2 * Copyright (c) 1996 John S. Dyson
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
8 * 1. Redistributions of source code must retain the above copyright
9 * notice immediately at the beginning of the file, without modification,
10 * this list of conditions, and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. Absolutely no warranty of function or purpose is made by the author
16 * 4. Modifications may be freely made to this file if the above conditions
20 * Copyright (c) 2003-2004 Apple Computer, Inc. All rights reserved.
22 * @APPLE_LICENSE_HEADER_START@
24 * This file contains Original Code and/or Modifications of Original Code
25 * as defined in and that are subject to the Apple Public Source License
26 * Version 2.0 (the 'License'). You may not use this file except in
27 * compliance with the License. Please obtain a copy of the License at
28 * http://www.opensource.apple.com/apsl/ and read it before using this
31 * The Original Code and all software distributed under the License are
32 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
33 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
34 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
35 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
36 * Please see the License for the specific language governing rights and
37 * limitations under the License.
39 * @APPLE_LICENSE_HEADER_END@
43 * This file contains a high-performance replacement for the socket-based
44 * pipes scheme originally used in FreeBSD/4.4Lite. It does not support
45 * all features of sockets, but does do everything that pipes normally
50 * This code has two modes of operation, a small write mode and a large
51 * write mode. The small write mode acts like conventional pipes with
52 * a kernel buffer. If the buffer is less than PIPE_MINDIRECT, then the
53 * "normal" pipe buffering is done. If the buffer is between PIPE_MINDIRECT
54 * and PIPE_SIZE in size, it is fully mapped and wired into the kernel, and
55 * the receiving process can copy it directly from the pages in the sending
58 * If the sending process receives a signal, it is possible that it will
59 * go away, and certainly its address space can change, because control
60 * is returned back to the user-mode side. In that case, the pipe code
61 * arranges to copy the buffer supplied by the user process, to a pageable
62 * kernel buffer, and the receiving process will grab the data from the
63 * pageable kernel buffer. Since signals don't happen all that often,
64 * the copy operation is normally eliminated.
66 * The constant PIPE_MINDIRECT is chosen to make sure that buffering will
67 * happen for small transfers so that the system will not spend all of
68 * its time context switching.
70 * In order to limit the resource use of pipes, two sysctls exist:
72 * kern.ipc.maxpipekva - This is a hard limit on the amount of pageable
73 * address space available to us in pipe_map. Whenever the amount in use
74 * exceeds half of this value, all new pipes will be created with size
75 * SMALL_PIPE_SIZE, rather than PIPE_SIZE. Big pipe creation will be limited
76 * as well. This value is loader tunable only.
78 * kern.ipc.maxpipekvawired - This value limits the amount of memory that may
79 * be wired in order to facilitate direct copies using page flipping.
80 * Whenever this value is exceeded, pipes will fall back to using regular
81 * copies. This value is sysctl controllable at all times.
83 * These values are autotuned in subr_param.c.
85 * Memory usage may be monitored through the sysctls
86 * kern.ipc.pipes, kern.ipc.pipekva and kern.ipc.pipekvawired.
90 #include <sys/param.h>
91 #include <sys/systm.h>
92 #include <sys/filedesc.h>
93 #include <sys/kernel.h>
94 #include <sys/vnode.h>
95 #include <sys/proc_internal.h>
96 #include <sys/kauth.h>
97 #include <sys/file_internal.h>
99 #include <sys/ioctl.h>
100 #include <sys/fcntl.h>
101 #include <sys/malloc.h>
102 #include <sys/syslog.h>
103 #include <sys/unistd.h>
104 #include <sys/resourcevar.h>
105 #include <sys/aio_kern.h>
106 #include <sys/signalvar.h>
107 #include <sys/pipe.h>
108 #include <sys/sysproto.h>
110 #include <bsm/audit_kernel.h>
112 #include <sys/kdebug.h>
114 #include <kern/zalloc.h>
115 #include <vm/vm_kern.h>
116 #include <libkern/OSAtomic.h>
118 #define f_flag f_fglob->fg_flag
119 #define f_type f_fglob->fg_type
120 #define f_msgcount f_fglob->fg_msgcount
121 #define f_cred f_fglob->fg_cred
122 #define f_ops f_fglob->fg_ops
123 #define f_offset f_fglob->fg_offset
124 #define f_data f_fglob->fg_data
126 * Use this define if you want to disable *fancy* VM things. Expect an
127 * approx 30% decrease in transfer rate. This could be useful for
130 * this needs to be ported to X and the performance measured
131 * before committing to supporting it
133 #define PIPE_NODIRECT 1
135 #ifndef PIPE_NODIRECT
138 #include <vm/vm_param.h>
139 #include <vm/vm_object.h>
140 #include <vm/vm_kern.h>
141 #include <vm/vm_extern.h>
143 #include <vm/vm_map.h>
144 #include <vm/vm_page.h>
151 * interfaces to the outside world
153 static int pipe_read(struct fileproc
*fp
, struct uio
*uio
,
154 kauth_cred_t cred
, int flags
, struct proc
*p
);
156 static int pipe_write(struct fileproc
*fp
, struct uio
*uio
,
157 kauth_cred_t cred
, int flags
, struct proc
*p
);
159 static int pipe_close(struct fileglob
*fg
, struct proc
*p
);
161 static int pipe_select(struct fileproc
*fp
, int which
, void * wql
, struct proc
*p
);
163 static int pipe_kqfilter(struct fileproc
*fp
, struct knote
*kn
, struct proc
*p
);
165 static int pipe_ioctl(struct fileproc
*fp
, u_long cmd
, caddr_t data
, struct proc
*p
);
168 struct fileops pipeops
=
178 static void filt_pipedetach(struct knote
*kn
);
179 static int filt_piperead(struct knote
*kn
, long hint
);
180 static int filt_pipewrite(struct knote
*kn
, long hint
);
182 static struct filterops pipe_rfiltops
=
183 { 1, NULL
, filt_pipedetach
, filt_piperead
};
184 static struct filterops pipe_wfiltops
=
185 { 1, NULL
, filt_pipedetach
, filt_pipewrite
};
188 * Default pipe buffer size(s), this can be kind-of large now because pipe
189 * space is pageable. The pipe code will try to maintain locality of
190 * reference for performance reasons, so small amounts of outstanding I/O
191 * will not wipe the cache.
