]> git.saurik.com Git - apple/xnu.git/blob - bsd/kern/kern_fork.c
4ec50d27a95cf75f536fbda47fbd1ee770a48b46
[apple/xnu.git] / bsd / kern / kern_fork.c
1 /*
2 * Copyright (c) 2000-2003 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_LICENSE_HEADER_START@
5 *
6 * Copyright (c) 1999-2003 Apple Computer, Inc. All Rights Reserved.
7 *
8 * This file contains Original Code and/or Modifications of Original Code
9 * as defined in and that are subject to the Apple Public Source License
10 * Version 2.0 (the 'License'). You may not use this file except in
11 * compliance with the License. Please obtain a copy of the License at
12 * http://www.opensource.apple.com/apsl/ and read it before using this
13 * file.
14 *
15 * The Original Code and all software distributed under the License are
16 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
17 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
18 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
20 * Please see the License for the specific language governing rights and
21 * limitations under the License.
22 *
23 * @APPLE_LICENSE_HEADER_END@
24 */
25 /* Copyright (c) 1995, 1997 Apple Computer, Inc. All Rights Reserved */
26 /*
27 * Copyright (c) 1982, 1986, 1989, 1991, 1993
28 * The Regents of the University of California. All rights reserved.
29 * (c) UNIX System Laboratories, Inc.
30 * All or some portions of this file are derived from material licensed
31 * to the University of California by American Telephone and Telegraph
32 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
33 * the permission of UNIX System Laboratories, Inc.
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. All advertising materials mentioning features or use of this software
44 * must display the following acknowledgement:
45 * This product includes software developed by the University of
46 * California, Berkeley and its contributors.
47 * 4. Neither the name of the University nor the names of its contributors
48 * may be used to endorse or promote products derived from this software
49 * without specific prior written permission.
50 *
51 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
52 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
53 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
54 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
55 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
56 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
57 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
58 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
59 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
60 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 * SUCH DAMAGE.
62 *
63 * @(#)kern_fork.c 8.8 (Berkeley) 2/14/95
64 */
65
66 #include <kern/assert.h>
67 #include <sys/param.h>
68 #include <sys/systm.h>
69 #include <sys/filedesc.h>
70 #include <sys/kernel.h>
71 #include <sys/malloc.h>
72 #include <sys/proc.h>
73 #include <sys/user.h>
74 #include <sys/resourcevar.h>
75 #include <sys/vnode.h>
76 #include <sys/file.h>
77 #include <sys/acct.h>
78 #include <sys/kern_audit.h>
79 #if KTRACE
80 #include <sys/ktrace.h>
81 #endif
82
83 #include <mach/mach_types.h>
84 #include <kern/mach_param.h>
85
86 #include <machine/spl.h>
87
88 thread_act_t cloneproc(struct proc *, int);
89 struct proc * forkproc(struct proc *, int);
90 thread_act_t procdup();
91
92 #define DOFORK 0x1 /* fork() system call */
93 #define DOVFORK 0x2 /* vfork() system call */
94 static int fork1(struct proc *, long, register_t *);
95
96 /*
97 * fork system call.
98 */
99 int
100 fork(p, uap, retval)
101 struct proc *p;
102 void *uap;
103 register_t *retval;
104 {
105 return (fork1(p, (long)DOFORK, retval));
106 }
107
108 /*
109 * vfork system call
110 */
111 int
112 vfork(p, uap, retval)
113 struct proc *p;
114 void *uap;
115 register_t *retval;
116 {
117 register struct proc * newproc;
118 register uid_t uid;
119 thread_act_t cur_act = (thread_act_t)current_act();
120 int count;
121 task_t t;
122 uthread_t ut;
123
124 /*
125 * Although process entries are dynamically created, we still keep
126 * a global limit on the maximum number we will create. Don't allow
127 * a nonprivileged user to use the last process; don't let root
128 * exceed the limit. The variable nprocs is the current number of
129 * processes, maxproc is the limit.
