]> git.saurik.com Git - apple/xnu.git/blob - bsd/netinet/tcp_sack.c
4ca79aeac59da3043d0c014362cc59e23d4c6e8e
[apple/xnu.git] / bsd / netinet / tcp_sack.c
1 /*
2 * Copyright (c) 2004-2012 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
30 * The Regents of the University of California. All rights reserved.
31 *
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions
34 * are met:
35 * 1. Redistributions of source code must retain the above copyright
36 * notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in the
39 * documentation and/or other materials provided with the distribution.
40 * 3. All advertising materials mentioning features or use of this software
41 * must display the following acknowledgement:
42 * This product includes software developed by the University of
43 * California, Berkeley and its contributors.
44 * 4. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 */
61
62 #define _IP_VHL
63
64
65 #include <sys/param.h>
66 #include <sys/systm.h>
67 #include <sys/kernel.h>
68 #include <sys/sysctl.h>
69 #include <sys/mbuf.h>
70 #include <sys/domain.h>
71 #include <sys/protosw.h>
72 #include <sys/socket.h>
73 #include <sys/socketvar.h>
74
75 #include <kern/zalloc.h>
76
77 #include <net/route.h>
78
79 #include <netinet/in.h>
80 #include <netinet/in_systm.h>
81 #include <netinet/ip.h>
82 #include <netinet/in_pcb.h>
83 #include <netinet/ip_var.h>
84 #if INET6
85 #include <netinet6/in6_pcb.h>
86 #include <netinet/ip6.h>
87 #include <netinet6/ip6_var.h>
88 #endif
89 #include <netinet/tcp.h>
90 //#define TCPOUTFLAGS
91 #include <netinet/tcp_fsm.h>
92 #include <netinet/tcp_seq.h>
93 #include <netinet/tcp_timer.h>
94 #include <netinet/tcp_var.h>
95 #include <netinet/tcpip.h>
96 #if TCPDEBUG
97 #include <netinet/tcp_debug.h>
98 #endif
99 #include <sys/kdebug.h>
100
101 #if IPSEC
102 #include <netinet6/ipsec.h>
103 #endif /*IPSEC*/
104
105 int tcp_do_sack = 1;
106 SYSCTL_INT(_net_inet_tcp, OID_AUTO, sack, CTLFLAG_RW | CTLFLAG_LOCKED, &tcp_do_sack, 0,
107 "Enable/Disable TCP SACK support");
108 static int tcp_sack_maxholes = 128;
109 SYSCTL_INT(_net_inet_tcp, OID_AUTO, sack_maxholes, CTLFLAG_RW | CTLFLAG_LOCKED,
110 &tcp_sack_maxholes, 0,
111 "Maximum number of TCP SACK holes allowed per connection");
112
113 static int tcp_sack_globalmaxholes = 65536;
114 SYSCTL_INT(_net_inet_tcp, OID_AUTO, sack_globalmaxholes, CTLFLAG_RW | CTLFLAG_LOCKED,
115 &tcp_sack_globalmaxholes, 0,
116 "Global maximum number of TCP SACK holes");
117
118 static int tcp_sack_globalholes = 0;
119 SYSCTL_INT(_net_inet_tcp, OID_AUTO, sack_globalholes, CTLFLAG_RD | CTLFLAG_LOCKED,
120 &tcp_sack_globalholes, 0,
121 "Global number of TCP SACK holes currently allocated");
122
123 extern struct zone *sack_hole_zone;
124
125 /*
126 * This function is called upon receipt of new valid data (while not in header
127 * prediction mode), and it updates the ordered list of sacks.
128 */
129 void
130 tcp_update_sack_list(struct tcpcb *tp, tcp_seq rcv_start, tcp_seq rcv_end)
131 {
132 /*
133 * First reported block MUST be the most recent one. Subsequent
134 * blocks SHOULD be in the order in which they arrived at the
135 * receiver. These two conditions make the implementation fully
136 * compliant with RFC 2018.
137 */
138 struct sackblk head_blk, saved_blks[MAX_SACK_BLKS];
139 int num_head, num_saved, i;
140
141 /* SACK block for the received segment. */
142 head_blk.start = rcv_start;
143 head_blk.end = rcv_end;
144
145 /*
146 * Merge updated SACK blocks into head_blk, and
147 * save unchanged SACK blocks into saved_blks[].
