2 * Copyright (c) 2000-2019 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
28 /* Copyright (c) 1995, 1997 Apple Computer, Inc. All Rights Reserved */
30 * Copyright (c) 1982, 1986, 1989, 1991, 1993
31 * The Regents of the University of California. All rights reserved.
32 * (c) UNIX System Laboratories, Inc.
33 * All or some portions of this file are derived from material licensed
34 * to the University of California by American Telephone and Telegraph
35 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
36 * the permission of UNIX System Laboratories, Inc.
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. All advertising materials mentioning features or use of this software
47 * must display the following acknowledgement:
48 * This product includes software developed by the University of
49 * California, Berkeley and its contributors.
50 * 4. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 * @(#)kern_fork.c 8.8 (Berkeley) 2/14/95
69 * NOTICE: This file was modified by McAfee Research in 2004 to introduce
70 * support for mandatory and extensible security protections. This notice
71 * is included in support of clause 2.2 (b) of the Apple Public License,
75 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
76 * support for mandatory and extensible security protections. This notice
77 * is included in support of clause 2.2 (b) of the Apple Public License,
81 #include <kern/assert.h>
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/filedesc.h>
85 #include <sys/kernel.h>
86 #include <sys/malloc.h>
87 #include <sys/proc_internal.h>
88 #include <sys/kauth.h>
90 #include <sys/reason.h>
91 #include <sys/resourcevar.h>
92 #include <sys/vnode_internal.h>
93 #include <sys/file_internal.h>
95 #include <sys/codesign.h>
96 #include <sys/sysproto.h>
98 #include <sys/persona.h>
100 #include <sys/doc_tombstone.h>
102 /* Do not include dtrace.h, it redefines kmem_[alloc/free] */
103 extern void (*dtrace_proc_waitfor_exec_ptr
)(proc_t
);
104 extern void dtrace_proc_fork(proc_t
, proc_t
, int);
107 * Since dtrace_proc_waitfor_exec_ptr can be added/removed in dtrace_subr.c,
108 * we will store its value before actually calling it.
110 static void (*dtrace_proc_waitfor_hook
)(proc_t
) = NULL
;
112 #include <sys/dtrace_ptss.h>
115 #include <security/audit/audit.h>
117 #include <mach/mach_types.h>
118 #include <kern/coalition.h>
119 #include <kern/kern_types.h>
120 #include <kern/kalloc.h>
121 #include <kern/mach_param.h>
122 #include <kern/task.h>
123 #include <kern/thread.h>
124 #include <kern/thread_call.h>
125 #include <kern/zalloc.h>
132 #include <security/mac_framework.h>
133 #include <security/mac_mach_internal.h>
136 #include <vm/vm_map.h>
137 #include <vm/vm_protos.h>
138 #include <vm/vm_shared_region.h>
140 #include <sys/shm_internal.h> /* for shmfork() */
141 #include <mach/task.h> /* for thread_create() */
142 #include <mach/thread_act.h> /* for thread_resume() */
146 #if CONFIG_MEMORYSTATUS
147 #include <sys/kern_memorystatus.h>
150 /* XXX routines which should have Mach prototypes, but don't */
151 void thread_set_parent(thread_t parent
, int pid
);
152 extern void act_thread_catt(void *ctx
);
153 void thread_set_child(thread_t child
, int pid
);
154 void *act_thread_csave(void);
155 extern boolean_t
task_is_exec_copy(task_t
);
156 int nextpidversion
= 0;
159 thread_t
cloneproc(task_t
, coalition_t
*, proc_t
, int, int);
160 proc_t
forkproc(proc_t
);
161 void forkproc_free(proc_t
);
162 thread_t
fork_create_child(task_t parent_task
,
163 coalition_t
*parent_coalitions
,
169 void proc_vfork_begin(proc_t parent_proc
);
170 void proc_vfork_end(proc_t parent_proc
);
172 #define DOFORK 0x1 /* fork() system call */
173 #define DOVFORK 0x2 /* vfork() system call */
178 * Description: start a vfork on a process
180 * Parameters: parent_proc process (re)entering vfork state
184 * Notes: Although this function increments a count, a count in
185 * excess of 1 is not currently supported. According to the
186 * POSIX standard, calling anything other than execve() or
187 * _exit() following a vfork(), including calling vfork()
188 * itself again, will result in undefined behaviour