130 */
131 uid = p->p_cred->p_ruid;
132 if ((nprocs >= maxproc - 1 && uid != 0) || nprocs >= maxproc) {
133 tablefull("proc");
134 retval[1] = 0;
135 return (EAGAIN);
136 }
137
138 /*
139 * Increment the count of procs running with this uid. Don't allow
140 * a nonprivileged user to exceed their current limit.
141 */
142 count = chgproccnt(uid, 1);
143 if (uid != 0 && count > p->p_rlimit[RLIMIT_NPROC].rlim_cur) {
144 (void)chgproccnt(uid, -1);
145 return (EAGAIN);
146 }
147
148 ut = (struct uthread *)get_bsdthread_info(cur_act);
149 if (ut->uu_flag & P_VFORK) {
150 printf("vfork called recursively by %s\n", p->p_comm);
151 (void)chgproccnt(uid, -1);
152 return (EINVAL);
153 }
154 p->p_flag |= P_VFORK;
155 p->p_vforkcnt++;
156
157 /* The newly created process comes with signal lock held */
158 newproc = (struct proc *)forkproc(p,1);
159
160 LIST_INSERT_AFTER(p, newproc, p_pglist);
161 newproc->p_pptr = p;
162 newproc->task = p->task;
163 LIST_INSERT_HEAD(&p->p_children, newproc, p_sibling);
164 LIST_INIT(&newproc->p_children);
165 LIST_INSERT_HEAD(&allproc, newproc, p_list);
166 LIST_INSERT_HEAD(PIDHASH(newproc->p_pid), newproc, p_hash);
167 TAILQ_INIT(& newproc->p_evlist);
168 newproc->p_stat = SRUN;
169 newproc->p_flag |= P_INVFORK;
170 newproc->p_vforkact = cur_act;
171
172 ut->uu_flag |= P_VFORK;
173 ut->uu_proc = newproc;
174 ut->uu_userstate = (void *)act_thread_csave();
175 ut->uu_vforkmask = ut->uu_sigmask;
176
177 thread_set_child(cur_act, newproc->p_pid);
178
179 newproc->p_stats->p_start = time;
180 newproc->p_acflag = AFORK;
181
182 /*
183 * Preserve synchronization semantics of vfork. If waiting for
184 * child to exec or exit, set P_PPWAIT on child, and sleep on our
185 * proc (in case of exit).
186 */
187 newproc->p_flag |= P_PPWAIT;
188
189 /* drop the signal lock on the child */
190 signal_unlock(newproc);
191
192 retval[0] = newproc->p_pid;
193 retval[1] = 1; /* mark child */
194
195 return (0);
196 }
197
198 /*
199 * Return to parent vfork ehread()
200 */
201 void
202 vfork_return(th_act, p, p2, retval)
203 thread_act_t th_act;
204 struct proc * p;
205 struct proc *p2;
206 register_t *retval;
207 {
208 long flags;
209 register uid_t uid;
210 thread_act_t cur_act = (thread_act_t)current_act();
211 int s, count;
212 task_t t;
213 uthread_t ut;
214
215 ut = (struct uthread *)get_bsdthread_info(cur_act);
216
217 act_thread_catt(ut->uu_userstate);
218
219 /* Make sure only one at this time */
220 p->p_vforkcnt--;
221 if (p->p_vforkcnt <0)
222 panic("vfork cnt is -ve");
223 if (p->p_vforkcnt <=0)
224 p->p_flag &= ~P_VFORK;
225 ut->uu_userstate = 0;
226 ut->uu_flag &= ~P_VFORK;
227 ut->uu_proc = 0;
228 ut->uu_sigmask = ut->uu_vforkmask;
229 p2->p_flag &= ~P_INVFORK;
230 p2->p_vforkact = (void *)0;
231
232 thread_set_parent(cur_act, p2->p_pid);
233
234 if (retval) {
235 retval[0] = p2->p_pid;
236 retval[1] = 0; /* mark parent */
237 }
238
239 return;
240 }
241
242 thread_act_t
243 procdup(
244 struct proc *child,
