2 * Copyright (c) 1998-2007 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
30 #include <sys/cdefs.h>
32 #include <IOKit/assert.h>
33 #include <IOKit/system.h>
34 #include <IOKit/IOLib.h>
35 #include <IOKit/IOMemoryDescriptor.h>
36 #include <IOKit/IOMapper.h>
37 #include <IOKit/IODMACommand.h>
38 #include <IOKit/IOKitKeysPrivate.h>
40 #include <IOKit/IOSubMemoryDescriptor.h>
41 #include <IOKit/IOMultiMemoryDescriptor.h>
43 #include <IOKit/IOKitDebug.h>
44 #include <libkern/OSDebug.h>
46 #include "IOKitKernelInternal.h"
48 #include <libkern/c++/OSContainers.h>
49 #include <libkern/c++/OSDictionary.h>
50 #include <libkern/c++/OSArray.h>
51 #include <libkern/c++/OSSymbol.h>
52 #include <libkern/c++/OSNumber.h>
58 #include <vm/vm_pageout.h>
59 #include <mach/memory_object_types.h>
60 #include <device/device_port.h>
62 #include <mach/vm_prot.h>
63 #include <mach/mach_vm.h>
64 #include <vm/vm_fault.h>
65 #include <vm/vm_protos.h>
67 extern ppnum_t
pmap_find_phys(pmap_t pmap
, addr64_t va
);
68 extern void ipc_port_release_send(ipc_port_t port
);
70 // osfmk/device/iokit_rpc.c
71 unsigned int IODefaultCacheBits(addr64_t pa
);
72 unsigned int IOTranslateCacheBits(struct phys_entry
*pp
);
76 #define kIOMapperWaitSystem ((IOMapper *) 1)
78 static IOMapper
* gIOSystemMapper
= NULL
;
82 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
84 OSDefineMetaClassAndAbstractStructors( IOMemoryDescriptor
, OSObject
)
86 #define super IOMemoryDescriptor
88 OSDefineMetaClassAndStructors(IOGeneralMemoryDescriptor
, IOMemoryDescriptor
)
90 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
92 static IORecursiveLock
* gIOMemoryLock
;
94 #define LOCK IORecursiveLockLock( gIOMemoryLock)
95 #define UNLOCK IORecursiveLockUnlock( gIOMemoryLock)
96 #define SLEEP IORecursiveLockSleep( gIOMemoryLock, (void *)this, THREAD_UNINT)
98 IORecursiveLockWakeup( gIOMemoryLock, (void *)this, /* one-thread */ false)
101 #define DEBG(fmt, args...) { kprintf(fmt, ## args); }
103 #define DEBG(fmt, args...) {}
106 #define IOMD_DEBUG_DMAACTIVE 1
108 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
110 // Some data structures and accessor macros used by the initWithOptions
113 enum ioPLBlockFlags
{
114 kIOPLOnDevice
= 0x00000001,
115 kIOPLExternUPL
= 0x00000002,
118 struct IOMDPersistentInitData
120 const IOGeneralMemoryDescriptor
* fMD
;
121 IOMemoryReference
* fMemRef
;
126 vm_address_t fPageInfo
; // Pointer to page list or index into it
127 uint32_t fIOMDOffset
; // The offset of this iopl in descriptor
128 ppnum_t fMappedPage
; // Page number of first page in this iopl
129 unsigned int fPageOffset
; // Offset within first page of iopl
130 unsigned int fFlags
; // Flags
135 uint8_t fDMAMapNumAddressBits
;
136 uint64_t fDMAMapAlignment
;
137 uint64_t fMappedBase
;
138 uint64_t fMappedLength
;
139 uint64_t fPreparationID
;
141 IOTracking fWireTracking
;
143 unsigned int fPageCnt
;
144 unsigned char fDiscontig
:1;
145 unsigned char fCompletionError
:1;
146 unsigned char _resv
:6;
148 // align arrays to 8 bytes so following macros work
149 unsigned char fPad
[3];
151 upl_page_info_t fPageList
[1]; /* variable length */
152 ioPLBlock fBlocks
[1]; /* variable length */
155 #define getDataP(osd) ((ioGMDData *) (osd)->getBytesNoCopy())
156 #define getIOPLList(d) ((ioPLBlock *) (void *)&(d->fPageList[d->fPageCnt]))
157 #define getNumIOPL(osd, d) \
158 (((osd)->getLength() - ((char *) getIOPLList(d) - (char *) d)) / sizeof(ioPLBlock))
159 #define getPageList(d) (&(d->fPageList[0]))
160 #define computeDataSize(p, u) \
161 (offsetof(ioGMDData, fPageList) + p * sizeof(upl_page_info_t) + u * sizeof(ioPLBlock))
163 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
165 #define next_page(a) ( trunc_page(a) + PAGE_SIZE )
169 kern_return_t
device_data_action(
170 uintptr_t device_handle
,
171 ipc_port_t device_pager
,
172 vm_prot_t protection
,
173 vm_object_offset_t offset
,
177 IOMemoryDescriptorReserved
* ref
= (IOMemoryDescriptorReserved
*) device_handle
;
178 IOMemoryDescriptor
* memDesc
;
181 memDesc
= ref
->dp
.memory
;
185 kr
= memDesc
->handleFault(device_pager
, offset
, size
);
195 kern_return_t
device_close(
196 uintptr_t device_handle
)
198 IOMemoryDescriptorReserved
* ref
= (IOMemoryDescriptorReserved
*) device_handle
;
200 IODelete( ref
, IOMemoryDescriptorReserved
, 1 );
202 return( kIOReturnSuccess
);
206 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
208 // Note this inline function uses C++ reference arguments to return values
209 // This means that pointers are not passed and NULLs don't have to be
210 // checked for as a NULL reference is illegal.
212 getAddrLenForInd(mach_vm_address_t
&addr
, mach_vm_size_t
&len
, // Output variables
213 UInt32 type
, IOGeneralMemoryDescriptor::Ranges r
, UInt32 ind
)
215 assert(kIOMemoryTypeUIO
== type
216 || kIOMemoryTypeVirtual
== type
|| kIOMemoryTypeVirtual64
== type
217 || kIOMemoryTypePhysical
== type
|| kIOMemoryTypePhysical64
== type
);
218 if (kIOMemoryTypeUIO
== type
) {
221 uio_getiov((uio_t
) r
.uio
, ind
, &ad
, &us
); addr
= ad
; len
= us
;
224 else if ((kIOMemoryTypeVirtual64
== type
) || (kIOMemoryTypePhysical64
== type
)) {
225 IOAddressRange cur
= r
.v64
[ind
];
229 #endif /* !__LP64__ */
231 IOVirtualRange cur
= r
.v
[ind
];
237 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
240 purgeableControlBits(IOOptionBits newState
, vm_purgable_t
* control
, int * state
)
242 IOReturn err
= kIOReturnSuccess
;
244 *control
= VM_PURGABLE_SET_STATE
;
246 enum { kIOMemoryPurgeableControlMask
= 15 };
248 switch (kIOMemoryPurgeableControlMask
& newState
)
250 case kIOMemoryPurgeableKeepCurrent
:
251 *control
= VM_PURGABLE_GET_STATE
;
254 case kIOMemoryPurgeableNonVolatile
:
255 *state
= VM_PURGABLE_NONVOLATILE
;
257 case kIOMemoryPurgeableVolatile
:
258 *state
= VM_PURGABLE_VOLATILE
| (newState
& ~kIOMemoryPurgeableControlMask
);
260 case kIOMemoryPurgeableEmpty
:
261 *state
= VM_PURGABLE_EMPTY
;
264 err
= kIOReturnBadArgument
;
271 purgeableStateBits(int * state
)
273 IOReturn err
= kIOReturnSuccess
;
275 switch (VM_PURGABLE_STATE_MASK
& *state
)
277 case VM_PURGABLE_NONVOLATILE
:
278 *state
= kIOMemoryPurgeableNonVolatile
;
280 case VM_PURGABLE_VOLATILE
:
281 *state
= kIOMemoryPurgeableVolatile
;
283 case VM_PURGABLE_EMPTY
:
284 *state
= kIOMemoryPurgeableEmpty
;
287 *state
= kIOMemoryPurgeableNonVolatile
;
288 err
= kIOReturnNotReady
;
296 vmProtForCacheMode(IOOptionBits cacheMode
)
301 case kIOInhibitCache
:
302 SET_MAP_MEM(MAP_MEM_IO
, prot
);
305 case kIOWriteThruCache
:
306 SET_MAP_MEM(MAP_MEM_WTHRU
, prot
);
309 case kIOWriteCombineCache
:
310 SET_MAP_MEM(MAP_MEM_WCOMB
, prot
);
313 case kIOCopybackCache
:
314 SET_MAP_MEM(MAP_MEM_COPYBACK
, prot
);
317 case kIOCopybackInnerCache
:
318 SET_MAP_MEM(MAP_MEM_INNERWBACK
, prot
);
321 case kIODefaultCache
:
323 SET_MAP_MEM(MAP_MEM_NOOP
, prot
);
331 pagerFlagsForCacheMode(IOOptionBits cacheMode
)
333 unsigned int pagerFlags
= 0;
336 case kIOInhibitCache
:
337 pagerFlags
= DEVICE_PAGER_CACHE_INHIB
| DEVICE_PAGER_COHERENT
| DEVICE_PAGER_GUARDED
;
340 case kIOWriteThruCache
:
341 pagerFlags
= DEVICE_PAGER_WRITE_THROUGH
| DEVICE_PAGER_COHERENT
| DEVICE_PAGER_GUARDED
;
344 case kIOWriteCombineCache
:
345 pagerFlags
= DEVICE_PAGER_CACHE_INHIB
| DEVICE_PAGER_COHERENT
;
348 case kIOCopybackCache
:
349 pagerFlags
= DEVICE_PAGER_COHERENT
;
352 case kIOCopybackInnerCache
:
353 pagerFlags
= DEVICE_PAGER_COHERENT
;
356 case kIODefaultCache
:
364 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
365 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
374 struct IOMemoryReference
376 volatile SInt32 refCount
;
380 IOMemoryEntry entries
[0];
385 kIOMemoryReferenceReuse
= 0x00000001,
386 kIOMemoryReferenceWrite
= 0x00000002,
389 SInt32 gIOMemoryReferenceCount
;
392 IOGeneralMemoryDescriptor::memoryReferenceAlloc(uint32_t capacity
, IOMemoryReference
* realloc
)
394 IOMemoryReference
* ref
;
395 size_t newSize
, oldSize
, copySize
;
397 newSize
= (sizeof(IOMemoryReference
)
398 - sizeof(ref
->entries
)
399 + capacity
* sizeof(ref
->entries
[0]));
400 ref
= (typeof(ref
)) IOMalloc(newSize
);
403 oldSize
= (sizeof(IOMemoryReference
)
404 - sizeof(realloc
->entries
)
405 + realloc
->capacity
* sizeof(realloc
->entries
[0]));
407 if (copySize
> newSize
) copySize
= newSize
;
408 if (ref
) bcopy(realloc
, ref
, copySize
);
409 IOFree(realloc
, oldSize
);
413 bzero(ref
, sizeof(*ref
));
415 OSIncrementAtomic(&gIOMemoryReferenceCount
);
417 if (!ref
) return (0);
418 ref
->capacity
= capacity
;
423 IOGeneralMemoryDescriptor::memoryReferenceFree(IOMemoryReference
* ref
)
425 IOMemoryEntry
* entries
;
428 entries
= ref
->entries
+ ref
->count
;
429 while (entries
> &ref
->entries
[0])
432 ipc_port_release_send(entries
->entry
);
434 size
= (sizeof(IOMemoryReference
)
435 - sizeof(ref
->entries
)
436 + ref
->capacity
* sizeof(ref
->entries
[0]));
439 OSDecrementAtomic(&gIOMemoryReferenceCount
);
443 IOGeneralMemoryDescriptor::memoryReferenceRelease(IOMemoryReference
* ref
)
445 if (1 == OSDecrementAtomic(&ref
->refCount
)) memoryReferenceFree(ref
);
450 IOGeneralMemoryDescriptor::memoryReferenceCreate(
451 IOOptionBits options
,
452 IOMemoryReference
** reference
)
454 enum { kCapacity
= 4, kCapacityInc
= 4 };
457 IOMemoryReference
* ref
;
458 IOMemoryEntry
* entries
;
459 IOMemoryEntry
* cloneEntries
;
461 ipc_port_t entry
, cloneEntry
;
463 memory_object_size_t actualSize
;
466 mach_vm_address_t entryAddr
, endAddr
, entrySize
;
467 mach_vm_size_t srcAddr
, srcLen
;
468 mach_vm_size_t nextAddr
, nextLen
;
469 mach_vm_size_t offset
, remain
;
471 IOOptionBits type
= (_flags
& kIOMemoryTypeMask
);
472 IOOptionBits cacheMode
;
473 unsigned int pagerFlags
;
476 ref
= memoryReferenceAlloc(kCapacity
, NULL
);
477 if (!ref
) return (kIOReturnNoMemory
);
479 tag
= IOMemoryTag(kernel_map
);
480 entries
= &ref
->entries
[0];
485 if (_task
) getAddrLenForInd(nextAddr
, nextLen
, type
, _ranges
, rangeIdx
);
488 nextAddr
= getPhysicalSegment(offset
, &physLen
, kIOMemoryMapperNone
);
491 // default cache mode for physical
492 if (kIODefaultCache
== ((_flags
& kIOMemoryBufferCacheMask
) >> kIOMemoryBufferCacheShift
))
495 pagerFlags
= IODefaultCacheBits(nextAddr
);
496 if (DEVICE_PAGER_CACHE_INHIB
& pagerFlags
)
498 if (DEVICE_PAGER_GUARDED
& pagerFlags
)
499 mode
= kIOInhibitCache
;
501 mode
= kIOWriteCombineCache
;
503 else if (DEVICE_PAGER_WRITE_THROUGH
& pagerFlags
)
504 mode
= kIOWriteThruCache
;
506 mode
= kIOCopybackCache
;
507 _flags
|= (mode
<< kIOMemoryBufferCacheShift
);
511 // cache mode & vm_prot
513 cacheMode
= ((_flags
& kIOMemoryBufferCacheMask
) >> kIOMemoryBufferCacheShift
);
514 prot
|= vmProtForCacheMode(cacheMode
);
515 // VM system requires write access to change cache mode
516 if (kIODefaultCache
!= cacheMode
) prot
|= VM_PROT_WRITE
;
517 if (kIODirectionOut
!= (kIODirectionOutIn
& _flags
)) prot
|= VM_PROT_WRITE
;
518 if (kIOMemoryReferenceWrite
& options
) prot
|= VM_PROT_WRITE
;
520 if ((kIOMemoryReferenceReuse
& options
) && _memRef
)
522 cloneEntries
= &_memRef
->entries
[0];
523 prot
|= MAP_MEM_NAMED_REUSE
;
530 if (kIOMemoryBufferPageable
& _flags
)
532 // IOBufferMemoryDescriptor alloc - set flags for entry + object create
533 prot
|= MAP_MEM_NAMED_CREATE
;
534 if (kIOMemoryBufferPurgeable
& _flags
) prot
|= MAP_MEM_PURGABLE
;
535 prot
|= VM_PROT_WRITE
;
538 else map
= get_task_map(_task
);
547 // coalesce addr range
548 for (++rangeIdx
; rangeIdx
< _rangesCount
; rangeIdx
++)
550 getAddrLenForInd(nextAddr
, nextLen
, type
, _ranges
, rangeIdx
);
551 if ((srcAddr
+ srcLen
) != nextAddr
) break;
554 entryAddr
= trunc_page_64(srcAddr
);
555 endAddr
= round_page_64(srcAddr
+ srcLen
);
558 entrySize
= (endAddr
- entryAddr
);
559 if (!entrySize
) break;
560 actualSize
= entrySize
;
562 cloneEntry
= MACH_PORT_NULL
;
563 if (MAP_MEM_NAMED_REUSE
& prot
)
565 if (cloneEntries
< &_memRef
->entries
[_memRef
->count
]) cloneEntry
= cloneEntries
->entry
;
566 else prot
&= ~MAP_MEM_NAMED_REUSE
;
569 err
= mach_make_memory_entry_64(map
,
570 &actualSize
, entryAddr
, prot
, &entry
, cloneEntry
);
572 if (KERN_SUCCESS
!= err
) break;
573 if (actualSize
> entrySize
) panic("mach_make_memory_entry_64 actualSize");
575 if (count
>= ref
->capacity
)
577 ref
= memoryReferenceAlloc(ref
->capacity
+ kCapacityInc
, ref
);
578 entries
= &ref
->entries
[count
];
580 entries
->entry
= entry
;
581 entries
->size
= actualSize
;
582 entries
->offset
= offset
+ (entryAddr
- srcAddr
);
583 entryAddr
+= actualSize
;
584 if (MAP_MEM_NAMED_REUSE
& prot
)
586 if ((cloneEntries
->entry
== entries
->entry
)
587 && (cloneEntries
->size
== entries
->size
)
588 && (cloneEntries
->offset
== entries
->offset
)) cloneEntries
++;
589 else prot
&= ~MAP_MEM_NAMED_REUSE
;
601 // _task == 0, physical or kIOMemoryTypeUPL
602 memory_object_t pager
;
603 vm_size_t size
= ptoa_32(_pages
);
605 if (!getKernelReserved()) panic("getKernelReserved");
607 reserved
->dp
.pagerContig
= (1 == _rangesCount
);
608 reserved
->dp
.memory
= this;
610 pagerFlags
= pagerFlagsForCacheMode(cacheMode
);
611 if (-1U == pagerFlags
) panic("phys is kIODefaultCache");
612 if (reserved
->dp
.pagerContig
) pagerFlags
|= DEVICE_PAGER_CONTIGUOUS
;
614 pager
= device_pager_setup((memory_object_t
) 0, (uintptr_t) reserved
,
617 if (!pager
) err
= kIOReturnVMError
;
621 entryAddr
= trunc_page_64(srcAddr
);
622 err
= mach_memory_object_memory_entry_64((host_t
) 1, false /*internal*/,
623 size
, VM_PROT_READ
| VM_PROT_WRITE
, pager
, &entry
);
624 assert (KERN_SUCCESS
== err
);
625 if (KERN_SUCCESS
!= err
) device_pager_deallocate(pager
);
628 reserved
->dp
.devicePager
= pager
;
629 entries
->entry
= entry
;
630 entries
->size
= size
;
631 entries
->offset
= offset
+ (entryAddr
- srcAddr
);
641 if (KERN_SUCCESS
== err
)
643 if (MAP_MEM_NAMED_REUSE
& prot
)
645 memoryReferenceFree(ref
);
646 OSIncrementAtomic(&_memRef
->refCount
);
652 memoryReferenceFree(ref
);
662 IOMemoryDescriptorMapAlloc(vm_map_t map
, void * _ref
)
664 IOMemoryDescriptorMapAllocRef
* ref
= (typeof(ref
))_ref
;
666 vm_map_offset_t addr
;
670 err
= vm_map_enter_mem_object(map
, &addr
, ref
->size
,
672 (((ref
->options
& kIOMapAnywhere
)
675 | VM_MAKE_TAG(ref
->tag
)
676 | VM_FLAGS_IOKIT_ACCT
), /* iokit accounting */
678 (memory_object_offset_t
) 0,
683 if (KERN_SUCCESS
== err
)
685 ref
->mapped
= (mach_vm_address_t
) addr
;
693 IOGeneralMemoryDescriptor::memoryReferenceMap(
694 IOMemoryReference
* ref
,
696 mach_vm_size_t inoffset
,
698 IOOptionBits options
,
699 mach_vm_address_t
* inaddr
)
702 int64_t offset
= inoffset
;
703 uint32_t rangeIdx
, entryIdx
;
704 vm_map_offset_t addr
, mapAddr
;
705 vm_map_offset_t pageOffset
, entryOffset
, remain
, chunk
;
707 mach_vm_address_t nextAddr
;
708 mach_vm_size_t nextLen
;
710 IOMemoryEntry
* entry
;
711 vm_prot_t prot
, memEntryCacheMode
;
713 IOOptionBits cacheMode
;
717 * For the kIOMapPrefault option.
