2 * Copyright (c) 2000-2012 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
31 #include <vm/vm_page.h>
32 #include <pexpert/pexpert.h>
34 #include <i386/cpuid.h>
36 static boolean_t cpuid_dbg
48 #define min(a,b) ((a) < (b) ? (a) : (b))
49 #define quad(hi,lo) (((uint64_t)(hi)) << 32 | (lo))
51 /* Only for 32bit values */
52 #define bit32(n) (1U << (n))
53 #define bitmask32(h,l) ((bit32(h)|(bit32(h)-1)) & ~(bit32(l)-1))
54 #define bitfield32(x,h,l) ((((x) & bitmask32(h,l)) >> l))
57 * Leaf 2 cache descriptor encodings.
60 _NULL_
, /* NULL (empty) descriptor */
63 STLB
, /* Shared second-level unified TLB */
64 PREFETCH
/* Prefetch size */
65 } cpuid_leaf2_desc_type_t
;
68 NA
, /* Not Applicable */
69 FULLY
, /* Fully-associative */
70 TRACE
, /* Trace Cache (P4 only) */
71 INST
, /* Instruction TLB */
73 DATA0
, /* Data TLB, 1st level */
74 DATA1
, /* Data TLB, 2nd level */
75 L1
, /* L1 (unified) cache */
76 L1_INST
, /* L1 Instruction cache */
77 L1_DATA
, /* L1 Data cache */
78 L2
, /* L2 (unified) cache */
79 L3
, /* L3 (unified) cache */
80 L2_2LINESECTOR
, /* L2 (unified) cache with 2 lines per sector */
81 L3_2LINESECTOR
, /* L3(unified) cache with 2 lines per sector */
82 SMALL
, /* Small page TLB */
83 LARGE
, /* Large page TLB */
84 BOTH
/* Small and Large page TLB */
85 } cpuid_leaf2_qualifier_t
;
87 typedef struct cpuid_cache_descriptor
{
88 uint8_t value
; /* descriptor code */
89 uint8_t type
; /* cpuid_leaf2_desc_type_t */
90 uint8_t level
; /* level of cache/TLB hierachy */
91 uint8_t ways
; /* wayness of cache */
92 uint16_t size
; /* cachesize or TLB pagesize */
93 uint16_t entries
; /* number of TLB entries or linesize */
94 } cpuid_cache_descriptor_t
;
97 * These multipliers are used to encode 1*K .. 64*M in a 16 bit size field
103 * Intel cache descriptor table:
105 static cpuid_cache_descriptor_t intel_cpuid_leaf2_descriptor_table
[] = {
106 // -------------------------------------------------------
107 // value type level ways size entries
108 // -------------------------------------------------------
109 { 0x00, _NULL_
, NA
, NA
, NA
, NA
},
110 { 0x01, TLB
, INST
, 4, SMALL
, 32 },
111 { 0x02, TLB
, INST
, FULLY
, LARGE
, 2 },
112 { 0x03, TLB
, DATA
, 4, SMALL
, 64 },
113 { 0x04, TLB
, DATA
, 4, LARGE
, 8 },
114 { 0x05, TLB
, DATA1
, 4, LARGE
, 32 },
115 { 0x06, CACHE
, L1_INST
, 4, 8*K
, 32 },
116 { 0x08, CACHE
, L1_INST
, 4, 16*K
, 32 },
117 { 0x09, CACHE
, L1_INST
, 4, 32*K
, 64 },
118 { 0x0A, CACHE
, L1_DATA
, 2, 8*K
, 32 },
119 { 0x0B, TLB
, INST
, 4, LARGE
, 4 },
120 { 0x0C, CACHE
, L1_DATA
, 4, 16*K
, 32 },
121 { 0x0D, CACHE
, L1_DATA
, 4, 16*K
, 64 },
122 { 0x0E, CACHE
, L1_DATA
, 6, 24*K
, 64 },
123 { 0x21, CACHE
, L2
, 8, 256*K
, 64 },
124 { 0x22, CACHE
, L3_2LINESECTOR
, 4, 512*K
, 64 },
125 { 0x23, CACHE
, L3_2LINESECTOR
, 8, 1*M
, 64 },
126 { 0x25, CACHE
, L3_2LINESECTOR
, 8, 2*M
, 64 },
127 { 0x29, CACHE
, L3_2LINESECTOR
, 8, 4*M
, 64 },
128 { 0x2C, CACHE
, L1_DATA
, 8, 32*K
, 64 },
129 { 0x30, CACHE
, L1_INST
, 8, 32*K
, 64 },
130 { 0x40, CACHE
, L2
, NA
, 0, NA
},
131 { 0x41, CACHE
, L2
, 4, 128*K
, 32 },
132 { 0x42, CACHE
, L2
, 4, 256*K
, 32 },
133 { 0x43, CACHE
, L2
, 4, 512*K
, 32 },
134 { 0x44, CACHE
, L2
, 4, 1*M
, 32 },
135 { 0x45, CACHE
, L2
, 4, 2*M
, 32 },
136 { 0x46, CACHE
, L3
, 4, 4*M
, 64 },
137 { 0x47, CACHE
, L3
, 8, 8*M
, 64 },
138 { 0x48, CACHE
, L2
, 12, 3*M
, 64 },
139 { 0x49, CACHE
, L2
, 16, 4*M
, 64 },
140 { 0x4A, CACHE
, L3
, 12, 6*M
, 64 },
141 { 0x4B, CACHE
, L3
, 16, 8*M
, 64 },
142 { 0x4C, CACHE
, L3
, 12, 12*M
, 64 },
143 { 0x4D, CACHE
, L3
, 16, 16*M
, 64 },
144 { 0x4E, CACHE
, L2
, 24, 6*M
, 64 },
145 { 0x4F, TLB
, INST
, NA
, SMALL
, 32 },
146 { 0x50, TLB
, INST
, NA
, BOTH
, 64 },
147 { 0x51, TLB
, INST
, NA
, BOTH
, 128 },
148 { 0x52, TLB
, INST
, NA
, BOTH
, 256 },
149 { 0x55, TLB
, INST
, FULLY
, BOTH
, 7 },
150 { 0x56, TLB
, DATA0
