2 * Copyright (c) 2000-2012 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
30 #ifndef _I386_PMAP_INTERNAL_
31 #define _I386_PMAP_INTERNAL_
32 #ifdef MACH_KERNEL_PRIVATE
35 #include <sys/kdebug.h>
36 #include <kern/ledger.h>
37 #include <kern/simple_lock.h>
38 #include <i386/bit_routines.h>
44 #define PMAP_LOCK(pmap) { \
45 simple_lock(&(pmap)->lock); \
48 #define PMAP_UNLOCK(pmap) { \
49 simple_unlock(&(pmap)->lock); \
52 #define PMAP_UPDATE_TLBS(pmap, s, e) \
53 pmap_flush_tlbs(pmap, s, e, 0, NULL)
56 #define PMAP_DELAY_TLB_FLUSH 0x01
58 #define PMAP_UPDATE_TLBS_DELAYED(pmap, s, e, c) \
59 pmap_flush_tlbs(pmap, s, e, PMAP_DELAY_TLB_FLUSH, c)
62 #define iswired(pte) ((pte) & INTEL_PTE_WIRED)
65 extern boolean_t pmap_trace
;
66 #define PMAP_TRACE(x,a,b,c,d,e) \
68 KERNEL_DEBUG_CONSTANT(x,a,b,c,d,e); \
71 #define PMAP_TRACE(x,a,b,c,d,e) KERNEL_DEBUG(x,a,b,c,d,e)
72 #endif /* PMAP_TRACES */
74 #define PMAP_TRACE_CONSTANT(x,a,b,c,d,e) \
75 KERNEL_DEBUG_CONSTANT(x,a,b,c,d,e); \
77 kern_return_t pmap_expand_pml4(
80 unsigned int options
);
82 kern_return_t
pmap_expand_pdpt(
85 unsigned int options
);
87 void phys_attribute_set(
91 void pmap_set_reference(
94 boolean_t
phys_page_exists(
98 pmap_flush_tlbs(pmap_t
, vm_map_offset_t
, vm_map_offset_t
, int, pmap_flush_context
*);
101 pmap_update_cache_attributes_locked(ppnum_t
, unsigned);
103 extern const boolean_t cpu_64bit
;
106 * Private data structures.
110 * For each vm_page_t, there is a list of all currently
111 * valid virtual mappings of that page. An entry is
112 * a pv_rooted_entry_t; the list is the pv_table.
114 * N.B. with the new combo rooted/hashed scheme it is
115 * only possibly to remove individual non-rooted entries
116 * if they are found via the hashed chains as there is no
117 * way to unlink the singly linked hashed entries if navigated to
118 * via the queue list off the rooted entries. Think of it as
119 * hash/walk/pull, keeping track of the prev pointer while walking
120 * the singly linked hash list. All of this is to save memory and
121 * keep both types of pv_entries as small as possible.
126 PV HASHING Changes - JK 1/2007
128 Pve's establish physical to virtual mappings. These are used for aliasing of a
129 physical page to (potentially many) virtual addresses within pmaps. In the
130 previous implementation the structure of the pv_entries (each 16 bytes in size) was
132 typedef struct pv_entry {
133 struct pv_entry_t next;
138 An initial array of these is created at boot time, one per physical page of
139 memory, indexed by the physical page number. Additionally, a pool of entries
140 is created from a pv_zone to be used as needed by pmap_enter() when it is
141 creating new mappings. Originally, we kept this pool around because the code
142 in pmap_enter() was unable to block if it needed an entry and none were
143 available - we'd panic. Some time ago I restructured the pmap_enter() code
144 so that for user pmaps it can block while zalloc'ing a pv structure and restart,
145 removing a panic from the code (in the case of the kernel pmap we cannot block
146 and still panic, so, we keep a separate hot pool for use only on kernel pmaps).
147 The pool has not been removed since there is a large performance gain keeping
148 freed pv's around for reuse and not suffering the overhead of zalloc for every
151 As pmap_enter() created new mappings it linked the new pve's for them off the
152 fixed pv array for that ppn (off the next pointer). These pve's are accessed
153 for several operations, one of them being address space teardown. In that case,
156 for (every page/pte in the space) {
157 calc pve_ptr from the ppn in the pte
158 for (every pv in the list for the ppn) {
159 if (this pv is for this pmap/vaddr) {
166 The problem arose when we were running, say 8000 (or even 2000) apache or
167 other processes and one or all terminate. The list hanging off each pv array
168 entry could have thousands of entries. We were continuously linearly searching
169 each of these lists as we stepped through the address space we were tearing
170 down. Because of the locks we hold, likely taking a cache miss for each node,
171 and interrupt disabling for MP issues the system became completely unresponsive
172 for many seconds while we did this.
174 Realizing that pve's are accessed in two distinct ways (linearly running the
175 list by ppn for operations like pmap_page_protect and finding and
176 modifying/removing a single pve as part of pmap_enter processing) has led to
177 modifying the pve structures and databases.