148 * num_saved will have the number of the saved SACK blocks.
149 */
150 num_saved = 0;
151 for (i = 0; i < tp->rcv_numsacks; i++) {
152 tcp_seq start = tp->sackblks[i].start;
153 tcp_seq end = tp->sackblks[i].end;
154 if (SEQ_GEQ(start, end) || SEQ_LEQ(start, tp->rcv_nxt)) {
155 /*
156 * Discard this SACK block.
157 */
158 } else if (SEQ_LEQ(head_blk.start, end) &&
159 SEQ_GEQ(head_blk.end, start)) {
160 /*
161 * Merge this SACK block into head_blk.
162 * This SACK block itself will be discarded.
163 */
164 if (SEQ_GT(head_blk.start, start))
165 head_blk.start = start;
166 if (SEQ_LT(head_blk.end, end))
167 head_blk.end = end;
168 } else {
169 /*
170 * Save this SACK block.
171 */
172 saved_blks[num_saved].start = start;
173 saved_blks[num_saved].end = end;
174 num_saved++;
175 }
176 }
177
178 /*
179 * Update SACK list in tp->sackblks[].
180 */
181 num_head = 0;
182 if (SEQ_GT(head_blk.start, tp->rcv_nxt)) {
183 /*
184 * The received data segment is an out-of-order segment.
185 * Put head_blk at the top of SACK list.
186 */
187 tp->sackblks[0] = head_blk;
188 num_head = 1;
189 /*
190 * If the number of saved SACK blocks exceeds its limit,
191 * discard the last SACK block.
192 */
193 if (num_saved >= MAX_SACK_BLKS)
194 num_saved--;
195 }
196 if (num_saved > 0) {
197 /*
198 * Copy the saved SACK blocks back.
199 */
200 bcopy(saved_blks, &tp->sackblks[num_head],
201 sizeof(struct sackblk) * num_saved);
202 }
203
204 /* Save the number of SACK blocks. */
205 tp->rcv_numsacks = num_head + num_saved;
206
207 /* If we are requesting SACK recovery, reset the stretch-ack state
208 * so that connection will generate more acks after recovery and
209 * sender's cwnd will open.
210 */
211 if ((tp->t_flags & TF_STRETCHACK) != 0 && tp->rcv_numsacks > 0)
212 tcp_reset_stretch_ack(tp);
213
214 #if TRAFFIC_MGT
215 if (tp->acc_iaj > 0 && tp->rcv_numsacks > 0)
216 reset_acc_iaj(tp);
217 #endif /* TRAFFIC_MGT */
218 }
219
220 /*
221 * Delete all receiver-side SACK information.
222 */
223 void
224 tcp_clean_sackreport( struct tcpcb *tp)
225 {
226
227 tp->rcv_numsacks = 0;
228 bzero(&tp->sackblks[0], sizeof (struct sackblk) * MAX_SACK_BLKS);
229 }
230
231 /*
232 * Allocate struct sackhole.
233 */
234 static struct sackhole *
235 tcp_sackhole_alloc(struct tcpcb *tp, tcp_seq start, tcp_seq end)
236 {
237 struct sackhole *hole;
238
239 if (tp->snd_numholes >= tcp_sack_maxholes ||
240 tcp_sack_globalholes >= tcp_sack_globalmaxholes) {
241 tcpstat.tcps_sack_sboverflow++;
242 return NULL;
243 }
244
245 hole = (struct sackhole *)zalloc_noblock(sack_hole_zone);
246 if (hole == NULL)
247 return NULL;
248
249 hole->start = start;
250 hole->end = end;
251 hole->rxmit = start;
252
253 tp->snd_numholes++;
254 tcp_sack_globalholes++;
255
256 return hole;
257 }
258
259 /*
260 * Free struct sackhole.
261 */
262 static void
263 tcp_sackhole_free(struct tcpcb *tp, struct sackhole *hole)
264 {
265 zfree(sack_hole_zone, hole);
266
267 tp->snd_numholes--;
268 tcp_sack_globalholes--;
269 }
270
271 /*
272 * Insert new SACK hole into scoreboard.
