]> git.saurik.com Git - apple/xnu.git/blob - osfmk/vm/vm_page.h
543a0c6f5d447fb68ec15c6a67491a316e93722b
[apple/xnu.git] / osfmk / vm / vm_page.h
1 /*
2 * Copyright (c) 2000-2006 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * @OSF_COPYRIGHT@
30 */
31 /*
32 * Mach Operating System
33 * Copyright (c) 1991,1990,1989,1988 Carnegie Mellon University
34 * All Rights Reserved.
35 *
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
41 *
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
45 *
46 * Carnegie Mellon requests users of this software to return to
47 *
48 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
49 * School of Computer Science
50 * Carnegie Mellon University
51 * Pittsburgh PA 15213-3890
52 *
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
55 */
56 /*
57 */
58 /*
59 * File: vm/vm_page.h
60 * Author: Avadis Tevanian, Jr., Michael Wayne Young
61 * Date: 1985
62 *
63 * Resident memory system definitions.
64 */
65
66 #ifndef _VM_VM_PAGE_H_
67 #define _VM_VM_PAGE_H_
68
69 #include <debug.h>
70
71 #include <mach/boolean.h>
72 #include <mach/vm_prot.h>
73 #include <mach/vm_param.h>
74 #include <vm/vm_object.h>
75 #include <kern/queue.h>
76 #include <kern/lock.h>
77
78 #include <kern/macro_help.h>
79 #include <libkern/OSAtomic.h>
80
81
82 /*
83 * VM_PAGE_MIN_SPECULATIVE_AGE_Q through VM_PAGE_MAX_SPECULATIVE_AGE_Q
84 * represents a set of aging bins that are 'protected'...
85 *
86 * VM_PAGE_SPECULATIVE_AGED_Q is a list of the speculative pages that have
87 * not yet been 'claimed' but have been aged out of the protective bins
88 * this occurs in vm_page_speculate when it advances to the next bin
89 * and discovers that it is still occupied... at that point, all of the
90 * pages in that bin are moved to the VM_PAGE_SPECULATIVE_AGED_Q. the pages
91 * in that bin are all guaranteed to have reached at least the maximum age
92 * we allow for a protected page... they can be older if there is no
93 * memory pressure to pull them from the bin, or there are no new speculative pages
94 * being generated to push them out.
95 * this list is the one that vm_pageout_scan will prefer when looking
96 * for pages to move to the underweight free list
97 *
98 * VM_PAGE_MAX_SPECULATIVE_AGE_Q * VM_PAGE_SPECULATIVE_Q_AGE_MS
99 * defines the amount of time a speculative page is normally
100 * allowed to live in the 'protected' state (i.e. not available
101 * to be stolen if vm_pageout_scan is running and looking for
102 * pages)... however, if the total number of speculative pages
103 * in the protected state exceeds our limit (defined in vm_pageout.c)
104 * and there are none available in VM_PAGE_SPECULATIVE_AGED_Q, then
105 * vm_pageout_scan is allowed to steal pages from the protected
106 * bucket even if they are underage.
107 *
108 * vm_pageout_scan is also allowed to pull pages from a protected
109 * bin if the bin has reached the "age of consent" we've set
110 */
111 #define VM_PAGE_MAX_SPECULATIVE_AGE_Q 10
112 #define VM_PAGE_MIN_SPECULATIVE_AGE_Q 1
113 #define VM_PAGE_SPECULATIVE_AGED_Q 0
114
115 #define VM_PAGE_SPECULATIVE_Q_AGE_MS 500
116
117 struct vm_speculative_age_q {
118 /*
119 * memory queue for speculative pages via clustered pageins
120 */
121 queue_head_t age_q;
122 mach_timespec_t age_ts;
123 };
124
125
126
127 extern
128 struct vm_speculative_age_q vm_page_queue_speculative[];
129
130 extern int speculative_steal_index;
131 extern int speculative_age_index;
132 extern unsigned int vm_page_speculative_q_age_ms;
133
134
135 /*
136 * Management of resident (logical) pages.
137 *
138 * A small structure is kept for each resident
139 * page, indexed by page number. Each structure
140 * is an element of several lists:
141 *
142 * A hash table bucket used to quickly
143 * perform object/offset lookups
144 *
145 * A list of all pages for a given object,
146 * so they can be quickly deactivated at
147 * time of deallocation.
