]> git.saurik.com Git - apple/xnu.git/blob - bsd/dev/dtrace/dtrace_glue.c
4e7ede1d2d9719802b5a4d750859313480ccc382
[apple/xnu.git] / bsd / dev / dtrace / dtrace_glue.c
1 /*
2 * Copyright (c) 2005-2006 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28
29
30 /*
31 * APPLE NOTE: This file is compiled even if dtrace is unconfig'd. A symbol
32 * from this file (_dtrace_register_anon_DOF) always needs to be exported for
33 * an external kext to link against.
34 */
35
36 #if CONFIG_DTRACE
37
38 #define MACH__POSIX_C_SOURCE_PRIVATE 1 /* pulls in suitable savearea from mach/ppc/thread_status.h */
39 #include <kern/thread.h>
40 #include <mach/thread_status.h>
41
42 #include <stdarg.h>
43 #include <string.h>
44 #include <sys/malloc.h>
45 #include <sys/time.h>
46 #include <sys/proc.h>
47 #include <sys/proc_internal.h>
48 #include <sys/kauth.h>
49 #include <sys/user.h>
50 #include <sys/systm.h>
51 #include <sys/dtrace.h>
52 #include <sys/dtrace_impl.h>
53 #include <libkern/OSAtomic.h>
54 #include <kern/kern_types.h>
55 #include <kern/timer_call.h>
56 #include <kern/thread_call.h>
57 #include <kern/task.h>
58 #include <kern/sched_prim.h>
59 #include <kern/queue.h>
60 #include <miscfs/devfs/devfs.h>
61 #include <kern/kalloc.h>
62
63 #include <mach/vm_param.h>
64 #include <mach/mach_vm.h>
65 #include <mach/task.h>
66 #include <vm/pmap.h>
67 #include <vm/vm_map.h> /* All the bits we care about are guarded by MACH_KERNEL_PRIVATE :-( */
68
69 /*
70 * pid/proc
71 */
72 /* Solaris proc_t is the struct. Darwin's proc_t is a pointer to it. */
73 #define proc_t struct proc /* Steer clear of the Darwin typedef for proc_t */
74
75 /* Not called from probe context */
76 proc_t *
77 sprlock(pid_t pid)
78 {
79 proc_t* p;
80
81 if ((p = proc_find(pid)) == PROC_NULL) {
82 return PROC_NULL;
83 }
84
85 task_suspend_internal(p->task);
86
87 proc_lock(p);
88
89 lck_mtx_lock(&p->p_dtrace_sprlock);
90
91 return p;
92 }
93
94 /* Not called from probe context */
95 void
96 sprunlock(proc_t *p)
97 {
98 if (p != PROC_NULL) {
99 lck_mtx_unlock(&p->p_dtrace_sprlock);
100
101 proc_unlock(p);
102
103 task_resume_internal(p->task);
104
105 proc_rele(p);
106 }
107 }
108
109 /*
110 * uread/uwrite
111 */
112
113 // These are not exported from vm_map.h.
114 extern kern_return_t vm_map_read_user(vm_map_t map, vm_map_address_t src_addr, void *dst_p, vm_size_t size);
115 extern kern_return_t vm_map_write_user(vm_map_t map, void *src_p, vm_map_address_t dst_addr, vm_size_t size);
116
117 /* Not called from probe context */
118 int
119 uread(proc_t *p, void *buf, user_size_t len, user_addr_t a)
120 {
121 kern_return_t ret;
122
123 ASSERT(p != PROC_NULL);
124 ASSERT(p->task != NULL);
125
126 task_t task = p->task;
127
128 /*
129 * Grab a reference to the task vm_map_t to make sure
130 * the map isn't pulled out from under us.
131 *
132 * Because the proc_lock is not held at all times on all code
133 * paths leading here, it is possible for the proc to have
134 * exited. If the map is null, fail.
135 */
136 vm_map_t map = get_task_map_reference(task);
137 if (map) {
138 ret = vm_map_read_user( map, (vm_map_address_t)a, buf, (vm_size_t)len);
139 vm_map_deallocate(map);
140 } else
141 ret = KERN_TERMINATED;
142
143 return (int)ret;
144 }
145
146
147 /* Not called from probe context */
148 int
149 uwrite(proc_t *p, void *buf, user_size_t len, user_addr_t a)
150 {
151 kern_return_t ret;
152
153 ASSERT(p != NULL);
154 ASSERT(p->task != NULL);
155
156 task_t task = p->task;
157
158 /*
159 * Grab a reference to the task vm_map_t to make sure
160 * the map isn't pulled out from under us.
161 *
162 * Because the proc_lock is not held at all times on all code
163 * paths leading here, it is possible for the proc to have
164 * exited. If the map is null, fail.
165 */
166 vm_map_t map = get_task_map_reference(task);
167 if (map) {
168 /* Find the memory permissions. */
169 uint32_t nestingDepth=999999;
170 vm_region_submap_short_info_data_64_t info;
171 mach_msg_type_number_t count = VM_REGION_SUBMAP_SHORT_INFO_COUNT_64;
172 mach_vm_address_t address = (mach_vm_address_t)a;
173 mach_vm_size_t sizeOfRegion = (mach_vm_size_t)len;
174
175 ret = mach_vm_region_recurse(map, &address, &sizeOfRegion, &nestingDepth, (vm_region_recurse_info_t)&info, &count);
176 if (ret != KERN_SUCCESS)
177 goto done;
178
179 vm_prot_t reprotect;
180
181 if (!(info.protection & VM_PROT_WRITE)) {
182 /* Save the original protection values for restoration later */
183 reprotect = info.protection;
184
185 if (info.max_protection & VM_PROT_WRITE) {
186 /* The memory is not currently writable, but can be made writable. */
187 ret = mach_vm_protect (map, (mach_vm_offset_t)a, (mach_vm_size_t)len, 0, reprotect | VM_PROT_WRITE);
188 } else {
189 /*
190 * The memory is not currently writable, and cannot be made writable. We need to COW this memory.
191 *
192 * Strange, we can't just say "reprotect | VM_PROT_COPY", that fails.
193 */
194 ret = mach_vm_protect (map, (mach_vm_offset_t)a, (mach_vm_size_t)len, 0, VM_PROT_COPY | VM_PROT_READ | VM_PROT_WRITE);
195 }
196
197 if (ret != KERN_SUCCESS)
198 goto done;
199
200 } else {
201 /* The memory was already writable. */
202 reprotect = VM_PROT_NONE;
203 }
204
205 ret = vm_map_write_user( map,
206 buf,
207 (vm_map_address_t)a,
208 (vm_size_t)len);
209
210 if (ret != KERN_SUCCESS)
211 goto done;
212
213 if (reprotect != VM_PROT_NONE) {
214 ASSERT(reprotect & VM_PROT_EXECUTE);
215 ret = mach_vm_protect (map, (mach_vm_offset_t)a, (mach_vm_size_t)len, 0, reprotect);
216 }
217
218 done:
219 vm_map_deallocate(map);
220 } else
221 ret = KERN_TERMINATED;
222
223 return (int)ret;
224 }
225
226 /*
227 * cpuvar
228 */
229 lck_mtx_t cpu_lock;
230 lck_mtx_t cyc_lock;
231 lck_mtx_t mod_lock;
232
233 dtrace_cpu_t *cpu_list;
234 cpu_core_t *cpu_core; /* XXX TLB lockdown? */
235
236 /*
237 * cred_t
238 */
239
240 /*
241 * dtrace_CRED() can be called from probe context. We cannot simply call kauth_cred_get() since
242 * that function may try to resolve a lazy credential binding, which entails taking the proc_lock.
