 } else if (result
) {
1696 /* if revalidated as alive, make sure it's active */
1697 if (!(kn
->kn_status
& KN_ACTIVE
)) {
1698 knote_activate(kn
, 0);
1701 /* capture all events that occurred during filter */
1703 kev
= kn
->kn_kevent
;
1706 } else if ((kn
->kn_status
& KN_STAYQUEUED
) == 0) {
1707 /* was already dequeued, so just bail on this one */
1714 kev
= kn
->kn_kevent
;
1718 /* move knote onto inprocess queue */
1719 assert(kn
->kn_tq
== &kq
->kq_head
);
1720 TAILQ_REMOVE(&kq
->kq_head
, kn
, kn_tqe
);
1721 kn
->kn_tq
= inprocessp
;
1722 TAILQ_INSERT_TAIL(inprocessp
, kn
, kn_tqe
);
1725 * Determine how to dispatch the knote for future event handling.
1726 * not-fired: just return (do not callout).
1727 * One-shot: deactivate it.
1728 * Clear: deactivate and clear the state.
1729 * Dispatch: don't clear state, just deactivate it and mark it disabled.
1730 * All others: just leave where they are.
1735 } else if ((kn
->kn_flags
& EV_ONESHOT
) != 0) {
1736 knote_deactivate(kn
);
1737 if (kqlock2knotedrop(kq
, kn
)) {
1738 kn
->kn_fop
->f_detach(kn
);
1741 } else if ((kn
->kn_flags
& (EV_CLEAR
| EV_DISPATCH
)) != 0) {
1742 if ((kn
->kn_flags
& EV_DISPATCH
) != 0) {
1743 /* deactivate and disable all dispatch knotes */
1744 knote_deactivate(kn
);
1745 kn
->kn_status
|= KN_DISABLED
;
1746 } else if (!touch
|| kn
->kn_fflags
== 0) {
1747 /* only deactivate if nothing since the touch */
1748 knote_deactivate(kn
);
1750 if (!touch
&& (kn
->kn_flags
& EV_CLEAR
) != 0) {
1751 /* manually clear non-touch knotes */
1758 * leave on inprocess queue. We'll
1759 * move all the remaining ones back
1760 * the kq queue and wakeup any
1761 * waiters when we are done.
1766 /* callback to handle each event as we find it */
1767 error
= (callback
)(kq
, &kev
, data
);
1775 * kqueue_process - process the triggered events in a kqueue
1777 * Walk the queued knotes and validate that they are
1778 * really still triggered events by calling the filter
1779 * routines (if necessary). Hold a use reference on
1780 * the knote to avoid it being detached. For each event
1781 * that is still considered triggered, invoke the
1782 * callback routine provided.
1784 * caller holds a reference on the kqueue.
1785 * kqueue locked on entry and exit - but may be dropped
1786 * kqueue list locked (held for duration of call)
1790 kqueue_process(struct kqueue
*kq
,
1791 kevent_callback_t callback
,
1796 struct kqtailq inprocess
;
1801 TAILQ_INIT(&inprocess
);
1803 if (kq
->kq_count
== 0) {
1808 /* if someone else is processing the queue, wait */
1809 if (hw_atomic_add(&kq
->kq_nprocess
, 1) != 1) {
1810 hw_atomic_sub(&kq
->kq_nprocess
, 1);
1811 wait_queue_assert_wait((wait_queue_t
)kq
->kq_wqs
, &kq
->kq_nprocess
, THREAD_UNINT
, 0);
1812 kq
->kq_state
|= KQ_PROCWAIT
;
1814 thread_block(THREAD_CONTINUE_NULL
);
1820 * Clear any pre-posted status from previous runs, so we only
1821 * detect events that occur during this run.
1823 wait_queue_sub_clearrefs(kq
->kq_wqs
);
1826 * loop through the enqueued knotes, processing each one and
1827 * revalidating those that need it. As they are processed,
1828 * they get moved to the inprocess queue (so the loop can end).
1833 while (error
== 0 &&
1834 (kn
= TAILQ_FIRST(&kq
->kq_head
)) != NULL
) {
1835 error
= knote_process(kn
, callback
, data
, &inprocess
, p
);
1836 if (error
== EJUSTRETURN
)
1843 * With the kqueue still locked, move any knotes
1844 * remaining on the inprocess queue back to the
1845 * kq's queue and wake up any waiters.