148 *
149 * An ordered list of pages due for pageout.
150 *
151 * In addition, the structure contains the object
152 * and offset to which this page belongs (for pageout),
153 * and sundry status bits.
154 *
155 * Fields in this structure are locked either by the lock on the
156 * object that the page belongs to (O) or by the lock on the page
157 * queues (P). [Some fields require that both locks be held to
158 * change that field; holding either lock is sufficient to read.]
159 */
160
161 struct vm_page {
162 queue_chain_t pageq; /* queue info for FIFO */
163 /* queue or free list (P) */
164
165 queue_chain_t listq; /* all pages in same object (O) */
166 struct vm_page *next; /* VP bucket link (O) */
167
168 vm_object_t object; /* which object am I in (O&P) */
169 vm_object_offset_t offset; /* offset into that object (O,P) */
170
171 /*
172 * The following word of flags is protected
173 * by the "page queues" lock.
174 *
175 * we use the 'wire_count' field to store the local
176 * queue id if local queues are enabled...
177 * see the comments at 'VM_PAGE_QUEUES_REMOVE' as to
178 * why this is safe to do
179 */
180 #define local_id wire_count
181 unsigned int wire_count:16, /* how many wired down maps use me? (O&P) */
182 /* boolean_t */ inactive:1, /* page is in inactive list (P) */
183 zero_fill:1,
184 active:1, /* page is in active list (P) */
185 pageout_queue:1,/* page is on queue for pageout (P) */
186 speculative:1, /* page is on speculative list (P) */
187 laundry:1, /* page is being cleaned now (P)*/
188 free:1, /* page is on free list (P) */
189 reference:1, /* page has been used (P) */
190 gobbled:1, /* page used internally (P) */
191 private:1, /* Page should not be returned to
192 * the free list (P) */
193 throttled:1, /* pager is not responding (P) */
194 local:1,
195 no_cache:1, /* page is not to be cached and should
196 * be reused ahead of other pages (P) */
197 __unused_pageq_bits:3; /* 3 bits available here */
198
199 ppnum_t phys_page; /* Physical address of page, passed
200 * to pmap_enter (read-only) */
201
202 /*
203 * The following word of flags is protected
204 * by the "VM object" lock.
205 */
206 unsigned int
207 /* boolean_t */ busy:1, /* page is in transit (O) */
208 wanted:1, /* someone is waiting for page (O) */
209 tabled:1, /* page is in VP table (O) */
210 fictitious:1, /* Physical page doesn't exist (O) */
211 /*
212 * IMPORTANT: the "pmapped" bit can be turned on while holding the
213 * VM object "shared" lock. See vm_fault_enter().
214 * This is OK as long as it's the only bit in this bit field that
215 * can be updated without holding the VM object "exclusive" lock.
216 */
217 pmapped:1, /* page has been entered at some
218 * point into a pmap (O **shared**) */
219 wpmapped:1, /* page has been entered at some
220 * point into a pmap for write (O) */
221 pageout:1, /* page wired & busy for pageout (O) */
222 absent:1, /* Data has been requested, but is
223 * not yet available (O) */
224 error:1, /* Data manager was unable to provide
225 * data due to error (O) */
226 dirty:1, /* Page must be cleaned (O) */
227 cleaning:1, /* Page clean has begun (O) */
228 precious:1, /* Page is precious; data must be
229 * returned even if clean (O) */
230 clustered:1, /* page is not the faulted page (O) */
231 overwriting:1, /* Request to unlock has been made
232 * without having data. (O)
233 * [See vm_fault_page_overwrite] */
234 restart:1, /* Page was pushed higher in shadow
235 chain by copy_call-related pagers;
236 start again at top of chain */
237 unusual:1, /* Page is absent, error, restart or
238 page locked */
239 encrypted:1, /* encrypted for secure swap (O) */
240 encrypted_cleaning:1, /* encrypting page */
241 list_req_pending:1, /* pagein/pageout alt mechanism */
242 /* allows creation of list */
243 /* requests on pages that are */
244 /* actively being paged. */
245 dump_cleaning:1, /* set by the pageout daemon when */