243 */
244 cred_t *
245 dtrace_CRED(void)
246 {
247 struct uthread *uthread = get_bsdthread_info(current_thread());
248
249 if (uthread == NULL)
250 return NULL;
251 else
252 return uthread->uu_ucred; /* May return NOCRED which is defined to be 0 */
253 }
254
255 #define HAS_ALLPRIVS(cr) priv_isfullset(&CR_OEPRIV(cr))
256 #define HAS_PRIVILEGE(cr, pr) ((pr) == PRIV_ALL ? \
257 HAS_ALLPRIVS(cr) : \
258 PRIV_ISASSERT(&CR_OEPRIV(cr), pr))
259
260 int PRIV_POLICY_CHOICE(void* cred, int priv, int all)
261 {
262 #pragma unused(priv, all)
263 return kauth_cred_issuser(cred); /* XXX TODO: How is this different from PRIV_POLICY_ONLY? */
264 }
265
266 int
267 PRIV_POLICY_ONLY(void *cr, int priv, int boolean)
268 {
269 #pragma unused(priv, boolean)
270 return kauth_cred_issuser(cr); /* XXX TODO: HAS_PRIVILEGE(cr, priv); */
271 }
272
273 /* XXX Get around const poisoning using structure assigns */
274 gid_t
275 crgetgid(const cred_t *cr) { cred_t copy_cr = *cr; return kauth_cred_getgid(&copy_cr); }
276
277 uid_t
278 crgetuid(const cred_t *cr) { cred_t copy_cr = *cr; return kauth_cred_getuid(&copy_cr); }
279
280 /*
281 * "cyclic"
282 */
283
284 typedef struct wrap_timer_call {
285 /* node attributes */
286 cyc_handler_t hdlr;
287 cyc_time_t when;
288 uint64_t deadline;
289 int cpuid;
290 boolean_t suspended;
291 struct timer_call call;
292
293 /* next item in the linked list */
294 LIST_ENTRY(wrap_timer_call) entries;
295 } wrap_timer_call_t;
296
297 #define WAKEUP_REAPER 0x7FFFFFFFFFFFFFFFLL
298 #define NEARLY_FOREVER 0x7FFFFFFFFFFFFFFELL
299
300 /* CPU going online/offline notifications */
301 void (*dtrace_cpu_state_changed_hook)(int, boolean_t) = NULL;
302 void dtrace_cpu_state_changed(int, boolean_t);
303
304 void
305 dtrace_install_cpu_hooks(void) {
306 dtrace_cpu_state_changed_hook = dtrace_cpu_state_changed;
307 }
308
309 void
310 dtrace_cpu_state_changed(int cpuid, boolean_t is_running) {
311 #pragma unused(cpuid)
312 wrap_timer_call_t *wrapTC = NULL;
313 boolean_t suspend = (is_running ? FALSE : TRUE);
314 dtrace_icookie_t s;
315
316 /* Ensure that we're not going to leave the CPU */
317 s = dtrace_interrupt_disable();
318 assert(cpuid == cpu_number());
319
320 LIST_FOREACH(wrapTC, &(cpu_list[cpu_number()].cpu_cyc_list), entries) {
321 assert(wrapTC->cpuid == cpu_number());
322 if (suspend) {
323 assert(!wrapTC->suspended);
324 /* If this fails, we'll panic anyway, so let's do this now. */
325 if (!timer_call_cancel(&wrapTC->call))
326 panic("timer_call_set_suspend() failed to cancel a timer call");
327 wrapTC->suspended = TRUE;
328 } else {
329 /* Rearm the timer, but ensure it was suspended first. */
330 assert(wrapTC->suspended);
331 clock_deadline_for_periodic_event(wrapTC->when.cyt_interval, mach_absolute_time(),
332 &wrapTC->deadline);
333 timer_call_enter1(&wrapTC->call, (void*) wrapTC, wrapTC->deadline,
334 TIMER_CALL_SYS_CRITICAL | TIMER_CALL_LOCAL);
335 wrapTC->suspended = FALSE;
336 }
337
338 }
339
340 /* Restore the previous interrupt state. */
341 dtrace_interrupt_enable(s);
342 }
343
344 static void
345 _timer_call_apply_cyclic( void *ignore, void *vTChdl )
346 {
347 #pragma unused(ignore)
348 wrap_timer_call_t *wrapTC = (wrap_timer_call_t *)vTChdl;
349
350 (*(wrapTC->hdlr.cyh_func))( wrapTC->hdlr.cyh_arg );
351
352 clock_deadline_for_periodic_event( wrapTC->when.cyt_interval, mach_absolute_time(), &(wrapTC->deadline) );
353 timer_call_enter1( &(wrapTC->call), (void *)wrapTC, wrapTC->deadline, TIMER_CALL_SYS_CRITICAL | TIMER_CALL_LOCAL );
354 }
355
356 static cyclic_id_t
357 timer_call_add_cyclic(wrap_timer_call_t *wrapTC, cyc_handler_t *handler, cyc_time_t *when)
358 {
359 uint64_t now;
360 dtrace_icookie_t s;
361
362 timer_call_setup( &(wrapTC->call), _timer_call_apply_cyclic, NULL );
363 wrapTC->hdlr = *handler;
364 wrapTC->when = *when;
365
366 nanoseconds_to_absolutetime( wrapTC->when.cyt_interval, (uint64_t *)&wrapTC->when.cyt_interval );
367
368 now = mach_absolute_time();
369 wrapTC->deadline = now;
370
371 clock_deadline_for_periodic_event( wrapTC->when.cyt_interval, now, &(wrapTC->deadline) );
372
373 /* Insert the timer to the list of the running timers on this CPU, and start it. */
374 s = dtrace_interrupt_disable();
375 wrapTC->cpuid = cpu_number();
376 LIST_INSERT_HEAD(&cpu_list[wrapTC->cpuid].cpu_cyc_list, wrapTC, entries);
377 timer_call_enter1(&wrapTC->call, (void*) wrapTC, wrapTC->deadline,
378 TIMER_CALL_SYS_CRITICAL | TIMER_CALL_LOCAL);
379 wrapTC->suspended = FALSE;
380 dtrace_interrupt_enable(s);
381
382 return (cyclic_id_t)wrapTC;
383 }
384
385 /*
386 * Executed on the CPU the timer is running on.