, 4, LARGE
, 16 },
151 { 0x57, TLB
, DATA0
, 4, SMALL
, 16 },
152 { 0x59, TLB
, DATA0
, FULLY
, SMALL
, 16 },
153 { 0x5A, TLB
, DATA0
, 4, LARGE
, 32 },
154 { 0x5B, TLB
, DATA
, NA
, BOTH
, 64 },
155 { 0x5C, TLB
, DATA
, NA
, BOTH
, 128 },
156 { 0x5D, TLB
, DATA
, NA
, BOTH
, 256 },
157 { 0x60, CACHE
, L1
, 16*K
, 8, 64 },
158 { 0x61, CACHE
, L1
, 4, 8*K
, 64 },
159 { 0x62, CACHE
, L1
, 4, 16*K
, 64 },
160 { 0x63, CACHE
, L1
, 4, 32*K
, 64 },
161 { 0x70, CACHE
, TRACE
, 8, 12*K
, NA
},
162 { 0x71, CACHE
, TRACE
, 8, 16*K
, NA
},
163 { 0x72, CACHE
, TRACE
, 8, 32*K
, NA
},
164 { 0x76, TLB
, INST
, NA
, BOTH
, 8 },
165 { 0x78, CACHE
, L2
, 4, 1*M
, 64 },
166 { 0x79, CACHE
, L2_2LINESECTOR
, 8, 128*K
, 64 },
167 { 0x7A, CACHE
, L2_2LINESECTOR
, 8, 256*K
, 64 },
168 { 0x7B, CACHE
, L2_2LINESECTOR
, 8, 512*K
, 64 },
169 { 0x7C, CACHE
, L2_2LINESECTOR
, 8, 1*M
, 64 },
170 { 0x7D, CACHE
, L2
, 8, 2*M
, 64 },
171 { 0x7F, CACHE
, L2
, 2, 512*K
, 64 },
172 { 0x80, CACHE
, L2
, 8, 512*K
, 64 },
173 { 0x82, CACHE
, L2
, 8, 256*K
, 32 },
174 { 0x83, CACHE
, L2
, 8, 512*K
, 32 },
175 { 0x84, CACHE
, L2
, 8, 1*M
, 32 },
176 { 0x85, CACHE
, L2
, 8, 2*M
, 32 },
177 { 0x86, CACHE
, L2
, 4, 512*K
, 64 },
178 { 0x87, CACHE
, L2
, 8, 1*M
, 64 },
179 { 0xB0, TLB
, INST
, 4, SMALL
, 128 },
180 { 0xB1, TLB
, INST
, 4, LARGE
, 8 },
181 { 0xB2, TLB
, INST
, 4, SMALL
, 64 },
182 { 0xB3, TLB
, DATA
, 4, SMALL
, 128 },
183 { 0xB4, TLB
, DATA1
, 4, SMALL
, 256 },
184 { 0xB5, TLB
, DATA1
, 8, SMALL
, 64 },
185 { 0xB6, TLB
, DATA1
, 8, SMALL
, 128 },
186 { 0xBA, TLB
, DATA1
, 4, BOTH
, 64 },
187 { 0xC1, STLB
, DATA1
, 8, SMALL
, 1024},
188 { 0xCA, STLB
, DATA1
, 4, SMALL
, 512 },
189 { 0xD0, CACHE
, L3
, 4, 512*K
, 64 },
190 { 0xD1, CACHE
, L3
, 4, 1*M
, 64 },
191 { 0xD2, CACHE
, L3
, 4, 2*M
, 64 },
192 { 0xD3, CACHE
, L3
, 4, 4*M
, 64 },
193 { 0xD4, CACHE
, L3
, 4, 8*M
, 64 },
194 { 0xD6, CACHE
, L3
, 8, 1*M
, 64 },
195 { 0xD7, CACHE
, L3
, 8, 2*M
, 64 },
196 { 0xD8, CACHE
, L3
, 8, 4*M
, 64 },
197 { 0xD9, CACHE
, L3
, 8, 8*M
, 64 },
198 { 0xDA, CACHE
, L3
, 8, 12*M
, 64 },
199 { 0xDC, CACHE
, L3
, 12, 1536*K
, 64 },
200 { 0xDD, CACHE
, L3
, 12, 3*M
, 64 },
201 { 0xDE, CACHE
, L3
, 12, 6*M
, 64 },
202 { 0xDF, CACHE
, L3
, 12, 12*M
, 64 },
203 { 0xE0, CACHE
, L3
, 12, 18*M
, 64 },
204 { 0xE2, CACHE
, L3
, 16, 2*M
, 64 },
205 { 0xE3, CACHE
, L3
, 16, 4*M
, 64 },
206 { 0xE4, CACHE
, L3
, 16, 8*M
, 64 },
207 { 0xE5, CACHE
, L3
, 16, 16*M
, 64 },
208 { 0xE6, CACHE
, L3
, 16, 24*M
, 64 },
209 { 0xF0, PREFETCH
, NA
, NA
, 64, NA
},
210 { 0xF1, PREFETCH
, NA
, NA
, 128, NA
},
211 { 0xFF, CACHE
, NA
, NA
, 0, NA
}
213 #define INTEL_LEAF2_DESC_NUM (sizeof(intel_cpuid_leaf2_descriptor_table) / \
214 sizeof(cpuid_cache_descriptor_t))
216 static inline cpuid_cache_descriptor_t
*
217 cpuid_leaf2_find(uint8_t value
)
221 for (i
= 0; i
< INTEL_LEAF2_DESC_NUM
; i
++)
222 if (intel_cpuid_leaf2_descriptor_table
[i
].value
== value
)
223 return &intel_cpuid_leaf2_descriptor_table
[i
];
228 * CPU identification routines.
231 static i386_cpu_info_t cpuid_cpu_info
;
232 static i386_cpu_info_t
*cpuid_cpu_infop
= NULL
;
234 static void cpuid_fn(uint32_t selector
, uint32_t *result
)
236 do_cpuid(selector
, result
);
237 DBG("cpuid_fn(0x%08x) eax:0x%08x ebx:0x%08x ecx:0x%08x edx:0x%08x\n",
238 selector
, result
[0], result
[1], result
[2], result
[3]);
241 static const char *cache_type_str
[LCACHE_MAX
] = {
242 "Lnone", "L1I", "L1D", "L2U", "L3U"
245 /* this function is Intel-specific */
247 cpuid_set_cache_info( i386_cpu_info_t
* info_p
)
249 uint32_t cpuid_result
[4];
252 uint32_t linesizes
[LCACHE_MAX
];
255 boolean_t cpuid_deterministic_supported
= FALSE
;
257 DBG("cpuid_set_cache_info(%p)\n", info_p
);
259 bzero( linesizes
, sizeof(linesizes
) );
261 /* Get processor cache descriptor info using leaf 2. We don't use
262 * this internally, but must publish it for KEXTs.