273 */
274 static struct sackhole *
275 tcp_sackhole_insert(struct tcpcb *tp, tcp_seq start, tcp_seq end,
276 struct sackhole *after)
277 {
278 struct sackhole *hole;
279
280 /* Allocate a new SACK hole. */
281 hole = tcp_sackhole_alloc(tp, start, end);
282 if (hole == NULL)
283 return NULL;
284
285 /* Insert the new SACK hole into scoreboard */
286 if (after != NULL)
287 TAILQ_INSERT_AFTER(&tp->snd_holes, after, hole, scblink);
288 else
289 TAILQ_INSERT_TAIL(&tp->snd_holes, hole, scblink);
290
291 /* Update SACK hint. */
292 if (tp->sackhint.nexthole == NULL)
293 tp->sackhint.nexthole = hole;
294
295 return hole;
296 }
297
298 /*
299 * Remove SACK hole from scoreboard.
300 */
301 static void
302 tcp_sackhole_remove(struct tcpcb *tp, struct sackhole *hole)
303 {
304 /* Update SACK hint. */
305 if (tp->sackhint.nexthole == hole)
306 tp->sackhint.nexthole = TAILQ_NEXT(hole, scblink);
307
308 /* Remove this SACK hole. */
309 TAILQ_REMOVE(&tp->snd_holes, hole, scblink);
310
311 /* Free this SACK hole. */
312 tcp_sackhole_free(tp, hole);
313 }
314
315 /*
316 * Process cumulative ACK and the TCP SACK option to update the scoreboard.
317 * tp->snd_holes is an ordered list of holes (oldest to newest, in terms of
318 * the sequence space).
319 */
320 void
321 tcp_sack_doack(struct tcpcb *tp, struct tcpopt *to, tcp_seq th_ack,
322 u_int32_t *newbytes_acked)
323 {
324 struct sackhole *cur, *temp;
325 struct sackblk sack, sack_blocks[TCP_MAX_SACK + 1], *sblkp;
326 int i, j, num_sack_blks;
327
328 num_sack_blks = 0;
329 /*
330 * If SND.UNA will be advanced by SEG.ACK, and if SACK holes exist,
331 * treat [SND.UNA, SEG.ACK) as if it is a SACK block.
332 */
333 if (SEQ_LT(tp->snd_una, th_ack) && !TAILQ_EMPTY(&tp->snd_holes)) {
334 sack_blocks[num_sack_blks].start = tp->snd_una;
335 sack_blocks[num_sack_blks++].end = th_ack;
336 }
337 /*
338 * Append received valid SACK blocks to sack_blocks[].
339 * Check that the SACK block range is valid.
340 */
341 for (i = 0; i < to->to_nsacks; i++) {
342 bcopy((to->to_sacks + i * TCPOLEN_SACK),
343 &sack, sizeof(sack));
344 sack.start = ntohl(sack.start);
345 sack.end = ntohl(sack.end);
346 if (SEQ_GT(sack.end, sack.start) &&
347 SEQ_GT(sack.start, tp->snd_una) &&
348 SEQ_GT(sack.start, th_ack) &&
349 SEQ_LT(sack.start, tp->snd_max) &&
350 SEQ_GT(sack.end, tp->snd_una) &&
351 SEQ_LEQ(sack.end, tp->snd_max))
352 sack_blocks[num_sack_blks++] = sack;
353 }
354
355 /*
356 * Return if SND.UNA is not advanced and no valid SACK block
357 * is received.
358 */
359 if (num_sack_blks == 0)
360 return;
361
362 /*
363 * Sort the SACK blocks so we can update the scoreboard
364 * with just one pass. The overhead of sorting upto 4+1 elements
365 * is less than making upto 4+1 passes over the scoreboard.