246 /* a page being cleaned is */
247 /* encountered and targeted as */
248 /* a pageout candidate */
249 cs_validated:1, /* code-signing: page was checked */
250 cs_tainted:1, /* code-signing: page is tainted */
251 reusable:1,
252 lopage:1,
253 slid:1,
254 __unused_object_bits:7; /* 7 bits available here */
255
256 #if __LP64__
257 unsigned int __unused_padding; /* Pad structure explicitly
258 * to 8-byte multiple for LP64 */
259 #endif
260 };
261
262 #define DEBUG_ENCRYPTED_SWAP 1
263 #if DEBUG_ENCRYPTED_SWAP
264 #define ASSERT_PAGE_DECRYPTED(page) \
265 MACRO_BEGIN \
266 if ((page)->encrypted) { \
267 panic("VM page %p should not be encrypted here\n", \
268 (page)); \
269 } \
270 MACRO_END
271 #else /* DEBUG_ENCRYPTED_SWAP */
272 #define ASSERT_PAGE_DECRYPTED(page) assert(!(page)->encrypted)
273 #endif /* DEBUG_ENCRYPTED_SWAP */
274
275 typedef struct vm_page *vm_page_t;
276
277
278 typedef struct vm_locks_array {
279 char pad __attribute__ ((aligned (64)));
280 lck_mtx_t vm_page_queue_lock2 __attribute__ ((aligned (64)));
281 lck_mtx_t vm_page_queue_free_lock2 __attribute__ ((aligned (64)));
282 char pad2 __attribute__ ((aligned (64)));
283 } vm_locks_array_t;
284
285
286 #define VM_PAGE_WIRED(m) ((!(m)->local && (m)->wire_count))
287 #define VM_PAGE_NULL ((vm_page_t) 0)
288 #define NEXT_PAGE(m) ((vm_page_t) (m)->pageq.next)
289 #define NEXT_PAGE_PTR(m) ((vm_page_t *) &(m)->pageq.next)
290
291 /*
292 * XXX The unusual bit should not be necessary. Most of the bit
293 * XXX fields above really want to be masks.
294 */
295
296 /*
297 * For debugging, this macro can be defined to perform
298 * some useful check on a page structure.
299 */
300
301 #define VM_PAGE_CHECK(mem) \
302 MACRO_BEGIN \
303 VM_PAGE_QUEUES_ASSERT(mem, 1); \
304 MACRO_END
305
306 /* Page coloring:
307 *
308 * The free page list is actually n lists, one per color,
309 * where the number of colors is a function of the machine's
310 * cache geometry set at system initialization. To disable
311 * coloring, set vm_colors to 1 and vm_color_mask to 0.
312 * The boot-arg "colors" may be used to override vm_colors.
313 * Note that there is little harm in having more colors than needed.
314 */
315
316 #define MAX_COLORS 128
317 #define DEFAULT_COLORS 32
318
319 extern
320 unsigned int vm_colors; /* must be in range 1..MAX_COLORS */
321 extern
322 unsigned int vm_color_mask; /* must be (vm_colors-1) */
323 extern
324 unsigned int vm_cache_geometry_colors; /* optimal #colors based on cache geometry */
325
326 /*
327 * Wired memory is a very limited resource and we can't let users exhaust it
328 * and deadlock the entire system. We enforce the following limits:
329 *
330 * vm_user_wire_limit (default: all memory minus vm_global_no_user_wire_amount)
331 * how much memory can be user-wired in one user task
332 *
333 * vm_global_user_wire_limit (default: same as vm_user_wire_limit)
334 * how much memory can be user-wired in all user tasks
335 *
336 * vm_global_no_user_wire_amount (default: VM_NOT_USER_WIREABLE)
337 * how much memory must remain user-unwired at any time
338 */
339 #define VM_NOT_USER_WIREABLE (64*1024*1024) /* 64MB */
340 extern
341 vm_map_size_t vm_user_wire_limit;
342 extern
343 vm_map_size_t vm_global_user_wire_limit;
344 extern
345 vm_map_size_t vm_global_no_user_wire_amount;
346
347 /*
348 * Each pageable resident page falls into one of three lists:
349 *
350 * free
351 * Available for allocation now. The free list is
352 * actually an array of lists, one per color.
353 * inactive
354 * Not referenced in any map, but still has an
355 * object/offset-page mapping, and may be dirty.
356 * This is the list of pages that should be
357 * paged out next. There are actually two
358 * inactive lists, one for pages brought in from
359 * disk or other backing store, and another
360 * for "zero-filled" pages. See vm_pageout_scan()
361 * for the distinction and usage.