264 cpuid_fn(2, cpuid_result
);
265 for (j
= 0; j
< 4; j
++) {
266 if ((cpuid_result
[j
] >> 31) == 1) /* bit31 is validity */
268 ((uint32_t *) info_p
->cache_info
)[j
] = cpuid_result
[j
];
270 /* first byte gives number of cpuid calls to get all descriptors */
271 for (i
= 1; i
< info_p
->cache_info
[0]; i
++) {
272 if (i
*16 > sizeof(info_p
->cache_info
))
274 cpuid_fn(2, cpuid_result
);
275 for (j
= 0; j
< 4; j
++) {
276 if ((cpuid_result
[j
] >> 31) == 1)
278 ((uint32_t *) info_p
->cache_info
)[4*i
+j
] =
284 * Get cache info using leaf 4, the "deterministic cache parameters."
285 * Most processors Mac OS X supports implement this flavor of CPUID.
286 * Loop over each cache on the processor.
288 cpuid_fn(0, cpuid_result
);
289 if (cpuid_result
[eax
] >= 4)
290 cpuid_deterministic_supported
= TRUE
;
292 for (index
= 0; cpuid_deterministic_supported
; index
++) {
293 cache_type_t type
= Lnone
;
295 uint32_t cache_level
;
296 uint32_t cache_sharing
;
297 uint32_t cache_linesize
;
299 uint32_t cache_associativity
;
301 uint32_t cache_partitions
;
304 reg
[eax
] = 4; /* cpuid request 4 */
305 reg
[ecx
] = index
; /* index starting at 0 */
307 DBG("cpuid(4) index=%d eax=0x%x\n", index
, reg
[eax
]);
308 cache_type
= bitfield32(reg
[eax
], 4, 0);
310 break; /* no more caches */
311 cache_level
= bitfield32(reg
[eax
], 7, 5);
312 cache_sharing
= bitfield32(reg
[eax
], 25, 14) + 1;
313 info_p
->cpuid_cores_per_package
314 = bitfield32(reg
[eax
], 31, 26) + 1;
315 cache_linesize
= bitfield32(reg
[ebx
], 11, 0) + 1;
316 cache_partitions
= bitfield32(reg
[ebx
], 21, 12) + 1;
317 cache_associativity
= bitfield32(reg
[ebx
], 31, 22) + 1;
318 cache_sets
= bitfield32(reg
[ecx
], 31, 0) + 1;
320 /* Map type/levels returned by CPUID into cache_type_t */
321 switch (cache_level
) {
323 type
= cache_type
== 1 ? L1D
:
324 cache_type
== 2 ? L1I
:
328 type
= cache_type
== 3 ? L2U
:
332 type
= cache_type
== 3 ? L3U
:
339 /* The total size of a cache is:
340 * ( linesize * sets * associativity * partitions )
343 cache_size
= cache_linesize
* cache_sets
*
344 cache_associativity
* cache_partitions
;
345 info_p
->cache_size
[type
] = cache_size
;
346 info_p
->cache_sharing
[type
] = cache_sharing
;
347 info_p
->cache_partitions
[type
] = cache_partitions
;
348 linesizes
[type
] = cache_linesize
;
350 DBG(" cache_size[%s] : %d\n",
351 cache_type_str
[type
], cache_size
);
352 DBG(" cache_sharing[%s] : %d\n",
353 cache_type_str
[type
], cache_sharing
);
354 DBG(" cache_partitions[%s]: %d\n",
355 cache_type_str
[type
], cache_partitions
);
358 * Overwrite associativity determined via
359 * CPUID.0x80000006 -- this leaf is more
363 info_p
->cpuid_cache_L2_associativity
= cache_associativity
;
365 /* Compute the number of page colors for this cache,
367 * ( linesize * sets ) / page_size
369 * To help visualize this, consider two views of a
370 * physical address. To the cache, it is composed
371 * of a line offset, a set selector, and a tag.
372 * To VM, it is composed of a page offset, a page
373 * color, and other bits in the pageframe number:
375 * +-----------------+---------+--------+
376 * cache: | tag | set | offset |
377 * +-----------------+---------+--------+
379 * +-----------------+-------+----------+
380 * VM: | don't care | color | pg offset|
381 * +-----------------+-------+----------+
383 * The color is those bits in (set+offset) not covered
384 * by the page offset.
386 colors
= ( cache_linesize
* cache_sets
) >> 12;
388 if ( colors
> vm_cache_geometry_colors
)
389 vm_cache_geometry_colors
= colors
;
392 DBG(" vm_cache_geometry_colors: %d\n", vm_cache_geometry_colors
);
395 * If deterministic cache parameters are not available, use
398 if (info_p
->cpuid_cores_per_package
== 0) {
399 info_p
->cpuid_cores_per_package
= 1;
401 /* cpuid define in 1024 quantities */
402 info_p
->cache_size
[L2U
] = info_p
->cpuid_cache_size
* 1024;
403 info_p
->cache_sharing
[L2U
] = 1;
404 info_p
->cache_partitions
[L2U
] = 1;
406 linesizes
[L2U
] = info_p
->cpuid_cache_linesize
;
408 DBG(" cache_size[L2U] : %d\n",
409 info_p
->cache_size
[L2U
]);
410 DBG(" cache_sharing[L2U] : 1\n");
411 DBG(" cache_partitions[L2U]: 1\n");
412 DBG(" linesizes[L2U] : %d\n",
413 info_p
->cpuid_cache_linesize
);
417 * What linesize to publish? We use the L2 linesize if any,
420 if ( linesizes
[L2U
] )
421 info_p
->cache_linesize
= linesizes
[L2U
];
422 else if (linesizes
[L1D
])
423 info_p
->cache_linesize
= linesizes
[L1D
];
424 else panic("no linesize");
425 DBG(" cache_linesize : %d\n", info_p
->cache_linesize
);
428 * Extract and publish TLB information from Leaf 2 descriptors.
