]> git.saurik.com Git - apple/xnu.git/blob - iokit/Kernel/IOMemoryDescriptor.cpp
4bd9659e79e523b4793c713f88f7e8788b5ec963
[apple/xnu.git] / iokit / Kernel / IOMemoryDescriptor.cpp
1 /*
2 * Copyright (c) 1998-2007 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28
29
30 #include <sys/cdefs.h>
31
32 #include <IOKit/assert.h>
33 #include <IOKit/system.h>
34 #include <IOKit/IOLib.h>
35 #include <IOKit/IOMemoryDescriptor.h>
36 #include <IOKit/IOMapper.h>
37 #include <IOKit/IODMACommand.h>
38 #include <IOKit/IOKitKeysPrivate.h>
39
40 #include <IOKit/IOSubMemoryDescriptor.h>
41 #include <IOKit/IOMultiMemoryDescriptor.h>
42
43 #include <IOKit/IOKitDebug.h>
44 #include <libkern/OSDebug.h>
45
46 #include "IOKitKernelInternal.h"
47
48 #include <libkern/c++/OSContainers.h>
49 #include <libkern/c++/OSDictionary.h>
50 #include <libkern/c++/OSArray.h>
51 #include <libkern/c++/OSSymbol.h>
52 #include <libkern/c++/OSNumber.h>
53
54 #include <sys/uio.h>
55
56 __BEGIN_DECLS
57 #include <vm/pmap.h>
58 #include <vm/vm_pageout.h>
59 #include <mach/memory_object_types.h>
60 #include <device/device_port.h>
61
62 #include <mach/vm_prot.h>
63 #include <mach/mach_vm.h>
64 #include <vm/vm_fault.h>
65 #include <vm/vm_protos.h>
66
67 extern ppnum_t pmap_find_phys(pmap_t pmap, addr64_t va);
68 extern void ipc_port_release_send(ipc_port_t port);
69
70 // osfmk/device/iokit_rpc.c
71 unsigned int IODefaultCacheBits(addr64_t pa);
72 unsigned int IOTranslateCacheBits(struct phys_entry *pp);
73
74 __END_DECLS
75
76 #define kIOMapperWaitSystem ((IOMapper *) 1)
77
78 static IOMapper * gIOSystemMapper = NULL;
79
80 ppnum_t gIOLastPage;
81
82 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
83
84 OSDefineMetaClassAndAbstractStructors( IOMemoryDescriptor, OSObject )
85
86 #define super IOMemoryDescriptor
87
88 OSDefineMetaClassAndStructors(IOGeneralMemoryDescriptor, IOMemoryDescriptor)
89
90 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
91
92 static IORecursiveLock * gIOMemoryLock;
93
94 #define LOCK IORecursiveLockLock( gIOMemoryLock)
95 #define UNLOCK IORecursiveLockUnlock( gIOMemoryLock)
96 #define SLEEP IORecursiveLockSleep( gIOMemoryLock, (void *)this, THREAD_UNINT)
97 #define WAKEUP \
98 IORecursiveLockWakeup( gIOMemoryLock, (void *)this, /* one-thread */ false)
99
100 #if 0
101 #define DEBG(fmt, args...) { kprintf(fmt, ## args); }
102 #else
103 #define DEBG(fmt, args...) {}
104 #endif
105
106 #define IOMD_DEBUG_DMAACTIVE 1
107
108 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
109
110 // Some data structures and accessor macros used by the initWithOptions
111 // Function
112
113 enum ioPLBlockFlags {
114 kIOPLOnDevice = 0x00000001,
115 kIOPLExternUPL = 0x00000002,
116 };
117
118 struct IOMDPersistentInitData
119 {
120 const IOGeneralMemoryDescriptor * fMD;
121 IOMemoryReference * fMemRef;
122 };
123
124 struct ioPLBlock {
125 upl_t fIOPL;
126 vm_address_t fPageInfo; // Pointer to page list or index into it
127 uint32_t fIOMDOffset; // The offset of this iopl in descriptor
128 ppnum_t fMappedPage; // Page number of first page in this iopl
129 unsigned int fPageOffset; // Offset within first page of iopl
130 unsigned int fFlags; // Flags
131 };
132
133 struct ioGMDData {
134 IOMapper * fMapper;
135 uint8_t fDMAMapNumAddressBits;
136 uint64_t fDMAMapAlignment;
137 uint64_t fMappedBase;
138 uint64_t fMappedLength;
139 uint64_t fPreparationID;
140 #if IOTRACKING
141 IOTracking fWireTracking;
142 #endif
143 unsigned int fPageCnt;
144 unsigned char fDiscontig:1;
145 unsigned char fCompletionError:1;
146 unsigned char _resv:6;
147 #if __LP64__
148 // align arrays to 8 bytes so following macros work
149 unsigned char fPad[3];
150 #endif
151 upl_page_info_t fPageList[1]; /* variable length */
152 ioPLBlock fBlocks[1]; /* variable length */
153 };
154
155 #define getDataP(osd) ((ioGMDData *) (osd)->getBytesNoCopy())
156 #define getIOPLList(d) ((ioPLBlock *) (void *)&(d->fPageList[d->fPageCnt]))
157 #define getNumIOPL(osd, d) \
158 (((osd)->getLength() - ((char *) getIOPLList(d) - (char *) d)) / sizeof(ioPLBlock))
159 #define getPageList(d) (&(d->fPageList[0]))
160 #define computeDataSize(p, u) \
161 (offsetof(ioGMDData, fPageList) + p * sizeof(upl_page_info_t) + u * sizeof(ioPLBlock))
162
163 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
164
165 #define next_page(a) ( trunc_page(a) + PAGE_SIZE )
166
167 extern "C" {
168
169 kern_return_t device_data_action(
170 uintptr_t device_handle,
171 ipc_port_t device_pager,
172 vm_prot_t protection,
173 vm_object_offset_t offset,
174 vm_size_t size)
175 {
176 kern_return_t kr;
177 IOMemoryDescriptorReserved * ref = (IOMemoryDescriptorReserved *) device_handle;
178 IOMemoryDescriptor * memDesc;
179
180 LOCK;
181 memDesc = ref->dp.memory;
182 if( memDesc)
183 {
184 memDesc->retain();
185 kr = memDesc->handleFault(device_pager, offset, size);
186 memDesc->release();
187 }
188 else
189 kr = KERN_ABORTED;
190 UNLOCK;
191
192 return( kr );
193 }
194
195 kern_return_t device_close(
196 uintptr_t device_handle)
197 {
198 IOMemoryDescriptorReserved * ref = (IOMemoryDescriptorReserved *) device_handle;
199
200 IODelete( ref, IOMemoryDescriptorReserved, 1 );
201
202 return( kIOReturnSuccess );
203 }
204 }; // end extern "C"
205
206 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
207
208 // Note this inline function uses C++ reference arguments to return values
209 // This means that pointers are not passed and NULLs don't have to be
210 // checked for as a NULL reference is illegal.
211 static inline void
212 getAddrLenForInd(mach_vm_address_t &addr, mach_vm_size_t &len, // Output variables
213 UInt32 type, IOGeneralMemoryDescriptor::Ranges r, UInt32 ind)
214 {
215 assert(kIOMemoryTypeUIO == type
216 || kIOMemoryTypeVirtual == type || kIOMemoryTypeVirtual64 == type
217 || kIOMemoryTypePhysical == type || kIOMemoryTypePhysical64 == type);
218 if (kIOMemoryTypeUIO == type) {
219 user_size_t us;
220 user_addr_t ad;
221 uio_getiov((uio_t) r.uio, ind, &ad, &us); addr = ad; len = us;
222 }
223 #ifndef __LP64__
224 else if ((kIOMemoryTypeVirtual64 == type) || (kIOMemoryTypePhysical64 == type)) {
225 IOAddressRange cur = r.v64[ind];
226 addr = cur.address;
227 len = cur.length;
228 }
229 #endif /* !__LP64__ */
230 else {
231 IOVirtualRange cur = r.v[ind];
232 addr = cur.address;
233 len = cur.length;
234 }
235 }
236
237 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
238
239 static IOReturn
240 purgeableControlBits(IOOptionBits newState, vm_purgable_t * control, int * state)
241 {
242 IOReturn err = kIOReturnSuccess;
243
244 *control = VM_PURGABLE_SET_STATE;
245
246 enum { kIOMemoryPurgeableControlMask = 15 };
247
248 switch (kIOMemoryPurgeableControlMask & newState)
249 {
250 case kIOMemoryPurgeableKeepCurrent:
251 *control = VM_PURGABLE_GET_STATE;
252 break;
253
254 case kIOMemoryPurgeableNonVolatile:
255 *state = VM_PURGABLE_NONVOLATILE;
256 break;
257 case kIOMemoryPurgeableVolatile:
258 *state = VM_PURGABLE_VOLATILE | (newState & ~kIOMemoryPurgeableControlMask);
259 break;
260 case kIOMemoryPurgeableEmpty:
261 *state = VM_PURGABLE_EMPTY;
262 break;
263 default:
264 err = kIOReturnBadArgument;
265 break;
266 }
267 return (err);
268 }
269
270 static IOReturn
271 purgeableStateBits(int * state)
272 {
273 IOReturn err = kIOReturnSuccess;
274
275 switch (VM_PURGABLE_STATE_MASK & *state)
276 {
277 case VM_PURGABLE_NONVOLATILE:
278 *state = kIOMemoryPurgeableNonVolatile;
279 break;
280 case VM_PURGABLE_VOLATILE:
281 *state = kIOMemoryPurgeableVolatile;
282 break;
283 case VM_PURGABLE_EMPTY:
284 *state = kIOMemoryPurgeableEmpty;
285 break;
286 default:
287 *state = kIOMemoryPurgeableNonVolatile;
288 err = kIOReturnNotReady;
289 break;
290 }
291 return (err);
292 }
293
294
295 static vm_prot_t
296 vmProtForCacheMode(IOOptionBits cacheMode)
297 {
298 vm_prot_t prot = 0;
299 switch (cacheMode)
300 {
301 case kIOInhibitCache:
302 SET_MAP_MEM(MAP_MEM_IO, prot);
303 break;
304
305 case kIOWriteThruCache:
306 SET_MAP_MEM(MAP_MEM_WTHRU, prot);
307 break;
308
309 case kIOWriteCombineCache:
310 SET_MAP_MEM(MAP_MEM_WCOMB, prot);
311 break;
312
313 case kIOCopybackCache:
314 SET_MAP_MEM(MAP_MEM_COPYBACK, prot);
315 break;
316
317 case kIOCopybackInnerCache:
318 SET_MAP_MEM(MAP_MEM_INNERWBACK, prot);
319 break;
320
321 case kIODefaultCache:
322 default:
323 SET_MAP_MEM(MAP_MEM_NOOP, prot);
324 break;
325 }
326
327 return (prot);
328 }
329
330 static unsigned int
331 pagerFlagsForCacheMode(IOOptionBits cacheMode)
332 {
333 unsigned int pagerFlags = 0;
334 switch (cacheMode)
335 {
336 case kIOInhibitCache:
337 pagerFlags = DEVICE_PAGER_CACHE_INHIB | DEVICE_PAGER_COHERENT | DEVICE_PAGER_GUARDED;
338 break;
339
340 case kIOWriteThruCache:
341 pagerFlags = DEVICE_PAGER_WRITE_THROUGH | DEVICE_PAGER_COHERENT | DEVICE_PAGER_GUARDED;
342 break;
343
344 case kIOWriteCombineCache:
345 pagerFlags = DEVICE_PAGER_CACHE_INHIB | DEVICE_PAGER_COHERENT;
346 break;
347
348 case kIOCopybackCache:
349 pagerFlags = DEVICE_PAGER_COHERENT;
350 break;
351
352 case kIOCopybackInnerCache:
353 pagerFlags = DEVICE_PAGER_COHERENT;
354 break;
355
356 case kIODefaultCache:
357 default:
358 pagerFlags = -1U;
359 break;
360 }
361 return (pagerFlags);
362 }
363
364 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
365 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
366
367 struct IOMemoryEntry
368 {
369 ipc_port_t entry;
370 int64_t offset;
371 uint64_t size;
372 };
373
374 struct IOMemoryReference
375 {
376 volatile SInt32 refCount;
377 vm_prot_t prot;
378 uint32_t capacity;
379 uint32_t count;
380 IOMemoryEntry entries[0];
381 };
382
383 enum
384 {
385 kIOMemoryReferenceReuse = 0x00000001,
386 kIOMemoryReferenceWrite = 0x00000002,
387 };
388
389 SInt32 gIOMemoryReferenceCount;
390
391 IOMemoryReference *
392 IOGeneralMemoryDescriptor::memoryReferenceAlloc(uint32_t capacity, IOMemoryReference * realloc)
393 {
394 IOMemoryReference * ref;
395 size_t newSize, oldSize, copySize;
396
397 newSize = (sizeof(IOMemoryReference)
398 - sizeof(ref->entries)
399 + capacity * sizeof(ref->entries[0]));
400 ref = (typeof(ref)) IOMalloc(newSize);
401 if (realloc)
402 {
403 oldSize = (sizeof(IOMemoryReference)
404 - sizeof(realloc->entries)
405 + realloc->capacity * sizeof(realloc->entries[0]));
406 copySize = oldSize;
407 if (copySize > newSize) copySize = newSize;
408 if (ref) bcopy(realloc, ref, copySize);
409 IOFree(realloc, oldSize);
410 }
411 else if (ref)
412 {
413 bzero(ref, sizeof(*ref));
414 ref->refCount = 1;
415 OSIncrementAtomic(&gIOMemoryReferenceCount);
416 }
417 if (!ref) return (0);
418 ref->capacity = capacity;
419 return (ref);
420 }
421
422 void
423 IOGeneralMemoryDescriptor::memoryReferenceFree(IOMemoryReference * ref)
424 {
425 IOMemoryEntry * entries;
426 size_t size;
427
428 entries = ref->entries + ref->count;
429 while (entries > &ref->entries[0])
430 {
431 entries--;
432 ipc_port_release_send(entries->entry);
433 }
434 size = (sizeof(IOMemoryReference)
435 - sizeof(ref->entries)
436 + ref->capacity * sizeof(ref->entries[0]));
437 IOFree(ref, size);
438
439 OSDecrementAtomic(&gIOMemoryReferenceCount);
440 }
441
442 void
443 IOGeneralMemoryDescriptor::memoryReferenceRelease(IOMemoryReference * ref)
444 {
445 if (1 == OSDecrementAtomic(&ref->refCount)) memoryReferenceFree(ref);
446 }
447
448
449 IOReturn
450 IOGeneralMemoryDescriptor::memoryReferenceCreate(
451 IOOptionBits options,
452 IOMemoryReference ** reference)
453 {
454 enum { kCapacity = 4, kCapacityInc = 4 };
455
456 kern_return_t err;
457 IOMemoryReference * ref;
458 IOMemoryEntry * entries;
459 IOMemoryEntry * cloneEntries;
460 vm_map_t map;
461 ipc_port_t entry, cloneEntry;
462 vm_prot_t prot;
463 memory_object_size_t actualSize;
464 uint32_t rangeIdx;
465 uint32_t count;
466 mach_vm_address_t entryAddr, endAddr, entrySize;
467 mach_vm_size_t srcAddr, srcLen;
468 mach_vm_size_t nextAddr, nextLen;
469 mach_vm_size_t offset, remain;
470 IOByteCount physLen;
471 IOOptionBits type = (_flags & kIOMemoryTypeMask);
472 IOOptionBits cacheMode;
473 unsigned int pagerFlags;
474 vm_tag_t tag;
475
476 ref = memoryReferenceAlloc(kCapacity, NULL);
477 if (!ref) return (kIOReturnNoMemory);
478
479 tag = IOMemoryTag(kernel_map);
480 entries = &ref->entries[0];
481 count = 0;
482
483 offset = 0;
484 rangeIdx = 0;
485 if (_task) getAddrLenForInd(nextAddr, nextLen, type, _ranges, rangeIdx);
486 else
487 {
488 nextAddr = getPhysicalSegment(offset, &physLen, kIOMemoryMapperNone);
489 nextLen = physLen;
490
491 // default cache mode for physical
492 if (kIODefaultCache == ((_flags & kIOMemoryBufferCacheMask) >> kIOMemoryBufferCacheShift))
493 {
494 IOOptionBits mode;
495 pagerFlags = IODefaultCacheBits(nextAddr);
496 if (DEVICE_PAGER_CACHE_INHIB & pagerFlags)
497 {
498 if (DEVICE_PAGER_GUARDED & pagerFlags)
499 mode = kIOInhibitCache;
500 else
501 mode = kIOWriteCombineCache;
502 }
503 else if (DEVICE_PAGER_WRITE_THROUGH & pagerFlags)
504 mode = kIOWriteThruCache;
505 else
506 mode = kIOCopybackCache;
507 _flags |= (mode << kIOMemoryBufferCacheShift);
508 }
509 }
510
511 // cache mode & vm_prot
512 prot = VM_PROT_READ;
513 cacheMode = ((_flags & kIOMemoryBufferCacheMask) >> kIOMemoryBufferCacheShift);
514 prot |= vmProtForCacheMode(cacheMode);
515 // VM system requires write access to change cache mode
516 if (kIODefaultCache != cacheMode) prot |= VM_PROT_WRITE;
517 if (kIODirectionOut != (kIODirectionOutIn & _flags)) prot |= VM_PROT_WRITE;
518 if (kIOMemoryReferenceWrite & options) prot |= VM_PROT_WRITE;
519
520 if ((kIOMemoryReferenceReuse & options) && _memRef)
521 {
522 cloneEntries = &_memRef->entries[0];
523 prot |= MAP_MEM_NAMED_REUSE;
524 }
525
526 if (_task)
527 {
528 // virtual ranges
529
530 if (kIOMemoryBufferPageable & _flags)
531 {
532 // IOBufferMemoryDescriptor alloc - set flags for entry + object create
533 prot |= MAP_MEM_NAMED_CREATE;
534 if (kIOMemoryBufferPurgeable & _flags) prot |= MAP_MEM_PURGABLE;
535 prot |= VM_PROT_WRITE;
536 map = NULL;
537 }
538 else map = get_task_map(_task);
539
540 remain = _length;
541 while (remain)
542 {
543 srcAddr = nextAddr;
544 srcLen = nextLen;
545 nextAddr = 0;
546 nextLen = 0;
547 // coalesce addr range
548 for (++rangeIdx; rangeIdx < _rangesCount; rangeIdx++)
549 {
550 getAddrLenForInd(nextAddr, nextLen, type, _ranges, rangeIdx);
551 if ((srcAddr + srcLen) != nextAddr) break;
552 srcLen += nextLen;
553 }
554 entryAddr = trunc_page_64(srcAddr);
555 endAddr = round_page_64(srcAddr + srcLen);
556 do
557 {
558 entrySize = (endAddr - entryAddr);
559 if (!entrySize) break;
560 actualSize = entrySize;
561
562 cloneEntry = MACH_PORT_NULL;
563 if (MAP_MEM_NAMED_REUSE & prot)
564 {
565 if (cloneEntries < &_memRef->entries[_memRef->count]) cloneEntry = cloneEntries->entry;
566 else prot &= ~MAP_MEM_NAMED_REUSE;
567 }
568
569 err = mach_make_memory_entry_64(map,
570 &actualSize, entryAddr, prot, &entry, cloneEntry);
571
572 if (KERN_SUCCESS != err) break;
573 if (actualSize > entrySize) panic("mach_make_memory_entry_64 actualSize");
574
575 if (count >= ref->capacity)
576 {
577 ref = memoryReferenceAlloc(ref->capacity + kCapacityInc, ref);
578 entries = &ref->entries[count];
579 }
580 entries->entry = entry;
581 entries->size = actualSize;
582 entries->offset = offset + (entryAddr - srcAddr);
583 entryAddr += actualSize;
584 if (MAP_MEM_NAMED_REUSE & prot)
585 {
586 if ((cloneEntries->entry == entries->entry)
587 && (cloneEntries->size == entries->size)
588 && (cloneEntries->offset == entries->offset)) cloneEntries++;
589 else prot &= ~MAP_MEM_NAMED_REUSE;
590 }
591 entries++;
592 count++;
593 }
594 while (true);
595 offset += srcLen;
596 remain -= srcLen;
597 }
598 }
599 else
600 {
601 // _task == 0, physical or kIOMemoryTypeUPL
602 memory_object_t pager;
603 vm_size_t size = ptoa_32(_pages);
604
605 if (!getKernelReserved()) panic("getKernelReserved");
606
607 reserved->dp.pagerContig = (1 == _rangesCount);
608 reserved->dp.memory = this;
609
610 pagerFlags = pagerFlagsForCacheMode(cacheMode);
611 if (-1U == pagerFlags) panic("phys is kIODefaultCache");
612 if (reserved->dp.pagerContig) pagerFlags |= DEVICE_PAGER_CONTIGUOUS;
613
614 pager = device_pager_setup((memory_object_t) 0, (uintptr_t) reserved,
615 size, pagerFlags);
616 assert (pager);
617 if (!pager) err = kIOReturnVMError;
618 else
619 {
620 srcAddr = nextAddr;
621 entryAddr = trunc_page_64(srcAddr);
622 err = mach_memory_object_memory_entry_64((host_t) 1, false /*internal*/,
623 size, VM_PROT_READ | VM_PROT_WRITE, pager, &entry);
624 assert (KERN_SUCCESS == err);
625 if (KERN_SUCCESS != err) device_pager_deallocate(pager);
626 else
627 {
628 reserved->dp.devicePager = pager;
629 entries->entry = entry;
630 entries->size = size;
631 entries->offset = offset + (entryAddr - srcAddr);
632 entries++;
633 count++;
634 }
635 }
636 }
637
638 ref->count = count;
639 ref->prot = prot;
640
641 if (KERN_SUCCESS == err)
642 {
643 if (MAP_MEM_NAMED_REUSE & prot)
644 {
645 memoryReferenceFree(ref);
646 OSIncrementAtomic(&_memRef->refCount);
647 ref = _memRef;
648 }
649 }
650 else
651 {
652 memoryReferenceFree(ref);
653 ref = NULL;
654 }
655
656 *reference = ref;
657
658 return (err);
659 }
660
661 kern_return_t
662 IOMemoryDescriptorMapAlloc(vm_map_t map, void * _ref)
663 {
664 IOMemoryDescriptorMapAllocRef * ref = (typeof(ref))_ref;
665 IOReturn err;
666 vm_map_offset_t addr;
667
668 addr = ref->mapped;
669
670 err = vm_map_enter_mem_object(map, &addr, ref->size,
671 (vm_map_offset_t) 0,
672 (((ref->options & kIOMapAnywhere)
673 ? VM_FLAGS_ANYWHERE
674 : VM_FLAGS_FIXED)
675 | VM_MAKE_TAG(ref->tag)
676 | VM_FLAGS_IOKIT_ACCT), /* iokit accounting */
677 IPC_PORT_NULL,
678 (memory_object_offset_t) 0,
679 false, /* copy */
680 ref->prot,
681 ref->prot,
682 VM_INHERIT_NONE);
683 if (KERN_SUCCESS == err)
684 {
685 ref->mapped = (mach_vm_address_t) addr;
686 ref->map = map;
687 }
688
689 return( err );
690 }
691
692 IOReturn
693 IOGeneralMemoryDescriptor::memoryReferenceMap(
694 IOMemoryReference * ref,
695 vm_map_t map,
696 mach_vm_size_t inoffset,
697 mach_vm_size_t size,
698 IOOptionBits options,
699 mach_vm_address_t * inaddr)
700 {
701 IOReturn err;
702 int64_t offset = inoffset;
703 uint32_t rangeIdx, entryIdx;
704 vm_map_offset_t addr, mapAddr;
705 vm_map_offset_t pageOffset, entryOffset, remain, chunk;
706
707 mach_vm_address_t nextAddr;
708 mach_vm_size_t nextLen;
709 IOByteCount physLen;
710 IOMemoryEntry * entry;
711 vm_prot_t prot, memEntryCacheMode;
712 IOOptionBits type;
713 IOOptionBits cacheMode;
714 vm_tag_t tag;
715
716 /*
717 * For the kIOMapPrefault option.