1847 while ((kn
= TAILQ_FIRST(&inprocess
)) != NULL
) {
1848 assert(kn
->kn_tq
== &inprocess
);
1849 TAILQ_REMOVE(&inprocess
, kn
, kn_tqe
);
1850 kn
->kn_tq
= &kq
->kq_head
;
1851 TAILQ_INSERT_TAIL(&kq
->kq_head
, kn
, kn_tqe
);
1853 hw_atomic_sub(&kq
->kq_nprocess
, 1);
1854 if (kq
->kq_state
& KQ_PROCWAIT
) {
1855 kq
->kq_state
&= ~KQ_PROCWAIT
;
1856 wait_queue_wakeup_all((wait_queue_t
)kq
->kq_wqs
, &kq
->kq_nprocess
, THREAD_AWAKENED
);
1865 kqueue_scan_continue(void *data
, wait_result_t wait_result
)
1867 thread_t self
= current_thread();
1868 uthread_t ut
= (uthread_t
)get_bsdthread_info(self
);
1869 struct _kqueue_scan
* cont_args
= &ut
->uu_kevent
.ss_kqueue_scan
;
1870 struct kqueue
*kq
= (struct kqueue
*)data
;
1874 /* convert the (previous) wait_result to a proper error */
1875 switch (wait_result
) {
1876 case THREAD_AWAKENED
:
1878 error
= kqueue_process(kq
, cont_args
->call
, cont_args
, &count
, current_proc());
1879 if (error
== 0 && count
== 0) {
1880 wait_queue_assert_wait((wait_queue_t
)kq
->kq_wqs
, KQ_EVENT
,
1881 THREAD_ABORTSAFE
, cont_args
->deadline
);
1882 kq
->kq_state
|= KQ_SLEEP
;
1884 thread_block_parameter(kqueue_scan_continue
, kq
);
1889 case THREAD_TIMED_OUT
:
1890 error
= EWOULDBLOCK
;
1892 case THREAD_INTERRUPTED
:
1896 panic("kevent_scan_cont() - invalid wait_result (%d)", wait_result
);
1900 /* call the continuation with the results */
1901 assert(cont_args
->cont
!= NULL
);
1902 (cont_args
->cont
)(kq
, cont_args
->data
, error
);
1907 * kqueue_scan - scan and wait for events in a kqueue
1909 * Process the triggered events in a kqueue.
1911 * If there are no events triggered arrange to
1912 * wait for them. If the caller provided a
1913 * continuation routine, then kevent_scan will
1916 * The callback routine must be valid.
1917 * The caller must hold a use-count reference on the kq.
1921 kqueue_scan(struct kqueue
*kq
,
1922 kevent_callback_t callback
,
1923 kqueue_continue_t continuation
,
1925 struct timeval
*atvp
,
1928 thread_continue_t cont
= THREAD_CONTINUE_NULL
;
1933 assert(callback
!= NULL
);
1937 wait_result_t wait_result
;
1941 * Make a pass through the kq to find events already
1945 error
= kqueue_process(kq
, callback
, data
, &count
, p
);
1947 break; /* lock still held */
1949 /* looks like we have to consider blocking */
1952 /* convert the timeout to a deadline once */
1953 if (atvp
->tv_sec
|| atvp
->tv_usec
) {
1956 clock_get_uptime(&now
);
1957 nanoseconds_to_absolutetime((uint64_t)atvp
->tv_sec
* NSEC_PER_SEC
+
1958 atvp
->tv_usec
* NSEC_PER_USEC
,
1960 if (now
>= deadline
) {
1961 /* non-blocking call */
1962 error
= EWOULDBLOCK
;
1963 break; /* lock still held */
1966 clock_absolutetime_interval_to_deadline(deadline
, &deadline
);
1968 deadline
= 0; /* block forever */
1972 uthread_t ut
= (uthread_t
)get_bsdthread_info(current_thread());
1973 struct _kqueue_scan
*cont_args
= &ut
->uu_kevent
.ss_kqueue_scan
;
1975 cont_args
->call
= callback
;
1976 cont_args
->cont
= continuation
;
1977 cont_args
->deadline
= deadline
;
1978 cont_args
->data
= data
;
1979 cont
= kqueue_scan_continue
;
1983 /* go ahead and wait */
1984 wait_queue_assert_wait((wait_queue_t
)kq
->kq_wqs
, KQ_EVENT
, THREAD_ABORTSAFE
, deadline
);
1985 kq
->kq_state
|= KQ_SLEEP
;
1987 wait_result
= thread_block_parameter(cont
, kq
);
1988 /* NOTREACHED if (continuation != NULL) */
1990 switch (wait_result
) {
1991 case THREAD_AWAKENED
:
1993 case THREAD_TIMED_OUT
:
1995 case THREAD_INTERRUPTED
:
1998 panic("kevent_scan - bad wait_result (%d)",
2010 * This could be expanded to call kqueue_scan, if desired.