719 upl_page_info_t
*pageList
= NULL
;
720 UInt currentPageIndex
= 0;
722 type
= _flags
& kIOMemoryTypeMask
;
724 if (!(kIOMapReadOnly
& options
)) prot
|= VM_PROT_WRITE
;
727 cacheMode
= ((options
& kIOMapCacheMask
) >> kIOMapCacheShift
);
728 if (kIODefaultCache
!= cacheMode
)
730 // VM system requires write access to update named entry cache mode
731 memEntryCacheMode
= (MAP_MEM_ONLY
| VM_PROT_WRITE
| prot
| vmProtForCacheMode(cacheMode
));
734 tag
= IOMemoryTag(map
);
738 // Find first range for offset
739 for (remain
= offset
, rangeIdx
= 0; rangeIdx
< _rangesCount
; rangeIdx
++)
741 getAddrLenForInd(nextAddr
, nextLen
, type
, _ranges
, rangeIdx
);
742 if (remain
< nextLen
) break;
750 nextAddr
= getPhysicalSegment(offset
, &physLen
, kIOMemoryMapperNone
);
754 assert(remain
< nextLen
);
755 if (remain
>= nextLen
) return (kIOReturnBadArgument
);
759 pageOffset
= (page_mask
& nextAddr
);
761 if (!(options
& kIOMapAnywhere
))
764 if (pageOffset
!= (page_mask
& addr
)) return (kIOReturnNotAligned
);
768 // find first entry for offset
770 (entryIdx
< ref
->count
) && (offset
>= ref
->entries
[entryIdx
].offset
);
773 entry
= &ref
->entries
[entryIdx
];
776 size
= round_page_64(size
+ pageOffset
);
777 if (kIOMapOverwrite
& options
)
779 if ((map
== kernel_map
) && (kIOMemoryBufferPageable
& _flags
))
781 map
= IOPageableMapForAddress(addr
);
787 IOMemoryDescriptorMapAllocRef ref
;
790 ref
.options
= options
;
793 if (options
& kIOMapAnywhere
)
794 // vm_map looks for addresses above here, even when VM_FLAGS_ANYWHERE
798 if ((ref
.map
== kernel_map
) && (kIOMemoryBufferPageable
& _flags
))
799 err
= IOIteratePageableMaps( ref
.size
, &IOMemoryDescriptorMapAlloc
, &ref
);
801 err
= IOMemoryDescriptorMapAlloc(ref
.map
, &ref
);
802 if (KERN_SUCCESS
== err
)
810 * Prefaulting is only possible if we wired the memory earlier. Check the
811 * memory type, and the underlying data.
813 if (options
& kIOMapPrefault
)
816 * The memory must have been wired by calling ::prepare(), otherwise
817 * we don't have the UPL. Without UPLs, pages cannot be pre-faulted
819 assert(map
!= kernel_map
);
820 assert(_wireCount
!= 0);
821 assert(_memoryEntries
!= NULL
);
822 if ((map
== kernel_map
) ||
824 (_memoryEntries
== NULL
))
826 return kIOReturnBadArgument
;
829 // Get the page list.
830 ioGMDData
* dataP
= getDataP(_memoryEntries
);
831 ioPLBlock
const* ioplList
= getIOPLList(dataP
);
832 pageList
= getPageList(dataP
);
834 // Get the number of IOPLs.
835 UInt numIOPLs
= getNumIOPL(_memoryEntries
, dataP
);
838 * Scan through the IOPL Info Blocks, looking for the first block containing
839 * the offset. The research will go past it, so we'll need to go back to the
840 * right range at the end.
843 while (ioplIndex
< numIOPLs
&& offset
>= ioplList
[ioplIndex
].fIOMDOffset
)
847 // Retrieve the IOPL info block.
848 ioPLBlock ioplInfo
= ioplList
[ioplIndex
];
851 * For external UPLs, the fPageInfo points directly to the UPL's page_info_t
854 if (ioplInfo
.fFlags
& kIOPLExternUPL
)
855 pageList
= (upl_page_info_t
*) ioplInfo
.fPageInfo
;
857 pageList
= &pageList
[ioplInfo
.fPageInfo
];
859 // Rebase [offset] into the IOPL in order to looks for the first page index.
860 mach_vm_size_t offsetInIOPL
= offset
- ioplInfo
.fIOMDOffset
+ ioplInfo
.fPageOffset
;
862 // Retrieve the index of the first page corresponding to the offset.
863 currentPageIndex
= atop_32(offsetInIOPL
);
871 while (remain
&& (KERN_SUCCESS
== err
))
873 entryOffset
= offset
- entry
->offset
;
874 if ((page_mask
& entryOffset
) != pageOffset
)
876 err
= kIOReturnNotAligned
;
880 if (kIODefaultCache
!= cacheMode
)
882 vm_size_t unused
= 0;
883 err
= mach_make_memory_entry(NULL
/*unused*/, &unused
, 0 /*unused*/,
884 memEntryCacheMode
, NULL
, entry
->entry
);
885 assert (KERN_SUCCESS
== err
);
888 entryOffset
-= pageOffset
;
889 if (entryOffset
>= entry
->size
) panic("entryOffset");
890 chunk
= entry
->size
- entryOffset
;
893 if (chunk
> remain
) chunk
= remain
;
894 if (options
& kIOMapPrefault
)
896 UInt nb_pages
= round_page(chunk
) / PAGE_SIZE
;
897 err
= vm_map_enter_mem_object_prefault(map
,
903 | VM_FLAGS_IOKIT_ACCT
), /* iokit accounting */
908 &pageList
[currentPageIndex
],
911 // Compute the next index in the page list.
912 currentPageIndex
+= nb_pages
;
913 assert(currentPageIndex
<= _pages
);
917 err
= vm_map_enter_mem_object(map
,
923 | VM_FLAGS_IOKIT_ACCT
), /* iokit accounting */
931 if (KERN_SUCCESS
!= err
) break;
935 offset
+= chunk
- pageOffset
;
940 if (entryIdx
>= ref
->count
)
942 err
= kIOReturnOverrun
;
947 if ((KERN_SUCCESS
!= err
) && addr
&& !(kIOMapOverwrite
& options
))
949 (void) mach_vm_deallocate(map
, trunc_page_64(addr
), size
);
958 IOGeneralMemoryDescriptor::memoryReferenceGetPageCounts(
959 IOMemoryReference
* ref
,
960 IOByteCount
* residentPageCount
,
961 IOByteCount
* dirtyPageCount
)
964 IOMemoryEntry
* entries
;
965 unsigned int resident
, dirty
;
966 unsigned int totalResident
, totalDirty
;
968 totalResident
= totalDirty
= 0;
969 entries
= ref
->entries
+ ref
->count
;
970 while (entries
> &ref
->entries
[0])
973 err
= mach_memory_entry_get_page_counts(entries
->entry
, &resident
, &dirty
);
974 if (KERN_SUCCESS
!= err
) break;
975 totalResident
+= resident
;
979 if (residentPageCount
) *residentPageCount
= totalResident
;
980 if (dirtyPageCount
) *dirtyPageCount
= totalDirty
;
985 IOGeneralMemoryDescriptor::memoryReferenceSetPurgeable(
986 IOMemoryReference
* ref
,
987 IOOptionBits newState
,
988 IOOptionBits
* oldState
)
991 IOMemoryEntry
* entries
;
992 vm_purgable_t control
;
993 int totalState
, state
;
995 entries
= ref
->entries
+ ref
->count
;
996 totalState
= kIOMemoryPurgeableNonVolatile
;
997 while (entries
> &ref
->entries
[0])
1001 err
= purgeableControlBits(newState
, &control
, &state
);
1002 if (KERN_SUCCESS
!= err
) break;
1003 err
= mach_memory_entry_purgable_control(entries
->entry
, control
, &state
);
1004 if (KERN_SUCCESS
!= err
) break;
1005 err
= purgeableStateBits(&state
);
1006 if (KERN_SUCCESS
!= err
) break;
1008 if (kIOMemoryPurgeableEmpty
== state
) totalState
= kIOMemoryPurgeableEmpty
;
1009 else if (kIOMemoryPurgeableEmpty
== totalState
) continue;
1010 else if (kIOMemoryPurgeableVolatile
== totalState
) continue;
1011 else if (kIOMemoryPurgeableVolatile
== state
) totalState
= kIOMemoryPurgeableVolatile
;
1012 else totalState
= kIOMemoryPurgeableNonVolatile
;
1015 if (oldState
) *oldState
= totalState
;
1019 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
1021 IOMemoryDescriptor
*
1022 IOMemoryDescriptor::withAddress(void * address
,
1024 IODirection direction
)
1026 return IOMemoryDescriptor::
1027 withAddressRange((IOVirtualAddress
) address
, length
, direction
| kIOMemoryAutoPrepare
, kernel_task
);
1031 IOMemoryDescriptor
*
1032 IOMemoryDescriptor::withAddress(IOVirtualAddress address
,
1034 IODirection direction
,
1037 IOGeneralMemoryDescriptor
* that
= new IOGeneralMemoryDescriptor
;
1040 if (that
->initWithAddress(address
, length
, direction
, task
))
1047 #endif /* !__LP64__ */
1049 IOMemoryDescriptor
*
1050 IOMemoryDescriptor::withPhysicalAddress(
1051 IOPhysicalAddress address
,
1053 IODirection direction
)
1055 return (IOMemoryDescriptor::withAddressRange(address
, length
, direction
, TASK_NULL
));
1059 IOMemoryDescriptor
*
1060 IOMemoryDescriptor::withRanges( IOVirtualRange
* ranges
,
1062 IODirection direction
,
1066 IOGeneralMemoryDescriptor
* that
= new IOGeneralMemoryDescriptor
;
1069 if (that
->initWithRanges(ranges
, withCount
, direction
, task
, asReference
))
1076 #endif /* !__LP64__ */
1078 IOMemoryDescriptor
*
1079 IOMemoryDescriptor::withAddressRange(mach_vm_address_t address
,
1080 mach_vm_size_t length
,
1081 IOOptionBits options
,
1084 IOAddressRange range
= { address
, length
};
1085 return (IOMemoryDescriptor::withAddressRanges(&range
, 1, options
, task
));
1088 IOMemoryDescriptor
*
1089 IOMemoryDescriptor::withAddressRanges(IOAddressRange
* ranges
,
1091 IOOptionBits options
,
1094 IOGeneralMemoryDescriptor
* that
= new IOGeneralMemoryDescriptor
;
1098 options
|= kIOMemoryTypeVirtual64
;
1100 options
|= kIOMemoryTypePhysical64
;
1102 if (that
->initWithOptions(ranges
, rangeCount
, 0, task
, options
, /* mapper */ 0))
1115 * Create a new IOMemoryDescriptor. The buffer is made up of several
1116 * virtual address ranges, from a given task.
1118 * Passing the ranges as a reference will avoid an extra allocation.
1120 IOMemoryDescriptor
*
1121 IOMemoryDescriptor::withOptions(void * buffers
,
1128 IOGeneralMemoryDescriptor
*self
= new IOGeneralMemoryDescriptor
;
1131 && !self
->initWithOptions(buffers
, count
, offset
, task
, opts
, mapper
))
1140 bool IOMemoryDescriptor::initWithOptions(void * buffers
,
1144 IOOptionBits options
,
1151 IOMemoryDescriptor
*
1152 IOMemoryDescriptor::withPhysicalRanges( IOPhysicalRange
* ranges
,
1154 IODirection direction
,
1157 IOGeneralMemoryDescriptor
* that
= new IOGeneralMemoryDescriptor
;
1160 if (that
->initWithPhysicalRanges(ranges
, withCount
, direction
, asReference
))
1168 IOMemoryDescriptor
*
1169 IOMemoryDescriptor::withSubRange(IOMemoryDescriptor
* of
,
1172 IODirection direction
)
1174 return (IOSubMemoryDescriptor::withSubRange(of
, offset
, length
, direction
));
1176 #endif /* !__LP64__ */
1178 IOMemoryDescriptor
*
1179 IOMemoryDescriptor::withPersistentMemoryDescriptor(IOMemoryDescriptor
*originalMD
)
1181 IOGeneralMemoryDescriptor
*origGenMD
=
1182 OSDynamicCast(IOGeneralMemoryDescriptor
, originalMD
);
1185 return IOGeneralMemoryDescriptor::
1186 withPersistentMemoryDescriptor(origGenMD
);
1191 IOMemoryDescriptor
*
1192 IOGeneralMemoryDescriptor::withPersistentMemoryDescriptor(IOGeneralMemoryDescriptor
*originalMD
)
1194 IOMemoryReference
* memRef
;
1196 if (kIOReturnSuccess
!= originalMD
->memoryReferenceCreate(kIOMemoryReferenceReuse
, &memRef
)) return (0);
1198 if (memRef
== originalMD
->_memRef
)
1200 originalMD
->retain(); // Add a new reference to ourselves
1201 originalMD
->memoryReferenceRelease(memRef
);
1205 IOGeneralMemoryDescriptor
* self
= new IOGeneralMemoryDescriptor
;
1206 IOMDPersistentInitData initData
= { originalMD
, memRef
};
1209 && !self
->initWithOptions(&initData
, 1, 0, 0, kIOMemoryTypePersistentMD
, 0)) {
1218 IOGeneralMemoryDescriptor::initWithAddress(void * address
,
1219 IOByteCount withLength
,
1220 IODirection withDirection
)
1222 _singleRange
.v
.address
= (vm_offset_t
) address
;
1223 _singleRange
.v
.length
= withLength
;
1225 return initWithRanges(&_singleRange
.v
, 1, withDirection
, kernel_task
, true);
1229 IOGeneralMemoryDescriptor::initWithAddress(IOVirtualAddress address
,
1230 IOByteCount withLength
,
1231 IODirection withDirection
,
1234 _singleRange
.v
.address
= address
;
1235 _singleRange
.v
.length
= withLength
;
1237 return initWithRanges(&_singleRange
.v
, 1, withDirection
, withTask
, true);
1241 IOGeneralMemoryDescriptor::initWithPhysicalAddress(
1242 IOPhysicalAddress address
,
1243 IOByteCount withLength
,
1244 IODirection withDirection
)
1246 _singleRange
.p
.address
= address
;
1247 _singleRange
.p
.length
= withLength
;
1249 return initWithPhysicalRanges( &_singleRange
.p
, 1, withDirection
, true);
1253 IOGeneralMemoryDescriptor::initWithPhysicalRanges(
1254 IOPhysicalRange
* ranges
,
1256 IODirection direction
,
1259 IOOptionBits mdOpts
= direction
| kIOMemoryTypePhysical
;
1262 mdOpts
|= kIOMemoryAsReference
;
1264 return initWithOptions(ranges
, count
, 0, 0, mdOpts
, /* mapper */ 0);
1268 IOGeneralMemoryDescriptor::initWithRanges(
1269 IOVirtualRange
* ranges
,
1271 IODirection direction
,
1275 IOOptionBits mdOpts
= direction
;
1278 mdOpts
|= kIOMemoryAsReference
;
1281 mdOpts
|= kIOMemoryTypeVirtual
;
1283 // Auto-prepare if this is a kernel memory descriptor as very few
1284 // clients bother to prepare() kernel memory.