179 There are now two types of pve structures. A "rooted" structure which is
180 basically the original structure accessed in an array by ppn, and a ''hashed''
181 structure accessed on a hash list via a hash of [pmap, vaddr]. These have been
182 designed with the two goals of minimizing wired memory and making the lookup of
183 a ppn faster. Since a vast majority of pages in the system are not aliased
184 and hence represented by a single pv entry I've kept the rooted entry size as
185 small as possible because there is one of these dedicated for every physical
186 page of memory. The hashed pve's are larger due to the addition of the hash
187 link and the ppn entry needed for matching while running the hash list to find
188 the entry we are looking for. This way, only systems that have lots of
189 aliasing (like 2000+ httpd procs) will pay the extra memory price. Both
190 structures have the same first three fields allowing some simplification in
193 They have these shapes
195 typedef struct pv_rooted_entry {
199 } *pv_rooted_entry_t;
202 typedef struct pv_hashed_entry {
207 struct pv_hashed_entry *nexth;
208 } *pv_hashed_entry_t;
210 The main flow difference is that the code is now aware of the rooted entry and
211 the hashed entries. Code that runs the pv list still starts with the rooted
212 entry and then continues down the qlink onto the hashed entries. Code that is
213 looking up a specific pv entry first checks the rooted entry and then hashes
214 and runs the hash list for the match. The hash list lengths are much smaller
215 than the original pv lists that contained all aliases for the specific ppn.
219 typedef struct pv_rooted_entry
{
220 /* first three entries must match pv_hashed_entry_t */
222 vm_map_offset_t va
; /* virtual address for mapping */
223 pmap_t pmap
; /* pmap where mapping lies */
224 } *pv_rooted_entry_t
;
226 #define PV_ROOTED_ENTRY_NULL ((pv_rooted_entry_t) 0)
228 typedef struct pv_hashed_entry
{
229 /* first three entries must match pv_rooted_entry_t */
234 struct pv_hashed_entry
*nexth
;
235 } *pv_hashed_entry_t
;
237 #define PV_HASHED_ENTRY_NULL ((pv_hashed_entry_t)0)
239 //#define PV_DEBUG 1 /* uncomment to enable some PV debugging code */
241 #define CHK_NPVHASH() if(0 == npvhashmask) panic("npvhash uninitialized");
243 #define CHK_NPVHASH(x)
246 #define NPVHASHBUCKETS (4096)
247 #define NPVHASHMASK ((NPVHASHBUCKETS) - 1) /* MUST BE 2^N - 1 */
248 #define PV_HASHED_LOW_WATER_MARK_DEFAULT 5000
249 #define PV_HASHED_KERN_LOW_WATER_MARK_DEFAULT 2000
250 #define PV_HASHED_ALLOC_CHUNK_INITIAL 2000
251 #define PV_HASHED_KERN_ALLOC_CHUNK_INITIAL 200
253 extern volatile uint32_t mappingrecurse
;
254 extern uint32_t pv_hashed_low_water_mark
, pv_hashed_kern_low_water_mark
;
260 #define LOCK_PV_HASH(hash) lock_hash_hash(hash)
261 #define UNLOCK_PV_HASH(hash) unlock_hash_hash(hash)
262 extern uint32_t npvhashmask
;
263 extern pv_hashed_entry_t
*pv_hash_table
; /* hash lists */
264 extern pv_hashed_entry_t pv_hashed_free_list
;
265 extern pv_hashed_entry_t pv_hashed_kern_free_list
;
266 decl_simple_lock_data(extern, pv_hashed_free_list_lock
)
267 decl_simple_lock_data(extern, pv_hashed_kern_free_list_lock
)
268 decl_simple_lock_data(extern, pv_hash_table_lock
)
269 decl_simple_lock_data(extern, phys_backup_lock
)
271 extern zone_t pv_hashed_list_zone
; /* zone of pv_hashed_entry
274 extern uint32_t pv_hashed_free_count
;
275 extern uint32_t pv_hashed_kern_free_count
;
277 * Each entry in the pv_head_table is locked by a bit in the
278 * pv_lock_table. The lock bits are accessed by the address of
279 * the frame they lock.
281 #define pv_lock_table_size(n) (((n)+BYTE_SIZE-1)/BYTE_SIZE)
282 #define pv_hash_lock_table_size(n) (((n)+BYTE_SIZE-1)/BYTE_SIZE)
283 extern char *pv_lock_table
; /* pointer to array of bits */
284 extern char *pv_hash_lock_table
;
285 extern pv_rooted_entry_t pv_head_table
; /* array of entries, one per page */
287 extern event_t mapping_replenish_event
;
289 static inline void PV_HASHED_ALLOC(pv_hashed_entry_t
*pvh_ep
) {
290 pmap_assert(*pvh_ep
== PV_HASHED_ENTRY_NULL
);
291 simple_lock(&pv_hashed_free_list_lock
);
292 /* If the kernel reserved pool is low, let non-kernel mappings allocate
293 * synchronously, possibly subject to a throttle.