2014 kqueue_read(__unused
struct fileproc
*fp
,
2015 __unused
struct uio
*uio
,
2017 __unused vfs_context_t ctx
)
2024 kqueue_write(__unused
struct fileproc
*fp
,
2025 __unused
struct uio
*uio
,
2027 __unused vfs_context_t ctx
)
2034 kqueue_ioctl(__unused
struct fileproc
*fp
,
2035 __unused u_long com
,
2036 __unused caddr_t data
,
2037 __unused vfs_context_t ctx
)
2044 kqueue_select(struct fileproc
*fp
, int which
, void *wql
, __unused vfs_context_t ctx
)
2046 struct kqueue
*kq
= (struct kqueue
*)fp
->f_data
;
2054 * If this is the first pass, link the wait queue associated with the
2055 * the kqueue onto the wait queue set for the select(). Normally we
2056 * use selrecord() for this, but it uses the wait queue within the
2057 * selinfo structure and we need to use the main one for the kqueue to
2058 * catch events from KN_STAYQUEUED sources. So we do the linkage manually.
2059 * (The select() call will unlink them when it ends).
2062 thread_t cur_act
= current_thread();
2063 struct uthread
* ut
= get_bsdthread_info(cur_act
);
2065 kq
->kq_state
|= KQ_SEL
;
2066 wait_queue_link_noalloc((wait_queue_t
)kq
->kq_wqs
, ut
->uu_wqset
,
2067 (wait_queue_link_t
)wql
);
2072 if (kq
->kq_count
!= 0) {
2076 * there is something queued - but it might be a
2077 * KN_STAYQUEUED knote, which may or may not have
2078 * any events pending. So, we have to walk the
2079 * list of knotes to see, and peek at the stay-
2080 * queued ones to be really sure.
2082 TAILQ_FOREACH(kn
, &kq
->kq_head
, kn_tqe
) {
2084 if ((kn
->kn_status
& KN_STAYQUEUED
) == 0 ||
2085 (retnum
= kn
->kn_fop
->f_peek(kn
)) > 0) {
2095 * If we stumbled across a knote that couldn't be peeked at,
2096 * we have to drop the kq lock and try again.
2114 kqueue_close(struct fileglob
*fg
, __unused vfs_context_t ctx
)
2116 struct kqueue
*kq
= (struct kqueue
*)fg
->fg_data
;
2125 * The callers has taken a use-count reference on this kqueue and will donate it
2126 * to the kqueue we are being added to. This keeps the kqueue from closing until
2127 * that relationship is torn down.
2130 kqueue_kqfilter(__unused
struct fileproc
*fp
, struct knote
*kn
, __unused vfs_context_t ctx
)
2132 struct kqueue
*kq
= (struct kqueue
*)kn
->kn_fp
->f_data
;
2133 struct kqueue
*parentkq
= kn
->kn_kq
;
2135 if (parentkq
== kq
||
2136 kn
->kn_filter
!= EVFILT_READ
)
2140 * We have to avoid creating a cycle when nesting kqueues
2141 * inside another. Rather than trying to walk the whole
2142 * potential DAG of nested kqueues, we just use a simple
2143 * ceiling protocol. When a kqueue is inserted into another,
2144 * we check that the (future) parent is not already nested
2145 * into another kqueue at a lower level than the potenial
2146 * child (because it could indicate a cycle). If that test
2147 * passes, we just mark the nesting levels accordingly.