245 struct proc *parent)
246 {
247 thread_act_t thread;
248 task_t task;
249 kern_return_t result;
250 pmap_t pmap;
251 extern task_t kernel_task;
252
253 if (parent->task == kernel_task)
254 result = task_create_internal(TASK_NULL, FALSE, &task);
255 else
256 result = task_create_internal(parent->task, TRUE, &task);
257 if (result != KERN_SUCCESS)
258 printf("fork/procdup: task_create failed. Code: 0x%x\n", result);
259 child->task = task;
260 /* task->proc = child; */
261 set_bsdtask_info(task, child);
262 if (child->p_nice != 0)
263 resetpriority(child);
264
265 result = thread_create(task, &thread);
266 if (result != KERN_SUCCESS)
267 printf("fork/procdup: thread_create failed. Code: 0x%x\n", result);
268
269 return(thread);
270 }
271
272
273 static int
274 fork1(p1, flags, retval)
275 struct proc *p1;
276 long flags;
277 register_t *retval;
278 {
279 register struct proc *p2;
280 register uid_t uid;
281 thread_act_t newth;
282 int s, count;
283 task_t t;
284
285 /*
286 * Although process entries are dynamically created, we still keep
287 * a global limit on the maximum number we will create. Don't allow
288 * a nonprivileged user to use the last process; don't let root
289 * exceed the limit. The variable nprocs is the current number of
290 * processes, maxproc is the limit.
291 */
292 uid = p1->p_cred->p_ruid;
293 if ((nprocs >= maxproc - 1 && uid != 0) || nprocs >= maxproc) {
294 tablefull("proc");
295 retval[1] = 0;
296 return (EAGAIN);
297 }
298
299 /*
300 * Increment the count of procs running with this uid. Don't allow
301 * a nonprivileged user to exceed their current limit.
302 */
303 count = chgproccnt(uid, 1);
304 if (uid != 0 && count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur) {
305 (void)chgproccnt(uid, -1);
306 return (EAGAIN);
307 }
308
309 /* The newly created process comes with signal lock held */
310 newth = cloneproc(p1, 1);
311 thread_dup(newth);
312 /* p2 = newth->task->proc; */
313 p2 = (struct proc *)(get_bsdtask_info(get_threadtask(newth)));
314
315 thread_set_child(newth, p2->p_pid);
316
317 s = splhigh();
318 p2->p_stats->p_start = time;
319 splx(s);
320 p2->p_acflag = AFORK;
321
322 /*
323 * Preserve synchronization semantics of vfork. If waiting for
324 * child to exec or exit, set P_PPWAIT on child, and sleep on our
325 * proc (in case of exit).
326 */
327 if (flags == DOVFORK)
328 p2->p_flag |= P_PPWAIT;
329 /* drop the signal lock on the child */
330 signal_unlock(p2);
331
332 (void) thread_resume(newth);
333
334 /* drop the extra references we got during the creation */
335 if (t = (task_t)get_threadtask(newth)) {
336 task_deallocate(t);
337 }
338 act_deallocate(newth);
339
340 KNOTE(&p1->p_klist, NOTE_FORK | p2->p_pid);
341
342 while (p2->p_flag & P_PPWAIT)
343 tsleep(p1, PWAIT, "ppwait", 0);
344
345 retval[0] = p2->p_pid;
346 retval[1] = 0; /* mark parent */
347
348 return (0);
349 }
350
351 /*
352 * cloneproc()
353 *
354 * Create a new process from a specified process.