295 if ((pv_hashed_kern_free_count
> pv_hashed_kern_low_water_mark
) && ((*pvh_ep
= pv_hashed_free_list
) != 0)) {
296 pv_hashed_free_list
= (pv_hashed_entry_t
)(*pvh_ep
)->qlink
.next
;
297 pv_hashed_free_count
--;
300 simple_unlock(&pv_hashed_free_list_lock
);
302 if (pv_hashed_free_count
<= pv_hashed_low_water_mark
) {
303 if (!mappingrecurse
&& hw_compare_and_store(0,1, &mappingrecurse
))
304 thread_wakeup(&mapping_replenish_event
);
308 static inline void PV_HASHED_FREE_LIST(pv_hashed_entry_t pvh_eh
, pv_hashed_entry_t pvh_et
, int pv_cnt
) {
309 simple_lock(&pv_hashed_free_list_lock
);
310 pvh_et
->qlink
.next
= (queue_entry_t
)pv_hashed_free_list
;
311 pv_hashed_free_list
= pvh_eh
;
312 pv_hashed_free_count
+= pv_cnt
;
313 simple_unlock(&pv_hashed_free_list_lock
);
316 extern unsigned pmap_kern_reserve_alloc_stat
;
318 static inline void PV_HASHED_KERN_ALLOC(pv_hashed_entry_t
*pvh_e
) {
319 pmap_assert(*pvh_e
== PV_HASHED_ENTRY_NULL
);
320 simple_lock(&pv_hashed_kern_free_list_lock
);
322 if ((*pvh_e
= pv_hashed_kern_free_list
) != 0) {
323 pv_hashed_kern_free_list
= (pv_hashed_entry_t
)(*pvh_e
)->qlink
.next
;
324 pv_hashed_kern_free_count
--;
325 pmap_kern_reserve_alloc_stat
++;
328 simple_unlock(&pv_hashed_kern_free_list_lock
);
330 if (pv_hashed_kern_free_count
< pv_hashed_kern_low_water_mark
) {
331 if (!mappingrecurse
&& hw_compare_and_store(0,1, &mappingrecurse
))
332 thread_wakeup(&mapping_replenish_event
);
336 static inline void PV_HASHED_KERN_FREE_LIST(pv_hashed_entry_t pvh_eh
, pv_hashed_entry_t pvh_et
, int pv_cnt
) {
337 simple_lock(&pv_hashed_kern_free_list_lock
);
338 pvh_et
->qlink
.next
= (queue_entry_t
)pv_hashed_kern_free_list
;
339 pv_hashed_kern_free_list
= pvh_eh
;
340 pv_hashed_kern_free_count
+= pv_cnt
;
341 simple_unlock(&pv_hashed_kern_free_list_lock
);
344 extern uint64_t pmap_pv_throttle_stat
, pmap_pv_throttled_waiters
;
345 extern event_t pmap_user_pv_throttle_event
;
347 static inline void pmap_pv_throttle(__unused pmap_t p
) {
348 pmap_assert(p
!= kernel_pmap
);
349 /* Apply throttle on non-kernel mappings */
350 if (pv_hashed_kern_free_count
< (pv_hashed_kern_low_water_mark
/ 2)) {
351 pmap_pv_throttle_stat
++;
352 /* This doesn't need to be strictly accurate, merely a hint
353 * to eliminate the timeout when the reserve is replenished.
355 pmap_pv_throttled_waiters
++;
356 assert_wait_timeout(&pmap_user_pv_throttle_event
, THREAD_UNINT
, 1, 1000 * NSEC_PER_USEC
);
357 thread_block(THREAD_CONTINUE_NULL
);
362 * Index into pv_head table, its lock bits, and the modify/reference and managed bits
365 #define pa_index(pa) (i386_btop(pa))
366 #define ppn_to_pai(ppn) ((int)ppn)
368 #define pai_to_pvh(pai) (&pv_head_table[pai])
369 #define lock_pvh_pai(pai) bit_lock(pai, (void *)pv_lock_table)
370 #define unlock_pvh_pai(pai) bit_unlock(pai, (void *)pv_lock_table)
371 #define pvhash(idx) (&pv_hash_table[idx])
372 #define lock_hash_hash(hash) bit_lock(hash, (void *)pv_hash_lock_table)
373 #define unlock_hash_hash(hash) bit_unlock(hash, (void *)pv_hash_lock_table)
375 #define IS_MANAGED_PAGE(x) \
376 ((unsigned int)(x) <= last_managed_page && \
377 (pmap_phys_attributes[x] & PHYS_MANAGED))
378 #define IS_INTERNAL_PAGE(x) \
379 (IS_MANAGED_PAGE(x) && (pmap_phys_attributes[x] & PHYS_INTERNAL))
380 #define IS_REUSABLE_PAGE(x) \
381 (IS_MANAGED_PAGE(x) && (pmap_phys_attributes[x] & PHYS_REUSABLE))
384 * Physical page attributes. Copy bits from PTE definition.
386 #define PHYS_MODIFIED INTEL_PTE_MOD /* page modified */
387 #define PHYS_REFERENCED INTEL_PTE_REF /* page referenced */
388 #define PHYS_MANAGED INTEL_PTE_VALID /* page is managed */
389 #define PHYS_NOENCRYPT INTEL_PTE_USER /* no need to encrypt this page in the hibernation image */
390 #define PHYS_NCACHE INTEL_PTE_NCACHE
391 #define PHYS_PTA INTEL_PTE_PTA
392 #define PHYS_CACHEABILITY_MASK (INTEL_PTE_PTA | INTEL_PTE_NCACHE)
393 #define PHYS_INTERNAL INTEL_PTE_WTHRU /* page from internal object */
394 #define PHYS_REUSABLE INTEL_PTE_WRITE /* page is "reusable" */
396 extern boolean_t pmap_disable_kheap_nx
;
397 extern boolean_t pmap_disable_kstack_nx
;
399 #define PMAP_EXPAND_OPTIONS_NONE (0x0)
400 #define PMAP_EXPAND_OPTIONS_NOWAIT (PMAP_OPTIONS_NOWAIT)
401 #define PMAP_EXPAND_OPTIONS_NOENTER (PMAP_OPTIONS_NOENTER)
404 * Amount of virtual memory mapped by one
405 * page-directory entry.