430 DBG(" %ld leaf2 descriptors:\n", sizeof(info_p
->cache_info
));
431 for (i
= 1; i
< sizeof(info_p
->cache_info
); i
++) {
432 cpuid_cache_descriptor_t
*descp
;
437 DBG(" 0x%02x", info_p
->cache_info
[i
]);
438 descp
= cpuid_leaf2_find(info_p
->cache_info
[i
]);
442 switch (descp
->type
) {
444 page
= (descp
->size
== SMALL
) ? TLB_SMALL
: TLB_LARGE
;
445 /* determine I or D: */
446 switch (descp
->level
) {
458 /* determine level: */
459 switch (descp
->level
) {
466 info_p
->cpuid_tlb
[id
][page
][level
] = descp
->entries
;
469 info_p
->cpuid_stlb
= descp
->entries
;
476 cpuid_set_generic_info(i386_cpu_info_t
*info_p
)
481 DBG("cpuid_set_generic_info(%p)\n", info_p
);
483 /* do cpuid 0 to get vendor */
485 info_p
->cpuid_max_basic
= reg
[eax
];
486 bcopy((char *)®
[ebx
], &info_p
->cpuid_vendor
[0], 4); /* ug */
487 bcopy((char *)®
[ecx
], &info_p
->cpuid_vendor
[8], 4);
488 bcopy((char *)®
[edx
], &info_p
->cpuid_vendor
[4], 4);
489 info_p
->cpuid_vendor
[12] = 0;
491 /* get extended cpuid results */
492 cpuid_fn(0x80000000, reg
);
493 info_p
->cpuid_max_ext
= reg
[eax
];
495 /* check to see if we can get brand string */
496 if (info_p
->cpuid_max_ext
>= 0x80000004) {
498 * The brand string 48 bytes (max), guaranteed to
501 cpuid_fn(0x80000002, reg
);
502 bcopy((char *)reg
, &str
[0], 16);
503 cpuid_fn(0x80000003, reg
);
504 bcopy((char *)reg
, &str
[16], 16);
505 cpuid_fn(0x80000004, reg
);
506 bcopy((char *)reg
, &str
[32], 16);
507 for (p
= str
; *p
!= '\0'; p
++) {
508 if (*p
!= ' ') break;
510 strlcpy(info_p
->cpuid_brand_string
,
511 p
, sizeof(info_p
->cpuid_brand_string
));
513 if (!strncmp(info_p
->cpuid_brand_string
, CPUID_STRING_UNKNOWN
,
514 min(sizeof(info_p
->cpuid_brand_string
),
515 strlen(CPUID_STRING_UNKNOWN
) + 1))) {
517 * This string means we have a firmware-programmable brand string,
518 * and the firmware couldn't figure out what sort of CPU we have.
520 info_p
->cpuid_brand_string
[0] = '\0';
524 /* Get cache and addressing info. */
525 if (info_p
->cpuid_max_ext
>= 0x80000006) {
527 cpuid_fn(0x80000006, reg
);
528 info_p
->cpuid_cache_linesize
= bitfield32(reg
[ecx
], 7, 0);
529 assoc
= bitfield32(reg
[ecx
],15,12);
531 * L2 associativity is encoded, though in an insufficiently
532 * descriptive fashion, e.g. 24-way is mapped to 16-way.
533 * Represent a fully associative cache as 0xFFFF.
534 * Overwritten by associativity as determined via CPUID.4
541 else if (assoc
== 0xF)
543 info_p
->cpuid_cache_L2_associativity
= assoc
;
544 info_p
->cpuid_cache_size
= bitfield32(reg
[ecx
],31,16);
545 cpuid_fn(0x80000008, reg
);
546 info_p
->cpuid_address_bits_physical
=
547 bitfield32(reg
[eax
], 7, 0);
548 info_p
->cpuid_address_bits_virtual
=
549 bitfield32(reg
[eax
],15, 8);
553 * Get processor signature and decode
554 * and bracket this with the approved procedure for reading the
555 * the microcode version number a.k.a. signature a.k.a. BIOS ID
557 wrmsr64(MSR_IA32_BIOS_SIGN_ID
, 0);
559 info_p
->cpuid_microcode_version
=
560 (uint32_t) (rdmsr64(MSR_IA32_BIOS_SIGN_ID
) >> 32);
561 info_p
->cpuid_signature
= reg
[eax
];
562 info_p
->cpuid_stepping
= bitfield32(reg
[eax
], 3, 0);
563 info_p
->cpuid_model
= bitfield32(reg
[eax
], 7, 4);
564 info_p
->cpuid_family
= bitfield32(reg
[eax
], 11, 8);
565 info_p
->cpuid_type
= bitfield32(reg
[eax
], 13, 12);
566 info_p
->cpuid_extmodel
= bitfield32(reg
[eax
], 19, 16);
567 info_p
->cpuid_extfamily
= bitfield32(reg
[eax
], 27, 20);
568 info_p
->cpuid_brand
= bitfield32(reg
[ebx
], 7, 0);
569 info_p
->cpuid_features
= quad(reg
[ecx
], reg
[edx
]);
571 /* Get "processor flag"; necessary for microcode update matching */
572 info_p
->cpuid_processor_flag
= (rdmsr64(MSR_IA32_PLATFORM_ID
)>> 50) & 0x7;
574 /* Fold extensions into family/model */
575 if (info_p
->cpuid_family
== 0x0f)
576 info_p
->cpuid_family
+= info_p
->cpuid_extfamily
;
577 if (info_p
->cpuid_family
== 0x0f || info_p
->cpuid_family
== 0x06)
578 info_p
->cpuid_model
+= (info_p
->cpuid_extmodel
<< 4);
580 if (info_p
->cpuid_features
& CPUID_FEATURE_HTT
)
581 info_p
->cpuid_logical_per_package
=
582 bitfield32(reg
[ebx
], 23, 16);
584 info_p
->cpuid_logical_per_package
= 1;
586 if (info_p
->cpuid_max_ext
>= 0x80000001) {