2151 if (parentkq
->kq_level
> 0 &&
2152 parentkq
->kq_level
< kq
->kq_level
)
2157 /* set parent level appropriately */
2158 if (parentkq
->kq_level
== 0)
2159 parentkq
->kq_level
= 2;
2160 if (parentkq
->kq_level
< kq
->kq_level
+ 1)
2161 parentkq
->kq_level
= kq
->kq_level
+ 1;
2164 kn
->kn_fop
= &kqread_filtops
;
2166 KNOTE_ATTACH(&kq
->kq_sel
.si_note
, kn
);
2167 /* indicate nesting in child, if needed */
2168 if (kq
->kq_level
== 0)
2176 * kqueue_drain - called when kq is closed
2180 kqueue_drain(struct fileproc
*fp
, __unused vfs_context_t ctx
)
2182 struct kqueue
*kq
= (struct kqueue
*)fp
->f_fglob
->fg_data
;
2184 kqueue_wakeup(kq
, 1);
2191 kqueue_stat(struct fileproc
*fp
, void *ub
, int isstat64
, __unused vfs_context_t ctx
)
2194 struct kqueue
*kq
= (struct kqueue
*)fp
->f_data
;
2195 if (isstat64
!= 0) {
2196 struct stat64
*sb64
= (struct stat64
*)ub
;
2198 bzero((void *)sb64
, sizeof(*sb64
));
2199 sb64
->st_size
= kq
->kq_count
;
2200 if (kq
->kq_state
& KQ_KEV64
)
2201 sb64
->st_blksize
= sizeof(struct kevent64_s
);
2203 sb64
->st_blksize
= sizeof(struct kevent
);
2204 sb64
->st_mode
= S_IFIFO
;
2206 struct stat
*sb
= (struct stat
*)ub
;
2208 bzero((void *)sb
, sizeof(*sb
));
2209 sb
->st_size
= kq
->kq_count
;
2210 if (kq
->kq_state
& KQ_KEV64
)
2211 sb
->st_blksize
= sizeof(struct kevent64_s
);
2213 sb
->st_blksize
= sizeof(struct kevent
);
2214 sb
->st_mode
= S_IFIFO
;
2221 * Called with the kqueue locked
2224 kqueue_wakeup(struct kqueue
*kq
, int closed
)
2226 if ((kq
->kq_state
& (KQ_SLEEP
| KQ_SEL
)) != 0 || kq
->kq_nprocess
> 0) {
2227 kq
->kq_state
&= ~(KQ_SLEEP
| KQ_SEL
);
2228 wait_queue_wakeup_all((wait_queue_t
)kq
->kq_wqs
, KQ_EVENT
,
2229 (closed
) ? THREAD_INTERRUPTED
: THREAD_AWAKENED
);
2234 klist_init(struct klist
*list
)
2241 * Query/Post each knote in the object's list
2243 * The object lock protects the list. It is assumed
2244 * that the filter/event routine for the object can
2245 * determine that the object is already locked (via
2246 * the hint) and not deadlock itself.
2248 * The object lock should also hold off pending
2249 * detach/drop operations. But we'll prevent it here
2250 * too - just in case.
2253 knote(struct klist
*list
, long hint
)
2257 SLIST_FOREACH(kn
, list
, kn_selnext
) {
2258 struct kqueue
*kq
= kn
->kn_kq
;
2261 if (kqlock2knoteuse(kq
, kn
)) {
2264 /* call the event with only a use count */
2265 result
= kn
->kn_fop
->f_event(kn
, hint
);
2267 /* if its not going away and triggered */
2268 if (knoteuse2kqlock(kq
, kn
) && result
)
2269 knote_activate(kn
, 1);
2270 /* lock held again */
2277 * attach a knote to the specified list. Return true if this is the first entry.
2278 * The list is protected by whatever lock the object it is associated with uses.
2281 knote_attach(struct klist
*list
, struct knote
*kn
)
2283 int ret
= SLIST_EMPTY(list
);
2284 SLIST_INSERT_HEAD(list
, kn
, kn_selnext
);
2289 * detach a knote from the specified list. Return true if that was the last entry.
2290 * The list is protected by whatever lock the object it is associated with uses.
2293 knote_detach(struct klist
*list
, struct knote
*kn
)
2295 SLIST_REMOVE(list
, kn
, knote
, kn_selnext
);
2296 return SLIST_EMPTY(list
);
2300 * For a given knote, link a provided wait queue directly with the kqueue.
2301 * Wakeups will happen via recursive wait queue support. But nothing will move
2302 * the knote to the active list at wakeup (nothing calls knote()). Instead,
2303 * we permanently enqueue them here.
2305 * kqueue and knote references are held by caller.
2308 knote_link_wait_queue(struct knote
*kn
, struct wait_queue
*wq
)
2310 struct kqueue
*kq
= kn
->kn_kq
;
2313 kr
= wait_queue_link(wq
, kq
->kq_wqs
);
2314 if (kr
== KERN_SUCCESS
) {
2316 kn
->kn_status
|= KN_STAYQUEUED
;
2326 * Unlink the provided wait queue from the kqueue associated with a knote.
