]> git.saurik.com Git - apple/xnu.git/blob - osfmk/i386/machine_routines.c
4ffb4ddc3361b6614c9276ebaf14d4c95b8a4425
[apple/xnu.git] / osfmk / i386 / machine_routines.c
1 /*
2 * Copyright (c) 2000-2007 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28
29 #include <i386/machine_routines.h>
30 #include <i386/io_map_entries.h>
31 #include <i386/cpuid.h>
32 #include <i386/fpu.h>
33 #include <mach/processor.h>
34 #include <kern/processor.h>
35 #include <kern/machine.h>
36 #include <kern/cpu_data.h>
37 #include <kern/cpu_number.h>
38 #include <kern/thread.h>
39 #include <i386/cpu_data.h>
40 #include <i386/machine_cpu.h>
41 #include <i386/mp.h>
42 #include <i386/mp_events.h>
43 #include <i386/pmap.h>
44 #include <i386/misc_protos.h>
45 #include <i386/pmCPU.h>
46 #include <i386/proc_reg.h>
47 #include <i386/tsc.h>
48 #include <i386/cpu_threads.h>
49 #include <mach/vm_param.h>
50 #if MACH_KDB
51 #include <i386/db_machdep.h>
52 #include <ddb/db_aout.h>
53 #include <ddb/db_access.h>
54 #include <ddb/db_sym.h>
55 #include <ddb/db_variables.h>
56 #include <ddb/db_command.h>
57 #include <ddb/db_output.h>
58 #include <ddb/db_expr.h>
59 #endif
60
61 #if DEBUG
62 #define DBG(x...) kprintf("DBG: " x)
63 #else
64 #define DBG(x...)
65 #endif
66
67 extern thread_t Shutdown_context(thread_t thread, void (*doshutdown)(processor_t),processor_t processor);
68 extern void wakeup(void *);
69 extern unsigned KernelRelocOffset;
70
71 static int max_cpus_initialized = 0;
72
73 unsigned int LockTimeOut;
74 unsigned int LockTimeOutTSC;
75 unsigned int MutexSpin;
76
77 #define MAX_CPUS_SET 0x1
78 #define MAX_CPUS_WAIT 0x2
79
80 /* IO memory map services */
81
82 /* Map memory map IO space */
83 vm_offset_t ml_io_map(
84 vm_offset_t phys_addr,
85 vm_size_t size)
86 {
87 return(io_map(phys_addr,size,VM_WIMG_IO));
88 }
89
90 /* boot memory allocation */
91 vm_offset_t ml_static_malloc(
92 __unused vm_size_t size)
93 {
94 return((vm_offset_t)NULL);
95 }
96
97
98 void ml_get_bouncepool_info(vm_offset_t *phys_addr, vm_size_t *size)
99 {
100 *phys_addr = bounce_pool_base;
101 *size = bounce_pool_size;
102 }
103
104
105 vm_offset_t
106 ml_boot_ptovirt(
107 vm_offset_t paddr)
108 {
109 return (vm_offset_t)((paddr-KernelRelocOffset) | LINEAR_KERNEL_ADDRESS);
110 }
111
112 vm_offset_t
113 ml_static_ptovirt(
114 vm_offset_t paddr)
115 {
116 return (vm_offset_t)((unsigned) paddr | LINEAR_KERNEL_ADDRESS);
117 }
118
119
120 /*
121 * Routine: ml_static_mfree
122 * Function:
123 */
124 void
125 ml_static_mfree(
126 vm_offset_t vaddr,
127 vm_size_t size)
128 {
129 vm_offset_t vaddr_cur;
130 ppnum_t ppn;
131
132 // if (vaddr < VM_MIN_KERNEL_ADDRESS) return;
133
134 assert((vaddr & (PAGE_SIZE-1)) == 0); /* must be page aligned */
135
136 for (vaddr_cur = vaddr;
137 vaddr_cur < round_page_32(vaddr+size);
138 vaddr_cur += PAGE_SIZE) {
139 ppn = pmap_find_phys(kernel_pmap, (addr64_t)vaddr_cur);
140 if (ppn != (vm_offset_t)NULL) {
141 kernel_pmap->stats.resident_count++;
142 if (kernel_pmap->stats.resident_count >
143 kernel_pmap->stats.resident_max) {
144 kernel_pmap->stats.resident_max =
145 kernel_pmap->stats.resident_count;
146 }
147 pmap_remove(kernel_pmap, (addr64_t)vaddr_cur, (addr64_t)(vaddr_cur+PAGE_SIZE));
148 vm_page_create(ppn,(ppn+1));
149 vm_page_wire_count--;
150 }
151 }
152 }
153
154
155 /* virtual to physical on wired pages */
156 vm_offset_t ml_vtophys(
157 vm_offset_t vaddr)
158 {
159 return kvtophys(vaddr);
160 }
161
162 /*
163 * Routine: ml_nofault_copy
164 * Function: Perform a physical mode copy if the source and
165 * destination have valid translations in the kernel pmap.