587 cpuid_fn(0x80000001, reg
);
588 info_p
->cpuid_extfeatures
=
589 quad(reg
[ecx
], reg
[edx
]);
592 DBG(" max_basic : %d\n", info_p
->cpuid_max_basic
);
593 DBG(" max_ext : 0x%08x\n", info_p
->cpuid_max_ext
);
594 DBG(" vendor : %s\n", info_p
->cpuid_vendor
);
595 DBG(" brand_string : %s\n", info_p
->cpuid_brand_string
);
596 DBG(" signature : 0x%08x\n", info_p
->cpuid_signature
);
597 DBG(" stepping : %d\n", info_p
->cpuid_stepping
);
598 DBG(" model : %d\n", info_p
->cpuid_model
);
599 DBG(" family : %d\n", info_p
->cpuid_family
);
600 DBG(" type : %d\n", info_p
->cpuid_type
);
601 DBG(" extmodel : %d\n", info_p
->cpuid_extmodel
);
602 DBG(" extfamily : %d\n", info_p
->cpuid_extfamily
);
603 DBG(" brand : %d\n", info_p
->cpuid_brand
);
604 DBG(" features : 0x%016llx\n", info_p
->cpuid_features
);
605 DBG(" extfeatures : 0x%016llx\n", info_p
->cpuid_extfeatures
);
606 DBG(" logical_per_package : %d\n", info_p
->cpuid_logical_per_package
);
607 DBG(" microcode_version : 0x%08x\n", info_p
->cpuid_microcode_version
);
609 /* Fold in the Invariant TSC feature bit, if present */
610 if (info_p
->cpuid_max_ext
>= 0x80000007) {
611 cpuid_fn(0x80000007, reg
);
612 info_p
->cpuid_extfeatures
|=
613 reg
[edx
] & (uint32_t)CPUID_EXTFEATURE_TSCI
;
614 DBG(" extfeatures : 0x%016llx\n",
615 info_p
->cpuid_extfeatures
);
618 if (info_p
->cpuid_max_basic
>= 0x5) {
619 cpuid_mwait_leaf_t
*cmp
= &info_p
->cpuid_mwait_leaf
;
622 * Extract the Monitor/Mwait Leaf info:
625 cmp
->linesize_min
= reg
[eax
];
626 cmp
->linesize_max
= reg
[ebx
];
627 cmp
->extensions
= reg
[ecx
];
628 cmp
->sub_Cstates
= reg
[edx
];
629 info_p
->cpuid_mwait_leafp
= cmp
;
631 DBG(" Monitor/Mwait Leaf:\n");
632 DBG(" linesize_min : %d\n", cmp
->linesize_min
);
633 DBG(" linesize_max : %d\n", cmp
->linesize_max
);
634 DBG(" extensions : %d\n", cmp
->extensions
);
635 DBG(" sub_Cstates : 0x%08x\n", cmp
->sub_Cstates
);
638 if (info_p
->cpuid_max_basic
>= 0x6) {
639 cpuid_thermal_leaf_t
*ctp
= &info_p
->cpuid_thermal_leaf
;
642 * The thermal and Power Leaf:
645 ctp
->sensor
= bitfield32(reg
[eax
], 0, 0);
646 ctp
->dynamic_acceleration
= bitfield32(reg
[eax
], 1, 1);
647 ctp
->invariant_APIC_timer
= bitfield32(reg
[eax
], 2, 2);
648 ctp
->core_power_limits
= bitfield32(reg
[eax
], 4, 4);
649 ctp
->fine_grain_clock_mod
= bitfield32(reg
[eax
], 5, 5);
650 ctp
->package_thermal_intr
= bitfield32(reg
[eax
], 6, 6);
651 ctp
->thresholds
= bitfield32(reg
[ebx
], 3, 0);
652 ctp
->ACNT_MCNT
= bitfield32(reg
[ecx
], 0, 0);
653 ctp
->hardware_feedback
= bitfield32(reg
[ecx
], 1, 1);
654 ctp
->energy_policy
= bitfield32(reg
[ecx
], 3, 3);
655 info_p
->cpuid_thermal_leafp
= ctp
;
657 DBG(" Thermal/Power Leaf:\n");
658 DBG(" sensor : %d\n", ctp
->sensor
);
659 DBG(" dynamic_acceleration : %d\n", ctp
->dynamic_acceleration
);
660 DBG(" invariant_APIC_timer : %d\n", ctp
->invariant_APIC_timer
);
661 DBG(" core_power_limits : %d\n", ctp
->core_power_limits
);
662 DBG(" fine_grain_clock_mod : %d\n", ctp
->fine_grain_clock_mod
);
663 DBG(" package_thermal_intr : %d\n", ctp
->package_thermal_intr
);
664 DBG(" thresholds : %d\n", ctp
->thresholds
);
665 DBG(" ACNT_MCNT : %d\n", ctp
->ACNT_MCNT
);
666 DBG(" ACNT2 : %d\n", ctp
->hardware_feedback
);
667 DBG(" energy_policy : %d\n", ctp
->energy_policy
);
670 if (info_p
->cpuid_max_basic
>= 0xa) {
671 cpuid_arch_perf_leaf_t
*capp
= &info_p
->cpuid_arch_perf_leaf
;
674 * Architectural Performance Monitoring Leaf:
677 capp
->version
= bitfield32(reg
[eax
], 7, 0);
678 capp
->number
= bitfield32(reg
[eax
], 15, 8);
679 capp
->width
= bitfield32(reg
[eax
], 23, 16);
680 capp
->events_number
= bitfield32(reg
[eax
], 31, 24);
681 capp
->events
= reg
[ebx
];
682 capp
->fixed_number
= bitfield32(reg
[edx
], 4, 0);
683 capp
->fixed_width
= bitfield32(reg
[edx
], 12, 5);
684 info_p
->cpuid_arch_perf_leafp
= capp
;
686 DBG(" Architectural Performance Monitoring Leaf:\n");
687 DBG(" version : %d\n", capp
->version
);
688 DBG(" number : %d\n", capp
->number
);
689 DBG(" width : %d\n", capp
->width
);
690 DBG(" events_number : %d\n", capp
->events_number
);
691 DBG(" events : %d\n", capp
->events
);
692 DBG(" fixed_number : %d\n", capp
->fixed_number
);
693 DBG(" fixed_width : %d\n", capp