2327 * Also remove it from the magic list of directly attached knotes.
2329 * Note that the unlink may have already happened from the other side, so
2330 * ignore any failures to unlink and just remove it from the kqueue list.
2333 knote_unlink_wait_queue(struct knote
*kn
, struct wait_queue
*wq
)
2335 struct kqueue
*kq
= kn
->kn_kq
;
2337 (void) wait_queue_unlink(wq
, kq
->kq_wqs
);
2339 kn
->kn_status
&= ~KN_STAYQUEUED
;
2345 * remove all knotes referencing a specified fd
2347 * Essentially an inlined knote_remove & knote_drop
2348 * when we know for sure that the thing is a file
2350 * Entered with the proc_fd lock already held.
2351 * It returns the same way, but may drop it temporarily.
2354 knote_fdclose(struct proc
*p
, int fd
)
2356 struct filedesc
*fdp
= p
->p_fd
;
2360 list
= &fdp
->fd_knlist
[fd
];
2361 while ((kn
= SLIST_FIRST(list
)) != NULL
) {
2362 struct kqueue
*kq
= kn
->kn_kq
;
2365 panic("knote_fdclose: proc mismatch (kq->kq_p=%p != p=%p)", kq
->kq_p
, p
);
2371 * Convert the lock to a drop ref.
2372 * If we get it, go ahead and drop it.
2373 * Otherwise, we waited for it to
2374 * be dropped by the other guy, so
2375 * it is safe to move on in the list.
2377 if (kqlock2knotedrop(kq
, kn
)) {
2378 kn
->kn_fop
->f_detach(kn
);
2384 /* the fd tables may have changed - start over */
2385 list
= &fdp
->fd_knlist
[fd
];
2389 /* proc_fdlock held on entry (and exit) */
2391 knote_fdpattach(struct knote
*kn
, struct filedesc
*fdp
, __unused
struct proc
*p
)
2393 struct klist
*list
= NULL
;
2395 if (! kn
->kn_fop
->f_isfd
) {
2396 if (fdp
->fd_knhashmask
== 0)
2397 fdp
->fd_knhash
= hashinit(CONFIG_KN_HASHSIZE
, M_KQUEUE
,
2398 &fdp
->fd_knhashmask
);
2399 list
= &fdp
->fd_knhash
[KN_HASH(kn
->kn_id
, fdp
->fd_knhashmask
)];
2401 if ((u_int
)fdp
->fd_knlistsize
<= kn
->kn_id
) {
2404 /* have to grow the fd_knlist */
2405 size
= fdp
->fd_knlistsize
;
2406 while (size
<= kn
->kn_id
)
2408 MALLOC(list
, struct klist
*,
2409 size
* sizeof(struct klist
*), M_KQUEUE
, M_WAITOK
);
2413 bcopy((caddr_t
)fdp
->fd_knlist
, (caddr_t
)list
,
2414 fdp
->fd_knlistsize
* sizeof(struct klist
*));
2415 bzero((caddr_t
)list
+
2416 fdp
->fd_knlistsize
* sizeof(struct klist
*),
2417 (size
- fdp
->fd_knlistsize
) * sizeof(struct klist
*));
2418 FREE(fdp
->fd_knlist
, M_KQUEUE
);
2419 fdp
->fd_knlist
= list
;
2420 fdp
->fd_knlistsize
= size
;
2422 list
= &fdp
->fd_knlist
[kn
->kn_id
];
2424 SLIST_INSERT_HEAD(list
, kn
, kn_link
);
2431 * should be called at spl == 0, since we don't want to hold spl
2432 * while calling fdrop and free.