718 */
719 upl_page_info_t *pageList = NULL;
720 UInt currentPageIndex = 0;
721
722 type = _flags & kIOMemoryTypeMask;
723 prot = VM_PROT_READ;
724 if (!(kIOMapReadOnly & options)) prot |= VM_PROT_WRITE;
725 prot &= ref->prot;
726
727 cacheMode = ((options & kIOMapCacheMask) >> kIOMapCacheShift);
728 if (kIODefaultCache != cacheMode)
729 {
730 // VM system requires write access to update named entry cache mode
731 memEntryCacheMode = (MAP_MEM_ONLY | VM_PROT_WRITE | prot | vmProtForCacheMode(cacheMode));
732 }
733
734 tag = IOMemoryTag(map);
735
736 if (_task)
737 {
738 // Find first range for offset
739 for (remain = offset, rangeIdx = 0; rangeIdx < _rangesCount; rangeIdx++)
740 {
741 getAddrLenForInd(nextAddr, nextLen, type, _ranges, rangeIdx);
742 if (remain < nextLen) break;
743 remain -= nextLen;
744 }
745 }
746 else
747 {
748 rangeIdx = 0;
749 remain = 0;
750 nextAddr = getPhysicalSegment(offset, &physLen, kIOMemoryMapperNone);
751 nextLen = size;
752 }
753
754 assert(remain < nextLen);
755 if (remain >= nextLen) return (kIOReturnBadArgument);
756
757 nextAddr += remain;
758 nextLen -= remain;
759 pageOffset = (page_mask & nextAddr);
760 addr = 0;
761 if (!(options & kIOMapAnywhere))
762 {
763 addr = *inaddr;
764 if (pageOffset != (page_mask & addr)) return (kIOReturnNotAligned);
765 addr -= pageOffset;
766 }
767
768 // find first entry for offset
769 for (entryIdx = 0;
770 (entryIdx < ref->count) && (offset >= ref->entries[entryIdx].offset);
771 entryIdx++) {}
772 entryIdx--;
773 entry = &ref->entries[entryIdx];
774
775 // allocate VM
776 size = round_page_64(size + pageOffset);
777 if (kIOMapOverwrite & options)
778 {
779 if ((map == kernel_map) && (kIOMemoryBufferPageable & _flags))
780 {
781 map = IOPageableMapForAddress(addr);
782 }
783 err = KERN_SUCCESS;
784 }
785 else
786 {
787 IOMemoryDescriptorMapAllocRef ref;
788 ref.map = map;
789 ref.tag = tag;
790 ref.options = options;
791 ref.size = size;
792 ref.prot = prot;
793 if (options & kIOMapAnywhere)
794 // vm_map looks for addresses above here, even when VM_FLAGS_ANYWHERE
795 ref.mapped = 0;
796 else
797 ref.mapped = addr;
798 if ((ref.map == kernel_map) && (kIOMemoryBufferPageable & _flags))
799 err = IOIteratePageableMaps( ref.size, &IOMemoryDescriptorMapAlloc, &ref );
800 else
801 err = IOMemoryDescriptorMapAlloc(ref.map, &ref);
802 if (KERN_SUCCESS == err)
803 {
804 addr = ref.mapped;
805 map = ref.map;
806 }
807 }
808
809 /*
810 * Prefaulting is only possible if we wired the memory earlier. Check the
811 * memory type, and the underlying data.
812 */
813 if (options & kIOMapPrefault)
814 {
815 /*
816 * The memory must have been wired by calling ::prepare(), otherwise
817 * we don't have the UPL. Without UPLs, pages cannot be pre-faulted
818 */
819 assert(map != kernel_map);
820 assert(_wireCount != 0);
821 assert(_memoryEntries != NULL);
822 if ((map == kernel_map) ||
823 (_wireCount == 0) ||
824 (_memoryEntries == NULL))
825 {
826 return kIOReturnBadArgument;
827 }
828
829 // Get the page list.
830 ioGMDData* dataP = getDataP(_memoryEntries);
831 ioPLBlock const* ioplList = getIOPLList(dataP);
832 pageList = getPageList(dataP);
833
834 // Get the number of IOPLs.
835 UInt numIOPLs = getNumIOPL(_memoryEntries, dataP);
836
837 /*
838 * Scan through the IOPL Info Blocks, looking for the first block containing
839 * the offset. The research will go past it, so we'll need to go back to the
840 * right range at the end.
841 */
842 UInt ioplIndex = 0;
843 while (ioplIndex < numIOPLs && offset >= ioplList[ioplIndex].fIOMDOffset)
844 ioplIndex++;
845 ioplIndex--;
846
847 // Retrieve the IOPL info block.
848 ioPLBlock ioplInfo = ioplList[ioplIndex];
849
850 /*
851 * For external UPLs, the fPageInfo points directly to the UPL's page_info_t
852 * array.
853 */
854 if (ioplInfo.fFlags & kIOPLExternUPL)
855 pageList = (upl_page_info_t*) ioplInfo.fPageInfo;
856 else
857 pageList = &pageList[ioplInfo.fPageInfo];
858
859 // Rebase [offset] into the IOPL in order to looks for the first page index.
860 mach_vm_size_t offsetInIOPL = offset - ioplInfo.fIOMDOffset + ioplInfo.fPageOffset;
861
862 // Retrieve the index of the first page corresponding to the offset.
863 currentPageIndex = atop_32(offsetInIOPL);
864 }
865
866 // enter mappings
867 remain = size;
868 mapAddr = addr;
869 addr += pageOffset;
870
871 while (remain && (KERN_SUCCESS == err))
872 {
873 entryOffset = offset - entry->offset;
874 if ((page_mask & entryOffset) != pageOffset)
875 {
876 err = kIOReturnNotAligned;
877 break;
878 }
879
880 if (kIODefaultCache != cacheMode)
881 {
882 vm_size_t unused = 0;
883 err = mach_make_memory_entry(NULL /*unused*/, &unused, 0 /*unused*/,
884 memEntryCacheMode, NULL, entry->entry);
885 assert (KERN_SUCCESS == err);
886 }
887
888 entryOffset -= pageOffset;
889 if (entryOffset >= entry->size) panic("entryOffset");
890 chunk = entry->size - entryOffset;
891 if (chunk)
892 {
893 if (chunk > remain) chunk = remain;
894 if (options & kIOMapPrefault)
895 {
896 UInt nb_pages = round_page(chunk) / PAGE_SIZE;
897 err = vm_map_enter_mem_object_prefault(map,
898 &mapAddr,
899 chunk, 0 /* mask */,
900 (VM_FLAGS_FIXED
901 | VM_FLAGS_OVERWRITE
902 | VM_MAKE_TAG(tag)
903 | VM_FLAGS_IOKIT_ACCT), /* iokit accounting */
904 entry->entry,
905 entryOffset,
906 prot, // cur
907 prot, // max
908 &pageList[currentPageIndex],
909 nb_pages);
910
911 // Compute the next index in the page list.
912 currentPageIndex += nb_pages;
913 assert(currentPageIndex <= _pages);
914 }
915 else
916 {
917 err = vm_map_enter_mem_object(map,
918 &mapAddr,
919 chunk, 0 /* mask */,
920 (VM_FLAGS_FIXED
921 | VM_FLAGS_OVERWRITE
922 | VM_MAKE_TAG(tag)
923 | VM_FLAGS_IOKIT_ACCT), /* iokit accounting */
924 entry->entry,
925 entryOffset,
926 false, // copy
927 prot, // cur
928 prot, // max
929 VM_INHERIT_NONE);
930 }
931 if (KERN_SUCCESS != err) break;
932 remain -= chunk;
933 if (!remain) break;
934 mapAddr += chunk;
935 offset += chunk - pageOffset;
936 }
937 pageOffset = 0;
938 entry++;
939 entryIdx++;
940 if (entryIdx >= ref->count)
941 {
942 err = kIOReturnOverrun;
943 break;
944 }
945 }
946
947 if ((KERN_SUCCESS != err) && addr && !(kIOMapOverwrite & options))
948 {
949 (void) mach_vm_deallocate(map, trunc_page_64(addr), size);
950 addr = 0;
951 }
952 *inaddr = addr;
953
954 return (err);
955 }
956
957 IOReturn
958 IOGeneralMemoryDescriptor::memoryReferenceGetPageCounts(
959 IOMemoryReference * ref,
960 IOByteCount * residentPageCount,
961 IOByteCount * dirtyPageCount)
962 {
963 IOReturn err;
964 IOMemoryEntry * entries;
965 unsigned int resident, dirty;
966 unsigned int totalResident, totalDirty;
967
968 totalResident = totalDirty = 0;
969 entries = ref->entries + ref->count;
970 while (entries > &ref->entries[0])
971 {
972 entries--;
973 err = mach_memory_entry_get_page_counts(entries->entry, &resident, &dirty);
974 if (KERN_SUCCESS != err) break;
975 totalResident += resident;
976 totalDirty += dirty;
977 }
978
979 if (residentPageCount) *residentPageCount = totalResident;
980 if (dirtyPageCount) *dirtyPageCount = totalDirty;
981 return (err);
982 }
983
984 IOReturn
985 IOGeneralMemoryDescriptor::memoryReferenceSetPurgeable(
986 IOMemoryReference * ref,
987 IOOptionBits newState,
988 IOOptionBits * oldState)
989 {
990 IOReturn err;
991 IOMemoryEntry * entries;
992 vm_purgable_t control;
993 int totalState, state;
994
995 entries = ref->entries + ref->count;
996 totalState = kIOMemoryPurgeableNonVolatile;
997 while (entries > &ref->entries[0])
998 {
999 entries--;
1000
1001 err = purgeableControlBits(newState, &control, &state);
1002 if (KERN_SUCCESS != err) break;
1003 err = mach_memory_entry_purgable_control(entries->entry, control, &state);
1004 if (KERN_SUCCESS != err) break;
1005 err = purgeableStateBits(&state);
1006 if (KERN_SUCCESS != err) break;
1007
1008 if (kIOMemoryPurgeableEmpty == state) totalState = kIOMemoryPurgeableEmpty;
1009 else if (kIOMemoryPurgeableEmpty == totalState) continue;
1010 else if (kIOMemoryPurgeableVolatile == totalState) continue;
1011 else if (kIOMemoryPurgeableVolatile == state) totalState = kIOMemoryPurgeableVolatile;
1012 else totalState = kIOMemoryPurgeableNonVolatile;
1013 }
1014
1015 if (oldState) *oldState = totalState;
1016 return (err);
1017 }
1018
1019 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
1020
1021 IOMemoryDescriptor *
1022 IOMemoryDescriptor::withAddress(void * address,
1023 IOByteCount length,
1024 IODirection direction)
1025 {
1026 return IOMemoryDescriptor::
1027 withAddressRange((IOVirtualAddress) address, length, direction | kIOMemoryAutoPrepare, kernel_task);
1028 }
1029
1030 #ifndef __LP64__
1031 IOMemoryDescriptor *
1032 IOMemoryDescriptor::withAddress(IOVirtualAddress address,
1033 IOByteCount length,
1034 IODirection direction,
1035 task_t task)
1036 {
1037 IOGeneralMemoryDescriptor * that = new IOGeneralMemoryDescriptor;
1038 if (that)
1039 {
1040 if (that->initWithAddress(address, length, direction, task))
1041 return that;
1042
1043 that->release();
1044 }
1045 return 0;
1046 }
1047 #endif /* !__LP64__ */
1048
1049 IOMemoryDescriptor *
1050 IOMemoryDescriptor::withPhysicalAddress(
1051 IOPhysicalAddress address,
1052 IOByteCount length,
1053 IODirection direction )
1054 {
1055 return (IOMemoryDescriptor::withAddressRange(address, length, direction, TASK_NULL));
1056 }
1057
1058 #ifndef __LP64__
1059 IOMemoryDescriptor *
1060 IOMemoryDescriptor::withRanges( IOVirtualRange * ranges,
1061 UInt32 withCount,
1062 IODirection direction,
1063 task_t task,
1064 bool asReference)
1065 {
1066 IOGeneralMemoryDescriptor * that = new IOGeneralMemoryDescriptor;
1067 if (that)
1068 {
1069 if (that->initWithRanges(ranges, withCount, direction, task, asReference))
1070 return that;
1071
1072 that->release();
1073 }
1074 return 0;
1075 }
1076 #endif /* !__LP64__ */
1077
1078 IOMemoryDescriptor *
1079 IOMemoryDescriptor::withAddressRange(mach_vm_address_t address,
1080 mach_vm_size_t length,
1081 IOOptionBits options,
1082 task_t task)
1083 {
1084 IOAddressRange range = { address, length };
1085 return (IOMemoryDescriptor::withAddressRanges(&range, 1, options, task));
1086 }
1087
1088 IOMemoryDescriptor *
1089 IOMemoryDescriptor::withAddressRanges(IOAddressRange * ranges,
1090 UInt32 rangeCount,
1091 IOOptionBits options,
1092 task_t task)
1093 {
1094 IOGeneralMemoryDescriptor * that = new IOGeneralMemoryDescriptor;
1095 if (that)
1096 {
1097 if (task)
1098 options |= kIOMemoryTypeVirtual64;
1099 else
1100 options |= kIOMemoryTypePhysical64;
1101
1102 if (that->initWithOptions(ranges, rangeCount, 0, task, options, /* mapper */ 0))
1103 return that;
1104
1105 that->release();
1106 }
1107
1108 return 0;
1109 }
1110
1111
1112 /*
1113 * withOptions:
1114 *
1115 * Create a new IOMemoryDescriptor. The buffer is made up of several
1116 * virtual address ranges, from a given task.
1117 *
1118 * Passing the ranges as a reference will avoid an extra allocation.