1285 // But it was not enforced so what are you going to do?
1286 if (task
== kernel_task
)
1287 mdOpts
|= kIOMemoryAutoPrepare
;
1290 mdOpts
|= kIOMemoryTypePhysical
;
1292 return initWithOptions(ranges
, count
, 0, task
, mdOpts
, /* mapper */ 0);
1294 #endif /* !__LP64__ */
1299 * IOMemoryDescriptor. The buffer is made up of several virtual address ranges,
1300 * from a given task, several physical ranges, an UPL from the ubc
1301 * system or a uio (may be 64bit) from the BSD subsystem.
1303 * Passing the ranges as a reference will avoid an extra allocation.
1305 * An IOMemoryDescriptor can be re-used by calling initWithOptions again on an
1306 * existing instance -- note this behavior is not commonly supported in other
1307 * I/O Kit classes, although it is supported here.
1311 IOGeneralMemoryDescriptor::initWithOptions(void * buffers
,
1315 IOOptionBits options
,
1318 IOOptionBits type
= options
& kIOMemoryTypeMask
;
1322 && (kIOMemoryTypeVirtual
== type
)
1323 && vm_map_is_64bit(get_task_map(task
))
1324 && ((IOVirtualRange
*) buffers
)->address
)
1326 OSReportWithBacktrace("IOMemoryDescriptor: attempt to create 32b virtual in 64b task, use ::withAddressRange()");
1329 #endif /* !__LP64__ */
1331 // Grab the original MD's configuation data to initialse the
1332 // arguments to this function.
1333 if (kIOMemoryTypePersistentMD
== type
) {
1335 IOMDPersistentInitData
*initData
= (typeof(initData
)) buffers
;
1336 const IOGeneralMemoryDescriptor
*orig
= initData
->fMD
;
1337 ioGMDData
*dataP
= getDataP(orig
->_memoryEntries
);
1339 // Only accept persistent memory descriptors with valid dataP data.
1340 assert(orig
->_rangesCount
== 1);
1341 if ( !(orig
->_flags
& kIOMemoryPersistent
) || !dataP
)
1344 _memRef
= initData
->fMemRef
; // Grab the new named entry
1345 options
= orig
->_flags
& ~kIOMemoryAsReference
;
1346 type
= options
& kIOMemoryTypeMask
;
1347 buffers
= orig
->_ranges
.v
;
1348 count
= orig
->_rangesCount
;
1350 // Now grab the original task and whatever mapper was previously used
1352 mapper
= dataP
->fMapper
;
1354 // We are ready to go through the original initialisation now
1358 case kIOMemoryTypeUIO
:
1359 case kIOMemoryTypeVirtual
:
1361 case kIOMemoryTypeVirtual64
:
1362 #endif /* !__LP64__ */
1368 case kIOMemoryTypePhysical
: // Neither Physical nor UPL should have a task
1370 case kIOMemoryTypePhysical64
:
1371 #endif /* !__LP64__ */
1372 case kIOMemoryTypeUPL
:
1376 return false; /* bad argument */
1383 * We can check the _initialized instance variable before having ever set
1384 * it to an initial value because I/O Kit guarantees that all our instance
1385 * variables are zeroed on an object's allocation.
1390 * An existing memory descriptor is being retargeted to point to
1391 * somewhere else. Clean up our present state.
1393 IOOptionBits type
= _flags
& kIOMemoryTypeMask
;
1394 if ((kIOMemoryTypePhysical
!= type
) && (kIOMemoryTypePhysical64
!= type
))
1399 if (_ranges
.v
&& !(kIOMemoryAsReference
& _flags
))
1401 if (kIOMemoryTypeUIO
== type
)
1402 uio_free((uio_t
) _ranges
.v
);
1404 else if ((kIOMemoryTypeVirtual64
== type
) || (kIOMemoryTypePhysical64
== type
))
1405 IODelete(_ranges
.v64
, IOAddressRange
, _rangesCount
);
1406 #endif /* !__LP64__ */
1408 IODelete(_ranges
.v
, IOVirtualRange
, _rangesCount
);
1411 options
|= (kIOMemoryRedirected
& _flags
);
1412 if (!(kIOMemoryRedirected
& options
))
1416 memoryReferenceRelease(_memRef
);
1420 _mappings
->flushCollection();
1426 _initialized
= true;
1429 // Grab the appropriate mapper
1430 if (kIOMemoryHostOnly
& options
) options
|= kIOMemoryMapperNone
;
1431 if (kIOMemoryMapperNone
& options
)
1432 mapper
= 0; // No Mapper
1433 else if (mapper
== kIOMapperSystem
) {
1434 IOMapper::checkForSystemMapper();
1435 gIOSystemMapper
= mapper
= IOMapper::gSystem
;
1438 // Temp binary compatibility for kIOMemoryThreadSafe
1439 if (kIOMemoryReserved6156215
& options
)
1441 options
&= ~kIOMemoryReserved6156215
;
1442 options
|= kIOMemoryThreadSafe
;
1444 // Remove the dynamic internal use flags from the initial setting
1445 options
&= ~(kIOMemoryPreparedReadOnly
);
1450 _direction
= (IODirection
) (_flags
& kIOMemoryDirectionMask
);
1451 #endif /* !__LP64__ */
1453 __iomd_reservedA
= 0;
1454 __iomd_reservedB
= 0;
1457 if (kIOMemoryThreadSafe
& options
)
1460 _prepareLock
= IOLockAlloc();
1462 else if (_prepareLock
)
1464 IOLockFree(_prepareLock
);
1465 _prepareLock
= NULL
;
1468 if (kIOMemoryTypeUPL
== type
) {
1471 unsigned int dataSize
= computeDataSize(/* pages */ 0, /* upls */ 1);
1473 if (!initMemoryEntries(dataSize
, mapper
)) return (false);
1474 dataP
= getDataP(_memoryEntries
);
1475 dataP
->fPageCnt
= 0;
1477 // _wireCount++; // UPLs start out life wired
1480 _pages
+= atop_32(offset
+ count
+ PAGE_MASK
) - atop_32(offset
);
1483 iopl
.fIOPL
= (upl_t
) buffers
;
1484 upl_set_referenced(iopl
.fIOPL
, true);
1485 upl_page_info_t
*pageList
= UPL_GET_INTERNAL_PAGE_LIST(iopl
.fIOPL
);
1487 if (upl_get_size(iopl
.fIOPL
) < (count
+ offset
))
1488 panic("short external upl");
1490 _highestPage
= upl_get_highest_page(iopl
.fIOPL
);
1492 // Set the flag kIOPLOnDevice convieniently equal to 1
1493 iopl
.fFlags
= pageList
->device
| kIOPLExternUPL
;
1494 if (!pageList
->device
) {
1495 // Pre-compute the offset into the UPL's page list
1496 pageList
= &pageList
[atop_32(offset
)];
1497 offset
&= PAGE_MASK
;
1499 iopl
.fIOMDOffset
= 0;
1500 iopl
.fMappedPage
= 0;
1501 iopl
.fPageInfo
= (vm_address_t
) pageList
;
1502 iopl
.fPageOffset
= offset
;
1503 _memoryEntries
->appendBytes(&iopl
, sizeof(iopl
));
1506 // kIOMemoryTypeVirtual | kIOMemoryTypeVirtual64 | kIOMemoryTypeUIO
1507 // kIOMemoryTypePhysical | kIOMemoryTypePhysical64
1509 // Initialize the memory descriptor
1510 if (options
& kIOMemoryAsReference
) {
1512 _rangesIsAllocated
= false;
1513 #endif /* !__LP64__ */
1515 // Hack assignment to get the buffer arg into _ranges.
1516 // I'd prefer to do _ranges = (Ranges) buffers, but that doesn't
1518 // This also initialises the uio & physical ranges.
1519 _ranges
.v
= (IOVirtualRange
*) buffers
;
1523 _rangesIsAllocated
= true;
1524 #endif /* !__LP64__ */
1527 case kIOMemoryTypeUIO
:
1528 _ranges
.v
= (IOVirtualRange
*) uio_duplicate((uio_t
) buffers
);
1532 case kIOMemoryTypeVirtual64
:
1533 case kIOMemoryTypePhysical64
:
1535 && (((IOAddressRange
*) buffers
)->address
+ ((IOAddressRange
*) buffers
)->length
) <= 0x100000000ULL
1537 if (kIOMemoryTypeVirtual64
== type
)
1538 type
= kIOMemoryTypeVirtual
;
1540 type
= kIOMemoryTypePhysical
;
1541 _flags
= (_flags
& ~kIOMemoryTypeMask
) | type
| kIOMemoryAsReference
;
1542 _rangesIsAllocated
= false;
1543 _ranges
.v
= &_singleRange
.v
;
1544 _singleRange
.v
.address
= ((IOAddressRange
*) buffers
)->address
;
1545 _singleRange
.v
.length
= ((IOAddressRange
*) buffers
)->length
;
1548 _ranges
.v64
= IONew(IOAddressRange
, count
);
1551 bcopy(buffers
, _ranges
.v
, count
* sizeof(IOAddressRange
));
1553 #endif /* !__LP64__ */
1554 case kIOMemoryTypeVirtual
:
1555 case kIOMemoryTypePhysical
:
1557 _flags
|= kIOMemoryAsReference
;
1559 _rangesIsAllocated
= false;
1560 #endif /* !__LP64__ */
1561 _ranges
.v
= &_singleRange
.v
;
1563 _ranges
.v
= IONew(IOVirtualRange
, count
);
1567 bcopy(buffers
, _ranges
.v
, count
* sizeof(IOVirtualRange
));
1572 // Find starting address within the vector of ranges
1573 Ranges vec
= _ranges
;
1576 for (unsigned ind
= 0; ind
< count
; ind
++) {
1577 mach_vm_address_t addr
;
1580 // addr & len are returned by this function
1581 getAddrLenForInd(addr
, len
, type
, vec
, ind
);
1582 pages
+= (atop_64(addr
+ len
+ PAGE_MASK
) - atop_64(addr
));
1584 assert(len
>= length
); // Check for 32 bit wrap around
1587 if ((kIOMemoryTypePhysical
== type
) || (kIOMemoryTypePhysical64
== type
))
1589 ppnum_t highPage
= atop_64(addr
+ len
- 1);
1590 if (highPage
> _highestPage
)
1591 _highestPage
= highPage
;
1596 _rangesCount
= count
;
1598 // Auto-prepare memory at creation time.
1599 // Implied completion when descriptor is free-ed
1600 if ((kIOMemoryTypePhysical
== type
) || (kIOMemoryTypePhysical64
== type
))
1601 _wireCount
++; // Physical MDs are, by definition, wired
1602 else { /* kIOMemoryTypeVirtual | kIOMemoryTypeVirtual64 | kIOMemoryTypeUIO */
1604 unsigned dataSize
= computeDataSize(_pages
, /* upls */ count
* 2);
1606 if (!initMemoryEntries(dataSize
, mapper
)) return false;
1607 dataP
= getDataP(_memoryEntries
);
1608 dataP
->fPageCnt
= _pages
;
1610 if ( (kIOMemoryPersistent
& _flags
) && !_memRef
)
1613 err
= memoryReferenceCreate(0, &_memRef
);
1614 if (kIOReturnSuccess
!= err
) return false;
1617 if ((_flags
& kIOMemoryAutoPrepare
)
1618 && prepare() != kIOReturnSuccess
)
1631 void IOGeneralMemoryDescriptor::free()
1633 IOOptionBits type
= _flags
& kIOMemoryTypeMask
;
1638 reserved
->dp
.memory
= 0;
1641 if ((kIOMemoryTypePhysical
== type
) || (kIOMemoryTypePhysical64
== type
))
1644 if (_memoryEntries
&& (dataP
= getDataP(_memoryEntries
)) && dataP
->fMappedBase
)
1646 dataP
->fMapper
->iovmUnmapMemory(this, NULL
, dataP
->fMappedBase
, dataP
->fMappedLength
);
1647 dataP
->fMappedBase
= 0;
1652 while (_wireCount
) complete();
1655 if (_memoryEntries
) _memoryEntries
->release();
1657 if (_ranges
.v
&& !(kIOMemoryAsReference
& _flags
))
1659 if (kIOMemoryTypeUIO
== type
)
1660 uio_free((uio_t
) _ranges
.v
);
1662 else if ((kIOMemoryTypeVirtual64
== type
) || (kIOMemoryTypePhysical64
== type
))
1663 IODelete(_ranges
.v64
, IOAddressRange
, _rangesCount
);
1664 #endif /* !__LP64__ */
1666 IODelete(_ranges
.v
, IOVirtualRange
, _rangesCount
);
1673 if (reserved
->dp
.devicePager
)
1675 // memEntry holds a ref on the device pager which owns reserved
1676 // (IOMemoryDescriptorReserved) so no reserved access after this point
1677 device_pager_deallocate( (memory_object_t
) reserved
->dp
.devicePager
);
1680 IODelete(reserved
, IOMemoryDescriptorReserved
, 1);
1684 if (_memRef
) memoryReferenceRelease(_memRef
);
1685 if (_prepareLock
) IOLockFree(_prepareLock
);
1691 void IOGeneralMemoryDescriptor::unmapFromKernel()
1693 panic("IOGMD::unmapFromKernel deprecated");
1696 void IOGeneralMemoryDescriptor::mapIntoKernel(unsigned rangeIndex
)
1698 panic("IOGMD::mapIntoKernel deprecated");
1700 #endif /* !__LP64__ */
1705 * Get the direction of the transfer.
1707 IODirection
IOMemoryDescriptor::getDirection() const
1712 #endif /* !__LP64__ */
1713 return (IODirection
) (_flags
& kIOMemoryDirectionMask
);
1719 * Get the length of the transfer (over all ranges).
1721 IOByteCount
IOMemoryDescriptor::getLength() const
1726 void IOMemoryDescriptor::setTag( IOOptionBits tag
)
1731 IOOptionBits
IOMemoryDescriptor::getTag( void )
1737 // @@@ gvdl: who is using this API? Seems like a wierd thing to implement.
1739 IOMemoryDescriptor::getSourceSegment( IOByteCount offset
, IOByteCount
* length
)
1741 addr64_t physAddr
= 0;
1743 if( prepare() == kIOReturnSuccess
) {
1744 physAddr
= getPhysicalSegment64( offset
, length
);
1748 return( (IOPhysicalAddress
) physAddr
); // truncated but only page offset is used
1750 #endif /* !__LP64__ */
1752 IOByteCount
IOMemoryDescriptor::readBytes
1753 (IOByteCount offset
, void *bytes
, IOByteCount length
)
1755 addr64_t dstAddr
= CAST_DOWN(addr64_t
, bytes
);
1756 IOByteCount remaining
;
1758 // Assert that this entire I/O is withing the available range
1759 assert(offset
<= _length
);
1760 assert(offset
+ length
<= _length
);
1761 if (offset
>= _length
) {
1765 if (kIOMemoryThreadSafe
& _flags
)
1768 remaining
= length
= min(length
, _length
- offset
);
1769 while (remaining
) { // (process another target segment?)
