]> git.saurik.com Git - apple/xnu.git/blob - osfmk/kern/bsd_kern.c
4f6aa60aff69faf627614a7223ec7cc5ff7d662f
[apple/xnu.git] / osfmk / kern / bsd_kern.c
1 /*
2 * Copyright (c) 2000 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_LICENSE_HEADER_START@
5 *
6 * Copyright (c) 1999-2003 Apple Computer, Inc. All Rights Reserved.
7 *
8 * This file contains Original Code and/or Modifications of Original Code
9 * as defined in and that are subject to the Apple Public Source License
10 * Version 2.0 (the 'License'). You may not use this file except in
11 * compliance with the License. Please obtain a copy of the License at
12 * http://www.opensource.apple.com/apsl/ and read it before using this
13 * file.
14 *
15 * The Original Code and all software distributed under the License are
16 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
17 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
18 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
20 * Please see the License for the specific language governing rights and
21 * limitations under the License.
22 *
23 * @APPLE_LICENSE_HEADER_END@
24 */
25 #include <mach/mach_types.h>
26 #include <kern/queue.h>
27 #include <kern/ast.h>
28 #include <kern/thread.h>
29 #include <kern/thread_act.h>
30 #include <kern/task.h>
31 #include <kern/spl.h>
32 #include <kern/lock.h>
33 #include <vm/vm_map.h>
34 #include <vm/pmap.h>
35 #include <ipc/ipc_port.h>
36 #include <ipc/ipc_object.h>
37
38 #undef thread_should_halt
39 #undef ipc_port_release
40
41 decl_simple_lock_data(extern,reaper_lock)
42 extern queue_head_t reaper_queue;
43
44 /* BSD KERN COMPONENT INTERFACE */
45
46 task_t bsd_init_task = TASK_NULL;
47 char init_task_failure_data[1024];
48
49 thread_act_t get_firstthread(task_t);
50 vm_map_t get_task_map(task_t);
51 ipc_space_t get_task_ipcspace(task_t);
52 boolean_t is_kerneltask(task_t);
53 boolean_t is_thread_idle(thread_t);
54 boolean_t is_thread_running(thread_act_t);
55 thread_shuttle_t getshuttle_thread( thread_act_t);
56 thread_act_t getact_thread( thread_shuttle_t);
57 vm_offset_t get_map_min( vm_map_t);
58 vm_offset_t get_map_max( vm_map_t);
59 int get_task_userstop(task_t);
60 int get_thread_userstop(thread_act_t);
61 boolean_t thread_should_abort(thread_shuttle_t);
62 boolean_t current_thread_aborted(void);
63 void task_act_iterate_wth_args(task_t, void(*)(thread_act_t, void *), void *);
64 void ipc_port_release(ipc_port_t);
65 boolean_t is_thread_active(thread_t);
66 kern_return_t get_thread_waitresult(thread_t);
67 vm_size_t get_vmmap_size(vm_map_t);
68 int get_vmmap_entries(vm_map_t);
69 int get_task_numacts(task_t);
70 thread_act_t get_firstthread(task_t task);
71 kern_return_t get_signalact(task_t , thread_act_t *, thread_t *, int);
72 void astbsd_on(void);
73
74 /*
75 *
76 */
77 void *get_bsdtask_info(task_t t)
78 {
79 return(t->bsd_info);
80 }
81
82 /*
83 *
84 */
85 void set_bsdtask_info(task_t t,void * v)
86 {
87 t->bsd_info=v;
88 }
89
90 /*
91 *
92 */
93 void *get_bsdthread_info(thread_act_t th)
94 {
95 return(th->uthread);
96 }
97
98 /*
99 * XXX: wait for BSD to fix signal code
100 * Until then, we cannot block here. We know the task
101 * can't go away, so we make sure it is still active after
102 * retrieving the first thread for extra safety.
