2 * Copyright (c) 2007-2011 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
29 #include <mach_debug.h>
33 #include <kern/assert.h>
34 #include <kern/misc_protos.h>
35 #include <kern/monotonic.h>
36 #include <mach/vm_types.h>
37 #include <mach/vm_param.h>
38 #include <vm/vm_kern.h>
39 #include <vm/vm_page.h>
42 #include <machine/atomic.h>
43 #include <arm64/proc_reg.h>
44 #include <arm64/lowglobals.h>
45 #include <arm/cpu_data_internal.h>
46 #include <arm/misc_protos.h>
47 #include <pexpert/arm64/boot.h>
48 #include <pexpert/device_tree.h>
50 #include <libkern/kernel_mach_header.h>
51 #include <libkern/section_keywords.h>
53 #include <san/kasan.h>
55 #if __ARM_KERNEL_PROTECT__
57 * If we want to support __ARM_KERNEL_PROTECT__, we need a sufficient amount of
58 * mappable space preceeding the kernel (as we unmap the kernel by cutting the
59 * range covered by TTBR1 in half). This must also cover the exception vectors.
61 static_assert(KERNEL_PMAP_HEAP_RANGE_START
> ARM_KERNEL_PROTECT_EXCEPTION_START
);
63 /* The exception vectors and the kernel cannot share root TTEs. */
64 static_assert((KERNEL_PMAP_HEAP_RANGE_START
& ~ARM_TT_ROOT_OFFMASK
) > ARM_KERNEL_PROTECT_EXCEPTION_START
);
67 * We must have enough space in the TTBR1_EL1 range to create the EL0 mapping of
68 * the exception vectors.
70 static_assert((((~ARM_KERNEL_PROTECT_EXCEPTION_START
) + 1) * 2ULL) <= (ARM_TT_ROOT_SIZE
+ ARM_TT_ROOT_INDEX_MASK
));
71 #endif /* __ARM_KERNEL_PROTECT__ */
73 #if __APRR_SUPPORTED__ && XNU_MONITOR
75 * If APRR is supported, setting XN on L1/L2 table entries will shift the effective
76 * APRR index of L3 PTEs covering PPL-protected pages in the kernel dynamic region
77 * from PPL R/W to kernel R/W. That will effectively remove PPL write protection
78 * from those pages. Avoid setting XN at the table level for MONITOR-enabled builds
79 * that are backed by APRR.
81 #define ARM_DYNAMIC_TABLE_XN ARM_TTE_TABLE_PXN
83 #define ARM_DYNAMIC_TABLE_XN (ARM_TTE_TABLE_PXN | ARM_TTE_TABLE_XN)
87 extern vm_offset_t shadow_pbase
;
88 extern vm_offset_t shadow_ptop
;
89 extern vm_offset_t physmap_vbase
;
90 extern vm_offset_t physmap_vtop
;
94 * We explicitly place this in const, as it is not const from a language
95 * perspective, but it is only modified before we actually switch away from
96 * the bootstrap page tables.
98 SECURITY_READ_ONLY_LATE(uint8_t) bootstrap_pagetables
[BOOTSTRAP_TABLE_SIZE
] __attribute__((aligned(ARM_PGBYTES
)));
101 * Denotes the end of xnu.
103 extern void *last_kernel_symbol
;
105 extern void arm64_replace_bootstack(cpu_data_t
*);
106 extern void PE_slide_devicetree(vm_offset_t
);
111 SECURITY_READ_ONLY_LATE(vm_offset_t
) vm_kernel_base
;
112 SECURITY_READ_ONLY_LATE(vm_offset_t
) vm_kernel_top
;
113 SECURITY_READ_ONLY_LATE(vm_offset_t
) vm_kext_base
;
114 SECURITY_READ_ONLY_LATE(vm_offset_t
) vm_kext_top
;
115 SECURITY_READ_ONLY_LATE(vm_offset_t
) vm_kernel_stext
;
116 SECURITY_READ_ONLY_LATE(vm_offset_t
) vm_kernel_etext
;
117 SECURITY_READ_ONLY_LATE(vm_offset_t
) vm_kernel_slide
;
118 SECURITY_READ_ONLY_LATE(vm_offset_t
) vm_kernel_slid_base
;
119 SECURITY_READ_ONLY_LATE(vm_offset_t
) vm_kernel_slid_top
;
121 SECURITY_READ_ONLY_LATE(vm_offset_t
) vm_prelink_stext
;
122 SECURITY_READ_ONLY_LATE(vm_offset_t
) vm_prelink_etext
;
123 SECURITY_READ_ONLY_LATE(vm_offset_t
) vm_prelink_sdata
;
124 SECURITY_READ_ONLY_LATE(vm_offset_t
) vm_prelink_edata
;
125 SECURITY_READ_ONLY_LATE(vm_offset_t
) vm_prelink_sinfo
;
126 SECURITY_READ_ONLY_LATE(vm_offset_t
) vm_prelink_einfo
;
127 SECURITY_READ_ONLY_LATE(vm_offset_t
) vm_slinkedit
;
128 SECURITY_READ_ONLY_LATE(vm_offset_t
) vm_elinkedit
;
130 SECURITY_READ_ONLY_LATE(vm_offset_t
) vm_kernel_builtinkmod_text
;
131 SECURITY_READ_ONLY_LATE(vm_offset_t
) vm_kernel_builtinkmod_text_end
;
133 SECURITY_READ_ONLY_LATE(vm_offset_t
) vm_kernelcache_base
;
134 SECURITY_READ_ONLY_LATE(vm_offset_t
) vm_kernelcache_top
;
136 /* Used by <mach/arm/vm_param.h> */
137 SECURITY_READ_ONLY_LATE(unsigned long) gVirtBase
;
138 SECURITY_READ_ONLY_LATE(unsigned long) gPhysBase
;
139 SECURITY_READ_ONLY_LATE(unsigned long) gPhysSize
;
140 SECURITY_READ_ONLY_LATE(unsigned long) gT0Sz
= T0SZ_BOOT
;
141 SECURITY_READ_ONLY_LATE(unsigned long) gT1Sz
= T1SZ_BOOT
;
143 /* 23543331 - step 1 of kext / kernel __TEXT and __DATA colocation is to move
144 * all kexts before the kernel. This is only for arm64 devices and looks
145 * something like the following:
147 * 0xffffff8004004000 __PRELINK_TEXT
148 * 0xffffff8007004000 __TEXT (xnu)
149 * 0xffffff80075ec000 __DATA (xnu)
150 * 0xffffff80076dc000 __KLD (xnu)
151 * 0xffffff80076e0000 __LAST (xnu)
152 * 0xffffff80076e4000 __LINKEDIT (xnu)
153 * 0xffffff80076e4000 __PRELINK_DATA (not used yet)
154 * 0xffffff800782c000 __PRELINK_INFO
155 * 0xffffff80078e4000 -- End of kernelcache
158 /* 24921709 - make XNU ready for KTRR
160 * Two possible kernel cache layouts, depending on which kcgen is being used.
161 * VAs increasing downwards.
171 * __PRELINK_DATA (expected empty)
177 * __PRELINK_TEXT <--- First KTRR (ReadOnly) segment
184 * __LAST <--- Last KTRR (ReadOnly) segment
186 * __BOOTDATA (if present)
188 * __PRELINK_DATA (expected populated now)
194 vm_offset_t mem_size
; /* Size of actual physical memory present
195 * minus any performance buffer and possibly
196 * limited by mem_limit in bytes */
197 uint64_t mem_actual
; /* The "One True" physical memory size
198 * actually, it's the highest physical
200 uint64_t max_mem
; /* Size of physical memory (bytes), adjusted
202 uint64_t max_mem_actual
; /* Actual size of physical memory (bytes),
203 * adjusted by the maxmem boot-arg */
204 uint64_t sane_size
; /* Memory size to use for defaults
206 /* This no longer appears to be used; kill it? */
207 addr64_t vm_last_addr
= VM_MAX_KERNEL_ADDRESS
; /* Highest kernel
208 * virtual address known
209 * to the VM system */
211 SECURITY_READ_ONLY_LATE(vm_offset_t
) segEXTRADATA
;
212 SECURITY_READ_ONLY_LATE(unsigned long) segSizeEXTRADATA
;
214 SECURITY_READ_ONLY_LATE(vm_offset_t
) segLOWESTTEXT
;
215 SECURITY_READ_ONLY_LATE(vm_offset_t
) segLOWEST
;
216 SECURITY_READ_ONLY_LATE(vm_offset_t
) segLOWESTRO
;
217 SECURITY_READ_ONLY_LATE(vm_offset_t
) segHIGHESTRO
;
219 /* Only set when booted from MH_FILESET kernel collections */
220 SECURITY_READ_ONLY_LATE(vm_offset_t
) segLOWESTKC
;
221 SECURITY_READ_ONLY_LATE(vm_offset_t
) segHIGHESTKC
;
222 SECURITY_READ_ONLY_LATE(vm_offset_t
) segLOWESTROKC
;
223 SECURITY_READ_ONLY_LATE(vm_offset_t
) segHIGHESTROKC
;
224 SECURITY_READ_ONLY_LATE(vm_offset_t
) segLOWESTAuxKC
;
225 SECURITY_READ_ONLY_LATE(vm_offset_t
) segHIGHESTAuxKC
;
226 SECURITY_READ_ONLY_LATE(vm_offset_t
) segLOWESTROAuxKC
;
227 SECURITY_READ_ONLY_LATE(vm_offset_t
) segHIGHESTROAuxKC
;
228 SECURITY_READ_ONLY_LATE(vm_offset_t
) segLOWESTRXAuxKC
;
229 SECURITY_READ_ONLY_LATE(vm_offset_t
) segHIGHESTRXAuxKC
;
230 SECURITY_READ_ONLY_LATE(vm_offset_t
) segHIGHESTNLEAuxKC
;
232 SECURITY_READ_ONLY_LATE(static vm_offset_t
) segTEXTB
;
233 SECURITY_READ_ONLY_LATE(static unsigned long) segSizeTEXT
;
236 SECURITY_READ_ONLY_LATE(vm_offset_t
) segPPLTEXTB
;
237 SECURITY_READ_ONLY_LATE(unsigned long) segSizePPLTEXT
;
239 SECURITY_READ_ONLY_LATE(vm_offset_t
) segPPLTRAMPB
;
240 SECURITY_READ_ONLY_LATE(unsigned long) segSizePPLTRAMP
;
242 SECURITY_READ_ONLY_LATE(vm_offset_t
) segPPLDATACONSTB
;
243 SECURITY_READ_ONLY_LATE(unsigned long) segSizePPLDATACONST
;
244 SECURITY_READ_ONLY_LATE(void *) pmap_stacks_start
= NULL
;
245 SECURITY_READ_ONLY_LATE(void *) pmap_stacks_end
= NULL
;
248 SECURITY_READ_ONLY_LATE(static vm_offset_t
) segDATACONSTB
;
249 SECURITY_READ_ONLY_LATE(static unsigned long) segSizeDATACONST
;
251 SECURITY_READ_ONLY_LATE(vm_offset_t
) segTEXTEXECB
;
252 SECURITY_READ_ONLY_LATE(unsigned long) segSizeTEXTEXEC
;
254 SECURITY_READ_ONLY_LATE(static vm_offset_t
) segDATAB
;
255 SECURITY_READ_ONLY_LATE(static unsigned long) segSizeDATA
;
258 SECURITY_READ_ONLY_LATE(vm_offset_t
) segPPLDATAB
;
259 SECURITY_READ_ONLY_LATE(unsigned long) segSizePPLDATA
;
262 SECURITY_READ_ONLY_LATE(vm_offset_t
) segBOOTDATAB
;
263 SECURITY_READ_ONLY_LATE(unsigned long) segSizeBOOTDATA
;
264 extern vm_offset_t intstack_low_guard
;
265 extern vm_offset_t intstack_high_guard
;
266 extern vm_offset_t excepstack_high_guard
;
268 SECURITY_READ_ONLY_LATE(vm_offset_t
) segLINKB
;
269 SECURITY_READ_ONLY_LATE(static unsigned long) segSizeLINK
;
271 SECURITY_READ_ONLY_LATE(static vm_offset_t
) segKLDB
;
272 SECURITY_READ_ONLY_LATE(static unsigned long) segSizeKLD
;
273 SECURITY_READ_ONLY_LATE(vm_offset_t
) segLASTB
;
274 SECURITY_READ_ONLY_LATE(unsigned long) segSizeLAST
;
275 SECURITY_READ_ONLY_LATE(vm_offset_t
) segLASTDATACONSTB
;
276 SECURITY_READ_ONLY_LATE(unsigned long) segSizeLASTDATACONST
;
278 SECURITY_READ_ONLY_LATE(vm_offset_t
) sectHIBTEXTB
;
279 SECURITY_READ_ONLY_LATE(unsigned long) sectSizeHIBTEXT
;
280 SECURITY_READ_ONLY_LATE(vm_offset_t
) segHIBDATAB
;
281 SECURITY_READ_ONLY_LATE(unsigned long) segSizeHIBDATA
;
282 SECURITY_READ_ONLY_LATE(vm_offset_t
) sectHIBDATACONSTB
;
283 SECURITY_READ_ONLY_LATE(unsigned long) sectSizeHIBDATACONST
;
285 SECURITY_READ_ONLY_LATE(vm_offset_t
) segPRELINKTEXTB
;
286 SECURITY_READ_ONLY_LATE(unsigned long) segSizePRELINKTEXT
;
288 SECURITY_READ_ONLY_LATE(static vm_offset_t
) segPLKTEXTEXECB
;
289 SECURITY_READ_ONLY_LATE(static unsigned long) segSizePLKTEXTEXEC
;
291 SECURITY_READ_ONLY_LATE(static vm_offset_t
) segPLKDATACONSTB
;
292 SECURITY_READ_ONLY_LATE(static unsigned long) segSizePLKDATACONST
;
294 SECURITY_READ_ONLY_LATE(static vm_offset_t
) segPRELINKDATAB
;
295 SECURITY_READ_ONLY_LATE(static unsigned long) segSizePRELINKDATA
;
297 SECURITY_READ_ONLY_LATE(static vm_offset_t
) segPLKLLVMCOVB
= 0;
298 SECURITY_READ_ONLY_LATE(static unsigned long) segSizePLKLLVMCOV
= 0;
300 SECURITY_READ_ONLY_LATE(static vm_offset_t
) segPLKLINKEDITB
;
301 SECURITY_READ_ONLY_LATE(static unsigned long) segSizePLKLINKEDIT
;
303 SECURITY_READ_ONLY_LATE(static vm_offset_t
) segPRELINKINFOB
;
304 SECURITY_READ_ONLY_LATE(static unsigned long) segSizePRELINKINFO
;
306 /* Only set when booted from MH_FILESET primary kernel collection */
307 SECURITY_READ_ONLY_LATE(vm_offset_t
) segKCTEXTEXECB
;
308 SECURITY_READ_ONLY_LATE(unsigned long) segSizeKCTEXTEXEC
;
309 SECURITY_READ_ONLY_LATE(static vm_offset_t
) segKCDATACONSTB
;
310 SECURITY_READ_ONLY_LATE(static unsigned long) segSizeKCDATACONST
;
311 SECURITY_READ_ONLY_LATE(static vm_offset_t
) segKCDATAB
;
312 SECURITY_READ_ONLY_LATE(static unsigned long) segSizeKCDATA
;
314 SECURITY_READ_ONLY_LATE(static boolean_t
) use_contiguous_hint
= TRUE
;
316 SECURITY_READ_ONLY_LATE(int) PAGE_SHIFT_CONST
;
318 SECURITY_READ_ONLY_LATE(vm_offset_t
) end_kern
;
319 SECURITY_READ_ONLY_LATE(vm_offset_t
) etext
;
320 SECURITY_READ_ONLY_LATE(vm_offset_t
) sdata
;
321 SECURITY_READ_ONLY_LATE(vm_offset_t
) edata
;
323 SECURITY_READ_ONLY_LATE(static vm_offset_t
) auxkc_mh
, auxkc_base
, auxkc_right_above
;
325 vm_offset_t
alloc_ptpage(boolean_t map_static
);
326 SECURITY_READ_ONLY_LATE(vm_offset_t
) ropage_next
;
329 * Bootstrap the system enough to run with virtual memory.