193 #define MINPIPESIZE (PIPE_SIZE/3)
196 * Limit the number of "big" pipes
198 #define LIMITBIGPIPES 32
201 static int amountpipes
;
202 static int amountpipekva
;
204 #ifndef PIPE_NODIRECT
205 static int amountpipekvawired
;
207 int maxpipekva
= 1024 * 1024 * 16;
210 SYSCTL_DECL(_kern_ipc
);
212 SYSCTL_INT(_kern_ipc
, OID_AUTO
, maxpipekva
, CTLFLAG_RD
,
213 &maxpipekva
, 0, "Pipe KVA limit");
214 SYSCTL_INT(_kern_ipc
, OID_AUTO
, maxpipekvawired
, CTLFLAG_RW
,
215 &maxpipekvawired
, 0, "Pipe KVA wired limit");
216 SYSCTL_INT(_kern_ipc
, OID_AUTO
, pipes
, CTLFLAG_RD
,
217 &amountpipes
, 0, "Current # of pipes");
218 SYSCTL_INT(_kern_ipc
, OID_AUTO
, bigpipes
, CTLFLAG_RD
,
219 &nbigpipe
, 0, "Current # of big pipes");
220 SYSCTL_INT(_kern_ipc
, OID_AUTO
, pipekva
, CTLFLAG_RD
,
221 &amountpipekva
, 0, "Pipe KVA usage");
222 SYSCTL_INT(_kern_ipc
, OID_AUTO
, pipekvawired
, CTLFLAG_RD
,
223 &amountpipekvawired
, 0, "Pipe wired KVA usage");
226 void pipeinit(void *dummy __unused
);
227 static void pipeclose(struct pipe
*cpipe
);
228 static void pipe_free_kmem(struct pipe
*cpipe
);
229 static int pipe_create(struct pipe
**cpipep
);
230 static void pipeselwakeup(struct pipe
*cpipe
, struct pipe
*spipe
);
231 static __inline
int pipelock(struct pipe
*cpipe
, int catch);
232 static __inline
void pipeunlock(struct pipe
*cpipe
);
234 #ifndef PIPE_NODIRECT
235 static int pipe_build_write_buffer(struct pipe
*wpipe
, struct uio
*uio
);
236 static void pipe_destroy_write_buffer(struct pipe
*wpipe
);
237 static int pipe_direct_write(struct pipe
*wpipe
, struct uio
*uio
);
238 static void pipe_clone_write_buffer(struct pipe
*wpipe
);
241 extern int postpipeevent(struct pipe
*, int);
242 extern void evpipefree(struct pipe
*cpipe
);
245 static int pipespace(struct pipe
*cpipe
, int size
);
247 static lck_grp_t
*pipe_mtx_grp
;
248 static lck_attr_t
*pipe_mtx_attr
;
249 static lck_grp_attr_t
*pipe_mtx_grp_attr
;
251 static zone_t pipe_zone
;
253 SYSINIT(vfs
, SI_SUB_VFS
, SI_ORDER_ANY
, pipeinit
, NULL
);
256 pipeinit(void *dummy __unused
)
258 pipe_zone
= (zone_t
)zinit(sizeof(struct pipe
), 8192 * sizeof(struct pipe
), 4096, "pipe zone");
261 * allocate lock group attribute and group for pipe mutexes
263 pipe_mtx_grp_attr
= lck_grp_attr_alloc_init();
264 //lck_grp_attr_setstat(pipe_mtx_grp_attr);
265 pipe_mtx_grp
= lck_grp_alloc_init("pipe", pipe_mtx_grp_attr
);
268 * allocate the lock attribute for pipe mutexes
270 pipe_mtx_attr
= lck_attr_alloc_init();
271 //lck_attr_setdebug(pipe_mtx_attr);
277 * The pipe system call for the DTYPE_PIPE type of pipes
282 pipe(struct proc
*p
, __unused
struct pipe_args
*uap
, register_t
*retval
)
284 struct fileproc
*rf
, *wf
;
285 struct pipe
*rpipe
, *wpipe
;
289 if ((pmtx
= lck_mtx_alloc_init(pipe_mtx_grp
, pipe_mtx_attr
)) == NULL
)
292 rpipe
= wpipe
= NULL
;
293 if (pipe_create(&rpipe
) || pipe_create(&wpipe
)) {
298 * allocate the space for the normal I/O direction up
299 * front... we'll delay the allocation for the other
300 * direction until a write actually occurs (most
301 * likely it won't)...
303 * Reduce to 1/4th pipe size if we're over our global max.
305 if (amountpipekva
> maxpipekva
/ 2)
306 error
= pipespace(rpipe
, SMALL_PIPE_SIZE
);
308 error
= pipespace(rpipe
, PIPE_SIZE
);
312 #ifndef PIPE_NODIRECT
313 rpipe
->pipe_state
|= PIPE_DIRECTOK
;
314 wpipe
->pipe_state
|= PIPE_DIRECTOK
;
316 TAILQ_INIT(&rpipe
->pipe_evlist
);
317 TAILQ_INIT(&wpipe
->pipe_evlist
);
319 error
= falloc(p
, &rf
, &fd
);
326 * for now we'll create half-duplex
327 * pipes... this is what we've always
331 rf
->f_type
= DTYPE_PIPE
;
332 rf
->f_data
= (caddr_t
)rpipe
;
333 rf
->f_ops
= &pipeops
;
335 error
= falloc(p
, &wf
, &fd
);
337 fp_free(p
, retval
[0], rf
);
341 wf
->f_type
= DTYPE_PIPE
;
342 wf
->f_data
= (caddr_t
)wpipe
;
343 wf
->f_ops
= &pipeops
;
348 * XXXXXXXX SHOULD NOT HOLD FILE_LOCK() XXXXXXXXXXXX
350 * struct pipe represents a pipe endpoint. The MAC label is shared
351 * between the connected endpoints. As a result mac_init_pipe() and
352 * mac_create_pipe() should only be called on one of the endpoints
353 * after they have been connected.