103 */
104 thread_act_t get_firstthread(task_t task)
105 {
106 thread_act_t thr_act;
107
108 thr_act = (thread_act_t)queue_first(&task->thr_acts);
109 if (thr_act == (thread_act_t)&task->thr_acts)
110 thr_act = THR_ACT_NULL;
111 if (!task->active)
112 return(THR_ACT_NULL);
113 return(thr_act);
114 }
115
116 kern_return_t get_signalact(task_t task,thread_act_t * thact, thread_t * thshut, int setast)
117 {
118
119 thread_act_t inc;
120 thread_act_t ninc;
121 thread_act_t thr_act;
122 thread_t th;
123
124 task_lock(task);
125 if (!task->active) {
126 task_unlock(task);
127 return(KERN_FAILURE);
128 }
129
130 thr_act = THR_ACT_NULL;
131 for (inc = (thread_act_t)queue_first(&task->thr_acts);
132 inc != (thread_act_t)&task->thr_acts;
133 inc = ninc) {
134 th = act_lock_thread(inc);
135 if ((inc->active) &&
136 ((th->state & (TH_ABORT|TH_ABORT_SAFELY)) != TH_ABORT)) {
137 thr_act = inc;
138 break;
139 }
140 act_unlock_thread(inc);
141 ninc = (thread_act_t)queue_next(&inc->thr_acts);
142 }
143 out:
144 if (thact)
145 *thact = thr_act;
146
147 if (thshut)
148 *thshut = thr_act? thr_act->thread: THREAD_NULL ;
149 if (thr_act) {
150 if (setast)
151 act_set_astbsd(thr_act);
152
153 act_unlock_thread(thr_act);
154 }
155 task_unlock(task);
156
157 if (thr_act)
158 return(KERN_SUCCESS);
159 else
160 return(KERN_FAILURE);
161 }
162
163
164 kern_return_t check_actforsig(task_t task, thread_act_t thact, thread_t * thshut, int setast)
165 {
166
167 thread_act_t inc;
168 thread_act_t ninc;
169 thread_act_t thr_act;
170 thread_t th;
171 int found=0;
172
173 task_lock(task);
174 if (!task->active) {
175 task_unlock(task);
176 return(KERN_FAILURE);
177 }
178
179 thr_act = THR_ACT_NULL;
180 for (inc = (thread_act_t)queue_first(&task->thr_acts);
181 inc != (thread_act_t)&task->thr_acts;
182 inc = ninc) {
183
184 if (inc != thact) {
185 ninc = (thread_act_t)queue_next(&inc->thr_acts);
186 continue;
187 }
188 th = act_lock_thread(inc);
189 if ((inc->active) &&
190 ((th->state & (TH_ABORT|TH_ABORT_SAFELY)) != TH_ABORT)) {
191 found = 1;
192 thr_act = inc;
193 break;
194 }
195 act_unlock_thread(inc);
196 /* ninc = (thread_act_t)queue_next(&inc->thr_acts); */
197 break;
198 }
199 out:
200 if (found) {
201 if (thshut)
202 *thshut = thr_act? thr_act->thread: THREAD_NULL ;
203 if (setast)
204 act_set_astbsd(thr_act);
205
206 act_unlock_thread(thr_act);
207 }
208 task_unlock(task);
209
210 if (found)
211 return(KERN_SUCCESS);
212 else
213 return(KERN_FAILURE);
214 }
215
216 /*
217 *
218 */
219 vm_map_t get_task_map(task_t t)
220 {
221 return(t->map);
222 }
223
224 /*
225 *
226 */
227 ipc_space_t get_task_ipcspace(task_t t)
228 {
229 return(t->itk_space);
230 }
231
232 int get_task_numacts(task_t t)
233 {
234 return(t->thr_act_count);
235 }
236
237 /*
238 * Reset the current task's map by taking a reference
239 * on the new map. The old map reference is returned.
240 */
241 vm_map_t
242 swap_task_map(task_t task,vm_map_t map)
243 {
244 vm_map_t old_map;
245
246 vm_map_reference(map);
247 task_lock(task);
248 old_map = task->map;
249 task->map = map;
250 task_unlock(task);
251 return old_map;
252 }
253
254 /*
255 * Reset the current act map.
256 * The caller donates us a reference to the new map
257 * and we donote our reference to the old map to him.
258 */
259 vm_map_t
260 swap_act_map(thread_act_t thr_act,vm_map_t map)
261 {
262 vm_map_t old_map;
263
264 act_lock(thr_act);
265 old_map = thr_act->map;
266 thr_act->map = map;
267 act_unlock(thr_act);
268 return old_map;
269 }
270
271 /*
272 *
273 */
274 pmap_t get_task_pmap(task_t t)
275 {
276 return(t->map->pmap);
277 }
278
279 /*
280 *
281 */
282 pmap_t get_map_pmap(vm_map_t map)
283 {
284 return(map->pmap);
285 }
286 /*
287 *
288 */
289 task_t get_threadtask(thread_act_t th)
290 {
291 return(th->task);
292 }
293
294
295 /*
296 *
297 */
298 boolean_t is_thread_idle(thread_t th)
299 {
300 return((th->state & TH_IDLE) == TH_IDLE);
301 }
302
303 /*
304 *
305 */
306 boolean_t is_thread_running(thread_act_t thact)
307 {
308 thread_t th = thact->thread;
309 return((th->state & TH_RUN) == TH_RUN);
310 }
311
312 /*
313 *
314 */
315 thread_shuttle_t
316 getshuttle_thread(
317 thread_act_t th)