330 * Map the kernel's code and data, and allocate the system page table.
331 * Page_size must already be set.
334 * first_avail: first available physical page -
335 * after kernel page tables
336 * avail_start: PA of first physical page
337 * avail_end: PA of last physical page
339 SECURITY_READ_ONLY_LATE(vm_offset_t
) first_avail
;
340 SECURITY_READ_ONLY_LATE(vm_offset_t
) static_memory_end
;
341 SECURITY_READ_ONLY_LATE(pmap_paddr_t
) avail_start
;
342 SECURITY_READ_ONLY_LATE(pmap_paddr_t
) avail_end
;
343 SECURITY_READ_ONLY_LATE(pmap_paddr_t
) real_avail_end
;
344 SECURITY_READ_ONLY_LATE(unsigned long) real_phys_size
;
345 SECURITY_READ_ONLY_LATE(vm_map_address_t
) physmap_base
= (vm_map_address_t
)0;
346 SECURITY_READ_ONLY_LATE(vm_map_address_t
) physmap_end
= (vm_map_address_t
)0;
348 #if __ARM_KERNEL_PROTECT__
349 extern void ExceptionVectorsBase
;
350 extern void ExceptionVectorsEnd
;
351 #endif /* __ARM_KERNEL_PROTECT__ */
359 #define PTOV_TABLE_SIZE 8
360 SECURITY_READ_ONLY_LATE(static ptov_table_entry
) ptov_table
[PTOV_TABLE_SIZE
];
361 SECURITY_READ_ONLY_LATE(static boolean_t
) kva_active
= FALSE
;
365 phystokv(pmap_paddr_t pa
)
367 for (size_t i
= 0; (i
< PTOV_TABLE_SIZE
) && (ptov_table
[i
].len
!= 0); i
++) {
368 if ((pa
>= ptov_table
[i
].pa
) && (pa
< (ptov_table
[i
].pa
+ ptov_table
[i
].len
))) {
369 return pa
- ptov_table
[i
].pa
+ ptov_table
[i
].va
;
372 assertf((pa
- gPhysBase
) < real_phys_size
, "%s: illegal PA: 0x%llx", __func__
, (uint64_t)pa
);
373 return pa
- gPhysBase
+ gVirtBase
;
377 phystokv_range(pmap_paddr_t pa
, vm_size_t
*max_len
)
380 for (size_t i
= 0; (i
< PTOV_TABLE_SIZE
) && (ptov_table
[i
].len
!= 0); i
++) {
381 if ((pa
>= ptov_table
[i
].pa
) && (pa
< (ptov_table
[i
].pa
+ ptov_table
[i
].len
))) {
382 len
= ptov_table
[i
].len
- (pa
- ptov_table
[i
].pa
);
383 if (*max_len
> len
) {
386 return pa
- ptov_table
[i
].pa
+ ptov_table
[i
].va
;
389 len
= PAGE_SIZE
- (pa
& PAGE_MASK
);
390 if (*max_len
> len
) {
393 assertf((pa
- gPhysBase
) < real_phys_size
, "%s: illegal PA: 0x%llx", __func__
, (uint64_t)pa
);
394 return pa
- gPhysBase
+ gVirtBase
;
398 ml_static_vtop(vm_offset_t va
)
400 for (size_t i
= 0; (i
< PTOV_TABLE_SIZE
) && (ptov_table
[i
].len
!= 0); i
++) {
401 if ((va
>= ptov_table
[i
].va
) && (va
< (ptov_table
[i
].va
+ ptov_table
[i
].len
))) {
402 return va
- ptov_table
[i
].va
+ ptov_table
[i
].pa
;
405 assertf(((vm_address_t
)(va
) - gVirtBase
) < gPhysSize
, "%s: illegal VA: %p", __func__
, (void*)va
);
406 return (vm_address_t
)(va
) - gVirtBase
+ gPhysBase
;
410 * This rounds the given address up to the nearest boundary for a PTE contiguous
414 round_up_pte_hint_address(vm_offset_t address
)
416 vm_offset_t hint_size
= ARM_PTE_SIZE
<< ARM_PTE_HINT_ENTRIES_SHIFT
;
417 return (address
+ (hint_size
- 1)) & ~(hint_size
- 1);
420 /* allocate a page for a page table: we support static and dynamic mappings.
422 * returns a virtual address for the allocated page
424 * for static mappings, we allocate from the region ropagetable_begin to ro_pagetable_end-1,
425 * which is defined in the DATA_CONST segment and will be protected RNX when vm_prot_finalize runs.
427 * for dynamic mappings, we allocate from avail_start, which should remain RWNX.
431 alloc_ptpage(boolean_t map_static
)
435 #if !(defined(KERNEL_INTEGRITY_KTRR) || defined(KERNEL_INTEGRITY_CTRR))
440 ropage_next
= (vm_offset_t
)&ropagetable_begin
;
444 assert(ropage_next
< (vm_offset_t
)&ropagetable_end
);
447 ropage_next
+= ARM_PGBYTES
;
451 vaddr
= phystokv(avail_start
);
452 avail_start
+= ARM_PGBYTES
;
460 void dump_kva_l2(vm_offset_t tt_base
, tt_entry_t
*tt
, int indent
, uint64_t *rosz_out
, uint64_t *rwsz_out
);
463 dump_kva_l2(vm_offset_t tt_base
, tt_entry_t
*tt
, int indent
, uint64_t *rosz_out
, uint64_t *rwsz_out
)
466 boolean_t cur_ro
, prev_ro
= 0;
467 int start_entry
= -1;
468 tt_entry_t cur
, prev
= 0;
469 pmap_paddr_t robegin
= kvtophys((vm_offset_t
)&ropagetable_begin
);
470 pmap_paddr_t roend
= kvtophys((vm_offset_t
)&ropagetable_end
);
471 boolean_t tt_static
= kvtophys((vm_offset_t
)tt
) >= robegin
&&
472 kvtophys((vm_offset_t
)tt
) < roend
;
474 for (i
= 0; i
< TTE_PGENTRIES
; i
++) {
475 int tte_type
= tt
[i
] & ARM_TTE_TYPE_MASK
;
476 cur
= tt
[i
] & ARM_TTE_TABLE_MASK
;
479 /* addresses mapped by this entry are static if it is a block mapping,
480 * or the table was allocated from the RO page table region */
481 cur_ro
= (tte_type
== ARM_TTE_TYPE_BLOCK
) || (cur
>= robegin
&& cur
< roend
);
486 if ((cur
== 0 && prev
!= 0) || (cur_ro
!= prev_ro
&& prev
!= 0)) { // falling edge
487 uintptr_t start
, end
, sz
;
489 start
= (uintptr_t)start_entry
<< ARM_TT_L2_SHIFT
;
491 end
= ((uintptr_t)i
<< ARM_TT_L2_SHIFT
) - 1;
494 sz
= end
- start
+ 1;
495 printf("%*s0x%08x_%08x-0x%08x_%08x %s (%luMB)\n",
497 (uint32_t)(start
>> 32), (uint32_t)start
,
498 (uint32_t)(end
>> 32), (uint32_t)end
,
499 prev_ro
? "Static " : "Dynamic",
509 if ((prev
== 0 && cur
!= 0) || cur_ro
!= prev_ro
) { // rising edge: set start
521 uint64_t tot_rosz
= 0, tot_rwsz
= 0;
522 int ro_ptpages
, rw_ptpages
;
523 pmap_paddr_t robegin
= kvtophys((vm_offset_t
)&ropagetable_begin
);
524 pmap_paddr_t roend
= kvtophys((vm_offset_t
)&ropagetable_end
);
525 boolean_t root_static
= kvtophys((vm_offset_t
)cpu_tte
) >= robegin
&&
526 kvtophys((vm_offset_t
)cpu_tte
) < roend
;
527 uint64_t kva_base
= ~((1ULL << (64 - T1SZ_BOOT
)) - 1);
529 printf("Root page table: %s\n", root_static
? "Static" : "Dynamic");
531 for (unsigned int i
= 0; i
< TTE_PGENTRIES
; i
++) {
534 uintptr_t start
, end
;
535 uint64_t rosz
= 0, rwsz
= 0;
537 if ((cpu_tte
[i
] & ARM_TTE_VALID
) == 0) {
541 cur
= cpu_tte
[i
] & ARM_TTE_TABLE_MASK
;
542 start
= (uint64_t)i
<< ARM_TT_L1_SHIFT
;
543 start
= start
+ kva_base
;
544 end
= start
+ (ARM_TT_L1_SIZE
- 1);
545 cur_ro
= cur
>= robegin
&& cur
< roend
;
547 printf("0x%08x_%08x-0x%08x_%08x %s\n",
548 (uint32_t)(start
>> 32), (uint32_t)start
,
549 (uint32_t)(end
>> 32), (uint32_t)end
,
550 cur_ro
? "Static " : "Dynamic");
552 dump_kva_l2(start
, (tt_entry_t
*)phystokv(cur
), 1, &rosz
, &rwsz
);
557 printf("L2 Address space mapped: Static %lluMB Dynamic %lluMB Total %lluMB\n",
560 (tot_rosz
>> 20) + (tot_rwsz
>> 20));
562 ro_ptpages
= (int)((ropage_next
- (vm_offset_t
)&ropagetable_begin
) >> ARM_PGSHIFT
);
563 rw_ptpages
= (int)(lowGlo
.lgStaticSize
>> ARM_PGSHIFT
);
564 printf("Pages used: static %d dynamic %d\n", ro_ptpages
, rw_ptpages
);
569 #if __ARM_KERNEL_PROTECT__ || XNU_MONITOR
572 * root_ttp: The kernel virtual address for the root of the target page tables
573 * vaddr: The target virtual address
574 * pte: A page table entry value (may be ARM_PTE_EMPTY)
576 * This function installs pte at vaddr in root_ttp. Any page table pages needed
577 * to install pte will be allocated by this function.
580 arm_vm_map(tt_entry_t
* root_ttp
, vm_offset_t vaddr
, pt_entry_t pte
)
582 vm_offset_t ptpage
= 0;
583 tt_entry_t
* ttp
= root_ttp
;
585 tt_entry_t
* l1_ttep
= NULL
;
586 tt_entry_t l1_tte
= 0;
588 tt_entry_t
* l2_ttep
= NULL
;
589 tt_entry_t l2_tte
= 0;
590 pt_entry_t
* ptep
= NULL
;
594 * Walk the target page table to find the PTE for the given virtual
595 * address. Allocate any page table pages needed to do this.
597 l1_ttep
= ttp
+ ((vaddr
& ARM_TT_L1_INDEX_MASK
) >> ARM_TT_L1_SHIFT
);
600 if (l1_tte
== ARM_TTE_EMPTY
) {
601 ptpage
= alloc_ptpage(TRUE
);
602 bzero((void *)ptpage
, ARM_PGBYTES
);
603 l1_tte
= kvtophys(ptpage
);
604 l1_tte
&= ARM_TTE_TABLE_MASK
;
605 l1_tte
|= ARM_TTE_VALID
| ARM_TTE_TYPE_TABLE
;
610 ttp
= (tt_entry_t
*)phystokv(l1_tte
& ARM_TTE_TABLE_MASK
);
612 l2_ttep
= ttp
+ ((vaddr
& ARM_TT_L2_INDEX_MASK
) >> ARM_TT_L2_SHIFT
);
615 if (l2_tte
== ARM_TTE_EMPTY
) {
616 ptpage
= alloc_ptpage(TRUE
);
617 bzero((void *)ptpage
, ARM_PGBYTES
);
618 l2_tte
= kvtophys(ptpage
);
619 l2_tte
&= ARM_TTE_TABLE_MASK
;
620 l2_tte
|= ARM_TTE_VALID
| ARM_TTE_TYPE_TABLE
;
625 ttp
= (tt_entry_t
*)phystokv(l2_tte
& ARM_TTE_TABLE_MASK
);
627 ptep
= ttp
+ ((vaddr
& ARM_TT_L3_INDEX_MASK
) >> ARM_TT_L3_SHIFT
);
631 * If the existing PTE is not empty, then we are replacing a valid
634 if (cpte
!= ARM_PTE_EMPTY
) {
635 panic("%s: cpte=%#llx is not empty, "
636 "vaddr=%#lx, pte=%#llx",
644 #endif // __ARM_KERNEL_PROTECT || XNU_MONITOR
646 #if __ARM_KERNEL_PROTECT__
649 * arm_vm_kernel_el0_map:
650 * vaddr: The target virtual address
651 * pte: A page table entry value (may be ARM_PTE_EMPTY)
653 * This function installs pte at vaddr for the EL0 kernel mappings.