355 * On return newly created child process has signal
356 * lock held to block delivery of signal to it if called with
357 * lock set. fork() code needs to explicity remove this lock
358 * before signals can be delivered
359 */
360 thread_act_t
361 cloneproc(p1, lock)
362 register struct proc *p1;
363 register int lock;
364 {
365 register struct proc *p2;
366 thread_act_t th;
367
368 p2 = (struct proc *)forkproc(p1,lock);
369
370
371 th = procdup(p2, p1); /* child, parent */
372
373 LIST_INSERT_AFTER(p1, p2, p_pglist);
374 p2->p_pptr = p1;
375 LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling);
376 LIST_INIT(&p2->p_children);
377 LIST_INSERT_HEAD(&allproc, p2, p_list);
378 LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
379 TAILQ_INIT(&p2->p_evlist);
380 /*
381 * Make child runnable, set start time.
382 */
383 p2->p_stat = SRUN;
384
385 return(th);
386 }
387
388 struct proc *
389 forkproc(p1, lock)
390 register struct proc *p1;
391 register int lock;
392 {
393 register struct proc *p2, *newproc;
394 static int nextpid = 0, pidchecked = 0;
395 thread_t th;
396
397 /* Allocate new proc. */
398 MALLOC_ZONE(newproc, struct proc *,
399 sizeof *newproc, M_PROC, M_WAITOK);
400 MALLOC_ZONE(newproc->p_cred, struct pcred *,
401 sizeof *newproc->p_cred, M_SUBPROC, M_WAITOK);
402 MALLOC_ZONE(newproc->p_stats, struct pstats *,
403 sizeof *newproc->p_stats, M_SUBPROC, M_WAITOK);
404 MALLOC_ZONE(newproc->p_sigacts, struct sigacts *,
405 sizeof *newproc->p_sigacts, M_SUBPROC, M_WAITOK);
406
407 /*
408 * Find an unused process ID. We remember a range of unused IDs
409 * ready to use (from nextpid+1 through pidchecked-1).
410 */
411 nextpid++;
412 retry:
413 /*
414 * If the process ID prototype has wrapped around,
415 * restart somewhat above 0, as the low-numbered procs
416 * tend to include daemons that don't exit.
417 */
418 if (nextpid >= PID_MAX) {
419 nextpid = 100;
420 pidchecked = 0;
421 }
422 if (nextpid >= pidchecked) {
423 int doingzomb = 0;
424
425 pidchecked = PID_MAX;
426 /*
427 * Scan the active and zombie procs to check whether this pid
428 * is in use. Remember the lowest pid that's greater
429 * than nextpid, so we can avoid checking for a while.
430 */
431 p2 = allproc.lh_first;
432 again:
433 for (; p2 != 0; p2 = p2->p_list.le_next) {
434 while (p2->p_pid == nextpid ||
435 p2->p_pgrp->pg_id == nextpid ||
436 p2->p_session->s_sid == nextpid) {
437 nextpid++;
438 if (nextpid >= pidchecked)
439 goto retry;
440 }
441 if (p2->p_pid > nextpid && pidchecked > p2->p_pid)
442 pidchecked = p2->p_pid;
443 if (p2->p_pgrp && p2->p_pgrp->pg_id > nextpid &&
444 pidchecked > p2->p_pgrp->pg_id)
445 pidchecked = p2->p_pgrp->pg_id;
446 if (p2->p_session->s_sid > nextpid &&
447 pidchecked > p2->p_session->s_sid)
448 pidchecked = p2->p_session->s_sid;
449 }
450 if (!doingzomb) {
451 doingzomb = 1;
452 p2 = zombproc.lh_first;
453 goto again;
454 }
455 }
456
457 nprocs++;
458 p2 = newproc;
459 p2->p_stat = SIDL;
460 p2->p_pid = nextpid;
461
462 p2->p_shutdownstate = 0;
463 /*
464 * Make a proc table entry for the new process.
465 * Start by zeroing the section of proc that is zero-initialized,
466 * then copy the section that is copied directly from the parent.