1773 srcAddr64
= getPhysicalSegment(offset
, &srcLen
, kIOMemoryMapperNone
);
1777 // Clip segment length to remaining
1778 if (srcLen
> remaining
)
1781 copypv(srcAddr64
, dstAddr
, srcLen
,
1782 cppvPsrc
| cppvNoRefSrc
| cppvFsnk
| cppvKmap
);
1786 remaining
-= srcLen
;
1789 if (kIOMemoryThreadSafe
& _flags
)
1794 return length
- remaining
;
1797 IOByteCount
IOMemoryDescriptor::writeBytes
1798 (IOByteCount inoffset
, const void *bytes
, IOByteCount length
)
1800 addr64_t srcAddr
= CAST_DOWN(addr64_t
, bytes
);
1801 IOByteCount remaining
;
1802 IOByteCount offset
= inoffset
;
1804 // Assert that this entire I/O is withing the available range
1805 assert(offset
<= _length
);
1806 assert(offset
+ length
<= _length
);
1808 assert( !(kIOMemoryPreparedReadOnly
& _flags
) );
1810 if ( (kIOMemoryPreparedReadOnly
& _flags
) || offset
>= _length
) {
1814 if (kIOMemoryThreadSafe
& _flags
)
1817 remaining
= length
= min(length
, _length
- offset
);
1818 while (remaining
) { // (process another target segment?)
1822 dstAddr64
= getPhysicalSegment(offset
, &dstLen
, kIOMemoryMapperNone
);
1826 // Clip segment length to remaining
1827 if (dstLen
> remaining
)
1830 if (!srcAddr
) bzero_phys(dstAddr64
, dstLen
);
1833 copypv(srcAddr
, (addr64_t
) dstAddr64
, dstLen
,
1834 cppvPsnk
| cppvFsnk
| cppvNoRefSrc
| cppvNoModSnk
| cppvKmap
);
1838 remaining
-= dstLen
;
1841 if (kIOMemoryThreadSafe
& _flags
)
1846 if (!srcAddr
) performOperation(kIOMemoryIncoherentIOFlush
, inoffset
, length
);
1848 return length
- remaining
;
1852 void IOGeneralMemoryDescriptor::setPosition(IOByteCount position
)
1854 panic("IOGMD::setPosition deprecated");
1856 #endif /* !__LP64__ */
1858 static volatile SInt64 gIOMDPreparationID
__attribute__((aligned(8))) = (1ULL << 32);
1861 IOGeneralMemoryDescriptor::getPreparationID( void )
1866 return (kIOPreparationIDUnprepared
);
1868 if (((kIOMemoryTypeMask
& _flags
) == kIOMemoryTypePhysical
)
1869 || ((kIOMemoryTypeMask
& _flags
) == kIOMemoryTypePhysical64
))
1871 IOMemoryDescriptor::setPreparationID();
1872 return (IOMemoryDescriptor::getPreparationID());
1875 if (!_memoryEntries
|| !(dataP
= getDataP(_memoryEntries
)))
1876 return (kIOPreparationIDUnprepared
);
1878 if (kIOPreparationIDUnprepared
== dataP
->fPreparationID
)
1880 dataP
->fPreparationID
= OSIncrementAtomic64(&gIOMDPreparationID
);
1882 return (dataP
->fPreparationID
);
1885 IOMemoryDescriptorReserved
* IOMemoryDescriptor::getKernelReserved( void )
1889 reserved
= IONew(IOMemoryDescriptorReserved
, 1);
1891 bzero(reserved
, sizeof(IOMemoryDescriptorReserved
));
1896 void IOMemoryDescriptor::setPreparationID( void )
1898 if (getKernelReserved() && (kIOPreparationIDUnprepared
== reserved
->preparationID
))
1900 #if defined(__ppc__ )
1901 reserved
->preparationID
= gIOMDPreparationID
++;
1903 reserved
->preparationID
= OSIncrementAtomic64(&gIOMDPreparationID
);
1908 uint64_t IOMemoryDescriptor::getPreparationID( void )
1911 return (reserved
->preparationID
);
1913 return (kIOPreparationIDUnsupported
);
1916 IOReturn
IOGeneralMemoryDescriptor::dmaCommandOperation(DMACommandOps op
, void *vData
, UInt dataSize
) const
1918 IOReturn err
= kIOReturnSuccess
;
1919 DMACommandOps params
;
1920 IOGeneralMemoryDescriptor
* md
= const_cast<IOGeneralMemoryDescriptor
*>(this);
1923 params
= (op
& ~kIOMDDMACommandOperationMask
& op
);
1924 op
&= kIOMDDMACommandOperationMask
;
1926 if (kIOMDDMAMap
== op
)
1928 if (dataSize
< sizeof(IOMDDMAMapArgs
))
1929 return kIOReturnUnderrun
;
1931 IOMDDMAMapArgs
* data
= (IOMDDMAMapArgs
*) vData
;
1934 && !md
->initMemoryEntries(computeDataSize(0, 0), kIOMapperWaitSystem
)) return (kIOReturnNoMemory
);
1936 if (_memoryEntries
&& data
->fMapper
)
1938 bool remap
, keepMap
;
1939 dataP
= getDataP(_memoryEntries
);
1941 if (data
->fMapSpec
.numAddressBits
< dataP
->fDMAMapNumAddressBits
) dataP
->fDMAMapNumAddressBits
= data
->fMapSpec
.numAddressBits
;
1942 if (data
->fMapSpec
.alignment
> dataP
->fDMAMapAlignment
) dataP
->fDMAMapAlignment
= data
->fMapSpec
.alignment
;
1944 keepMap
= (data
->fMapper
== gIOSystemMapper
);
1945 keepMap
&= ((data
->fOffset
== 0) && (data
->fLength
== _length
));
1948 remap
|= (dataP
->fDMAMapNumAddressBits
< 64)
1949 && ((dataP
->fMappedBase
+ _length
) > (1ULL << dataP
->fDMAMapNumAddressBits
));
1950 remap
|= (dataP
->fDMAMapAlignment
> page_size
);
1952 if (remap
|| !dataP
->fMappedBase
)
1954 // if (dataP->fMappedBase) OSReportWithBacktrace("kIOMDDMAMap whole %d remap %d params %d\n", whole, remap, params);
1955 err
= md
->dmaMap(data
->fMapper
, data
->fCommand
, &data
->fMapSpec
, data
->fOffset
, data
->fLength
, &data
->fAlloc
, &data
->fAllocLength
);
1956 if (keepMap
&& (kIOReturnSuccess
== err
) && !dataP
->fMappedBase
)
1958 dataP
->fMappedBase
= data
->fAlloc
;
1959 dataP
->fMappedLength
= data
->fAllocLength
;
1960 data
->fAllocLength
= 0; // IOMD owns the alloc now
1965 data
->fAlloc
= dataP
->fMappedBase
;
1966 data
->fAllocLength
= 0; // give out IOMD map
1968 data
->fMapContig
= !dataP
->fDiscontig
;
1974 if (kIOMDAddDMAMapSpec
== op
)
1976 if (dataSize
< sizeof(IODMAMapSpecification
))
1977 return kIOReturnUnderrun
;
1979 IODMAMapSpecification
* data
= (IODMAMapSpecification
*) vData
;
1982 && !md
->initMemoryEntries(computeDataSize(0, 0), kIOMapperWaitSystem
)) return (kIOReturnNoMemory
);
1986 dataP
= getDataP(_memoryEntries
);
1987 if (data
->numAddressBits
< dataP
->fDMAMapNumAddressBits
)
1988 dataP
->fDMAMapNumAddressBits
= data
->numAddressBits
;
1989 if (data
->alignment
> dataP
->fDMAMapAlignment
)
1990 dataP
->fDMAMapAlignment
= data
->alignment
;
1992 return kIOReturnSuccess
;
1995 if (kIOMDGetCharacteristics
== op
) {
1997 if (dataSize
< sizeof(IOMDDMACharacteristics
))
1998 return kIOReturnUnderrun
;
2000 IOMDDMACharacteristics
*data
= (IOMDDMACharacteristics
*) vData
;
2001 data
->fLength
= _length
;
2002 data
->fSGCount
= _rangesCount
;
2003 data
->fPages
= _pages
;
2004 data
->fDirection
= getDirection();
2006 data
->fIsPrepared
= false;
2008 data
->fIsPrepared
= true;
2009 data
->fHighestPage
= _highestPage
;
2012 dataP
= getDataP(_memoryEntries
);
2013 ioPLBlock
*ioplList
= getIOPLList(dataP
);
2014 UInt count
= getNumIOPL(_memoryEntries
, dataP
);
2016 data
->fPageAlign
= (ioplList
[0].fPageOffset
& PAGE_MASK
) | ~PAGE_MASK
;
2020 return kIOReturnSuccess
;
2022 #if IOMD_DEBUG_DMAACTIVE
2023 } else if (kIOMDDMAActive
== op
) {
2024 if (params
) OSIncrementAtomic(&md
->__iomd_reservedA
);
2026 if (md
->__iomd_reservedA
)
2027 OSDecrementAtomic(&md
->__iomd_reservedA
);
2029 panic("kIOMDSetDMAInactive");
2031 #endif /* IOMD_DEBUG_DMAACTIVE */
2033 } else if (kIOMDWalkSegments
!= op
)
2034 return kIOReturnBadArgument
;
2036 // Get the next segment
2037 struct InternalState
{
2038 IOMDDMAWalkSegmentArgs fIO
;
2044 // Find the next segment
2045 if (dataSize
< sizeof(*isP
))
2046 return kIOReturnUnderrun
;
2048 isP
= (InternalState
*) vData
;
2049 UInt offset
= isP
->fIO
.fOffset
;
2050 bool mapped
= isP
->fIO
.fMapped
;
2052 if (IOMapper::gSystem
&& mapped
2053 && (!(kIOMemoryHostOnly
& _flags
))
2054 && (!_memoryEntries
|| !getDataP(_memoryEntries
)->fMappedBase
))
2055 // && (_memoryEntries && !getDataP(_memoryEntries)->fMappedBase))
2058 && !md
->initMemoryEntries(computeDataSize(0, 0), kIOMapperWaitSystem
)) return (kIOReturnNoMemory
);
2060 dataP
= getDataP(_memoryEntries
);
2063 IODMAMapSpecification mapSpec
;
2064 bzero(&mapSpec
, sizeof(mapSpec
));
2065 mapSpec
.numAddressBits
= dataP
->fDMAMapNumAddressBits
;
2066 mapSpec
.alignment
= dataP
->fDMAMapAlignment
;
2067 err
= md
->dmaMap(dataP
->fMapper
, NULL
, &mapSpec
, 0, _length
, &dataP
->fMappedBase
, &dataP
->fMappedLength
);
2068 if (kIOReturnSuccess
!= err
) return (err
);
2072 if (offset
>= _length
)
2073 return (offset
== _length
)? kIOReturnOverrun
: kIOReturnInternalError
;
2075 // Validate the previous offset
2076 UInt ind
, off2Ind
= isP
->fOffset2Index
;
2079 && (offset
== isP
->fNextOffset
|| off2Ind
<= offset
))
2082 ind
= off2Ind
= 0; // Start from beginning
2088 if ( (_flags
& kIOMemoryTypeMask
) == kIOMemoryTypePhysical
) {
2090 // Physical address based memory descriptor
2091 const IOPhysicalRange
*physP
= (IOPhysicalRange
*) &_ranges
.p
[0];
2093 // Find the range after the one that contains the offset
2095 for (len
= 0; off2Ind
<= offset
; ind
++) {
2096 len
= physP
[ind
].length
;
2100 // Calculate length within range and starting address
2101 length
= off2Ind
- offset
;
2102 address
= physP
[ind
- 1].address
+ len
- length
;
2104 if (true && mapped
&& _memoryEntries
2105 && (dataP
= getDataP(_memoryEntries
)) && dataP
->fMappedBase
)
2107 address
= dataP
->fMappedBase
+ offset
;
2111 // see how far we can coalesce ranges
2112 while (ind
< _rangesCount
&& address
+ length
== physP
[ind
].address
) {
2113 len
= physP
[ind
].length
;
2120 // correct contiguous check overshoot
2125 else if ( (_flags
& kIOMemoryTypeMask
) == kIOMemoryTypePhysical64
) {
2127 // Physical address based memory descriptor
2128 const IOAddressRange
*physP
= (IOAddressRange
*) &_ranges
.v64
[0];
2130 // Find the range after the one that contains the offset
2132 for (len
= 0; off2Ind
<= offset
; ind
++) {
2133 len
= physP
[ind
].length
;
2137 // Calculate length within range and starting address
2138 length
= off2Ind
- offset
;
2139 address
= physP
[ind
- 1].address
+ len
- length
;
2141 if (true && mapped
&& _memoryEntries
2142 && (dataP
= getDataP(_memoryEntries
)) && dataP
->fMappedBase
)
2144 address
= dataP
->fMappedBase
+ offset
;
2148 // see how far we can coalesce ranges
2149 while (ind
< _rangesCount
&& address
+ length
== physP
[ind
].address
) {
2150 len
= physP
[ind
].length
;
2156 // correct contiguous check overshoot
2160 #endif /* !__LP64__ */
2163 panic("IOGMD: not wired for the IODMACommand");
2165 assert(_memoryEntries
);
2167 dataP
= getDataP(_memoryEntries
);
2168 const ioPLBlock
*ioplList
= getIOPLList(dataP
);
2169 UInt numIOPLs
= getNumIOPL(_memoryEntries
, dataP
);
2170 upl_page_info_t
*pageList
= getPageList(dataP
);
2172 assert(numIOPLs
> 0);
2174 // Scan through iopl info blocks looking for block containing offset
2175 while (ind
< numIOPLs
&& offset
>= ioplList
[ind
].fIOMDOffset
)
2178 // Go back to actual range as search goes past it
2179 ioPLBlock ioplInfo
= ioplList
[ind
- 1];
2180 off2Ind
= ioplInfo
.fIOMDOffset
;
2183 length
= ioplList
[ind
].fIOMDOffset
;
2186 length
-= offset
; // Remainder within iopl
2188 // Subtract offset till this iopl in total list
2191 // If a mapped address is requested and this is a pre-mapped IOPL
2192 // then just need to compute an offset relative to the mapped base.
2193 if (mapped
&& dataP
->fMappedBase
) {
2194 offset
+= (ioplInfo
.fPageOffset
& PAGE_MASK
);
2195 address
= trunc_page_64(dataP
->fMappedBase
) + ptoa_64(ioplInfo
.fMappedPage
) + offset
;
2196 continue; // Done leave do/while(false) now
2199 // The offset is rebased into the current iopl.
2200 // Now add the iopl 1st page offset.
2201 offset
+= ioplInfo
.fPageOffset
;
2203 // For external UPLs the fPageInfo field points directly to
2204 // the upl's upl_page_info_t array.
2205 if (ioplInfo
.fFlags
& kIOPLExternUPL
)
2206 pageList
= (upl_page_info_t
*) ioplInfo
.fPageInfo
;
2208 pageList
= &pageList
[ioplInfo
.fPageInfo
];
2210 // Check for direct device non-paged memory
2211 if ( ioplInfo
.fFlags
& kIOPLOnDevice
) {
2212 address
= ptoa_64(pageList
->phys_addr
) + offset
;
2213 continue; // Done leave do/while(false) now
2216 // Now we need compute the index into the pageList
2217 UInt pageInd
= atop_32(offset
);
2218 offset
&= PAGE_MASK
;
2220 // Compute the starting address of this segment
2221 IOPhysicalAddress pageAddr
= pageList
[pageInd
].phys_addr
;
2223 panic("!pageList phys_addr");
2226 address
= ptoa_64(pageAddr
) + offset
;
2228 // length is currently set to the length of the remainider of the iopl.
2229 // We need to check that the remainder of the iopl is contiguous.
2230 // This is indicated by pageList[ind].phys_addr being sequential.