362 * active
363 * A list of pages which have been placed in
364 * at least one physical map. This list is
365 * ordered, in LRU-like fashion.
366 */
367
368
369 #define VPL_LOCK_SPIN 1
370
371 struct vpl {
372 unsigned int vpl_count;
373 queue_head_t vpl_queue;
374 #ifdef VPL_LOCK_SPIN
375 lck_spin_t vpl_lock;
376 #else
377 lck_mtx_t vpl_lock;
378 lck_mtx_ext_t vpl_lock_ext;
379 #endif
380 };
381
382 struct vplq {
383 union {
384 char cache_line_pad[128];
385 struct vpl vpl;
386 } vpl_un;
387 };
388 extern
389 unsigned int vm_page_local_q_count;
390 extern
391 struct vplq *vm_page_local_q;
392 extern
393 unsigned int vm_page_local_q_soft_limit;
394 extern
395 unsigned int vm_page_local_q_hard_limit;
396 extern
397 vm_locks_array_t vm_page_locks;
398
399 extern
400 queue_head_t vm_page_queue_free[MAX_COLORS]; /* memory free queue */
401 extern
402 queue_head_t vm_lopage_queue_free; /* low memory free queue */
403 extern
404 queue_head_t vm_page_queue_active; /* active memory queue */
405 extern
406 queue_head_t vm_page_queue_inactive; /* inactive memory queue for normal pages */
407 extern
408 queue_head_t vm_page_queue_zf; /* inactive memory queue for zero fill */
409 extern
410 queue_head_t vm_page_queue_throttled; /* memory queue for throttled pageout pages */
411
412 extern
413 vm_offset_t first_phys_addr; /* physical address for first_page */
414 extern
415 vm_offset_t last_phys_addr; /* physical address for last_page */
416
417 extern
418 unsigned int vm_page_free_count; /* How many pages are free? (sum of all colors) */
419 extern
420 unsigned int vm_page_fictitious_count;/* How many fictitious pages are free? */
421 extern
422 unsigned int vm_page_active_count; /* How many pages are active? */
423 extern
424 unsigned int vm_page_inactive_count; /* How many pages are inactive? */
425 extern
426 unsigned int vm_page_throttled_count;/* How many inactives are throttled */
427 extern
428 unsigned int vm_page_speculative_count; /* How many speculative pages are unclaimed? */
429 extern
430 unsigned int vm_page_wire_count; /* How many pages are wired? */
431 extern
432 unsigned int vm_page_free_target; /* How many do we want free? */
433 extern
434 unsigned int vm_page_free_min; /* When to wakeup pageout */
435 extern
436 unsigned int vm_page_throttle_limit; /* When to throttle new page creation */
437 extern
438 uint32_t vm_page_creation_throttle; /* When to throttle new page creation */
439 extern
440 unsigned int vm_page_inactive_target;/* How many do we want inactive? */
441 extern
442 unsigned int vm_page_inactive_min; /* When do wakeup pageout */
443 extern
444 unsigned int vm_page_free_reserved; /* How many pages reserved to do pageout */
445 extern
446 unsigned int vm_page_throttle_count; /* Count of page allocations throttled */
447 extern
448 unsigned int vm_page_gobble_count;
449
450 #if DEVELOPMENT || DEBUG
451 extern
452 unsigned int vm_page_speculative_used;
453 #endif
454
455 extern
456 unsigned int vm_page_purgeable_count;/* How many pages are purgeable now ? */
457 extern
458 unsigned int vm_page_purgeable_wired_count;/* How many purgeable pages are wired now ? */
459 extern
460 uint64_t vm_page_purged_count; /* How many pages got purged so far ? */
461
462 extern unsigned int vm_page_free_wanted;
463 /* how many threads are waiting for memory */
464
465 extern unsigned int vm_page_free_wanted_privileged;
466 /* how many VM privileged threads are waiting for memory */
467
468 extern ppnum_t vm_page_fictitious_addr;
469 /* (fake) phys_addr of fictitious pages */
470
471 extern ppnum_t vm_page_guard_addr;
472 /* (fake) phys_addr of guard pages */
473
474
475 extern boolean_t vm_page_deactivate_hint;
476
477 /*
478 0 = all pages avail ( default. )
479 1 = disable high mem ( cap max pages to 4G)
480 2 = prefer himem
481 */
482 extern int vm_himemory_mode;
483
484 extern boolean_t vm_lopage_needed;
485 extern uint32_t vm_lopage_free_count;
486 extern uint32_t vm_lopage_free_limit;
487 extern uint32_t vm_lopage_lowater;
488 extern boolean_t vm_lopage_refill;
489 extern uint64_t max_valid_dma_address;
490 extern ppnum_t max_valid_low_ppnum;
491
492 /*
493 * Prototypes for functions exported by this module.