656 arm_vm_kernel_el0_map(vm_offset_t vaddr
, pt_entry_t pte
)
658 /* Calculate where vaddr will be in the EL1 kernel page tables. */
659 vm_offset_t kernel_pmap_vaddr
= vaddr
- ((ARM_TT_ROOT_INDEX_MASK
+ ARM_TT_ROOT_SIZE
) / 2ULL);
660 arm_vm_map(cpu_tte
, kernel_pmap_vaddr
, pte
);
664 * arm_vm_kernel_el1_map:
665 * vaddr: The target virtual address
666 * pte: A page table entry value (may be ARM_PTE_EMPTY)
668 * This function installs pte at vaddr for the EL1 kernel mappings.
671 arm_vm_kernel_el1_map(vm_offset_t vaddr
, pt_entry_t pte
)
673 arm_vm_map(cpu_tte
, vaddr
, pte
);
678 * vaddr: The target virtual address
680 * This function returns the PTE value for the given vaddr from the kernel page
681 * tables. If the region has been been block mapped, we return what an
682 * equivalent PTE value would be (as regards permissions and flags). We also
683 * remove the HINT bit (as we are not necessarily creating contiguous mappings.
686 arm_vm_kernel_pte(vm_offset_t vaddr
)
688 tt_entry_t
* ttp
= cpu_tte
;
689 tt_entry_t
* ttep
= NULL
;
691 pt_entry_t
* ptep
= NULL
;
694 ttep
= ttp
+ ((vaddr
& ARM_TT_L1_INDEX_MASK
) >> ARM_TT_L1_SHIFT
);
697 assert(tte
& ARM_TTE_VALID
);
699 if ((tte
& ARM_TTE_TYPE_MASK
) == ARM_TTE_TYPE_BLOCK
) {
700 /* This is a block mapping; return the equivalent PTE value. */
701 pte
= (pt_entry_t
)(tte
& ~ARM_TTE_TYPE_MASK
);
702 pte
|= ARM_PTE_TYPE_VALID
;
703 pte
|= vaddr
& ((ARM_TT_L1_SIZE
- 1) & ARM_PTE_PAGE_MASK
);
704 pte
&= ~ARM_PTE_HINT_MASK
;
708 ttp
= (tt_entry_t
*)phystokv(tte
& ARM_TTE_TABLE_MASK
);
709 ttep
= ttp
+ ((vaddr
& ARM_TT_L2_INDEX_MASK
) >> ARM_TT_L2_SHIFT
);
712 assert(tte
& ARM_TTE_VALID
);
714 if ((tte
& ARM_TTE_TYPE_MASK
) == ARM_TTE_TYPE_BLOCK
) {
715 /* This is a block mapping; return the equivalent PTE value. */
716 pte
= (pt_entry_t
)(tte
& ~ARM_TTE_TYPE_MASK
);
717 pte
|= ARM_PTE_TYPE_VALID
;
718 pte
|= vaddr
& ((ARM_TT_L2_SIZE
- 1) & ARM_PTE_PAGE_MASK
);
719 pte
&= ~ARM_PTE_HINT_MASK
;
723 ttp
= (tt_entry_t
*)phystokv(tte
& ARM_TTE_TABLE_MASK
);
725 ptep
= ttp
+ ((vaddr
& ARM_TT_L3_INDEX_MASK
) >> ARM_TT_L3_SHIFT
);
727 pte
&= ~ARM_PTE_HINT_MASK
;
732 * arm_vm_prepare_kernel_el0_mappings:
733 * alloc_only: Indicates if PTE values should be copied from the EL1 kernel
736 * This function expands the kernel page tables to support the EL0 kernel
737 * mappings, and conditionally installs the PTE values for the EL0 kernel
738 * mappings (if alloc_only is false).
741 arm_vm_prepare_kernel_el0_mappings(bool alloc_only
)
744 vm_offset_t start
= ((vm_offset_t
)&ExceptionVectorsBase
) & ~PAGE_MASK
;
745 vm_offset_t end
= (((vm_offset_t
)&ExceptionVectorsEnd
) + PAGE_MASK
) & ~PAGE_MASK
;
747 vm_offset_t cur_fixed
= 0;
749 /* Expand for/map the exceptions vectors in the EL0 kernel mappings. */
750 for (cur
= start
, cur_fixed
= ARM_KERNEL_PROTECT_EXCEPTION_START
; cur
< end
; cur
+= ARM_PGBYTES
, cur_fixed
+= ARM_PGBYTES
) {
752 * We map the exception vectors at a different address than that
753 * of the kernelcache to avoid sharing page table pages with the
754 * kernelcache (as this may cause issues with TLB caching of
758 pte
= arm_vm_kernel_pte(cur
);
761 arm_vm_kernel_el1_map(cur_fixed
, pte
);
762 arm_vm_kernel_el0_map(cur_fixed
, pte
);
765 __builtin_arm_dmb(DMB_ISH
);
766 __builtin_arm_isb(ISB_SY
);
770 * If we have created the alternate exception vector mappings,
771 * the boot CPU may now switch over to them.
773 set_vbar_el1(ARM_KERNEL_PROTECT_EXCEPTION_START
);
774 __builtin_arm_isb(ISB_SY
);
779 * arm_vm_populate_kernel_el0_mappings:
781 * This function adds all required mappings to the EL0 kernel mappings.
784 arm_vm_populate_kernel_el0_mappings(void)
786 arm_vm_prepare_kernel_el0_mappings(FALSE
);
790 * arm_vm_expand_kernel_el0_mappings:
792 * This function expands the kernel page tables to accomodate the EL0 kernel
796 arm_vm_expand_kernel_el0_mappings(void)
798 arm_vm_prepare_kernel_el0_mappings(TRUE
);
800 #endif /* __ARM_KERNEL_PROTECT__ */
802 #if defined(KERNEL_INTEGRITY_KTRR) || defined(KERNEL_INTEGRITY_CTRR)
803 extern void bootstrap_instructions
;
806 * arm_replace_identity_map takes the V=P map that we construct in start.s
807 * and repurposes it in order to have it map only the page we need in order
808 * to turn on the MMU. This prevents us from running into issues where
809 * KTRR will cause us to fault on executable block mappings that cross the
813 arm_replace_identity_map(void)
818 pmap_paddr_t l1_ptp_phys
= 0;
819 tt_entry_t
*l1_ptp_virt
= NULL
;
820 tt_entry_t
*tte1
= NULL
;
821 pmap_paddr_t l2_ptp_phys
= 0;
822 tt_entry_t
*l2_ptp_virt
= NULL
;
823 tt_entry_t
*tte2
= NULL
;
824 pmap_paddr_t l3_ptp_phys
= 0;
825 pt_entry_t
*l3_ptp_virt
= NULL
;
826 pt_entry_t
*ptep
= NULL
;
828 addr
= ((vm_offset_t
)&bootstrap_instructions
) & ~ARM_PGMASK
;
829 paddr
= kvtophys(addr
);
832 * Grab references to the V=P page tables, and allocate an L3 page.
834 l1_ptp_phys
= kvtophys((vm_offset_t
)&bootstrap_pagetables
);
835 l1_ptp_virt
= (tt_entry_t
*)phystokv(l1_ptp_phys
);
836 tte1
= &l1_ptp_virt
[L1_TABLE_INDEX(paddr
)];
838 l2_ptp_virt
= L2_TABLE_VA(tte1
);
839 l2_ptp_phys
= (*tte1
) & ARM_TTE_TABLE_MASK
;
840 tte2
= &l2_ptp_virt
[L2_TABLE_INDEX(paddr
)];
842 l3_ptp_virt
= (pt_entry_t
*)alloc_ptpage(TRUE
);
843 l3_ptp_phys
= kvtophys((vm_offset_t
)l3_ptp_virt
);
844 ptep
= &l3_ptp_virt
[L3_TABLE_INDEX(paddr
)];
847 * Replace the large V=P mapping with a mapping that provides only the
848 * mappings needed to turn on the MMU.
851 bzero(l1_ptp_virt
, ARM_PGBYTES
);
852 *tte1
= ARM_TTE_BOOT_TABLE
| (l2_ptp_phys
& ARM_TTE_TABLE_MASK
);
854 bzero(l2_ptp_virt
, ARM_PGBYTES
);
855 *tte2
= ARM_TTE_BOOT_TABLE
| (l3_ptp_phys
& ARM_TTE_TABLE_MASK
);
857 *ptep
= (paddr
& ARM_PTE_MASK
) |
859 ARM_PTE_SH(SH_OUTER_MEMORY
) |
860 ARM_PTE_ATTRINDX(CACHE_ATTRINDX_WRITEBACK
) |
862 ARM_PTE_AP(AP_RONA
) |
865 #endif /* defined(KERNEL_INTEGRITY_KTRR) || defined(KERNEL_INTEGRITY_CTRR) */
867 tt_entry_t
*arm_kva_to_tte(vm_offset_t
);
870 arm_kva_to_tte(vm_offset_t va
)
872 tt_entry_t
*tte1
, *tte2
;
873 tte1
= cpu_tte
+ L1_TABLE_INDEX(va
);
874 tte2
= L2_TABLE_VA(tte1
) + L2_TABLE_INDEX(va
);
881 static inline pt_entry_t
*
882 arm_kva_to_pte(vm_offset_t va
)
884 tt_entry_t
*tte2
= arm_kva_to_tte(va
);
885 return L3_TABLE_VA(tte2
) + L3_TABLE_INDEX(va
);
890 #define ARM64_GRANULE_ALLOW_BLOCK (1 << 0)
891 #define ARM64_GRANULE_ALLOW_HINT (1 << 1)
894 * arm_vm_page_granular_helper updates protections at the L3 level. It will (if
895 * neccessary) allocate a page for the L3 table and update the corresponding L2
896 * entry. Then, it will iterate over the L3 table, updating protections as necessary.
897 * This expects to be invoked on a L2 entry or sub L2 entry granularity, so this should
898 * not be invoked from a context that does not do L2 iteration separately (basically,
899 * don't call this except from arm_vm_page_granular_prot).
901 * unsigned granule: 0 => force to page granule, or a combination of
902 * ARM64_GRANULE_* flags declared above.
906 arm_vm_page_granular_helper(vm_offset_t start
, vm_offset_t _end
, vm_offset_t va
, pmap_paddr_t pa_offset
,
907 int pte_prot_APX
, int pte_prot_XN
, unsigned granule
,
908 pt_entry_t
**deferred_pte
, pt_entry_t
*deferred_ptmp
)
910 if (va
& ARM_TT_L2_OFFMASK
) { /* ragged edge hanging over a ARM_TT_L2_SIZE boundary */
914 pt_entry_t
*ppte
, *recursive_pte
= NULL
, ptmp
, recursive_ptmp
= 0;
918 va
&= ~ARM_TT_L2_OFFMASK
;
919 pa
= va
- gVirtBase
+ gPhysBase
- pa_offset
;
921 if (pa
>= real_avail_end
) {
925 tte2
= arm_kva_to_tte(va
);
930 if (ARM_TTE_TYPE_TABLE
== (tmplate
& ARM_TTE_TYPE_MASK
)) {
931 /* pick up the existing page table. */
932 ppte
= (pt_entry_t
*)phystokv((tmplate
& ARM_TTE_TABLE_MASK
));
934 // TTE must be reincarnated with page level mappings.
936 // ... but we don't want to break up blocks on live
937 // translation tables.
940 ppte
= (pt_entry_t
*)alloc_ptpage(pa_offset
== 0);
941 bzero(ppte
, ARM_PGBYTES
);
942 ppte_phys
= kvtophys((vm_offset_t
)ppte
);
944 *tte2
= pa_to_tte(ppte_phys
) | ARM_TTE_TYPE_TABLE
| ARM_TTE_VALID
;
947 vm_offset_t len
= _end
- va
;
948 if ((pa
+ len
) > real_avail_end
) {
949 _end
-= (pa
+ len
- real_avail_end
);
951 assert((start
- gVirtBase
+ gPhysBase
- pa_offset
) >= gPhysBase
);
953 /* Round up to the nearest PAGE_SIZE boundary when creating mappings:
954 * PAGE_SIZE may be a multiple of ARM_PGBYTES, and we don't want to leave
955 * a ragged non-PAGE_SIZE-aligned edge. */
956 vm_offset_t rounded_end
= round_page(_end
);
957 /* Apply the desired protections to the specified page range */
958 for (i
= 0; i
<= (ARM_TT_L3_INDEX_MASK
>> ARM_TT_L3_SHIFT
); i
++) {
959 if ((start
<= va
) && (va
< rounded_end
)) {
960 ptmp
= pa
| ARM_PTE_AF
| ARM_PTE_SH(SH_OUTER_MEMORY
) | ARM_PTE_TYPE
;
961 ptmp
= ptmp
| ARM_PTE_ATTRINDX(CACHE_ATTRINDX_DEFAULT
);
962 ptmp
= ptmp
| ARM_PTE_AP(pte_prot_APX
);
963 ptmp
= ptmp
| ARM_PTE_NX
;
964 #if __ARM_KERNEL_PROTECT__
965 ptmp
= ptmp
| ARM_PTE_NG
;
966 #endif /* __ARM_KERNEL_PROTECT__ */
969 ptmp
= ptmp
| ARM_PTE_PNX
;
973 * If we can, apply the contiguous hint to this range. The hint is
974 * applicable if the current address falls within a hint-sized range that will
975 * be fully covered by this mapping request.