2231 IOByteCount contigLength
= PAGE_SIZE
- offset
;
2232 while (contigLength
< length
2233 && ++pageAddr
== pageList
[++pageInd
].phys_addr
)
2235 contigLength
+= PAGE_SIZE
;
2238 if (contigLength
< length
)
2239 length
= contigLength
;
2247 // Update return values and state
2248 isP
->fIO
.fIOVMAddr
= address
;
2249 isP
->fIO
.fLength
= length
;
2251 isP
->fOffset2Index
= off2Ind
;
2252 isP
->fNextOffset
= isP
->fIO
.fOffset
+ length
;
2254 return kIOReturnSuccess
;
2258 IOGeneralMemoryDescriptor::getPhysicalSegment(IOByteCount offset
, IOByteCount
*lengthOfSegment
, IOOptionBits options
)
2261 mach_vm_address_t address
= 0;
2262 mach_vm_size_t length
= 0;
2263 IOMapper
* mapper
= gIOSystemMapper
;
2264 IOOptionBits type
= _flags
& kIOMemoryTypeMask
;
2266 if (lengthOfSegment
)
2267 *lengthOfSegment
= 0;
2269 if (offset
>= _length
)
2272 // IOMemoryDescriptor::doMap() cannot use getPhysicalSegment() to obtain the page offset, since it must
2273 // support the unwired memory case in IOGeneralMemoryDescriptor, and hibernate_write_image() cannot use
2274 // map()->getVirtualAddress() to obtain the kernel pointer, since it must prevent the memory allocation
2275 // due to IOMemoryMap, so _kIOMemorySourceSegment is a necessary evil until all of this gets cleaned up
2277 if ((options
& _kIOMemorySourceSegment
) && (kIOMemoryTypeUPL
!= type
))
2279 unsigned rangesIndex
= 0;
2280 Ranges vec
= _ranges
;
2281 mach_vm_address_t addr
;
2283 // Find starting address within the vector of ranges
2285 getAddrLenForInd(addr
, length
, type
, vec
, rangesIndex
);
2286 if (offset
< length
)
2288 offset
-= length
; // (make offset relative)
2292 // Now that we have the starting range,
2293 // lets find the last contiguous range
2297 for ( ++rangesIndex
; rangesIndex
< _rangesCount
; rangesIndex
++ ) {
2298 mach_vm_address_t newAddr
;
2299 mach_vm_size_t newLen
;
2301 getAddrLenForInd(newAddr
, newLen
, type
, vec
, rangesIndex
);
2302 if (addr
+ length
!= newAddr
)
2307 address
= (IOPhysicalAddress
) addr
; // Truncate address to 32bit
2311 IOMDDMAWalkSegmentState _state
;
2312 IOMDDMAWalkSegmentArgs
* state
= (IOMDDMAWalkSegmentArgs
*) (void *)&_state
;
2314 state
->fOffset
= offset
;
2315 state
->fLength
= _length
- offset
;
2316 state
->fMapped
= (0 == (options
& kIOMemoryMapperNone
)) && !(_flags
& kIOMemoryHostOnly
);
2318 ret
= dmaCommandOperation(kIOMDFirstSegment
, _state
, sizeof(_state
));
2320 if ((kIOReturnSuccess
!= ret
) && (kIOReturnOverrun
!= ret
))
2321 DEBG("getPhysicalSegment dmaCommandOperation(%lx), %p, offset %qx, addr %qx, len %qx\n",
2322 ret
, this, state
->fOffset
,
2323 state
->fIOVMAddr
, state
->fLength
);
2324 if (kIOReturnSuccess
== ret
)
2326 address
= state
->fIOVMAddr
;
2327 length
= state
->fLength
;
2330 // dmaCommandOperation() does not distinguish between "mapped" and "unmapped" physical memory, even
2331 // with fMapped set correctly, so we must handle the transformation here until this gets cleaned up
2333 if (mapper
&& ((kIOMemoryTypePhysical
== type
) || (kIOMemoryTypePhysical64
== type
)))
2335 if ((options
& kIOMemoryMapperNone
) && !(_flags
& kIOMemoryMapperNone
))
2337 addr64_t origAddr
= address
;
2338 IOByteCount origLen
= length
;
2340 address
= mapper
->mapToPhysicalAddress(origAddr
);
2341 length
= page_size
- (address
& (page_size
- 1));
2342 while ((length
< origLen
)
2343 && ((address
+ length
) == mapper
->mapToPhysicalAddress(origAddr
+ length
)))
2344 length
+= page_size
;
2345 if (length
> origLen
)
2354 if (lengthOfSegment
)
2355 *lengthOfSegment
= length
;
2362 IOMemoryDescriptor::getPhysicalSegment(IOByteCount offset
, IOByteCount
*lengthOfSegment
, IOOptionBits options
)
2364 addr64_t address
= 0;
2366 if (options
& _kIOMemorySourceSegment
)
2368 address
= getSourceSegment(offset
, lengthOfSegment
);
2370 else if (options
& kIOMemoryMapperNone
)
2372 address
= getPhysicalSegment64(offset
, lengthOfSegment
);
2376 address
= getPhysicalSegment(offset
, lengthOfSegment
);
2383 IOGeneralMemoryDescriptor::getPhysicalSegment64(IOByteCount offset
, IOByteCount
*lengthOfSegment
)
2385 return (getPhysicalSegment(offset
, lengthOfSegment
, kIOMemoryMapperNone
));
2389 IOGeneralMemoryDescriptor::getPhysicalSegment(IOByteCount offset
, IOByteCount
*lengthOfSegment
)
2391 addr64_t address
= 0;
2392 IOByteCount length
= 0;
2394 address
= getPhysicalSegment(offset
, lengthOfSegment
, 0);
2396 if (lengthOfSegment
)
2397 length
= *lengthOfSegment
;
2399 if ((address
+ length
) > 0x100000000ULL
)
2401 panic("getPhysicalSegment() out of 32b range 0x%qx, len 0x%lx, class %s",
2402 address
, (long) length
, (getMetaClass())->getClassName());
2405 return ((IOPhysicalAddress
) address
);
2409 IOMemoryDescriptor::getPhysicalSegment64(IOByteCount offset
, IOByteCount
*lengthOfSegment
)
2411 IOPhysicalAddress phys32
;
2414 IOMapper
* mapper
= 0;
2416 phys32
= getPhysicalSegment(offset
, lengthOfSegment
);
2420 if (gIOSystemMapper
)
2421 mapper
= gIOSystemMapper
;
2425 IOByteCount origLen
;
2427 phys64
= mapper
->mapToPhysicalAddress(phys32
);
2428 origLen
= *lengthOfSegment
;
2429 length
= page_size
- (phys64
& (page_size
- 1));
2430 while ((length
< origLen
)
2431 && ((phys64
+ length
) == mapper
->mapToPhysicalAddress(phys32
+ length
)))
2432 length
+= page_size
;
2433 if (length
> origLen
)
2436 *lengthOfSegment
= length
;
2439 phys64
= (addr64_t
) phys32
;
2445 IOMemoryDescriptor::getPhysicalSegment(IOByteCount offset
, IOByteCount
*lengthOfSegment
)
2447 return ((IOPhysicalAddress
) getPhysicalSegment(offset
, lengthOfSegment
, 0));
2451 IOGeneralMemoryDescriptor::getSourceSegment(IOByteCount offset
, IOByteCount
*lengthOfSegment
)
2453 return ((IOPhysicalAddress
) getPhysicalSegment(offset
, lengthOfSegment
, _kIOMemorySourceSegment
));
2456 void * IOGeneralMemoryDescriptor::getVirtualSegment(IOByteCount offset
,
2457 IOByteCount
* lengthOfSegment
)
2459 if (_task
== kernel_task
)
2460 return (void *) getSourceSegment(offset
, lengthOfSegment
);
2462 panic("IOGMD::getVirtualSegment deprecated");
2466 #endif /* !__LP64__ */
2469 IOMemoryDescriptor::dmaCommandOperation(DMACommandOps op
, void *vData
, UInt dataSize
) const
2471 IOMemoryDescriptor
*md
= const_cast<IOMemoryDescriptor
*>(this);
2472 DMACommandOps params
;
2475 params
= (op
& ~kIOMDDMACommandOperationMask
& op
);
2476 op
&= kIOMDDMACommandOperationMask
;
2478 if (kIOMDGetCharacteristics
== op
) {
2479 if (dataSize
< sizeof(IOMDDMACharacteristics
))
2480 return kIOReturnUnderrun
;
2482 IOMDDMACharacteristics
*data
= (IOMDDMACharacteristics
*) vData
;
2483 data
->fLength
= getLength();
2485 data
->fDirection
= getDirection();
2486 data
->fIsPrepared
= true; // Assume prepared - fails safe
2488 else if (kIOMDWalkSegments
== op
) {
2489 if (dataSize
< sizeof(IOMDDMAWalkSegmentArgs
))
2490 return kIOReturnUnderrun
;
2492 IOMDDMAWalkSegmentArgs
*data
= (IOMDDMAWalkSegmentArgs
*) vData
;
2493 IOByteCount offset
= (IOByteCount
) data
->fOffset
;
2495 IOPhysicalLength length
;
2496 if (data
->fMapped
&& IOMapper::gSystem
)
2497 data
->fIOVMAddr
= md
->getPhysicalSegment(offset
, &length
);
2499 data
->fIOVMAddr
= md
->getPhysicalSegment(offset
, &length
, kIOMemoryMapperNone
);
2500 data
->fLength
= length
;
2502 else if (kIOMDAddDMAMapSpec
== op
) return kIOReturnUnsupported
;
2503 else if (kIOMDDMAMap
== op
)
2505 if (dataSize
< sizeof(IOMDDMAMapArgs
))
2506 return kIOReturnUnderrun
;
2507 IOMDDMAMapArgs
* data
= (IOMDDMAMapArgs
*) vData
;
2509 if (params
) panic("class %s does not support IODMACommand::kIterateOnly", getMetaClass()->getClassName());
2511 data
->fMapContig
= true;
2512 err
= md
->dmaMap(data
->fMapper
, data
->fCommand
, &data
->fMapSpec
, data
->fOffset
, data
->fLength
, &data
->fAlloc
, &data
->fAllocLength
);
2515 else return kIOReturnBadArgument
;
2517 return kIOReturnSuccess
;
2521 IOGeneralMemoryDescriptor::setPurgeable( IOOptionBits newState
,
2522 IOOptionBits
* oldState
)
2524 IOReturn err
= kIOReturnSuccess
;
2526 vm_purgable_t control
;
2531 err
= super::setPurgeable(newState
, oldState
);
2535 if (kIOMemoryThreadSafe
& _flags
)
2539 // Find the appropriate vm_map for the given task
2541 if (_task
== kernel_task
&& (kIOMemoryBufferPageable
& _flags
))
2543 err
= kIOReturnNotReady
;
2548 err
= kIOReturnUnsupported
;
2552 curMap
= get_task_map(_task
);
2554 // can only do one range
2555 Ranges vec
= _ranges
;
2556 IOOptionBits type
= _flags
& kIOMemoryTypeMask
;
2557 mach_vm_address_t addr
;
2559 getAddrLenForInd(addr
, len
, type
, vec
, 0);
2561 err
= purgeableControlBits(newState
, &control
, &state
);
2562 if (kIOReturnSuccess
!= err
)
2564 err
= mach_vm_purgable_control(curMap
, addr
, control
, &state
);
2567 if (kIOReturnSuccess
== err
)
2569 err
= purgeableStateBits(&state
);
2575 if (kIOMemoryThreadSafe
& _flags
)
2582 IOReturn
IOMemoryDescriptor::setPurgeable( IOOptionBits newState
,
2583 IOOptionBits
* oldState
)
2585 IOReturn err
= kIOReturnNotReady
;
2587 if (kIOMemoryThreadSafe
& _flags
) LOCK
;
2588 if (_memRef
) err
= IOGeneralMemoryDescriptor::memoryReferenceSetPurgeable(_memRef
, newState
, oldState
);
2589 if (kIOMemoryThreadSafe
& _flags
) UNLOCK
;
2594 IOReturn
IOMemoryDescriptor::getPageCounts( IOByteCount
* residentPageCount
,
2595 IOByteCount
* dirtyPageCount
)
2597 IOReturn err
= kIOReturnNotReady
;
2599 if (kIOMemoryThreadSafe
& _flags
) LOCK
;
2600 if (_memRef
) err
= IOGeneralMemoryDescriptor::memoryReferenceGetPageCounts(_memRef
, residentPageCount
, dirtyPageCount
);
2603 IOMultiMemoryDescriptor
* mmd
;
2604 IOSubMemoryDescriptor
* smd
;
2605 if ((smd
= OSDynamicCast(IOSubMemoryDescriptor
, this)))
2607 err
= smd
->getPageCounts(residentPageCount
, dirtyPageCount
);
2609 else if ((mmd
= OSDynamicCast(IOMultiMemoryDescriptor
, this)))
2611 err
= mmd
->getPageCounts(residentPageCount
, dirtyPageCount
);
2614 if (kIOMemoryThreadSafe
& _flags
) UNLOCK
;
2620 extern "C" void dcache_incoherent_io_flush64(addr64_t pa
, unsigned int count
);
2621 extern "C" void dcache_incoherent_io_store64(addr64_t pa
, unsigned int count
);
2623 static void SetEncryptOp(addr64_t pa
, unsigned int count
)
2627 page
= atop_64(round_page_64(pa
));
2628 end
= atop_64(trunc_page_64(pa
+ count
));
2629 for (; page
< end
; page
++)
2631 pmap_clear_noencrypt(page
);
2635 static void ClearEncryptOp(addr64_t pa
, unsigned int count
)
2639 page
= atop_64(round_page_64(pa
));
2640 end
= atop_64(trunc_page_64(pa
+ count
));
2641 for (; page
< end
; page
++)
2643 pmap_set_noencrypt(page
);
2647 IOReturn
IOMemoryDescriptor::performOperation( IOOptionBits options
,
2648 IOByteCount offset
, IOByteCount length
)
2650 IOByteCount remaining
;
2652 void (*func
)(addr64_t pa
, unsigned int count
) = 0;
2656 case kIOMemoryIncoherentIOFlush
:
2657 func
= &dcache_incoherent_io_flush64
;
2659 case kIOMemoryIncoherentIOStore
:
2660 func
= &dcache_incoherent_io_store64
;
2663 case kIOMemorySetEncrypted
:
2664 func
= &SetEncryptOp
;
2666 case kIOMemoryClearEncrypted
:
2667 func
= &ClearEncryptOp
;
2672 return (kIOReturnUnsupported
);
2674 if (kIOMemoryThreadSafe
& _flags
)
2678 remaining
= length
= min(length
, getLength() - offset
);
2680 // (process another target segment?)