494 */
495 extern void vm_page_bootstrap(
496 vm_offset_t *startp,
497 vm_offset_t *endp) __attribute__((section("__TEXT, initcode")));
498
499 extern void vm_page_module_init(void) __attribute__((section("__TEXT, initcode")));
500
501 extern void vm_page_init_local_q(void);
502
503 extern void vm_page_create(
504 ppnum_t start,
505 ppnum_t end);
506
507 extern vm_page_t vm_page_lookup(
508 vm_object_t object,
509 vm_object_offset_t offset);
510
511 extern vm_page_t vm_page_grab_fictitious(void);
512
513 extern vm_page_t vm_page_grab_guard(void);
514
515 extern void vm_page_release_fictitious(
516 vm_page_t page);
517
518 extern void vm_page_more_fictitious(void);
519
520 extern int vm_pool_low(void);
521
522 extern vm_page_t vm_page_grab(void);
523
524 extern vm_page_t vm_page_grablo(void);
525
526 extern void vm_page_release(
527 vm_page_t page);
528
529 extern boolean_t vm_page_wait(
530 int interruptible );
531
532 extern vm_page_t vm_page_alloc(
533 vm_object_t object,
534 vm_object_offset_t offset);
535
536 extern vm_page_t vm_page_alloclo(
537 vm_object_t object,
538 vm_object_offset_t offset);
539
540 extern vm_page_t vm_page_alloc_guard(
541 vm_object_t object,
542 vm_object_offset_t offset);
543
544 extern void vm_page_init(
545 vm_page_t page,
546 ppnum_t phys_page,
547 boolean_t lopage);
548
549 extern void vm_page_free(
550 vm_page_t page);
551
552 extern void vm_page_free_unlocked(
553 vm_page_t page,
554 boolean_t remove_from_hash);
555
556 extern void vm_page_activate(
557 vm_page_t page);
558
559 extern void vm_page_deactivate(
560 vm_page_t page);
561
562 extern void vm_page_deactivate_internal(
563 vm_page_t page,
564 boolean_t clear_hw_reference);
565
566 extern void vm_page_lru(
567 vm_page_t page);
568
569 extern void vm_page_speculate(
570 vm_page_t page,
571 boolean_t new);
572
573 extern void vm_page_speculate_ageit(
574 struct vm_speculative_age_q *aq);
575
576 extern void vm_page_reactivate_all_throttled(void);
577
578 extern void vm_page_reactivate_local(uint32_t lid, boolean_t force, boolean_t nolocks);
579
580 extern void vm_page_rename(
581 vm_page_t page,
582 vm_object_t new_object,
583 vm_object_offset_t new_offset,
584 boolean_t encrypted_ok);
585
586 extern void vm_page_insert(
587 vm_page_t page,
588 vm_object_t object,
589 vm_object_offset_t offset);
590
591 extern void vm_page_insert_internal(
592 vm_page_t page,
593 vm_object_t object,
594 vm_object_offset_t offset,
595 boolean_t queues_lock_held,
596 boolean_t insert_in_hash);
597
598 extern void vm_page_replace(
599 vm_page_t mem,
600 vm_object_t object,
601 vm_object_offset_t offset);
602
603 extern void vm_page_remove(
604 vm_page_t page,
605 boolean_t remove_from_hash);
606
607 extern void vm_page_zero_fill(
608 vm_page_t page);
609
610 extern void vm_page_part_zero_fill(
611 vm_page_t m,
612 vm_offset_t m_pa,
613 vm_size_t len);
614
615 extern void vm_page_copy(
616 vm_page_t src_page,
617 vm_page_t dest_page);
618
619 extern void vm_page_part_copy(
620 vm_page_t src_m,
621 vm_offset_t src_pa,
622 vm_page_t dst_m,
623 vm_offset_t dst_pa,
624 vm_size_t len);
625
626 extern void vm_page_wire(
627 vm_page_t page);
628
629 extern void vm_page_unwire(
630 vm_page_t page,
631 boolean_t queueit);
632
633 extern void vm_set_page_size(void);
634
635 extern void vm_page_gobble(
636 vm_page_t page);
637
638 extern void vm_page_validate_cs(vm_page_t page);
639 extern void vm_page_validate_cs_mapped(
640 vm_page_t page,
641 const void *kaddr);
642
643 extern void vm_page_free_prepare_queues(
644 vm_page_t page);
645
646 extern void vm_page_free_prepare_object(
647 vm_page_t page,
648 boolean_t remove_from_hash);
649
650 extern void vm_check_memorystatus(void);
651
652
653 /*
654 * Functions implemented as macros. m->wanted and m->busy are
655 * protected by the object lock.