318 {
319 #ifdef DEBUG
320 assert(th->thread);
321 #endif
322 return(th->thread);
323 }
324
325 /*
326 *
327 */
328 thread_act_t
329 getact_thread(
330 thread_shuttle_t th)
331 {
332 #ifdef DEBUG
333 assert(th->top_act);
334 #endif
335 return(th->top_act);
336 }
337
338 /*
339 *
340 */
341 vm_offset_t
342 get_map_min(
343 vm_map_t map)
344 {
345 return(vm_map_min(map));
346 }
347
348 /*
349 *
350 */
351 vm_offset_t
352 get_map_max(
353 vm_map_t map)
354 {
355 return(vm_map_max(map));
356 }
357 vm_size_t
358 get_vmmap_size(
359 vm_map_t map)
360 {
361 return(map->size);
362 }
363
364 int
365 get_vmsubmap_entries(
366 vm_map_t map,
367 vm_object_offset_t start,
368 vm_object_offset_t end)
369 {
370 int total_entries = 0;
371 vm_map_entry_t entry;
372
373 vm_map_lock(map);
374 entry = vm_map_first_entry(map);
375 while((entry != vm_map_to_entry(map)) && (entry->vme_start < start)) {
376 entry = entry->vme_next;
377 }
378
379 while((entry != vm_map_to_entry(map)) && (entry->vme_start < end)) {
380 if(entry->is_sub_map) {
381 total_entries +=
382 get_vmsubmap_entries(entry->object.sub_map,
383 entry->offset,
384 entry->offset +
385 (entry->vme_end - entry->vme_start));
386 } else {
387 total_entries += 1;
388 }
389 entry = entry->vme_next;
390 }
391 vm_map_unlock(map);
392 return(total_entries);
393 }
394
395 int
396 get_vmmap_entries(
397 vm_map_t map)
398 {
399 int total_entries = 0;
400 vm_map_entry_t entry;
401
402 vm_map_lock(map);
403 entry = vm_map_first_entry(map);
404
405 while(entry != vm_map_to_entry(map)) {
406 if(entry->is_sub_map) {
407 total_entries +=
408 get_vmsubmap_entries(entry->object.sub_map,
409 entry->offset,
410 entry->offset +
411 (entry->vme_end - entry->vme_start));
412 } else {
413 total_entries += 1;
414 }
415 entry = entry->vme_next;
416 }
417 vm_map_unlock(map);
418 return(total_entries);
419 }
420
421 /*
422 *
423 */
424 /*
425 *
426 */
427 int
428 get_task_userstop(
429 task_t task)
430 {
431 return(task->user_stop_count);
432 }
433
434 /*
435 *
436 */
437 int
438 get_thread_userstop(
439 thread_act_t th)
440 {
441 return(th->user_stop_count);
442 }
443
444 /*
445 *
446 */
447 boolean_t
448 thread_should_abort(
449 thread_shuttle_t th)
450 {
451 return(!th->top_act || !th->top_act->active ||
452 (th->state & (TH_ABORT|TH_ABORT_SAFELY)) == TH_ABORT);
453 }
454
455 /*
456 * This routine is like thread_should_abort() above. It checks to
457 * see if the current thread is aborted. But unlike above, it also
458 * checks to see if thread is safely aborted. If so, it returns
459 * that fact, and clears the condition (safe aborts only should
460 * have a single effect, and a poll of the abort status
461 * qualifies.
462 */
463 boolean_t
464 current_thread_aborted (
465 void)
466 {
467 thread_t th = current_thread();
468 spl_t s;
469
470 if (!th->top_act ||
471 ((th->state & (TH_ABORT|TH_ABORT_SAFELY)) == TH_ABORT &&
472 th->interrupt_level != THREAD_UNINT))
473 return (TRUE);
474 if (th->state & TH_ABORT_SAFELY) {
475 s = splsched();
476 thread_lock(th);
477 if (th->state & TH_ABORT_SAFELY)
478 th->state &= ~(TH_ABORT|TH_ABORT_SAFELY);
479 thread_unlock(th);
480 splx(s);
481 }
482 return FALSE;
483 }
484
485 /*
486 *
487 */
488 void
489 task_act_iterate_wth_args(
490 task_t task,
491 void (*func_callback)(thread_act_t, void *),
492 void *func_arg)
493 {
494 thread_act_t inc, ninc;
495
496 task_lock(task);
497 for (inc = (thread_act_t)queue_first(&task->thr_acts);
498 inc != (thread_act_t)&task->thr_acts;
499 inc = ninc) {
500 ninc = (thread_act_t)queue_next(&inc->thr_acts);
501 (void) (*func_callback)(inc, func_arg);
502 }
503 task_unlock(task);
504 }
505
506 void
507 ipc_port_release(
508 ipc_port_t port)
509 {
510 ipc_object_release(&(port)->ip_object);
511 }
512
513 boolean_t
514 is_thread_active(
515 thread_shuttle_t th)
516 {
517 return(th->active);
518 }
519
520 kern_return_t
521 get_thread_waitresult(
522 thread_shuttle_t th)
523 {
524 return(th->wait_result);
525 }
526
527 void
528 astbsd_on(void)
529 {
530 boolean_t reenable;
531
532 reenable = ml_set_interrupts_enabled(FALSE);
533 ast_on_fast(AST_BSD);
534 (void)ml_set_interrupts_enabled(reenable);
535 }