1119 */
1120 IOMemoryDescriptor *
1121 IOMemoryDescriptor::withOptions(void * buffers,
1122 UInt32 count,
1123 UInt32 offset,
1124 task_t task,
1125 IOOptionBits opts,
1126 IOMapper * mapper)
1127 {
1128 IOGeneralMemoryDescriptor *self = new IOGeneralMemoryDescriptor;
1129
1130 if (self
1131 && !self->initWithOptions(buffers, count, offset, task, opts, mapper))
1132 {
1133 self->release();
1134 return 0;
1135 }
1136
1137 return self;
1138 }
1139
1140 bool IOMemoryDescriptor::initWithOptions(void * buffers,
1141 UInt32 count,
1142 UInt32 offset,
1143 task_t task,
1144 IOOptionBits options,
1145 IOMapper * mapper)
1146 {
1147 return( false );
1148 }
1149
1150 #ifndef __LP64__
1151 IOMemoryDescriptor *
1152 IOMemoryDescriptor::withPhysicalRanges( IOPhysicalRange * ranges,
1153 UInt32 withCount,
1154 IODirection direction,
1155 bool asReference)
1156 {
1157 IOGeneralMemoryDescriptor * that = new IOGeneralMemoryDescriptor;
1158 if (that)
1159 {
1160 if (that->initWithPhysicalRanges(ranges, withCount, direction, asReference))
1161 return that;
1162
1163 that->release();
1164 }
1165 return 0;
1166 }
1167
1168 IOMemoryDescriptor *
1169 IOMemoryDescriptor::withSubRange(IOMemoryDescriptor * of,
1170 IOByteCount offset,
1171 IOByteCount length,
1172 IODirection direction)
1173 {
1174 return (IOSubMemoryDescriptor::withSubRange(of, offset, length, direction));
1175 }
1176 #endif /* !__LP64__ */
1177
1178 IOMemoryDescriptor *
1179 IOMemoryDescriptor::withPersistentMemoryDescriptor(IOMemoryDescriptor *originalMD)
1180 {
1181 IOGeneralMemoryDescriptor *origGenMD =
1182 OSDynamicCast(IOGeneralMemoryDescriptor, originalMD);
1183
1184 if (origGenMD)
1185 return IOGeneralMemoryDescriptor::
1186 withPersistentMemoryDescriptor(origGenMD);
1187 else
1188 return 0;
1189 }
1190
1191 IOMemoryDescriptor *
1192 IOGeneralMemoryDescriptor::withPersistentMemoryDescriptor(IOGeneralMemoryDescriptor *originalMD)
1193 {
1194 IOMemoryReference * memRef;
1195
1196 if (kIOReturnSuccess != originalMD->memoryReferenceCreate(kIOMemoryReferenceReuse, &memRef)) return (0);
1197
1198 if (memRef == originalMD->_memRef)
1199 {
1200 originalMD->retain(); // Add a new reference to ourselves
1201 originalMD->memoryReferenceRelease(memRef);
1202 return originalMD;
1203 }
1204
1205 IOGeneralMemoryDescriptor * self = new IOGeneralMemoryDescriptor;
1206 IOMDPersistentInitData initData = { originalMD, memRef };
1207
1208 if (self
1209 && !self->initWithOptions(&initData, 1, 0, 0, kIOMemoryTypePersistentMD, 0)) {
1210 self->release();
1211 self = 0;
1212 }
1213 return self;
1214 }
1215
1216 #ifndef __LP64__
1217 bool
1218 IOGeneralMemoryDescriptor::initWithAddress(void * address,
1219 IOByteCount withLength,
1220 IODirection withDirection)
1221 {
1222 _singleRange.v.address = (vm_offset_t) address;
1223 _singleRange.v.length = withLength;
1224
1225 return initWithRanges(&_singleRange.v, 1, withDirection, kernel_task, true);
1226 }
1227
1228 bool
1229 IOGeneralMemoryDescriptor::initWithAddress(IOVirtualAddress address,
1230 IOByteCount withLength,
1231 IODirection withDirection,
1232 task_t withTask)
1233 {
1234 _singleRange.v.address = address;
1235 _singleRange.v.length = withLength;
1236
1237 return initWithRanges(&_singleRange.v, 1, withDirection, withTask, true);
1238 }
1239
1240 bool
1241 IOGeneralMemoryDescriptor::initWithPhysicalAddress(
1242 IOPhysicalAddress address,
1243 IOByteCount withLength,
1244 IODirection withDirection )
1245 {
1246 _singleRange.p.address = address;
1247 _singleRange.p.length = withLength;
1248
1249 return initWithPhysicalRanges( &_singleRange.p, 1, withDirection, true);
1250 }
1251
1252 bool
1253 IOGeneralMemoryDescriptor::initWithPhysicalRanges(
1254 IOPhysicalRange * ranges,
1255 UInt32 count,
1256 IODirection direction,
1257 bool reference)
1258 {
1259 IOOptionBits mdOpts = direction | kIOMemoryTypePhysical;
1260
1261 if (reference)
1262 mdOpts |= kIOMemoryAsReference;
1263
1264 return initWithOptions(ranges, count, 0, 0, mdOpts, /* mapper */ 0);
1265 }
1266
1267 bool
1268 IOGeneralMemoryDescriptor::initWithRanges(
1269 IOVirtualRange * ranges,
1270 UInt32 count,
1271 IODirection direction,
1272 task_t task,
1273 bool reference)
1274 {
1275 IOOptionBits mdOpts = direction;
1276
1277 if (reference)
1278 mdOpts |= kIOMemoryAsReference;
1279
1280 if (task) {
1281 mdOpts |= kIOMemoryTypeVirtual;
1282
1283 // Auto-prepare if this is a kernel memory descriptor as very few
1284 // clients bother to prepare() kernel memory.
1285 // But it was not enforced so what are you going to do?
1286 if (task == kernel_task)
1287 mdOpts |= kIOMemoryAutoPrepare;
1288 }
1289 else
1290 mdOpts |= kIOMemoryTypePhysical;
1291
1292 return initWithOptions(ranges, count, 0, task, mdOpts, /* mapper */ 0);
1293 }
1294 #endif /* !__LP64__ */
1295
1296 /*
1297 * initWithOptions:
1298 *
1299 * IOMemoryDescriptor. The buffer is made up of several virtual address ranges,
1300 * from a given task, several physical ranges, an UPL from the ubc
1301 * system or a uio (may be 64bit) from the BSD subsystem.
1302 *
1303 * Passing the ranges as a reference will avoid an extra allocation.
1304 *
1305 * An IOMemoryDescriptor can be re-used by calling initWithOptions again on an
1306 * existing instance -- note this behavior is not commonly supported in other
1307 * I/O Kit classes, although it is supported here.
1308 */
1309
1310 bool
1311 IOGeneralMemoryDescriptor::initWithOptions(void * buffers,
1312 UInt32 count,
1313 UInt32 offset,
1314 task_t task,
1315 IOOptionBits options,
1316 IOMapper * mapper)
1317 {
1318 IOOptionBits type = options & kIOMemoryTypeMask;
1319
1320 #ifndef __LP64__
1321 if (task
1322 && (kIOMemoryTypeVirtual == type)
1323 && vm_map_is_64bit(get_task_map(task))
1324 && ((IOVirtualRange *) buffers)->address)
1325 {
1326 OSReportWithBacktrace("IOMemoryDescriptor: attempt to create 32b virtual in 64b task, use ::withAddressRange()");
1327 return false;
1328 }
1329 #endif /* !__LP64__ */
1330
1331 // Grab the original MD's configuation data to initialse the
1332 // arguments to this function.
1333 if (kIOMemoryTypePersistentMD == type) {
1334
1335 IOMDPersistentInitData *initData = (typeof(initData)) buffers;
1336 const IOGeneralMemoryDescriptor *orig = initData->fMD;
1337 ioGMDData *dataP = getDataP(orig->_memoryEntries);
1338
1339 // Only accept persistent memory descriptors with valid dataP data.
1340 assert(orig->_rangesCount == 1);
1341 if ( !(orig->_flags & kIOMemoryPersistent) || !dataP)
1342 return false;
1343
1344 _memRef = initData->fMemRef; // Grab the new named entry
1345 options = orig->_flags & ~kIOMemoryAsReference;
1346 type = options & kIOMemoryTypeMask;
1347 buffers = orig->_ranges.v;
1348 count = orig->_rangesCount;
1349
1350 // Now grab the original task and whatever mapper was previously used
1351 task = orig->_task;
1352 mapper = dataP->fMapper;
1353
1354 // We are ready to go through the original initialisation now
1355 }
1356
1357 switch (type) {
1358 case kIOMemoryTypeUIO:
1359 case kIOMemoryTypeVirtual:
1360 #ifndef __LP64__
1361 case kIOMemoryTypeVirtual64:
1362 #endif /* !__LP64__ */
1363 assert(task);
1364 if (!task)
1365 return false;
1366 break;
1367
1368 case kIOMemoryTypePhysical: // Neither Physical nor UPL should have a task
1369 #ifndef __LP64__
1370 case kIOMemoryTypePhysical64:
1371 #endif /* !__LP64__ */
1372 case kIOMemoryTypeUPL:
1373 assert(!task);
1374 break;
1375 default:
1376 return false; /* bad argument */
1377 }
1378
1379 assert(buffers);
1380 assert(count);
1381
1382 /*
1383 * We can check the _initialized instance variable before having ever set
1384 * it to an initial value because I/O Kit guarantees that all our instance
1385 * variables are zeroed on an object's allocation.
1386 */
1387
1388 if (_initialized) {
1389 /*
1390 * An existing memory descriptor is being retargeted to point to
1391 * somewhere else. Clean up our present state.
1392 */
1393 IOOptionBits type = _flags & kIOMemoryTypeMask;
1394 if ((kIOMemoryTypePhysical != type) && (kIOMemoryTypePhysical64 != type))
1395 {
1396 while (_wireCount)
1397 complete();
1398 }
1399 if (_ranges.v && !(kIOMemoryAsReference & _flags))
1400 {
1401 if (kIOMemoryTypeUIO == type)
1402 uio_free((uio_t) _ranges.v);
1403 #ifndef __LP64__
1404 else if ((kIOMemoryTypeVirtual64 == type) || (kIOMemoryTypePhysical64 == type))
1405 IODelete(_ranges.v64, IOAddressRange, _rangesCount);
1406 #endif /* !__LP64__ */
1407 else
1408 IODelete(_ranges.v, IOVirtualRange, _rangesCount);
1409 }
1410
1411 options |= (kIOMemoryRedirected & _flags);
1412 if (!(kIOMemoryRedirected & options))
1413 {
1414 if (_memRef)
1415 {
1416 memoryReferenceRelease(_memRef);
1417 _memRef = 0;
1418 }
1419 if (_mappings)
1420 _mappings->flushCollection();
1421 }
1422 }
1423 else {
1424 if (!super::init())
1425 return false;
1426 _initialized = true;
1427 }
1428
1429 // Grab the appropriate mapper
1430 if (kIOMemoryHostOnly & options) options |= kIOMemoryMapperNone;
1431 if (kIOMemoryMapperNone & options)
1432 mapper = 0; // No Mapper
1433 else if (mapper == kIOMapperSystem) {
1434 IOMapper::checkForSystemMapper();
1435 gIOSystemMapper = mapper = IOMapper::gSystem;
1436 }
1437
1438 // Temp binary compatibility for kIOMemoryThreadSafe
1439 if (kIOMemoryReserved6156215 & options)
1440 {
1441 options &= ~kIOMemoryReserved6156215;
1442 options |= kIOMemoryThreadSafe;
1443 }
1444 // Remove the dynamic internal use flags from the initial setting
1445 options &= ~(kIOMemoryPreparedReadOnly);
1446 _flags = options;
1447 _task = task;
1448
1449 #ifndef __LP64__
1450 _direction = (IODirection) (_flags & kIOMemoryDirectionMask);
1451 #endif /* !__LP64__ */
1452
1453 __iomd_reservedA = 0;
1454 __iomd_reservedB = 0;
1455 _highestPage = 0;
1456
1457 if (kIOMemoryThreadSafe & options)
1458 {
1459 if (!_prepareLock)
1460 _prepareLock = IOLockAlloc();
1461 }
1462 else if (_prepareLock)
1463 {
1464 IOLockFree(_prepareLock);
1465 _prepareLock = NULL;
1466 }
1467
1468 if (kIOMemoryTypeUPL == type) {
1469
1470 ioGMDData *dataP;
1471 unsigned int dataSize = computeDataSize(/* pages */ 0, /* upls */ 1);
1472
1473 if (!initMemoryEntries(dataSize, mapper)) return (false);
1474 dataP = getDataP(_memoryEntries);
1475 dataP->fPageCnt = 0;
1476
1477 // _wireCount++; // UPLs start out life wired
1478
1479 _length = count;
1480 _pages += atop_32(offset + count + PAGE_MASK) - atop_32(offset);
1481
1482 ioPLBlock iopl;
1483 iopl.fIOPL = (upl_t) buffers;
1484 upl_set_referenced(iopl.fIOPL, true);
1485 upl_page_info_t *pageList = UPL_GET_INTERNAL_PAGE_LIST(iopl.fIOPL);
1486
1487 if (upl_get_size(iopl.fIOPL) < (count + offset))
1488 panic("short external upl");
1489
1490 _highestPage = upl_get_highest_page(iopl.fIOPL);
1491
1492 // Set the flag kIOPLOnDevice convieniently equal to 1
1493 iopl.fFlags = pageList->device | kIOPLExternUPL;
1494 if (!pageList->device) {
1495 // Pre-compute the offset into the UPL's page list
1496 pageList = &pageList[atop_32(offset)];
1497 offset &= PAGE_MASK;
1498 }
1499 iopl.fIOMDOffset = 0;
1500 iopl.fMappedPage = 0;
1501 iopl.fPageInfo = (vm_address_t) pageList;
1502 iopl.fPageOffset = offset;
1503 _memoryEntries->appendBytes(&iopl, sizeof(iopl));
1504 }
1505 else {
1506 // kIOMemoryTypeVirtual | kIOMemoryTypeVirtual64 | kIOMemoryTypeUIO
1507 // kIOMemoryTypePhysical | kIOMemoryTypePhysical64
1508
1509 // Initialize the memory descriptor
1510 if (options & kIOMemoryAsReference) {
1511 #ifndef __LP64__
1512 _rangesIsAllocated = false;
1513 #endif /* !__LP64__ */
1514
1515 // Hack assignment to get the buffer arg into _ranges.
1516 // I'd prefer to do _ranges = (Ranges) buffers, but that doesn't
1517 // work, C++ sigh.
1518 // This also initialises the uio & physical ranges.
1519 _ranges.v = (IOVirtualRange *) buffers;
1520 }
1521 else {
1522 #ifndef __LP64__
1523 _rangesIsAllocated = true;
1524 #endif /* !__LP64__ */
1525 switch (type)
1526 {
1527 case kIOMemoryTypeUIO:
1528 _ranges.v = (IOVirtualRange *) uio_duplicate((uio_t) buffers);
1529 break;
1530
1531 #ifndef __LP64__
1532 case kIOMemoryTypeVirtual64:
1533 case kIOMemoryTypePhysical64:
1534 if (count == 1
1535 && (((IOAddressRange *) buffers)->address + ((IOAddressRange *) buffers)->length) <= 0x100000000ULL
1536 ) {
1537 if (kIOMemoryTypeVirtual64 == type)
1538 type = kIOMemoryTypeVirtual;
1539 else
1540 type = kIOMemoryTypePhysical;
1541 _flags = (_flags & ~kIOMemoryTypeMask) | type | kIOMemoryAsReference;
1542 _rangesIsAllocated = false;
1543 _ranges.v = &_singleRange.v;
1544 _singleRange.v.address = ((IOAddressRange *) buffers)->address;
1545 _singleRange.v.length = ((IOAddressRange *) buffers)->length;
1546 break;
1547 }
1548 _ranges.v64 = IONew(IOAddressRange, count);
1549 if (!_ranges.v64)
1550 return false;
1551 bcopy(buffers, _ranges.v, count * sizeof(IOAddressRange));
1552 break;
1553 #endif /* !__LP64__ */
1554 case kIOMemoryTypeVirtual:
1555 case kIOMemoryTypePhysical:
1556 if (count == 1) {
1557 _flags |= kIOMemoryAsReference;
1558 #ifndef __LP64__
1559 _rangesIsAllocated = false;
1560 #endif /* !__LP64__ */
1561 _ranges.v = &_singleRange.v;
1562 } else {
1563 _ranges.v = IONew(IOVirtualRange, count);
1564 if (!_ranges.v)
1565 return false;
1566 }
1567 bcopy(buffers, _ranges.v, count * sizeof(IOVirtualRange));
1568 break;
1569 }
1570 }
1571
1572 // Find starting address within the vector of ranges
1573 Ranges vec = _ranges;
1574 UInt32 length = 0;
1575 UInt32 pages = 0;
1576 for (unsigned ind = 0; ind < count; ind++) {
1577 mach_vm_address_t addr;
1578 mach_vm_size_t len;
1579
1580 // addr & len are returned by this function
1581 getAddrLenForInd(addr, len, type, vec, ind);
1582 pages += (atop_64(addr + len + PAGE_MASK) - atop_64(addr));
1583 len += length;
1584 assert(len >= length); // Check for 32 bit wrap around
1585 length = len;
1586
1587 if ((kIOMemoryTypePhysical == type) || (kIOMemoryTypePhysical64 == type))
1588 {
1589 ppnum_t highPage = atop_64(addr + len - 1);
1590 if (highPage > _highestPage)
1591 _highestPage = highPage;
1592 }
1593 }
1594 _length = length;
1595 _pages = pages;
1596 _rangesCount = count;
1597
1598 // Auto-prepare memory at creation time.
1599 // Implied completion when descriptor is free-ed
1600 if ((kIOMemoryTypePhysical == type) || (kIOMemoryTypePhysical64 == type))
1601 _wireCount++; // Physical MDs are, by definition, wired
1602 else { /* kIOMemoryTypeVirtual | kIOMemoryTypeVirtual64 | kIOMemoryTypeUIO */
1603 ioGMDData *dataP;
1604 unsigned dataSize = computeDataSize(_pages, /* upls */ count * 2);
1605
1606 if (!initMemoryEntries(dataSize, mapper)) return false;
1607 dataP = getDataP(_memoryEntries);
1608 dataP->fPageCnt = _pages;
1609
1610 if ( (kIOMemoryPersistent & _flags) && !_memRef)
1611 {
1612 IOReturn
1613 err = memoryReferenceCreate(0, &_memRef);
1614 if (kIOReturnSuccess != err) return false;
1615 }
1616
1617 if ((_flags & kIOMemoryAutoPrepare)
1618 && prepare() != kIOReturnSuccess)
1619 return false;
1620 }
1621 }
1622
1623 return true;
1624 }
1625
1626 /*
1627 * free
1628 *
1629 * Free resources.
1630 */
1631 void IOGeneralMemoryDescriptor::free()
1632 {
1633 IOOptionBits type = _flags & kIOMemoryTypeMask;
1634
1635 if( reserved)
1636 {
1637 LOCK;
1638 reserved->dp.memory = 0;
1639 UNLOCK;
1640 }
1641 if ((kIOMemoryTypePhysical == type) || (kIOMemoryTypePhysical64 == type))
1642 {
1643 ioGMDData * dataP;
1644 if (_memoryEntries && (dataP = getDataP(_memoryEntries)) && dataP->fMappedBase)
1645 {
1646 dataP->fMapper->iovmUnmapMemory(this, NULL, dataP->fMappedBase, dataP->fMappedLength);
1647 dataP->fMappedBase = 0;
1648 }
1649 }
1650 else
1651 {
1652 while (_wireCount) complete();
1653 }
1654
1655 if (_memoryEntries) _memoryEntries->release();
1656
1657 if (_ranges.v && !(kIOMemoryAsReference & _flags))
1658 {
1659 if (kIOMemoryTypeUIO == type)
1660 uio_free((uio_t) _ranges.v);
1661 #ifndef __LP64__
1662 else if ((kIOMemoryTypeVirtual64 == type) || (kIOMemoryTypePhysical64 == type))
1663 IODelete(_ranges.v64, IOAddressRange, _rangesCount);
1664 #endif /* !__LP64__ */
1665 else
1666 IODelete(_ranges.v, IOVirtualRange, _rangesCount);
1667
1668 _ranges.v = NULL;
1669 }
1670
1671 if (reserved)
1672 {
1673 if (reserved->dp.devicePager)
1674 {
1675 // memEntry holds a ref on the device pager which owns reserved
1676 // (IOMemoryDescriptorReserved) so no reserved access after this point
1677 device_pager_deallocate( (memory_object_t) reserved->dp.devicePager );
1678 }
1679 else
1680 IODelete(reserved, IOMemoryDescriptorReserved, 1);
1681 reserved = NULL;
1682 }
1683
1684 if (_memRef) memoryReferenceRelease(_memRef);
1685 if (_prepareLock) IOLockFree(_prepareLock);
1686
1687 super::free();
1688 }
1689
1690 #ifndef __LP64__
1691 void IOGeneralMemoryDescriptor::unmapFromKernel()
1692 {
1693 panic("IOGMD::unmapFromKernel deprecated");
1694 }
1695
1696 void IOGeneralMemoryDescriptor::mapIntoKernel(unsigned rangeIndex)
1697 {
1698 panic("IOGMD::mapIntoKernel deprecated");
1699 }
1700 #endif /* !__LP64__ */
1701
1702 /*
1703 * getDirection:
1704 *
1705 * Get the direction of the transfer.
1706 */
1707 IODirection IOMemoryDescriptor::getDirection() const
1708 {
1709 #ifndef __LP64__
1710 if (_direction)
1711 return _direction;
1712 #endif /* !__LP64__ */
1713 return (IODirection) (_flags & kIOMemoryDirectionMask);
1714 }
1715
1716 /*
1717 * getLength:
1718 *
1719 * Get the length of the transfer (over all ranges).
1720 */
1721 IOByteCount IOMemoryDescriptor::getLength() const
1722 {
1723 return _length;
1724 }
1725
1726 void IOMemoryDescriptor::setTag( IOOptionBits tag )
1727 {
1728 _tag = tag;
1729 }
1730
1731 IOOptionBits IOMemoryDescriptor::getTag( void )
1732 {
1733 return( _tag);
1734 }
1735
1736 #ifndef __LP64__
1737 // @@@ gvdl: who is using this API? Seems like a wierd thing to implement.