467 */
468 bzero(&p2->p_startzero,
469 (unsigned) ((caddr_t)&p2->p_endzero - (caddr_t)&p2->p_startzero));
470 bcopy(&p1->p_startcopy, &p2->p_startcopy,
471 (unsigned) ((caddr_t)&p2->p_endcopy - (caddr_t)&p2->p_startcopy));
472 p2->vm_shm = (void *)NULL; /* Make sure it is zero */
473
474 /*
475 * Copy the audit info.
476 */
477 audit_proc_fork(p1, p2);
478
479 /*
480 * Duplicate sub-structures as needed.
481 * Increase reference counts on shared objects.
482 * The p_stats and p_sigacts substructs are set in vm_fork.
483 */
484 p2->p_flag = P_INMEM;
485 p2->p_flag |= (p1->p_flag & P_CLASSIC); // copy from parent
486 p2->p_flag |= (p1->p_flag & P_AFFINITY); // copy from parent
487 if (p1->p_flag & P_PROFIL)
488 startprofclock(p2);
489 bcopy(p1->p_cred, p2->p_cred, sizeof(*p2->p_cred));
490 p2->p_cred->p_refcnt = 1;
491 crhold(p1->p_ucred);
492 lockinit(&p2->p_cred->pc_lock, PLOCK, "proc cred", 0, 0);
493 klist_init(&p2->p_klist);
494
495 /* bump references to the text vnode */
496 p2->p_textvp = p1->p_textvp;
497 if (p2->p_textvp)
498 VREF(p2->p_textvp);
499
500 p2->p_fd = fdcopy(p1);
501 if (p1->vm_shm) {
502 shmfork(p1,p2);
503 }
504 /*
505 * If p_limit is still copy-on-write, bump refcnt,
506 * otherwise get a copy that won't be modified.
507 * (If PL_SHAREMOD is clear, the structure is shared
508 * copy-on-write.)
509 */
510 if (p1->p_limit->p_lflags & PL_SHAREMOD)
511 p2->p_limit = limcopy(p1->p_limit);
512 else {
513 p2->p_limit = p1->p_limit;
514 p2->p_limit->p_refcnt++;
515 }
516
517 bzero(&p2->p_stats->pstat_startzero,
518 (unsigned) ((caddr_t)&p2->p_stats->pstat_endzero -
519 (caddr_t)&p2->p_stats->pstat_startzero));
520 bcopy(&p1->p_stats->pstat_startcopy, &p2->p_stats->pstat_startcopy,
521 ((caddr_t)&p2->p_stats->pstat_endcopy -
522 (caddr_t)&p2->p_stats->pstat_startcopy));
523
524 if (p1->p_sigacts != NULL)
525 (void)memcpy(p2->p_sigacts,
526 p1->p_sigacts, sizeof *p2->p_sigacts);
527 else
528 (void)memset(p2->p_sigacts, 0, sizeof *p2->p_sigacts);
529
530 if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
531 p2->p_flag |= P_CONTROLT;
532
533 p2->p_argslen = p1->p_argslen;
534 p2->p_argc = p1->p_argc;
535 p2->p_xstat = 0;
536 p2->p_ru = NULL;
537
538 p2->p_debugger = 0; /* don't inherit */
539 lockinit(&p2->signal_lock, PVM, "signal", 0, 0);
540 /* block all signals to reach the process */
541 if (lock)
542 signal_lock(p2);
543 p2->sigwait = FALSE;
544 p2->sigwait_thread = NULL;
545 p2->exit_thread = NULL;
546 p2->user_stack = p1->user_stack;
547 p2->p_vforkcnt = 0;
548 p2->p_vforkact = 0;
549 TAILQ_INIT(&p2->p_uthlist);
550 TAILQ_INIT(&p2->aio_activeq);
551 TAILQ_INIT(&p2->aio_doneq);
552 p2->aio_active_count = 0;
553 p2->aio_done_count = 0;
554
555 #if KTRACE
556 /*
557 * Copy traceflag and tracefile if enabled.
558 * If not inherited, these were zeroed above.