407 #define PDE_MAPPED_SIZE (pdetova(1))
411 * Locking and TLB invalidation
415 * Locking Protocols: (changed 2/2007 JK)
417 * There are two structures in the pmap module that need locking:
418 * the pmaps themselves, and the per-page pv_lists (which are locked
419 * by locking the pv_lock_table entry that corresponds to the pv_head
420 * for the list in question.) Most routines want to lock a pmap and
421 * then do operations in it that require pv_list locking -- however
422 * pmap_remove_all and pmap_copy_on_write operate on a physical page
423 * basis and want to do the locking in the reverse order, i.e. lock
424 * a pv_list and then go through all the pmaps referenced by that list.
426 * The system wide pmap lock has been removed. Now, paths take a lock
427 * on the pmap before changing its 'shape' and the reverse order lockers
428 * (coming in by phys ppn) take a lock on the corresponding pv and then
429 * retest to be sure nothing changed during the window before they locked
430 * and can then run up/down the pv lists holding the list lock. This also
431 * lets the pmap layer run (nearly completely) interrupt enabled, unlike
439 #define LOCK_PVH(index) { \
440 mp_disable_preemption(); \
441 lock_pvh_pai(index); \
444 #define UNLOCK_PVH(index) { \
445 unlock_pvh_pai(index); \
446 mp_enable_preemption(); \
449 extern uint64_t pde_mapped_size
;
451 extern char *pmap_phys_attributes
;
452 extern ppnum_t last_managed_page
;
454 extern ppnum_t lowest_lo
;
455 extern ppnum_t lowest_hi
;
456 extern ppnum_t highest_hi
;
459 * when spinning through pmap_remove
460 * ensure that we don't spend too much
461 * time with preemption disabled.
462 * I'm setting the current threshold
465 #define MAX_PREEMPTION_LATENCY_NS 20000
466 extern uint64_t max_preemption_latency_tsc
;
468 /* #define DEBUGINTERRUPTS 1 uncomment to ensure pmap callers have interrupts enabled */
469 #ifdef DEBUGINTERRUPTS
470 #define pmap_intr_assert() { \
471 if (processor_avail_count > 1 && !ml_get_interrupts_enabled()) \
472 panic("pmap interrupt assert %s, %d",__FILE__, __LINE__); \
475 #define pmap_intr_assert()
478 extern int nx_enabled
;
479 extern unsigned int inuse_ptepages_count
;
481 static inline uint32_t
482 pvhashidx(pmap_t pmap
, vm_map_offset_t va
)
484 uint32_t hashidx
= ((uint32_t)(uintptr_t)pmap
^
485 ((uint32_t)(va
>> PAGE_SHIFT
) & 0xFFFFFFFF)) &
492 * unlinks the pv_hashed_entry_t pvh from the singly linked hash chain.
493 * properly deals with the anchor.
494 * must be called with the hash locked, does not unlock it
497 pmap_pvh_unlink(pv_hashed_entry_t pvh
)
499 pv_hashed_entry_t curh
;
500 pv_hashed_entry_t
*pprevh
;
504 pvhash_idx
= pvhashidx(pvh
->pmap
, pvh
->va
);
506 pprevh
= pvhash(pvhash_idx
);
510 panic("pvh_unlink null anchor"); /* JK DEBUG */
514 while (PV_HASHED_ENTRY_NULL
!= curh
) {
517 pprevh
= &curh
->nexth
;
520 if (PV_HASHED_ENTRY_NULL
== curh
) panic("pmap_pvh_unlink no pvh");
521 *pprevh
= pvh
->nexth
;
526 pv_hash_add(pv_hashed_entry_t pvh_e
,
527 pv_rooted_entry_t pv_h
)
529 pv_hashed_entry_t
*hashp
;
533 pvhash_idx
= pvhashidx(pvh_e
->pmap
, pvh_e
->va
);
534 LOCK_PV_HASH(pvhash_idx
);
535 insque(&pvh_e
->qlink
, &pv_h
->qlink
);
536 hashp
= pvhash(pvhash_idx
);
539 panic("pv_hash_add(%p) null hash bucket", pvh_e
);
541 pvh_e
->nexth
= *hashp
;
543 UNLOCK_PV_HASH(pvhash_idx
);
547 pv_hash_remove(pv_hashed_entry_t pvh_e
)
552 pvhash_idx
= pvhashidx(pvh_e
->pmap
,pvh_e
->va
);
553 LOCK_PV_HASH(pvhash_idx
);
554 remque(&pvh_e
->qlink
);
555 pmap_pvh_unlink(pvh_e
);
556 UNLOCK_PV_HASH(pvhash_idx
);
559 static inline boolean_t
popcnt1(uint64_t distance
) {
560 return ((distance
& (distance
- 1)) == 0);
564 * Routines to handle suppression of/recovery from some forms of pagetable corruption
565 * incidents observed in the field. These can be either software induced (wild
566 * stores to the mapwindows where applicable, use after free errors
567 * (typically of pages addressed physically), mis-directed DMAs etc., or due
568 * to DRAM/memory hierarchy/interconnect errors. Given the theoretical rarity of these errors,
569 * the recording mechanism is deliberately not MP-safe. The overarching goal is to
570 * still assert on potential software races, but attempt recovery from incidents
571 * identifiable as occurring due to issues beyond the control of the pmap module.