1738 IOPhysicalAddress
1739 IOMemoryDescriptor::getSourceSegment( IOByteCount offset, IOByteCount * length )
1740 {
1741 addr64_t physAddr = 0;
1742
1743 if( prepare() == kIOReturnSuccess) {
1744 physAddr = getPhysicalSegment64( offset, length );
1745 complete();
1746 }
1747
1748 return( (IOPhysicalAddress) physAddr ); // truncated but only page offset is used
1749 }
1750 #endif /* !__LP64__ */
1751
1752 IOByteCount IOMemoryDescriptor::readBytes
1753 (IOByteCount offset, void *bytes, IOByteCount length)
1754 {
1755 addr64_t dstAddr = CAST_DOWN(addr64_t, bytes);
1756 IOByteCount remaining;
1757
1758 // Assert that this entire I/O is withing the available range
1759 assert(offset <= _length);
1760 assert(offset + length <= _length);
1761 if (offset >= _length) {
1762 return 0;
1763 }
1764
1765 if (kIOMemoryThreadSafe & _flags)
1766 LOCK;
1767
1768 remaining = length = min(length, _length - offset);
1769 while (remaining) { // (process another target segment?)
1770 addr64_t srcAddr64;
1771 IOByteCount srcLen;
1772
1773 srcAddr64 = getPhysicalSegment(offset, &srcLen, kIOMemoryMapperNone);
1774 if (!srcAddr64)
1775 break;
1776
1777 // Clip segment length to remaining
1778 if (srcLen > remaining)
1779 srcLen = remaining;
1780
1781 copypv(srcAddr64, dstAddr, srcLen,
1782 cppvPsrc | cppvNoRefSrc | cppvFsnk | cppvKmap);
1783
1784 dstAddr += srcLen;
1785 offset += srcLen;
1786 remaining -= srcLen;
1787 }
1788
1789 if (kIOMemoryThreadSafe & _flags)
1790 UNLOCK;
1791
1792 assert(!remaining);
1793
1794 return length - remaining;
1795 }
1796
1797 IOByteCount IOMemoryDescriptor::writeBytes
1798 (IOByteCount inoffset, const void *bytes, IOByteCount length)
1799 {
1800 addr64_t srcAddr = CAST_DOWN(addr64_t, bytes);
1801 IOByteCount remaining;
1802 IOByteCount offset = inoffset;
1803
1804 // Assert that this entire I/O is withing the available range
1805 assert(offset <= _length);
1806 assert(offset + length <= _length);
1807
1808 assert( !(kIOMemoryPreparedReadOnly & _flags) );
1809
1810 if ( (kIOMemoryPreparedReadOnly & _flags) || offset >= _length) {
1811 return 0;
1812 }
1813
1814 if (kIOMemoryThreadSafe & _flags)
1815 LOCK;
1816
1817 remaining = length = min(length, _length - offset);
1818 while (remaining) { // (process another target segment?)
1819 addr64_t dstAddr64;
1820 IOByteCount dstLen;
1821
1822 dstAddr64 = getPhysicalSegment(offset, &dstLen, kIOMemoryMapperNone);
1823 if (!dstAddr64)
1824 break;
1825
1826 // Clip segment length to remaining
1827 if (dstLen > remaining)
1828 dstLen = remaining;
1829
1830 if (!srcAddr) bzero_phys(dstAddr64, dstLen);
1831 else
1832 {
1833 copypv(srcAddr, (addr64_t) dstAddr64, dstLen,
1834 cppvPsnk | cppvFsnk | cppvNoRefSrc | cppvNoModSnk | cppvKmap);
1835 srcAddr += dstLen;
1836 }
1837 offset += dstLen;
1838 remaining -= dstLen;
1839 }
1840
1841 if (kIOMemoryThreadSafe & _flags)
1842 UNLOCK;
1843
1844 assert(!remaining);
1845
1846 if (!srcAddr) performOperation(kIOMemoryIncoherentIOFlush, inoffset, length);
1847
1848 return length - remaining;
1849 }
1850
1851 #ifndef __LP64__
1852 void IOGeneralMemoryDescriptor::setPosition(IOByteCount position)
1853 {
1854 panic("IOGMD::setPosition deprecated");
1855 }
1856 #endif /* !__LP64__ */
1857
1858 static volatile SInt64 gIOMDPreparationID __attribute__((aligned(8))) = (1ULL << 32);
1859
1860 uint64_t
1861 IOGeneralMemoryDescriptor::getPreparationID( void )
1862 {
1863 ioGMDData *dataP;
1864
1865 if (!_wireCount)
1866 return (kIOPreparationIDUnprepared);
1867
1868 if (((kIOMemoryTypeMask & _flags) == kIOMemoryTypePhysical)
1869 || ((kIOMemoryTypeMask & _flags) == kIOMemoryTypePhysical64))
1870 {
1871 IOMemoryDescriptor::setPreparationID();
1872 return (IOMemoryDescriptor::getPreparationID());
1873 }
1874
1875 if (!_memoryEntries || !(dataP = getDataP(_memoryEntries)))
1876 return (kIOPreparationIDUnprepared);
1877
1878 if (kIOPreparationIDUnprepared == dataP->fPreparationID)
1879 {
1880 dataP->fPreparationID = OSIncrementAtomic64(&gIOMDPreparationID);
1881 }
1882 return (dataP->fPreparationID);
1883 }
1884
1885 IOMemoryDescriptorReserved * IOMemoryDescriptor::getKernelReserved( void )
1886 {
1887 if (!reserved)
1888 {
1889 reserved = IONew(IOMemoryDescriptorReserved, 1);
1890 if (reserved)
1891 bzero(reserved, sizeof(IOMemoryDescriptorReserved));
1892 }
1893 return (reserved);
1894 }
1895
1896 void IOMemoryDescriptor::setPreparationID( void )
1897 {
1898 if (getKernelReserved() && (kIOPreparationIDUnprepared == reserved->preparationID))
1899 {
1900 #if defined(__ppc__ )
1901 reserved->preparationID = gIOMDPreparationID++;
1902 #else
1903 reserved->preparationID = OSIncrementAtomic64(&gIOMDPreparationID);
1904 #endif
1905 }
1906 }
1907
1908 uint64_t IOMemoryDescriptor::getPreparationID( void )
1909 {
1910 if (reserved)
1911 return (reserved->preparationID);
1912 else
1913 return (kIOPreparationIDUnsupported);
1914 }
1915
1916 IOReturn IOGeneralMemoryDescriptor::dmaCommandOperation(DMACommandOps op, void *vData, UInt dataSize) const
1917 {
1918 IOReturn err = kIOReturnSuccess;
1919 DMACommandOps params;
1920 IOGeneralMemoryDescriptor * md = const_cast<IOGeneralMemoryDescriptor *>(this);
1921 ioGMDData *dataP;
1922
1923 params = (op & ~kIOMDDMACommandOperationMask & op);
1924 op &= kIOMDDMACommandOperationMask;
1925
1926 if (kIOMDDMAMap == op)
1927 {
1928 if (dataSize < sizeof(IOMDDMAMapArgs))
1929 return kIOReturnUnderrun;
1930
1931 IOMDDMAMapArgs * data = (IOMDDMAMapArgs *) vData;
1932
1933 if (!_memoryEntries
1934 && !md->initMemoryEntries(computeDataSize(0, 0), kIOMapperWaitSystem)) return (kIOReturnNoMemory);
1935
1936 if (_memoryEntries && data->fMapper)
1937 {
1938 bool remap, keepMap;
1939 dataP = getDataP(_memoryEntries);
1940
1941 if (data->fMapSpec.numAddressBits < dataP->fDMAMapNumAddressBits) dataP->fDMAMapNumAddressBits = data->fMapSpec.numAddressBits;
1942 if (data->fMapSpec.alignment > dataP->fDMAMapAlignment) dataP->fDMAMapAlignment = data->fMapSpec.alignment;
1943
1944 keepMap = (data->fMapper == gIOSystemMapper);
1945 keepMap &= ((data->fOffset == 0) && (data->fLength == _length));
1946
1947 remap = (!keepMap);
1948 remap |= (dataP->fDMAMapNumAddressBits < 64)
1949 && ((dataP->fMappedBase + _length) > (1ULL << dataP->fDMAMapNumAddressBits));
1950 remap |= (dataP->fDMAMapAlignment > page_size);
1951
1952 if (remap || !dataP->fMappedBase)
1953 {
1954 // if (dataP->fMappedBase) OSReportWithBacktrace("kIOMDDMAMap whole %d remap %d params %d\n", whole, remap, params);
1955 err = md->dmaMap(data->fMapper, data->fCommand, &data->fMapSpec, data->fOffset, data->fLength, &data->fAlloc, &data->fAllocLength);
1956 if (keepMap && (kIOReturnSuccess == err) && !dataP->fMappedBase)
1957 {
1958 dataP->fMappedBase = data->fAlloc;
1959 dataP->fMappedLength = data->fAllocLength;
1960 data->fAllocLength = 0; // IOMD owns the alloc now
1961 }
1962 }
1963 else
1964 {
1965 data->fAlloc = dataP->fMappedBase;
1966 data->fAllocLength = 0; // give out IOMD map
1967 }
1968 data->fMapContig = !dataP->fDiscontig;
1969 }
1970
1971 return (err);
1972 }
1973
1974 if (kIOMDAddDMAMapSpec == op)
1975 {
1976 if (dataSize < sizeof(IODMAMapSpecification))
1977 return kIOReturnUnderrun;
1978
1979 IODMAMapSpecification * data = (IODMAMapSpecification *) vData;
1980
1981 if (!_memoryEntries
1982 && !md->initMemoryEntries(computeDataSize(0, 0), kIOMapperWaitSystem)) return (kIOReturnNoMemory);
1983
1984 if (_memoryEntries)
1985 {
1986 dataP = getDataP(_memoryEntries);
1987 if (data->numAddressBits < dataP->fDMAMapNumAddressBits)
1988 dataP->fDMAMapNumAddressBits = data->numAddressBits;
1989 if (data->alignment > dataP->fDMAMapAlignment)
1990 dataP->fDMAMapAlignment = data->alignment;
1991 }
1992 return kIOReturnSuccess;
1993 }
1994
1995 if (kIOMDGetCharacteristics == op) {
1996
1997 if (dataSize < sizeof(IOMDDMACharacteristics))
1998 return kIOReturnUnderrun;
1999
2000 IOMDDMACharacteristics *data = (IOMDDMACharacteristics *) vData;
2001 data->fLength = _length;
2002 data->fSGCount = _rangesCount;
2003 data->fPages = _pages;
2004 data->fDirection = getDirection();
2005 if (!_wireCount)
2006 data->fIsPrepared = false;
2007 else {
2008 data->fIsPrepared = true;
2009 data->fHighestPage = _highestPage;
2010 if (_memoryEntries)
2011 {
2012 dataP = getDataP(_memoryEntries);
2013 ioPLBlock *ioplList = getIOPLList(dataP);
2014 UInt count = getNumIOPL(_memoryEntries, dataP);
2015 if (count == 1)
2016 data->fPageAlign = (ioplList[0].fPageOffset & PAGE_MASK) | ~PAGE_MASK;
2017 }
2018 }
2019
2020 return kIOReturnSuccess;
2021
2022 #if IOMD_DEBUG_DMAACTIVE
2023 } else if (kIOMDDMAActive == op) {
2024 if (params) OSIncrementAtomic(&md->__iomd_reservedA);
2025 else {
2026 if (md->__iomd_reservedA)
2027 OSDecrementAtomic(&md->__iomd_reservedA);
2028 else
2029 panic("kIOMDSetDMAInactive");
2030 }
2031 #endif /* IOMD_DEBUG_DMAACTIVE */
2032
2033 } else if (kIOMDWalkSegments != op)
2034 return kIOReturnBadArgument;
2035
2036 // Get the next segment
2037 struct InternalState {
2038 IOMDDMAWalkSegmentArgs fIO;
2039 UInt fOffset2Index;
2040 UInt fIndex;
2041 UInt fNextOffset;
2042 } *isP;
2043
2044 // Find the next segment
2045 if (dataSize < sizeof(*isP))
2046 return kIOReturnUnderrun;
2047
2048 isP = (InternalState *) vData;
2049 UInt offset = isP->fIO.fOffset;
2050 bool mapped = isP->fIO.fMapped;
2051
2052 if (IOMapper::gSystem && mapped
2053 && (!(kIOMemoryHostOnly & _flags))
2054 && (!_memoryEntries || !getDataP(_memoryEntries)->fMappedBase))
2055 // && (_memoryEntries && !getDataP(_memoryEntries)->fMappedBase))
2056 {
2057 if (!_memoryEntries
2058 && !md->initMemoryEntries(computeDataSize(0, 0), kIOMapperWaitSystem)) return (kIOReturnNoMemory);
2059
2060 dataP = getDataP(_memoryEntries);
2061 if (dataP->fMapper)
2062 {
2063 IODMAMapSpecification mapSpec;
2064 bzero(&mapSpec, sizeof(mapSpec));
2065 mapSpec.numAddressBits = dataP->fDMAMapNumAddressBits;
2066 mapSpec.alignment = dataP->fDMAMapAlignment;
2067 err = md->dmaMap(dataP->fMapper, NULL, &mapSpec, 0, _length, &dataP->fMappedBase, &dataP->fMappedLength);
2068 if (kIOReturnSuccess != err) return (err);
2069 }
2070 }
2071
2072 if (offset >= _length)
2073 return (offset == _length)? kIOReturnOverrun : kIOReturnInternalError;
2074
2075 // Validate the previous offset
2076 UInt ind, off2Ind = isP->fOffset2Index;
2077 if (!params
2078 && offset
2079 && (offset == isP->fNextOffset || off2Ind <= offset))
2080 ind = isP->fIndex;
2081 else
2082 ind = off2Ind = 0; // Start from beginning
2083
2084 UInt length;
2085 UInt64 address;
2086
2087
2088 if ( (_flags & kIOMemoryTypeMask) == kIOMemoryTypePhysical) {
2089
2090 // Physical address based memory descriptor
2091 const IOPhysicalRange *physP = (IOPhysicalRange *) &_ranges.p[0];
2092
2093 // Find the range after the one that contains the offset
2094 mach_vm_size_t len;
2095 for (len = 0; off2Ind <= offset; ind++) {
2096 len = physP[ind].length;
2097 off2Ind += len;
2098 }
2099
2100 // Calculate length within range and starting address
2101 length = off2Ind - offset;
2102 address = physP[ind - 1].address + len - length;
2103
2104 if (true && mapped && _memoryEntries
2105 && (dataP = getDataP(_memoryEntries)) && dataP->fMappedBase)
2106 {
2107 address = dataP->fMappedBase + offset;
2108 }
2109 else
2110 {
2111 // see how far we can coalesce ranges
2112 while (ind < _rangesCount && address + length == physP[ind].address) {
2113 len = physP[ind].length;
2114 length += len;
2115 off2Ind += len;
2116 ind++;
2117 }
2118 }
2119
2120 // correct contiguous check overshoot
2121 ind--;
2122 off2Ind -= len;
2123 }
2124 #ifndef __LP64__
2125 else if ( (_flags & kIOMemoryTypeMask) == kIOMemoryTypePhysical64) {
2126
2127 // Physical address based memory descriptor
2128 const IOAddressRange *physP = (IOAddressRange *) &_ranges.v64[0];
2129
2130 // Find the range after the one that contains the offset
2131 mach_vm_size_t len;
2132 for (len = 0; off2Ind <= offset; ind++) {
2133 len = physP[ind].length;
2134 off2Ind += len;
2135 }
2136
2137 // Calculate length within range and starting address
2138 length = off2Ind - offset;
2139 address = physP[ind - 1].address + len - length;
2140
2141 if (true && mapped && _memoryEntries
2142 && (dataP = getDataP(_memoryEntries)) && dataP->fMappedBase)
2143 {
2144 address = dataP->fMappedBase + offset;
2145 }
2146 else
2147 {
2148 // see how far we can coalesce ranges
2149 while (ind < _rangesCount && address + length == physP[ind].address) {
2150 len = physP[ind].length;
2151 length += len;
2152 off2Ind += len;
2153 ind++;
2154 }
2155 }
2156 // correct contiguous check overshoot
2157 ind--;
2158 off2Ind -= len;
2159 }
2160 #endif /* !__LP64__ */
2161 else do {
2162 if (!_wireCount)
2163 panic("IOGMD: not wired for the IODMACommand");
2164
2165 assert(_memoryEntries);
2166
2167 dataP = getDataP(_memoryEntries);
2168 const ioPLBlock *ioplList = getIOPLList(dataP);
2169 UInt numIOPLs = getNumIOPL(_memoryEntries, dataP);
2170 upl_page_info_t *pageList = getPageList(dataP);
2171
2172 assert(numIOPLs > 0);
2173
2174 // Scan through iopl info blocks looking for block containing offset
2175 while (ind < numIOPLs && offset >= ioplList[ind].fIOMDOffset)
2176 ind++;
2177
2178 // Go back to actual range as search goes past it
2179 ioPLBlock ioplInfo = ioplList[ind - 1];
2180 off2Ind = ioplInfo.fIOMDOffset;
2181
2182 if (ind < numIOPLs)
2183 length = ioplList[ind].fIOMDOffset;
2184 else
2185 length = _length;
2186 length -= offset; // Remainder within iopl
2187
2188 // Subtract offset till this iopl in total list
2189 offset -= off2Ind;
2190
2191 // If a mapped address is requested and this is a pre-mapped IOPL
2192 // then just need to compute an offset relative to the mapped base.
2193 if (mapped && dataP->fMappedBase) {
2194 offset += (ioplInfo.fPageOffset & PAGE_MASK);
2195 address = trunc_page_64(dataP->fMappedBase) + ptoa_64(ioplInfo.fMappedPage) + offset;
2196 continue; // Done leave do/while(false) now
2197 }
2198
2199 // The offset is rebased into the current iopl.
2200 // Now add the iopl 1st page offset.
2201 offset += ioplInfo.fPageOffset;
2202
2203 // For external UPLs the fPageInfo field points directly to
2204 // the upl's upl_page_info_t array.
2205 if (ioplInfo.fFlags & kIOPLExternUPL)
2206 pageList = (upl_page_info_t *) ioplInfo.fPageInfo;
2207 else
2208 pageList = &pageList[ioplInfo.fPageInfo];
2209
2210 // Check for direct device non-paged memory
2211 if ( ioplInfo.fFlags & kIOPLOnDevice ) {
2212 address = ptoa_64(pageList->phys_addr) + offset;
2213 continue; // Done leave do/while(false) now
2214 }
2215
2216 // Now we need compute the index into the pageList
2217 UInt pageInd = atop_32(offset);
2218 offset &= PAGE_MASK;
2219
2220 // Compute the starting address of this segment
2221 IOPhysicalAddress pageAddr = pageList[pageInd].phys_addr;
2222 if (!pageAddr) {
2223 panic("!pageList phys_addr");
2224 }
2225
2226 address = ptoa_64(pageAddr) + offset;
2227
2228 // length is currently set to the length of the remainider of the iopl.
2229 // We need to check that the remainder of the iopl is contiguous.
2230 // This is indicated by pageList[ind].phys_addr being sequential.