355 mac_init_pipe(rpipe
);
356 mac_create_pipe(td
->td_ucred
, rpipe
);
359 *fdflags(p
, retval
[0]) &= ~UF_RESERVED
;
360 *fdflags(p
, retval
[1]) &= ~UF_RESERVED
;
361 fp_drop(p
, retval
[0], rf
, 1);
362 fp_drop(p
, retval
[1], wf
, 1);
365 rpipe
->pipe_peer
= wpipe
;
366 wpipe
->pipe_peer
= rpipe
;
368 rpipe
->pipe_mtxp
= wpipe
->pipe_mtxp
= pmtx
;
375 lck_mtx_free(pmtx
, pipe_mtx_grp
);
382 pipe_stat(struct pipe
*cpipe
, struct stat
*ub
)
393 error
= mac_check_pipe_stat(active_cred
, cpipe
);
398 if (cpipe
->pipe_buffer
.buffer
== 0) {
400 * must be stat'ing the write fd
402 cpipe
= cpipe
->pipe_peer
;
407 bzero(ub
, sizeof(*ub
));
408 ub
->st_mode
= S_IFIFO
| S_IRUSR
| S_IWUSR
| S_IRGRP
| S_IWGRP
;
409 ub
->st_blksize
= cpipe
->pipe_buffer
.size
;
410 ub
->st_size
= cpipe
->pipe_buffer
.cnt
;
411 ub
->st_blocks
= (ub
->st_size
+ ub
->st_blksize
- 1) / ub
->st_blksize
;
414 ub
->st_uid
= kauth_getuid();
415 ub
->st_gid
= kauth_getgid();
418 ub
->st_atimespec
.tv_sec
= now
.tv_sec
;
419 ub
->st_atimespec
.tv_nsec
= now
.tv_usec
* 1000;
421 ub
->st_mtimespec
.tv_sec
= now
.tv_sec
;
422 ub
->st_mtimespec
.tv_nsec
= now
.tv_usec
* 1000;
424 ub
->st_ctimespec
.tv_sec
= now
.tv_sec
;
425 ub
->st_ctimespec
.tv_nsec
= now
.tv_usec
* 1000;
428 * Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen, st_uid, st_gid.
429 * XXX (st_dev, st_ino) should be unique.
436 * Allocate kva for pipe circular buffer, the space is pageable
437 * This routine will 'realloc' the size of a pipe safely, if it fails
438 * it will retain the old buffer.
439 * If it fails it will return ENOMEM.
442 pipespace(struct pipe
*cpipe
, int size
)
446 size
= round_page(size
);
448 if (kmem_alloc(kernel_map
, &buffer
, size
) != KERN_SUCCESS
)
451 /* free old resources if we're resizing */
452 pipe_free_kmem(cpipe
);
453 cpipe
->pipe_buffer
.buffer
= (caddr_t
)buffer
;
454 cpipe
->pipe_buffer
.size
= size
;
455 cpipe
->pipe_buffer
.in
= 0;
456 cpipe
->pipe_buffer
.out
= 0;
457 cpipe
->pipe_buffer
.cnt
= 0;
459 OSAddAtomic(1, (SInt32
*)&amountpipes
);
460 OSAddAtomic(cpipe
->pipe_buffer
.size
, (SInt32
*)&amountpipekva
);
466 * initialize and allocate VM and memory for pipe
469 pipe_create(struct pipe
**cpipep
)
473 cpipe
= (struct pipe
*)zalloc(pipe_zone
);
475 if ((*cpipep
= cpipe
) == NULL
)
479 * protect so pipespace or pipeclose don't follow a junk pointer
480 * if pipespace() fails.
482 bzero(cpipe
, sizeof *cpipe
);
489 * lock a pipe for I/O, blocking other access
492 pipelock(cpipe
, catch)
498 while (cpipe
->pipe_state
& PIPE_LOCKFL
) {
499 cpipe
->pipe_state
|= PIPE_LWANT
;
501 error
= msleep(cpipe
, PIPE_MTX(cpipe
), catch ? (PRIBIO
| PCATCH
) : PRIBIO
,
506 cpipe
->pipe_state
|= PIPE_LOCKFL
;
512 * unlock a pipe I/O lock
519 cpipe
->pipe_state
&= ~PIPE_LOCKFL
;
521 if (cpipe
->pipe_state
& PIPE_LWANT
) {
522 cpipe
->pipe_state
&= ~PIPE_LWANT
;
528 pipeselwakeup(cpipe
, spipe
)
533 if (cpipe
->pipe_state
& PIPE_SEL
) {
534 cpipe
->pipe_state
&= ~PIPE_SEL
;
535 selwakeup(&cpipe
->pipe_sel
);
537 if (cpipe
->pipe_state
& PIPE_KNOTE
)
538 KNOTE(&cpipe
->pipe_sel
.si_note
, 1);
540 postpipeevent(cpipe
, EV_RWBYTES
);
542 if (spipe
&& (spipe
->pipe_state
& PIPE_ASYNC
) && spipe
->pipe_pgid
) {
545 if (spipe
->pipe_pgid
< 0)
546 gsignal(-spipe
->pipe_pgid
, SIGIO
);
547 else if ((p
= pfind(spipe
->pipe_pgid
)) != (struct proc
*)0)
554 pipe_read(struct fileproc
*fp
, struct uio
*uio
, __unused kauth_cred_t active_cred
, __unused
int flags
, __unused
struct proc
*p
)
556 struct pipe
*rpipe
= (struct pipe
*)fp
->f_data
;
564 error
= pipelock(rpipe
, 1);
569 error
= mac_check_pipe_read(active_cred
, rpipe
);
574 while (uio_resid(uio
)) {
576 * normal pipe buffer receive
578 if (rpipe
->pipe_buffer
.cnt
> 0) {
579 size
= rpipe
->pipe_buffer
.size
- rpipe
->pipe_buffer
.out
;
580 if (size
> rpipe
->pipe_buffer
.cnt
)
581 size
= rpipe
->pipe_buffer
.cnt
;
582 // LP64todo - fix this!