191 proc_vfork_begin(proc_t parent_proc
)
193 proc_lock(parent_proc
);
194 parent_proc
->p_lflag
|= P_LVFORK
;
195 parent_proc
->p_vforkcnt
++;
196 proc_unlock(parent_proc
);
202 * Description: stop a vfork on a process
204 * Parameters: parent_proc process leaving vfork state
208 * Notes: Decrements the count; currently, reentrancy of vfork()
209 * is unsupported on the current process
212 proc_vfork_end(proc_t parent_proc
)
214 proc_lock(parent_proc
);
215 parent_proc
->p_vforkcnt
--;
216 if (parent_proc
->p_vforkcnt
< 0) {
217 panic("vfork cnt is -ve");
219 if (parent_proc
->p_vforkcnt
== 0) {
220 parent_proc
->p_lflag
&= ~P_LVFORK
;
222 proc_unlock(parent_proc
);
229 * Description: vfork system call
231 * Parameters: void [no arguments]
233 * Retval: 0 (to child process)
234 * !0 pid of child (to parent process)
235 * -1 error (see "Returns:")
237 * Returns: EAGAIN Administrative limit reached
238 * EINVAL vfork() called during vfork()
239 * ENOMEM Failed to allocate new process
241 * Note: After a successful call to this function, the parent process
242 * has its task, thread, and uthread lent to the child process,
243 * and control is returned to the caller; if this function is
244 * invoked as a system call, the return is to user space, and
245 * is effectively running on the child process.
247 * Subsequent calls that operate on process state are permitted,
248 * though discouraged, and will operate on the child process; any
249 * operations on the task, thread, or uthread will result in
250 * changes in the parent state, and, if inheritable, the child
251 * state, when a task, thread, and uthread are realized for the
252 * child process at execve() time, will also be effected. Given
253 * this, it's recemmended that people use the posix_spawn() call
256 * BLOCK DIAGRAM OF VFORK
260 * ,----------------. ,-------------.
262 * | parent_thread | ------> | parent_task |
264 * `----------------' `-------------'
265 * uthread | ^ bsd_info | ^
266 * v | vc_thread v | task
267 * ,----------------. ,-------------.
269 * | parent_uthread | <.list. | parent_proc | <-- current_proc()
271 * `----------------' `-------------'
278 * ,----------------. ,-------------.
280 * ,----> | parent_thread | ------> | parent_task |
282 * | `----------------' `-------------'
283 * | uthread | ^ bsd_info | ^
284 * | v | vc_thread v | task
285 * | ,----------------. ,-------------.
287 * | | parent_uthread | <.list. | parent_proc |
289 * | `----------------' `-------------'
292 * | ,----------------.
294 * p_vforkact | child_proc | <-- current_proc()
299 vfork(proc_t parent_proc
, __unused
struct vfork_args
*uap
, int32_t *retval
)
301 thread_t child_thread
;
304 if ((err
= fork1(parent_proc
, &child_thread
, PROC_CREATE_VFORK
, NULL
)) != 0) {
307 uthread_t ut
= get_bsdthread_info(current_thread());
308 proc_t child_proc
= ut
->uu_proc
;
310 retval
[0] = child_proc
->p_pid
;
311 retval
[1] = 1; /* flag child return for user space */
314 * Drop the signal lock on the child which was taken on our
315 * behalf by forkproc()/cloneproc() to prevent signals being
316 * received by the child in a partially constructed state.
318 proc_signalend(child_proc
, 0);
319 proc_transend(child_proc
, 0);
321 proc_knote(parent_proc
, NOTE_FORK
| child_proc
->p_pid
);
322 DTRACE_PROC1(create
, proc_t
, child_proc
);
323 ut
->uu_flag
&= ~UT_VFORKING
;
333 * Description: common code used by all new process creation other than the
334 * bootstrap of the initial process on the system
336 * Parameters: parent_proc parent process of the process being
337 * child_threadp pointer to location to receive the
338 * Mach thread_t of the child process
340 * kind kind of creation being requested
341 * coalitions if spawn, the set of coalitions the
342 * child process should join, or NULL to
343 * inherit the parent's. On non-spawns,
344 * this param is ignored and the child
345 * always inherits the parent's
348 * Notes: Permissable values for 'kind':
350 * PROC_CREATE_FORK Create a complete process which will
351 * return actively running in both the
352 * parent and the child; the child copies
353 * the parent address space.