166 * If translations are present, they are assumed to
167 * be wired; i.e. no attempt is made to guarantee that the
168 * translations obtained remained valid for
169 * the duration of the copy process.
170 */
171
172 vm_size_t ml_nofault_copy(
173 vm_offset_t virtsrc, vm_offset_t virtdst, vm_size_t size)
174 {
175 addr64_t cur_phys_dst, cur_phys_src;
176 uint32_t count, nbytes = 0;
177
178 while (size > 0) {
179 if (!(cur_phys_src = kvtophys(virtsrc)))
180 break;
181 if (!(cur_phys_dst = kvtophys(virtdst)))
182 break;
183 if (!pmap_valid_page(i386_btop(cur_phys_dst)) || !pmap_valid_page(i386_btop(cur_phys_src)))
184 break;
185 count = PAGE_SIZE - (cur_phys_src & PAGE_MASK);
186 if (count > (PAGE_SIZE - (cur_phys_dst & PAGE_MASK)))
187 count = PAGE_SIZE - (cur_phys_dst & PAGE_MASK);
188 if (count > size)
189 count = size;
190
191 bcopy_phys(cur_phys_src, cur_phys_dst, count);
192
193 nbytes += count;
194 virtsrc += count;
195 virtdst += count;
196 size -= count;
197 }
198
199 return nbytes;
200 }
201
202 /* Interrupt handling */
203
204 /* Initialize Interrupts */
205 void ml_init_interrupt(void)
206 {
207 (void) ml_set_interrupts_enabled(TRUE);
208 }
209
210 /* Get Interrupts Enabled */
211 boolean_t ml_get_interrupts_enabled(void)
212 {
213 unsigned long flags;
214
215 __asm__ volatile("pushf; popl %0" : "=r" (flags));
216 return (flags & EFL_IF) != 0;
217 }
218
219 /* Set Interrupts Enabled */
220 boolean_t ml_set_interrupts_enabled(boolean_t enable)
221 {
222 unsigned long flags;
223
224 __asm__ volatile("pushf; popl %0" : "=r" (flags));
225
226 if (enable) {
227 ast_t *myast;
228
229 myast = ast_pending();
230
231 if ( (get_preemption_level() == 0) && (*myast & AST_URGENT) ) {
232 __asm__ volatile("sti");
233 __asm__ volatile ("int $0xff");
234 } else {
235 __asm__ volatile ("sti");
236 }
237 }
238 else {
239 __asm__ volatile("cli");
240 }
241
242 return (flags & EFL_IF) != 0;
243 }
244
245 /* Check if running at interrupt context */
246 boolean_t ml_at_interrupt_context(void)
247 {
248 return get_interrupt_level() != 0;
249 }
250
251 /* Generate a fake interrupt */
252 void ml_cause_interrupt(void)
253 {
254 panic("ml_cause_interrupt not defined yet on Intel");
255 }
256
257 void ml_thread_policy(
258 thread_t thread,
259 __unused unsigned policy_id,
260 unsigned policy_info)
261 {
262 if (policy_info & MACHINE_NETWORK_WORKLOOP) {
263 spl_t s = splsched();
264
265 thread_lock(thread);
266
267 set_priority(thread, thread->priority + 1);
268
269 thread_unlock(thread);
270 splx(s);
271 }
272 }
273
274 /* Initialize Interrupts */
275 void ml_install_interrupt_handler(
276 void *nub,
277 int source,
278 void *target,
279 IOInterruptHandler handler,
280 void *refCon)
281 {
282 boolean_t current_state;
283
284 current_state = ml_get_interrupts_enabled();
285
286 PE_install_interrupt_handler(nub, source, target,
287 (IOInterruptHandler) handler, refCon);
288
289 (void) ml_set_interrupts_enabled(current_state);
290
291 initialize_screen(NULL, kPEAcquireScreen);
292 }
293
294
295 void
296 machine_idle(void)
297 {
298 x86_core_t *my_core = x86_core();
299 cpu_data_t *my_cpu = current_cpu_datap();
300 int others_active;
301
302 /*
303 * We halt this cpu thread
304 * unless kernel param idlehalt is false and no other thread
305 * in the same core is active - if so, don't halt so that this
306 * core doesn't go into a low-power mode.