583 if (size
> (u_int
) uio_resid(uio
))
584 size
= (u_int
) uio_resid(uio
);
588 &rpipe
->pipe_buffer
.buffer
[rpipe
->pipe_buffer
.out
],
594 rpipe
->pipe_buffer
.out
+= size
;
595 if (rpipe
->pipe_buffer
.out
>= rpipe
->pipe_buffer
.size
)
596 rpipe
->pipe_buffer
.out
= 0;
598 rpipe
->pipe_buffer
.cnt
-= size
;
601 * If there is no more to read in the pipe, reset
602 * its pointers to the beginning. This improves
605 if (rpipe
->pipe_buffer
.cnt
== 0) {
606 rpipe
->pipe_buffer
.in
= 0;
607 rpipe
->pipe_buffer
.out
= 0;
610 #ifndef PIPE_NODIRECT
612 * Direct copy, bypassing a kernel buffer.
614 } else if ((size
= rpipe
->pipe_map
.cnt
) &&
615 (rpipe
->pipe_state
& PIPE_DIRECTW
)) {
617 // LP64todo - fix this!
618 if (size
> (u_int
) uio_resid(uio
))
619 size
= (u_int
) uio_resid(uio
);
621 va
= (caddr_t
) rpipe
->pipe_map
.kva
+
624 error
= uiomove(va
, size
, uio
);
629 rpipe
->pipe_map
.pos
+= size
;
630 rpipe
->pipe_map
.cnt
-= size
;
631 if (rpipe
->pipe_map
.cnt
== 0) {
632 rpipe
->pipe_state
&= ~PIPE_DIRECTW
;
638 * detect EOF condition
639 * read returns 0 on EOF, no need to set error
641 if (rpipe
->pipe_state
& PIPE_EOF
)
645 * If the "write-side" has been blocked, wake it up now.
647 if (rpipe
->pipe_state
& PIPE_WANTW
) {
648 rpipe
->pipe_state
&= ~PIPE_WANTW
;
653 * Break if some data was read.
659 * Unlock the pipe buffer for our remaining processing.
660 * We will either break out with an error or we will
661 * sleep and relock to loop.
666 * Handle non-blocking mode operation or
667 * wait for more data.
669 if (fp
->f_flag
& FNONBLOCK
) {
672 rpipe
->pipe_state
|= PIPE_WANTR
;
674 error
= msleep(rpipe
, PIPE_MTX(rpipe
), PRIBIO
| PCATCH
, "piperd", 0);
677 error
= pipelock(rpipe
, 1);
692 * PIPE_WANT processing only makes sense if pipe_busy is 0.
694 if ((rpipe
->pipe_busy
== 0) && (rpipe
->pipe_state
& PIPE_WANT
)) {
695 rpipe
->pipe_state
&= ~(PIPE_WANT
|PIPE_WANTW
);
697 } else if (rpipe
->pipe_buffer
.cnt
< MINPIPESIZE
) {
699 * Handle write blocking hysteresis.
701 if (rpipe
->pipe_state
& PIPE_WANTW
) {
702 rpipe
->pipe_state
&= ~PIPE_WANTW
;
707 if ((rpipe
->pipe_buffer
.size
- rpipe
->pipe_buffer
.cnt
) >= PIPE_BUF
)
708 pipeselwakeup(rpipe
, rpipe
->pipe_peer
);
717 #ifndef PIPE_NODIRECT
719 * Map the sending processes' buffer into kernel space and wire it.
720 * This is similar to a physical write operation.
723 pipe_build_write_buffer(wpipe
, uio
)
730 vm_offset_t addr
, endaddr
;
733 size
= (u_int
) uio
->uio_iov
->iov_len
;
734 if (size
> wpipe
->pipe_buffer
.size
)
735 size
= wpipe
->pipe_buffer
.size
;
737 pmap
= vmspace_pmap(curproc
->p_vmspace
);
738 endaddr
= round_page((vm_offset_t
)uio
->uio_iov
->iov_base
+ size
);
739 addr
= trunc_page((vm_offset_t
)uio
->uio_iov
->iov_base
);
740 for (i
= 0; addr
< endaddr
; addr
+= PAGE_SIZE
, i
++) {
742 * vm_fault_quick() can sleep. Consequently,
743 * vm_page_lock_queue() and vm_page_unlock_queue()
744 * should not be performed outside of this loop.
747 if (vm_fault_quick((caddr_t
)addr
, VM_PROT_READ
) < 0) {
748 vm_page_lock_queues();
749 for (j
= 0; j
< i
; j
++)
750 vm_page_unhold(wpipe
->pipe_map
.ms
[j
]);
751 vm_page_unlock_queues();
754 wpipe
->pipe_map
.ms
[i
] = pmap_extract_and_hold(pmap
, addr
,
756 if (wpipe
->pipe_map
.ms
[i
] == NULL
)
761 * set up the control block
763 wpipe
->pipe_map
.npages
= i
;
764 wpipe
->pipe_map
.pos
=
765 ((vm_offset_t
) uio
->uio_iov
->iov_base
) & PAGE_MASK
;
766 wpipe
->pipe_map
.cnt
= size
;
771 if (wpipe
->pipe_map
.kva
== 0) {
773 * We need to allocate space for an extra page because the
774 * address range might (will) span pages at times.