977 if ((va
>= round_up_pte_hint_address(start
)) && (round_up_pte_hint_address(va
+ 1) <= _end
) &&
978 (granule
& ARM64_GRANULE_ALLOW_HINT
) && use_contiguous_hint
) {
979 assert((va
& ((1 << ARM_PTE_HINT_ADDR_SHIFT
) - 1)) == ((pa
& ((1 << ARM_PTE_HINT_ADDR_SHIFT
) - 1))));
980 ptmp
|= ARM_PTE_HINT
;
981 /* Do not attempt to reapply the hint bit to an already-active mapping.
982 * This very likely means we're attempting to change attributes on an already-active mapping,
983 * which violates the requirement of the hint bit.*/
984 assert(!kva_active
|| (ppte
[i
] == ARM_PTE_TYPE_FAULT
));
987 * Do not change the contiguous bit on an active mapping. Even in a single-threaded
988 * environment, it's possible for prefetch to produce a TLB conflict by trying to pull in
989 * a hint-sized entry on top of one or more existing page-sized entries. It's also useful
990 * to make sure we're not trying to unhint a sub-range of a larger hinted range, which
991 * could produce a later TLB conflict.
993 assert(!kva_active
|| (ppte
[i
] == ARM_PTE_TYPE_FAULT
) || ((ppte
[i
] & ARM_PTE_HINT
) == (ptmp
& ARM_PTE_HINT
)));
996 * If we reach an entry that maps the current pte page, delay updating it until the very end.
997 * Otherwise we might end up making the PTE page read-only, leading to a fault later on in
998 * this function if we manage to outrun the TLB. This can happen on KTRR-enabled devices when
999 * marking segDATACONST read-only. Mappings for this region may straddle a PT page boundary,
1000 * so we must also defer assignment of the following PTE. We will assume that if the region
1001 * were to require one or more full L3 pages, it would instead use L2 blocks where possible,
1002 * therefore only requiring at most one L3 page at the beginning and one at the end.
1004 if (kva_active
&& ((pt_entry_t
*)(phystokv(pa
)) == ppte
)) {
1005 assert(recursive_pte
== NULL
);
1006 assert(granule
& ARM64_GRANULE_ALLOW_BLOCK
);
1007 recursive_pte
= &ppte
[i
];
1008 recursive_ptmp
= ptmp
;
1009 } else if ((deferred_pte
!= NULL
) && (&ppte
[i
] == &recursive_pte
[1])) {
1010 assert(*deferred_pte
== NULL
);
1011 assert(deferred_ptmp
!= NULL
);
1012 *deferred_pte
= &ppte
[i
];
1013 *deferred_ptmp
= ptmp
;
1022 if (recursive_pte
!= NULL
) {
1023 *recursive_pte
= recursive_ptmp
;
1029 * arm_vm_page_granular_prot updates protections by iterating over the L2 entries and
1030 * changing them. If a particular chunk necessitates L3 entries (for reasons of
1031 * alignment or length, or an explicit request that the entry be fully expanded), we
1032 * hand off to arm_vm_page_granular_helper to deal with the L3 chunk of the logic.
1035 arm_vm_page_granular_prot(vm_offset_t start
, unsigned long size
, pmap_paddr_t pa_offset
,
1036 int tte_prot_XN
, int pte_prot_APX
, int pte_prot_XN
,
1039 pt_entry_t
*deferred_pte
= NULL
, deferred_ptmp
= 0;
1040 vm_offset_t _end
= start
+ size
;
1041 vm_offset_t align_start
= (start
+ ARM_TT_L2_OFFMASK
) & ~ARM_TT_L2_OFFMASK
;
1043 if (size
== 0x0UL
) {
1047 if (align_start
> _end
) {
1048 arm_vm_page_granular_helper(start
, _end
, start
, pa_offset
, pte_prot_APX
, pte_prot_XN
, granule
, NULL
, NULL
);
1052 arm_vm_page_granular_helper(start
, align_start
, start
, pa_offset
, pte_prot_APX
, pte_prot_XN
, granule
, &deferred_pte
, &deferred_ptmp
);
1054 while ((_end
- align_start
) >= ARM_TT_L2_SIZE
) {
1055 if (!(granule
& ARM64_GRANULE_ALLOW_BLOCK
)) {
1056 arm_vm_page_granular_helper(align_start
, align_start
+ ARM_TT_L2_SIZE
, align_start
+ 1, pa_offset
,
1057 pte_prot_APX
, pte_prot_XN
, granule
, NULL
, NULL
);
1059 pmap_paddr_t pa
= align_start
- gVirtBase
+ gPhysBase
- pa_offset
;
1060 assert((pa
& ARM_TT_L2_OFFMASK
) == 0);
1064 tte2
= arm_kva_to_tte(align_start
);
1066 if ((pa
>= gPhysBase
) && (pa
< real_avail_end
)) {
1067 tmplate
= (pa
& ARM_TTE_BLOCK_L2_MASK
) | ARM_TTE_TYPE_BLOCK
1068 | ARM_TTE_VALID
| ARM_TTE_BLOCK_AF
| ARM_TTE_BLOCK_NX
1069 | ARM_TTE_BLOCK_AP(pte_prot_APX
) | ARM_TTE_BLOCK_SH(SH_OUTER_MEMORY
)
1070 | ARM_TTE_BLOCK_ATTRINDX(CACHE_ATTRINDX_WRITEBACK
);
1072 #if __ARM_KERNEL_PROTECT__
1073 tmplate
= tmplate
| ARM_TTE_BLOCK_NG
;
1074 #endif /* __ARM_KERNEL_PROTECT__ */
1076 tmplate
= tmplate
| ARM_TTE_BLOCK_PNX
;
1082 align_start
+= ARM_TT_L2_SIZE
;
1085 if (align_start
< _end
) {
1086 arm_vm_page_granular_helper(align_start
, _end
, _end
, pa_offset
, pte_prot_APX
, pte_prot_XN
, granule
, &deferred_pte
, &deferred_ptmp
);
1089 if (deferred_pte
!= NULL
) {
1090 *deferred_pte
= deferred_ptmp
;
1095 arm_vm_page_granular_RNX(vm_offset_t start
, unsigned long size
, unsigned granule
)
1097 arm_vm_page_granular_prot(start
, size
, 0, 1, AP_RONA
, 1, granule
);
1101 arm_vm_page_granular_ROX(vm_offset_t start
, unsigned long size
, unsigned granule
)
1103 arm_vm_page_granular_prot(start
, size
, 0, 0, AP_RONA
, 0, granule
);
1107 arm_vm_page_granular_RWNX(vm_offset_t start
, unsigned long size
, unsigned granule
)
1109 arm_vm_page_granular_prot(start
, size
, 0, 1, AP_RWNA
, 1, granule
);
1112 /* used in the chosen/memory-map node, populated by iBoot. */
1113 typedef struct MemoryMapFileInfo
{
1116 } MemoryMapFileInfo
;
1118 // Populate seg...AuxKC and fixup AuxKC permissions
1120 arm_vm_auxkc_init(void)
1122 if (auxkc_mh
== 0 || auxkc_base
== 0) {
1123 return false; // no auxKC.
1126 /* Fixup AuxKC and populate seg*AuxKC globals used below */
1127 arm_auxkc_init((void*)auxkc_mh
, (void*)auxkc_base
);
1129 if (segLOWESTAuxKC
!= segLOWEST
) {
1130 panic("segLOWESTAuxKC (%p) not equal to segLOWEST (%p). auxkc_mh: %p, auxkc_base: %p",
1131 (void*)segLOWESTAuxKC
, (void*)segLOWEST
,
1132 (void*)auxkc_mh
, (void*)auxkc_base
);
1136 * The AuxKC LINKEDIT segment needs to be covered by the RO region but is excluded
1137 * from the RO address range returned by kernel_collection_adjust_mh_addrs().
1138 * Ensure the highest non-LINKEDIT address in the AuxKC is the current end of
1139 * its RO region before extending it.
1141 assert(segHIGHESTROAuxKC
== segHIGHESTNLEAuxKC
);
1142 assert(segHIGHESTAuxKC
>= segHIGHESTROAuxKC
);
1143 if (segHIGHESTAuxKC
> segHIGHESTROAuxKC
) {
1144 segHIGHESTROAuxKC
= segHIGHESTAuxKC
;
1148 * The AuxKC RO region must be right below the device tree/trustcache so that it can be covered
1149 * by CTRR, and the AuxKC RX region must be within the RO region.
1151 assert(segHIGHESTROAuxKC
== auxkc_right_above
);
1152 assert(segHIGHESTRXAuxKC
<= segHIGHESTROAuxKC
);
1153 assert(segLOWESTRXAuxKC
<= segHIGHESTRXAuxKC
);
1154 assert(segLOWESTROAuxKC
<= segLOWESTRXAuxKC
);
1155 assert(segLOWESTAuxKC
<= segLOWESTROAuxKC
);
1157 if (segHIGHESTRXAuxKC
< segLOWEST
) {
1158 arm_vm_page_granular_RNX(segHIGHESTRXAuxKC
, segLOWEST
- segHIGHESTRXAuxKC
, 0);
1160 if (segLOWESTRXAuxKC
< segHIGHESTRXAuxKC
) {
1161 arm_vm_page_granular_ROX(segLOWESTRXAuxKC
, segHIGHESTRXAuxKC
- segLOWESTRXAuxKC
, 0); // Refined in OSKext::readPrelinkedExtensions
1163 if (segLOWESTROAuxKC
< segLOWESTRXAuxKC
) {
1164 arm_vm_page_granular_RNX(segLOWESTROAuxKC
, segLOWESTRXAuxKC
- segLOWESTROAuxKC
, 0);
1166 if (segLOWESTAuxKC
< segLOWESTROAuxKC
) {
1167 arm_vm_page_granular_RWNX(segLOWESTAuxKC
, segLOWESTROAuxKC
- segLOWESTAuxKC
, 0);
1174 arm_vm_prot_init(__unused boot_args
* args
)
1176 segLOWESTTEXT
= UINT64_MAX
;
1177 if (segSizePRELINKTEXT
&& (segPRELINKTEXTB
< segLOWESTTEXT
)) {
1178 segLOWESTTEXT
= segPRELINKTEXTB
;
1180 assert(segSizeTEXT
);
1181 if (segTEXTB
< segLOWESTTEXT
) {
1182 segLOWESTTEXT
= segTEXTB
;
1184 assert(segLOWESTTEXT
< UINT64_MAX
);
1186 segEXTRADATA
= segLOWESTTEXT
;
1187 segSizeEXTRADATA
= 0;
1189 segLOWEST
= segLOWESTTEXT
;
1190 segLOWESTRO
= segLOWESTTEXT
;
1192 if (segLOWESTKC
&& segLOWESTKC
< segLOWEST
) {
1194 * kernel collections have segments below the kernel. In particular the collection mach header
1195 * is below PRELINK_TEXT and is not covered by any other segments already tracked.