572 * The latter includes single-bit errors and malformed pagetable entries.
573 * We currently limit ourselves to recovery/suppression of one incident per
574 * PMAP_PAGETABLE_CORRUPTION_INTERVAL seconds, and details of the incident
576 * Assertions are not suppressed if kernel debugging is enabled. (DRK 09)
583 PTE_SUPERVISOR
= 0x4,
586 PTE_INVALID_CACHEABILITY
= 0x20
587 } pmap_pagetable_corruption_t
;
592 } pmap_pv_assertion_t
;
595 PMAP_ACTION_IGNORE
= 0x0,
596 PMAP_ACTION_ASSERT
= 0x1,
597 PMAP_ACTION_RETRY
= 0x2,
598 PMAP_ACTION_RETRY_RELOCK
= 0x4
599 } pmap_pagetable_corruption_action_t
;
601 #define PMAP_PAGETABLE_CORRUPTION_INTERVAL (6ULL * 3600ULL)
602 extern uint64_t pmap_pagetable_corruption_interval_abstime
;
604 extern uint32_t pmap_pagetable_corruption_incidents
;
605 #define PMAP_PAGETABLE_CORRUPTION_MAX_LOG (8)
607 pmap_pv_assertion_t incident
;
608 pmap_pagetable_corruption_t reason
;
609 pmap_pagetable_corruption_action_t action
;
611 vm_map_offset_t vaddr
;
615 vm_map_offset_t pvva
;
617 } pmap_pagetable_corruption_record_t
;
619 extern pmap_pagetable_corruption_record_t pmap_pagetable_corruption_records
[];
620 extern uint64_t pmap_pagetable_corruption_last_abstime
;
621 extern thread_call_t pmap_pagetable_corruption_log_call
;
622 extern boolean_t pmap_pagetable_corruption_timeout
;
625 pmap_pagetable_corruption_log(pmap_pv_assertion_t incident
, pmap_pagetable_corruption_t suppress_reason
, pmap_pagetable_corruption_action_t action
, pmap_t pmap
, vm_map_offset_t vaddr
, pt_entry_t
*ptep
, ppnum_t ppn
, pmap_t pvpmap
, vm_map_offset_t pvva
) {
626 uint32_t pmap_pagetable_corruption_log_index
;
627 pmap_pagetable_corruption_log_index
= pmap_pagetable_corruption_incidents
++ % PMAP_PAGETABLE_CORRUPTION_MAX_LOG
;
628 pmap_pagetable_corruption_records
[pmap_pagetable_corruption_log_index
].incident
= incident
;
629 pmap_pagetable_corruption_records
[pmap_pagetable_corruption_log_index
].reason
= suppress_reason
;
630 pmap_pagetable_corruption_records
[pmap_pagetable_corruption_log_index
].action
= action
;
631 pmap_pagetable_corruption_records
[pmap_pagetable_corruption_log_index
].pmap
= pmap
;
632 pmap_pagetable_corruption_records
[pmap_pagetable_corruption_log_index
].vaddr
= vaddr
;
633 pmap_pagetable_corruption_records
[pmap_pagetable_corruption_log_index
].pte
= *ptep
;
634 pmap_pagetable_corruption_records
[pmap_pagetable_corruption_log_index
].ppn
= ppn
;
635 pmap_pagetable_corruption_records
[pmap_pagetable_corruption_log_index
].pvpmap
= pvpmap
;
636 pmap_pagetable_corruption_records
[pmap_pagetable_corruption_log_index
].pvva
= pvva
;
637 pmap_pagetable_corruption_records
[pmap_pagetable_corruption_log_index
].abstime
= mach_absolute_time();
638 /* Asynchronously log */
639 thread_call_enter(pmap_pagetable_corruption_log_call
);
642 static inline pmap_pagetable_corruption_action_t
643 pmap_classify_pagetable_corruption(pmap_t pmap
, vm_map_offset_t vaddr
, ppnum_t
*ppnp
, pt_entry_t
*ptep
, pmap_pv_assertion_t incident
) {
644 pmap_pagetable_corruption_action_t action
= PMAP_ACTION_ASSERT
;
645 pmap_pagetable_corruption_t suppress_reason
= PTE_VALID
;
646 ppnum_t suppress_ppn
= 0;
647 pt_entry_t cpte
= *ptep
;
648 ppnum_t cpn
= pa_index(pte_to_pa(cpte
));
650 pv_rooted_entry_t pv_h
= pai_to_pvh(ppn_to_pai(ppn
));
651 pv_rooted_entry_t pv_e
= pv_h
;
653 pmap_t pvpmap
= pv_h
->pmap
;
654 vm_map_offset_t pvva
= pv_h
->va
;
655 boolean_t ppcd
= FALSE
;
658 /* Ideally, we'd consult the Mach VM here to definitively determine
659 * the nature of the mapping for this address space and address.
660 * As that would be a layering violation in this context, we
661 * use various heuristics to recover from single bit errors,
662 * malformed pagetable entries etc. These are not intended
663 * to be comprehensive.