387 */
388 static void
389 timer_call_remove_cyclic(cyclic_id_t cyclic)
390 {
391 wrap_timer_call_t *wrapTC = (wrap_timer_call_t *)cyclic;
392
393 assert(wrapTC);
394 assert(cpu_number() == wrapTC->cpuid);
395
396 if (!timer_call_cancel(&wrapTC->call))
397 panic("timer_call_remove_cyclic() failed to cancel a timer call");
398
399 LIST_REMOVE(wrapTC, entries);
400 }
401
402 static void *
403 timer_call_get_cyclic_arg(cyclic_id_t cyclic)
404 {
405 wrap_timer_call_t *wrapTC = (wrap_timer_call_t *)cyclic;
406
407 return (wrapTC ? wrapTC->hdlr.cyh_arg : NULL);
408 }
409
410 cyclic_id_t
411 cyclic_timer_add(cyc_handler_t *handler, cyc_time_t *when)
412 {
413 wrap_timer_call_t *wrapTC = _MALLOC(sizeof(wrap_timer_call_t), M_TEMP, M_ZERO | M_WAITOK);
414 if (NULL == wrapTC)
415 return CYCLIC_NONE;
416 else
417 return timer_call_add_cyclic( wrapTC, handler, when );
418 }
419
420 void
421 cyclic_timer_remove(cyclic_id_t cyclic)
422 {
423 ASSERT( cyclic != CYCLIC_NONE );
424
425 /* Removing a timer call must be done on the CPU the timer is running on. */
426 wrap_timer_call_t *wrapTC = (wrap_timer_call_t *) cyclic;
427 dtrace_xcall(wrapTC->cpuid, (dtrace_xcall_t) timer_call_remove_cyclic, (void*) cyclic);
428
429 _FREE((void *)cyclic, M_TEMP);
430 }
431
432 static void
433 _cyclic_add_omni(cyclic_id_list_t cyc_list)
434 {
435 cyc_time_t cT;
436 cyc_handler_t cH;
437 wrap_timer_call_t *wrapTC;
438 cyc_omni_handler_t *omni = (cyc_omni_handler_t *)cyc_list;
439 char *t;
440
441 (omni->cyo_online)(omni->cyo_arg, CPU, &cH, &cT);
442
443 t = (char *)cyc_list;
444 t += sizeof(cyc_omni_handler_t);
445 cyc_list = (cyclic_id_list_t)(uintptr_t)t;
446
447 t += sizeof(cyclic_id_t)*NCPU;
448 t += (sizeof(wrap_timer_call_t))*cpu_number();
449 wrapTC = (wrap_timer_call_t *)(uintptr_t)t;
450
451 cyc_list[cpu_number()] = timer_call_add_cyclic(wrapTC, &cH, &cT);
452 }
453
454 cyclic_id_list_t
455 cyclic_add_omni(cyc_omni_handler_t *omni)
456 {
457 cyclic_id_list_t cyc_list =
458 _MALLOC( (sizeof(wrap_timer_call_t))*NCPU +
459 sizeof(cyclic_id_t)*NCPU +
460 sizeof(cyc_omni_handler_t), M_TEMP, M_ZERO | M_WAITOK);
461 if (NULL == cyc_list)
462 return (cyclic_id_list_t)CYCLIC_NONE;
463
464 *(cyc_omni_handler_t *)cyc_list = *omni;
465 dtrace_xcall(DTRACE_CPUALL, (dtrace_xcall_t)_cyclic_add_omni, (void *)cyc_list);
466
467 return cyc_list;
468 }
469
470 static void
471 _cyclic_remove_omni(cyclic_id_list_t cyc_list)
472 {
473 cyc_omni_handler_t *omni = (cyc_omni_handler_t *)cyc_list;
474 void *oarg;
475 cyclic_id_t cid;
476 char *t;
477
478 t = (char *)cyc_list;
479 t += sizeof(cyc_omni_handler_t);
480 cyc_list = (cyclic_id_list_t)(uintptr_t)t;
481
482 /*
483 * If the processor was offline when dtrace started, we did not allocate
484 * a cyclic timer for this CPU.
485 */
486 if ((cid = cyc_list[cpu_number()]) != CYCLIC_NONE) {
487 oarg = timer_call_get_cyclic_arg(cid);
488 timer_call_remove_cyclic(cid);
489 (omni->cyo_offline)(omni->cyo_arg, CPU, oarg);
490 }
491 }
492
493 void
494 cyclic_remove_omni(cyclic_id_list_t cyc_list)
495 {
496 ASSERT( cyc_list != (cyclic_id_list_t)CYCLIC_NONE );
497
498 dtrace_xcall(DTRACE_CPUALL, (dtrace_xcall_t)_cyclic_remove_omni, (void *)cyc_list);
499 _FREE(cyc_list, M_TEMP);
500 }
501
502 typedef struct wrap_thread_call {
503 thread_call_t TChdl;
504 cyc_handler_t hdlr;
505 cyc_time_t when;
506 uint64_t deadline;
507 } wrap_thread_call_t;
508
509 /*
510 * _cyclic_apply will run on some thread under kernel_task. That's OK for the
511 * cleaner and the deadman, but too distant in time and place for the profile provider.
512 */
513 static void
514 _cyclic_apply( void *ignore, void *vTChdl )
515 {
516 #pragma unused(ignore)
517 wrap_thread_call_t *wrapTC = (wrap_thread_call_t *)vTChdl;
518
519 (*(wrapTC->hdlr.cyh_func))( wrapTC->hdlr.cyh_arg );
520
521 clock_deadline_for_periodic_event( wrapTC->when.cyt_interval, mach_absolute_time(), &(wrapTC->deadline) );
522 (void)thread_call_enter1_delayed( wrapTC->TChdl, (void *)wrapTC, wrapTC->deadline );
523
524 /* Did cyclic_remove request a wakeup call when this thread call was re-armed? */
525 if (wrapTC->when.cyt_interval == WAKEUP_REAPER)
526 thread_wakeup((event_t)wrapTC);
527 }
528
529 cyclic_id_t
530 cyclic_add(cyc_handler_t *handler, cyc_time_t *when)
531 {
532 uint64_t now;
533
534 wrap_thread_call_t *wrapTC = _MALLOC(sizeof(wrap_thread_call_t), M_TEMP, M_ZERO | M_WAITOK);
535 if (NULL == wrapTC)
536 return CYCLIC_NONE;
537
538 wrapTC->TChdl = thread_call_allocate( _cyclic_apply, NULL );
539 wrapTC->hdlr = *handler;
540 wrapTC->when = *when;
541
542 ASSERT(when->cyt_when == 0);
543 ASSERT(when->cyt_interval < WAKEUP_REAPER);
544
545 nanoseconds_to_absolutetime(wrapTC->when.cyt_interval, (uint64_t *)&wrapTC->when.cyt_interval);
546
547 now = mach_absolute_time();
548 wrapTC->deadline = now;
549
550 clock_deadline_for_periodic_event( wrapTC->when.cyt_interval, now, &(wrapTC->deadline) );
551 (void)thread_call_enter1_delayed( wrapTC->TChdl, (void *)wrapTC, wrapTC->deadline );
552
553 return (cyclic_id_t)wrapTC;
554 }
555
556 static void
557 noop_cyh_func(void * ignore)
558 {
559 #pragma unused(ignore)
560 }
561
562 void
563 cyclic_remove(cyclic_id_t cyclic)
564 {
565 wrap_thread_call_t *wrapTC = (wrap_thread_call_t *)cyclic;
566
567 ASSERT(cyclic != CYCLIC_NONE);
568
569 while (!thread_call_cancel(wrapTC->TChdl)) {
570 int ret = assert_wait(wrapTC, THREAD_UNINT);
571 ASSERT(ret == THREAD_WAITING);
572
573 wrapTC->when.cyt_interval = WAKEUP_REAPER;
574
575 ret = thread_block(THREAD_CONTINUE_NULL);
576 ASSERT(ret == THREAD_AWAKENED);
577 }
578
579 if (thread_call_free(wrapTC->TChdl))
580 _FREE(wrapTC, M_TEMP);
581 else {
582 /* Gut this cyclic and move on ... */
583 wrapTC->hdlr.cyh_func = noop_cyh_func;
584 wrapTC->when.cyt_interval = NEARLY_FOREVER;
585 }
586 }
587
588 /*
589 * timeout / untimeout (converted to dtrace_timeout / dtrace_untimeout due to name collision)
590 */
591
592 thread_call_t
593 dtrace_timeout(void (*func)(void *, void *), void* arg, uint64_t nanos)
594 {
595 #pragma unused(arg)
596 thread_call_t call = thread_call_allocate(func, NULL);
597
598 nanoseconds_to_absolutetime(nanos, &nanos);
599
600 /*
601 * This method does not use clock_deadline_for_periodic_event() because it is a one-shot,
602 * and clock drift on later invocations is not a worry.