2231 IOByteCount contigLength = PAGE_SIZE - offset;
2232 while (contigLength < length
2233 && ++pageAddr == pageList[++pageInd].phys_addr)
2234 {
2235 contigLength += PAGE_SIZE;
2236 }
2237
2238 if (contigLength < length)
2239 length = contigLength;
2240
2241
2242 assert(address);
2243 assert(length);
2244
2245 } while (false);
2246
2247 // Update return values and state
2248 isP->fIO.fIOVMAddr = address;
2249 isP->fIO.fLength = length;
2250 isP->fIndex = ind;
2251 isP->fOffset2Index = off2Ind;
2252 isP->fNextOffset = isP->fIO.fOffset + length;
2253
2254 return kIOReturnSuccess;
2255 }
2256
2257 addr64_t
2258 IOGeneralMemoryDescriptor::getPhysicalSegment(IOByteCount offset, IOByteCount *lengthOfSegment, IOOptionBits options)
2259 {
2260 IOReturn ret;
2261 mach_vm_address_t address = 0;
2262 mach_vm_size_t length = 0;
2263 IOMapper * mapper = gIOSystemMapper;
2264 IOOptionBits type = _flags & kIOMemoryTypeMask;
2265
2266 if (lengthOfSegment)
2267 *lengthOfSegment = 0;
2268
2269 if (offset >= _length)
2270 return 0;
2271
2272 // IOMemoryDescriptor::doMap() cannot use getPhysicalSegment() to obtain the page offset, since it must
2273 // support the unwired memory case in IOGeneralMemoryDescriptor, and hibernate_write_image() cannot use
2274 // map()->getVirtualAddress() to obtain the kernel pointer, since it must prevent the memory allocation
2275 // due to IOMemoryMap, so _kIOMemorySourceSegment is a necessary evil until all of this gets cleaned up
2276
2277 if ((options & _kIOMemorySourceSegment) && (kIOMemoryTypeUPL != type))
2278 {
2279 unsigned rangesIndex = 0;
2280 Ranges vec = _ranges;
2281 mach_vm_address_t addr;
2282
2283 // Find starting address within the vector of ranges
2284 for (;;) {
2285 getAddrLenForInd(addr, length, type, vec, rangesIndex);
2286 if (offset < length)
2287 break;
2288 offset -= length; // (make offset relative)
2289 rangesIndex++;
2290 }
2291
2292 // Now that we have the starting range,
2293 // lets find the last contiguous range
2294 addr += offset;
2295 length -= offset;
2296
2297 for ( ++rangesIndex; rangesIndex < _rangesCount; rangesIndex++ ) {
2298 mach_vm_address_t newAddr;
2299 mach_vm_size_t newLen;
2300
2301 getAddrLenForInd(newAddr, newLen, type, vec, rangesIndex);
2302 if (addr + length != newAddr)
2303 break;
2304 length += newLen;
2305 }
2306 if (addr)
2307 address = (IOPhysicalAddress) addr; // Truncate address to 32bit
2308 }
2309 else
2310 {
2311 IOMDDMAWalkSegmentState _state;
2312 IOMDDMAWalkSegmentArgs * state = (IOMDDMAWalkSegmentArgs *) (void *)&_state;
2313
2314 state->fOffset = offset;
2315 state->fLength = _length - offset;
2316 state->fMapped = (0 == (options & kIOMemoryMapperNone)) && !(_flags & kIOMemoryHostOnly);
2317
2318 ret = dmaCommandOperation(kIOMDFirstSegment, _state, sizeof(_state));
2319
2320 if ((kIOReturnSuccess != ret) && (kIOReturnOverrun != ret))
2321 DEBG("getPhysicalSegment dmaCommandOperation(%lx), %p, offset %qx, addr %qx, len %qx\n",
2322 ret, this, state->fOffset,
2323 state->fIOVMAddr, state->fLength);
2324 if (kIOReturnSuccess == ret)
2325 {
2326 address = state->fIOVMAddr;
2327 length = state->fLength;
2328 }
2329
2330 // dmaCommandOperation() does not distinguish between "mapped" and "unmapped" physical memory, even
2331 // with fMapped set correctly, so we must handle the transformation here until this gets cleaned up
2332
2333 if (mapper && ((kIOMemoryTypePhysical == type) || (kIOMemoryTypePhysical64 == type)))
2334 {
2335 if ((options & kIOMemoryMapperNone) && !(_flags & kIOMemoryMapperNone))
2336 {
2337 addr64_t origAddr = address;
2338 IOByteCount origLen = length;
2339
2340 address = mapper->mapToPhysicalAddress(origAddr);
2341 length = page_size - (address & (page_size - 1));
2342 while ((length < origLen)
2343 && ((address + length) == mapper->mapToPhysicalAddress(origAddr + length)))
2344 length += page_size;
2345 if (length > origLen)
2346 length = origLen;
2347 }
2348 }
2349 }
2350
2351 if (!address)
2352 length = 0;
2353
2354 if (lengthOfSegment)
2355 *lengthOfSegment = length;
2356
2357 return (address);
2358 }
2359
2360 #ifndef __LP64__
2361 addr64_t
2362 IOMemoryDescriptor::getPhysicalSegment(IOByteCount offset, IOByteCount *lengthOfSegment, IOOptionBits options)
2363 {
2364 addr64_t address = 0;
2365
2366 if (options & _kIOMemorySourceSegment)
2367 {
2368 address = getSourceSegment(offset, lengthOfSegment);
2369 }
2370 else if (options & kIOMemoryMapperNone)
2371 {
2372 address = getPhysicalSegment64(offset, lengthOfSegment);
2373 }
2374 else
2375 {
2376 address = getPhysicalSegment(offset, lengthOfSegment);
2377 }
2378
2379 return (address);
2380 }
2381
2382 addr64_t
2383 IOGeneralMemoryDescriptor::getPhysicalSegment64(IOByteCount offset, IOByteCount *lengthOfSegment)
2384 {
2385 return (getPhysicalSegment(offset, lengthOfSegment, kIOMemoryMapperNone));
2386 }
2387
2388 IOPhysicalAddress
2389 IOGeneralMemoryDescriptor::getPhysicalSegment(IOByteCount offset, IOByteCount *lengthOfSegment)
2390 {
2391 addr64_t address = 0;
2392 IOByteCount length = 0;
2393
2394 address = getPhysicalSegment(offset, lengthOfSegment, 0);
2395
2396 if (lengthOfSegment)
2397 length = *lengthOfSegment;
2398
2399 if ((address + length) > 0x100000000ULL)
2400 {
2401 panic("getPhysicalSegment() out of 32b range 0x%qx, len 0x%lx, class %s",
2402 address, (long) length, (getMetaClass())->getClassName());
2403 }
2404
2405 return ((IOPhysicalAddress) address);
2406 }
2407
2408 addr64_t
2409 IOMemoryDescriptor::getPhysicalSegment64(IOByteCount offset, IOByteCount *lengthOfSegment)
2410 {
2411 IOPhysicalAddress phys32;
2412 IOByteCount length;
2413 addr64_t phys64;
2414 IOMapper * mapper = 0;
2415
2416 phys32 = getPhysicalSegment(offset, lengthOfSegment);
2417 if (!phys32)
2418 return 0;
2419
2420 if (gIOSystemMapper)
2421 mapper = gIOSystemMapper;
2422
2423 if (mapper)
2424 {
2425 IOByteCount origLen;
2426
2427 phys64 = mapper->mapToPhysicalAddress(phys32);
2428 origLen = *lengthOfSegment;
2429 length = page_size - (phys64 & (page_size - 1));
2430 while ((length < origLen)
2431 && ((phys64 + length) == mapper->mapToPhysicalAddress(phys32 + length)))
2432 length += page_size;
2433 if (length > origLen)
2434 length = origLen;
2435
2436 *lengthOfSegment = length;
2437 }
2438 else
2439 phys64 = (addr64_t) phys32;
2440
2441 return phys64;
2442 }
2443
2444 IOPhysicalAddress
2445 IOMemoryDescriptor::getPhysicalSegment(IOByteCount offset, IOByteCount *lengthOfSegment)
2446 {
2447 return ((IOPhysicalAddress) getPhysicalSegment(offset, lengthOfSegment, 0));
2448 }
2449
2450 IOPhysicalAddress
2451 IOGeneralMemoryDescriptor::getSourceSegment(IOByteCount offset, IOByteCount *lengthOfSegment)
2452 {
2453 return ((IOPhysicalAddress) getPhysicalSegment(offset, lengthOfSegment, _kIOMemorySourceSegment));
2454 }
2455
2456 void * IOGeneralMemoryDescriptor::getVirtualSegment(IOByteCount offset,
2457 IOByteCount * lengthOfSegment)
2458 {
2459 if (_task == kernel_task)
2460 return (void *) getSourceSegment(offset, lengthOfSegment);
2461 else
2462 panic("IOGMD::getVirtualSegment deprecated");
2463
2464 return 0;
2465 }
2466 #endif /* !__LP64__ */
2467
2468 IOReturn
2469 IOMemoryDescriptor::dmaCommandOperation(DMACommandOps op, void *vData, UInt dataSize) const
2470 {
2471 IOMemoryDescriptor *md = const_cast<IOMemoryDescriptor *>(this);
2472 DMACommandOps params;
2473 IOReturn err;
2474
2475 params = (op & ~kIOMDDMACommandOperationMask & op);
2476 op &= kIOMDDMACommandOperationMask;
2477
2478 if (kIOMDGetCharacteristics == op) {
2479 if (dataSize < sizeof(IOMDDMACharacteristics))
2480 return kIOReturnUnderrun;
2481
2482 IOMDDMACharacteristics *data = (IOMDDMACharacteristics *) vData;
2483 data->fLength = getLength();
2484 data->fSGCount = 0;
2485 data->fDirection = getDirection();
2486 data->fIsPrepared = true; // Assume prepared - fails safe
2487 }
2488 else if (kIOMDWalkSegments == op) {
2489 if (dataSize < sizeof(IOMDDMAWalkSegmentArgs))
2490 return kIOReturnUnderrun;
2491
2492 IOMDDMAWalkSegmentArgs *data = (IOMDDMAWalkSegmentArgs *) vData;
2493 IOByteCount offset = (IOByteCount) data->fOffset;
2494
2495 IOPhysicalLength length;
2496 if (data->fMapped && IOMapper::gSystem)
2497 data->fIOVMAddr = md->getPhysicalSegment(offset, &length);
2498 else
2499 data->fIOVMAddr = md->getPhysicalSegment(offset, &length, kIOMemoryMapperNone);
2500 data->fLength = length;
2501 }
2502 else if (kIOMDAddDMAMapSpec == op) return kIOReturnUnsupported;
2503 else if (kIOMDDMAMap == op)
2504 {
2505 if (dataSize < sizeof(IOMDDMAMapArgs))
2506 return kIOReturnUnderrun;
2507 IOMDDMAMapArgs * data = (IOMDDMAMapArgs *) vData;
2508
2509 if (params) panic("class %s does not support IODMACommand::kIterateOnly", getMetaClass()->getClassName());
2510
2511 data->fMapContig = true;
2512 err = md->dmaMap(data->fMapper, data->fCommand, &data->fMapSpec, data->fOffset, data->fLength, &data->fAlloc, &data->fAllocLength);
2513 return (err);
2514 }
2515 else return kIOReturnBadArgument;
2516
2517 return kIOReturnSuccess;
2518 }
2519
2520 IOReturn
2521 IOGeneralMemoryDescriptor::setPurgeable( IOOptionBits newState,
2522 IOOptionBits * oldState )
2523 {
2524 IOReturn err = kIOReturnSuccess;
2525
2526 vm_purgable_t control;
2527 int state;
2528
2529 if (_memRef)
2530 {
2531 err = super::setPurgeable(newState, oldState);
2532 }
2533 else
2534 {
2535 if (kIOMemoryThreadSafe & _flags)
2536 LOCK;
2537 do
2538 {
2539 // Find the appropriate vm_map for the given task
2540 vm_map_t curMap;
2541 if (_task == kernel_task && (kIOMemoryBufferPageable & _flags))
2542 {
2543 err = kIOReturnNotReady;
2544 break;
2545 }
2546 else if (!_task)
2547 {
2548 err = kIOReturnUnsupported;
2549 break;
2550 }
2551 else
2552 curMap = get_task_map(_task);
2553
2554 // can only do one range
2555 Ranges vec = _ranges;
2556 IOOptionBits type = _flags & kIOMemoryTypeMask;
2557 mach_vm_address_t addr;
2558 mach_vm_size_t len;
2559 getAddrLenForInd(addr, len, type, vec, 0);
2560
2561 err = purgeableControlBits(newState, &control, &state);
2562 if (kIOReturnSuccess != err)
2563 break;
2564 err = mach_vm_purgable_control(curMap, addr, control, &state);
2565 if (oldState)
2566 {
2567 if (kIOReturnSuccess == err)
2568 {
2569 err = purgeableStateBits(&state);
2570 *oldState = state;
2571 }
2572 }
2573 }
2574 while (false);
2575 if (kIOMemoryThreadSafe & _flags)
2576 UNLOCK;
2577 }
2578
2579 return (err);
2580 }
2581
2582 IOReturn IOMemoryDescriptor::setPurgeable( IOOptionBits newState,
2583 IOOptionBits * oldState )
2584 {
2585 IOReturn err = kIOReturnNotReady;
2586
2587 if (kIOMemoryThreadSafe & _flags) LOCK;
2588 if (_memRef) err = IOGeneralMemoryDescriptor::memoryReferenceSetPurgeable(_memRef, newState, oldState);
2589 if (kIOMemoryThreadSafe & _flags) UNLOCK;
2590
2591 return (err);
2592 }
2593
2594 IOReturn IOMemoryDescriptor::getPageCounts( IOByteCount * residentPageCount,
2595 IOByteCount * dirtyPageCount )
2596 {
2597 IOReturn err = kIOReturnNotReady;
2598
2599 if (kIOMemoryThreadSafe & _flags) LOCK;
2600 if (_memRef) err = IOGeneralMemoryDescriptor::memoryReferenceGetPageCounts(_memRef, residentPageCount, dirtyPageCount);
2601 else
2602 {
2603 IOMultiMemoryDescriptor * mmd;
2604 IOSubMemoryDescriptor * smd;
2605 if ((smd = OSDynamicCast(IOSubMemoryDescriptor, this)))
2606 {
2607 err = smd->getPageCounts(residentPageCount, dirtyPageCount);
2608 }
2609 else if ((mmd = OSDynamicCast(IOMultiMemoryDescriptor, this)))
2610 {
2611 err = mmd->getPageCounts(residentPageCount, dirtyPageCount);
2612 }
2613 }
2614 if (kIOMemoryThreadSafe & _flags) UNLOCK;
2615
2616 return (err);
2617 }
2618
2619
2620 extern "C" void dcache_incoherent_io_flush64(addr64_t pa, unsigned int count);
2621 extern "C" void dcache_incoherent_io_store64(addr64_t pa, unsigned int count);
2622
2623 static void SetEncryptOp(addr64_t pa, unsigned int count)
2624 {
2625 ppnum_t page, end;
2626
2627 page = atop_64(round_page_64(pa));
2628 end = atop_64(trunc_page_64(pa + count));
2629 for (; page < end; page++)
2630 {
2631 pmap_clear_noencrypt(page);
2632 }
2633 }
2634
2635 static void ClearEncryptOp(addr64_t pa, unsigned int count)
2636 {
2637 ppnum_t page, end;
2638
2639 page = atop_64(round_page_64(pa));
2640 end = atop_64(trunc_page_64(pa + count));
2641 for (; page < end; page++)
2642 {
2643 pmap_set_noencrypt(page);
2644 }
2645 }
2646
2647 IOReturn IOMemoryDescriptor::performOperation( IOOptionBits options,
2648 IOByteCount offset, IOByteCount length )
2649 {
2650 IOByteCount remaining;
2651 unsigned int res;
2652 void (*func)(addr64_t pa, unsigned int count) = 0;
2653
2654 switch (options)
2655 {
2656 case kIOMemoryIncoherentIOFlush:
2657 func = &dcache_incoherent_io_flush64;
2658 break;
2659 case kIOMemoryIncoherentIOStore:
2660 func = &dcache_incoherent_io_store64;
2661 break;
2662
2663 case kIOMemorySetEncrypted:
2664 func = &SetEncryptOp;
2665 break;
2666 case kIOMemoryClearEncrypted:
2667 func = &ClearEncryptOp;
2668 break;
2669 }
2670
2671 if (!func)
2672 return (kIOReturnUnsupported);
2673
2674 if (kIOMemoryThreadSafe & _flags)
2675 LOCK;
2676
2677 res = 0x0UL;
2678 remaining = length = min(length, getLength() - offset);
2679 while (remaining)
2680 // (process another target segment?)