1197 arm_vm_page_granular_RNX(segLOWESTKC
, segLOWEST
- segLOWESTKC
, ARM64_GRANULE_ALLOW_BLOCK
| ARM64_GRANULE_ALLOW_HINT
);
1198 segLOWEST
= segLOWESTKC
;
1199 if (segLOWESTROKC
&& segLOWESTROKC
< segLOWESTRO
) {
1200 segLOWESTRO
= segLOWESTROKC
;
1202 if (segHIGHESTROKC
&& segHIGHESTROKC
> segHIGHESTRO
) {
1203 segHIGHESTRO
= segHIGHESTROKC
;
1208 MemoryMapFileInfo
const *trustCacheRange
;
1209 unsigned int trustCacheRangeSize
;
1212 if (SecureDTIsLockedDown()) {
1213 segEXTRADATA
= (vm_offset_t
)PE_state
.deviceTreeHead
;
1214 segSizeEXTRADATA
= PE_state
.deviceTreeSize
;
1217 err
= SecureDTLookupEntry(NULL
, "chosen/memory-map", &memory_map
);
1218 assert(err
== kSuccess
);
1220 err
= SecureDTGetProperty(memory_map
, "TrustCache", (void const **)&trustCacheRange
, &trustCacheRangeSize
);
1221 if (err
== kSuccess
) {
1222 assert(trustCacheRangeSize
== sizeof(MemoryMapFileInfo
));
1224 if (segSizeEXTRADATA
== 0) {
1225 segEXTRADATA
= phystokv(trustCacheRange
->paddr
);
1226 segSizeEXTRADATA
= trustCacheRange
->length
;
1228 segSizeEXTRADATA
+= trustCacheRange
->length
;
1232 if (segSizeEXTRADATA
!= 0) {
1233 if (segEXTRADATA
<= segLOWEST
) {
1234 segLOWEST
= segEXTRADATA
;
1235 if (segEXTRADATA
<= segLOWESTRO
) {
1236 segLOWESTRO
= segEXTRADATA
;
1239 #if !(DEBUG || DEVELOPMENT)
1243 panic("EXTRADATA is in an unexpected place: %#lx > %#lx", segEXTRADATA
, segLOWEST
);
1245 #endif /* !(DEBUG || DEVELOPMENT) */
1247 arm_vm_page_granular_RNX(segEXTRADATA
, segSizeEXTRADATA
, ARM64_GRANULE_ALLOW_BLOCK
| ARM64_GRANULE_ALLOW_HINT
);
1250 const MemoryMapFileInfo
*auxKC_range
, *auxKC_header_range
;
1251 unsigned int auxKC_range_size
, auxKC_header_range_size
;
1253 err
= SecureDTGetProperty(memory_map
, "AuxKC", (const void**)&auxKC_range
,
1255 if (err
!= kSuccess
) {
1258 assert(auxKC_range_size
== sizeof(MemoryMapFileInfo
));
1259 err
= SecureDTGetProperty(memory_map
, "AuxKC-mach_header",
1260 (const void**)&auxKC_header_range
, &auxKC_header_range_size
);
1261 if (err
!= kSuccess
) {
1264 assert(auxKC_header_range_size
== sizeof(MemoryMapFileInfo
));
1266 auxkc_mh
= phystokv(auxKC_header_range
->paddr
);
1267 auxkc_base
= phystokv(auxKC_range
->paddr
);
1268 if (!auxkc_mh
|| !auxkc_base
) {
1272 if (auxkc_base
< segLOWEST
) {
1273 auxkc_right_above
= segLOWEST
;
1274 segLOWEST
= auxkc_base
;
1276 panic("auxkc_base (%p) not below segLOWEST (%p)", (void*)auxkc_base
, (void*)segLOWEST
);
1279 /* Map AuxKC RWNX initially so that arm_vm_auxkc_init can traverse
1280 * it and apply fixups (after we're off the bootstrap translation
1283 arm_vm_page_granular_RWNX(auxkc_base
, auxKC_range
->length
, 0);
1286 /* Map coalesced kext TEXT segment RWNX for now */
1287 arm_vm_page_granular_RWNX(segPRELINKTEXTB
, segSizePRELINKTEXT
, ARM64_GRANULE_ALLOW_BLOCK
); // Refined in OSKext::readPrelinkedExtensions
1289 /* Map coalesced kext DATA_CONST segment RWNX (could be empty) */
1290 arm_vm_page_granular_RWNX(segPLKDATACONSTB
, segSizePLKDATACONST
, ARM64_GRANULE_ALLOW_BLOCK
); // Refined in OSKext::readPrelinkedExtensions
1292 /* Map coalesced kext TEXT_EXEC segment RX (could be empty) */
1293 arm_vm_page_granular_ROX(segPLKTEXTEXECB
, segSizePLKTEXTEXEC
, ARM64_GRANULE_ALLOW_BLOCK
| ARM64_GRANULE_ALLOW_HINT
); // Refined in OSKext::readPrelinkedExtensions
1295 /* if new segments not present, set space between PRELINK_TEXT and xnu TEXT to RWNX
1296 * otherwise we no longer expect any space between the coalesced kext read only segments and xnu rosegments
1298 if (!segSizePLKDATACONST
&& !segSizePLKTEXTEXEC
) {
1299 if (segSizePRELINKTEXT
) {
1300 arm_vm_page_granular_RWNX(segPRELINKTEXTB
+ segSizePRELINKTEXT
, segTEXTB
- (segPRELINKTEXTB
+ segSizePRELINKTEXT
),
1301 ARM64_GRANULE_ALLOW_BLOCK
| ARM64_GRANULE_ALLOW_HINT
);
1305 * If we have the new segments, we should still protect the gap between kext
1306 * read-only pages and kernel read-only pages, in the event that this gap
1309 if ((segPLKDATACONSTB
+ segSizePLKDATACONST
) < segTEXTB
) {
1310 arm_vm_page_granular_RWNX(segPLKDATACONSTB
+ segSizePLKDATACONST
, segTEXTB
- (segPLKDATACONSTB
+ segSizePLKDATACONST
),
1311 ARM64_GRANULE_ALLOW_BLOCK
| ARM64_GRANULE_ALLOW_HINT
);
1316 * Protection on kernel text is loose here to allow shenanigans early on. These
1317 * protections are tightened in arm_vm_prot_finalize(). This is necessary because
1318 * we currently patch LowResetVectorBase in cpu.c.
1320 * TEXT segment contains mach headers and other non-executable data. This will become RONX later.
1322 arm_vm_page_granular_RNX(segTEXTB
, segSizeTEXT
, ARM64_GRANULE_ALLOW_BLOCK
| ARM64_GRANULE_ALLOW_HINT
);
1324 /* Can DATACONST start out and stay RNX?
1325 * NO, stuff in this segment gets modified during startup (viz. mac_policy_init()/mac_policy_list)
1326 * Make RNX in prot_finalize
1328 arm_vm_page_granular_RWNX(segDATACONSTB
, segSizeDATACONST
, ARM64_GRANULE_ALLOW_BLOCK
);
1330 arm_vm_page_granular_ROX(segTEXTEXECB
, segSizeTEXTEXEC
, ARM64_GRANULE_ALLOW_BLOCK
| ARM64_GRANULE_ALLOW_HINT
);
1333 arm_vm_page_granular_ROX(segPPLTEXTB
, segSizePPLTEXT
, ARM64_GRANULE_ALLOW_BLOCK
| ARM64_GRANULE_ALLOW_HINT
);
1334 arm_vm_page_granular_ROX(segPPLTRAMPB
, segSizePPLTRAMP
, ARM64_GRANULE_ALLOW_BLOCK
| ARM64_GRANULE_ALLOW_HINT
);
1335 arm_vm_page_granular_RNX(segPPLDATACONSTB
, segSizePPLDATACONST
, ARM64_GRANULE_ALLOW_BLOCK
| ARM64_GRANULE_ALLOW_HINT
);
1338 /* DATA segment will remain RWNX */
1339 arm_vm_page_granular_RWNX(segDATAB
, segSizeDATA
, ARM64_GRANULE_ALLOW_BLOCK
| ARM64_GRANULE_ALLOW_HINT
);
1341 arm_vm_page_granular_RWNX(segPPLDATAB
, segSizePPLDATA
, ARM64_GRANULE_ALLOW_BLOCK
| ARM64_GRANULE_ALLOW_HINT
);
1344 arm_vm_page_granular_RWNX(segHIBDATAB
, segSizeHIBDATA
, ARM64_GRANULE_ALLOW_BLOCK
| ARM64_GRANULE_ALLOW_HINT
);
1346 arm_vm_page_granular_RWNX(segBOOTDATAB
, segSizeBOOTDATA
, 0);
1347 arm_vm_page_granular_RNX((vm_offset_t
)&intstack_low_guard
, PAGE_MAX_SIZE
, 0);
1348 arm_vm_page_granular_RNX((vm_offset_t
)&intstack_high_guard
, PAGE_MAX_SIZE
, 0);
1349 arm_vm_page_granular_RNX((vm_offset_t
)&excepstack_high_guard
, PAGE_MAX_SIZE
, 0);
1351 arm_vm_page_granular_ROX(segKLDB
, segSizeKLD
, ARM64_GRANULE_ALLOW_BLOCK
| ARM64_GRANULE_ALLOW_HINT
);
1352 arm_vm_page_granular_RWNX(segLINKB
, segSizeLINK
, ARM64_GRANULE_ALLOW_BLOCK
| ARM64_GRANULE_ALLOW_HINT
);
1353 arm_vm_page_granular_RWNX(segPLKLINKEDITB
, segSizePLKLINKEDIT
, ARM64_GRANULE_ALLOW_BLOCK
| ARM64_GRANULE_ALLOW_HINT
); // Coalesced kext LINKEDIT segment
1354 arm_vm_page_granular_ROX(segLASTB
, segSizeLAST
, ARM64_GRANULE_ALLOW_BLOCK
); // __LAST may be empty, but we cannot assume this
1355 if (segLASTDATACONSTB
) {
1356 arm_vm_page_granular_RWNX(segLASTDATACONSTB
, segSizeLASTDATACONST
, ARM64_GRANULE_ALLOW_BLOCK
); // __LASTDATA_CONST may be empty, but we cannot assume this
1358 arm_vm_page_granular_RWNX(segPRELINKDATAB
, segSizePRELINKDATA
, ARM64_GRANULE_ALLOW_BLOCK
| ARM64_GRANULE_ALLOW_HINT
); // Prelink __DATA for kexts (RW data)
1360 if (segSizePLKLLVMCOV
> 0) {
1361 arm_vm_page_granular_RWNX(segPLKLLVMCOVB
, segSizePLKLLVMCOV
, ARM64_GRANULE_ALLOW_BLOCK
| ARM64_GRANULE_ALLOW_HINT
); // LLVM code coverage data
1363 arm_vm_page_granular_RWNX(segPRELINKINFOB
, segSizePRELINKINFO
, ARM64_GRANULE_ALLOW_BLOCK
| ARM64_GRANULE_ALLOW_HINT
); /* PreLinkInfoDictionary */
1365 /* Record the bounds of the kernelcache. */
1366 vm_kernelcache_base
= segLOWEST
;
1367 vm_kernelcache_top
= end_kern
;
1371 * return < 0 for a < b
1375 typedef int (*cmpfunc_t
)(const void *a
, const void *b
);
1378 qsort(void *a
, size_t n
, size_t es
, cmpfunc_t cmp
);
1381 cmp_ptov_entries(const void *a
, const void *b
)
1383 const ptov_table_entry
*entry_a
= a
;
1384 const ptov_table_entry
*entry_b
= b
;
1385 // Sort in descending order of segment length
1386 if (entry_a
->len
< entry_b
->len
) {
1388 } else if (entry_a
->len
> entry_b
->len
) {
1395 SECURITY_READ_ONLY_LATE(static unsigned int) ptov_index
= 0;
1397 #define ROUND_L1(addr) (((addr) + ARM_TT_L1_OFFMASK) & ~(ARM_TT_L1_OFFMASK))
1398 #define ROUND_TWIG(addr) (((addr) + ARM_TT_TWIG_OFFMASK) & ~(ARM_TT_TWIG_OFFMASK))
1401 arm_vm_physmap_slide(ptov_table_entry
*temp_ptov_table
, vm_map_address_t orig_va
, vm_size_t len
, int pte_prot_APX
, unsigned granule
)
1403 pmap_paddr_t pa_offset
;
1405 assert(ptov_index
< PTOV_TABLE_SIZE
);
1406 assert((orig_va
& ARM_PGMASK
) == 0);
1407 temp_ptov_table
[ptov_index
].pa
= orig_va
- gVirtBase
+ gPhysBase
;
1408 if (ptov_index
== 0) {
1409 temp_ptov_table
[ptov_index
].va
= physmap_base
;
1411 temp_ptov_table
[ptov_index
].va
= temp_ptov_table
[ptov_index
- 1].va
+ temp_ptov_table
[ptov_index
- 1].len
;
1413 if (granule
& ARM64_GRANULE_ALLOW_BLOCK
) {
1414 vm_map_address_t orig_offset
= temp_ptov_table
[ptov_index
].pa
& ARM_TT_TWIG_OFFMASK
;
1415 vm_map_address_t new_offset
= temp_ptov_table
[ptov_index
].va
& ARM_TT_TWIG_OFFMASK
;
1416 if (new_offset
< orig_offset
) {
1417 temp_ptov_table
[ptov_index
].va
+= (orig_offset
- new_offset
);
1418 } else if (new_offset
> orig_offset
) {
1419 temp_ptov_table
[ptov_index
].va
= ROUND_TWIG(temp_ptov_table
[ptov_index
].va
) + orig_offset
;
1422 assert((temp_ptov_table
[ptov_index
].va
& ARM_PGMASK
) == 0);
1423 temp_ptov_table
[ptov_index
].len
= round_page(len
);
1424 pa_offset
= temp_ptov_table
[ptov_index
].va
- orig_va
;
1425 arm_vm_page_granular_prot(temp_ptov_table
[ptov_index
].va
, temp_ptov_table
[ptov_index
].len
, pa_offset
, 1, pte_prot_APX
, 1, granule
);
1431 SECURITY_READ_ONLY_LATE(static boolean_t
) keep_linkedit
= FALSE
;
1434 arm_vm_physmap_init(boot_args
*args
)
1436 ptov_table_entry temp_ptov_table
[PTOV_TABLE_SIZE
];
1437 bzero(temp_ptov_table
, sizeof(temp_ptov_table
));
1439 // This is memory that will either be handed back to the VM layer via ml_static_mfree(),
1440 // or will be available for general-purpose use. Physical aperture mappings for this memory
1441 // must be at page granularity, so that PPL ownership or cache attribute changes can be reflected
1442 // in the physical aperture mappings.
1444 // Slid region between gPhysBase and beginning of protected text
1445 arm_vm_physmap_slide(temp_ptov_table
, gVirtBase
, segLOWEST
- gVirtBase
, AP_RWNA
, 0);
1447 // kext bootstrap segment
1448 arm_vm_physmap_slide(temp_ptov_table
, segKLDB
, segSizeKLD
, AP_RONA
, 0);
1451 arm_vm_physmap_slide(temp_ptov_table
, segBOOTDATAB
, segSizeBOOTDATA
, AP_RONA
, 0);
1453 #if KASAN_DYNAMIC_BLACKLIST
1454 /* KASAN's dynamic blacklist needs to query the LINKEDIT segment at runtime. As such, the
1455 * kext bootstrap code will not jettison LINKEDIT on kasan kernels, so don't bother to relocate it. */
1456 keep_linkedit
= TRUE
;
1458 PE_parse_boot_argn("keepsyms", &keep_linkedit
, sizeof(keep_linkedit
));
1459 if (kernel_mach_header_is_in_fileset(&_mh_execute_header
)) {
1460 keep_linkedit
= TRUE
;
1463 if (!keep_linkedit
) {
1465 arm_vm_physmap_slide(temp_ptov_table
, segLINKB
, segSizeLINK
, AP_RWNA
, 0);
1467 // Prelinked kernel LINKEDIT
1468 arm_vm_physmap_slide(temp_ptov_table
, segPLKLINKEDITB
, segSizePLKLINKEDIT
, AP_RWNA
, 0);
1471 // Prelinked kernel plists
1472 arm_vm_physmap_slide(temp_ptov_table
, segPRELINKINFOB
, segSizePRELINKINFO
, AP_RWNA
, 0);
1474 // Device tree (if not locked down), ramdisk, boot args
1475 arm_vm_physmap_slide(temp_ptov_table
, end_kern
, (args
->topOfKernelData
- gPhysBase
+ gVirtBase
) - end_kern
, AP_RWNA
, 0);
1476 if (!SecureDTIsLockedDown()) {
1477 PE_slide_devicetree(temp_ptov_table
[ptov_index
- 1].va
- end_kern
);
1480 // Remainder of physical memory
1481 arm_vm_physmap_slide(temp_ptov_table
, (args
->topOfKernelData
- gPhysBase
+ gVirtBase
),
1482 real_avail_end
- args
->topOfKernelData
, AP_RWNA
, 0);
1484 assert((temp_ptov_table
[ptov_index
- 1].va
+ temp_ptov_table
[ptov_index
- 1].len
) <= physmap_end
);
1486 // Sort in descending order of segment length. LUT traversal is linear, so largest (most likely used)
1487 // segments should be placed earliest in the table to optimize lookup performance.