603 */
604 uint64_t deadline = mach_absolute_time() + nanos;
605 /* DRK: consider using a lower priority callout here */
606 thread_call_enter_delayed(call, deadline);
607
608 return call;
609 }
610
611 /*
612 * ddi
613 */
614 void
615 ddi_report_dev(dev_info_t *devi)
616 {
617 #pragma unused(devi)
618 }
619
620 #define NSOFT_STATES 32 /* XXX No more than 32 clients at a time, please. */
621 static void *soft[NSOFT_STATES];
622
623 int
624 ddi_soft_state_init(void **state_p, size_t size, size_t n_items)
625 {
626 #pragma unused(n_items)
627 int i;
628
629 for (i = 0; i < NSOFT_STATES; ++i) soft[i] = _MALLOC(size, M_TEMP, M_ZERO | M_WAITOK);
630 *(size_t *)state_p = size;
631 return 0;
632 }
633
634 int
635 ddi_soft_state_zalloc(void *state, int item)
636 {
637 #pragma unused(state)
638 if (item < NSOFT_STATES)
639 return DDI_SUCCESS;
640 else
641 return DDI_FAILURE;
642 }
643
644 void *
645 ddi_get_soft_state(void *state, int item)
646 {
647 #pragma unused(state)
648 ASSERT(item < NSOFT_STATES);
649 return soft[item];
650 }
651
652 int
653 ddi_soft_state_free(void *state, int item)
654 {
655 ASSERT(item < NSOFT_STATES);
656 bzero( soft[item], (size_t)state );
657 return DDI_SUCCESS;
658 }
659
660 void
661 ddi_soft_state_fini(void **state_p)
662 {
663 #pragma unused(state_p)
664 int i;
665
666 for (i = 0; i < NSOFT_STATES; ++i) _FREE( soft[i], M_TEMP );
667 }
668
669 static unsigned int gRegisteredProps = 0;
670 static struct {
671 char name[32]; /* enough for "dof-data-" + digits */
672 int *data;
673 uint_t nelements;
674 } gPropTable[16];
675
676 kern_return_t _dtrace_register_anon_DOF(char *, uchar_t *, uint_t);
677
678 kern_return_t
679 _dtrace_register_anon_DOF(char *name, uchar_t *data, uint_t nelements)
680 {
681 if (gRegisteredProps < sizeof(gPropTable)/sizeof(gPropTable[0])) {
682 int *p = (int *)_MALLOC(nelements*sizeof(int), M_TEMP, M_WAITOK);
683
684 if (NULL == p)
685 return KERN_FAILURE;
686
687 strlcpy(gPropTable[gRegisteredProps].name, name, sizeof(gPropTable[0].name));
688 gPropTable[gRegisteredProps].nelements = nelements;
689 gPropTable[gRegisteredProps].data = p;
690
691 while (nelements-- > 0) {
692 *p++ = (int)(*data++);
693 }
694
695 gRegisteredProps++;
696 return KERN_SUCCESS;
697 }
698 else
699 return KERN_FAILURE;
700 }
701
702 int
703 ddi_prop_lookup_int_array(dev_t match_dev, dev_info_t *dip, uint_t flags,
704 const char *name, int **data, uint_t *nelements)
705 {
706 #pragma unused(match_dev,dip,flags)
707 unsigned int i;
708 for (i = 0; i < gRegisteredProps; ++i)
709 {
710 if (0 == strncmp(name, gPropTable[i].name,
711 sizeof(gPropTable[i].name))) {
712 *data = gPropTable[i].data;
713 *nelements = gPropTable[i].nelements;
714 return DDI_SUCCESS;
715 }
716 }
717 return DDI_FAILURE;
718 }
719
720 int
721 ddi_prop_free(void *buf)
722 {
723 _FREE(buf, M_TEMP);
724 return DDI_SUCCESS;
725 }
726
727 int
728 ddi_driver_major(dev_info_t *devi) { return (int)major(CAST_DOWN_EXPLICIT(int,devi)); }
729
730 int
731 ddi_create_minor_node(dev_info_t *dip, const char *name, int spec_type,
732 minor_t minor_num, const char *node_type, int flag)
733 {
734 #pragma unused(spec_type,node_type,flag)
735 dev_t dev = makedev( ddi_driver_major(dip), minor_num );
736
737 if (NULL == devfs_make_node( dev, DEVFS_CHAR, UID_ROOT, GID_WHEEL, 0666, name, 0 ))
738 return DDI_FAILURE;
739 else
740 return DDI_SUCCESS;
741 }
742
743 void
744 ddi_remove_minor_node(dev_info_t *dip, char *name)
745 {
746 #pragma unused(dip,name)
747 /* XXX called from dtrace_detach, so NOTREACHED for now. */
748 }
749
750 major_t
751 getemajor( dev_t d )
752 {
753 return (major_t) major(d);
754 }
755
756 minor_t
757 getminor ( dev_t d )
758 {
759 return (minor_t) minor(d);
760 }
761
762 dev_t
763 makedevice(major_t major, minor_t minor)
764 {
765 return makedev( major, minor );
766 }
767
768 int ddi_getprop(dev_t dev, dev_info_t *dip, int flags, const char *name, int defvalue)
769 {
770 #pragma unused(dev, dip, flags, name)
771
772 return defvalue;
773 }
774
775 /*
776 * Kernel Debug Interface
777 */
778 int
779 kdi_dtrace_set(kdi_dtrace_set_t ignore)
780 {
781 #pragma unused(ignore)
782 return 0; /* Success */
783 }
784
785 extern void Debugger(const char*);
786
787 void
788 debug_enter(char *c) { Debugger(c); }
789
790 /*
791 * kmem
792 */
793
794 void *
795 dt_kmem_alloc(size_t size, int kmflag)
796 {
797 #pragma unused(kmflag)
798
799 /*
800 * We ignore the M_NOWAIT bit in kmflag (all of kmflag, in fact).