307 * For 4/4, we set a null "active cr3" while idle.
308 */
309 if (my_core == NULL || my_cpu == NULL)
310 goto out;
311
312 others_active = !atomic_decl_and_test(
313 (long *) &my_core->active_lcpus, 1);
314 my_cpu->lcpu.idle = TRUE;
315 if (idlehalt || others_active) {
316 DBGLOG(cpu_handle, cpu_number(), MP_IDLE);
317 MARK_CPU_IDLE(cpu_number());
318 machine_idle_cstate(FALSE);
319 MARK_CPU_ACTIVE(cpu_number());
320 DBGLOG(cpu_handle, cpu_number(), MP_UNIDLE);
321 }
322 my_cpu->lcpu.idle = FALSE;
323 atomic_incl((long *) &my_core->active_lcpus, 1);
324 out:
325 __asm__ volatile("sti");
326 }
327
328 void
329 machine_signal_idle(
330 processor_t processor)
331 {
332 cpu_interrupt(PROCESSOR_DATA(processor, slot_num));
333 }
334
335 thread_t
336 machine_processor_shutdown(
337 thread_t thread,
338 void (*doshutdown)(processor_t),
339 processor_t processor)
340 {
341 vmx_suspend();
342 fpu_save_context(thread);
343 return(Shutdown_context(thread, doshutdown, processor));
344 }
345
346 kern_return_t
347 ml_processor_register(
348 cpu_id_t cpu_id,
349 uint32_t lapic_id,
350 processor_t *processor_out,
351 ipi_handler_t *ipi_handler,
352 boolean_t boot_cpu)
353 {
354 int target_cpu;
355 cpu_data_t *this_cpu_datap;
356
357 this_cpu_datap = cpu_data_alloc(boot_cpu);
358 if (this_cpu_datap == NULL) {
359 return KERN_FAILURE;
360 }
361 target_cpu = this_cpu_datap->cpu_number;
362 assert((boot_cpu && (target_cpu == 0)) ||
363 (!boot_cpu && (target_cpu != 0)));
364
365 lapic_cpu_map(lapic_id, target_cpu);
366
367 this_cpu_datap->cpu_id = cpu_id;
368 this_cpu_datap->cpu_phys_number = lapic_id;
369
370 this_cpu_datap->cpu_console_buf = console_cpu_alloc(boot_cpu);
371 if (this_cpu_datap->cpu_console_buf == NULL)
372 goto failed;
373
374 this_cpu_datap->cpu_chud = chudxnu_cpu_alloc(boot_cpu);
375 if (this_cpu_datap->cpu_chud == NULL)
376 goto failed;
377
378 if (!boot_cpu) {
379 this_cpu_datap->lcpu.core = cpu_thread_alloc(this_cpu_datap->cpu_number);
380 if (this_cpu_datap->lcpu.core == NULL)
381 goto failed;
382
383 pmCPUStateInit();
384
385 this_cpu_datap->cpu_pmap = pmap_cpu_alloc(boot_cpu);
386 if (this_cpu_datap->cpu_pmap == NULL)
387 goto failed;
388
389 this_cpu_datap->cpu_processor = cpu_processor_alloc(boot_cpu);
390 if (this_cpu_datap->cpu_processor == NULL)
391 goto failed;
392 /*
393 * processor_init() deferred to topology start
394 * because "slot numbers" a.k.a. logical processor numbers
395 * are not yet finalized.
396 */
397 }
398
399 *processor_out = this_cpu_datap->cpu_processor;
400 *ipi_handler = NULL;
401
402 if (target_cpu == machine_info.max_cpus - 1) {
403 /*
404 * All processors are now registered but not started (except
405 * for this "in-limbo" boot processor). We call to the machine
406 * topology code to finalize and activate the topology.