366 */
367 for (i = 0; i < num_sack_blks; i++) {
368 for (j = i + 1; j < num_sack_blks; j++) {
369 if (SEQ_GT(sack_blocks[i].end, sack_blocks[j].end)) {
370 sack = sack_blocks[i];
371 sack_blocks[i] = sack_blocks[j];
372 sack_blocks[j] = sack;
373 }
374 }
375 }
376 if (TAILQ_EMPTY(&tp->snd_holes)) {
377 /*
378 * Empty scoreboard. Need to initialize snd_fack (it may be
379 * uninitialized or have a bogus value). Scoreboard holes
380 * (from the sack blocks received) are created later below (in
381 * the logic that adds holes to the tail of the scoreboard).
382 */
383 tp->snd_fack = SEQ_MAX(tp->snd_una, th_ack);
384 *newbytes_acked += (tp->snd_fack - tp->snd_una);
385 }
386
387 /*
388 * In the while-loop below, incoming SACK blocks (sack_blocks[])
389 * and SACK holes (snd_holes) are traversed from their tails with
390 * just one pass in order to reduce the number of compares especially
391 * when the bandwidth-delay product is large.
392 * Note: Typically, in the first RTT of SACK recovery, the highest
393 * three or four SACK blocks with the same ack number are received.
394 * In the second RTT, if retransmitted data segments are not lost,
395 * the highest three or four SACK blocks with ack number advancing
396 * are received.
397 */
398 sblkp = &sack_blocks[num_sack_blks - 1]; /* Last SACK block */
399 if (SEQ_LT(tp->snd_fack, sblkp->start)) {
400 /*
401 * The highest SACK block is beyond fack.
402 * Append new SACK hole at the tail.
403 * If the second or later highest SACK blocks are also
404 * beyond the current fack, they will be inserted by
405 * way of hole splitting in the while-loop below.
406 */
407 temp = tcp_sackhole_insert(tp, tp->snd_fack,sblkp->start,NULL);
408 if (temp != NULL) {
409 tp->snd_fack = sblkp->end;
410 *newbytes_acked += (sblkp->end - sblkp->start);
411
412 /* Go to the previous sack block. */
413 sblkp--;
414 } else {
415 /*
416 * We failed to add a new hole based on the current
417 * sack block. Skip over all the sack blocks that
418 * fall completely to the right of snd_fack and proceed
419 * to trim the scoreboard based on the remaining sack
420 * blocks. This also trims the scoreboard for th_ack
421 * (which is sack_blocks[0]).
422 */
423 while (sblkp >= sack_blocks &&
424 SEQ_LT(tp->snd_fack, sblkp->start))
425 sblkp--;
426 if (sblkp >= sack_blocks &&
427 SEQ_LT(tp->snd_fack, sblkp->end)) {
428 *newbytes_acked += (sblkp->end - tp->snd_fack);
429 tp->snd_fack = sblkp->end;
430 }
431 }
432 } else if (SEQ_LT(tp->snd_fack, sblkp->end)) {
433 /* fack is advanced. */
434 *newbytes_acked += (sblkp->end - tp->snd_fack);
435 tp->snd_fack = sblkp->end;
436 }
437 /* We must have at least one SACK hole in scoreboard */
438 cur = TAILQ_LAST(&tp->snd_holes, sackhole_head); /* Last SACK hole */
439 /*
440 * Since the incoming sack blocks are sorted, we can process them
441 * making one sweep of the scoreboard.
442 */
443 while (sblkp >= sack_blocks && cur != NULL) {
444 if (SEQ_GEQ(sblkp->start, cur->end)) {
445 /*
446 * SACKs data beyond the current hole.
447 * Go to the previous sack block.
448 */
449 sblkp--;
450 continue;
451 }
452 if (SEQ_LEQ(sblkp->end, cur->start)) {
453 /*
454 * SACKs data before the current hole.
455 * Go to the previous hole.
456 */
457 cur = TAILQ_PREV(cur, sackhole_head, scblink);
458 continue;
459 }
460 tp->sackhint.sack_bytes_rexmit -= (cur->rxmit - cur->start);
461 if (SEQ_LEQ(sblkp->start, cur->start)) {
462 /* Data acks at least the beginning of hole */
463 if (SEQ_GEQ(sblkp->end, cur->end)) {
464 /* Acks entire hole, so delete hole */
465 *newbytes_acked += (cur->end - cur->start);
466 temp = cur;
467 cur = TAILQ_PREV(cur, sackhole_head, scblink);
468 tcp_sackhole_remove(tp, temp);
469 /*
470 * The sack block may ack all or part of the next
471 * hole too, so continue onto the next hole.