801 * Requests larger than 8K with M_NOWAIT fail in kalloc_canblock.
802 */
803 #if defined(DTRACE_MEMORY_ZONES)
804 return dtrace_alloc(size);
805 #else
806 return kalloc(size);
807 #endif
808 }
809
810 void *
811 dt_kmem_zalloc(size_t size, int kmflag)
812 {
813 #pragma unused(kmflag)
814
815 /*
816 * We ignore the M_NOWAIT bit in kmflag (all of kmflag, in fact).
817 * Requests larger than 8K with M_NOWAIT fail in kalloc_canblock.
818 */
819 #if defined(DTRACE_MEMORY_ZONES)
820 void* buf = dtrace_alloc(size);
821 #else
822 void* buf = kalloc(size);
823 #endif
824
825 if(!buf)
826 return NULL;
827
828 bzero(buf, size);
829
830 return buf;
831 }
832
833 void
834 dt_kmem_free(void *buf, size_t size)
835 {
836 #pragma unused(size)
837 /*
838 * DTrace relies on this, its doing a lot of NULL frees.
839 * A null free causes the debug builds to panic.
840 */
841 if (buf == NULL) return;
842
843 ASSERT(size > 0);
844
845 #if defined(DTRACE_MEMORY_ZONES)
846 dtrace_free(buf, size);
847 #else
848 kfree(buf, size);
849 #endif
850 }
851
852
853
854 /*
855 * aligned kmem allocator
856 * align should be a power of two
857 */
858
859 void* dt_kmem_alloc_aligned(size_t size, size_t align, int kmflag)
860 {
861 void *mem, **addr_to_free;
862 intptr_t mem_aligned;
863 size_t *size_to_free, hdr_size;
864
865 /* Must be a power of two. */
866 assert(align != 0);
867 assert((align & (align - 1)) == 0);
868
869 /*
870 * We are going to add a header to the allocation. It contains
871 * the address to free and the total size of the buffer.
872 */
873 hdr_size = sizeof(size_t) + sizeof(void*);
874 mem = dt_kmem_alloc(size + align + hdr_size, kmflag);
875 if (mem == NULL)
876 return NULL;
877
878 mem_aligned = (intptr_t) (((intptr_t) mem + align + hdr_size) & ~(align - 1));
879
880 /* Write the address to free in the header. */
881 addr_to_free = (void**) (mem_aligned - sizeof(void*));
882 *addr_to_free = mem;
883
884 /* Write the size to free in the header. */
885 size_to_free = (size_t*) (mem_aligned - hdr_size);
886 *size_to_free = size + align + hdr_size;
887
888 return (void*) mem_aligned;
889 }
890
891 void* dt_kmem_zalloc_aligned(size_t size, size_t align, int kmflag)
892 {
893 void* buf;
894
895 buf = dt_kmem_alloc_aligned(size, align, kmflag);
896
897 if(!buf)
898 return NULL;
899
900 bzero(buf, size);
901
902 return buf;
903 }
904
905 void dt_kmem_free_aligned(void* buf, size_t size)
906 {
907 #pragma unused(size)
908 intptr_t ptr = (intptr_t) buf;
909 void **addr_to_free = (void**) (ptr - sizeof(void*));
910 size_t *size_to_free = (size_t*) (ptr - (sizeof(size_t) + sizeof(void*)));
911
912 if (buf == NULL)
913 return;
914
915 dt_kmem_free(*addr_to_free, *size_to_free);
916 }
917
918 /*
919 * dtrace wants to manage just a single block: dtrace_state_percpu_t * NCPU, and
920 * doesn't specify constructor, destructor, or reclaim methods.
921 * At present, it always zeroes the block it obtains from kmem_cache_alloc().
922 * We'll manage this constricted use of kmem_cache with ordinary _MALLOC and _FREE.
923 */
924 kmem_cache_t *
925 kmem_cache_create(
926 const char *name, /* descriptive name for this cache */
927 size_t bufsize, /* size of the objects it manages */
928 size_t align, /* required object alignment */
929 int (*constructor)(void *, void *, int), /* object constructor */
930 void (*destructor)(void *, void *), /* object destructor */
931 void (*reclaim)(void *), /* memory reclaim callback */
932 void *private, /* pass-thru arg for constr/destr/reclaim */
933 vmem_t *vmp, /* vmem source for slab allocation */
934 int cflags) /* cache creation flags */
935 {
936 #pragma unused(name,align,constructor,destructor,reclaim,private,vmp,cflags)
937 return (kmem_cache_t *)bufsize; /* A cookie that tracks the single object size. */
938 }
939
940 void *
941 kmem_cache_alloc(kmem_cache_t *cp, int kmflag)
942 {
943 #pragma unused(kmflag)
944 size_t bufsize = (size_t)cp;
945 return (void *)_MALLOC(bufsize, M_TEMP, M_WAITOK);
946 }
947
948 void
949 kmem_cache_free(kmem_cache_t *cp, void *buf)
950 {
951 #pragma unused(cp)
952 _FREE(buf, M_TEMP);
953 }
954
955 void
956 kmem_cache_destroy(kmem_cache_t *cp)
957 {
958 #pragma unused(cp)
959 }
960
961 /*
962 * taskq
963 */
964 extern void thread_call_setup(thread_call_t, thread_call_func_t, thread_call_param_t); /* XXX MACH_KERNEL_PRIVATE */
965
966 static void
967 _taskq_apply( task_func_t func, thread_call_param_t arg )
968 {
969 func( (void *)arg );
970 }
971
972 taskq_t *
973 taskq_create(const char *name, int nthreads, pri_t pri, int minalloc,
974 int maxalloc, uint_t flags)
975 {
976 #pragma unused(name,nthreads,pri,minalloc,maxalloc,flags)
977
978 return (taskq_t *)thread_call_allocate( (thread_call_func_t)_taskq_apply, NULL );
979 }
980
981 taskqid_t
982 taskq_dispatch(taskq_t *tq, task_func_t func, void *arg, uint_t flags)
983 {
984 #pragma unused(flags)
985 thread_call_setup( (thread_call_t) tq, (thread_call_func_t)_taskq_apply, (thread_call_param_t)func );
986 thread_call_enter1( (thread_call_t) tq, (thread_call_param_t)arg );
987 return (taskqid_t) tq /* for lack of anything better */;
988 }
989
990 void
991 taskq_destroy(taskq_t *tq)
992 {
993 thread_call_cancel( (thread_call_t) tq );
994 thread_call_free( (thread_call_t) tq );
995 }
996
997 pri_t maxclsyspri;
998
999 /*
1000 * vmem (Solaris "slab" allocator) used by DTrace solely to hand out resource ids
1001 */
1002 typedef unsigned int u_daddr_t;
1003 #include "blist.h"
1004