666 /* As a precautionary measure, mark A+D */
667 pmap_phys_attributes
[ppn_to_pai(ppn
)] |= (PHYS_MODIFIED
| PHYS_REFERENCED
);
668 is_ept
= is_ept_pmap(pmap
);
671 * Correct potential single bit errors in either (but not both) element
675 if ((popcnt1((uintptr_t)pv_e
->pmap
^ (uintptr_t)pmap
) && pv_e
->va
== vaddr
) ||
676 (pv_e
->pmap
== pmap
&& popcnt1(pv_e
->va
^ vaddr
))) {
679 suppress_reason
= PV_BITFLIP
;
680 action
= PMAP_ACTION_RETRY
;
683 } while (((pv_e
= (pv_rooted_entry_t
) queue_next(&pv_e
->qlink
))) && (pv_e
!= pv_h
));
685 /* Discover root entries with a Hamming
686 * distance of 1 from the supplied
687 * physical page frame.
689 for (bitdex
= 0; bitdex
< (sizeof(ppnum_t
) << 3); bitdex
++) {
690 ppnum_t npn
= cpn
^ (ppnum_t
) (1ULL << bitdex
);
691 if (IS_MANAGED_PAGE(npn
)) {
692 pv_rooted_entry_t npv_h
= pai_to_pvh(ppn_to_pai(npn
));
693 if (npv_h
->va
== vaddr
&& npv_h
->pmap
== pmap
) {
694 suppress_reason
= PTE_BITFLIP
;
696 action
= PMAP_ACTION_RETRY_RELOCK
;
697 UNLOCK_PVH(ppn_to_pai(ppn
));
704 if (pmap
== kernel_pmap
) {
705 action
= PMAP_ACTION_ASSERT
;
710 * Check for malformed/inconsistent entries.
711 * The first check here isn't useful for EPT PTEs because INTEL_EPT_NCACHE == 0
713 if (!is_ept
&& ((cpte
& (INTEL_PTE_NCACHE
| INTEL_PTE_WTHRU
| INTEL_PTE_PTA
)) == (INTEL_PTE_NCACHE
| INTEL_PTE_WTHRU
))) {
714 action
= PMAP_ACTION_IGNORE
;
715 suppress_reason
= PTE_INVALID_CACHEABILITY
;
717 else if (cpte
& INTEL_PTE_RSVD
) {
718 action
= PMAP_ACTION_IGNORE
;
719 suppress_reason
= PTE_RSVD
;
721 else if ((pmap
!= kernel_pmap
) && (!is_ept
) && ((cpte
& INTEL_PTE_USER
) == 0)) {
722 action
= PMAP_ACTION_IGNORE
;
723 suppress_reason
= PTE_SUPERVISOR
;
726 PE_parse_boot_argn("-pmap_pagetable_corruption_deassert", &ppcd
, sizeof(ppcd
));
728 if (debug_boot_arg
&& !ppcd
) {
729 action
= PMAP_ACTION_ASSERT
;
732 if ((mach_absolute_time() - pmap_pagetable_corruption_last_abstime
) < pmap_pagetable_corruption_interval_abstime
) {
733 action
= PMAP_ACTION_ASSERT
;
734 pmap_pagetable_corruption_timeout
= TRUE
;
738 pmap_pagetable_corruption_last_abstime
= mach_absolute_time();
740 pmap_pagetable_corruption_log(incident
, suppress_reason
, action
, pmap
, vaddr
, &cpte
, *ppnp
, pvpmap
, pvva
);
745 * Remove pv list entry.
746 * Called with pv_head_table entry locked.
747 * Returns pv entry to be freed (or NULL).
749 static inline __attribute__((always_inline
)) pv_hashed_entry_t
750 pmap_pv_remove(pmap_t pmap
,
751 vm_map_offset_t vaddr
,
755 pv_hashed_entry_t pvh_e
;
756 pv_rooted_entry_t pv_h
;
757 pv_hashed_entry_t
*pprevh
;
762 pmap_pv_remove_retry
:
764 pvh_e
= PV_HASHED_ENTRY_NULL
;
765 pv_h
= pai_to_pvh(ppn_to_pai(ppn
));
767 if (__improbable(pv_h
->pmap
== PMAP_NULL
)) {
768 pmap_pagetable_corruption_action_t pac
= pmap_classify_pagetable_corruption(pmap
, vaddr
, ppnp
, pte
, ROOT_ABSENT
);
769 if (pac
== PMAP_ACTION_IGNORE
)
770 goto pmap_pv_remove_exit
;
771 else if (pac
== PMAP_ACTION_ASSERT
)
772 panic("Possible memory corruption: pmap_pv_remove(%p,0x%llx,0x%x, 0x%llx, %p, %p): null pv_list!", pmap
, vaddr
, ppn
, *pte
, ppnp
, pte
);
773 else if (pac
== PMAP_ACTION_RETRY_RELOCK
) {
774 LOCK_PVH(ppn_to_pai(*ppnp
));
775 pmap_phys_attributes
[ppn_to_pai(*ppnp
)] |= (PHYS_MODIFIED
| PHYS_REFERENCED
);
776 goto pmap_pv_remove_retry
;
778 else if (pac
== PMAP_ACTION_RETRY
)
779 goto pmap_pv_remove_retry
;
782 if (pv_h
->va
== vaddr
&& pv_h
->pmap
== pmap
) {
784 * Header is the pv_rooted_entry.