472 */
473 continue;
474 } else {
475 /* Move start of hole forward */
476 *newbytes_acked += (sblkp->end - cur->start);
477 cur->start = sblkp->end;
478 cur->rxmit = SEQ_MAX(cur->rxmit, cur->start);
479 }
480 } else {
481 /* Data acks at least the end of hole */
482 if (SEQ_GEQ(sblkp->end, cur->end)) {
483 /* Move end of hole backward */
484 *newbytes_acked += (cur->end - sblkp->start);
485 cur->end = sblkp->start;
486 cur->rxmit = SEQ_MIN(cur->rxmit, cur->end);
487 } else {
488 /*
489 * ACKs some data in middle of a hole; need to
490 * split current hole
491 */
492 *newbytes_acked += (sblkp->end - sblkp->start);
493 temp = tcp_sackhole_insert(tp, sblkp->end,
494 cur->end, cur);
495 if (temp != NULL) {
496 if (SEQ_GT(cur->rxmit, temp->rxmit)) {
497 temp->rxmit = cur->rxmit;
498 tp->sackhint.sack_bytes_rexmit
499 += (temp->rxmit
500 - temp->start);
501 }
502 cur->end = sblkp->start;
503 cur->rxmit = SEQ_MIN(cur->rxmit,
504 cur->end);
505 }
506 }
507 }
508 tp->sackhint.sack_bytes_rexmit += (cur->rxmit - cur->start);
509 /*
510 * Testing sblkp->start against cur->start tells us whether
511 * we're done with the sack block or the sack hole.
512 * Accordingly, we advance one or the other.
513 */
514 if (SEQ_LEQ(sblkp->start, cur->start))
515 cur = TAILQ_PREV(cur, sackhole_head, scblink);
516 else
517 sblkp--;
518 }
519 }
520
521 /*
522 * Free all SACK holes to clear the scoreboard.
523 */
524 void
525 tcp_free_sackholes(struct tcpcb *tp)
526 {
527 struct sackhole *q;
528
529 while ((q = TAILQ_FIRST(&tp->snd_holes)) != NULL)
530 tcp_sackhole_remove(tp, q);
531 tp->sackhint.sack_bytes_rexmit = 0;
532 tp->sackhint.nexthole = NULL;
533 tp->sack_newdata = 0;
534
535 }
536
537 /*
538 * Partial ack handling within a sack recovery episode.
539 * Keeping this very simple for now. When a partial ack
540 * is received, force snd_cwnd to a value that will allow
541 * the sender to transmit no more than 2 segments.
542 * If necessary, a better scheme can be adopted at a
543 * later point, but for now, the goal is to prevent the
544 * sender from bursting a large amount of data in the midst
545 * of sack recovery.
546 */
547 void
548 tcp_sack_partialack(tp, th)
549 struct tcpcb *tp;
550 struct tcphdr *th;
551 {
552 int num_segs = 1;
553
554 tp->t_timer[TCPT_REXMT] = 0;
555 tp->t_rtttime = 0;
556 /* send one or 2 segments based on how much new data was acked */
557 if (((BYTES_ACKED(th, tp)) / tp->t_maxseg) > 2)
558 num_segs = 2;
559 tp->snd_cwnd = (tp->sackhint.sack_bytes_rexmit +
560 (tp->snd_nxt - tp->sack_newdata) +
561 num_segs * tp->t_maxseg);
562 if (tp->snd_cwnd > tp->snd_ssthresh)
563 tp->snd_cwnd = tp->snd_ssthresh;
564 tp->t_flags |= TF_ACKNOW;
565 (void) tcp_output(tp);
566 }
567
568 /*
569 * Debug version of tcp_sack_output() that walks the scoreboard. Used for
570 * now to sanity check the hint.