776 wpipe
->pipe_map
.kva
= kmem_alloc_nofault(kernel_map
,
777 wpipe
->pipe_buffer
.size
+ PAGE_SIZE
);
778 atomic_add_int(&amountpipekvawired
,
779 wpipe
->pipe_buffer
.size
+ PAGE_SIZE
);
781 pmap_qenter(wpipe
->pipe_map
.kva
, wpipe
->pipe_map
.ms
,
782 wpipe
->pipe_map
.npages
);
785 * and update the uio data
788 uio
->uio_iov
->iov_len
-= size
;
789 uio
->uio_iov
->iov_base
= (char *)uio
->uio_iov
->iov_base
+ size
;
790 if (uio
->uio_iov
->iov_len
== 0)
792 uio_setresid(uio
, (uio_resid(uio
) - size
));
793 uio
->uio_offset
+= size
;
798 * unmap and unwire the process buffer
801 pipe_destroy_write_buffer(wpipe
)
806 if (wpipe
->pipe_map
.kva
) {
807 pmap_qremove(wpipe
->pipe_map
.kva
, wpipe
->pipe_map
.npages
);
809 if (amountpipekvawired
> maxpipekvawired
/ 2) {
810 /* Conserve address space */
811 vm_offset_t kva
= wpipe
->pipe_map
.kva
;
812 wpipe
->pipe_map
.kva
= 0;
813 kmem_free(kernel_map
, kva
,
814 wpipe
->pipe_buffer
.size
+ PAGE_SIZE
);
815 atomic_subtract_int(&amountpipekvawired
,
816 wpipe
->pipe_buffer
.size
+ PAGE_SIZE
);
819 vm_page_lock_queues();
820 for (i
= 0; i
< wpipe
->pipe_map
.npages
; i
++) {
821 vm_page_unhold(wpipe
->pipe_map
.ms
[i
]);
823 vm_page_unlock_queues();
824 wpipe
->pipe_map
.npages
= 0;
828 * In the case of a signal, the writing process might go away. This
829 * code copies the data into the circular buffer so that the source
830 * pages can be freed without loss of data.
833 pipe_clone_write_buffer(wpipe
)
839 size
= wpipe
->pipe_map
.cnt
;
840 pos
= wpipe
->pipe_map
.pos
;
842 wpipe
->pipe_buffer
.in
= size
;
843 wpipe
->pipe_buffer
.out
= 0;
844 wpipe
->pipe_buffer
.cnt
= size
;
845 wpipe
->pipe_state
&= ~PIPE_DIRECTW
;
848 bcopy((caddr_t
) wpipe
->pipe_map
.kva
+ pos
,
849 wpipe
->pipe_buffer
.buffer
, size
);
850 pipe_destroy_write_buffer(wpipe
);
855 * This implements the pipe buffer write mechanism. Note that only
856 * a direct write OR a normal pipe write can be pending at any given time.
857 * If there are any characters in the pipe buffer, the direct write will
858 * be deferred until the receiving process grabs all of the bytes from
859 * the pipe buffer. Then the direct mapping write is set-up.
862 pipe_direct_write(wpipe
, uio
)
869 while (wpipe
->pipe_state
& PIPE_DIRECTW
) {
870 if (wpipe
->pipe_state
& PIPE_WANTR
) {
871 wpipe
->pipe_state
&= ~PIPE_WANTR
;
874 wpipe
->pipe_state
|= PIPE_WANTW
;
875 error
= msleep(wpipe
, PIPE_MTX(wpipe
),
876 PRIBIO
| PCATCH
, "pipdww", 0);
879 if (wpipe
->pipe_state
& PIPE_EOF
) {
884 wpipe
->pipe_map
.cnt
= 0; /* transfer not ready yet */
885 if (wpipe
->pipe_buffer
.cnt
> 0) {
886 if (wpipe
->pipe_state
& PIPE_WANTR
) {
887 wpipe
->pipe_state
&= ~PIPE_WANTR
;
891 wpipe
->pipe_state
|= PIPE_WANTW
;
892 error
= msleep(wpipe
, PIPE_MTX(wpipe
),
893 PRIBIO
| PCATCH
, "pipdwc", 0);
896 if (wpipe
->pipe_state
& PIPE_EOF
) {
903 wpipe
->pipe_state
|= PIPE_DIRECTW
;
907 error
= pipe_build_write_buffer(wpipe
, uio
);
911 wpipe
->pipe_state
&= ~PIPE_DIRECTW
;
916 while (!error
&& (wpipe
->pipe_state
& PIPE_DIRECTW
)) {
917 if (wpipe
->pipe_state
& PIPE_EOF
) {
920 pipe_destroy_write_buffer(wpipe
);
922 pipeselwakeup(wpipe
, wpipe
);
927 if (wpipe
->pipe_state
& PIPE_WANTR
) {
928 wpipe
->pipe_state
&= ~PIPE_WANTR
;
931 pipeselwakeup(wpipe
, wpipe
);
932 error
= msleep(wpipe
, PIPE_MTX(wpipe
), PRIBIO
| PCATCH
,
937 if (wpipe
->pipe_state
& PIPE_DIRECTW
) {
939 * this bit of trickery substitutes a kernel buffer for
940 * the process that might be going away.
942 pipe_clone_write_buffer(wpipe
);
945 pipe_destroy_write_buffer(wpipe
);
960 pipe_write(struct fileproc
*fp
, struct uio
*uio
, __unused kauth_cred_t active_cred
, __unused
int flags
, __unused
struct proc
*p
)
965 struct pipe
*wpipe
, *rpipe
;
967 rpipe
= (struct pipe
*)fp
->f_data
;
970 wpipe
= rpipe
->pipe_peer
;
973 * detect loss of pipe read side, issue SIGPIPE if lost.