354 * PROC_CREATE_SPAWN Create a complete process which will
355 * return actively running in the parent
356 * only after returning actively running
357 * in the child; the child address space
358 * is newly created by an image activator,
359 * after which the child is run.
360 * PROC_CREATE_VFORK Creates a partial process which will
361 * borrow the parent task, thread, and
362 * uthread to return running in the child;
363 * the child address space and other parts
364 * are lazily created at execve() time, or
365 * the child is terminated, and the parent
366 * does not actively run until that
369 * At first it may seem strange that we return the child thread
370 * address rather than process structure, since the process is
371 * the only part guaranteed to be "new"; however, since we do
372 * not actualy adjust other references between Mach and BSD (see
373 * the block diagram above the implementation of vfork()), this
374 * is the only method which guarantees us the ability to get
375 * back to the other information.
378 fork1(proc_t parent_proc
, thread_t
*child_threadp
, int kind
, coalition_t
*coalitions
)
380 thread_t parent_thread
= (thread_t
)current_thread();
381 uthread_t parent_uthread
= (uthread_t
)get_bsdthread_info(parent_thread
);
382 proc_t child_proc
= NULL
; /* set in switch, but compiler... */
383 thread_t child_thread
= NULL
;
390 * Although process entries are dynamically created, we still keep
391 * a global limit on the maximum number we will create. Don't allow
392 * a nonprivileged user to use the last process; don't let root
393 * exceed the limit. The variable nprocs is the current number of
394 * processes, maxproc is the limit.
396 uid
= kauth_getruid();
398 if ((nprocs
>= maxproc
- 1 && uid
!= 0) || nprocs
>= maxproc
) {
399 #if (DEVELOPMENT || DEBUG) && CONFIG_EMBEDDED
401 * On the development kernel, panic so that the fact that we hit
402 * the process limit is obvious, as this may very well wedge the
405 panic("The process table is full; parent pid=%d", parent_proc
->p_pid
);
414 * Increment the count of procs running with this uid. Don't allow
415 * a nonprivileged user to exceed their current limit, which is
416 * always less than what an rlim_t can hold.
417 * (locking protection is provided by list lock held in chgproccnt)
419 count
= chgproccnt(uid
, 1);
421 (rlim_t
)count
> parent_proc
->p_rlimit
[RLIMIT_NPROC
].rlim_cur
) {
422 #if (DEVELOPMENT || DEBUG) && CONFIG_EMBEDDED
424 * On the development kernel, panic so that the fact that we hit
425 * the per user process limit is obvious. This may be less dire
426 * than hitting the global process limit, but we cannot rely on
429 panic("The per-user process limit has been hit; parent pid=%d, uid=%d", parent_proc
->p_pid
, uid
);
437 * Determine if MAC policies applied to the process will allow
438 * it to fork. This is an advisory-only check.
440 err
= mac_proc_check_fork(parent_proc
);
447 case PROC_CREATE_VFORK
:
449 * Prevent a vfork while we are in vfork(); we should
450 * also likely preventing a fork here as well, and this
451 * check should then be outside the switch statement,
452 * since the proc struct contents will copy from the
453 * child and the tash/thread/uthread from the parent in
454 * that case. We do not support vfork() in vfork()
455 * because we don't have to; the same non-requirement
456 * is true of both fork() and posix_spawn() and any
457 * call other than execve() amd _exit(), but we've
458 * been historically lenient, so we continue to be so
461 * <rdar://6640521> Probably a source of random panics
463 if (parent_uthread
->uu_flag
& UT_VFORK
) {
464 printf("fork1 called within vfork by %s\n", parent_proc
->p_comm
);
470 * Flag us in progress; if we chose to support vfork() in
471 * vfork(), we would chain our parent at this point (in
472 * effect, a stack push). We don't, since we actually want
473 * to disallow everything not specified in the standard
475 proc_vfork_begin(parent_proc
);
477 /* The newly created process comes with signal lock held */
478 if ((child_proc
= forkproc(parent_proc
)) == NULL
) {
479 /* Failed to allocate new process */
480 proc_vfork_end(parent_proc
);
485 // XXX BEGIN: wants to move to be common code (and safe)
488 * allow policies to associate the credential/label that
489 * we referenced from the parent ... with the child
490 * JMM - this really isn't safe, as we can drop that
491 * association without informing the policy in other
492 * situations (keep long enough to get policies changed)
494 mac_cred_label_associate_fork(child_proc
->p_ucred
, child_proc
);
498 * Propogate change of PID - may get new cred if auditing.