2681 {
2682 addr64_t dstAddr64;
2683 IOByteCount dstLen;
2684
2685 dstAddr64 = getPhysicalSegment(offset, &dstLen, kIOMemoryMapperNone);
2686 if (!dstAddr64)
2687 break;
2688
2689 // Clip segment length to remaining
2690 if (dstLen > remaining)
2691 dstLen = remaining;
2692
2693 (*func)(dstAddr64, dstLen);
2694
2695 offset += dstLen;
2696 remaining -= dstLen;
2697 }
2698
2699 if (kIOMemoryThreadSafe & _flags)
2700 UNLOCK;
2701
2702 return (remaining ? kIOReturnUnderrun : kIOReturnSuccess);
2703 }
2704
2705 #if defined(__i386__) || defined(__x86_64__)
2706
2707 #define io_kernel_static_start vm_kernel_stext
2708 #define io_kernel_static_end vm_kernel_etext
2709
2710 #else
2711 #error io_kernel_static_end is undefined for this architecture
2712 #endif
2713
2714 static kern_return_t
2715 io_get_kernel_static_upl(
2716 vm_map_t /* map */,
2717 uintptr_t offset,
2718 upl_size_t *upl_size,
2719 upl_t *upl,
2720 upl_page_info_array_t page_list,
2721 unsigned int *count,
2722 ppnum_t *highest_page)
2723 {
2724 unsigned int pageCount, page;
2725 ppnum_t phys;
2726 ppnum_t highestPage = 0;
2727
2728 pageCount = atop_32(*upl_size);
2729 if (pageCount > *count)
2730 pageCount = *count;
2731
2732 *upl = NULL;
2733
2734 for (page = 0; page < pageCount; page++)
2735 {
2736 phys = pmap_find_phys(kernel_pmap, ((addr64_t)offset) + ptoa_64(page));
2737 if (!phys)
2738 break;
2739 page_list[page].phys_addr = phys;
2740 page_list[page].pageout = 0;
2741 page_list[page].absent = 0;
2742 page_list[page].dirty = 0;
2743 page_list[page].precious = 0;
2744 page_list[page].device = 0;
2745 if (phys > highestPage)
2746 highestPage = phys;
2747 }
2748
2749 *highest_page = highestPage;
2750
2751 return ((page >= pageCount) ? kIOReturnSuccess : kIOReturnVMError);
2752 }
2753
2754 IOReturn IOGeneralMemoryDescriptor::wireVirtual(IODirection forDirection)
2755 {
2756 IOOptionBits type = _flags & kIOMemoryTypeMask;
2757 IOReturn error = kIOReturnCannotWire;
2758 ioGMDData *dataP;
2759 upl_page_info_array_t pageInfo;
2760 ppnum_t mapBase;
2761
2762 assert(kIOMemoryTypeVirtual == type || kIOMemoryTypeVirtual64 == type || kIOMemoryTypeUIO == type);
2763
2764 if ((kIODirectionOutIn & forDirection) == kIODirectionNone)
2765 forDirection = (IODirection) (forDirection | getDirection());
2766
2767 upl_control_flags_t uplFlags; // This Mem Desc's default flags for upl creation
2768 switch (kIODirectionOutIn & forDirection)
2769 {
2770 case kIODirectionOut:
2771 // Pages do not need to be marked as dirty on commit
2772 uplFlags = UPL_COPYOUT_FROM;
2773 break;
2774
2775 case kIODirectionIn:
2776 default:
2777 uplFlags = 0; // i.e. ~UPL_COPYOUT_FROM
2778 break;
2779 }
2780
2781 if (_wireCount)
2782 {
2783 if ((kIOMemoryPreparedReadOnly & _flags) && !(UPL_COPYOUT_FROM & uplFlags))
2784 {
2785 OSReportWithBacktrace("IOMemoryDescriptor 0x%lx prepared read only", VM_KERNEL_ADDRPERM(this));
2786 error = kIOReturnNotWritable;
2787 }
2788 else error = kIOReturnSuccess;
2789 return (error);
2790 }
2791
2792 dataP = getDataP(_memoryEntries);
2793 IOMapper *mapper;
2794 mapper = dataP->fMapper;
2795 dataP->fMappedBase = 0;
2796
2797 uplFlags |= UPL_SET_IO_WIRE | UPL_SET_LITE;
2798 uplFlags |= UPL_MEMORY_TAG_MAKE(IOMemoryTag(kernel_map));
2799
2800 if (kIODirectionPrepareToPhys32 & forDirection)
2801 {
2802 if (!mapper) uplFlags |= UPL_NEED_32BIT_ADDR;
2803 if (dataP->fDMAMapNumAddressBits > 32) dataP->fDMAMapNumAddressBits = 32;
2804 }
2805 if (kIODirectionPrepareNoFault & forDirection) uplFlags |= UPL_REQUEST_NO_FAULT;
2806 if (kIODirectionPrepareNoZeroFill & forDirection) uplFlags |= UPL_NOZEROFILLIO;
2807 if (kIODirectionPrepareNonCoherent & forDirection) uplFlags |= UPL_REQUEST_FORCE_COHERENCY;
2808
2809 mapBase = 0;
2810
2811 // Note that appendBytes(NULL) zeros the data up to the desired length
2812 // and the length parameter is an unsigned int
2813 size_t uplPageSize = dataP->fPageCnt * sizeof(upl_page_info_t);
2814 if (uplPageSize > ((unsigned int)uplPageSize)) return (kIOReturnNoMemory);
2815 if (!_memoryEntries->appendBytes(0, uplPageSize)) return (kIOReturnNoMemory);
2816 dataP = 0;
2817
2818 // Find the appropriate vm_map for the given task
2819 vm_map_t curMap;
2820 if (_task == kernel_task && (kIOMemoryBufferPageable & _flags)) curMap = 0;
2821 else curMap = get_task_map(_task);
2822
2823 // Iterate over the vector of virtual ranges
2824 Ranges vec = _ranges;
2825 unsigned int pageIndex = 0;
2826 IOByteCount mdOffset = 0;
2827 ppnum_t highestPage = 0;
2828
2829 IOMemoryEntry * memRefEntry = 0;
2830 if (_memRef) memRefEntry = &_memRef->entries[0];
2831
2832 for (UInt range = 0; range < _rangesCount; range++) {
2833 ioPLBlock iopl;
2834 mach_vm_address_t startPage;
2835 mach_vm_size_t numBytes;
2836 ppnum_t highPage = 0;
2837
2838 // Get the startPage address and length of vec[range]
2839 getAddrLenForInd(startPage, numBytes, type, vec, range);
2840 iopl.fPageOffset = startPage & PAGE_MASK;
2841 numBytes += iopl.fPageOffset;
2842 startPage = trunc_page_64(startPage);
2843
2844 if (mapper)
2845 iopl.fMappedPage = mapBase + pageIndex;
2846 else
2847 iopl.fMappedPage = 0;
2848
2849 // Iterate over the current range, creating UPLs
2850 while (numBytes) {
2851 vm_address_t kernelStart = (vm_address_t) startPage;
2852 vm_map_t theMap;
2853 if (curMap) theMap = curMap;
2854 else if (_memRef)
2855 {
2856 theMap = NULL;
2857 }
2858 else
2859 {
2860 assert(_task == kernel_task);
2861 theMap = IOPageableMapForAddress(kernelStart);
2862 }
2863
2864 // ioplFlags is an in/out parameter
2865 upl_control_flags_t ioplFlags = uplFlags;
2866 dataP = getDataP(_memoryEntries);
2867 pageInfo = getPageList(dataP);
2868 upl_page_list_ptr_t baseInfo = &pageInfo[pageIndex];
2869
2870 upl_size_t ioplSize = round_page(numBytes);
2871 unsigned int numPageInfo = atop_32(ioplSize);
2872
2873 if ((theMap == kernel_map)
2874 && (kernelStart >= io_kernel_static_start)
2875 && (kernelStart < io_kernel_static_end)) {
2876 error = io_get_kernel_static_upl(theMap,
2877 kernelStart,
2878 &ioplSize,
2879 &iopl.fIOPL,
2880 baseInfo,
2881 &numPageInfo,
2882 &highPage);
2883 }
2884 else if (_memRef) {
2885 memory_object_offset_t entryOffset;
2886
2887 entryOffset = mdOffset;
2888 entryOffset = (entryOffset - iopl.fPageOffset - memRefEntry->offset);
2889 if (entryOffset >= memRefEntry->size) {
2890 memRefEntry++;
2891 if (memRefEntry >= &_memRef->entries[_memRef->count]) panic("memRefEntry");
2892 entryOffset = 0;
2893 }
2894 if (ioplSize > (memRefEntry->size - entryOffset)) ioplSize = (memRefEntry->size - entryOffset);
2895 error = memory_object_iopl_request(memRefEntry->entry,
2896 entryOffset,
2897 &ioplSize,
2898 &iopl.fIOPL,
2899 baseInfo,
2900 &numPageInfo,
2901 &ioplFlags);
2902 }
2903 else {
2904 assert(theMap);
2905 error = vm_map_create_upl(theMap,
2906 startPage,
2907 (upl_size_t*)&ioplSize,
2908 &iopl.fIOPL,
2909 baseInfo,
2910 &numPageInfo,
2911 &ioplFlags);
2912 }
2913
2914 assert(ioplSize);
2915 if (error != KERN_SUCCESS)
2916 goto abortExit;
2917
2918 if (iopl.fIOPL)
2919 highPage = upl_get_highest_page(iopl.fIOPL);
2920 if (highPage > highestPage)
2921 highestPage = highPage;
2922
2923 error = kIOReturnCannotWire;
2924
2925 if (baseInfo->device) {
2926 numPageInfo = 1;
2927 iopl.fFlags = kIOPLOnDevice;
2928 }
2929 else {
2930 iopl.fFlags = 0;
2931 }
2932
2933 iopl.fIOMDOffset = mdOffset;
2934 iopl.fPageInfo = pageIndex;
2935 if (mapper && pageIndex && (page_mask & (mdOffset + iopl.fPageOffset))) dataP->fDiscontig = true;
2936
2937 #if 0
2938 // used to remove the upl for auto prepares here, for some errant code
2939 // that freed memory before the descriptor pointing at it
2940 if ((_flags & kIOMemoryAutoPrepare) && iopl.fIOPL)
2941 {
2942 upl_commit(iopl.fIOPL, 0, 0);
2943 upl_deallocate(iopl.fIOPL);
2944 iopl.fIOPL = 0;
2945 }
2946 #endif
2947
2948 if (!_memoryEntries->appendBytes(&iopl, sizeof(iopl))) {
2949 // Clean up partial created and unsaved iopl
2950 if (iopl.fIOPL) {
2951 upl_abort(iopl.fIOPL, 0);
2952 upl_deallocate(iopl.fIOPL);
2953 }
2954 goto abortExit;
2955 }
2956 dataP = 0;
2957
2958 // Check for a multiple iopl's in one virtual range
2959 pageIndex += numPageInfo;
2960 mdOffset -= iopl.fPageOffset;
2961 if (ioplSize < numBytes) {
2962 numBytes -= ioplSize;
2963 startPage += ioplSize;
2964 mdOffset += ioplSize;
2965 iopl.fPageOffset = 0;
2966 if (mapper) iopl.fMappedPage = mapBase + pageIndex;
2967 }
2968 else {
2969 mdOffset += numBytes;
2970 break;
2971 }
2972 }
2973 }
2974
2975 _highestPage = highestPage;
2976
2977 if (UPL_COPYOUT_FROM & uplFlags) _flags |= kIOMemoryPreparedReadOnly;
2978
2979 if ((kIOTracking & gIOKitDebug)
2980 //&& !(_flags & kIOMemoryAutoPrepare)
2981 )
2982 {
2983 dataP = getDataP(_memoryEntries);
2984 #if IOTRACKING
2985 IOTrackingAdd(gIOWireTracking, &dataP->fWireTracking, ptoa(_pages), false);
2986 #endif
2987 }
2988
2989 return kIOReturnSuccess;
2990
2991 abortExit:
2992 {
2993 dataP = getDataP(_memoryEntries);
2994 UInt done = getNumIOPL(_memoryEntries, dataP);
2995 ioPLBlock *ioplList = getIOPLList(dataP);
2996
2997 for (UInt range = 0; range < done; range++)
2998 {
2999 if (ioplList[range].fIOPL) {
3000 upl_abort(ioplList[range].fIOPL, 0);
3001 upl_deallocate(ioplList[range].fIOPL);
3002 }
3003 }
3004 (void) _memoryEntries->initWithBytes(dataP, computeDataSize(0, 0)); // == setLength()
3005 }
3006
3007 if (error == KERN_FAILURE)
3008 error = kIOReturnCannotWire;
3009 else if (error == KERN_MEMORY_ERROR)
3010 error = kIOReturnNoResources;
3011
3012 return error;
3013 }
3014
3015 bool IOGeneralMemoryDescriptor::initMemoryEntries(size_t size, IOMapper * mapper)
3016 {
3017 ioGMDData * dataP;
3018 unsigned dataSize = size;
3019
3020 if (!_memoryEntries) {
3021 _memoryEntries = OSData::withCapacity(dataSize);
3022 if (!_memoryEntries)
3023 return false;
3024 }
3025 else if (!_memoryEntries->initWithCapacity(dataSize))
3026 return false;
3027
3028 _memoryEntries->appendBytes(0, computeDataSize(0, 0));
3029 dataP = getDataP(_memoryEntries);
3030
3031 if (mapper == kIOMapperWaitSystem) {
3032 IOMapper::checkForSystemMapper();
3033 mapper = IOMapper::gSystem;
3034 }
3035 dataP->fMapper = mapper;
3036 dataP->fPageCnt = 0;
3037 dataP->fMappedBase = 0;
3038 dataP->fDMAMapNumAddressBits = 64;
3039 dataP->fDMAMapAlignment = 0;
3040 dataP->fPreparationID = kIOPreparationIDUnprepared;
3041 dataP->fDiscontig = false;
3042 dataP->fCompletionError = false;
3043
3044 return (true);
3045 }
3046
3047 IOReturn IOMemoryDescriptor::dmaMap(
3048 IOMapper * mapper,
3049 IODMACommand * command,
3050 const IODMAMapSpecification * mapSpec,
3051 uint64_t offset,
3052 uint64_t length,
3053 uint64_t * mapAddress,
3054 uint64_t * mapLength)
3055 {
3056 IOReturn ret;
3057 uint32_t mapOptions;
3058
3059 mapOptions = 0;
3060 mapOptions |= kIODMAMapReadAccess;
3061 if (!(kIOMemoryPreparedReadOnly & _flags)) mapOptions |= kIODMAMapWriteAccess;
3062
3063 ret = mapper->iovmMapMemory(this, offset, length, mapOptions,
3064 mapSpec, command, NULL, mapAddress, mapLength);
3065
3066 return (ret);
3067 }
3068
3069 IOReturn IOGeneralMemoryDescriptor::dmaMap(
3070 IOMapper * mapper,
3071 IODMACommand * command,
3072 const IODMAMapSpecification * mapSpec,
3073 uint64_t offset,
3074 uint64_t length,
3075 uint64_t * mapAddress,
3076 uint64_t * mapLength)
3077 {
3078 IOReturn err = kIOReturnSuccess;
3079 ioGMDData * dataP;
3080 IOOptionBits type = _flags & kIOMemoryTypeMask;
3081
3082 *mapAddress = 0;
3083 if (kIOMemoryHostOnly & _flags) return (kIOReturnSuccess);
3084
3085 if ((type == kIOMemoryTypePhysical) || (type == kIOMemoryTypePhysical64)
3086 || offset || (length != _length))
3087 {
3088 err = super::dmaMap(mapper, command, mapSpec, offset, length, mapAddress, mapLength);
3089 }
3090 else if (_memoryEntries && _pages && (dataP = getDataP(_memoryEntries)))
3091 {
3092 const ioPLBlock * ioplList = getIOPLList(dataP);
3093 upl_page_info_t * pageList;
3094 uint32_t mapOptions = 0;
3095
3096 IODMAMapSpecification mapSpec;
3097 bzero(&mapSpec, sizeof(mapSpec));
3098 mapSpec.numAddressBits = dataP->fDMAMapNumAddressBits;
3099 mapSpec.alignment = dataP->fDMAMapAlignment;
3100
3101 // For external UPLs the fPageInfo field points directly to
3102 // the upl's upl_page_info_t array.
3103 if (ioplList->fFlags & kIOPLExternUPL)
3104 {
3105 pageList = (upl_page_info_t *) ioplList->fPageInfo;
3106 mapOptions |= kIODMAMapPagingPath;
3107 }
3108 else pageList = getPageList(dataP);
3109
3110 if ((_length == ptoa_64(_pages)) && !(page_mask & ioplList->fPageOffset))
3111 {
3112 mapOptions |= kIODMAMapPageListFullyOccupied;
3113 }
3114
3115 mapOptions |= kIODMAMapReadAccess;
3116 if (!(kIOMemoryPreparedReadOnly & _flags)) mapOptions |= kIODMAMapWriteAccess;
3117
3118 // Check for direct device non-paged memory
3119 if (ioplList->fFlags & kIOPLOnDevice) mapOptions |= kIODMAMapPhysicallyContiguous;
3120
3121 IODMAMapPageList dmaPageList =
3122 {
3123 .pageOffset = ioplList->fPageOffset & page_mask,
3124 .pageListCount = _pages,
3125 .pageList = &pageList[0]
3126 };
3127 err = mapper->iovmMapMemory(this, offset, length, mapOptions, &mapSpec,
3128 command, &dmaPageList, mapAddress, mapLength);
3129 }
3130
3131 return (err);
3132 }
3133
3134 /*
3135 * prepare
3136 *
3137 * Prepare the memory for an I/O transfer. This involves paging in
3138 * the memory, if necessary, and wiring it down for the duration of
3139 * the transfer. The complete() method completes the processing of
3140 * the memory after the I/O transfer finishes. This method needn't
3141 * called for non-pageable memory.
3142 */
3143
3144 IOReturn IOGeneralMemoryDescriptor::prepare(IODirection forDirection)
3145 {
3146 IOReturn error = kIOReturnSuccess;
3147 IOOptionBits type = _flags & kIOMemoryTypeMask;
3148
3149 if ((kIOMemoryTypePhysical == type) || (kIOMemoryTypePhysical64 == type))
3150 return kIOReturnSuccess;
3151
3152 if (_prepareLock)
3153 IOLockLock(_prepareLock);
3154
3155 if (kIOMemoryTypeVirtual == type || kIOMemoryTypeVirtual64 == type || kIOMemoryTypeUIO == type)
3156 {
3157 error = wireVirtual(forDirection);
3158 }
3159
3160 if (kIOReturnSuccess == error)
3161 {
3162 if (1 == ++_wireCount)
3163 {
3164 if (kIOMemoryClearEncrypt & _flags)
3165 {
3166 performOperation(kIOMemoryClearEncrypted, 0, _length);
3167 }
3168 }
3169 }
3170
3171 if (_prepareLock)
3172 IOLockUnlock(_prepareLock);
3173
3174 return error;
3175 }
3176
3177 /*
3178 * complete
3179 *
3180 * Complete processing of the memory after an I/O transfer finishes.
3181 * This method should not be called unless a prepare was previously
3182 * issued; the prepare() and complete() must occur in pairs, before
3183 * before and after an I/O transfer involving pageable memory.