975 if (wpipe
== NULL
|| (wpipe
->pipe_state
& PIPE_EOF
)) {
980 error
= mac_check_pipe_write(active_cred
, wpipe
);
990 if (wpipe
->pipe_buffer
.buffer
== 0) {
992 * need to allocate some storage... we delay the allocation
993 * until the first write on fd[0] to avoid allocating storage for both
994 * 'pipe ends'... most pipes are half-duplex with the writes targeting
995 * fd[1], so allocating space for both ends is a waste...
997 * Reduce to 1/4th pipe size if we're over our global max.
999 if (amountpipekva
> maxpipekva
/ 2)
1000 pipe_size
= SMALL_PIPE_SIZE
;
1002 pipe_size
= PIPE_SIZE
;
1006 * If it is advantageous to resize the pipe buffer, do
1009 if ((uio_resid(uio
) > PIPE_SIZE
) &&
1010 (wpipe
->pipe_buffer
.size
<= PIPE_SIZE
) &&
1011 (amountpipekva
< maxpipekva
/ 2) &&
1012 (nbigpipe
< LIMITBIGPIPES
) &&
1013 #ifndef PIPE_NODIRECT
1014 (wpipe
->pipe_state
& PIPE_DIRECTW
) == 0 &&
1016 (wpipe
->pipe_buffer
.cnt
== 0)) {
1018 pipe_size
= BIG_PIPE_SIZE
;
1023 * need to do initial allocation or resizing of pipe
1025 if ((error
= pipelock(wpipe
, 1)) == 0) {
1027 if (pipespace(wpipe
, pipe_size
) == 0)
1028 OSAddAtomic(1, (SInt32
*)&nbigpipe
);
1032 if (wpipe
->pipe_buffer
.buffer
== 0) {
1034 * initial allocation failed
1041 * If an error occurred unbusy and return, waking up any pending
1045 if ((wpipe
->pipe_busy
== 0) &&
1046 (wpipe
->pipe_state
& PIPE_WANT
)) {
1047 wpipe
->pipe_state
&= ~(PIPE_WANT
| PIPE_WANTR
);
1054 // LP64todo - fix this!
1055 orig_resid
= uio_resid(uio
);
1057 while (uio_resid(uio
)) {
1060 #ifndef PIPE_NODIRECT
1062 * If the transfer is large, we can gain performance if
1063 * we do process-to-process copies directly.
1064 * If the write is non-blocking, we don't use the
1065 * direct write mechanism.
1067 * The direct write mechanism will detect the reader going
1070 if ((uio
->uio_iov
->iov_len
>= PIPE_MINDIRECT
) &&
1071 (fp
->f_flag
& FNONBLOCK
) == 0 &&
1072 amountpipekvawired
+ uio
->uio_resid
< maxpipekvawired
) {
1073 error
= pipe_direct_write(wpipe
, uio
);
1080 * Pipe buffered writes cannot be coincidental with
1081 * direct writes. We wait until the currently executing
1082 * direct write is completed before we start filling the
1083 * pipe buffer. We break out if a signal occurs or the
1087 while (wpipe
->pipe_state
& PIPE_DIRECTW
) {
1088 if (wpipe
->pipe_state
& PIPE_WANTR
) {
1089 wpipe
->pipe_state
&= ~PIPE_WANTR
;
1092 error
= msleep(wpipe
, PIPE_MTX(wpipe
), PRIBIO
| PCATCH
, "pipbww", 0);
1094 if (wpipe
->pipe_state
& PIPE_EOF
)
1102 space
= wpipe
->pipe_buffer
.size
- wpipe
->pipe_buffer
.cnt
;
1105 * Writes of size <= PIPE_BUF must be atomic.
1107 if ((space
< uio_resid(uio
)) && (orig_resid
<= PIPE_BUF
))
1112 if ((error
= pipelock(wpipe
,1)) == 0) {
1113 int size
; /* Transfer size */
1114 int segsize
; /* first segment to transfer */
1116 if (wpipe
->pipe_state
& PIPE_EOF
) {
1121 #ifndef PIPE_NODIRECT
1123 * It is possible for a direct write to
1124 * slip in on us... handle it here...
1126 if (wpipe
->pipe_state
& PIPE_DIRECTW
) {
1132 * If a process blocked in pipelock, our
1133 * value for space might be bad... the mutex
1134 * is dropped while we're blocked
1136 if (space
> (int)(wpipe
->pipe_buffer
.size
-
1137 wpipe
->pipe_buffer
.cnt
)) {
1143 * Transfer size is minimum of uio transfer
1144 * and free space in pipe buffer.
1146 // LP64todo - fix this!
1147 if (space
> uio_resid(uio
))
1148 size
= uio_resid(uio
);
1152 * First segment to transfer is minimum of
1153 * transfer size and contiguous space in
1154 * pipe buffer. If first segment to transfer
1155 * is less than the transfer size, we've got
1156 * a wraparound in the buffer.