1005 /* By passing around blist *handles*, the underlying blist can be resized as needed. */
1006 struct blist_hdl {
1007 blist_t blist;
1008 };
1009
1010 vmem_t *
1011 vmem_create(const char *name, void *base, size_t size, size_t quantum, void *ignore5,
1012 void *ignore6, vmem_t *source, size_t qcache_max, int vmflag)
1013 {
1014 #pragma unused(name,quantum,ignore5,ignore6,source,qcache_max,vmflag)
1015 blist_t bl;
1016 struct blist_hdl *p = _MALLOC(sizeof(struct blist_hdl), M_TEMP, M_WAITOK);
1017
1018 ASSERT(quantum == 1);
1019 ASSERT(NULL == ignore5);
1020 ASSERT(NULL == ignore6);
1021 ASSERT(NULL == source);
1022 ASSERT(0 == qcache_max);
1023 ASSERT(vmflag & VMC_IDENTIFIER);
1024
1025 size = MIN(128, size); /* Clamp to 128 initially, since the underlying data structure is pre-allocated */
1026
1027 p->blist = bl = blist_create( size );
1028 blist_free(bl, 0, size);
1029 if (base) blist_alloc( bl, (daddr_t)(uintptr_t)base ); /* Chomp off initial ID(s) */
1030
1031 return (vmem_t *)p;
1032 }
1033
1034 void *
1035 vmem_alloc(vmem_t *vmp, size_t size, int vmflag)
1036 {
1037 #pragma unused(vmflag)
1038 struct blist_hdl *q = (struct blist_hdl *)vmp;
1039 blist_t bl = q->blist;
1040 daddr_t p;
1041
1042 p = blist_alloc(bl, (daddr_t)size);
1043
1044 if ((daddr_t)-1 == p) {
1045 blist_resize(&bl, (bl->bl_blocks) << 1, 1);
1046 q->blist = bl;
1047 p = blist_alloc(bl, (daddr_t)size);
1048 if ((daddr_t)-1 == p)
1049 panic("vmem_alloc: failure after blist_resize!");
1050 }
1051
1052 return (void *)(uintptr_t)p;
1053 }
1054
1055 void
1056 vmem_free(vmem_t *vmp, void *vaddr, size_t size)
1057 {
1058 struct blist_hdl *p = (struct blist_hdl *)vmp;
1059
1060 blist_free( p->blist, (daddr_t)(uintptr_t)vaddr, (daddr_t)size );
1061 }
1062
1063 void
1064 vmem_destroy(vmem_t *vmp)
1065 {
1066 struct blist_hdl *p = (struct blist_hdl *)vmp;
1067
1068 blist_destroy( p->blist );
1069 _FREE( p, sizeof(struct blist_hdl) );
1070 }
1071
1072 /*
1073 * Timing
1074 */
1075
1076 /*
1077 * dtrace_gethrestime() provides the "walltimestamp", a value that is anchored at
1078 * January 1, 1970. Because it can be called from probe context, it must take no locks.
1079 */
1080
1081 hrtime_t
1082 dtrace_gethrestime(void)
1083 {
1084 clock_sec_t secs;
1085 clock_nsec_t nanosecs;
1086 uint64_t secs64, ns64;
1087
1088 clock_get_calendar_nanotime_nowait(&secs, &nanosecs);
1089 secs64 = (uint64_t)secs;
1090 ns64 = (uint64_t)nanosecs;
1091
1092 ns64 = ns64 + (secs64 * 1000000000LL);
1093 return ns64;
1094 }
1095
1096 /*
1097 * dtrace_gethrtime() provides high-resolution timestamps with machine-dependent origin.
1098 * Hence its primary use is to specify intervals.
1099 */
1100
1101 hrtime_t
1102 dtrace_abs_to_nano(uint64_t elapsed)
1103 {
1104 static mach_timebase_info_data_t sTimebaseInfo = { 0, 0 };
1105
1106 /*
1107 * If this is the first time we've run, get the timebase.
1108 * We can use denom == 0 to indicate that sTimebaseInfo is
1109 * uninitialised because it makes no sense to have a zero
1110 * denominator in a fraction.
1111 */
1112
1113 if ( sTimebaseInfo.denom == 0 ) {
1114 (void) clock_timebase_info(&sTimebaseInfo);
1115 }
1116
1117 /*
1118 * Convert to nanoseconds.
1119 * return (elapsed * (uint64_t)sTimebaseInfo.numer)/(uint64_t)sTimebaseInfo.denom;
1120 *
1121 * Provided the final result is representable in 64 bits the following maneuver will
1122 * deliver that result without intermediate overflow.
1123 */
1124 if (sTimebaseInfo.denom == sTimebaseInfo.numer)
1125 return elapsed;
1126 else if (sTimebaseInfo.denom == 1)
1127 return elapsed * (uint64_t)sTimebaseInfo.numer;
1128 else {
1129 /* Decompose elapsed = eta32 * 2^32 + eps32: */
1130 uint64_t eta32 = elapsed >> 32;
1131 uint64_t eps32 = elapsed & 0x00000000ffffffffLL;
1132
1133 uint32_t numer = sTimebaseInfo.numer, denom = sTimebaseInfo.denom;
1134
1135 /* Form product of elapsed64 (decomposed) and numer: */
1136 uint64_t mu64 = numer * eta32;
1137 uint64_t lambda64 = numer * eps32;
1138
1139 /* Divide the constituents by denom: */
1140 uint64_t q32 = mu64/denom;
1141 uint64_t r32 = mu64 - (q32 * denom); /* mu64 % denom */
1142
1143 return (q32 << 32) + ((r32 << 32) + lambda64)/denom;
1144 }
1145 }
1146
1147 hrtime_t
1148 dtrace_gethrtime(void)
1149 {
1150 static uint64_t start = 0;
1151
1152 if (start == 0)
1153 start = mach_absolute_time();
1154
1155 return dtrace_abs_to_nano(mach_absolute_time() - start);
1156 }
1157
1158 /*
1159 * Atomicity and synchronization
1160 */
1161 uint32_t
1162 dtrace_cas32(uint32_t *target, uint32_t cmp, uint32_t new)
1163 {
1164 if (OSCompareAndSwap( (UInt32)cmp, (UInt32)new, (volatile UInt32 *)target ))
1165 return cmp;
1166 else
1167 return ~cmp; /* Must return something *other* than cmp */
1168 }
1169
1170 void *
1171 dtrace_casptr(void *target, void *cmp, void *new)
1172 {
1173 if (OSCompareAndSwapPtr( cmp, new, (void**)target ))
1174 return cmp;
1175 else
1176 return (void *)(~(uintptr_t)cmp); /* Must return something *other* than cmp */
1177 }
1178
1179 /*
1180 * Interrupt manipulation
1181 */
1182 dtrace_icookie_t
1183 dtrace_interrupt_disable(void)
1184 {
1185 return (dtrace_icookie_t)ml_set_interrupts_enabled(FALSE);
1186 }
1187
1188 void
1189 dtrace_interrupt_enable(dtrace_icookie_t reenable)
1190 {
1191 (void)ml_set_interrupts_enabled((boolean_t)reenable);
1192 }
1193
1194 /*
1195 * MP coordination
1196 */
1197 static void
1198 dtrace_sync_func(void) {}
1199
1200 /*
1201 * dtrace_sync() is not called from probe context.