656 */
657
658 #define PAGE_ASSERT_WAIT(m, interruptible) \
659 (((m)->wanted = TRUE), \
660 assert_wait((event_t) (m), (interruptible)))
661
662 #define PAGE_SLEEP(o, m, interruptible) \
663 (((m)->wanted = TRUE), \
664 thread_sleep_vm_object((o), (m), (interruptible)))
665
666 #define PAGE_WAKEUP_DONE(m) \
667 MACRO_BEGIN \
668 (m)->busy = FALSE; \
669 if ((m)->wanted) { \
670 (m)->wanted = FALSE; \
671 thread_wakeup((event_t) (m)); \
672 } \
673 MACRO_END
674
675 #define PAGE_WAKEUP(m) \
676 MACRO_BEGIN \
677 if ((m)->wanted) { \
678 (m)->wanted = FALSE; \
679 thread_wakeup((event_t) (m)); \
680 } \
681 MACRO_END
682
683 #define VM_PAGE_FREE(p) \
684 MACRO_BEGIN \
685 vm_page_free_unlocked(p, TRUE); \
686 MACRO_END
687
688 #define VM_PAGE_GRAB_FICTITIOUS(M) \
689 MACRO_BEGIN \
690 while ((M = vm_page_grab_fictitious()) == VM_PAGE_NULL) \
691 vm_page_more_fictitious(); \
692 MACRO_END
693
694 #define VM_PAGE_WAIT() ((void)vm_page_wait(THREAD_UNINT))
695
696 #define vm_page_queue_lock (vm_page_locks.vm_page_queue_lock2)
697 #define vm_page_queue_free_lock (vm_page_locks.vm_page_queue_free_lock2)
698
699 #define vm_page_lock_queues() lck_mtx_lock(&vm_page_queue_lock)
700 #define vm_page_unlock_queues() lck_mtx_unlock(&vm_page_queue_lock)
701
702 #define vm_page_lockspin_queues() lck_mtx_lock_spin(&vm_page_queue_lock)
703 #define vm_page_trylockspin_queues() lck_mtx_try_lock_spin(&vm_page_queue_lock)
704 #define vm_page_lockconvert_queues() lck_mtx_convert_spin(&vm_page_queue_lock)
705
706 #ifdef VPL_LOCK_SPIN
707 #define VPL_LOCK_INIT(vlq, vpl_grp, vpl_attr) lck_spin_init(&vlq->vpl_lock, vpl_grp, vpl_attr)
708 #define VPL_LOCK(vpl) lck_spin_lock(vpl)
709 #define VPL_UNLOCK(vpl) lck_spin_unlock(vpl)
710 #else
711 #define VPL_LOCK_INIT(vlq, vpl_grp, vpl_attr) lck_mtx_init_ext(&vlq->vpl_lock, &vlq->vpl_lock_ext, vpl_grp, vpl_attr)
712 #define VPL_LOCK(vpl) lck_mtx_lock_spin(vpl)
713 #define VPL_UNLOCK(vpl) lck_mtx_unlock(vpl)
714 #endif
715
716 #if MACH_ASSERT
717 extern void vm_page_queues_assert(vm_page_t mem, int val);
718 #define VM_PAGE_QUEUES_ASSERT(mem, val) vm_page_queues_assert((mem), (val))
719 #else
720 #define VM_PAGE_QUEUES_ASSERT(mem, val)
721 #endif
722
723
724 /*
725 * 'vm_fault_enter' will place newly created pages (zero-fill and COW) onto the
726 * local queues if they exist... its the only spot in the system where we add pages
727 * to those queues... once on those queues, those pages can only move to one of the
728 * global page queues or the free queues... they NEVER move from local q to local q.