559 */
560 if (p1->p_traceflag&KTRFAC_INHERIT) {
561 p2->p_traceflag = p1->p_traceflag;
562 if ((p2->p_tracep = p1->p_tracep) != NULL)
563 VREF(p2->p_tracep);
564 }
565 #endif
566 return(p2);
567
568 }
569
570 #include <kern/zalloc.h>
571
572 struct zone *uthread_zone;
573 int uthread_zone_inited = 0;
574
575 void
576 uthread_zone_init()
577 {
578 if (!uthread_zone_inited) {
579 uthread_zone = zinit(sizeof(struct uthread),
580 THREAD_MAX * sizeof(struct uthread),
581 THREAD_CHUNK * sizeof(struct uthread),
582 "uthreads");
583 uthread_zone_inited = 1;
584 }
585 }
586
587 void *
588 uthread_alloc(task_t task, thread_act_t thr_act )
589 {
590 struct proc *p;
591 struct uthread *uth, *uth_parent;
592 void *ut;
593 extern task_t kernel_task;
594 boolean_t funnel_state;
595
596 if (!uthread_zone_inited)
597 uthread_zone_init();
598
599 ut = (void *)zalloc(uthread_zone);
600 bzero(ut, sizeof(struct uthread));
601
602 if (task != kernel_task) {
603 uth = (struct uthread *)ut;
604 p = (struct proc *) get_bsdtask_info(task);
605
606 funnel_state = thread_funnel_set(kernel_flock, TRUE);
607 uth_parent = (struct uthread *)get_bsdthread_info(current_act());
608 if (uth_parent) {
609 if (uth_parent->uu_flag & USAS_OLDMASK)
610 uth->uu_sigmask = uth_parent->uu_oldmask;
611 else
612 uth->uu_sigmask = uth_parent->uu_sigmask;
613 }
614 uth->uu_act = thr_act;
615 //signal_lock(p);
616 if (p)
617 TAILQ_INSERT_TAIL(&p->p_uthlist, uth, uu_list);
618 //signal_unlock(p);
619 (void)thread_funnel_set(kernel_flock, funnel_state);
620 }
621
622 return (ut);
623 }
624
625
626 void
627 uthread_free(task_t task, void *uthread, void * bsd_info)
628 {
629 struct _select *sel;
630 struct uthread *uth = (struct uthread *)uthread;
631 struct proc * p = (struct proc *)bsd_info;
632 extern task_t kernel_task;
633 int size;
634 boolean_t funnel_state;
635 struct nlminfo *nlmp;
636
637 /*
638 * Per-thread audit state should never last beyond system
639 * call return. Since we don't audit the thread creation/
640 * removal, the thread state pointer should never be
641 * non-NULL when we get here.
642 */
643 assert(uth->uu_ar == NULL);
644
645 sel = &uth->uu_state.ss_select;
646 /* cleanup the select bit space */
647 if (sel->nbytes) {
648 FREE(sel->ibits, M_TEMP);
649 FREE(sel->obits, M_TEMP);
650 }
651
652 if (sel->allocsize && uth->uu_wqsub){
653 kfree(uth->uu_wqsub, sel->allocsize);
654 sel->count = sel->nfcount = 0;
655 sel->allocsize = 0;
656 uth->uu_wqsub = 0;
657 sel->wql = 0;
658 }
659
660 if ((nlmp = uth->uu_nlminfo)) {
661 uth->uu_nlminfo = 0;
662 FREE(nlmp, M_LOCKF);
663 }
664
665 if ((task != kernel_task) && p) {
666 funnel_state = thread_funnel_set(kernel_flock, TRUE);
667 //signal_lock(p);
668 TAILQ_REMOVE(&p->p_uthlist, uth, uu_list);
669 //signal_unlock(p);
670 (void)thread_funnel_set(kernel_flock, funnel_state);
671 }
672 /* and free the uthread itself */
673 zfree(uthread_zone, (vm_offset_t)uthread);
674 }