3184 */
3185
3186 IOReturn IOGeneralMemoryDescriptor::complete(IODirection forDirection)
3187 {
3188 IOOptionBits type = _flags & kIOMemoryTypeMask;
3189 ioGMDData * dataP;
3190
3191 if ((kIOMemoryTypePhysical == type) || (kIOMemoryTypePhysical64 == type))
3192 return kIOReturnSuccess;
3193
3194 if (_prepareLock)
3195 IOLockLock(_prepareLock);
3196
3197 assert(_wireCount);
3198
3199 if ((kIODirectionCompleteWithError & forDirection)
3200 && (dataP = getDataP(_memoryEntries)))
3201 dataP->fCompletionError = true;
3202
3203 if (_wireCount)
3204 {
3205 if ((kIOMemoryClearEncrypt & _flags) && (1 == _wireCount))
3206 {
3207 performOperation(kIOMemorySetEncrypted, 0, _length);
3208 }
3209
3210 _wireCount--;
3211 if (!_wireCount || (kIODirectionCompleteWithDataValid & forDirection))
3212 {
3213 IOOptionBits type = _flags & kIOMemoryTypeMask;
3214 dataP = getDataP(_memoryEntries);
3215 ioPLBlock *ioplList = getIOPLList(dataP);
3216 UInt ind, count = getNumIOPL(_memoryEntries, dataP);
3217
3218 if (_wireCount)
3219 {
3220 // kIODirectionCompleteWithDataValid & forDirection
3221 if (kIOMemoryTypeVirtual == type || kIOMemoryTypeVirtual64 == type || kIOMemoryTypeUIO == type)
3222 {
3223 for (ind = 0; ind < count; ind++)
3224 {
3225 if (ioplList[ind].fIOPL) iopl_valid_data(ioplList[ind].fIOPL);
3226 }
3227 }
3228 }
3229 else
3230 {
3231 #if IOMD_DEBUG_DMAACTIVE
3232 if (__iomd_reservedA) panic("complete() while dma active");
3233 #endif /* IOMD_DEBUG_DMAACTIVE */
3234
3235 if (dataP->fMappedBase) {
3236 dataP->fMapper->iovmUnmapMemory(this, NULL, dataP->fMappedBase, dataP->fMappedLength);
3237 dataP->fMappedBase = 0;
3238 }
3239 // Only complete iopls that we created which are for TypeVirtual
3240 if (kIOMemoryTypeVirtual == type || kIOMemoryTypeVirtual64 == type || kIOMemoryTypeUIO == type) {
3241 #if IOTRACKING
3242 if ((kIOTracking & gIOKitDebug)
3243 //&& !(_flags & kIOMemoryAutoPrepare)
3244 )
3245 {
3246 IOTrackingRemove(gIOWireTracking, &dataP->fWireTracking, ptoa(_pages));
3247 }
3248 #endif
3249 for (ind = 0; ind < count; ind++)
3250 if (ioplList[ind].fIOPL) {
3251 if (dataP->fCompletionError)
3252 upl_abort(ioplList[ind].fIOPL, 0 /*!UPL_ABORT_DUMP_PAGES*/);
3253 else
3254 upl_commit(ioplList[ind].fIOPL, 0, 0);
3255 upl_deallocate(ioplList[ind].fIOPL);
3256 }
3257 } else if (kIOMemoryTypeUPL == type) {
3258 upl_set_referenced(ioplList[0].fIOPL, false);
3259 }
3260
3261 (void) _memoryEntries->initWithBytes(dataP, computeDataSize(0, 0)); // == setLength()
3262
3263 dataP->fPreparationID = kIOPreparationIDUnprepared;
3264 }
3265 }
3266 }
3267
3268 if (_prepareLock)
3269 IOLockUnlock(_prepareLock);
3270
3271 return kIOReturnSuccess;
3272 }
3273
3274 IOReturn IOGeneralMemoryDescriptor::doMap(
3275 vm_map_t __addressMap,
3276 IOVirtualAddress * __address,
3277 IOOptionBits options,
3278 IOByteCount __offset,
3279 IOByteCount __length )
3280 {
3281 #ifndef __LP64__
3282 if (!(kIOMap64Bit & options)) panic("IOGeneralMemoryDescriptor::doMap !64bit");
3283 #endif /* !__LP64__ */
3284
3285 kern_return_t err;
3286
3287 IOMemoryMap * mapping = (IOMemoryMap *) *__address;
3288 mach_vm_size_t offset = mapping->fOffset + __offset;
3289 mach_vm_size_t length = mapping->fLength;
3290
3291 IOOptionBits type = _flags & kIOMemoryTypeMask;
3292 Ranges vec = _ranges;
3293
3294 mach_vm_address_t range0Addr = 0;
3295 mach_vm_size_t range0Len = 0;
3296
3297 if ((offset >= _length) || ((offset + length) > _length))
3298 return( kIOReturnBadArgument );
3299
3300 if (vec.v)
3301 getAddrLenForInd(range0Addr, range0Len, type, vec, 0);
3302
3303 // mapping source == dest? (could be much better)
3304 if (_task
3305 && (mapping->fAddressTask == _task)
3306 && (mapping->fAddressMap == get_task_map(_task))
3307 && (options & kIOMapAnywhere)
3308 && (1 == _rangesCount)
3309 && (0 == offset)
3310 && range0Addr
3311 && (length <= range0Len))
3312 {
3313 mapping->fAddress = range0Addr;
3314 mapping->fOptions |= kIOMapStatic;
3315
3316 return( kIOReturnSuccess );
3317 }
3318
3319 if (!_memRef)
3320 {
3321 IOOptionBits createOptions = 0;
3322 if (!(kIOMapReadOnly & options))
3323 {
3324 createOptions |= kIOMemoryReferenceWrite;
3325 #if DEVELOPMENT || DEBUG
3326 if (kIODirectionOut == (kIODirectionOutIn & _flags))
3327 {
3328 OSReportWithBacktrace("warning: creating writable mapping from IOMemoryDescriptor(kIODirectionOut) - use kIOMapReadOnly or change direction");
3329 }
3330 #endif
3331 }
3332 err = memoryReferenceCreate(createOptions, &_memRef);
3333 if (kIOReturnSuccess != err) return (err);
3334 }
3335
3336 memory_object_t pager;
3337 pager = (memory_object_t) (reserved ? reserved->dp.devicePager : 0);
3338
3339 // <upl_transpose //
3340 if ((kIOMapReference|kIOMapUnique) == ((kIOMapReference|kIOMapUnique) & options))
3341 {
3342 do
3343 {
3344 upl_t redirUPL2;
3345 upl_size_t size;
3346 upl_control_flags_t flags;
3347 unsigned int lock_count;
3348
3349 if (!_memRef || (1 != _memRef->count))
3350 {
3351 err = kIOReturnNotReadable;
3352 break;
3353 }
3354
3355 size = round_page(mapping->fLength);
3356 flags = UPL_COPYOUT_FROM | UPL_SET_INTERNAL
3357 | UPL_SET_LITE | UPL_SET_IO_WIRE | UPL_BLOCK_ACCESS
3358 | UPL_MEMORY_TAG_MAKE(IOMemoryTag(kernel_map));
3359
3360 if (KERN_SUCCESS != memory_object_iopl_request(_memRef->entries[0].entry, 0, &size, &redirUPL2,
3361 NULL, NULL,
3362 &flags))
3363 redirUPL2 = NULL;
3364
3365 for (lock_count = 0;
3366 IORecursiveLockHaveLock(gIOMemoryLock);
3367 lock_count++) {
3368 UNLOCK;
3369 }
3370 err = upl_transpose(redirUPL2, mapping->fRedirUPL);
3371 for (;
3372 lock_count;
3373 lock_count--) {
3374 LOCK;
3375 }
3376
3377 if (kIOReturnSuccess != err)
3378 {
3379 IOLog("upl_transpose(%x)\n", err);
3380 err = kIOReturnSuccess;
3381 }
3382
3383 if (redirUPL2)
3384 {
3385 upl_commit(redirUPL2, NULL, 0);
3386 upl_deallocate(redirUPL2);
3387 redirUPL2 = 0;
3388 }
3389 {
3390 // swap the memEntries since they now refer to different vm_objects
3391 IOMemoryReference * me = _memRef;
3392 _memRef = mapping->fMemory->_memRef;
3393 mapping->fMemory->_memRef = me;
3394 }
3395 if (pager)
3396 err = populateDevicePager( pager, mapping->fAddressMap, mapping->fAddress, offset, length, options );
3397 }
3398 while (false);
3399 }
3400 // upl_transpose> //
3401 else
3402 {
3403 err = memoryReferenceMap(_memRef, mapping->fAddressMap, offset, length, options, &mapping->fAddress);
3404 #if IOTRACKING
3405 if (err == KERN_SUCCESS) IOTrackingAdd(gIOMapTracking, &mapping->fTracking, length, false);
3406 #endif
3407 if ((err == KERN_SUCCESS) && pager)
3408 {
3409 err = populateDevicePager(pager, mapping->fAddressMap, mapping->fAddress, offset, length, options);
3410
3411 if (err != KERN_SUCCESS) doUnmap(mapping->fAddressMap, (IOVirtualAddress) mapping, 0);
3412 else if (kIOMapDefaultCache == (options & kIOMapCacheMask))
3413 {
3414 mapping->fOptions |= ((_flags & kIOMemoryBufferCacheMask) >> kIOMemoryBufferCacheShift);
3415 }
3416 }
3417 }
3418
3419 return (err);
3420 }
3421
3422 IOReturn IOGeneralMemoryDescriptor::doUnmap(
3423 vm_map_t addressMap,
3424 IOVirtualAddress __address,
3425 IOByteCount __length )
3426 {
3427 return (super::doUnmap(addressMap, __address, __length));
3428 }
3429
3430 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
3431
3432 #undef super
3433 #define super OSObject
3434
3435 OSDefineMetaClassAndStructors( IOMemoryMap, OSObject )
3436
3437 OSMetaClassDefineReservedUnused(IOMemoryMap, 0);
3438 OSMetaClassDefineReservedUnused(IOMemoryMap, 1);
3439 OSMetaClassDefineReservedUnused(IOMemoryMap, 2);
3440 OSMetaClassDefineReservedUnused(IOMemoryMap, 3);
3441 OSMetaClassDefineReservedUnused(IOMemoryMap, 4);
3442 OSMetaClassDefineReservedUnused(IOMemoryMap, 5);
3443 OSMetaClassDefineReservedUnused(IOMemoryMap, 6);
3444 OSMetaClassDefineReservedUnused(IOMemoryMap, 7);
3445
3446 /* ex-inline function implementation */
3447 IOPhysicalAddress IOMemoryMap::getPhysicalAddress()
3448 { return( getPhysicalSegment( 0, 0 )); }
3449
3450 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
3451
3452 bool IOMemoryMap::init(
3453 task_t intoTask,
3454 mach_vm_address_t toAddress,
3455 IOOptionBits _options,
3456 mach_vm_size_t _offset,
3457 mach_vm_size_t _length )
3458 {
3459 if (!intoTask)
3460 return( false);
3461
3462 if (!super::init())
3463 return(false);
3464
3465 fAddressMap = get_task_map(intoTask);
3466 if (!fAddressMap)
3467 return(false);
3468 vm_map_reference(fAddressMap);
3469
3470 fAddressTask = intoTask;
3471 fOptions = _options;
3472 fLength = _length;
3473 fOffset = _offset;
3474 fAddress = toAddress;
3475
3476 return (true);
3477 }
3478
3479 bool IOMemoryMap::setMemoryDescriptor(IOMemoryDescriptor * _memory, mach_vm_size_t _offset)
3480 {
3481 if (!_memory)
3482 return(false);
3483
3484 if (!fSuperMap)
3485 {
3486 if( (_offset + fLength) > _memory->getLength())
3487 return( false);
3488 fOffset = _offset;
3489 }
3490
3491 _memory->retain();
3492 if (fMemory)
3493 {
3494 if (fMemory != _memory)
3495 fMemory->removeMapping(this);
3496 fMemory->release();
3497 }
3498 fMemory = _memory;
3499
3500 return( true );
3501 }
3502
3503 IOReturn IOMemoryDescriptor::doMap(
3504 vm_map_t __addressMap,
3505 IOVirtualAddress * __address,
3506 IOOptionBits options,
3507 IOByteCount __offset,
3508 IOByteCount __length )
3509 {
3510 return (kIOReturnUnsupported);
3511 }
3512
3513 IOReturn IOMemoryDescriptor::handleFault(
3514 void * _pager,
3515 mach_vm_size_t sourceOffset,
3516 mach_vm_size_t length)
3517 {
3518 if( kIOMemoryRedirected & _flags)
3519 {
3520 #if DEBUG
3521 IOLog("sleep mem redirect %p, %qx\n", this, sourceOffset);
3522 #endif
3523 do {
3524 SLEEP;
3525 } while( kIOMemoryRedirected & _flags );
3526 }
3527 return (kIOReturnSuccess);
3528 }
3529
3530 IOReturn IOMemoryDescriptor::populateDevicePager(
3531 void * _pager,
3532 vm_map_t addressMap,
3533 mach_vm_address_t address,
3534 mach_vm_size_t sourceOffset,
3535 mach_vm_size_t length,
3536 IOOptionBits options )
3537 {
3538 IOReturn err = kIOReturnSuccess;
3539 memory_object_t pager = (memory_object_t) _pager;
3540 mach_vm_size_t size;
3541 mach_vm_size_t bytes;
3542 mach_vm_size_t page;
3543 mach_vm_size_t pageOffset;
3544 mach_vm_size_t pagerOffset;
3545 IOPhysicalLength segLen, chunk;
3546 addr64_t physAddr;
3547 IOOptionBits type;
3548
3549 type = _flags & kIOMemoryTypeMask;
3550
3551 if (reserved->dp.pagerContig)
3552 {
3553 sourceOffset = 0;
3554 pagerOffset = 0;
3555 }
3556
3557 physAddr = getPhysicalSegment( sourceOffset, &segLen, kIOMemoryMapperNone );
3558 assert( physAddr );
3559 pageOffset = physAddr - trunc_page_64( physAddr );
3560 pagerOffset = sourceOffset;
3561
3562 size = length + pageOffset;
3563 physAddr -= pageOffset;
3564
3565 segLen += pageOffset;
3566 bytes = size;
3567 do
3568 {
3569 // in the middle of the loop only map whole pages
3570 if( segLen >= bytes) segLen = bytes;
3571 else if (segLen != trunc_page(segLen)) err = kIOReturnVMError;
3572 if (physAddr != trunc_page_64(physAddr)) err = kIOReturnBadArgument;
3573
3574 if (kIOReturnSuccess != err) break;
3575
3576 #if DEBUG || DEVELOPMENT
3577 if ((kIOMemoryTypeUPL != type)
3578 && pmap_has_managed_page(atop_64(physAddr), atop_64(physAddr + segLen - 1)))
3579 {
3580 OSReportWithBacktrace("IOMemoryDescriptor physical with managed page 0x%qx:0x%qx", physAddr, segLen);
3581 }
3582 #endif /* DEBUG || DEVELOPMENT */
3583
3584 chunk = (reserved->dp.pagerContig ? round_page(segLen) : page_size);
3585 for (page = 0;
3586 (page < segLen) && (KERN_SUCCESS == err);
3587 page += chunk)
3588 {
3589 err = device_pager_populate_object(pager, pagerOffset,
3590 (ppnum_t)(atop_64(physAddr + page)), chunk);
3591 pagerOffset += chunk;
3592 }
3593
3594 assert (KERN_SUCCESS == err);
3595 if (err) break;
3596
3597 // This call to vm_fault causes an early pmap level resolution
3598 // of the mappings created above for kernel mappings, since
3599 // faulting in later can't take place from interrupt level.
3600 if ((addressMap == kernel_map) && !(kIOMemoryRedirected & _flags))
3601 {
3602 vm_fault(addressMap,
3603 (vm_map_offset_t)trunc_page_64(address),
3604 VM_PROT_READ|VM_PROT_WRITE,
3605 FALSE, THREAD_UNINT, NULL,
3606 (vm_map_offset_t)0);
3607 }
3608
3609 sourceOffset += segLen - pageOffset;
3610 address += segLen;
3611 bytes -= segLen;
3612 pageOffset = 0;
3613 }
3614 while (bytes && (physAddr = getPhysicalSegment( sourceOffset, &segLen, kIOMemoryMapperNone )));
3615
3616 if (bytes)
3617 err = kIOReturnBadArgument;
3618
3619 return (err);
3620 }
3621
3622 IOReturn IOMemoryDescriptor::doUnmap(
3623 vm_map_t addressMap,
3624 IOVirtualAddress __address,
3625 IOByteCount __length )
3626 {
3627 IOReturn err;
3628 IOMemoryMap * mapping;
3629 mach_vm_address_t address;
3630 mach_vm_size_t length;
3631
3632 if (__length) panic("doUnmap");
3633
3634 mapping = (IOMemoryMap *) __address;
3635 addressMap = mapping->fAddressMap;
3636 address = mapping->fAddress;
3637 length = mapping->fLength;
3638
3639 if (kIOMapOverwrite & mapping->fOptions) err = KERN_SUCCESS;
3640 else
3641 {
3642 if ((addressMap == kernel_map) && (kIOMemoryBufferPageable & _flags))
3643 addressMap = IOPageableMapForAddress( address );
3644 #if DEBUG
3645 if( kIOLogMapping & gIOKitDebug) IOLog("IOMemoryDescriptor::doUnmap map %p, 0x%qx:0x%qx\n",
3646 addressMap, address, length );
3647 #endif
3648 err = mach_vm_deallocate( addressMap, address, length );
3649 }
3650
3651 #if IOTRACKING
3652 IOTrackingRemove(gIOMapTracking, &mapping->fTracking, length);
3653 #endif
3654
3655 return (err);
3656 }
3657
3658 IOReturn IOMemoryDescriptor::redirect( task_t safeTask, bool doRedirect )
3659 {
3660 IOReturn err = kIOReturnSuccess;
3661 IOMemoryMap * mapping = 0;
3662 OSIterator * iter;
3663
3664 LOCK;
3665
3666 if( doRedirect)
3667 _flags |= kIOMemoryRedirected;
3668 else
3669 _flags &= ~kIOMemoryRedirected;
3670
3671 do {
3672 if( (iter = OSCollectionIterator::withCollection( _mappings))) {
3673
3674 memory_object_t pager;
3675
3676 if( reserved)
3677 pager = (memory_object_t) reserved->dp.devicePager;
3678 else
3679 pager = MACH_PORT_NULL;
3680
3681 while( (mapping = (IOMemoryMap *) iter->getNextObject()))
3682 {
3683 mapping->redirect( safeTask, doRedirect );
3684 if (!doRedirect && !safeTask && pager && (kernel_map == mapping->fAddressMap))
3685 {
3686 err = populateDevicePager(pager, mapping->fAddressMap, mapping->fAddress, mapping->fOffset, mapping->fLength, kIOMapDefaultCache );
3687 }
3688 }
3689
3690 iter->release();
3691 }
3692 } while( false );
3693
3694 if (!doRedirect)
3695 {
3696 WAKEUP;
3697 }
3698
3699 UNLOCK;
3700
3701 #ifndef __LP64__
3702 // temporary binary compatibility
3703 IOSubMemoryDescriptor * subMem;
3704 if( (subMem = OSDynamicCast( IOSubMemoryDescriptor, this)))
3705 err = subMem->redirect( safeTask, doRedirect );
3706 else
3707 err = kIOReturnSuccess;
3708 #endif /* !__LP64__ */
3709
3710 return( err );
3711 }
3712
3713 IOReturn IOMemoryMap::redirect( task_t safeTask, bool doRedirect )
3714 {
3715 IOReturn err = kIOReturnSuccess;
3716
3717 if( fSuperMap) {
3718 // err = ((IOMemoryMap *)superMap)->redirect( safeTask, doRedirect );
3719 } else {
3720
3721 LOCK;
3722
3723 do
3724 {
3725 if (!fAddress)
3726 break;
3727 if (!fAddressMap)
3728 break;
3729
3730 if ((!safeTask || (get_task_map(safeTask) != fAddressMap))
3731 && (0 == (fOptions & kIOMapStatic)))
3732 {
3733 IOUnmapPages( fAddressMap, fAddress, fLength );
3734 err = kIOReturnSuccess;
3735 #if DEBUG
3736 IOLog("IOMemoryMap::redirect(%d, %p) 0x%qx:0x%qx from %p\n", doRedirect, this, fAddress, fLength, fAddressMap);
3737 #endif
3738 }
3739 else if (kIOMapWriteCombineCache == (fOptions & kIOMapCacheMask))
3740 {
3741 IOOptionBits newMode;
3742 newMode = (fOptions & ~kIOMapCacheMask) | (doRedirect ? kIOMapInhibitCache : kIOMapWriteCombineCache);
3743 IOProtectCacheMode(fAddressMap, fAddress, fLength, newMode);
3744 }
3745 }
3746 while (false);
3747 UNLOCK;
3748 }
3749
3750 if ((((fMemory->_flags & kIOMemoryTypeMask) == kIOMemoryTypePhysical)
3751 || ((fMemory->_flags & kIOMemoryTypeMask) == kIOMemoryTypePhysical64))
3752 && safeTask
3753 && (doRedirect != (0 != (fMemory->_flags & kIOMemoryRedirected))))
3754 fMemory->redirect(safeTask, doRedirect);
3755
3756 return( err );
3757 }
3758
3759 IOReturn IOMemoryMap::unmap( void )
3760 {
3761 IOReturn err;
3762
3763 LOCK;
3764
3765 if( fAddress && fAddressMap && (0 == fSuperMap) && fMemory
3766 && (0 == (kIOMapStatic & fOptions))) {
3767
3768 err = fMemory->doUnmap(fAddressMap, (IOVirtualAddress) this, 0);
3769
3770 } else
3771 err = kIOReturnSuccess;
3772
3773 if (fAddressMap)
3774 {
3775 vm_map_deallocate(fAddressMap);
3776 fAddressMap = 0;
3777 }
3778
3779 fAddress = 0;
3780
3781 UNLOCK;
3782
3783 return( err );
3784 }
3785
3786 void IOMemoryMap::taskDied( void )
3787 {
3788 LOCK;
3789 if (fUserClientUnmap) unmap();
3790 #if IOTRACKING
3791 else IOTrackingRemove(gIOMapTracking, &fTracking, fLength);
3792 #endif
3793
3794 if( fAddressMap) {
3795 vm_map_deallocate(fAddressMap);
3796 fAddressMap = 0;
3797 }
3798 fAddressTask = 0;
3799 fAddress = 0;
3800 UNLOCK;
3801 }
3802
3803 IOReturn IOMemoryMap::userClientUnmap( void )
3804 {
3805 fUserClientUnmap = true;
3806 return (kIOReturnSuccess);
3807 }
3808
3809 // Overload the release mechanism. All mappings must be a member
3810 // of a memory descriptors _mappings set. This means that we
3811 // always have 2 references on a mapping. When either of these mappings
3812 // are released we need to free ourselves.