785 * We can't free that. If there is a queued
786 * entry after this one we remove that
787 * from the ppn queue, we remove it from the hash chain
788 * and copy it to the rooted entry. Then free it instead.
790 pvh_e
= (pv_hashed_entry_t
) queue_next(&pv_h
->qlink
);
791 if (pv_h
!= (pv_rooted_entry_t
) pvh_e
) {
793 * Entry queued to root, remove this from hash
794 * and install as new root.
797 pvhash_idx
= pvhashidx(pvh_e
->pmap
, pvh_e
->va
);
798 LOCK_PV_HASH(pvhash_idx
);
799 remque(&pvh_e
->qlink
);
800 pprevh
= pvhash(pvhash_idx
);
801 if (PV_HASHED_ENTRY_NULL
== *pprevh
) {
802 panic("Possible memory corruption: pmap_pv_remove(%p,0x%llx,0x%x): "
803 "empty hash, removing rooted",
806 pmap_pvh_unlink(pvh_e
);
807 UNLOCK_PV_HASH(pvhash_idx
);
808 pv_h
->pmap
= pvh_e
->pmap
;
809 pv_h
->va
= pvh_e
->va
; /* dispose of pvh_e */
811 /* none queued after rooted */
812 pv_h
->pmap
= PMAP_NULL
;
813 pvh_e
= PV_HASHED_ENTRY_NULL
;
817 * not removing rooted pv. find it on hash chain, remove from
818 * ppn queue and hash chain and free it
821 pvhash_idx
= pvhashidx(pmap
, vaddr
);
822 LOCK_PV_HASH(pvhash_idx
);
823 pprevh
= pvhash(pvhash_idx
);
824 if (PV_HASHED_ENTRY_NULL
== *pprevh
) {
825 panic("Possible memory corruption: pmap_pv_remove(%p,0x%llx,0x%x, 0x%llx, %p): empty hash",
826 pmap
, vaddr
, ppn
, *pte
, pte
);
829 pmap_pv_hashlist_walks
++;
831 while (PV_HASHED_ENTRY_NULL
!= pvh_e
) {
833 if (pvh_e
->pmap
== pmap
&&
834 pvh_e
->va
== vaddr
&&
837 pprevh
= &pvh_e
->nexth
;
838 pvh_e
= pvh_e
->nexth
;
841 if (PV_HASHED_ENTRY_NULL
== pvh_e
) {
842 pmap_pagetable_corruption_action_t pac
= pmap_classify_pagetable_corruption(pmap
, vaddr
, ppnp
, pte
, ROOT_PRESENT
);
844 if (pac
== PMAP_ACTION_ASSERT
)
845 panic("Possible memory corruption: pmap_pv_remove(%p, 0x%llx, 0x%x, 0x%llx, %p, %p): pv not on hash, head: %p, 0x%llx", pmap
, vaddr
, ppn
, *pte
, ppnp
, pte
, pv_h
->pmap
, pv_h
->va
);
847 UNLOCK_PV_HASH(pvhash_idx
);
848 if (pac
== PMAP_ACTION_RETRY_RELOCK
) {
849 LOCK_PVH(ppn_to_pai(*ppnp
));
850 pmap_phys_attributes
[ppn_to_pai(*ppnp
)] |= (PHYS_MODIFIED
| PHYS_REFERENCED
);
851 goto pmap_pv_remove_retry
;
853 else if (pac
== PMAP_ACTION_RETRY
) {
854 goto pmap_pv_remove_retry
;
856 else if (pac
== PMAP_ACTION_IGNORE
) {
857 goto pmap_pv_remove_exit
;
862 pmap_pv_hashlist_cnts
+= pv_cnt
;
863 if (pmap_pv_hashlist_max
< pv_cnt
)
864 pmap_pv_hashlist_max
= pv_cnt
;
865 *pprevh
= pvh_e
->nexth
;
866 remque(&pvh_e
->qlink
);
867 UNLOCK_PV_HASH(pvhash_idx
);
874 extern int pt_fake_zone_index
;
876 PMAP_ZINFO_PALLOC(pmap_t pmap
, vm_size_t bytes
)
878 thread_t thr
= current_thread();
882 pmap_ledger_credit(pmap
, task_ledgers
.tkm_private
, bytes
);
884 if (pt_fake_zone_index
!= -1 &&
885 (task
= thr
->task
) != NULL
&& (zinfo
= task
->tkm_zinfo
) != NULL
)
886 OSAddAtomic64(bytes
, (int64_t *)&zinfo
[pt_fake_zone_index
].alloc
);
890 PMAP_ZINFO_PFREE(pmap_t pmap
, vm_size_t bytes
)
892 thread_t thr
= current_thread();
896 pmap_ledger_debit(pmap
, task_ledgers
.tkm_private
, bytes
);
898 if (pt_fake_zone_index
!= -1 &&
899 (task
= thr
->task
) != NULL
&& (zinfo
= task
->tkm_zinfo
) != NULL
)
900 OSAddAtomic64(bytes
, (int64_t *)&zinfo
[pt_fake_zone_index
].free
);
904 PMAP_ZINFO_SALLOC(pmap_t pmap
, vm_size_t bytes
)
906 pmap_ledger_credit(pmap
, task_ledgers
.tkm_shared
, bytes
);
910 PMAP_ZINFO_SFREE(pmap_t pmap
, vm_size_t bytes
)
912 pmap_ledger_debit(pmap
, task_ledgers
.tkm_shared
, bytes
);
915 extern boolean_t pmap_initialized
;/* Has pmap_init completed? */
916 #define valid_page(x) (pmap_initialized && pmap_valid_page(x))
919 #define HIGH_MEM_BASE ((uint32_t)( -NBPDE) ) /* shared gdt etc seg addr */ /* XXX64 ?? */
923 int phys_attribute_test(
926 void phys_attribute_clear(
929 unsigned int options
,
932 //#define PCID_DEBUG 1
934 #define pmap_pcid_log(fmt, args...) \
936 kprintf(fmt, ##args); \
937 printf(fmt, ##args); \
940 #define pmap_pcid_log(fmt, args...)