729 * the 'local' state is stable when VM_PAGE_QUEUES_REMOVE is called since we're behind
730 * the global vm_page_queue_lock at this point... we still need to take the local lock
731 * in case this operation is being run on a different CPU then the local queue's identity,
732 * but we don't have to worry about the page moving to a global queue or becoming wired
733 * while we're grabbing the local lock since those operations would require the global
734 * vm_page_queue_lock to be held, and we already own it.
735 *
736 * this is why its safe to utilze the wire_count field in the vm_page_t as the local_id...
737 * 'wired' and local are ALWAYS mutually exclusive conditions.
738 */
739 #define VM_PAGE_QUEUES_REMOVE(mem) \
740 MACRO_BEGIN \
741 VM_PAGE_QUEUES_ASSERT(mem, 1); \
742 assert(!mem->laundry); \
743 assert(!mem->pageout_queue); \
744 if (mem->local) { \
745 struct vpl *lq; \
746 assert(mem->object != kernel_object); \
747 assert(!mem->inactive && !mem->speculative); \
748 assert(!mem->active && !mem->throttled); \
749 assert(!mem->fictitious); \
750 lq = &vm_page_local_q[mem->local_id].vpl_un.vpl; \
751 VPL_LOCK(&lq->vpl_lock); \
752 queue_remove(&lq->vpl_queue, \
753 mem, vm_page_t, pageq); \
754 mem->local = FALSE; \
755 mem->local_id = 0; \
756 lq->vpl_count--; \
757 VPL_UNLOCK(&lq->vpl_lock); \
758 } \
759 \
760 else if (mem->active) { \
761 assert(mem->object != kernel_object); \
762 assert(!mem->inactive && !mem->speculative); \
763 assert(!mem->throttled); \
764 assert(!mem->fictitious); \
765 queue_remove(&vm_page_queue_active, \
766 mem, vm_page_t, pageq); \
767 mem->active = FALSE; \
768 vm_page_active_count--; \
769 } \
770 \
771 else if (mem->inactive) { \
772 assert(mem->object != kernel_object); \
773 assert(!mem->active && !mem->speculative); \
774 assert(!mem->throttled); \
775 assert(!mem->fictitious); \
776 if (mem->zero_fill) { \
777 queue_remove(&vm_page_queue_zf, \
778 mem, vm_page_t, pageq); \
779 vm_zf_queue_count--; \
780 } else { \
781 queue_remove(&vm_page_queue_inactive, \
782 mem, vm_page_t, pageq); \
783 } \
784 mem->inactive = FALSE; \
785 vm_page_inactive_count--; \
786 vm_purgeable_q_advance_all(); \
787 } \
788 \
789 else if (mem->throttled) { \
790 assert(!mem->active && !mem->inactive); \
791 assert(!mem->speculative); \
792 assert(!mem->fictitious); \
793 queue_remove(&vm_page_queue_throttled, \
794 mem, vm_page_t, pageq); \
795 mem->throttled = FALSE; \
796 vm_page_throttled_count--; \
797 } \
798 \
799 else if (mem->speculative) { \
800 assert(!mem->active && !mem->inactive); \
801 assert(!mem->throttled); \
802 assert(!mem->fictitious); \
803 remque(&mem->pageq); \
804 mem->speculative = FALSE; \
805 vm_page_speculative_count--; \
806 } \
807 \
808 else if (mem->pageq.next || mem->pageq.prev) \
809 panic("VM_PAGE_QUEUES_REMOVE: unmarked page on Q"); \
810 mem->pageq.next = NULL; \
811 mem->pageq.prev = NULL; \
812 VM_PAGE_QUEUES_ASSERT(mem, 0); \
813 MACRO_END
814
815
816 #define VM_PAGE_ENQUEUE_INACTIVE(mem, first) \
817 MACRO_BEGIN \
818 VM_PAGE_QUEUES_ASSERT(mem, 0); \
819 assert(!mem->fictitious); \
820 assert(!mem->laundry); \
821 assert(!mem->pageout_queue); \
822 if (mem->zero_fill) { \
823 if (first == TRUE) \