407 */
408 cpu_topology_start();
409 }
410
411 return KERN_SUCCESS;
412
413 failed:
414 cpu_processor_free(this_cpu_datap->cpu_processor);
415 pmap_cpu_free(this_cpu_datap->cpu_pmap);
416 chudxnu_cpu_free(this_cpu_datap->cpu_chud);
417 console_cpu_free(this_cpu_datap->cpu_console_buf);
418 return KERN_FAILURE;
419 }
420
421 void
422 ml_cpu_get_info(ml_cpu_info_t *cpu_infop)
423 {
424 boolean_t os_supports_sse;
425 i386_cpu_info_t *cpuid_infop;
426
427 if (cpu_infop == NULL)
428 return;
429
430 /*
431 * Are we supporting MMX/SSE/SSE2/SSE3?
432 * As distinct from whether the cpu has these capabilities.
433 */
434 os_supports_sse = get_cr4() & CR4_XMM;
435 if ((cpuid_features() & CPUID_FEATURE_SSE4_2) && os_supports_sse)
436 cpu_infop->vector_unit = 8;
437 else if ((cpuid_features() & CPUID_FEATURE_SSE4_1) && os_supports_sse)
438 cpu_infop->vector_unit = 7;
439 else if ((cpuid_features() & CPUID_FEATURE_SSSE3) && os_supports_sse)
440 cpu_infop->vector_unit = 6;
441 else if ((cpuid_features() & CPUID_FEATURE_SSE3) && os_supports_sse)
442 cpu_infop->vector_unit = 5;
443 else if ((cpuid_features() & CPUID_FEATURE_SSE2) && os_supports_sse)
444 cpu_infop->vector_unit = 4;
445 else if ((cpuid_features() & CPUID_FEATURE_SSE) && os_supports_sse)
446 cpu_infop->vector_unit = 3;
447 else if (cpuid_features() & CPUID_FEATURE_MMX)
448 cpu_infop->vector_unit = 2;
449 else
450 cpu_infop->vector_unit = 0;
451
452 cpuid_infop = cpuid_info();
453
454 cpu_infop->cache_line_size = cpuid_infop->cache_linesize;
455
456 cpu_infop->l1_icache_size = cpuid_infop->cache_size[L1I];
457 cpu_infop->l1_dcache_size = cpuid_infop->cache_size[L1D];
458
459 if (cpuid_infop->cache_size[L2U] > 0) {
460 cpu_infop->l2_settings = 1;
461 cpu_infop->l2_cache_size = cpuid_infop->cache_size[L2U];
462 } else {
463 cpu_infop->l2_settings = 0;
464 cpu_infop->l2_cache_size = 0xFFFFFFFF;
465 }
466
467 if (cpuid_infop->cache_size[L3U] > 0) {
468 cpu_infop->l3_settings = 1;
469 cpu_infop->l3_cache_size = cpuid_infop->cache_size[L3U];
470 } else {
471 cpu_infop->l3_settings = 0;
472 cpu_infop->l3_cache_size = 0xFFFFFFFF;
473 }
474 }
475
476 void
477 ml_init_max_cpus(unsigned long max_cpus)
478 {
479 boolean_t current_state;
480
481 current_state = ml_set_interrupts_enabled(FALSE);
482 if (max_cpus_initialized != MAX_CPUS_SET) {
483 if (max_cpus > 0 && max_cpus <= MAX_CPUS) {
484 /*
485 * Note: max_cpus is the number of enabled processors
486 * that ACPI found; max_ncpus is the maximum number
487 * that the kernel supports or that the "cpus="
488 * boot-arg has set. Here we take int minimum.