942 void pmap_pcid_configure(void);
946 * Atomic 64-bit compare and exchange of a page table entry.
948 static inline boolean_t
949 pmap_cmpx_pte(pt_entry_t
*entryp
, pt_entry_t old
, pt_entry_t
new)
954 * Load the old value into %rax
955 * Load the new value into another register
956 * Compare-exchange-quad at address entryp
957 * If the compare succeeds, the new value is stored, return TRUE.
958 * Otherwise, no swap is made, return FALSE.
961 " lock; cmpxchgq %2,(%3) \n\t"
972 extern uint32_t pmap_update_clear_pte_count
;
974 static inline void pmap_update_pte(pt_entry_t
*mptep
, uint64_t pclear_bits
, uint64_t pset_bits
) {
975 pt_entry_t npte
, opte
;
978 if (__improbable(opte
== 0)) {
979 pmap_update_clear_pte_count
++;
982 npte
= opte
& ~(pclear_bits
);
984 } while (!pmap_cmpx_pte(mptep
, opte
, npte
));
987 #if defined(__x86_64__)
989 * The single pml4 page per pmap is allocated at pmap create time and exists
990 * for the duration of the pmap. we allocate this page in kernel vm.
991 * this returns the address of the requested pml4 entry in the top level page.
995 pmap64_pml4(pmap_t pmap
, vm_map_offset_t vaddr
)
997 if (__improbable((vaddr
> 0x00007FFFFFFFFFFFULL
) &&
998 (vaddr
< 0xFFFF800000000000ULL
))) {
1003 return PHYSMAP_PTOV(&((pml4_entry_t
*)pmap
->pm_cr3
)[(vaddr
>> PML4SHIFT
) & (NPML4PG
-1)]);
1005 return &pmap
->pm_pml4
[(vaddr
>> PML4SHIFT
) & (NPML4PG
-1)];
1010 * Returns address of requested PDPT entry in the physmap.
1012 static inline pdpt_entry_t
*
1013 pmap64_pdpt(pmap_t pmap
, vm_map_offset_t vaddr
)
1019 pml4
= pmap64_pml4(pmap
, vaddr
);
1020 is_ept
= is_ept_pmap(pmap
);
1022 if (pml4
&& (*pml4
& PTE_VALID_MASK(is_ept
))) {
1023 newpf
= *pml4
& PG_FRAME
;
1024 return &((pdpt_entry_t
*) PHYSMAP_PTOV(newpf
))
1025 [(vaddr
>> PDPTSHIFT
) & (NPDPTPG
-1)];
1030 * Returns the address of the requested PDE entry in the physmap.
1032 static inline pd_entry_t
*
1033 pmap64_pde(pmap_t pmap
, vm_map_offset_t vaddr
)
1039 pdpt
= pmap64_pdpt(pmap
, vaddr
);
1040 is_ept
= is_ept_pmap(pmap
);
1042 if (pdpt
&& (*pdpt
& PTE_VALID_MASK(is_ept
))) {
1043 newpf
= *pdpt
& PG_FRAME
;
1044 return &((pd_entry_t
*) PHYSMAP_PTOV(newpf
))
1045 [(vaddr
>> PDSHIFT
) & (NPDPG
-1)];
1050 static inline pd_entry_t
*
1051 pmap_pde(pmap_t m
, vm_map_offset_t v
)
1055 pde
= pmap64_pde(m
, v
);
1062 * return address of mapped pte for vaddr va in pmap pmap.
1064 * In case the pde maps a superpage, return the pde, which, in this case
1065 * is the actual page table entry.
1067 static inline pt_entry_t
*
1068 pmap_pte(pmap_t pmap
, vm_map_offset_t vaddr
)
1075 pde
= pmap64_pde(pmap
, vaddr
);
1077 is_ept
= is_ept_pmap(pmap
);
1079 if (pde
&& (*pde
& PTE_VALID_MASK(is_ept
))) {
1082 newpf
= *pde
& PG_FRAME
;
1083 return &((pt_entry_t
*)PHYSMAP_PTOV(newpf
))
1084 [i386_btop(vaddr
) & (ppnum_t
)(NPTEPG
-1)];
1090 #define DPRINTF(x...) kprintf(x)
1092 #define DPRINTF(x...)
1095 #endif /* MACH_KERNEL_PRIVATE */
1096 #endif /* _I386_PMAP_INTERNAL_ */