2685 dstAddr64
= getPhysicalSegment(offset
, &dstLen
, kIOMemoryMapperNone
);
2689 // Clip segment length to remaining
2690 if (dstLen
> remaining
)
2693 (*func
)(dstAddr64
, dstLen
);
2696 remaining
-= dstLen
;
2699 if (kIOMemoryThreadSafe
& _flags
)
2702 return (remaining
? kIOReturnUnderrun
: kIOReturnSuccess
);
2705 #if defined(__i386__) || defined(__x86_64__)
2707 #define io_kernel_static_start vm_kernel_stext
2708 #define io_kernel_static_end vm_kernel_etext
2711 #error io_kernel_static_end is undefined for this architecture
2714 static kern_return_t
2715 io_get_kernel_static_upl(
2718 upl_size_t
*upl_size
,
2720 upl_page_info_array_t page_list
,
2721 unsigned int *count
,
2722 ppnum_t
*highest_page
)
2724 unsigned int pageCount
, page
;
2726 ppnum_t highestPage
= 0;
2728 pageCount
= atop_32(*upl_size
);
2729 if (pageCount
> *count
)
2734 for (page
= 0; page
< pageCount
; page
++)
2736 phys
= pmap_find_phys(kernel_pmap
, ((addr64_t
)offset
) + ptoa_64(page
));
2739 page_list
[page
].phys_addr
= phys
;
2740 page_list
[page
].pageout
= 0;
2741 page_list
[page
].absent
= 0;
2742 page_list
[page
].dirty
= 0;
2743 page_list
[page
].precious
= 0;
2744 page_list
[page
].device
= 0;
2745 if (phys
> highestPage
)
2749 *highest_page
= highestPage
;
2751 return ((page
>= pageCount
) ? kIOReturnSuccess
: kIOReturnVMError
);
2754 IOReturn
IOGeneralMemoryDescriptor::wireVirtual(IODirection forDirection
)
2756 IOOptionBits type
= _flags
& kIOMemoryTypeMask
;
2757 IOReturn error
= kIOReturnCannotWire
;
2759 upl_page_info_array_t pageInfo
;
2762 assert(kIOMemoryTypeVirtual
== type
|| kIOMemoryTypeVirtual64
== type
|| kIOMemoryTypeUIO
== type
);
2764 if ((kIODirectionOutIn
& forDirection
) == kIODirectionNone
)
2765 forDirection
= (IODirection
) (forDirection
| getDirection());
2767 upl_control_flags_t uplFlags
; // This Mem Desc's default flags for upl creation
2768 switch (kIODirectionOutIn
& forDirection
)
2770 case kIODirectionOut
:
2771 // Pages do not need to be marked as dirty on commit
2772 uplFlags
= UPL_COPYOUT_FROM
;
2775 case kIODirectionIn
:
2777 uplFlags
= 0; // i.e. ~UPL_COPYOUT_FROM
2783 if ((kIOMemoryPreparedReadOnly
& _flags
) && !(UPL_COPYOUT_FROM
& uplFlags
))
2785 OSReportWithBacktrace("IOMemoryDescriptor 0x%lx prepared read only", VM_KERNEL_ADDRPERM(this));
2786 error
= kIOReturnNotWritable
;
2788 else error
= kIOReturnSuccess
;
2792 dataP
= getDataP(_memoryEntries
);
2794 mapper
= dataP
->fMapper
;
2795 dataP
->fMappedBase
= 0;
2797 uplFlags
|= UPL_SET_IO_WIRE
| UPL_SET_LITE
;
2798 uplFlags
|= UPL_MEMORY_TAG_MAKE(IOMemoryTag(kernel_map
));
2800 if (kIODirectionPrepareToPhys32
& forDirection
)
2802 if (!mapper
) uplFlags
|= UPL_NEED_32BIT_ADDR
;
2803 if (dataP
->fDMAMapNumAddressBits
> 32) dataP
->fDMAMapNumAddressBits
= 32;
2805 if (kIODirectionPrepareNoFault
& forDirection
) uplFlags
|= UPL_REQUEST_NO_FAULT
;
2806 if (kIODirectionPrepareNoZeroFill
& forDirection
) uplFlags
|= UPL_NOZEROFILLIO
;
2807 if (kIODirectionPrepareNonCoherent
& forDirection
) uplFlags
|= UPL_REQUEST_FORCE_COHERENCY
;
2811 // Note that appendBytes(NULL) zeros the data up to the desired length
2812 // and the length parameter is an unsigned int
2813 size_t uplPageSize
= dataP
->fPageCnt
* sizeof(upl_page_info_t
);
2814 if (uplPageSize
> ((unsigned int)uplPageSize
)) return (kIOReturnNoMemory
);
2815 if (!_memoryEntries
->appendBytes(0, uplPageSize
)) return (kIOReturnNoMemory
);
2818 // Find the appropriate vm_map for the given task
2820 if (_task
== kernel_task
&& (kIOMemoryBufferPageable
& _flags
)) curMap
= 0;
2821 else curMap
= get_task_map(_task
);
2823 // Iterate over the vector of virtual ranges
2824 Ranges vec
= _ranges
;
2825 unsigned int pageIndex
= 0;
2826 IOByteCount mdOffset
= 0;
2827 ppnum_t highestPage
= 0;
2829 IOMemoryEntry
* memRefEntry
= 0;
2830 if (_memRef
) memRefEntry
= &_memRef
->entries
[0];
2832 for (UInt range
= 0; range
< _rangesCount
; range
++) {
2834 mach_vm_address_t startPage
;
2835 mach_vm_size_t numBytes
;
2836 ppnum_t highPage
= 0;
2838 // Get the startPage address and length of vec[range]
2839 getAddrLenForInd(startPage
, numBytes
, type
, vec
, range
);
2840 iopl
.fPageOffset
= startPage
& PAGE_MASK
;
2841 numBytes
+= iopl
.fPageOffset
;
2842 startPage
= trunc_page_64(startPage
);
2845 iopl
.fMappedPage
= mapBase
+ pageIndex
;
2847 iopl
.fMappedPage
= 0;
2849 // Iterate over the current range, creating UPLs
2851 vm_address_t kernelStart
= (vm_address_t
) startPage
;
2853 if (curMap
) theMap
= curMap
;
2860 assert(_task
== kernel_task
);
2861 theMap
= IOPageableMapForAddress(kernelStart
);
2864 // ioplFlags is an in/out parameter
2865 upl_control_flags_t ioplFlags
= uplFlags
;
2866 dataP
= getDataP(_memoryEntries
);
2867 pageInfo
= getPageList(dataP
);
2868 upl_page_list_ptr_t baseInfo
= &pageInfo
[pageIndex
];
2870 upl_size_t ioplSize
= round_page(numBytes
);
2871 unsigned int numPageInfo
= atop_32(ioplSize
);
2873 if ((theMap
== kernel_map
)
2874 && (kernelStart
>= io_kernel_static_start
)
2875 && (kernelStart
< io_kernel_static_end
)) {
2876 error
= io_get_kernel_static_upl(theMap
,
2885 memory_object_offset_t entryOffset
;
2887 entryOffset
= mdOffset
;
2888 entryOffset
= (entryOffset
- iopl
.fPageOffset
- memRefEntry
->offset
);
2889 if (entryOffset
>= memRefEntry
->size
) {
2891 if (memRefEntry
>= &_memRef
->entries
[_memRef
->count
]) panic("memRefEntry");
2894 if (ioplSize
> (memRefEntry
->size
- entryOffset
)) ioplSize
= (memRefEntry
->size
- entryOffset
);
2895 error
= memory_object_iopl_request(memRefEntry
->entry
,
2905 error
= vm_map_create_upl(theMap
,
2907 (upl_size_t
*)&ioplSize
,
2915 if (error
!= KERN_SUCCESS
)
2919 highPage
= upl_get_highest_page(iopl
.fIOPL
);
2920 if (highPage
> highestPage
)
2921 highestPage
= highPage
;
2923 error
= kIOReturnCannotWire
;
2925 if (baseInfo
->device
) {
2927 iopl
.fFlags
= kIOPLOnDevice
;
2933 iopl
.fIOMDOffset
= mdOffset
;
2934 iopl
.fPageInfo
= pageIndex
;
2935 if (mapper
&& pageIndex
&& (page_mask
& (mdOffset
+ iopl
.fPageOffset
))) dataP
->fDiscontig
= true;
2938 // used to remove the upl for auto prepares here, for some errant code
2939 // that freed memory before the descriptor pointing at it
2940 if ((_flags
& kIOMemoryAutoPrepare
) && iopl
.fIOPL
)
2942 upl_commit(iopl
.fIOPL
, 0, 0);
2943 upl_deallocate(iopl
.fIOPL
);
2948 if (!_memoryEntries
->appendBytes(&iopl
, sizeof(iopl
))) {
2949 // Clean up partial created and unsaved iopl
2951 upl_abort(iopl
.fIOPL
, 0);
2952 upl_deallocate(iopl
.fIOPL
);
2958 // Check for a multiple iopl's in one virtual range
2959 pageIndex
+= numPageInfo
;
2960 mdOffset
-= iopl
.fPageOffset
;
2961 if (ioplSize
< numBytes
) {
2962 numBytes
-= ioplSize
;
2963 startPage
+= ioplSize
;
2964 mdOffset
+= ioplSize
;
2965 iopl
.fPageOffset
= 0;
2966 if (mapper
) iopl
.fMappedPage
= mapBase
+ pageIndex
;
2969 mdOffset
+= numBytes
;
2975 _highestPage
= highestPage
;
2977 if (UPL_COPYOUT_FROM
& uplFlags
) _flags
|= kIOMemoryPreparedReadOnly
;
2979 if ((kIOTracking
& gIOKitDebug
)
2980 //&& !(_flags & kIOMemoryAutoPrepare)
2983 dataP
= getDataP(_memoryEntries
);
2985 IOTrackingAdd(gIOWireTracking
, &dataP
->fWireTracking
, ptoa(_pages
), false);
2989 return kIOReturnSuccess
;
2993 dataP
= getDataP(_memoryEntries
);
2994 UInt done
= getNumIOPL(_memoryEntries
, dataP
);
2995 ioPLBlock
*ioplList
= getIOPLList(dataP
);
2997 for (UInt range
= 0; range
< done
; range
++)
2999 if (ioplList
[range
].fIOPL
) {
3000 upl_abort(ioplList
[range
].fIOPL
, 0);
3001 upl_deallocate(ioplList
[range
].fIOPL
);
3004 (void) _memoryEntries
->initWithBytes(dataP
, computeDataSize(0, 0)); // == setLength()
3007 if (error
== KERN_FAILURE
)
3008 error
= kIOReturnCannotWire
;
3009 else if (error
== KERN_MEMORY_ERROR
)
3010 error
= kIOReturnNoResources
;
3015 bool IOGeneralMemoryDescriptor::initMemoryEntries(size_t size
, IOMapper
* mapper
)
3018 unsigned dataSize
= size
;
3020 if (!_memoryEntries
) {
3021 _memoryEntries
= OSData::withCapacity(dataSize
);
3022 if (!_memoryEntries
)
3025 else if (!_memoryEntries
->initWithCapacity(dataSize
))
3028 _memoryEntries
->appendBytes(0, computeDataSize(0, 0));
3029 dataP
= getDataP(_memoryEntries
);
3031 if (mapper
== kIOMapperWaitSystem
) {
3032 IOMapper::checkForSystemMapper();
3033 mapper
= IOMapper::gSystem
;
3035 dataP
->fMapper
= mapper
;
3036 dataP
->fPageCnt
= 0;
3037 dataP
->fMappedBase
= 0;
3038 dataP
->fDMAMapNumAddressBits
= 64;
3039 dataP
->fDMAMapAlignment
= 0;
3040 dataP
->fPreparationID
= kIOPreparationIDUnprepared
;
3041 dataP
->fDiscontig
= false;
3042 dataP
->fCompletionError
= false;
3047 IOReturn
IOMemoryDescriptor::dmaMap(
3049 IODMACommand
* command
,
3050 const IODMAMapSpecification
* mapSpec
,
3053 uint64_t * mapAddress
,
3054 uint64_t * mapLength
)
3057 uint32_t mapOptions
;
3060 mapOptions
|= kIODMAMapReadAccess
;
3061 if (!(kIOMemoryPreparedReadOnly
& _flags
)) mapOptions
|= kIODMAMapWriteAccess
;
3063 ret
= mapper
->iovmMapMemory(this, offset
, length
, mapOptions
,
3064 mapSpec
, command
, NULL
, mapAddress
, mapLength
);
3069 IOReturn
IOGeneralMemoryDescriptor::dmaMap(
3071 IODMACommand
* command
,
3072 const IODMAMapSpecification
* mapSpec
,
3075 uint64_t * mapAddress
,
3076 uint64_t * mapLength
)
3078 IOReturn err
= kIOReturnSuccess
;
3080 IOOptionBits type
= _flags
& kIOMemoryTypeMask
;
3083 if (kIOMemoryHostOnly
& _flags
) return (kIOReturnSuccess
);
3085 if ((type
== kIOMemoryTypePhysical
) || (type
== kIOMemoryTypePhysical64
)
3086 || offset
|| (length
!= _length
))
3088 err
= super::dmaMap(mapper
, command
, mapSpec
, offset
, length
, mapAddress
, mapLength
);
3090 else if (_memoryEntries
&& _pages
&& (dataP
= getDataP(_memoryEntries
)))
3092 const ioPLBlock
* ioplList
= getIOPLList(dataP
);
3093 upl_page_info_t
* pageList
;
3094 uint32_t mapOptions
= 0;
3096 IODMAMapSpecification mapSpec
;
3097 bzero(&mapSpec
, sizeof(mapSpec
));
3098 mapSpec
.numAddressBits
= dataP
->fDMAMapNumAddressBits
;
3099 mapSpec
.alignment
= dataP
->fDMAMapAlignment
;
3101 // For external UPLs the fPageInfo field points directly to
3102 // the upl's upl_page_info_t array.
3103 if (ioplList
->fFlags
& kIOPLExternUPL
)
3105 pageList
= (upl_page_info_t
*) ioplList
->fPageInfo
;
3106 mapOptions
|= kIODMAMapPagingPath
;
3108 else pageList
= getPageList(dataP
);
3110 if ((_length
== ptoa_64(_pages
)) && !(page_mask
& ioplList
->fPageOffset
))
3112 mapOptions
|= kIODMAMapPageListFullyOccupied
;
3115 mapOptions
|= kIODMAMapReadAccess
;
3116 if (!(kIOMemoryPreparedReadOnly
& _flags
)) mapOptions
|= kIODMAMapWriteAccess
;
3118 // Check for direct device non-paged memory
3119 if (ioplList
->fFlags
& kIOPLOnDevice
) mapOptions
|= kIODMAMapPhysicallyContiguous
;
3121 IODMAMapPageList dmaPageList
=
3123 .pageOffset
= ioplList
->fPageOffset
& page_mask
,
3124 .pageListCount
= _pages
,
3125 .pageList
= &pageList
[0]
3127 err
= mapper
->iovmMapMemory(this, offset
, length
, mapOptions
, &mapSpec
,
3128 command
, &dmaPageList
, mapAddress
, mapLength
);
3137 * Prepare the memory for an I/O transfer. This involves paging in
3138 * the memory, if necessary, and wiring it down for the duration of
3139 * the transfer. The complete() method completes the processing of
3140 * the memory after the I/O transfer finishes. This method needn't
3141 * called for non-pageable memory.
3144 IOReturn
IOGeneralMemoryDescriptor::prepare(IODirection forDirection
)
3146 IOReturn error
= kIOReturnSuccess
;
3147 IOOptionBits type
= _flags
& kIOMemoryTypeMask
;
3149 if ((kIOMemoryTypePhysical
== type
) || (kIOMemoryTypePhysical64
== type
))
3150 return kIOReturnSuccess
;
3153 IOLockLock(_prepareLock
);
3155 if (kIOMemoryTypeVirtual
== type
|| kIOMemoryTypeVirtual64
== type
|| kIOMemoryTypeUIO
== type
)
3157 error
= wireVirtual(forDirection
);
3160 if (kIOReturnSuccess
== error
)
3162 if (1 == ++_wireCount
)
3164 if (kIOMemoryClearEncrypt
& _flags
)
3166 performOperation(kIOMemoryClearEncrypted
, 0, _length
);
3172 IOLockUnlock(_prepareLock
);
3180 * Complete processing of the memory after an I/O transfer finishes.
3181 * This method should not be called unless a prepare was previously
3182 * issued; the prepare() and complete() must occur in pairs, before
3183 * before and after an I/O transfer involving pageable memory.