500 * NOTE: This has no effect in the vfork case, since
501 * child_proc->task != current_task(), but we duplicate it
502 * because this is probably, ultimately, wrong, since we
503 * will be running in the "child" which is the parent task
504 * with the wrong token until we get to the execve() or
505 * _exit() call; a lot of "undefined" can happen before
508 * <rdar://6640530> disallow everything but exeve()/_exit()?
510 set_security_token(child_proc
);
512 AUDIT_ARG(pid
, child_proc
->p_pid
);
514 // XXX END: wants to move to be common code (and safe)
517 * BORROW PARENT TASK, THREAD, UTHREAD FOR CHILD
519 * Note: this is where we would "push" state instead of setting
520 * it for nested vfork() support (see proc_vfork_end() for
521 * description if issues here).
523 child_proc
->task
= parent_proc
->task
;
525 child_proc
->p_lflag
|= P_LINVFORK
;
526 child_proc
->p_vforkact
= parent_thread
;
527 child_proc
->p_stat
= SRUN
;
530 * Until UT_VFORKING is cleared at the end of the vfork
531 * syscall, the process identity of this thread is slightly
534 * As long as UT_VFORK and it's associated field (uu_proc)
535 * is set, current_proc() will always return the child process.
537 * However dtrace_proc_selfpid() returns the parent pid to
538 * ensure that e.g. the proc:::create probe actions accrue
539 * to the parent. (Otherwise the child magically seems to
540 * have created itself!)
542 parent_uthread
->uu_flag
|= UT_VFORK
| UT_VFORKING
;
543 parent_uthread
->uu_proc
= child_proc
;
544 parent_uthread
->uu_userstate
= (void *)act_thread_csave();
545 parent_uthread
->uu_vforkmask
= parent_uthread
->uu_sigmask
;
547 /* temporarily drop thread-set-id state */
548 if (parent_uthread
->uu_flag
& UT_SETUID
) {
549 parent_uthread
->uu_flag
|= UT_WASSETUID
;
550 parent_uthread
->uu_flag
&= ~UT_SETUID
;
553 /* blow thread state information */
554 /* XXX is this actually necessary, given syscall return? */
555 thread_set_child(parent_thread
, child_proc
->p_pid
);
557 child_proc
->p_acflag
= AFORK
; /* forked but not exec'ed */
560 * Preserve synchronization semantics of vfork. If
561 * waiting for child to exec or exit, set P_PPWAIT
562 * on child, and sleep on our proc (in case of exit).
564 child_proc
->p_lflag
|= P_LPPWAIT
;
565 pinsertchild(parent_proc
, child_proc
); /* set visible */
569 case PROC_CREATE_SPAWN
:
571 * A spawned process differs from a forked process in that
572 * the spawned process does not carry around the parents
573 * baggage with regard to address space copying, dtrace,
580 case PROC_CREATE_FORK
:
582 * When we clone the parent process, we are going to inherit
583 * its task attributes and memory, since when we fork, we
584 * will, in effect, create a duplicate of it, with only minor
585 * differences. Contrarily, spawned processes do not inherit.
587 if ((child_thread
= cloneproc(parent_proc
->task
,
588 spawn
? coalitions
: NULL
,
590 spawn
? FALSE
: TRUE
,
592 /* Failed to create thread */
597 /* copy current thread state into the child thread (only for fork) */
599 thread_dup(child_thread
);
602 /* child_proc = child_thread->task->proc; */
603 child_proc
= (proc_t
)(get_bsdtask_info(get_threadtask(child_thread
)));
605 // XXX BEGIN: wants to move to be common code (and safe)
608 * allow policies to associate the credential/label that
609 * we referenced from the parent ... with the child
610 * JMM - this really isn't safe, as we can drop that
611 * association without informing the policy in other
612 * situations (keep long enough to get policies changed)
614 mac_cred_label_associate_fork(child_proc
->p_ucred
, child_proc
);
618 * Propogate change of PID - may get new cred if auditing.