571 */
572 static struct sackhole *
573 tcp_sack_output_debug(struct tcpcb *tp, int *sack_bytes_rexmt)
574 {
575 struct sackhole *p;
576
577 *sack_bytes_rexmt = 0;
578 TAILQ_FOREACH(p, &tp->snd_holes, scblink) {
579 if (SEQ_LT(p->rxmit, p->end)) {
580 if (SEQ_LT(p->rxmit, tp->snd_una)) {/* old SACK hole */
581 continue;
582 }
583 *sack_bytes_rexmt += (p->rxmit - p->start);
584 break;
585 }
586 *sack_bytes_rexmt += (p->rxmit - p->start);
587 }
588 return (p);
589 }
590
591 /*
592 * Returns the next hole to retransmit and the number of retransmitted bytes
593 * from the scoreboard. We store both the next hole and the number of
594 * retransmitted bytes as hints (and recompute these on the fly upon SACK/ACK
595 * reception). This avoids scoreboard traversals completely.
596 *
597 * The loop here will traverse *at most* one link. Here's the argument.
598 * For the loop to traverse more than 1 link before finding the next hole to
599 * retransmit, we would need to have at least 1 node following the current hint
600 * with (rxmit == end). But, for all holes following the current hint,
601 * (start == rxmit), since we have not yet retransmitted from them. Therefore,
602 * in order to traverse more 1 link in the loop below, we need to have at least
603 * one node following the current hint with (start == rxmit == end).
604 * But that can't happen, (start == end) means that all the data in that hole
605 * has been sacked, in which case, the hole would have been removed from the
606 * scoreboard.
607 */
608 struct sackhole *
609 tcp_sack_output(struct tcpcb *tp, int *sack_bytes_rexmt)
610 {
611 struct sackhole *hole = NULL, *dbg_hole = NULL;
612 int dbg_bytes_rexmt;
613
614 dbg_hole = tcp_sack_output_debug(tp, &dbg_bytes_rexmt);
615 *sack_bytes_rexmt = tp->sackhint.sack_bytes_rexmit;
616 hole = tp->sackhint.nexthole;
617 if (hole == NULL || SEQ_LT(hole->rxmit, hole->end))
618 goto out;
619 while ((hole = TAILQ_NEXT(hole, scblink)) != NULL) {
620 if (SEQ_LT(hole->rxmit, hole->end)) {
621 tp->sackhint.nexthole = hole;
622 break;
623 }
624 }
625 out:
626 if (dbg_hole != hole) {
627 printf("%s: Computed sack hole not the same as cached value\n", __func__);
628 hole = dbg_hole;
629 }
630 if (*sack_bytes_rexmt != dbg_bytes_rexmt) {
631 printf("%s: Computed sack_bytes_retransmitted (%d) not "
632 "the same as cached value (%d)\n",
633 __func__, dbg_bytes_rexmt, *sack_bytes_rexmt);
634 *sack_bytes_rexmt = dbg_bytes_rexmt;
635 }
636 return (hole);
637 }
638
639 /*
640 * After a timeout, the SACK list may be rebuilt. This SACK information
641 * should be used to avoid retransmitting SACKed data. This function
642 * traverses the SACK list to see if snd_nxt should be moved forward.
643 */
644 void
645 tcp_sack_adjust(struct tcpcb *tp)
646 {
647 struct sackhole *p, *cur = TAILQ_FIRST(&tp->snd_holes);
648
649 if (cur == NULL)
650 return; /* No holes */
651 if (SEQ_GEQ(tp->snd_nxt, tp->snd_fack))
652 return; /* We're already beyond any SACKed blocks */
653 /*
654 * Two cases for which we want to advance snd_nxt:
655 * i) snd_nxt lies between end of one hole and beginning of another
656 * ii) snd_nxt lies between end of last hole and snd_fack
657 */
658 while ((p = TAILQ_NEXT(cur, scblink)) != NULL) {
659 if (SEQ_LT(tp->snd_nxt, cur->end))
660 return;
661 if (SEQ_GEQ(tp->snd_nxt, p->start))
662 cur = p;
663 else {
664 tp->snd_nxt = p->start;
665 return;
666 }
667 }
668 if (SEQ_LT(tp->snd_nxt, cur->end))
669 return;
670 tp->snd_nxt = tp->snd_fack;
671 return;
672 }