1488 qsort(temp_ptov_table
, PTOV_TABLE_SIZE
, sizeof(temp_ptov_table
[0]), cmp_ptov_entries
);
1490 memcpy(ptov_table
, temp_ptov_table
, sizeof(ptov_table
));
1496 arm_vm_physmap_init(boot_args
*args
)
1498 ptov_table_entry temp_ptov_table
[PTOV_TABLE_SIZE
];
1499 bzero(temp_ptov_table
, sizeof(temp_ptov_table
));
1501 // Will be handed back to VM layer through ml_static_mfree() in arm_vm_prot_finalize()
1502 arm_vm_physmap_slide(temp_ptov_table
, gVirtBase
, segLOWEST
- gVirtBase
, AP_RWNA
,
1503 ARM64_GRANULE_ALLOW_BLOCK
| ARM64_GRANULE_ALLOW_HINT
);
1505 arm_vm_page_granular_RWNX(end_kern
, phystokv(args
->topOfKernelData
) - end_kern
,
1506 ARM64_GRANULE_ALLOW_BLOCK
| ARM64_GRANULE_ALLOW_HINT
); /* Device Tree (if not locked down), RAM Disk (if present), bootArgs */
1508 arm_vm_physmap_slide(temp_ptov_table
, (args
->topOfKernelData
- gPhysBase
+ gVirtBase
),
1509 real_avail_end
- args
->topOfKernelData
, AP_RWNA
, ARM64_GRANULE_ALLOW_BLOCK
| ARM64_GRANULE_ALLOW_HINT
); // rest of physmem
1511 assert((temp_ptov_table
[ptov_index
- 1].va
+ temp_ptov_table
[ptov_index
- 1].len
) <= physmap_end
);
1513 // Sort in descending order of segment length. LUT traversal is linear, so largest (most likely used)
1514 // segments should be placed earliest in the table to optimize lookup performance.
1515 qsort(temp_ptov_table
, PTOV_TABLE_SIZE
, sizeof(temp_ptov_table
[0]), cmp_ptov_entries
);
1517 memcpy(ptov_table
, temp_ptov_table
, sizeof(ptov_table
));
1520 #endif // XNU_MONITOR
1523 arm_vm_prot_finalize(boot_args
* args __unused
)
1526 * At this point, we are far enough along in the boot process that it will be
1527 * safe to free up all of the memory preceeding the kernel. It may in fact
1528 * be safe to do this earlier.
1530 * This keeps the memory in the V-to-P mapping, but advertises it to the VM
1535 * if old style PRELINK segment exists, free memory before it, and after it before XNU text
1536 * otherwise we're dealing with a new style kernel cache, so we should just free the
1537 * memory before PRELINK_TEXT segment, since the rest of the KEXT read only data segments
1538 * should be immediately followed by XNU's TEXT segment
1541 ml_static_mfree(phystokv(gPhysBase
), segLOWEST
- gVirtBase
);
1544 * KTRR support means we will be mucking with these pages and trying to
1545 * protect them; we cannot free the pages to the VM if we do this.
1547 if (!segSizePLKDATACONST
&& !segSizePLKTEXTEXEC
&& segSizePRELINKTEXT
) {
1548 /* If new segments not present, PRELINK_TEXT is not dynamically sized, free DRAM between it and xnu TEXT */
1549 ml_static_mfree(segPRELINKTEXTB
+ segSizePRELINKTEXT
, segTEXTB
- (segPRELINKTEXTB
+ segSizePRELINKTEXT
));
1552 /* tighten permissions on kext read only data and code */
1553 arm_vm_page_granular_RNX(segPRELINKTEXTB
, segSizePRELINKTEXT
, ARM64_GRANULE_ALLOW_BLOCK
);
1554 arm_vm_page_granular_RNX(segPLKDATACONSTB
, segSizePLKDATACONST
, ARM64_GRANULE_ALLOW_BLOCK
);
1556 cpu_stack_alloc(&BootCpuData
);
1557 arm64_replace_bootstack(&BootCpuData
);
1558 ml_static_mfree(phystokv(segBOOTDATAB
- gVirtBase
+ gPhysBase
), segSizeBOOTDATA
);
1560 #if __ARM_KERNEL_PROTECT__
1561 arm_vm_populate_kernel_el0_mappings();
1562 #endif /* __ARM_KERNEL_PROTECT__ */
1565 for (vm_offset_t va
= segKLDB
; va
< (segKLDB
+ segSizeKLD
); va
+= ARM_PGBYTES
) {
1566 pt_entry_t
*pte
= arm_kva_to_pte(va
);
1567 *pte
= ARM_PTE_EMPTY
;
1569 /* Clear the original stack mappings; these pages should be mapped through ptov_table. */
1570 for (vm_offset_t va
= segBOOTDATAB
; va
< (segBOOTDATAB
+ segSizeBOOTDATA
); va
+= ARM_PGBYTES
) {
1571 pt_entry_t
*pte
= arm_kva_to_pte(va
);
1572 *pte
= ARM_PTE_EMPTY
;
1574 /* Clear the original PRELINKINFO mapping. This segment should be jettisoned during I/O Kit
1575 * initialization before we reach this point. */
1576 for (vm_offset_t va
= segPRELINKINFOB
; va
< (segPRELINKINFOB
+ segSizePRELINKINFO
); va
+= ARM_PGBYTES
) {
1577 pt_entry_t
*pte
= arm_kva_to_pte(va
);
1578 *pte
= ARM_PTE_EMPTY
;
1580 if (!keep_linkedit
) {
1581 for (vm_offset_t va
= segLINKB
; va
< (segLINKB
+ segSizeLINK
); va
+= ARM_PGBYTES
) {
1582 pt_entry_t
*pte
= arm_kva_to_pte(va
);
1583 *pte
= ARM_PTE_EMPTY
;
1585 for (vm_offset_t va
= segPLKLINKEDITB
; va
< (segPLKLINKEDITB
+ segSizePLKLINKEDIT
); va
+= ARM_PGBYTES
) {
1586 pt_entry_t
*pte
= arm_kva_to_pte(va
);
1587 *pte
= ARM_PTE_EMPTY
;
1590 #endif /* XNU_MONITOR */
1592 #if defined(KERNEL_INTEGRITY_KTRR) || defined(KERNEL_INTEGRITY_CTRR)
1594 * __LAST,__pinst should no longer be executable.
1596 arm_vm_page_granular_RNX(segLASTB
, segSizeLAST
, ARM64_GRANULE_ALLOW_BLOCK
);
1598 /* __LASTDATA_CONST should no longer be writable. */
1599 if (segLASTDATACONSTB
) {
1600 arm_vm_page_granular_RNX(segLASTDATACONSTB
, segSizeLASTDATACONST
, ARM64_GRANULE_ALLOW_BLOCK
);
1604 * Must wait until all other region permissions are set before locking down DATA_CONST
1605 * as the kernel static page tables live in DATA_CONST on KTRR enabled systems
1606 * and will become immutable.
1610 arm_vm_page_granular_RNX(segDATACONSTB
, segSizeDATACONST
, ARM64_GRANULE_ALLOW_BLOCK
);
1612 __builtin_arm_dsb(DSB_ISH
);
1616 #define TBI_USER 0x1
1617 #define TBI_KERNEL 0x2
1620 * TBI (top-byte ignore) is an ARMv8 feature for ignoring the top 8 bits of
1621 * address accesses. It can be enabled separately for TTBR0 (user) and
1622 * TTBR1 (kernel). We enable it by default for user only.
1627 #if !__ARM_KERNEL_PROTECT__
1628 uint64_t old_tcr
, new_tcr
;
1630 old_tcr
= new_tcr
= get_tcr();
1631 new_tcr
|= TCR_TBI0_TOPBYTE_IGNORED
;
1633 if (old_tcr
!= new_tcr
) {
1635 sysreg_restore
.tcr_el1
= new_tcr
;
1637 #endif /* !__ARM_KERNEL_PROTECT__ */
1641 * Initialize and enter blank (invalid) page tables in a L1 translation table for a given VA range.
1643 * This is a helper function used to build up the initial page tables for the kernel translation table.
1644 * With KERNEL_INTEGRITY we keep at least the root level of the kernel page table immutable, thus the need
1645 * to preallocate before machine_lockdown any L1 entries necessary during the entire kernel runtime.
1647 * For a given VA range, if necessary, allocate new L2 translation tables and install the table entries in
1648 * the appropriate L1 table indexes. called before the translation table is active
1652 * tt: virtual address of L1 translation table to modify
1653 * start: beginning of VA range
1654 * end: end of VA range
1655 * static_map: whether to allocate the new translation table page from read only memory
1656 * table_attrs: attributes of new table entry in addition to VALID and TYPE_TABLE attributes
1661 init_ptpages(tt_entry_t
*tt
, vm_map_address_t start
, vm_map_address_t end
, bool static_map
, uint64_t table_attrs
)
1664 vm_offset_t ptpage_vaddr
;
1666 l1_tte
= tt
+ ((start
& ARM_TT_L1_INDEX_MASK
) >> ARM_TT_L1_SHIFT
);
1668 while (start
< end
) {
1669 if (*l1_tte
== ARM_TTE_EMPTY
) {
1670 /* Allocate a page and setup L1 Table TTE in L1 */
1671 ptpage_vaddr
= alloc_ptpage(static_map
);
1672 *l1_tte
= (kvtophys(ptpage_vaddr
) & ARM_TTE_TABLE_MASK
) | ARM_TTE_TYPE_TABLE
| ARM_TTE_VALID
| table_attrs
;
1673 bzero((void *)ptpage_vaddr
, ARM_PGBYTES
);
1676 if ((start
+ ARM_TT_L1_SIZE
) < start
) {
1677 /* If this is the last L1 entry, it must cover the last mapping. */
1681 start
+= ARM_TT_L1_SIZE
;
1686 #define ARM64_PHYSMAP_SLIDE_RANGE (1ULL << 30) // 1 GB
1687 #define ARM64_PHYSMAP_SLIDE_MASK (ARM64_PHYSMAP_SLIDE_RANGE - 1)
1690 arm_vm_init(uint64_t memory_size
, boot_args
* args
)
1692 vm_map_address_t va_l1
, va_l1_end
;
1693 tt_entry_t
*cpu_l1_tte
;
1694 vm_map_address_t va_l2
, va_l2_end
;
1695 tt_entry_t
*cpu_l2_tte
;
1696 pmap_paddr_t boot_ttep
;
1697 tt_entry_t
*boot_tte
;
1698 uint64_t mem_segments
;
1699 vm_offset_t ptpage_vaddr
;
1700 vm_map_address_t dynamic_memory_begin
;
1703 * Get the virtual and physical kernel-managed memory base from boot_args.
1705 gVirtBase
= args
->virtBase
;
1706 gPhysBase
= args
->physBase
;
1708 real_phys_size
= args
->memSize
+ (shadow_ptop
- shadow_pbase
);
1710 real_phys_size
= args
->memSize
;
1713 * Ensure the physical region we specify for the VM to manage ends on a
1714 * software page boundary. Note that the software page size (PAGE_SIZE)
1715 * may be a multiple of the hardware page size specified in ARM_PGBYTES.
1716 * We must round the reported memory size down to the nearest PAGE_SIZE
1717 * boundary to ensure the VM does not try to manage a page it does not
1718 * completely own. The KASAN shadow region, if present, is managed entirely
1719 * in units of the hardware page size and should not need similar treatment.