1202 */
1203 void
1204 dtrace_sync(void)
1205 {
1206 dtrace_xcall(DTRACE_CPUALL, (dtrace_xcall_t)dtrace_sync_func, NULL);
1207 }
1208
1209 /*
1210 * The dtrace_copyin/out/instr and dtrace_fuword* routines can be called from probe context.
1211 */
1212
1213 extern kern_return_t dtrace_copyio_preflight(addr64_t);
1214 extern kern_return_t dtrace_copyio_postflight(addr64_t);
1215
1216 static int
1217 dtrace_copycheck(user_addr_t uaddr, uintptr_t kaddr, size_t size)
1218 {
1219 #pragma unused(kaddr)
1220
1221 vm_offset_t recover = dtrace_set_thread_recover( current_thread(), 0 ); /* Snare any extant recovery point. */
1222 dtrace_set_thread_recover( current_thread(), recover ); /* Put it back. We *must not* re-enter and overwrite. */
1223
1224 ASSERT(kaddr + size >= kaddr);
1225
1226 if ( uaddr + size < uaddr || /* Avoid address wrap. */
1227 KERN_FAILURE == dtrace_copyio_preflight(uaddr)) /* Machine specific setup/constraints. */
1228 {
1229 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1230 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = uaddr;
1231 return (0);
1232 }
1233 return (1);
1234 }
1235
1236 void
1237 dtrace_copyin(user_addr_t src, uintptr_t dst, size_t len, volatile uint16_t *flags)
1238 {
1239 #pragma unused(flags)
1240
1241 if (dtrace_copycheck( src, dst, len )) {
1242 if (copyin((const user_addr_t)src, (char *)dst, (vm_size_t)len)) {
1243 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1244 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = src;
1245 }
1246 dtrace_copyio_postflight(src);
1247 }
1248 }
1249
1250 void
1251 dtrace_copyinstr(user_addr_t src, uintptr_t dst, size_t len, volatile uint16_t *flags)
1252 {
1253 #pragma unused(flags)
1254
1255 size_t actual;
1256
1257 if (dtrace_copycheck( src, dst, len )) {
1258 /* copyin as many as 'len' bytes. */
1259 int error = copyinstr((const user_addr_t)src, (char *)dst, (vm_size_t)len, &actual);
1260
1261 /*
1262 * ENAMETOOLONG is returned when 'len' bytes have been copied in but the NUL terminator was
1263 * not encountered. That does not require raising CPU_DTRACE_BADADDR, and we press on.
1264 * Note that we do *not* stuff a NUL terminator when returning ENAMETOOLONG, that's left
1265 * to the caller.
1266 */
1267 if (error && error != ENAMETOOLONG) {
1268 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1269 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = src;
1270 }
1271 dtrace_copyio_postflight(src);
1272 }
1273 }
1274
1275 void
1276 dtrace_copyout(uintptr_t src, user_addr_t dst, size_t len, volatile uint16_t *flags)
1277 {
1278 #pragma unused(flags)
1279
1280 if (dtrace_copycheck( dst, src, len )) {
1281 if (copyout((const void *)src, dst, (vm_size_t)len)) {
1282 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1283 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = dst;
1284 }
1285 dtrace_copyio_postflight(dst);
1286 }
1287 }
1288
1289 void
1290 dtrace_copyoutstr(uintptr_t src, user_addr_t dst, size_t len, volatile uint16_t *flags)
1291 {
1292 #pragma unused(flags)
1293
1294 size_t actual;
1295
1296 if (dtrace_copycheck( dst, src, len )) {
1297
1298 /*
1299 * ENAMETOOLONG is returned when 'len' bytes have been copied out but the NUL terminator was
1300 * not encountered. We raise CPU_DTRACE_BADADDR in that case.
1301 * Note that we do *not* stuff a NUL terminator when returning ENAMETOOLONG, that's left
1302 * to the caller.
1303 */
1304 if (copyoutstr((const void *)src, dst, (size_t)len, &actual)) {
1305 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1306 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = dst;
1307 }
1308 dtrace_copyio_postflight(dst);
1309 }
1310 }
1311
1312 uint8_t
1313 dtrace_fuword8(user_addr_t uaddr)
1314 {
1315 uint8_t ret = 0;
1316
1317 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
1318 if (dtrace_copycheck( uaddr, (uintptr_t)&ret, sizeof(ret))) {
1319 if (copyin((const user_addr_t)uaddr, (char *)&ret, sizeof(ret))) {
1320 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1321 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = uaddr;
1322 }
1323 dtrace_copyio_postflight(uaddr);
1324 }
1325 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
1326
1327 return(ret);
1328 }
1329
1330 uint16_t
1331 dtrace_fuword16(user_addr_t uaddr)
1332 {
1333 uint16_t ret = 0;
1334
1335 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
1336 if (dtrace_copycheck( uaddr, (uintptr_t)&ret, sizeof(ret))) {
1337 if (copyin((const user_addr_t)uaddr, (char *)&ret, sizeof(ret))) {
1338 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1339 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = uaddr;
1340 }
1341 dtrace_copyio_postflight(uaddr);
1342 }
1343 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
1344
1345 return(ret);
1346 }
1347
1348 uint32_t
1349 dtrace_fuword32(user_addr_t uaddr)
1350 {
1351 uint32_t ret = 0;
1352
1353 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
1354 if (dtrace_copycheck( uaddr, (uintptr_t)&ret, sizeof(ret))) {
1355 if (copyin((const user_addr_t)uaddr, (char *)&ret, sizeof(ret))) {
1356 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1357 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = uaddr;
1358 }
1359 dtrace_copyio_postflight(uaddr);
1360 }
1361 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
1362
1363 return(ret);
1364 }
1365
1366 uint64_t
1367 dtrace_fuword64(user_addr_t uaddr)
1368 {
1369 uint64_t ret = 0;
1370
1371 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
1372 if (dtrace_copycheck( uaddr, (uintptr_t)&ret, sizeof(ret))) {
1373 if (copyin((const user_addr_t)uaddr, (char *)&ret, sizeof(ret))) {
1374 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1375 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = uaddr;
1376 }
1377 dtrace_copyio_postflight(uaddr);
1378 }
1379 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
1380
1381 return(ret);
1382 }
1383
1384 /*
1385 * Emulation of Solaris fuword / suword
1386 * Called from the fasttrap provider, so the use of copyin/out requires fewer safegaurds.