1158 segsize
= wpipe
->pipe_buffer
.size
-
1159 wpipe
->pipe_buffer
.in
;
1163 /* Transfer first segment */
1166 error
= uiomove(&wpipe
->pipe_buffer
.buffer
[wpipe
->pipe_buffer
.in
],
1170 if (error
== 0 && segsize
< size
) {
1172 * Transfer remaining part now, to
1173 * support atomic writes. Wraparound
1176 if (wpipe
->pipe_buffer
.in
+ segsize
!=
1177 wpipe
->pipe_buffer
.size
)
1178 panic("Expected pipe buffer "
1179 "wraparound disappeared");
1183 &wpipe
->pipe_buffer
.buffer
[0],
1184 size
- segsize
, uio
);
1188 wpipe
->pipe_buffer
.in
+= size
;
1189 if (wpipe
->pipe_buffer
.in
>=
1190 wpipe
->pipe_buffer
.size
) {
1191 if (wpipe
->pipe_buffer
.in
!=
1193 wpipe
->pipe_buffer
.size
)
1196 wpipe
->pipe_buffer
.in
= size
-
1200 wpipe
->pipe_buffer
.cnt
+= size
;
1201 if (wpipe
->pipe_buffer
.cnt
>
1202 wpipe
->pipe_buffer
.size
)
1203 panic("Pipe buffer overflow");
1213 * If the "read-side" has been blocked, wake it up now.
1215 if (wpipe
->pipe_state
& PIPE_WANTR
) {
1216 wpipe
->pipe_state
&= ~PIPE_WANTR
;
1220 * don't block on non-blocking I/O
1221 * we'll do the pipeselwakeup on the way out
1223 if (fp
->f_flag
& FNONBLOCK
) {
1228 * We have no more space and have something to offer,
1229 * wake up select/poll.
1231 pipeselwakeup(wpipe
, wpipe
);
1233 wpipe
->pipe_state
|= PIPE_WANTW
;
1235 error
= msleep(wpipe
, PIPE_MTX(wpipe
), PRIBIO
| PCATCH
, "pipewr", 0);
1240 * If read side wants to go away, we just issue a signal
1243 if (wpipe
->pipe_state
& PIPE_EOF
) {
1251 if ((wpipe
->pipe_busy
== 0) && (wpipe
->pipe_state
& PIPE_WANT
)) {
1252 wpipe
->pipe_state
&= ~(PIPE_WANT
| PIPE_WANTR
);
1255 if (wpipe
->pipe_buffer
.cnt
> 0) {
1257 * If there are any characters in the buffer, we wake up
1258 * the reader if it was blocked waiting for data.
1260 if (wpipe
->pipe_state
& PIPE_WANTR
) {
1261 wpipe
->pipe_state
&= ~PIPE_WANTR
;
1265 * wake up thread blocked in select/poll or post the notification
1267 pipeselwakeup(wpipe
, wpipe
);
1275 * we implement a very minimal set of ioctls for compatibility with sockets.
1279 pipe_ioctl(struct fileproc
*fp
, u_long cmd
, caddr_t data
, __unused
struct proc
*p
)
1281 struct pipe
*mpipe
= (struct pipe
*)fp
->f_data
;
1289 error
= mac_check_pipe_ioctl(active_cred
, mpipe
, cmd
, data
);
1305 mpipe
->pipe_state
|= PIPE_ASYNC
;
1307 mpipe
->pipe_state
&= ~PIPE_ASYNC
;
1313 #ifndef PIPE_NODIRECT
1314 if (mpipe
->pipe_state
& PIPE_DIRECTW
)
1315 *(int *)data
= mpipe
->pipe_map
.cnt
;
1318 *(int *)data
= mpipe
->pipe_buffer
.cnt
;
1323 mpipe
->pipe_pgid
= *(int *)data
;
1329 *(int *)data
= mpipe
->pipe_pgid
;
1341 pipe_select(struct fileproc
*fp
, int which
, void *wql
, struct proc
*p
)
1343 struct pipe
*rpipe
= (struct pipe
*)fp
->f_data
;
1347 if (rpipe
== NULL
|| rpipe
== (struct pipe
*)-1)
1352 wpipe
= rpipe
->pipe_peer
;
1357 if ((rpipe
->pipe_state
& PIPE_DIRECTW
) ||
1358 (rpipe
->pipe_buffer
.cnt
> 0) ||
1359 (rpipe
->pipe_state
& PIPE_EOF
)) {
1363 rpipe
->pipe_state
|= PIPE_SEL
;
1364 selrecord(p
, &rpipe
->pipe_sel
, wql
);
1369 if (wpipe
== NULL
|| (wpipe
->pipe_state
& PIPE_EOF
) ||
1370 (((wpipe
->pipe_state
& PIPE_DIRECTW
) == 0) &&
1371 (wpipe
->pipe_buffer
.size
- wpipe
->pipe_buffer
.cnt
) >= PIPE_BUF
)) {
1375 wpipe
->pipe_state
|= PIPE_SEL
;
1376 selrecord(p
, &wpipe
->pipe_sel
, wql
);
1380 rpipe
->pipe_state
|= PIPE_SEL
;
1381 selrecord(p
, &rpipe
->pipe_sel
, wql
);
1392 pipe_close(struct fileglob
*fg
, __unused
struct proc
*p
)
1397 cpipe
= (struct pipe
*)fg
->fg_data
;
1408 pipe_free_kmem(struct pipe
*cpipe
)
1411 if (cpipe
->pipe_buffer
.buffer
!= NULL
) {
1412 if (cpipe
->pipe_buffer
.size
> PIPE_SIZE
)
1413 OSAddAtomic(-1, (SInt32
*)&nbigpipe
);
1414 OSAddAtomic(cpipe
->pipe_buffer
.size
, (SInt32
*)&amountpipekva
);
1415 OSAddAtomic(-1, (SInt32
*)&amountpipes
);
1417 kmem_free(kernel_map
, (vm_offset_t
)cpipe
->pipe_buffer
.buffer
,
1418 cpipe
->pipe_buffer
.size
);
1419 cpipe
->pipe_buffer
.buffer
= NULL
;
1421 #ifndef PIPE_NODIRECT
1422 if (cpipe
->pipe_map
.kva
!= 0) {
1423 atomic_subtract_int(&amountpipekvawired
,
1424 cpipe
->pipe_buffer
.size
+ PAGE_SIZE
);
1425 kmem_free(kernel_map
,
1426 cpipe
->pipe_map
.kva
,
1427 cpipe
->pipe_buffer
.size
+ PAGE_SIZE
);
1428 cpipe
->pipe_map
.cnt
= 0;
1429 cpipe
->pipe_map
.kva
= 0;
1430 cpipe
->pipe_map
.pos
= 0;
1431 cpipe
->pipe_map
.npages
= 0;
1440 pipeclose(struct pipe
*cpipe
)
1447 /* partially created pipes won't have a valid mutex. */
1448 if (PIPE_MTX(cpipe
) != NULL
)
1451 pipeselwakeup(cpipe
, cpipe
);
1454 * If the other side is blocked, wake it up saying that
1455 * we want to close it down.