2435 knote_drop(struct knote
*kn
, __unused
struct proc
*ctxp
)
2437 struct kqueue
*kq
= kn
->kn_kq
;
2438 struct proc
*p
= kq
->kq_p
;
2439 struct filedesc
*fdp
= p
->p_fd
;
2444 if (kn
->kn_fop
->f_isfd
)
2445 list
= &fdp
->fd_knlist
[kn
->kn_id
];
2447 list
= &fdp
->fd_knhash
[KN_HASH(kn
->kn_id
, fdp
->fd_knhashmask
)];
2449 SLIST_REMOVE(list
, kn
, knote
, kn_link
);
2452 needswakeup
= (kn
->kn_status
& KN_USEWAIT
);
2457 wait_queue_wakeup_all((wait_queue_t
)kq
->kq_wqs
, &kn
->kn_status
, THREAD_AWAKENED
);
2459 if (kn
->kn_fop
->f_isfd
)
2460 fp_drop(p
, kn
->kn_id
, kn
->kn_fp
, 0);
2465 /* called with kqueue lock held */
2467 knote_activate(struct knote
*kn
, int propagate
)
2469 struct kqueue
*kq
= kn
->kn_kq
;
2471 kn
->kn_status
|= KN_ACTIVE
;
2473 kqueue_wakeup(kq
, 0);
2475 /* this is a real event: wake up the parent kq, too */
2477 KNOTE(&kq
->kq_sel
.si_note
, 0);
2480 /* called with kqueue lock held */
2482 knote_deactivate(struct knote
*kn
)
2484 kn
->kn_status
&= ~KN_ACTIVE
;
2488 /* called with kqueue lock held */
2490 knote_enqueue(struct knote
*kn
)
2492 if ((kn
->kn_status
& (KN_QUEUED
| KN_STAYQUEUED
)) == KN_STAYQUEUED
||
2493 (kn
->kn_status
& (KN_QUEUED
| KN_STAYQUEUED
| KN_DISABLED
)) == 0) {
2494 struct kqtailq
*tq
= kn
->kn_tq
;
2495 struct kqueue
*kq
= kn
->kn_kq
;
2497 TAILQ_INSERT_TAIL(tq
, kn
, kn_tqe
);
2498 kn
->kn_status
|= KN_QUEUED
;
2503 /* called with kqueue lock held */
2505 knote_dequeue(struct knote
*kn
)
2507 struct kqueue
*kq
= kn
->kn_kq
;
2509 if ((kn
->kn_status
& (KN_QUEUED
| KN_STAYQUEUED
)) == KN_QUEUED
) {
2510 struct kqtailq
*tq
= kn
->kn_tq
;
2512 TAILQ_REMOVE(tq
, kn
, kn_tqe
);
2513 kn
->kn_tq
= &kq
->kq_head
;
2514 kn
->kn_status
&= ~KN_QUEUED
;
2522 knote_zone
= zinit(sizeof(struct knote
), 8192*sizeof(struct knote
), 8192, "knote zone");
2524 /* allocate kq lock group attribute and group */
2525 kq_lck_grp_attr
= lck_grp_attr_alloc_init();
2527 kq_lck_grp
= lck_grp_alloc_init("kqueue", kq_lck_grp_attr
);
2529 /* Allocate kq lock attribute */
2530 kq_lck_attr
= lck_attr_alloc_init();
2532 /* Initialize the timer filter lock */
2533 lck_mtx_init(&_filt_timerlock
, kq_lck_grp
, kq_lck_attr
);
2535 SYSINIT(knote
, SI_SUB_PSEUDO
, SI_ORDER_ANY
, knote_init
, NULL
)
2537 static struct knote
*
2540 return ((struct knote
*)zalloc(knote_zone
));
2544 knote_free(struct knote
*kn
)
2546 zfree(knote_zone
, kn
);
2550 #include <sys/param.h>
2551 #include <sys/socket.h>
2552 #include <sys/protosw.h>
2553 #include <sys/domain.h>
2554 #include <sys/mbuf.h>
2555 #include <sys/kern_event.h>
2556 #include <sys/malloc.h>
2557 #include <sys/sys_domain.h>
2558 #include <sys/syslog.h>
2561 static int kev_attach(struct socket
*so
, int proto
, struct proc
*p
);
2562 static int kev_detach(struct socket
*so
);
2563 static int kev_control(struct socket
*so
, u_long cmd
, caddr_t data
, struct ifnet
*ifp
, struct proc
*p
);
2565 struct pr_usrreqs event_usrreqs
= {
2566 pru_abort_notsupp
, pru_accept_notsupp
, kev_attach
, pru_bind_notsupp
, pru_connect_notsupp