1387 */
1388
1389 int
1390 fuword8(user_addr_t uaddr, uint8_t *value)
1391 {
1392 if (copyin((const user_addr_t)uaddr, (char *)value, sizeof(uint8_t)) != 0) {
1393 return -1;
1394 }
1395
1396 return 0;
1397 }
1398
1399 int
1400 fuword16(user_addr_t uaddr, uint16_t *value)
1401 {
1402 if (copyin((const user_addr_t)uaddr, (char *)value, sizeof(uint16_t)) != 0) {
1403 return -1;
1404 }
1405
1406 return 0;
1407 }
1408
1409 int
1410 fuword32(user_addr_t uaddr, uint32_t *value)
1411 {
1412 if (copyin((const user_addr_t)uaddr, (char *)value, sizeof(uint32_t)) != 0) {
1413 return -1;
1414 }
1415
1416 return 0;
1417 }
1418
1419 int
1420 fuword64(user_addr_t uaddr, uint64_t *value)
1421 {
1422 if (copyin((const user_addr_t)uaddr, (char *)value, sizeof(uint64_t)) != 0) {
1423 return -1;
1424 }
1425
1426 return 0;
1427 }
1428
1429 void
1430 fuword8_noerr(user_addr_t uaddr, uint8_t *value)
1431 {
1432 if (copyin((const user_addr_t)uaddr, (char *)value, sizeof(uint8_t))) {
1433 *value = 0;
1434 }
1435 }
1436
1437 void
1438 fuword16_noerr(user_addr_t uaddr, uint16_t *value)
1439 {
1440 if (copyin((const user_addr_t)uaddr, (char *)value, sizeof(uint16_t))) {
1441 *value = 0;
1442 }
1443 }
1444
1445 void
1446 fuword32_noerr(user_addr_t uaddr, uint32_t *value)
1447 {
1448 if (copyin((const user_addr_t)uaddr, (char *)value, sizeof(uint32_t))) {
1449 *value = 0;
1450 }
1451 }
1452
1453 void
1454 fuword64_noerr(user_addr_t uaddr, uint64_t *value)
1455 {
1456 if (copyin((const user_addr_t)uaddr, (char *)value, sizeof(uint64_t))) {
1457 *value = 0;
1458 }
1459 }
1460
1461 int
1462 suword64(user_addr_t addr, uint64_t value)
1463 {
1464 if (copyout((const void *)&value, addr, sizeof(value)) != 0) {
1465 return -1;
1466 }
1467
1468 return 0;
1469 }
1470
1471 int
1472 suword32(user_addr_t addr, uint32_t value)
1473 {
1474 if (copyout((const void *)&value, addr, sizeof(value)) != 0) {
1475 return -1;
1476 }
1477
1478 return 0;
1479 }
1480
1481 int
1482 suword16(user_addr_t addr, uint16_t value)
1483 {
1484 if (copyout((const void *)&value, addr, sizeof(value)) != 0) {
1485 return -1;
1486 }
1487
1488 return 0;
1489 }
1490
1491 int
1492 suword8(user_addr_t addr, uint8_t value)
1493 {
1494 if (copyout((const void *)&value, addr, sizeof(value)) != 0) {
1495 return -1;
1496 }
1497
1498 return 0;
1499 }
1500
1501
1502 /*
1503 * Miscellaneous
1504 */
1505 extern boolean_t dtrace_tally_fault(user_addr_t);
1506
1507 boolean_t
1508 dtrace_tally_fault(user_addr_t uaddr)
1509 {
1510 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1511 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = uaddr;
1512 return( DTRACE_CPUFLAG_ISSET(CPU_DTRACE_NOFAULT) ? TRUE : FALSE );
1513 }
1514
1515 #define TOTTY 0x02
1516 extern int prf(const char *, va_list, int, struct tty *); /* bsd/kern/subr_prf.h */
1517
1518 int
1519 vuprintf(const char *format, va_list ap)
1520 {
1521 return prf(format, ap, TOTTY, NULL);
1522 }
1523
1524 /* Not called from probe context */
1525 void cmn_err( int level, const char *format, ... )
1526 {
1527 #pragma unused(level)
1528 va_list alist;
1529
1530 va_start(alist, format);
1531 vuprintf(format, alist);
1532 va_end(alist);
1533 uprintf("\n");
1534 }
1535
1536 /*
1537 * History:
1538 * 2002-01-24 gvdl Initial implementation of strstr
1539 */
1540
1541 __private_extern__ const char *
1542 strstr(const char *in, const char *str)
1543 {
1544 char c;
1545 size_t len;
1546
1547 c = *str++;
1548 if (!c)
1549 return (const char *) in; // Trivial empty string case
1550
1551 len = strlen(str);
1552 do {
1553 char sc;
1554
1555 do {
1556 sc = *in++;
1557 if (!sc)
1558 return (char *) 0;
1559 } while (sc != c);
1560 } while (strncmp(in, str, len) != 0);
1561
1562 return (const char *) (in - 1);
1563 }
1564
1565 /*
1566 * Runtime and ABI
1567 */
1568 uintptr_t
1569 dtrace_caller(int ignore)
1570 {
1571 #pragma unused(ignore)
1572 return -1; /* Just as in Solaris dtrace_asm.s */
1573 }
1574
1575 int
1576 dtrace_getstackdepth(int aframes)
1577 {
1578 struct frame *fp = (struct frame *)__builtin_frame_address(0);
1579 struct frame *nextfp, *minfp, *stacktop;
1580 int depth = 0;
1581 int on_intr;
1582
1583 if ((on_intr = CPU_ON_INTR(CPU)) != 0)
1584 stacktop = (struct frame *)dtrace_get_cpu_int_stack_top();
1585 else
1586 stacktop = (struct frame *)(dtrace_get_kernel_stack(current_thread()) + kernel_stack_size);
1587
1588 minfp = fp;
1589
1590 aframes++;
1591
1592 for (;;) {
1593 depth++;
1594
1595 nextfp = *(struct frame **)fp;
1596
1597 if (nextfp <= minfp || nextfp >= stacktop) {
1598 if (on_intr) {
1599 /*
1600 * Hop from interrupt stack to thread stack.
1601 */
1602 vm_offset_t kstack_base = dtrace_get_kernel_stack(current_thread());
1603
1604 minfp = (struct frame *)kstack_base;
1605 stacktop = (struct frame *)(kstack_base + kernel_stack_size);
1606
1607 on_intr = 0;
1608 continue;
1609 }
1610 break;
1611 }
1612
1613 fp = nextfp;
1614 minfp = fp;
1615 }
1616
1617 if (depth <= aframes)
1618 return (0);
1619
1620 return (depth - aframes);
1621 }
1622
1623 /*
1624 * Unconsidered
1625 */
1626 void
1627 dtrace_vtime_enable(void) {}
1628
1629 void
1630 dtrace_vtime_disable(void) {}
1631
1632 #else /* else ! CONFIG_DTRACE */
1633
1634 #include <sys/types.h>
1635 #include <mach/vm_types.h>
1636 #include <mach/kmod.h>
1637
1638 /*
1639 * This exists to prevent build errors when dtrace is unconfigured.
1640 */
1641
1642 kern_return_t _dtrace_register_anon_DOF(char *, unsigned char *, uint32_t);
1643
1644 kern_return_t _dtrace_register_anon_DOF(char *arg1, unsigned char *arg2, uint32_t arg3) {
1645 #pragma unused(arg1, arg2, arg3)
1646
1647 return KERN_FAILURE;
1648 }
1649
1650 #endif /* CONFIG_DTRACE */