->fixed_width
);
696 if (info_p
->cpuid_max_basic
>= 0xd) {
697 cpuid_xsave_leaf_t
*xsp
= &info_p
->cpuid_xsave_leaf
;
701 cpuid_fn(0xd, info_p
->cpuid_xsave_leaf
.extended_state
);
702 info_p
->cpuid_xsave_leafp
= xsp
;
704 DBG(" XSAVE Leaf:\n");
705 DBG(" EAX : 0x%x\n", xsp
->extended_state
[eax
]);
706 DBG(" EBX : 0x%x\n", xsp
->extended_state
[ebx
]);
707 DBG(" ECX : 0x%x\n", xsp
->extended_state
[ecx
]);
708 DBG(" EDX : 0x%x\n", xsp
->extended_state
[edx
]);
711 if (info_p
->cpuid_model
>= CPUID_MODEL_IVYBRIDGE
) {
716 info_p
->cpuid_leaf7_features
= quad(reg
[ecx
], reg
[ebx
]);
718 DBG(" Feature Leaf7:\n");
719 DBG(" EBX : 0x%x\n", reg
[ebx
]);
720 DBG(" ECX : 0x%x\n", reg
[ecx
]);
727 cpuid_set_cpufamily(i386_cpu_info_t
*info_p
)
729 uint32_t cpufamily
= CPUFAMILY_UNKNOWN
;
731 switch (info_p
->cpuid_family
) {
733 switch (info_p
->cpuid_model
) {
735 cpufamily
= CPUFAMILY_INTEL_MEROM
;
738 cpufamily
= CPUFAMILY_INTEL_PENRYN
;
740 case CPUID_MODEL_NEHALEM
:
741 case CPUID_MODEL_FIELDS
:
742 case CPUID_MODEL_DALES
:
743 case CPUID_MODEL_NEHALEM_EX
:
744 cpufamily
= CPUFAMILY_INTEL_NEHALEM
;
746 case CPUID_MODEL_DALES_32NM
:
747 case CPUID_MODEL_WESTMERE
:
748 case CPUID_MODEL_WESTMERE_EX
:
749 cpufamily
= CPUFAMILY_INTEL_WESTMERE
;
751 case CPUID_MODEL_SANDYBRIDGE
:
752 case CPUID_MODEL_JAKETOWN
:
753 cpufamily
= CPUFAMILY_INTEL_SANDYBRIDGE
;
755 case CPUID_MODEL_IVYBRIDGE
:
756 case CPUID_MODEL_IVYBRIDGE_EP
:
757 cpufamily
= CPUFAMILY_INTEL_IVYBRIDGE
;
759 case CPUID_MODEL_HASWELL
:
760 case CPUID_MODEL_HASWELL_EP
:
761 case CPUID_MODEL_HASWELL_ULT
:
762 case CPUID_MODEL_CRYSTALWELL
:
763 cpufamily
= CPUFAMILY_INTEL_HASWELL
;
765 #if !defined(XNU_HIDE_SEED)
766 case CPUID_MODEL_BROADWELL
:
767 case CPUID_MODEL_BRYSTALWELL
:
768 cpufamily
= CPUFAMILY_INTEL_BROADWELL
;
770 #endif /* not XNU_HIDE_SEED */
775 info_p
->cpuid_cpufamily
= cpufamily
;
776 DBG("cpuid_set_cpufamily(%p) returning 0x%x\n", info_p
, cpufamily
);
780 * Must be invoked either when executing single threaded, or with
781 * independent synchronization.
786 i386_cpu_info_t
*info_p
= &cpuid_cpu_info
;
787 boolean_t enable_x86_64h
= TRUE
;
789 cpuid_set_generic_info(info_p
);
791 /* verify we are running on a supported CPU */
792 if ((strncmp(CPUID_VID_INTEL
, info_p
->cpuid_vendor
,
793 min(strlen(CPUID_STRING_UNKNOWN
) + 1,
794 sizeof(info_p
->cpuid_vendor
)))) ||
795 (cpuid_set_cpufamily(info_p
) == CPUFAMILY_UNKNOWN
))
796 panic("Unsupported CPU");
798 info_p
->cpuid_cpu_type
= CPU_TYPE_X86
;
800 if (!PE_parse_boot_argn("-enable_x86_64h", &enable_x86_64h
, sizeof(enable_x86_64h
))) {
801 boolean_t disable_x86_64h
= FALSE
;
803 if (PE_parse_boot_argn("-disable_x86_64h", &disable_x86_64h
, sizeof(disable_x86_64h
))) {
804 enable_x86_64h
= FALSE
;
808 if (enable_x86_64h
&&
809 ((info_p
->cpuid_features
& CPUID_X86_64_H_FEATURE_SUBSET
) == CPUID_X86_64_H_FEATURE_SUBSET
) &&
810 ((info_p
->cpuid_extfeatures
& CPUID_X86_64_H_EXTFEATURE_SUBSET
) == CPUID_X86_64_H_EXTFEATURE_SUBSET
) &&
811 ((info_p
->cpuid_leaf7_features
& CPUID_X86_64_H_LEAF7_FEATURE_SUBSET
) == CPUID_X86_64_H_LEAF7_FEATURE_SUBSET
)) {
812 info_p
->cpuid_cpu_subtype
= CPU_SUBTYPE_X86_64_H
;
814 info_p
->cpuid_cpu_subtype
= CPU_SUBTYPE_X86_ARCH1
;
817 /* Must be invoked after set_generic_info */
818 cpuid_set_cache_info(info_p
);
821 * Find the number of enabled cores and threads
822 * (which determines whether SMT/Hyperthreading is active).
824 switch (info_p
->cpuid_cpufamily
) {
825 case CPUFAMILY_INTEL_MEROM
:
826 case CPUFAMILY_INTEL_PENRYN
:
827 info_p
->core_count
= info_p
->cpuid_cores_per_package
;
828 info_p
->thread_count
= info_p
->cpuid_logical_per_package
;
830 case CPUFAMILY_INTEL_WESTMERE
: {
831 uint64_t msr
= rdmsr64(MSR_CORE_THREAD_COUNT
);
832 info_p
->core_count
= bitfield32((uint32_t)msr
, 19, 16);
833 info_p
->thread_count
= bitfield32((uint32_t)msr
, 15, 0);
837 uint64_t msr
= rdmsr64(MSR_CORE_THREAD_COUNT
);
838 info_p
->core_count
= bitfield32((uint32_t)msr
, 31, 16);
839 info_p
->thread_count
= bitfield32((uint32_t)msr
, 15, 0);
843 if (info_p
->core_count
== 0) {
844 info_p
->core_count
= info_p
->cpuid_cores_per_package
;
845 info_p
->thread_count
= info_p
->cpuid_logical_per_package
;