489 */
490 machine_info.max_cpus = MIN(max_cpus, max_ncpus);
491 }
492 if (max_cpus_initialized == MAX_CPUS_WAIT)
493 wakeup((event_t)&max_cpus_initialized);
494 max_cpus_initialized = MAX_CPUS_SET;
495 }
496 (void) ml_set_interrupts_enabled(current_state);
497 }
498
499 int
500 ml_get_max_cpus(void)
501 {
502 boolean_t current_state;
503
504 current_state = ml_set_interrupts_enabled(FALSE);
505 if (max_cpus_initialized != MAX_CPUS_SET) {
506 max_cpus_initialized = MAX_CPUS_WAIT;
507 assert_wait((event_t)&max_cpus_initialized, THREAD_UNINT);
508 (void)thread_block(THREAD_CONTINUE_NULL);
509 }
510 (void) ml_set_interrupts_enabled(current_state);
511 return(machine_info.max_cpus);
512 }
513
514 /*
515 * Routine: ml_init_lock_timeout
516 * Function:
517 */
518 void
519 ml_init_lock_timeout(void)
520 {
521 uint64_t abstime;
522 uint32_t mtxspin;
523
524 /* LockTimeOut is absolutetime, LockTimeOutTSC is in TSC ticks */
525 nanoseconds_to_absolutetime(NSEC_PER_SEC>>2, &abstime);
526 LockTimeOut = (uint32_t) abstime;
527 LockTimeOutTSC = (uint32_t) tmrCvt(abstime, tscFCvtn2t);
528
529 if (PE_parse_boot_arg("mtxspin", &mtxspin)) {
530 if (mtxspin > USEC_PER_SEC>>4)
531 mtxspin = USEC_PER_SEC>>4;
532 nanoseconds_to_absolutetime(mtxspin*NSEC_PER_USEC, &abstime);
533 } else {
534 nanoseconds_to_absolutetime(10*NSEC_PER_USEC, &abstime);
535 }
536 MutexSpin = (unsigned int)abstime;
537 }
538
539 /*
540 * This is called from the machine-independent routine cpu_up()
541 * to perform machine-dependent info updates. Defer to cpu_thread_init().
542 */
543 void
544 ml_cpu_up(void)
545 {
546 return;
547 }
548
549 /*
550 * This is called from the machine-independent routine cpu_down()
551 * to perform machine-dependent info updates.
552 */
553 void
554 ml_cpu_down(void)
555 {
556 return;
557 }
558
559 /*
560 * The following are required for parts of the kernel
561 * that cannot resolve these functions as inlines:
562 */
563 extern thread_t current_act(void);
564 thread_t
565 current_act(void)
566 {
567 return(current_thread_fast());
568 }
569
570 #undef current_thread
571 extern thread_t current_thread(void);
572 thread_t
573 current_thread(void)
574 {
575 return(current_thread_fast());
576 }
577
578
579 boolean_t ml_is64bit(void) {
580
581 return (cpu_mode_is64bit());
582 }
583
584
585 boolean_t ml_thread_is64bit(thread_t thread) {
586
587 return (thread_is_64bit(thread));
588 }
589
590
591 boolean_t ml_state_is64bit(void *saved_state) {
592
593 return is_saved_state64(saved_state);
594 }
595
596 void ml_cpu_set_ldt(int selector)
597 {
598 /*
599 * Avoid loading the LDT
600 * if we're setting the KERNEL LDT and it's already set.
601 */
602 if (selector == KERNEL_LDT &&
603 current_cpu_datap()->cpu_ldt == KERNEL_LDT)
604 return;
605
606 /*
607 * If 64bit this requires a mode switch (and back).
608 */
609 if (cpu_mode_is64bit())
610 ml_64bit_lldt(selector);
611 else
612 lldt(selector);
613 current_cpu_datap()->cpu_ldt = selector;
614 }
615
616 void ml_fp_setvalid(boolean_t value)
617 {
618 fp_setvalid(value);
619 }
620
621 uint64_t ml_cpu_int_event_time(void)
622 {
623 return current_cpu_datap()->cpu_int_event_time;
624 }
625
626
627 #if MACH_KDB
628
629 /*
630 * Display the global msrs
631 * *
632 * ms
633 */
634 void
635 db_msr(__unused db_expr_t addr,
636 __unused int have_addr,
637 __unused db_expr_t count,
638 __unused char *modif)
639 {
640
641 uint32_t i, msrlow, msrhigh;
642
643 /* Try all of the first 4096 msrs */
644 for (i = 0; i < 4096; i++) {
645 if (!rdmsr_carefully(i, &msrlow, &msrhigh)) {
646 db_printf("%08X - %08X.%08X\n", i, msrhigh, msrlow);
647 }
648 }
649
650 /* Try all of the 4096 msrs at 0x0C000000 */
651 for (i = 0; i < 4096; i++) {
652 if (!rdmsr_carefully(0x0C000000 | i, &msrlow, &msrhigh)) {
653 db_printf("%08X - %08X.%08X\n",
654 0x0C000000 | i, msrhigh, msrlow);
655 }
656 }
657
658 /* Try all of the 4096 msrs at 0xC0000000 */
659 for (i = 0; i < 4096; i++) {
660 if (!rdmsr_carefully(0xC0000000 | i, &msrlow, &msrhigh)) {
661 db_printf("%08X - %08X.%08X\n",
662 0xC0000000 | i, msrhigh, msrlow);
663 }
664 }
665 }
666
667 #endif