3813 void IOMemoryMap::taggedRelease(const void *tag) const
3814 {
3815 LOCK;
3816 super::taggedRelease(tag, 2);
3817 UNLOCK;
3818 }
3819
3820 void IOMemoryMap::free()
3821 {
3822 unmap();
3823
3824 if (fMemory)
3825 {
3826 LOCK;
3827 fMemory->removeMapping(this);
3828 UNLOCK;
3829 fMemory->release();
3830 }
3831
3832 if (fOwner && (fOwner != fMemory))
3833 {
3834 LOCK;
3835 fOwner->removeMapping(this);
3836 UNLOCK;
3837 }
3838
3839 if (fSuperMap)
3840 fSuperMap->release();
3841
3842 if (fRedirUPL) {
3843 upl_commit(fRedirUPL, NULL, 0);
3844 upl_deallocate(fRedirUPL);
3845 }
3846
3847 super::free();
3848 }
3849
3850 IOByteCount IOMemoryMap::getLength()
3851 {
3852 return( fLength );
3853 }
3854
3855 IOVirtualAddress IOMemoryMap::getVirtualAddress()
3856 {
3857 #ifndef __LP64__
3858 if (fSuperMap)
3859 fSuperMap->getVirtualAddress();
3860 else if (fAddressMap
3861 && vm_map_is_64bit(fAddressMap)
3862 && (sizeof(IOVirtualAddress) < 8))
3863 {
3864 OSReportWithBacktrace("IOMemoryMap::getVirtualAddress(0x%qx) called on 64b map; use ::getAddress()", fAddress);
3865 }
3866 #endif /* !__LP64__ */
3867
3868 return (fAddress);
3869 }
3870
3871 #ifndef __LP64__
3872 mach_vm_address_t IOMemoryMap::getAddress()
3873 {
3874 return( fAddress);
3875 }
3876
3877 mach_vm_size_t IOMemoryMap::getSize()
3878 {
3879 return( fLength );
3880 }
3881 #endif /* !__LP64__ */
3882
3883
3884 task_t IOMemoryMap::getAddressTask()
3885 {
3886 if( fSuperMap)
3887 return( fSuperMap->getAddressTask());
3888 else
3889 return( fAddressTask);
3890 }
3891
3892 IOOptionBits IOMemoryMap::getMapOptions()
3893 {
3894 return( fOptions);
3895 }
3896
3897 IOMemoryDescriptor * IOMemoryMap::getMemoryDescriptor()
3898 {
3899 return( fMemory );
3900 }
3901
3902 IOMemoryMap * IOMemoryMap::copyCompatible(
3903 IOMemoryMap * newMapping )
3904 {
3905 task_t task = newMapping->getAddressTask();
3906 mach_vm_address_t toAddress = newMapping->fAddress;
3907 IOOptionBits _options = newMapping->fOptions;
3908 mach_vm_size_t _offset = newMapping->fOffset;
3909 mach_vm_size_t _length = newMapping->fLength;
3910
3911 if( (!task) || (!fAddressMap) || (fAddressMap != get_task_map(task)))
3912 return( 0 );
3913 if( (fOptions ^ _options) & kIOMapReadOnly)
3914 return( 0 );
3915 if( (kIOMapDefaultCache != (_options & kIOMapCacheMask))
3916 && ((fOptions ^ _options) & kIOMapCacheMask))
3917 return( 0 );
3918
3919 if( (0 == (_options & kIOMapAnywhere)) && (fAddress != toAddress))
3920 return( 0 );
3921
3922 if( _offset < fOffset)
3923 return( 0 );
3924
3925 _offset -= fOffset;
3926
3927 if( (_offset + _length) > fLength)
3928 return( 0 );
3929
3930 retain();
3931 if( (fLength == _length) && (!_offset))
3932 {
3933 newMapping = this;
3934 }
3935 else
3936 {
3937 newMapping->fSuperMap = this;
3938 newMapping->fOffset = fOffset + _offset;
3939 newMapping->fAddress = fAddress + _offset;
3940 }
3941
3942 return( newMapping );
3943 }
3944
3945 IOReturn IOMemoryMap::wireRange(
3946 uint32_t options,
3947 mach_vm_size_t offset,
3948 mach_vm_size_t length)
3949 {
3950 IOReturn kr;
3951 mach_vm_address_t start = trunc_page_64(fAddress + offset);
3952 mach_vm_address_t end = round_page_64(fAddress + offset + length);
3953 vm_prot_t prot;
3954
3955 prot = (kIODirectionOutIn & options);
3956 if (prot)
3957 {
3958 prot |= VM_PROT_MEMORY_TAG_MAKE(IOMemoryTag(kernel_map));
3959 kr = vm_map_wire(fAddressMap, start, end, prot, FALSE);
3960 }
3961 else
3962 {
3963 kr = vm_map_unwire(fAddressMap, start, end, FALSE);
3964 }
3965
3966 return (kr);
3967 }
3968
3969
3970 IOPhysicalAddress
3971 #ifdef __LP64__
3972 IOMemoryMap::getPhysicalSegment( IOByteCount _offset, IOPhysicalLength * _length, IOOptionBits _options)
3973 #else /* !__LP64__ */
3974 IOMemoryMap::getPhysicalSegment( IOByteCount _offset, IOPhysicalLength * _length)
3975 #endif /* !__LP64__ */
3976 {
3977 IOPhysicalAddress address;
3978
3979 LOCK;
3980 #ifdef __LP64__
3981 address = fMemory->getPhysicalSegment( fOffset + _offset, _length, _options );
3982 #else /* !__LP64__ */
3983 address = fMemory->getPhysicalSegment( fOffset + _offset, _length );
3984 #endif /* !__LP64__ */
3985 UNLOCK;
3986
3987 return( address );
3988 }
3989
3990 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
3991
3992 #undef super
3993 #define super OSObject
3994
3995 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
3996
3997 void IOMemoryDescriptor::initialize( void )
3998 {
3999 if( 0 == gIOMemoryLock)
4000 gIOMemoryLock = IORecursiveLockAlloc();
4001
4002 gIOLastPage = IOGetLastPageNumber();
4003 }
4004
4005 void IOMemoryDescriptor::free( void )
4006 {
4007 if( _mappings) _mappings->release();
4008
4009 if (reserved)
4010 {
4011 IODelete(reserved, IOMemoryDescriptorReserved, 1);
4012 reserved = NULL;
4013 }
4014 super::free();
4015 }
4016
4017 IOMemoryMap * IOMemoryDescriptor::setMapping(
4018 task_t intoTask,
4019 IOVirtualAddress mapAddress,
4020 IOOptionBits options )
4021 {
4022 return (createMappingInTask( intoTask, mapAddress,
4023 options | kIOMapStatic,
4024 0, getLength() ));
4025 }
4026
4027 IOMemoryMap * IOMemoryDescriptor::map(
4028 IOOptionBits options )
4029 {
4030 return (createMappingInTask( kernel_task, 0,
4031 options | kIOMapAnywhere,
4032 0, getLength() ));
4033 }
4034
4035 #ifndef __LP64__
4036 IOMemoryMap * IOMemoryDescriptor::map(
4037 task_t intoTask,
4038 IOVirtualAddress atAddress,
4039 IOOptionBits options,
4040 IOByteCount offset,
4041 IOByteCount length )
4042 {
4043 if ((!(kIOMapAnywhere & options)) && vm_map_is_64bit(get_task_map(intoTask)))
4044 {
4045 OSReportWithBacktrace("IOMemoryDescriptor::map() in 64b task, use ::createMappingInTask()");
4046 return (0);
4047 }
4048
4049 return (createMappingInTask(intoTask, atAddress,
4050 options, offset, length));
4051 }
4052 #endif /* !__LP64__ */
4053
4054 IOMemoryMap * IOMemoryDescriptor::createMappingInTask(
4055 task_t intoTask,
4056 mach_vm_address_t atAddress,
4057 IOOptionBits options,
4058 mach_vm_size_t offset,
4059 mach_vm_size_t length)
4060 {
4061 IOMemoryMap * result;
4062 IOMemoryMap * mapping;
4063
4064 if (0 == length)
4065 length = getLength();
4066
4067 mapping = new IOMemoryMap;
4068
4069 if( mapping
4070 && !mapping->init( intoTask, atAddress,
4071 options, offset, length )) {
4072 mapping->release();
4073 mapping = 0;
4074 }
4075
4076 if (mapping)
4077 result = makeMapping(this, intoTask, (IOVirtualAddress) mapping, options | kIOMap64Bit, 0, 0);
4078 else
4079 result = 0;
4080
4081 #if DEBUG
4082 if (!result)
4083 IOLog("createMappingInTask failed desc %p, addr %qx, options %x, offset %qx, length %llx\n",
4084 this, atAddress, (uint32_t) options, offset, length);
4085 #endif
4086
4087 return (result);
4088 }
4089
4090 #ifndef __LP64__ // there is only a 64 bit version for LP64
4091 IOReturn IOMemoryMap::redirect(IOMemoryDescriptor * newBackingMemory,
4092 IOOptionBits options,
4093 IOByteCount offset)
4094 {
4095 return (redirect(newBackingMemory, options, (mach_vm_size_t)offset));
4096 }
4097 #endif
4098
4099 IOReturn IOMemoryMap::redirect(IOMemoryDescriptor * newBackingMemory,
4100 IOOptionBits options,
4101 mach_vm_size_t offset)
4102 {
4103 IOReturn err = kIOReturnSuccess;
4104 IOMemoryDescriptor * physMem = 0;
4105
4106 LOCK;
4107
4108 if (fAddress && fAddressMap) do
4109 {
4110 if (((fMemory->_flags & kIOMemoryTypeMask) == kIOMemoryTypePhysical)
4111 || ((fMemory->_flags & kIOMemoryTypeMask) == kIOMemoryTypePhysical64))
4112 {
4113 physMem = fMemory;
4114 physMem->retain();
4115 }
4116
4117 if (!fRedirUPL && fMemory->_memRef && (1 == fMemory->_memRef->count))
4118 {
4119 upl_size_t size = round_page(fLength);
4120 upl_control_flags_t flags = UPL_COPYOUT_FROM | UPL_SET_INTERNAL
4121 | UPL_SET_LITE | UPL_SET_IO_WIRE | UPL_BLOCK_ACCESS
4122 | UPL_MEMORY_TAG_MAKE(IOMemoryTag(kernel_map));
4123 if (KERN_SUCCESS != memory_object_iopl_request(fMemory->_memRef->entries[0].entry, 0, &size, &fRedirUPL,
4124 NULL, NULL,
4125 &flags))
4126 fRedirUPL = 0;
4127
4128 if (physMem)
4129 {
4130 IOUnmapPages( fAddressMap, fAddress, fLength );
4131 if ((false))
4132 physMem->redirect(0, true);
4133 }
4134 }
4135
4136 if (newBackingMemory)
4137 {
4138 if (newBackingMemory != fMemory)
4139 {
4140 fOffset = 0;
4141 if (this != newBackingMemory->makeMapping(newBackingMemory, fAddressTask, (IOVirtualAddress) this,
4142 options | kIOMapUnique | kIOMapReference | kIOMap64Bit,
4143 offset, fLength))
4144 err = kIOReturnError;
4145 }
4146 if (fRedirUPL)
4147 {
4148 upl_commit(fRedirUPL, NULL, 0);
4149 upl_deallocate(fRedirUPL);
4150 fRedirUPL = 0;
4151 }
4152 if ((false) && physMem)
4153 physMem->redirect(0, false);
4154 }
4155 }
4156 while (false);
4157
4158 UNLOCK;
4159
4160 if (physMem)
4161 physMem->release();
4162
4163 return (err);
4164 }
4165
4166 IOMemoryMap * IOMemoryDescriptor::makeMapping(
4167 IOMemoryDescriptor * owner,
4168 task_t __intoTask,
4169 IOVirtualAddress __address,
4170 IOOptionBits options,
4171 IOByteCount __offset,
4172 IOByteCount __length )
4173 {
4174 #ifndef __LP64__
4175 if (!(kIOMap64Bit & options)) panic("IOMemoryDescriptor::makeMapping !64bit");
4176 #endif /* !__LP64__ */
4177
4178 IOMemoryDescriptor * mapDesc = 0;
4179 IOMemoryMap * result = 0;
4180 OSIterator * iter;
4181
4182 IOMemoryMap * mapping = (IOMemoryMap *) __address;
4183 mach_vm_size_t offset = mapping->fOffset + __offset;
4184 mach_vm_size_t length = mapping->fLength;
4185
4186 mapping->fOffset = offset;
4187
4188 LOCK;
4189
4190 do
4191 {
4192 if (kIOMapStatic & options)
4193 {
4194 result = mapping;
4195 addMapping(mapping);
4196 mapping->setMemoryDescriptor(this, 0);
4197 continue;
4198 }
4199
4200 if (kIOMapUnique & options)
4201 {
4202 addr64_t phys;
4203 IOByteCount physLen;
4204
4205 // if (owner != this) continue;
4206
4207 if (((_flags & kIOMemoryTypeMask) == kIOMemoryTypePhysical)
4208 || ((_flags & kIOMemoryTypeMask) == kIOMemoryTypePhysical64))
4209 {
4210 phys = getPhysicalSegment(offset, &physLen, kIOMemoryMapperNone);
4211 if (!phys || (physLen < length))
4212 continue;
4213
4214 mapDesc = IOMemoryDescriptor::withAddressRange(
4215 phys, length, getDirection() | kIOMemoryMapperNone, NULL);
4216 if (!mapDesc)
4217 continue;
4218 offset = 0;
4219 mapping->fOffset = offset;
4220 }
4221 }
4222 else
4223 {
4224 // look for a compatible existing mapping
4225 if( (iter = OSCollectionIterator::withCollection(_mappings)))
4226 {
4227 IOMemoryMap * lookMapping;
4228 while ((lookMapping = (IOMemoryMap *) iter->getNextObject()))
4229 {
4230 if ((result = lookMapping->copyCompatible(mapping)))
4231 {
4232 addMapping(result);
4233 result->setMemoryDescriptor(this, offset);
4234 break;
4235 }
4236 }
4237 iter->release();
4238 }
4239 if (result || (options & kIOMapReference))
4240 {
4241 if (result != mapping)
4242 {
4243 mapping->release();
4244 mapping = NULL;
4245 }
4246 continue;
4247 }
4248 }
4249
4250 if (!mapDesc)
4251 {
4252 mapDesc = this;
4253 mapDesc->retain();
4254 }
4255 IOReturn
4256 kr = mapDesc->doMap( 0, (IOVirtualAddress *) &mapping, options, 0, 0 );
4257 if (kIOReturnSuccess == kr)
4258 {
4259 result = mapping;
4260 mapDesc->addMapping(result);
4261 result->setMemoryDescriptor(mapDesc, offset);
4262 }
4263 else
4264 {
4265 mapping->release();
4266 mapping = NULL;
4267 }
4268 }
4269 while( false );
4270
4271 UNLOCK;
4272
4273 if (mapDesc)
4274 mapDesc->release();
4275
4276 return (result);
4277 }
4278
4279 void IOMemoryDescriptor::addMapping(
4280 IOMemoryMap * mapping )
4281 {
4282 if( mapping)
4283 {
4284 if( 0 == _mappings)
4285 _mappings = OSSet::withCapacity(1);
4286 if( _mappings )
4287 _mappings->setObject( mapping );
4288 }
4289 }
4290
4291 void IOMemoryDescriptor::removeMapping(
4292 IOMemoryMap * mapping )
4293 {
4294 if( _mappings)
4295 _mappings->removeObject( mapping);
4296 }
4297
4298 #ifndef __LP64__
4299 // obsolete initializers
4300 // - initWithOptions is the designated initializer
4301 bool
4302 IOMemoryDescriptor::initWithAddress(void * address,
4303 IOByteCount length,
4304 IODirection direction)
4305 {
4306 return( false );
4307 }
4308
4309 bool
4310 IOMemoryDescriptor::initWithAddress(IOVirtualAddress address,
4311 IOByteCount length,
4312 IODirection direction,
4313 task_t task)
4314 {
4315 return( false );
4316 }
4317
4318 bool
4319 IOMemoryDescriptor::initWithPhysicalAddress(
4320 IOPhysicalAddress address,
4321 IOByteCount length,
4322 IODirection direction )
4323 {
4324 return( false );
4325 }
4326
4327 bool
4328 IOMemoryDescriptor::initWithRanges(
4329 IOVirtualRange * ranges,
4330 UInt32 withCount,
4331 IODirection direction,
4332 task_t task,
4333 bool asReference)
4334 {
4335 return( false );
4336 }
4337
4338 bool
4339 IOMemoryDescriptor::initWithPhysicalRanges( IOPhysicalRange * ranges,
4340 UInt32 withCount,
4341 IODirection direction,
4342 bool asReference)
4343 {
4344 return( false );
4345 }
4346
4347 void * IOMemoryDescriptor::getVirtualSegment(IOByteCount offset,
4348 IOByteCount * lengthOfSegment)
4349 {
4350 return( 0 );
4351 }
4352 #endif /* !__LP64__ */
4353
4354 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
4355
4356 bool IOGeneralMemoryDescriptor::serialize(OSSerialize * s) const
4357 {
4358 OSSymbol const *keys[2];
4359 OSObject *values[2];
4360 OSArray * array;
4361
4362 struct SerData {
4363 user_addr_t address;
4364 user_size_t length;
4365 } *vcopy;
4366 unsigned int index, nRanges;
4367 bool result;
4368
4369 IOOptionBits type = _flags & kIOMemoryTypeMask;
4370
4371 if (s == NULL) return false;
4372
4373 array = OSArray::withCapacity(4);
4374 if (!array) return (false);
4375
4376 nRanges = _rangesCount;
4377 vcopy = (SerData *) IOMalloc(sizeof(SerData) * nRanges);
4378 if (vcopy == 0) return false;
4379
4380 keys[0] = OSSymbol::withCString("address");
4381 keys[1] = OSSymbol::withCString("length");
4382
4383 result = false;
4384 values[0] = values[1] = 0;
4385
4386 // From this point on we can go to bail.
4387
4388 // Copy the volatile data so we don't have to allocate memory
4389 // while the lock is held.
4390 LOCK;
4391 if (nRanges == _rangesCount) {
4392 Ranges vec = _ranges;
4393 for (index = 0; index < nRanges; index++) {
4394 mach_vm_address_t addr; mach_vm_size_t len;
4395 getAddrLenForInd(addr, len, type, vec, index);
4396 vcopy[index].address = addr;
4397 vcopy[index].length = len;
4398 }
4399 } else {
4400 // The descriptor changed out from under us. Give up.
4401 UNLOCK;
4402 result = false;
4403 goto bail;
4404 }
4405 UNLOCK;
4406
4407 for (index = 0; index < nRanges; index++)
4408 {
4409 user_addr_t addr = vcopy[index].address;
4410 IOByteCount len = (IOByteCount) vcopy[index].length;
4411 values[0] = OSNumber::withNumber(addr, sizeof(addr) * 8);
4412 if (values[0] == 0) {
4413 result = false;
4414 goto bail;
4415 }
4416 values[1] = OSNumber::withNumber(len, sizeof(len) * 8);
4417 if (values[1] == 0) {
4418 result = false;
4419 goto bail;
4420 }
4421 OSDictionary *dict = OSDictionary::withObjects((const OSObject **)values, (const OSSymbol **)keys, 2);
4422 if (dict == 0) {
4423 result = false;
4424 goto bail;
4425 }
4426 array->setObject(dict);
4427 dict->release();
4428 values[0]->release();
4429 values[1]->release();
4430 values[0] = values[1] = 0;
4431 }
4432
4433 result = array->serialize(s);
4434
4435 bail:
4436 if (array)
4437 array->release();
4438 if (values[0])
4439 values[0]->release();
4440 if (values[1])
4441 values[1]->release();
4442 if (keys[0])
4443 keys[0]->release();
4444 if (keys[1])
4445 keys[1]->release();
4446 if (vcopy)
4447 IOFree(vcopy, sizeof(SerData) * nRanges);
4448
4449 return result;
4450 }
4451
4452 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
4453
4454 OSMetaClassDefineReservedUsed(IOMemoryDescriptor, 0);
4455 #ifdef __LP64__
4456 OSMetaClassDefineReservedUnused(IOMemoryDescriptor, 1);
4457 OSMetaClassDefineReservedUnused(IOMemoryDescriptor, 2);
4458 OSMetaClassDefineReservedUnused(IOMemoryDescriptor, 3);
4459 OSMetaClassDefineReservedUnused(IOMemoryDescriptor, 4);
4460 OSMetaClassDefineReservedUnused(IOMemoryDescriptor, 5);
4461 OSMetaClassDefineReservedUnused(IOMemoryDescriptor, 6);
4462 OSMetaClassDefineReservedUnused(IOMemoryDescriptor, 7);
4463 #else /* !__LP64__ */
4464 OSMetaClassDefineReservedUsed(IOMemoryDescriptor, 1);
4465 OSMetaClassDefineReservedUsed(IOMemoryDescriptor, 2);
4466 OSMetaClassDefineReservedUsed(IOMemoryDescriptor, 3);
4467 OSMetaClassDefineReservedUsed(IOMemoryDescriptor, 4);
4468 OSMetaClassDefineReservedUsed(IOMemoryDescriptor, 5);
4469 OSMetaClassDefineReservedUsed(IOMemoryDescriptor, 6);
4470 OSMetaClassDefineReservedUsed(IOMemoryDescriptor, 7);
4471 #endif /* !__LP64__ */
4472 OSMetaClassDefineReservedUnused(IOMemoryDescriptor, 8);
4473 OSMetaClassDefineReservedUnused(IOMemoryDescriptor, 9);
4474 OSMetaClassDefineReservedUnused(IOMemoryDescriptor, 10);
4475 OSMetaClassDefineReservedUnused(IOMemoryDescriptor, 11);
4476 OSMetaClassDefineReservedUnused(IOMemoryDescriptor, 12);
4477 OSMetaClassDefineReservedUnused(IOMemoryDescriptor, 13);
4478 OSMetaClassDefineReservedUnused(IOMemoryDescriptor, 14);
4479 OSMetaClassDefineReservedUnused(IOMemoryDescriptor, 15);
4480
4481 /* ex-inline function implementation */
4482 IOPhysicalAddress
4483 IOMemoryDescriptor::getPhysicalAddress()
4484 { return( getPhysicalSegment( 0, 0 )); }