847 DBG("cpuid_set_info():\n");
848 DBG(" core_count : %d\n", info_p
->core_count
);
849 DBG(" thread_count : %d\n", info_p
->thread_count
);
850 DBG(" cpu_type: 0x%08x\n", info_p
->cpuid_cpu_type
);
851 DBG(" cpu_subtype: 0x%08x\n", info_p
->cpuid_cpu_subtype
);
853 info_p
->cpuid_model_string
= ""; /* deprecated */
856 static struct table
{
860 {CPUID_FEATURE_FPU
, "FPU"},
861 {CPUID_FEATURE_VME
, "VME"},
862 {CPUID_FEATURE_DE
, "DE"},
863 {CPUID_FEATURE_PSE
, "PSE"},
864 {CPUID_FEATURE_TSC
, "TSC"},
865 {CPUID_FEATURE_MSR
, "MSR"},
866 {CPUID_FEATURE_PAE
, "PAE"},
867 {CPUID_FEATURE_MCE
, "MCE"},
868 {CPUID_FEATURE_CX8
, "CX8"},
869 {CPUID_FEATURE_APIC
, "APIC"},
870 {CPUID_FEATURE_SEP
, "SEP"},
871 {CPUID_FEATURE_MTRR
, "MTRR"},
872 {CPUID_FEATURE_PGE
, "PGE"},
873 {CPUID_FEATURE_MCA
, "MCA"},
874 {CPUID_FEATURE_CMOV
, "CMOV"},
875 {CPUID_FEATURE_PAT
, "PAT"},
876 {CPUID_FEATURE_PSE36
, "PSE36"},
877 {CPUID_FEATURE_PSN
, "PSN"},
878 {CPUID_FEATURE_CLFSH
, "CLFSH"},
879 {CPUID_FEATURE_DS
, "DS"},
880 {CPUID_FEATURE_ACPI
, "ACPI"},
881 {CPUID_FEATURE_MMX
, "MMX"},
882 {CPUID_FEATURE_FXSR
, "FXSR"},
883 {CPUID_FEATURE_SSE
, "SSE"},
884 {CPUID_FEATURE_SSE2
, "SSE2"},
885 {CPUID_FEATURE_SS
, "SS"},
886 {CPUID_FEATURE_HTT
, "HTT"},
887 {CPUID_FEATURE_TM
, "TM"},
888 {CPUID_FEATURE_PBE
, "PBE"},
889 {CPUID_FEATURE_SSE3
, "SSE3"},
890 {CPUID_FEATURE_PCLMULQDQ
, "PCLMULQDQ"},
891 {CPUID_FEATURE_DTES64
, "DTES64"},
892 {CPUID_FEATURE_MONITOR
, "MON"},
893 {CPUID_FEATURE_DSCPL
, "DSCPL"},
894 {CPUID_FEATURE_VMX
, "VMX"},
895 {CPUID_FEATURE_SMX
, "SMX"},
896 {CPUID_FEATURE_EST
, "EST"},
897 {CPUID_FEATURE_TM2
, "TM2"},
898 {CPUID_FEATURE_SSSE3
, "SSSE3"},
899 {CPUID_FEATURE_CID
, "CID"},
900 {CPUID_FEATURE_FMA
, "FMA"},
901 {CPUID_FEATURE_CX16
, "CX16"},
902 {CPUID_FEATURE_xTPR
, "TPR"},
903 {CPUID_FEATURE_PDCM
, "PDCM"},
904 {CPUID_FEATURE_SSE4_1
, "SSE4.1"},
905 {CPUID_FEATURE_SSE4_2
, "SSE4.2"},
906 {CPUID_FEATURE_x2APIC
, "x2APIC"},
907 {CPUID_FEATURE_MOVBE
, "MOVBE"},
908 {CPUID_FEATURE_POPCNT
, "POPCNT"},
909 {CPUID_FEATURE_AES
, "AES"},
910 {CPUID_FEATURE_VMM
, "VMM"},
911 {CPUID_FEATURE_PCID
, "PCID"},
912 {CPUID_FEATURE_XSAVE
, "XSAVE"},
913 {CPUID_FEATURE_OSXSAVE
, "OSXSAVE"},
914 {CPUID_FEATURE_SEGLIM64
, "SEGLIM64"},
915 {CPUID_FEATURE_TSCTMR
, "TSCTMR"},
916 {CPUID_FEATURE_AVX1_0
, "AVX1.0"},
917 {CPUID_FEATURE_RDRAND
, "RDRAND"},
918 {CPUID_FEATURE_F16C
, "F16C"},
922 {CPUID_EXTFEATURE_SYSCALL
, "SYSCALL"},
923 {CPUID_EXTFEATURE_XD
, "XD"},
924 {CPUID_EXTFEATURE_1GBPAGE
, "1GBPAGE"},
925 {CPUID_EXTFEATURE_EM64T
, "EM64T"},
926 {CPUID_EXTFEATURE_LAHF
, "LAHF"},
927 {CPUID_EXTFEATURE_LZCNT
, "LZCNT"},
928 {CPUID_EXTFEATURE_PREFETCHW
, "PREFETCHW"},
929 {CPUID_EXTFEATURE_RDTSCP
, "RDTSCP"},
930 {CPUID_EXTFEATURE_TSCI
, "TSCI"},
934 leaf7_feature_map
[] = {
935 {CPUID_LEAF7_FEATURE_SMEP
, "SMEP"},
936 {CPUID_LEAF7_FEATURE_ERMS
, "ERMS"},
937 {CPUID_LEAF7_FEATURE_RDWRFSGS
, "RDWRFSGS"},
938 {CPUID_LEAF7_FEATURE_TSCOFF
, "TSC_THREAD_OFFSET"},
939 {CPUID_LEAF7_FEATURE_BMI1
, "BMI1"},
940 {CPUID_LEAF7_FEATURE_HLE
, "HLE"},
941 {CPUID_LEAF7_FEATURE_AVX2
, "AVX2"},
942 {CPUID_LEAF7_FEATURE_BMI2
, "BMI2"},
943 {CPUID_LEAF7_FEATURE_INVPCID
, "INVPCID"},
944 {CPUID_LEAF7_FEATURE_RTM
, "RTM"},
945 {CPUID_LEAF7_FEATURE_RDSEED
, "RDSEED"},
946 {CPUID_LEAF7_FEATURE_ADX
, "ADX"},
947 #if !defined(XNU_HIDE_SEED)
948 {CPUID_LEAF7_FEATURE_SMAP
, "SMAP"},
949 #endif /* not XNU_HIDE_SEED */
954 cpuid_get_names(struct table
*map
, uint64_t bits
, char *buf
, unsigned buf_len
)
960 for (i
= 0; map
[i
].mask
!= 0; i
++) {
961 if ((bits
& map
[i
].mask
) == 0)
963 if (len
&& ((size_t) (p
- buf
) < (buf_len
- 1)))
965 len
= min(strlen(map
[i
].name
), (size_t)((buf_len
-1)-(p
-buf
)));
968 bcopy(map
[i
].name
, p
, len
);
978 /* Set-up the cpuid_info stucture lazily */
979 if (cpuid_cpu_infop
== NULL
) {
980 PE_parse_boot_argn("-cpuid", &cpuid_dbg
, sizeof(cpuid_dbg
));
982 cpuid_cpu_infop
= &cpuid_cpu_info
;
984 return cpuid_cpu_infop
;
988 cpuid_get_feature_names(uint64_t features
, char *buf
, unsigned buf_len
)
990 return cpuid_get_names(feature_map
, features
, buf
, buf_len
);
994 cpuid_get_extfeature_names(uint64_t extfeatures
, char *buf
, unsigned buf_len
)