1721 gPhysSize
= mem_size
= ((gPhysBase
+ args
->memSize
) & ~PAGE_MASK
) - gPhysBase
;
1723 mem_actual
= args
->memSizeActual
? args
->memSizeActual
: mem_size
;
1725 if ((memory_size
!= 0) && (mem_size
> memory_size
)) {
1726 mem_size
= memory_size
;
1727 max_mem_actual
= memory_size
;
1729 max_mem_actual
= mem_actual
;
1731 if (mem_size
>= ((VM_MAX_KERNEL_ADDRESS
- VM_MIN_KERNEL_ADDRESS
) / 2)) {
1732 panic("Unsupported memory configuration %lx\n", mem_size
);
1735 #if defined(ARM_LARGE_MEMORY)
1736 unsigned long physmap_l1_entries
= ((real_phys_size
+ ARM64_PHYSMAP_SLIDE_RANGE
) >> ARM_TT_L1_SHIFT
) + 1;
1737 physmap_base
= VM_MIN_KERNEL_ADDRESS
- (physmap_l1_entries
<< ARM_TT_L1_SHIFT
);
1739 physmap_base
= phystokv(args
->topOfKernelData
);
1742 // Slide the physical aperture to a random page-aligned location within the slide range
1743 uint64_t physmap_slide
= early_random() & ARM64_PHYSMAP_SLIDE_MASK
& ~((uint64_t)PAGE_MASK
);
1744 assert(physmap_slide
< ARM64_PHYSMAP_SLIDE_RANGE
);
1746 physmap_base
+= physmap_slide
;
1749 physmap_base
= ROUND_TWIG(physmap_base
);
1750 #if defined(ARM_LARGE_MEMORY)
1751 static_memory_end
= phystokv(args
->topOfKernelData
);
1753 static_memory_end
= physmap_base
+ mem_size
;
1754 #endif // ARM_LARGE_MEMORY
1755 physmap_end
= physmap_base
+ real_phys_size
;
1757 static_memory_end
= physmap_base
+ mem_size
+ (PTOV_TABLE_SIZE
* ARM_TT_TWIG_SIZE
); // worst possible case for block alignment
1758 physmap_end
= physmap_base
+ real_phys_size
+ (PTOV_TABLE_SIZE
* ARM_TT_TWIG_SIZE
);
1761 #if KASAN && !defined(ARM_LARGE_MEMORY)
1762 /* add the KASAN stolen memory to the physmap */
1763 dynamic_memory_begin
= static_memory_end
+ (shadow_ptop
- shadow_pbase
);
1765 dynamic_memory_begin
= static_memory_end
;
1768 pmap_stacks_start
= (void*)dynamic_memory_begin
;
1769 dynamic_memory_begin
+= PPL_STACK_REGION_SIZE
;
1770 pmap_stacks_end
= (void*)dynamic_memory_begin
;
1772 if (dynamic_memory_begin
> VM_MAX_KERNEL_ADDRESS
) {
1773 panic("Unsupported memory configuration %lx\n", mem_size
);
1776 boot_tte
= (tt_entry_t
*)&bootstrap_pagetables
;
1777 boot_ttep
= kvtophys((vm_offset_t
)boot_tte
);
1779 #if DEVELOPMENT || DEBUG
1780 /* Sanity check - assert that BOOTSTRAP_TABLE_SIZE is sufficiently-large to
1781 * hold our bootstrap mappings for any possible slide */
1782 size_t bytes_mapped
= dynamic_memory_begin
- gVirtBase
;
1783 size_t l1_entries
= 1 + ((bytes_mapped
+ ARM_TT_L1_SIZE
- 1) / ARM_TT_L1_SIZE
);
1784 /* 1 L1 each for V=P and KVA, plus 1 page for each L2 */
1785 size_t pages_used
= 2 * (l1_entries
+ 1);
1786 if (pages_used
> BOOTSTRAP_TABLE_SIZE
) {
1787 panic("BOOTSTRAP_TABLE_SIZE too small for memory config\n");
1792 * TTBR0 L1, TTBR0 L2 - 1:1 bootstrap mapping.
1793 * TTBR1 L1, TTBR1 L2 - kernel mapping
1797 * TODO: free bootstrap table memory back to allocator.
1798 * on large memory systems bootstrap tables could be quite large.
1799 * after bootstrap complete, xnu can warm start with a single 16KB page mapping
1800 * to trampoline to KVA. this requires only 3 pages to stay resident.
1802 avail_start
= args
->topOfKernelData
;
1804 #if defined(KERNEL_INTEGRITY_KTRR) || defined(KERNEL_INTEGRITY_CTRR)
1805 arm_replace_identity_map();
1808 /* Initialize invalid tte page */
1809 invalid_tte
= (tt_entry_t
*)alloc_ptpage(TRUE
);
1810 invalid_ttep
= kvtophys((vm_offset_t
)invalid_tte
);
1811 bzero(invalid_tte
, ARM_PGBYTES
);
1814 * Initialize l1 page table page
1816 cpu_tte
= (tt_entry_t
*)alloc_ptpage(TRUE
);
1817 cpu_ttep
= kvtophys((vm_offset_t
)cpu_tte
);
1818 bzero(cpu_tte
, ARM_PGBYTES
);
1819 avail_end
= gPhysBase
+ mem_size
;
1820 assert(!(avail_end
& PAGE_MASK
));
1823 real_avail_end
= gPhysBase
+ real_phys_size
;
1825 real_avail_end
= avail_end
;
1829 * Initialize l1 and l2 page table pages :
1830 * map physical memory at the kernel base virtual address
1831 * cover the kernel dynamic address range section
1833 * the so called physical aperture should be statically mapped
1835 init_ptpages(cpu_tte
, gVirtBase
, dynamic_memory_begin
, TRUE
, 0);
1837 #if defined(ARM_LARGE_MEMORY)
1839 * Initialize l1 page table pages :
1840 * on large memory systems the physical aperture exists separately below
1841 * the rest of the kernel virtual address space
1843 init_ptpages(cpu_tte
, physmap_base
, ROUND_L1(physmap_end
), TRUE
, ARM_DYNAMIC_TABLE_XN
);
1847 #if __ARM_KERNEL_PROTECT__
1848 /* Expand the page tables to prepare for the EL0 mappings. */
1849 arm_vm_expand_kernel_el0_mappings();
1850 #endif /* __ARM_KERNEL_PROTECT__ */
1853 * Now retrieve addresses for various segments from kernel mach-o header
1855 segPRELINKTEXTB
= (vm_offset_t
) getsegdatafromheader(&_mh_execute_header
, "__PRELINK_TEXT", &segSizePRELINKTEXT
);
1856 segPLKDATACONSTB
= (vm_offset_t
) getsegdatafromheader(&_mh_execute_header
, "__PLK_DATA_CONST", &segSizePLKDATACONST
);
1857 segPLKTEXTEXECB
= (vm_offset_t
) getsegdatafromheader(&_mh_execute_header
, "__PLK_TEXT_EXEC", &segSizePLKTEXTEXEC
);
1858 segTEXTB
= (vm_offset_t
) getsegdatafromheader(&_mh_execute_header
, "__TEXT", &segSizeTEXT
);
1859 segDATACONSTB
= (vm_offset_t
) getsegdatafromheader(&_mh_execute_header
, "__DATA_CONST", &segSizeDATACONST
);
1860 segTEXTEXECB
= (vm_offset_t
) getsegdatafromheader(&_mh_execute_header
, "__TEXT_EXEC", &segSizeTEXTEXEC
);
1862 segPPLTEXTB
= (vm_offset_t
) getsegdatafromheader(&_mh_execute_header
, "__PPLTEXT", &segSizePPLTEXT
);
1863 segPPLTRAMPB
= (vm_offset_t
) getsegdatafromheader(&_mh_execute_header
, "__PPLTRAMP", &segSizePPLTRAMP
);
1864 segPPLDATACONSTB
= (vm_offset_t
) getsegdatafromheader(&_mh_execute_header
, "__PPLDATA_CONST", &segSizePPLDATACONST
);
1866 segDATAB
= (vm_offset_t
) getsegdatafromheader(&_mh_execute_header
, "__DATA", &segSizeDATA
);
1868 segPPLDATAB
= (vm_offset_t
) getsegdatafromheader(&_mh_execute_header
, "__PPLDATA", &segSizePPLDATA
);
1871 segBOOTDATAB
= (vm_offset_t
) getsegdatafromheader(&_mh_execute_header
, "__BOOTDATA", &segSizeBOOTDATA
);
1872 segLINKB
= (vm_offset_t
) getsegdatafromheader(&_mh_execute_header
, "__LINKEDIT", &segSizeLINK
);
1873 segKLDB
= (vm_offset_t
) getsegdatafromheader(&_mh_execute_header
, "__KLD", &segSizeKLD
);
1874 segPRELINKDATAB
= (vm_offset_t
) getsegdatafromheader(&_mh_execute_header
, "__PRELINK_DATA", &segSizePRELINKDATA
);
1875 segPRELINKINFOB
= (vm_offset_t
) getsegdatafromheader(&_mh_execute_header
, "__PRELINK_INFO", &segSizePRELINKINFO
);
1876 segPLKLLVMCOVB
= (vm_offset_t
) getsegdatafromheader(&_mh_execute_header
, "__PLK_LLVM_COV", &segSizePLKLLVMCOV
);
1877 segPLKLINKEDITB
= (vm_offset_t
) getsegdatafromheader(&_mh_execute_header
, "__PLK_LINKEDIT", &segSizePLKLINKEDIT
);
1878 segLASTB
= (vm_offset_t
) getsegdatafromheader(&_mh_execute_header
, "__LAST", &segSizeLAST
);
1879 segLASTDATACONSTB
= (vm_offset_t
) getsegdatafromheader(&_mh_execute_header
, "__LASTDATA_CONST", &segSizeLASTDATACONST
);
1881 sectHIBTEXTB
= (vm_offset_t
) getsectdatafromheader(&_mh_execute_header
, "__TEXT_EXEC", "__hib_text", §SizeHIBTEXT
);
1882 sectHIBDATACONSTB
= (vm_offset_t
) getsectdatafromheader(&_mh_execute_header
, "__DATA_CONST", "__hib_const", §SizeHIBDATACONST
);
1883 segHIBDATAB
= (vm_offset_t
) getsegdatafromheader(&_mh_execute_header
, "__HIBDATA", &segSizeHIBDATA
);
1885 if (kernel_mach_header_is_in_fileset(&_mh_execute_header
)) {
1886 kernel_mach_header_t
*kc_mh
= PE_get_kc_header(KCKindPrimary
);
1888 // fileset has kext PLK_TEXT_EXEC under kernel collection TEXT_EXEC following kernel's LAST
1889 segKCTEXTEXECB
= (vm_offset_t
) getsegdatafromheader(kc_mh
, "__TEXT_EXEC", &segSizeKCTEXTEXEC
);
1890 assert(segPLKTEXTEXECB
&& !segSizePLKTEXTEXEC
); // kernel PLK_TEXT_EXEC must be empty
1891 assert(segLASTB
&& segSizeLAST
); // kernel LAST must not be empty
1892 assert(segKCTEXTEXECB
<= segLASTB
); // KC TEXT_EXEC must contain kernel LAST
1893 assert(segKCTEXTEXECB
+ segSizeKCTEXTEXEC
>= segLASTB
+ segSizeLAST
);
1894 segPLKTEXTEXECB
= segLASTB
+ segSizeLAST
;
1895 segSizePLKTEXTEXEC
= segSizeKCTEXTEXEC
- (segPLKTEXTEXECB
- segKCTEXTEXECB
);
1897 // fileset has kext PLK_DATA_CONST under kernel collection DATA_CONST following kernel's LASTDATA_CONST
1898 segKCDATACONSTB
= (vm_offset_t
) getsegdatafromheader(kc_mh
, "__DATA_CONST", &segSizeKCDATACONST
);
1899 assert(segPLKDATACONSTB
&& !segSizePLKDATACONST
); // kernel PLK_DATA_CONST must be empty
1900 assert(segLASTDATACONSTB
&& segSizeLASTDATACONST
); // kernel LASTDATA_CONST must be non-empty
1901 assert(segKCDATACONSTB
<= segLASTDATACONSTB
); // KC DATA_CONST must contain kernel LASTDATA_CONST
1902 assert(segKCDATACONSTB
+ segSizeKCDATACONST
>= segLASTDATACONSTB
+ segSizeLASTDATACONST
);
1903 segPLKDATACONSTB
= segLASTDATACONSTB
+ segSizeLASTDATACONST
;
1904 segSizePLKDATACONST
= segSizeKCDATACONST
- (segPLKDATACONSTB
- segKCDATACONSTB
);
1906 // fileset has kext PRELINK_DATA under kernel collection DATA following kernel's empty PRELINK_DATA
1907 segKCDATAB
= (vm_offset_t
) getsegdatafromheader(kc_mh
, "__DATA", &segSizeKCDATA
);
1908 assert(segPRELINKDATAB
&& !segSizePRELINKDATA
); // kernel PRELINK_DATA must be empty
1909 assert(segKCDATAB
<= segPRELINKDATAB
); // KC DATA must contain kernel PRELINK_DATA
1910 assert(segKCDATAB
+ segSizeKCDATA
>= segPRELINKDATAB
+ segSizePRELINKDATA
);
1911 segSizePRELINKDATA
= segSizeKCDATA
- (segPRELINKDATAB
- segKCDATAB
);
1913 // fileset has consolidated PRELINK_TEXT, PRELINK_INFO and LINKEDIT at the kernel collection level
1914 assert(segPRELINKTEXTB
&& !segSizePRELINKTEXT
); // kernel PRELINK_TEXT must be empty
1915 segPRELINKTEXTB
= (vm_offset_t
) getsegdatafromheader(kc_mh
, "__PRELINK_TEXT", &segSizePRELINKTEXT
);
1916 assert(segPRELINKINFOB
&& !segSizePRELINKINFO
); // kernel PRELINK_INFO must be empty
1917 segPRELINKINFOB
= (vm_offset_t
) getsegdatafromheader(kc_mh
, "__PRELINK_INFO", &segSizePRELINKINFO
);
1918 segLINKB
= (vm_offset_t
) getsegdatafromheader(kc_mh
, "__LINKEDIT", &segSizeLINK
);
1921 (void) PE_parse_boot_argn("use_contiguous_hint", &use_contiguous_hint
, sizeof(use_contiguous_hint
));
1922 assert(segSizePRELINKTEXT
< 0x03000000); /* 23355738 */
1924 /* if one of the new segments is present, the other one better be as well */
1925 if (segSizePLKDATACONST
|| segSizePLKTEXTEXEC
) {
1926 assert(segSizePLKDATACONST
&& segSizePLKTEXTEXEC
);
1929 etext
= (vm_offset_t
) segTEXTB
+ segSizeTEXT
;
1930 sdata
= (vm_offset_t
) segDATAB
;
1931 edata
= (vm_offset_t
) segDATAB
+ segSizeDATA
;
1932 end_kern
= round_page(segHIGHESTKC
? segHIGHESTKC
: getlastaddr()); /* Force end to next page */
1936 vm_kernel_base
= segTEXTB
;
1937 vm_kernel_top
= (vm_offset_t
) &last_kernel_symbol
;
1938 vm_kext_base
= segPRELINKTEXTB
;
1939 vm_kext_top
= vm_kext_base
+ segSizePRELINKTEXT
;
1941 vm_prelink_stext
= segPRELINKTEXTB
;
1942 if (!segSizePLKTEXTEXEC
&& !segSizePLKDATACONST
) {
1943 vm_prelink_etext
= segPRELINKTEXTB
+ segSizePRELINKTEXT
;
1945 vm_prelink_etext
= segPRELINKTEXTB
+ segSizePRELINKTEXT
+ segSizePLKDATACONST
+ segSizePLKTEXTEXEC
;
1947 vm_prelink_sinfo
= segPRELINKINFOB
;
1948 vm_prelink_einfo
= segPRELINKINFOB
+ segSizePRELINKINFO
;
1949 vm_slinkedit
= segLINKB
;
1950 vm_elinkedit
= segLINKB
+ segSizeLINK
;
1952 vm_prelink_sdata
= segPRELINKDATAB
;
1953 vm_prelink_edata
= segPRELINKDATAB
+ segSizePRELINKDATA
;
1955 arm_vm_prot_init(args
);
1957 vm_page_kernelcache_count
= (unsigned int) (atop_64(end_kern
- segLOWEST
));
1960 * Initialize the page tables for the low globals:
1961 * cover this address range:
1962 * LOW_GLOBAL_BASE_ADDRESS + 2MB
1964 va_l1
= va_l2
= LOW_GLOBAL_BASE_ADDRESS
;
1965 cpu_l1_tte
= cpu_tte
+ ((va_l1
& ARM_TT_L1_INDEX_MASK
) >> ARM_TT_L1_SHIFT
);
1966 cpu_l2_tte
= ((tt_entry_t
*) phystokv(((*cpu_l1_tte
) & ARM_TTE_TABLE_MASK
))) + ((va_l2
& ARM_TT_L2_INDEX_MASK
) >> ARM_TT_L2_SHIFT
);
1967 ptpage_vaddr
= alloc_ptpage(TRUE
);
1968 *cpu_l2_tte
= (kvtophys(ptpage_vaddr
) & ARM_TTE_TABLE_MASK
) | ARM_TTE_TYPE_TABLE
| ARM_TTE_VALID
| ARM_TTE_TABLE_PXN
| ARM_TTE_TABLE_XN
;
1969 bzero((void *)ptpage_vaddr
, ARM_PGBYTES
);
1972 * Initialize l2 page table pages :
1973 * cover this address range:
1974 * KERNEL_DYNAMIC_ADDR - VM_MAX_KERNEL_ADDRESS
1976 #if defined(ARM_LARGE_MEMORY)
1978 * dynamic mapped memory outside the VM allocator VA range required to bootstrap VM system
1979 * don't expect to exceed 64GB, no sense mapping any more space between here and the VM heap range
1981 init_ptpages(cpu_tte
, dynamic_memory_begin
, ROUND_L1(dynamic_memory_begin
), FALSE
, ARM_DYNAMIC_TABLE_XN
);
1984 * TODO: do these pages really need to come from RO memory?