620 * NOTE: This has no effect in the vfork case, since
621 * child_proc->task != current_task(), but we duplicate it
622 * because this is probably, ultimately, wrong, since we
623 * will be running in the "child" which is the parent task
624 * with the wrong token until we get to the execve() or
625 * _exit() call; a lot of "undefined" can happen before
628 * <rdar://6640530> disallow everything but exeve()/_exit()?
630 set_security_token(child_proc
);
632 AUDIT_ARG(pid
, child_proc
->p_pid
);
634 // XXX END: wants to move to be common code (and safe)
637 * Blow thread state information; this is what gives the child
638 * process its "return" value from a fork() call.
640 * Note: this should probably move to fork() proper, since it
641 * is not relevent to spawn, and the value won't matter
642 * until we resume the child there. If you are in here
643 * refactoring code, consider doing this at the same time.
645 thread_set_child(child_thread
, child_proc
->p_pid
);
647 child_proc
->p_acflag
= AFORK
; /* forked but not exec'ed */
650 dtrace_proc_fork(parent_proc
, child_proc
, spawn
);
651 #endif /* CONFIG_DTRACE */
654 * Of note, we need to initialize the bank context behind
655 * the protection of the proc_trans lock to prevent a race with exit.
657 task_bank_init(get_threadtask(child_thread
));
663 panic("fork1 called with unknown kind %d", kind
);
668 /* return the thread pointer to the caller */
669 *child_threadp
= child_thread
;
673 * In the error case, we return a 0 value for the returned pid (but
674 * it is ignored in the trampoline due to the error return); this
675 * is probably not necessary.
678 (void)chgproccnt(uid
, -1);
688 * Description: "Return" to parent vfork thread() following execve/_exit;
689 * this is done by reassociating the parent process structure
690 * with the task, thread, and uthread.
692 * Refer to the ASCII art above vfork() to figure out the
693 * state we're undoing.
695 * Parameters: child_proc Child process
696 * retval System call return value array
697 * rval Return value to present to parent
701 * Notes: The caller resumes or exits the parent, as appropriate, after
702 * calling this function.
705 vfork_return(proc_t child_proc
, int32_t *retval
, int rval
)
707 task_t parent_task
= get_threadtask(child_proc
->p_vforkact
);
708 proc_t parent_proc
= get_bsdtask_info(parent_task
);
709 thread_t th
= current_thread();
710 uthread_t uth
= get_bsdthread_info(th
);
712 act_thread_catt(uth
->uu_userstate
);
714 /* clear vfork state in parent proc structure */
715 proc_vfork_end(parent_proc
);
717 /* REPATRIATE PARENT TASK, THREAD, UTHREAD */
718 uth
->uu_userstate
= 0;
719 uth
->uu_flag
&= ~UT_VFORK
;
720 /* restore thread-set-id state */
721 if (uth
->uu_flag
& UT_WASSETUID
) {
722 uth
->uu_flag
|= UT_SETUID
;
723 uth
->uu_flag
&= ~UT_WASSETUID
;
726 uth
->uu_sigmask
= uth
->uu_vforkmask
;
728 proc_lock(child_proc
);
729 child_proc
->p_lflag
&= ~P_LINVFORK
;
730 child_proc
->p_vforkact
= 0;
731 proc_unlock(child_proc
);
733 thread_set_parent(th
, rval
);
737 retval
[1] = 0; /* mark parent */
745 * Description: Common operations associated with the creation of a child
748 * Parameters: parent_task parent task
749 * parent_coalitions parent's set of coalitions
750 * child_proc child process
751 * inherit_memory TRUE, if the parents address space is
752 * to be inherited by the child
753 * is_64bit_addr TRUE, if the child being created will
754 * be associated with a 64 bit address space
755 * is_64bit_data TRUE if the child being created will use a
756 * 64-bit register state
757 * in_exec TRUE, if called from execve or posix spawn set exec
758 * FALSE, if called from fork or vfexec
760 * Note: This code is called in the fork() case, from the execve() call
761 * graph, if implementing an execve() following a vfork(), from
762 * the posix_spawn() call graph (which implicitly includes a
763 * vfork() equivalent call, and in the system bootstrap case.