996 return cpuid_get_names(extfeature_map
, extfeatures
, buf
, buf_len
);
1000 cpuid_get_leaf7_feature_names(uint64_t features
, char *buf
, unsigned buf_len
)
1002 return cpuid_get_names(leaf7_feature_map
, features
, buf
, buf_len
);
1006 cpuid_feature_display(
1011 kprintf("%s: %s", header
,
1012 cpuid_get_feature_names(cpuid_features(), buf
, sizeof(buf
)));
1013 if (cpuid_leaf7_features())
1014 kprintf(" %s", cpuid_get_leaf7_feature_names(
1015 cpuid_leaf7_features(), buf
, sizeof(buf
)));
1017 if (cpuid_features() & CPUID_FEATURE_HTT
) {
1018 #define s_if_plural(n) ((n > 1) ? "s" : "")
1019 kprintf(" HTT: %d core%s per package;"
1020 " %d logical cpu%s per package\n",
1021 cpuid_cpu_infop
->cpuid_cores_per_package
,
1022 s_if_plural(cpuid_cpu_infop
->cpuid_cores_per_package
),
1023 cpuid_cpu_infop
->cpuid_logical_per_package
,
1024 s_if_plural(cpuid_cpu_infop
->cpuid_logical_per_package
));
1029 cpuid_extfeature_display(
1034 kprintf("%s: %s\n", header
,
1035 cpuid_get_extfeature_names(cpuid_extfeatures(),
1043 if (cpuid_cpu_infop
->cpuid_brand_string
[0] != '\0') {
1044 kprintf("%s: %s\n", header
, cpuid_cpu_infop
->cpuid_brand_string
);
1051 return cpuid_info()->cpuid_family
;
1055 cpuid_cpufamily(void)
1057 return cpuid_info()->cpuid_cpufamily
;
1063 return cpuid_info()->cpuid_cpu_type
;
1067 cpuid_cpusubtype(void)
1069 return cpuid_info()->cpuid_cpu_subtype
;
1073 cpuid_features(void)
1075 static int checked
= 0;
1076 char fpu_arg
[20] = { 0 };
1078 (void) cpuid_info();
1080 /* check for boot-time fpu limitations */
1081 if (PE_parse_boot_argn("_fpu", &fpu_arg
[0], sizeof (fpu_arg
))) {
1082 printf("limiting fpu features to: %s\n", fpu_arg
);
1083 if (!strncmp("387", fpu_arg
, sizeof("387")) || !strncmp("mmx", fpu_arg
, sizeof("mmx"))) {
1084 printf("no sse or sse2\n");
1085 cpuid_cpu_infop
->cpuid_features
&= ~(CPUID_FEATURE_SSE
| CPUID_FEATURE_SSE2
| CPUID_FEATURE_FXSR
);
1086 } else if (!strncmp("sse", fpu_arg
, sizeof("sse"))) {
1087 printf("no sse2\n");
1088 cpuid_cpu_infop
->cpuid_features
&= ~(CPUID_FEATURE_SSE2
);
1093 return cpuid_cpu_infop
->cpuid_features
;
1097 cpuid_extfeatures(void)
1099 return cpuid_info()->cpuid_extfeatures
;
1103 cpuid_leaf7_features(void)
1105 return cpuid_info()->cpuid_leaf7_features
;
1108 static i386_vmm_info_t
*_cpuid_vmm_infop
= NULL
;
1109 static i386_vmm_info_t _cpuid_vmm_info
;
1112 cpuid_init_vmm_info(i386_vmm_info_t
*info_p
)
1115 uint32_t max_vmm_leaf
;
1117 bzero(info_p
, sizeof(*info_p
));
1119 if (!cpuid_vmm_present())
1122 DBG("cpuid_init_vmm_info(%p)\n", info_p
);
1124 /* do cpuid 0x40000000 to get VMM vendor */
1125 cpuid_fn(0x40000000, reg
);
1126 max_vmm_leaf
= reg
[eax
];
1127 bcopy((char *)®
[ebx
], &info_p
->cpuid_vmm_vendor
[0], 4);
1128 bcopy((char *)®
[ecx
], &info_p
->cpuid_vmm_vendor
[4], 4);
1129 bcopy((char *)®
[edx
], &info_p
->cpuid_vmm_vendor
[8], 4);
1130 info_p
->cpuid_vmm_vendor
[12] = '\0';
1132 if (0 == strcmp(info_p
->cpuid_vmm_vendor
, CPUID_VMM_ID_VMWARE
)) {
1133 /* VMware identification string: kb.vmware.com/kb/1009458 */
1134 info_p
->cpuid_vmm_family
= CPUID_VMM_FAMILY_VMWARE
;
1135 } else if (0 == strcmp(info_p
->cpuid_vmm_vendor
, CPUID_VMM_ID_PARALLELS
)) {
1136 /* Parallels identification string */
1137 info_p
->cpuid_vmm_family
= CPUID_VMM_FAMILY_PARALLELS
;
1139 info_p
->cpuid_vmm_family
= CPUID_VMM_FAMILY_UNKNOWN
;
1142 /* VMM generic leaves: https://lkml.org/lkml/2008/10/1/246 */
1143 if (max_vmm_leaf
>= 0x40000010) {
1144 cpuid_fn(0x40000010, reg
);
1146 info_p
->cpuid_vmm_tsc_frequency
= reg
[eax
];
1147 info_p
->cpuid_vmm_bus_frequency
= reg
[ebx
];
1150 DBG(" vmm_vendor : %s\n", info_p
->cpuid_vmm_vendor
);
1151 DBG(" vmm_family : %u\n", info_p
->cpuid_vmm_family
);
1152 DBG(" vmm_bus_frequency : %u\n", info_p
->cpuid_vmm_bus_frequency
);
1153 DBG(" vmm_tsc_frequency : %u\n", info_p
->cpuid_vmm_tsc_frequency
);
1157 cpuid_vmm_present(void)
1159 return (cpuid_features() & CPUID_FEATURE_VMM
) ? TRUE
: FALSE
;
1163 cpuid_vmm_info(void)
1165 if (_cpuid_vmm_infop
== NULL
) {
1166 cpuid_init_vmm_info(&_cpuid_vmm_info
);
1167 _cpuid_vmm_infop
= &_cpuid_vmm_info
;
1169 return _cpuid_vmm_infop
;
1173 cpuid_vmm_family(void)
1175 return cpuid_vmm_info()->cpuid_vmm_family
;