1985 * With legacy 3 level table systems we never mapped more than a single L1 entry so this may be dead code
1987 init_ptpages(cpu_tte
, dynamic_memory_begin
, VM_MAX_KERNEL_ADDRESS
, TRUE
, ARM_DYNAMIC_TABLE_XN
);
1991 /* record the extent of the physmap */
1992 physmap_vbase
= physmap_base
;
1993 physmap_vtop
= physmap_end
;
1999 #endif /* MONOTONIC */
2003 arm_vm_physmap_init(args
);
2004 set_mmu_ttb_alternate(cpu_ttep
& TTBR_BADDR_MASK
);
2007 set_mmu_ttb(invalid_ttep
& TTBR_BADDR_MASK
);
2010 #if defined(HAS_VMSA_LOCK)
2014 // global table pointers may need to be different due to physical aperture remapping
2015 cpu_tte
= (tt_entry_t
*)(phystokv(cpu_ttep
));
2016 invalid_tte
= (tt_entry_t
*)(phystokv(invalid_ttep
));
2018 // From here on out, we're off the bootstrap translation tables.
2021 /* AuxKC initialization has to be deferred until this point, since
2022 * the AuxKC may not have been fully mapped in the bootstrap
2023 * tables, if it spilled downwards into the prior L2 block.
2025 * Now that its mapping set up by arm_vm_prot_init() is active,
2026 * we can traverse and fix it up.
2029 if (arm_vm_auxkc_init()) {
2030 if (segLOWESTROAuxKC
< segLOWESTRO
) {
2031 segLOWESTRO
= segLOWESTROAuxKC
;
2033 if (segHIGHESTROAuxKC
> segHIGHESTRO
) {
2034 segHIGHESTRO
= segHIGHESTROAuxKC
;
2036 if (segLOWESTRXAuxKC
< segLOWESTTEXT
) {
2037 segLOWESTTEXT
= segLOWESTRXAuxKC
;
2039 assert(segLOWEST
== segLOWESTAuxKC
);
2041 // The preliminary auxKC mapping has been broken up.
2045 sane_size
= mem_size
- (avail_start
- gPhysBase
);
2047 vm_kernel_slid_base
= segLOWESTTEXT
;
2048 vm_kernel_slid_top
= vm_prelink_einfo
;
2049 // vm_kernel_slide is set by arm_init()->arm_slide_rebase_and_sign_image()
2050 vm_kernel_stext
= segTEXTB
;
2052 if (kernel_mach_header_is_in_fileset(&_mh_execute_header
)) {
2053 // fileset has kext TEXT before kernel DATA_CONST
2054 assert(segTEXTEXECB
== segTEXTB
+ segSizeTEXT
);
2055 vm_kernel_etext
= segTEXTB
+ segSizeTEXT
+ segSizeTEXTEXEC
;
2057 assert(segDATACONSTB
== segTEXTB
+ segSizeTEXT
);
2058 assert(segTEXTEXECB
== segDATACONSTB
+ segSizeDATACONST
);
2059 vm_kernel_etext
= segTEXTB
+ segSizeTEXT
+ segSizeDATACONST
+ segSizeTEXTEXEC
;
2062 dynamic_memory_begin
= ROUND_TWIG(dynamic_memory_begin
);
2063 #if defined(KERNEL_INTEGRITY_CTRR) && defined(CONFIG_XNUPOST)
2064 // reserve a 32MB region without permission overrides to use later for a CTRR unit test
2066 extern vm_offset_t ctrr_test_page
;
2067 tt_entry_t
*new_tte
;
2069 ctrr_test_page
= dynamic_memory_begin
;
2070 dynamic_memory_begin
+= ARM_TT_L2_SIZE
;
2071 cpu_l1_tte
= cpu_tte
+ ((ctrr_test_page
& ARM_TT_L1_INDEX_MASK
) >> ARM_TT_L1_SHIFT
);
2072 assert((*cpu_l1_tte
) & ARM_TTE_VALID
);
2073 cpu_l2_tte
= ((tt_entry_t
*) phystokv(((*cpu_l1_tte
) & ARM_TTE_TABLE_MASK
))) + ((ctrr_test_page
& ARM_TT_L2_INDEX_MASK
) >> ARM_TT_L2_SHIFT
);
2074 assert((*cpu_l2_tte
) == ARM_TTE_EMPTY
);
2075 new_tte
= (tt_entry_t
*)alloc_ptpage(FALSE
);
2076 bzero(new_tte
, ARM_PGBYTES
);
2077 *cpu_l2_tte
= (kvtophys((vm_offset_t
)new_tte
) & ARM_TTE_TABLE_MASK
) | ARM_TTE_TYPE_TABLE
| ARM_TTE_VALID
;
2079 #endif /* defined(KERNEL_INTEGRITY_CTRR) && defined(CONFIG_XNUPOST) */
2081 for (vm_offset_t cur
= (vm_offset_t
)pmap_stacks_start
; cur
< (vm_offset_t
)pmap_stacks_end
; cur
+= ARM_PGBYTES
) {
2082 arm_vm_map(cpu_tte
, cur
, ARM_PTE_EMPTY
);
2085 pmap_bootstrap(dynamic_memory_begin
);
2087 disable_preemption();
2090 * Initialize l3 page table pages :
2091 * cover this address range:
2092 * 2MB + FrameBuffer size + 10MB for each 256MB segment
2095 mem_segments
= (mem_size
+ 0x0FFFFFFF) >> 28;
2097 va_l1
= dynamic_memory_begin
;
2098 va_l1_end
= va_l1
+ ((2 + (mem_segments
* 10)) << 20);
2099 va_l1_end
+= round_page(args
->Video
.v_height
* args
->Video
.v_rowBytes
);
2100 va_l1_end
= (va_l1_end
+ 0x00000000007FFFFFULL
) & 0xFFFFFFFFFF800000ULL
;
2102 cpu_l1_tte
= cpu_tte
+ ((va_l1
& ARM_TT_L1_INDEX_MASK
) >> ARM_TT_L1_SHIFT
);
2104 while (va_l1
< va_l1_end
) {
2107 if (((va_l1
& ~ARM_TT_L1_OFFMASK
) + ARM_TT_L1_SIZE
) < va_l1
) {
2108 /* If this is the last L1 entry, it must cover the last mapping. */
2109 va_l2_end
= va_l1_end
;
2111 va_l2_end
= MIN((va_l1
& ~ARM_TT_L1_OFFMASK
) + ARM_TT_L1_SIZE
, va_l1_end
);
2114 cpu_l2_tte
= ((tt_entry_t
*) phystokv(((*cpu_l1_tte
) & ARM_TTE_TABLE_MASK
))) + ((va_l2
& ARM_TT_L2_INDEX_MASK
) >> ARM_TT_L2_SHIFT
);
2116 while (va_l2
< va_l2_end
) {
2118 pmap_paddr_t ptp_phys
;
2120 /* Allocate a page and setup L3 Table TTE in L2 */
2121 ptp
= (pt_entry_t
*) alloc_ptpage(FALSE
);
2122 ptp_phys
= (pmap_paddr_t
)kvtophys((vm_offset_t
)ptp
);
2124 bzero(ptp
, ARM_PGBYTES
);
2125 pmap_init_pte_page(kernel_pmap
, ptp
, va_l2
, 3, TRUE
);
2127 *cpu_l2_tte
= (pa_to_tte(ptp_phys
)) | ARM_TTE_TYPE_TABLE
| ARM_TTE_VALID
| ARM_DYNAMIC_TABLE_XN
;
2129 va_l2
+= ARM_TT_L2_SIZE
;
2137 #if defined(KERNEL_INTEGRITY_KTRR) || defined(KERNEL_INTEGRITY_CTRR)
2139 * In this configuration, the bootstrap mappings (arm_vm_init) and
2140 * the heap mappings occupy separate L1 regions. Explicitly set up
2141 * the heap L1 allocations here.
2143 #if defined(ARM_LARGE_MEMORY)
2144 init_ptpages(cpu_tte
, KERNEL_PMAP_HEAP_RANGE_START
& ~ARM_TT_L1_OFFMASK
, VM_MAX_KERNEL_ADDRESS
, FALSE
, ARM_DYNAMIC_TABLE_XN
);
2145 #else // defined(ARM_LARGE_MEMORY)
2146 va_l1
= VM_MIN_KERNEL_ADDRESS
& ~ARM_TT_L1_OFFMASK
;
2147 init_ptpages(cpu_tte
, VM_MIN_KERNEL_ADDRESS
& ~ARM_TT_L1_OFFMASK
, VM_MAX_KERNEL_ADDRESS
, FALSE
, ARM_DYNAMIC_TABLE_XN
);
2148 #endif // defined(ARM_LARGE_MEMORY)
2149 #endif // defined(KERNEL_INTEGRITY_KTRR) || defined(KERNEL_INTEGRITY_CTRR)
2152 * Initialize l3 page table pages :
2153 * cover this address range:
2154 * ((VM_MAX_KERNEL_ADDRESS & CPUWINDOWS_BASE_MASK) - PE_EARLY_BOOT_VA) to VM_MAX_KERNEL_ADDRESS
2156 va_l1
= (VM_MAX_KERNEL_ADDRESS
& CPUWINDOWS_BASE_MASK
) - PE_EARLY_BOOT_VA
;
2157 va_l1_end
= VM_MAX_KERNEL_ADDRESS
;
2159 cpu_l1_tte
= cpu_tte
+ ((va_l1
& ARM_TT_L1_INDEX_MASK
) >> ARM_TT_L1_SHIFT
);
2161 while (va_l1
< va_l1_end
) {
2164 if (((va_l1
& ~ARM_TT_L1_OFFMASK
) + ARM_TT_L1_SIZE
) < va_l1
) {
2165 /* If this is the last L1 entry, it must cover the last mapping. */
2166 va_l2_end
= va_l1_end
;
2168 va_l2_end
= MIN((va_l1
& ~ARM_TT_L1_OFFMASK
) + ARM_TT_L1_SIZE
, va_l1_end
);
2171 cpu_l2_tte
= ((tt_entry_t
*) phystokv(((*cpu_l1_tte
) & ARM_TTE_TABLE_MASK
))) + ((va_l2
& ARM_TT_L2_INDEX_MASK
) >> ARM_TT_L2_SHIFT
);
2173 while (va_l2
< va_l2_end
) {
2175 pmap_paddr_t ptp_phys
;
2177 /* Allocate a page and setup L3 Table TTE in L2 */
2178 ptp
= (pt_entry_t
*) alloc_ptpage(FALSE
);
2179 ptp_phys
= (pmap_paddr_t
)kvtophys((vm_offset_t
)ptp
);
2181 bzero(ptp
, ARM_PGBYTES
);
2182 pmap_init_pte_page(kernel_pmap
, ptp
, va_l2
, 3, TRUE
);
2184 *cpu_l2_tte
= (pa_to_tte(ptp_phys
)) | ARM_TTE_TYPE_TABLE
| ARM_TTE_VALID
| ARM_DYNAMIC_TABLE_XN
;
2186 va_l2
+= ARM_TT_L2_SIZE
;
2196 * Adjust avail_start so that the range that the VM owns
2197 * starts on a PAGE_SIZE aligned boundary.
2199 avail_start
= (avail_start
+ PAGE_MASK
) & ~PAGE_MASK
;
2202 pmap_static_allocations_done();
2204 first_avail
= avail_start
;
2205 patch_low_glo_static_region(args
->topOfKernelData
, avail_start
- args
->topOfKernelData
);
2206 enable_preemption();