3186 IOReturn
IOGeneralMemoryDescriptor::complete(IODirection forDirection
)
3188 IOOptionBits type
= _flags
& kIOMemoryTypeMask
;
3191 if ((kIOMemoryTypePhysical
== type
) || (kIOMemoryTypePhysical64
== type
))
3192 return kIOReturnSuccess
;
3195 IOLockLock(_prepareLock
);
3199 if ((kIODirectionCompleteWithError
& forDirection
)
3200 && (dataP
= getDataP(_memoryEntries
)))
3201 dataP
->fCompletionError
= true;
3205 if ((kIOMemoryClearEncrypt
& _flags
) && (1 == _wireCount
))
3207 performOperation(kIOMemorySetEncrypted
, 0, _length
);
3211 if (!_wireCount
|| (kIODirectionCompleteWithDataValid
& forDirection
))
3213 IOOptionBits type
= _flags
& kIOMemoryTypeMask
;
3214 dataP
= getDataP(_memoryEntries
);
3215 ioPLBlock
*ioplList
= getIOPLList(dataP
);
3216 UInt ind
, count
= getNumIOPL(_memoryEntries
, dataP
);
3220 // kIODirectionCompleteWithDataValid & forDirection
3221 if (kIOMemoryTypeVirtual
== type
|| kIOMemoryTypeVirtual64
== type
|| kIOMemoryTypeUIO
== type
)
3223 for (ind
= 0; ind
< count
; ind
++)
3225 if (ioplList
[ind
].fIOPL
) iopl_valid_data(ioplList
[ind
].fIOPL
);
3231 #if IOMD_DEBUG_DMAACTIVE
3232 if (__iomd_reservedA
) panic("complete() while dma active");
3233 #endif /* IOMD_DEBUG_DMAACTIVE */
3235 if (dataP
->fMappedBase
) {
3236 dataP
->fMapper
->iovmUnmapMemory(this, NULL
, dataP
->fMappedBase
, dataP
->fMappedLength
);
3237 dataP
->fMappedBase
= 0;
3239 // Only complete iopls that we created which are for TypeVirtual
3240 if (kIOMemoryTypeVirtual
== type
|| kIOMemoryTypeVirtual64
== type
|| kIOMemoryTypeUIO
== type
) {
3242 if ((kIOTracking
& gIOKitDebug
)
3243 //&& !(_flags & kIOMemoryAutoPrepare)
3246 IOTrackingRemove(gIOWireTracking
, &dataP
->fWireTracking
, ptoa(_pages
));
3249 for (ind
= 0; ind
< count
; ind
++)
3250 if (ioplList
[ind
].fIOPL
) {
3251 if (dataP
->fCompletionError
)
3252 upl_abort(ioplList
[ind
].fIOPL
, 0 /*!UPL_ABORT_DUMP_PAGES*/);
3254 upl_commit(ioplList
[ind
].fIOPL
, 0, 0);
3255 upl_deallocate(ioplList
[ind
].fIOPL
);
3257 } else if (kIOMemoryTypeUPL
== type
) {
3258 upl_set_referenced(ioplList
[0].fIOPL
, false);
3261 (void) _memoryEntries
->initWithBytes(dataP
, computeDataSize(0, 0)); // == setLength()
3263 dataP
->fPreparationID
= kIOPreparationIDUnprepared
;
3269 IOLockUnlock(_prepareLock
);
3271 return kIOReturnSuccess
;
3274 IOReturn
IOGeneralMemoryDescriptor::doMap(
3275 vm_map_t __addressMap
,
3276 IOVirtualAddress
* __address
,
3277 IOOptionBits options
,
3278 IOByteCount __offset
,
3279 IOByteCount __length
)
3282 if (!(kIOMap64Bit
& options
)) panic("IOGeneralMemoryDescriptor::doMap !64bit");
3283 #endif /* !__LP64__ */
3287 IOMemoryMap
* mapping
= (IOMemoryMap
*) *__address
;
3288 mach_vm_size_t offset
= mapping
->fOffset
+ __offset
;
3289 mach_vm_size_t length
= mapping
->fLength
;
3291 IOOptionBits type
= _flags
& kIOMemoryTypeMask
;
3292 Ranges vec
= _ranges
;
3294 mach_vm_address_t range0Addr
= 0;
3295 mach_vm_size_t range0Len
= 0;
3297 if ((offset
>= _length
) || ((offset
+ length
) > _length
))
3298 return( kIOReturnBadArgument
);
3301 getAddrLenForInd(range0Addr
, range0Len
, type
, vec
, 0);
3303 // mapping source == dest? (could be much better)
3305 && (mapping
->fAddressTask
== _task
)
3306 && (mapping
->fAddressMap
== get_task_map(_task
))
3307 && (options
& kIOMapAnywhere
)
3308 && (1 == _rangesCount
)
3311 && (length
<= range0Len
))
3313 mapping
->fAddress
= range0Addr
;
3314 mapping
->fOptions
|= kIOMapStatic
;
3316 return( kIOReturnSuccess
);
3321 IOOptionBits createOptions
= 0;
3322 if (!(kIOMapReadOnly
& options
))
3324 createOptions
|= kIOMemoryReferenceWrite
;
3325 #if DEVELOPMENT || DEBUG
3326 if (kIODirectionOut
== (kIODirectionOutIn
& _flags
))
3328 OSReportWithBacktrace("warning: creating writable mapping from IOMemoryDescriptor(kIODirectionOut) - use kIOMapReadOnly or change direction");
3332 err
= memoryReferenceCreate(createOptions
, &_memRef
);
3333 if (kIOReturnSuccess
!= err
) return (err
);
3336 memory_object_t pager
;
3337 pager
= (memory_object_t
) (reserved
? reserved
->dp
.devicePager
: 0);
3339 // <upl_transpose //
3340 if ((kIOMapReference
|kIOMapUnique
) == ((kIOMapReference
|kIOMapUnique
) & options
))
3346 upl_control_flags_t flags
;
3347 unsigned int lock_count
;
3349 if (!_memRef
|| (1 != _memRef
->count
))
3351 err
= kIOReturnNotReadable
;
3355 size
= round_page(mapping
->fLength
);
3356 flags
= UPL_COPYOUT_FROM
| UPL_SET_INTERNAL
3357 | UPL_SET_LITE
| UPL_SET_IO_WIRE
| UPL_BLOCK_ACCESS
3358 | UPL_MEMORY_TAG_MAKE(IOMemoryTag(kernel_map
));
3360 if (KERN_SUCCESS
!= memory_object_iopl_request(_memRef
->entries
[0].entry
, 0, &size
, &redirUPL2
,
3365 for (lock_count
= 0;
3366 IORecursiveLockHaveLock(gIOMemoryLock
);
3370 err
= upl_transpose(redirUPL2
, mapping
->fRedirUPL
);
3377 if (kIOReturnSuccess
!= err
)
3379 IOLog("upl_transpose(%x)\n", err
);
3380 err
= kIOReturnSuccess
;
3385 upl_commit(redirUPL2
, NULL
, 0);
3386 upl_deallocate(redirUPL2
);
3390 // swap the memEntries since they now refer to different vm_objects
3391 IOMemoryReference
* me
= _memRef
;
3392 _memRef
= mapping
->fMemory
->_memRef
;
3393 mapping
->fMemory
->_memRef
= me
;
3396 err
= populateDevicePager( pager
, mapping
->fAddressMap
, mapping
->fAddress
, offset
, length
, options
);
3400 // upl_transpose> //
3403 err
= memoryReferenceMap(_memRef
, mapping
->fAddressMap
, offset
, length
, options
, &mapping
->fAddress
);
3405 if (err
== KERN_SUCCESS
) IOTrackingAdd(gIOMapTracking
, &mapping
->fTracking
, length
, false);
3407 if ((err
== KERN_SUCCESS
) && pager
)
3409 err
= populateDevicePager(pager
, mapping
->fAddressMap
, mapping
->fAddress
, offset
, length
, options
);
3411 if (err
!= KERN_SUCCESS
) doUnmap(mapping
->fAddressMap
, (IOVirtualAddress
) mapping
, 0);
3412 else if (kIOMapDefaultCache
== (options
& kIOMapCacheMask
))
3414 mapping
->fOptions
|= ((_flags
& kIOMemoryBufferCacheMask
) >> kIOMemoryBufferCacheShift
);
3422 IOReturn
IOGeneralMemoryDescriptor::doUnmap(
3423 vm_map_t addressMap
,
3424 IOVirtualAddress __address
,
3425 IOByteCount __length
)
3427 return (super::doUnmap(addressMap
, __address
, __length
));
3430 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
3433 #define super OSObject
3435 OSDefineMetaClassAndStructors( IOMemoryMap
, OSObject
)
3437 OSMetaClassDefineReservedUnused(IOMemoryMap
, 0);
3438 OSMetaClassDefineReservedUnused(IOMemoryMap
, 1);
3439 OSMetaClassDefineReservedUnused(IOMemoryMap
, 2);
3440 OSMetaClassDefineReservedUnused(IOMemoryMap
, 3);
3441 OSMetaClassDefineReservedUnused(IOMemoryMap
, 4);
3442 OSMetaClassDefineReservedUnused(IOMemoryMap
, 5);
3443 OSMetaClassDefineReservedUnused(IOMemoryMap
, 6);
3444 OSMetaClassDefineReservedUnused(IOMemoryMap
, 7);
3446 /* ex-inline function implementation */
3447 IOPhysicalAddress
IOMemoryMap::getPhysicalAddress()
3448 { return( getPhysicalSegment( 0, 0 )); }
3450 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
3452 bool IOMemoryMap::init(
3454 mach_vm_address_t toAddress
,
3455 IOOptionBits _options
,
3456 mach_vm_size_t _offset
,
3457 mach_vm_size_t _length
)
3465 fAddressMap
= get_task_map(intoTask
);
3468 vm_map_reference(fAddressMap
);
3470 fAddressTask
= intoTask
;
3471 fOptions
= _options
;
3474 fAddress
= toAddress
;
3479 bool IOMemoryMap::setMemoryDescriptor(IOMemoryDescriptor
* _memory
, mach_vm_size_t _offset
)
3486 if( (_offset
+ fLength
) > _memory
->getLength())
3494 if (fMemory
!= _memory
)
3495 fMemory
->removeMapping(this);
3503 IOReturn
IOMemoryDescriptor::doMap(
3504 vm_map_t __addressMap
,
3505 IOVirtualAddress
* __address
,
3506 IOOptionBits options
,
3507 IOByteCount __offset
,
3508 IOByteCount __length
)
3510 return (kIOReturnUnsupported
);
3513 IOReturn
IOMemoryDescriptor::handleFault(
3515 mach_vm_size_t sourceOffset
,
3516 mach_vm_size_t length
)
3518 if( kIOMemoryRedirected
& _flags
)
3521 IOLog("sleep mem redirect %p, %qx\n", this, sourceOffset
);
3525 } while( kIOMemoryRedirected
& _flags
);
3527 return (kIOReturnSuccess
);
3530 IOReturn
IOMemoryDescriptor::populateDevicePager(
3532 vm_map_t addressMap
,
3533 mach_vm_address_t address
,
3534 mach_vm_size_t sourceOffset
,
3535 mach_vm_size_t length
,
3536 IOOptionBits options
)
3538 IOReturn err
= kIOReturnSuccess
;
3539 memory_object_t pager
= (memory_object_t
) _pager
;
3540 mach_vm_size_t size
;
3541 mach_vm_size_t bytes
;
3542 mach_vm_size_t page
;
3543 mach_vm_size_t pageOffset
;
3544 mach_vm_size_t pagerOffset
;
3545 IOPhysicalLength segLen
, chunk
;
3549 type
= _flags
& kIOMemoryTypeMask
;
3551 if (reserved
->dp
.pagerContig
)
3557 physAddr
= getPhysicalSegment( sourceOffset
, &segLen
, kIOMemoryMapperNone
);
3559 pageOffset
= physAddr
- trunc_page_64( physAddr
);
3560 pagerOffset
= sourceOffset
;
3562 size
= length
+ pageOffset
;
3563 physAddr
-= pageOffset
;
3565 segLen
+= pageOffset
;
3569 // in the middle of the loop only map whole pages
3570 if( segLen
>= bytes
) segLen
= bytes
;
3571 else if (segLen
!= trunc_page(segLen
)) err
= kIOReturnVMError
;
3572 if (physAddr
!= trunc_page_64(physAddr
)) err
= kIOReturnBadArgument
;
3574 if (kIOReturnSuccess
!= err
) break;
3576 #if DEBUG || DEVELOPMENT
3577 if ((kIOMemoryTypeUPL
!= type
)
3578 && pmap_has_managed_page(atop_64(physAddr
), atop_64(physAddr
+ segLen
- 1)))
3580 OSReportWithBacktrace("IOMemoryDescriptor physical with managed page 0x%qx:0x%qx", physAddr
, segLen
);
3582 #endif /* DEBUG || DEVELOPMENT */
3584 chunk
= (reserved
->dp
.pagerContig
? round_page(segLen
) : page_size
);
3586 (page
< segLen
) && (KERN_SUCCESS
== err
);
3589 err
= device_pager_populate_object(pager
, pagerOffset
,
3590 (ppnum_t
)(atop_64(physAddr
+ page
)), chunk
);
3591 pagerOffset
+= chunk
;
3594 assert (KERN_SUCCESS
== err
);
3597 // This call to vm_fault causes an early pmap level resolution
3598 // of the mappings created above for kernel mappings, since
3599 // faulting in later can't take place from interrupt level.
3600 if ((addressMap
== kernel_map
) && !(kIOMemoryRedirected
& _flags
))
3602 vm_fault(addressMap
,
3603 (vm_map_offset_t
)trunc_page_64(address
),
3604 VM_PROT_READ
|VM_PROT_WRITE
,
3605 FALSE
, THREAD_UNINT
, NULL
,
3606 (vm_map_offset_t
)0);
3609 sourceOffset
+= segLen
- pageOffset
;
3614 while (bytes
&& (physAddr
= getPhysicalSegment( sourceOffset
, &segLen
, kIOMemoryMapperNone
)));
3617 err
= kIOReturnBadArgument
;
3622 IOReturn
IOMemoryDescriptor::doUnmap(
3623 vm_map_t addressMap
,
3624 IOVirtualAddress __address
,
3625 IOByteCount __length
)
3628 IOMemoryMap
* mapping
;
3629 mach_vm_address_t address
;
3630 mach_vm_size_t length
;
3632 if (__length
) panic("doUnmap");
3634 mapping
= (IOMemoryMap
*) __address
;
3635 addressMap
= mapping
->fAddressMap
;
3636 address
= mapping
->fAddress
;
3637 length
= mapping
->fLength
;
3639 if (kIOMapOverwrite
& mapping
->fOptions
) err
= KERN_SUCCESS
;
3642 if ((addressMap
== kernel_map
) && (kIOMemoryBufferPageable
& _flags
))
3643 addressMap
= IOPageableMapForAddress( address
);
3645 if( kIOLogMapping
& gIOKitDebug
) IOLog("IOMemoryDescriptor::doUnmap map %p, 0x%qx:0x%qx\n",
3646 addressMap
, address
, length
);
3648 err
= mach_vm_deallocate( addressMap
, address
, length
);
3652 IOTrackingRemove(gIOMapTracking
, &mapping
->fTracking
, length
);
3658 IOReturn
IOMemoryDescriptor::redirect( task_t safeTask
, bool doRedirect
)
3660 IOReturn err
= kIOReturnSuccess
;
3661 IOMemoryMap
* mapping
= 0;
3667 _flags
|= kIOMemoryRedirected
;
3669 _flags
&= ~kIOMemoryRedirected
;
3672 if( (iter
= OSCollectionIterator::withCollection( _mappings
))) {
3674 memory_object_t pager
;
3677 pager
= (memory_object_t
) reserved
->dp
.devicePager
;
3679 pager
= MACH_PORT_NULL
;
3681 while( (mapping
= (IOMemoryMap
*) iter
->getNextObject()))
3683 mapping
->redirect( safeTask
, doRedirect
);
3684 if (!doRedirect
&& !safeTask
&& pager
&& (kernel_map
== mapping
->fAddressMap
))
3686 err
= populateDevicePager(pager
, mapping
->fAddressMap
, mapping
->fAddress
, mapping
->fOffset
, mapping
->fLength
, kIOMapDefaultCache
);
3702 // temporary binary compatibility
3703 IOSubMemoryDescriptor
* subMem
;
3704 if( (subMem
= OSDynamicCast( IOSubMemoryDescriptor
, this)))
3705 err
= subMem
->redirect( safeTask
, doRedirect
);
3707 err
= kIOReturnSuccess
;
3708 #endif /* !__LP64__ */
3713 IOReturn
IOMemoryMap::redirect( task_t safeTask
, bool doRedirect
)
3715 IOReturn err
= kIOReturnSuccess
;
3718 // err = ((IOMemoryMap *)superMap)->redirect( safeTask, doRedirect );
3730 if ((!safeTask
|| (get_task_map(safeTask
) != fAddressMap
))
3731 && (0 == (fOptions
& kIOMapStatic
)))
3733 IOUnmapPages( fAddressMap
, fAddress
, fLength
);
3734 err
= kIOReturnSuccess
;
3736 IOLog("IOMemoryMap::redirect(%d, %p) 0x%qx:0x%qx from %p\n", doRedirect
, this, fAddress
, fLength
, fAddressMap
);
3739 else if (kIOMapWriteCombineCache
== (fOptions
& kIOMapCacheMask
))
3741 IOOptionBits newMode
;
3742 newMode
= (fOptions
& ~kIOMapCacheMask
) | (doRedirect
? kIOMapInhibitCache
: kIOMapWriteCombineCache
);
3743 IOProtectCacheMode(fAddressMap
, fAddress
, fLength
, newMode
);
3750 if ((((fMemory
->_flags
& kIOMemoryTypeMask
) == kIOMemoryTypePhysical
)
3751 || ((fMemory
->_flags
& kIOMemoryTypeMask
) == kIOMemoryTypePhysical64
))
3753 && (doRedirect
!= (0 != (fMemory
->_flags
& kIOMemoryRedirected
))))
3754 fMemory
->redirect(safeTask
, doRedirect
);
3759 IOReturn
IOMemoryMap::unmap( void )
3765 if( fAddress
&& fAddressMap
&& (0 == fSuperMap
) && fMemory
3766 && (0 == (kIOMapStatic
& fOptions
))) {
3768 err
= fMemory
->doUnmap(fAddressMap
, (IOVirtualAddress
) this, 0);
3771 err
= kIOReturnSuccess
;
3775 vm_map_deallocate(fAddressMap
);
3786 void IOMemoryMap::taskDied( void )
3789 if (fUserClientUnmap
) unmap();
3791 else IOTrackingRemove(gIOMapTracking
, &fTracking
, fLength
);
3795 vm_map_deallocate(fAddressMap
);
3803 IOReturn
IOMemoryMap::userClientUnmap( void )
3805 fUserClientUnmap
= true;
3806 return (kIOReturnSuccess
);
3809 // Overload the release mechanism. All mappings must be a member
3810 // of a memory descriptors _mappings set. This means that we
3811 // always have 2 references on a mapping. When either of these mappings
3812 // are released we need to free ourselves.