824 queue_enter_first(&vm_page_queue_zf, mem, vm_page_t, pageq); \
825 else \
826 queue_enter(&vm_page_queue_zf, mem, vm_page_t, pageq); \
827 vm_zf_queue_count++; \
828 } else { \
829 if (first == TRUE) \
830 queue_enter_first(&vm_page_queue_inactive, mem, vm_page_t, pageq); \
831 else \
832 queue_enter(&vm_page_queue_inactive, mem, vm_page_t, pageq); \
833 } \
834 mem->inactive = TRUE; \
835 vm_page_inactive_count++; \
836 token_new_pagecount++; \
837 MACRO_END
838
839
840 #if DEVELOPMENT || DEBUG
841 #define VM_PAGE_SPECULATIVE_USED_ADD() \
842 MACRO_BEGIN \
843 OSAddAtomic(1, &vm_page_speculative_used); \
844 MACRO_END
845 #else
846 #define VM_PAGE_SPECULATIVE_USED_ADD()
847 #endif
848
849
850 #define VM_PAGE_CONSUME_CLUSTERED(mem) \
851 MACRO_BEGIN \
852 if (mem->clustered) { \
853 assert(mem->object); \
854 mem->object->pages_used++; \
855 mem->clustered = FALSE; \
856 VM_PAGE_SPECULATIVE_USED_ADD(); \
857 } \
858 MACRO_END
859
860
861
862 #define DW_vm_page_unwire 0x01
863 #define DW_vm_page_wire 0x02
864 #define DW_vm_page_free 0x04
865 #define DW_vm_page_activate 0x08
866 #define DW_vm_page_deactivate_internal 0x10
867 #define DW_vm_page_speculate 0x20
868 #define DW_vm_page_lru 0x40
869 #define DW_vm_pageout_throttle_up 0x80
870 #define DW_PAGE_WAKEUP 0x100
871 #define DW_clear_busy 0x200
872 #define DW_clear_reference 0x400
873 #define DW_set_reference 0x800
874 #define DW_move_page 0x1000
875 #define DW_VM_PAGE_QUEUES_REMOVE 0x2000
876 #define DW_set_list_req_pending 0x4000
877
878 struct vm_page_delayed_work {
879 vm_page_t dw_m;
880 int dw_mask;
881 };
882
883 void vm_page_do_delayed_work(vm_object_t object, struct vm_page_delayed_work *dwp, int dw_count);
884
885 extern unsigned int vm_max_delayed_work_limit;
886
887 #define DEFAULT_DELAYED_WORK_LIMIT 32
888
889 #define DELAYED_WORK_LIMIT(max) ((vm_max_delayed_work_limit >= max ? max : vm_max_delayed_work_limit))
890
891 /*
892 * vm_page_do_delayed_work may need to drop the object lock...
893 * if it does, we need the pages it's looking at to
894 * be held stable via the busy bit, so if busy isn't already
895 * set, we need to set it and ask vm_page_do_delayed_work
896 * to clear it and wakeup anyone that might have blocked on
897 * it once we're done processing the page.
898 *
899 * additionally, we can't call vm_page_do_delayed_work with
900 * list_req_pending == TRUE since it may need to
901 * drop the object lock before dealing
902 * with this page and because list_req_pending == TRUE,
903 * busy == TRUE will NOT protect this page from being stolen
904 * so clear list_req_pending and ask vm_page_do_delayed_work
905 * to re-set it once it holds both the pageq and object locks
906 */
907
908 #define VM_PAGE_ADD_DELAYED_WORK(dwp, mem, dw_cnt) \
909 MACRO_BEGIN \
910 if (mem->busy == FALSE) { \
911 mem->busy = TRUE; \
912 if ( !(dwp->dw_mask & DW_vm_page_free)) \
913 dwp->dw_mask |= (DW_clear_busy | DW_PAGE_WAKEUP); \
914 } \
915 if (mem->list_req_pending) { \
916 mem->list_req_pending = FALSE; \
917 dwp->dw_mask |= DW_set_list_req_pending; \
918 } \
919 dwp->dw_m = mem; \
920 dwp++; \
921 dw_count++; \
922 MACRO_END
923
924 extern vm_page_t vm_object_page_grab(vm_object_t);
925
926
927 #endif /* _VM_VM_PAGE_H_ */