1457 while (cpipe
->pipe_busy
) {
1458 cpipe
->pipe_state
|= PIPE_WANT
| PIPE_EOF
;
1462 msleep(cpipe
, PIPE_MTX(cpipe
), PRIBIO
, "pipecl", 0);
1466 if (cpipe
->pipe_label
!= NULL
&& cpipe
->pipe_peer
== NULL
)
1467 mac_destroy_pipe(cpipe
);
1471 * Disconnect from peer
1473 if ((ppipe
= cpipe
->pipe_peer
) != NULL
) {
1475 ppipe
->pipe_state
|= PIPE_EOF
;
1477 pipeselwakeup(ppipe
, ppipe
);
1480 if (cpipe
->pipe_state
& PIPE_KNOTE
)
1481 KNOTE(&ppipe
->pipe_sel
.si_note
, 1);
1483 postpipeevent(ppipe
, EV_RCLOSED
);
1485 ppipe
->pipe_peer
= NULL
;
1492 if (PIPE_MTX(cpipe
) != NULL
) {
1493 if (ppipe
!= NULL
) {
1495 * since the mutex is shared and the peer is still
1496 * alive, we need to release the mutex, not free it
1501 * peer is gone, so we're the sole party left with
1502 * interest in this mutex... we can just free it
1504 lck_mtx_free(PIPE_MTX(cpipe
), pipe_mtx_grp
);
1507 pipe_free_kmem(cpipe
);
1509 zfree(pipe_zone
, cpipe
);
1515 pipe_kqfilter(__unused
struct fileproc
*fp
, struct knote
*kn
, __unused
struct proc
*p
)
1519 cpipe
= (struct pipe
*)kn
->kn_fp
->f_data
;
1523 switch (kn
->kn_filter
) {
1525 kn
->kn_fop
= &pipe_rfiltops
;
1528 kn
->kn_fop
= &pipe_wfiltops
;
1530 if (cpipe
->pipe_peer
== NULL
) {
1532 * other end of pipe has been closed
1537 cpipe
= cpipe
->pipe_peer
;
1544 if (KNOTE_ATTACH(&cpipe
->pipe_sel
.si_note
, kn
))
1545 cpipe
->pipe_state
|= PIPE_KNOTE
;
1552 filt_pipedetach(struct knote
*kn
)
1554 struct pipe
*cpipe
= (struct pipe
*)kn
->kn_fp
->f_data
;
1558 if (kn
->kn_filter
== EVFILT_WRITE
) {
1559 if (cpipe
->pipe_peer
== NULL
) {
1563 cpipe
= cpipe
->pipe_peer
;
1565 if (cpipe
->pipe_state
& PIPE_KNOTE
) {
1566 if (KNOTE_DETACH(&cpipe
->pipe_sel
.si_note
, kn
))
1567 cpipe
->pipe_state
&= ~PIPE_KNOTE
;
1574 filt_piperead(struct knote
*kn
, long hint
)
1576 struct pipe
*rpipe
= (struct pipe
*)kn
->kn_fp
->f_data
;
1581 * if hint == 0, then we've been called from the kevent
1582 * world directly and do not currently hold the pipe mutex...
1583 * if hint == 1, we're being called back via the KNOTE post
1584 * we made in pipeselwakeup, and we already hold the mutex...
1589 wpipe
= rpipe
->pipe_peer
;
1590 kn
->kn_data
= rpipe
->pipe_buffer
.cnt
;
1592 #ifndef PIPE_NODIRECT
1593 if ((kn
->kn_data
== 0) && (rpipe
->pipe_state
& PIPE_DIRECTW
))
1594 kn
->kn_data
= rpipe
->pipe_map
.cnt
;
1596 if ((rpipe
->pipe_state
& PIPE_EOF
) ||
1597 (wpipe
== NULL
) || (wpipe
->pipe_state
& PIPE_EOF
)) {
1598 kn
->kn_flags
|= EV_EOF
;
1601 retval
= (kn
->kn_sfflags
& NOTE_LOWAT
) ?
1602 (kn
->kn_data
>= kn
->kn_sdata
) : (kn
->kn_data
> 0);
1612 filt_pipewrite(struct knote
*kn
, long hint
)
1614 struct pipe
*rpipe
= (struct pipe
*)kn
->kn_fp
->f_data
;
1618 * if hint == 0, then we've been called from the kevent
1619 * world directly and do not currently hold the pipe mutex...
1620 * if hint == 1, we're being called back via the KNOTE post
1621 * we made in pipeselwakeup, and we already hold the mutex...
1626 wpipe
= rpipe
->pipe_peer
;
1628 if ((wpipe
== NULL
) || (wpipe
->pipe_state
& PIPE_EOF
)) {
1630 kn
->kn_flags
|= EV_EOF
;
1636 kn
->kn_data
= wpipe
->pipe_buffer
.size
- wpipe
->pipe_buffer
.cnt
;
1638 #ifndef PIPE_NODIRECT
1639 if (wpipe
->pipe_state
& PIPE_DIRECTW
)
1645 return (kn
->kn_data
>= ((kn
->kn_sfflags
& NOTE_LOWAT
) ?
1646 kn
->kn_sdata
: PIPE_BUF
));