3813 void IOMemoryMap::taggedRelease(const void *tag
) const
3816 super::taggedRelease(tag
, 2);
3820 void IOMemoryMap::free()
3827 fMemory
->removeMapping(this);
3832 if (fOwner
&& (fOwner
!= fMemory
))
3835 fOwner
->removeMapping(this);
3840 fSuperMap
->release();
3843 upl_commit(fRedirUPL
, NULL
, 0);
3844 upl_deallocate(fRedirUPL
);
3850 IOByteCount
IOMemoryMap::getLength()
3855 IOVirtualAddress
IOMemoryMap::getVirtualAddress()
3859 fSuperMap
->getVirtualAddress();
3860 else if (fAddressMap
3861 && vm_map_is_64bit(fAddressMap
)
3862 && (sizeof(IOVirtualAddress
) < 8))
3864 OSReportWithBacktrace("IOMemoryMap::getVirtualAddress(0x%qx) called on 64b map; use ::getAddress()", fAddress
);
3866 #endif /* !__LP64__ */
3872 mach_vm_address_t
IOMemoryMap::getAddress()
3877 mach_vm_size_t
IOMemoryMap::getSize()
3881 #endif /* !__LP64__ */
3884 task_t
IOMemoryMap::getAddressTask()
3887 return( fSuperMap
->getAddressTask());
3889 return( fAddressTask
);
3892 IOOptionBits
IOMemoryMap::getMapOptions()
3897 IOMemoryDescriptor
* IOMemoryMap::getMemoryDescriptor()
3902 IOMemoryMap
* IOMemoryMap::copyCompatible(
3903 IOMemoryMap
* newMapping
)
3905 task_t task
= newMapping
->getAddressTask();
3906 mach_vm_address_t toAddress
= newMapping
->fAddress
;
3907 IOOptionBits _options
= newMapping
->fOptions
;
3908 mach_vm_size_t _offset
= newMapping
->fOffset
;
3909 mach_vm_size_t _length
= newMapping
->fLength
;
3911 if( (!task
) || (!fAddressMap
) || (fAddressMap
!= get_task_map(task
)))
3913 if( (fOptions
^ _options
) & kIOMapReadOnly
)
3915 if( (kIOMapDefaultCache
!= (_options
& kIOMapCacheMask
))
3916 && ((fOptions
^ _options
) & kIOMapCacheMask
))
3919 if( (0 == (_options
& kIOMapAnywhere
)) && (fAddress
!= toAddress
))
3922 if( _offset
< fOffset
)
3927 if( (_offset
+ _length
) > fLength
)
3931 if( (fLength
== _length
) && (!_offset
))
3937 newMapping
->fSuperMap
= this;
3938 newMapping
->fOffset
= fOffset
+ _offset
;
3939 newMapping
->fAddress
= fAddress
+ _offset
;
3942 return( newMapping
);
3945 IOReturn
IOMemoryMap::wireRange(
3947 mach_vm_size_t offset
,
3948 mach_vm_size_t length
)
3951 mach_vm_address_t start
= trunc_page_64(fAddress
+ offset
);
3952 mach_vm_address_t end
= round_page_64(fAddress
+ offset
+ length
);
3955 prot
= (kIODirectionOutIn
& options
);
3958 prot
|= VM_PROT_MEMORY_TAG_MAKE(IOMemoryTag(kernel_map
));
3959 kr
= vm_map_wire(fAddressMap
, start
, end
, prot
, FALSE
);
3963 kr
= vm_map_unwire(fAddressMap
, start
, end
, FALSE
);
3972 IOMemoryMap::getPhysicalSegment( IOByteCount _offset
, IOPhysicalLength
* _length
, IOOptionBits _options
)
3973 #else /* !__LP64__ */
3974 IOMemoryMap::getPhysicalSegment( IOByteCount _offset
, IOPhysicalLength
* _length
)
3975 #endif /* !__LP64__ */
3977 IOPhysicalAddress address
;
3981 address
= fMemory
->getPhysicalSegment( fOffset
+ _offset
, _length
, _options
);
3982 #else /* !__LP64__ */
3983 address
= fMemory
->getPhysicalSegment( fOffset
+ _offset
, _length
);
3984 #endif /* !__LP64__ */
3990 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
3993 #define super OSObject
3995 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
3997 void IOMemoryDescriptor::initialize( void )
3999 if( 0 == gIOMemoryLock
)
4000 gIOMemoryLock
= IORecursiveLockAlloc();
4002 gIOLastPage
= IOGetLastPageNumber();
4005 void IOMemoryDescriptor::free( void )
4007 if( _mappings
) _mappings
->release();
4011 IODelete(reserved
, IOMemoryDescriptorReserved
, 1);
4017 IOMemoryMap
* IOMemoryDescriptor::setMapping(
4019 IOVirtualAddress mapAddress
,
4020 IOOptionBits options
)
4022 return (createMappingInTask( intoTask
, mapAddress
,
4023 options
| kIOMapStatic
,
4027 IOMemoryMap
* IOMemoryDescriptor::map(
4028 IOOptionBits options
)
4030 return (createMappingInTask( kernel_task
, 0,
4031 options
| kIOMapAnywhere
,
4036 IOMemoryMap
* IOMemoryDescriptor::map(
4038 IOVirtualAddress atAddress
,
4039 IOOptionBits options
,
4041 IOByteCount length
)
4043 if ((!(kIOMapAnywhere
& options
)) && vm_map_is_64bit(get_task_map(intoTask
)))
4045 OSReportWithBacktrace("IOMemoryDescriptor::map() in 64b task, use ::createMappingInTask()");
4049 return (createMappingInTask(intoTask
, atAddress
,
4050 options
, offset
, length
));
4052 #endif /* !__LP64__ */
4054 IOMemoryMap
* IOMemoryDescriptor::createMappingInTask(
4056 mach_vm_address_t atAddress
,
4057 IOOptionBits options
,
4058 mach_vm_size_t offset
,
4059 mach_vm_size_t length
)
4061 IOMemoryMap
* result
;
4062 IOMemoryMap
* mapping
;
4065 length
= getLength();
4067 mapping
= new IOMemoryMap
;
4070 && !mapping
->init( intoTask
, atAddress
,
4071 options
, offset
, length
)) {
4077 result
= makeMapping(this, intoTask
, (IOVirtualAddress
) mapping
, options
| kIOMap64Bit
, 0, 0);
4083 IOLog("createMappingInTask failed desc %p, addr %qx, options %x, offset %qx, length %llx\n",
4084 this, atAddress
, (uint32_t) options
, offset
, length
);
4090 #ifndef __LP64__ // there is only a 64 bit version for LP64
4091 IOReturn
IOMemoryMap::redirect(IOMemoryDescriptor
* newBackingMemory
,
4092 IOOptionBits options
,
4095 return (redirect(newBackingMemory
, options
, (mach_vm_size_t
)offset
));
4099 IOReturn
IOMemoryMap::redirect(IOMemoryDescriptor
* newBackingMemory
,
4100 IOOptionBits options
,
4101 mach_vm_size_t offset
)
4103 IOReturn err
= kIOReturnSuccess
;
4104 IOMemoryDescriptor
* physMem
= 0;
4108 if (fAddress
&& fAddressMap
) do
4110 if (((fMemory
->_flags
& kIOMemoryTypeMask
) == kIOMemoryTypePhysical
)
4111 || ((fMemory
->_flags
& kIOMemoryTypeMask
) == kIOMemoryTypePhysical64
))
4117 if (!fRedirUPL
&& fMemory
->_memRef
&& (1 == fMemory
->_memRef
->count
))
4119 upl_size_t size
= round_page(fLength
);
4120 upl_control_flags_t flags
= UPL_COPYOUT_FROM
| UPL_SET_INTERNAL
4121 | UPL_SET_LITE
| UPL_SET_IO_WIRE
| UPL_BLOCK_ACCESS
4122 | UPL_MEMORY_TAG_MAKE(IOMemoryTag(kernel_map
));
4123 if (KERN_SUCCESS
!= memory_object_iopl_request(fMemory
->_memRef
->entries
[0].entry
, 0, &size
, &fRedirUPL
,
4130 IOUnmapPages( fAddressMap
, fAddress
, fLength
);
4132 physMem
->redirect(0, true);
4136 if (newBackingMemory
)
4138 if (newBackingMemory
!= fMemory
)
4141 if (this != newBackingMemory
->makeMapping(newBackingMemory
, fAddressTask
, (IOVirtualAddress
) this,
4142 options
| kIOMapUnique
| kIOMapReference
| kIOMap64Bit
,
4144 err
= kIOReturnError
;
4148 upl_commit(fRedirUPL
, NULL
, 0);
4149 upl_deallocate(fRedirUPL
);
4152 if ((false) && physMem
)
4153 physMem
->redirect(0, false);
4166 IOMemoryMap
* IOMemoryDescriptor::makeMapping(
4167 IOMemoryDescriptor
* owner
,
4169 IOVirtualAddress __address
,
4170 IOOptionBits options
,
4171 IOByteCount __offset
,
4172 IOByteCount __length
)
4175 if (!(kIOMap64Bit
& options
)) panic("IOMemoryDescriptor::makeMapping !64bit");
4176 #endif /* !__LP64__ */
4178 IOMemoryDescriptor
* mapDesc
= 0;
4179 IOMemoryMap
* result
= 0;
4182 IOMemoryMap
* mapping
= (IOMemoryMap
*) __address
;
4183 mach_vm_size_t offset
= mapping
->fOffset
+ __offset
;
4184 mach_vm_size_t length
= mapping
->fLength
;
4186 mapping
->fOffset
= offset
;
4192 if (kIOMapStatic
& options
)
4195 addMapping(mapping
);
4196 mapping
->setMemoryDescriptor(this, 0);
4200 if (kIOMapUnique
& options
)
4203 IOByteCount physLen
;
4205 // if (owner != this) continue;
4207 if (((_flags
& kIOMemoryTypeMask
) == kIOMemoryTypePhysical
)
4208 || ((_flags
& kIOMemoryTypeMask
) == kIOMemoryTypePhysical64
))
4210 phys
= getPhysicalSegment(offset
, &physLen
, kIOMemoryMapperNone
);
4211 if (!phys
|| (physLen
< length
))
4214 mapDesc
= IOMemoryDescriptor::withAddressRange(
4215 phys
, length
, getDirection() | kIOMemoryMapperNone
, NULL
);
4219 mapping
->fOffset
= offset
;
4224 // look for a compatible existing mapping
4225 if( (iter
= OSCollectionIterator::withCollection(_mappings
)))
4227 IOMemoryMap
* lookMapping
;
4228 while ((lookMapping
= (IOMemoryMap
*) iter
->getNextObject()))
4230 if ((result
= lookMapping
->copyCompatible(mapping
)))
4233 result
->setMemoryDescriptor(this, offset
);
4239 if (result
|| (options
& kIOMapReference
))
4241 if (result
!= mapping
)
4256 kr
= mapDesc
->doMap( 0, (IOVirtualAddress
*) &mapping
, options
, 0, 0 );
4257 if (kIOReturnSuccess
== kr
)
4260 mapDesc
->addMapping(result
);
4261 result
->setMemoryDescriptor(mapDesc
, offset
);
4279 void IOMemoryDescriptor::addMapping(
4280 IOMemoryMap
* mapping
)
4285 _mappings
= OSSet::withCapacity(1);
4287 _mappings
->setObject( mapping
);
4291 void IOMemoryDescriptor::removeMapping(
4292 IOMemoryMap
* mapping
)
4295 _mappings
->removeObject( mapping
);
4299 // obsolete initializers
4300 // - initWithOptions is the designated initializer
4302 IOMemoryDescriptor::initWithAddress(void * address
,
4304 IODirection direction
)
4310 IOMemoryDescriptor::initWithAddress(IOVirtualAddress address
,
4312 IODirection direction
,
4319 IOMemoryDescriptor::initWithPhysicalAddress(
4320 IOPhysicalAddress address
,
4322 IODirection direction
)
4328 IOMemoryDescriptor::initWithRanges(
4329 IOVirtualRange
* ranges
,
4331 IODirection direction
,
4339 IOMemoryDescriptor::initWithPhysicalRanges( IOPhysicalRange
* ranges
,
4341 IODirection direction
,
4347 void * IOMemoryDescriptor::getVirtualSegment(IOByteCount offset
,
4348 IOByteCount
* lengthOfSegment
)
4352 #endif /* !__LP64__ */
4354 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
4356 bool IOGeneralMemoryDescriptor::serialize(OSSerialize
* s
) const
4358 OSSymbol
const *keys
[2];
4359 OSObject
*values
[2];
4363 user_addr_t address
;
4366 unsigned int index
, nRanges
;
4369 IOOptionBits type
= _flags
& kIOMemoryTypeMask
;
4371 if (s
== NULL
) return false;
4373 array
= OSArray::withCapacity(4);
4374 if (!array
) return (false);
4376 nRanges
= _rangesCount
;
4377 vcopy
= (SerData
*) IOMalloc(sizeof(SerData
) * nRanges
);
4378 if (vcopy
== 0) return false;
4380 keys
[0] = OSSymbol::withCString("address");
4381 keys
[1] = OSSymbol::withCString("length");
4384 values
[0] = values
[1] = 0;
4386 // From this point on we can go to bail.
4388 // Copy the volatile data so we don't have to allocate memory
4389 // while the lock is held.
4391 if (nRanges
== _rangesCount
) {
4392 Ranges vec
= _ranges
;
4393 for (index
= 0; index
< nRanges
; index
++) {
4394 mach_vm_address_t addr
; mach_vm_size_t len
;
4395 getAddrLenForInd(addr
, len
, type
, vec
, index
);
4396 vcopy
[index
].address
= addr
;
4397 vcopy
[index
].length
= len
;
4400 // The descriptor changed out from under us. Give up.
4407 for (index
= 0; index
< nRanges
; index
++)
4409 user_addr_t addr
= vcopy
[index
].address
;
4410 IOByteCount len
= (IOByteCount
) vcopy
[index
].length
;
4411 values
[0] = OSNumber::withNumber(addr
, sizeof(addr
) * 8);
4412 if (values
[0] == 0) {
4416 values
[1] = OSNumber::withNumber(len
, sizeof(len
) * 8);
4417 if (values
[1] == 0) {
4421 OSDictionary
*dict
= OSDictionary::withObjects((const OSObject
**)values
, (const OSSymbol
**)keys
, 2);
4426 array
->setObject(dict
);
4428 values
[0]->release();
4429 values
[1]->release();
4430 values
[0] = values
[1] = 0;
4433 result
= array
->serialize(s
);
4439 values
[0]->release();
4441 values
[1]->release();
4447 IOFree(vcopy
, sizeof(SerData
) * nRanges
);
4452 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
4454 OSMetaClassDefineReservedUsed(IOMemoryDescriptor
, 0);
4456 OSMetaClassDefineReservedUnused(IOMemoryDescriptor
, 1);
4457 OSMetaClassDefineReservedUnused(IOMemoryDescriptor
, 2);
4458 OSMetaClassDefineReservedUnused(IOMemoryDescriptor
, 3);
4459 OSMetaClassDefineReservedUnused(IOMemoryDescriptor
, 4);
4460 OSMetaClassDefineReservedUnused(IOMemoryDescriptor
, 5);
4461 OSMetaClassDefineReservedUnused(IOMemoryDescriptor
, 6);
4462 OSMetaClassDefineReservedUnused(IOMemoryDescriptor
, 7);
4463 #else /* !__LP64__ */
4464 OSMetaClassDefineReservedUsed(IOMemoryDescriptor
, 1);
4465 OSMetaClassDefineReservedUsed(IOMemoryDescriptor
, 2);
4466 OSMetaClassDefineReservedUsed(IOMemoryDescriptor
, 3);
4467 OSMetaClassDefineReservedUsed(IOMemoryDescriptor
, 4);
4468 OSMetaClassDefineReservedUsed(IOMemoryDescriptor
, 5);
4469 OSMetaClassDefineReservedUsed(IOMemoryDescriptor
, 6);
4470 OSMetaClassDefineReservedUsed(IOMemoryDescriptor
, 7);
4471 #endif /* !__LP64__ */
4472 OSMetaClassDefineReservedUnused(IOMemoryDescriptor
, 8);
4473 OSMetaClassDefineReservedUnused(IOMemoryDescriptor
, 9);
4474 OSMetaClassDefineReservedUnused(IOMemoryDescriptor
, 10);
4475 OSMetaClassDefineReservedUnused(IOMemoryDescriptor
, 11);
4476 OSMetaClassDefineReservedUnused(IOMemoryDescriptor
, 12);
4477 OSMetaClassDefineReservedUnused(IOMemoryDescriptor
, 13);
4478 OSMetaClassDefineReservedUnused(IOMemoryDescriptor
, 14);
4479 OSMetaClassDefineReservedUnused(IOMemoryDescriptor
, 15);
4481 /* ex-inline function implementation */
4483 IOMemoryDescriptor::getPhysicalAddress()
4484 { return( getPhysicalSegment( 0, 0 )); }