,
2567 pru_connect2_notsupp
, kev_control
, kev_detach
, pru_disconnect_notsupp
,
2568 pru_listen_notsupp
, pru_peeraddr_notsupp
, pru_rcvd_notsupp
, pru_rcvoob_notsupp
,
2569 pru_send_notsupp
, pru_sense_null
, pru_shutdown_notsupp
, pru_sockaddr_notsupp
,
2570 pru_sosend_notsupp
, soreceive
, pru_sopoll_notsupp
2573 struct protosw eventsw
[] = {
2575 .pr_type
= SOCK_RAW
,
2576 .pr_domain
= &systemdomain
,
2577 .pr_protocol
= SYSPROTO_EVENT
,
2578 .pr_flags
= PR_ATOMIC
,
2579 .pr_usrreqs
= &event_usrreqs
,
2584 struct kern_event_head kern_event_head
;
2586 static u_int32_t static_event_id
= 0;
2587 struct domain
*sysdom
= &systemdomain
;
2588 static lck_mtx_t
*sys_mtx
;
2591 * Install the protosw's for the NKE manager. Invoked at
2592 * extension load time
2595 kern_event_init(void)
2599 if ((retval
= net_add_proto(eventsw
, &systemdomain
)) != 0) {
2600 log(LOG_WARNING
, "Can't install kernel events protocol (%d)\n", retval
);
2605 * Use the domain mutex for all system event sockets
2607 sys_mtx
= sysdom
->dom_mtx
;
2609 return(KERN_SUCCESS
);
2613 kev_attach(struct socket
*so
, __unused
int proto
, __unused
struct proc
*p
)
2616 struct kern_event_pcb
*ev_pcb
;
2618 error
= soreserve(so
, KEV_SNDSPACE
, KEV_RECVSPACE
);
2622 MALLOC(ev_pcb
, struct kern_event_pcb
*, sizeof(struct kern_event_pcb
), M_PCB
, M_WAITOK
);
2626 ev_pcb
->ev_socket
= so
;
2627 ev_pcb
->vendor_code_filter
= 0xffffffff;
2629 so
->so_pcb
= (caddr_t
) ev_pcb
;
2630 lck_mtx_lock(sys_mtx
);
2631 LIST_INSERT_HEAD(&kern_event_head
, ev_pcb
, ev_link
);
2632 lck_mtx_unlock(sys_mtx
);
2639 kev_detach(struct socket
*so
)
2641 struct kern_event_pcb
*ev_pcb
= (struct kern_event_pcb
*) so
->so_pcb
;
2644 LIST_REMOVE(ev_pcb
, ev_link
);
2645 FREE(ev_pcb
, M_PCB
);
2647 so
->so_flags
|= SOF_PCBCLEARING
;
2654 * For now, kev_vendor_code and mbuf_tags use the same
2658 errno_t
kev_vendor_code_find(
2660 u_int32_t
*out_vendor_code
)
2662 if (strlen(string
) >= KEV_VENDOR_CODE_MAX_STR_LEN
) {
2665 return net_str_id_find_internal(string
, out_vendor_code
, NSI_VENDOR_CODE
, 1);
2668 errno_t
kev_msg_post(struct kev_msg
*event_msg
)
2670 mbuf_tag_id_t min_vendor
, max_vendor
;
2672 net_str_id_first_last(&min_vendor
, &max_vendor
, NSI_VENDOR_CODE
);
2674 if (event_msg
== NULL
)
2677 /* Limit third parties to posting events for registered vendor codes only */
2678 if (event_msg
->vendor_code
< min_vendor
||
2679 event_msg
->vendor_code
> max_vendor
)
2684 return kev_post_msg(event_msg
);
2688 int kev_post_msg(struct kev_msg
*event_msg
)
2690 struct mbuf
*m
, *m2
;
2691 struct kern_event_pcb
*ev_pcb
;
2692 struct kern_event_msg
*ev
;
2694 u_int32_t total_size
;
2697 /* Verify the message is small enough to fit in one mbuf w/o cluster */
2698 total_size
= KEV_MSG_HEADER_SIZE
;
2700 for (i
= 0; i
< 5; i
++) {
2701 if (event_msg
->dv
[i
].data_length
== 0)
2703 total_size
+= event_msg
->dv
[i
].data_length
;
2706 if (total_size
> MLEN
) {
2710 m
= m_get(M_DONTWAIT
, MT_DATA
);
2714 ev
= mtod(m
, struct kern_event_msg
*);
2715 total_size
= KEV_MSG_HEADER_SIZE
;
2717 tmp
= (char *) &ev
->event_data
[0];
2718 for (i
= 0; i
< 5; i
++) {
2719 if (event_msg
->dv
[i
].data_length
== 0)
2722 total_size
+= event_msg
->dv
[i
].data_length
;
2723 bcopy(event_msg
->dv
[i
].data_ptr
, tmp
,
2724 event_msg
->dv
[i
].data_length
);
2725 tmp
+= event_msg
->dv
[i
].data_length
;
2728 ev
->id
= ++static_event_id
;
2729 ev
->total_size
= total_size
;
2730 ev
->vendor_code
= event_msg
->vendor_code
;
2731 ev
->kev_class
= event_msg
->kev_class
;
2732 ev
->kev_subclass
= event_msg
->kev_subclass
;
2733 ev
->event_code
= event_msg
->event_code
;
2735 m
->m_len
= total_size
;
2736 lck_mtx_lock(sys_mtx
);
2737 for (ev_pcb
= LIST_FIRST(&kern_event_head
);
2739 ev_pcb
= LIST_NEXT(ev_pcb
, ev_link
)) {
2741 if (ev_pcb
->vendor_code_filter
!= KEV_ANY_VENDOR
) {
2742 if (ev_pcb
->vendor_code_filter
!= ev
->vendor_code
)
2745 if (ev_pcb
->class_filter
!= KEV_ANY_CLASS
) {
2746 if (ev_pcb
->class_filter
!= ev
->kev_class
)
2749 if ((ev_pcb
->subclass_filter
!= KEV_ANY_SUBCLASS
) &&
2750 (ev_pcb
->subclass_filter
!= ev
->kev_subclass
))
2755 m2
= m_copym(m
, 0, m
->m_len
, M_NOWAIT
);
2758 lck_mtx_unlock(sys_mtx
);
2761 /* the socket is already locked because we hold the sys_mtx here */
2762 if (sbappendrecord(&ev_pcb
->ev_socket
->so_rcv
, m2
))
2763 sorwakeup(ev_pcb
->ev_socket
);
2767 lck_mtx_unlock(sys_mtx
);
2772 kev_control(struct socket
*so
,
2775 __unused
struct ifnet
*ifp
,
2776 __unused
struct proc
*p
)
2778 struct kev_request
*kev_req
= (struct kev_request
*) data
;
2779 struct kern_event_pcb
*ev_pcb
;
2780 struct kev_vendor_code
*kev_vendor
;
2781 u_int32_t
*id_value
= (u_int32_t
*) data
;
2787 *id_value
= static_event_id
;
2791 ev_pcb
= (struct kern_event_pcb
*) so
->so_pcb
;
2792 ev_pcb
->vendor_code_filter
= kev_req
->vendor_code
;
2793 ev_pcb
->class_filter
= kev_req
->kev_class
;
2794 ev_pcb
->subclass_filter
= kev_req
->kev_subclass
;
2798 ev_pcb
= (struct kern_event_pcb
*) so
->so_pcb
;
2799 kev_req
->vendor_code
= ev_pcb
->vendor_code_filter
;
2800 kev_req
->kev_class
= ev_pcb
->class_filter
;
2801 kev_req
->kev_subclass
= ev_pcb
->subclass_filter
;
2804 case SIOCGKEVVENDOR
:
2805 kev_vendor
= (struct kev_vendor_code
*)data
;
2807 /* Make sure string is NULL terminated */
2808 kev_vendor
->vendor_string
[KEV_VENDOR_CODE_MAX_STR_LEN
-1] = 0;
2810 return net_str_id_find_internal(kev_vendor
->vendor_string
,
2811 &kev_vendor
->vendor_code
, NSI_VENDOR_CODE
, 0);
2820 #endif /* SOCKETS */
2824 fill_kqueueinfo(struct kqueue
*kq
, struct kqueue_info
* kinfo
)
2826 struct vinfo_stat
* st
;
2828 /* No need for the funnel as fd is kept alive */
2830 st
= &kinfo
->kq_stat
;
2832 st
->vst_size
= kq
->kq_count
;
2833 if (kq
->kq_state
& KQ_KEV64
)
2834 st
->vst_blksize
= sizeof(struct kevent64_s
);
2836 st
->vst_blksize
= sizeof(struct kevent
);
2837 st
->vst_mode
= S_IFIFO
;
2838 if (kq
->kq_state
& KQ_SEL
)
2839 kinfo
->kq_state
|= PROC_KQUEUE_SELECT
;
2840 if (kq
->kq_state
& KQ_SLEEP
)
2841 kinfo
->kq_state
|= PROC_KQUEUE_SLEEP
;