765 * It creates a new task and thread (and as a side effect of the
766 * thread creation, a uthread) in the parent coalition set, which is
767 * then associated with the process 'child'. If the parent
768 * process address space is to be inherited, then a flag
769 * indicates that the newly created task should inherit this from
772 * As a special concession to bootstrapping the initial process
773 * in the system, it's possible for 'parent_task' to be TASK_NULL;
774 * in this case, 'inherit_memory' MUST be FALSE.
777 fork_create_child(task_t parent_task
,
778 coalition_t
*parent_coalitions
,
785 thread_t child_thread
= NULL
;
787 kern_return_t result
;
789 /* Create a new task for the child process */
790 result
= task_create_internal(parent_task
,
796 in_exec
? TPF_EXEC_COPY
: TPF_NONE
, /* Mark the task exec copy if in execve */
797 (TRW_LRETURNWAIT
| TRW_LRETURNWAITER
), /* All created threads will wait in task_wait_to_return */
799 if (result
!= KERN_SUCCESS
) {
800 printf("%s: task_create_internal failed. Code: %d\n",
807 * Set the child process task to the new task if not in exec,
808 * will set the task for exec case in proc_exec_switch_task after image activation.
810 child_proc
->task
= child_task
;
813 /* Set child task process to child proc */
814 set_bsdtask_info(child_task
, child_proc
);
816 /* Propagate CPU limit timer from parent */
817 if (timerisset(&child_proc
->p_rlim_cpu
)) {
818 task_vtimer_set(child_task
, TASK_VTIMER_RLIM
);
822 * Set child process BSD visible scheduler priority if nice value
823 * inherited from parent
825 if (child_proc
->p_nice
!= 0) {
826 resetpriority(child_proc
);
830 * Create a new thread for the child process
831 * The new thread is waiting on the event triggered by 'task_clear_return_wait'
833 result
= thread_create_waiting(child_task
,
834 (thread_continue_t
)task_wait_to_return
,
835 task_get_return_wait_event(child_task
),
838 if (result
!= KERN_SUCCESS
) {
839 printf("%s: thread_create failed. Code: %d\n",
841 task_deallocate(child_task
);
846 * Tag thread as being the first thread in its task.
848 thread_set_tag(child_thread
, THREAD_TAG_MAINTHREAD
);
851 thread_yield_internal(1);
860 * Description: fork system call.
862 * Parameters: parent Parent process to fork
863 * uap (void) [unused]
864 * retval Return value
867 * EAGAIN Resource unavailable, try again
869 * Notes: Attempts to create a new child process which inherits state
870 * from the parent process. If successful, the call returns
871 * having created an initially suspended child process with an
872 * extra Mach task and thread reference, for which the thread
873 * is initially suspended. Until we resume the child process,
874 * it is not yet running.
876 * The return information to the child is contained in the
877 * thread state structure of the new child, and does not
878 * become visible to the child through a normal return process,
879 * since it never made the call into the kernel itself in the
882 * After resuming the thread, this function returns directly to
883 * the parent process which invoked the fork() system call.
885 * Important: The child thread_resume occurs before the parent returns;
886 * depending on scheduling latency, this means that it is not
887 * deterministic as to whether the parent or child is scheduled
888 * to run first. It is entirely possible that the child could
889 * run to completion prior to the parent running.
892 fork(proc_t parent_proc
, __unused
struct fork_args
*uap
, int32_t *retval
)
894 thread_t child_thread
;
897 retval
[1] = 0; /* flag parent return for user space */
899 if ((err
= fork1(parent_proc
, &child_thread
, PROC_CREATE_FORK
, NULL
)) == 0) {
903 /* Return to the parent */
904 child_proc
= (proc_t
)get_bsdthreadtask_info(child_thread
);
905 retval
[0] = child_proc
->p_pid
;
908 * Drop the signal lock on the child which was taken on our
909 * behalf by forkproc()/cloneproc() to prevent signals being
910 * received by the child in a partially constructed state.
912 proc_signalend(child_proc
, 0);
913 proc_transend(child_proc
, 0);
915 /* flag the fork has occurred */
916 proc_knote(parent_proc
, NOTE_FORK
| child_proc
->p_pid
);
917 DTRACE_PROC1(create
, proc_t
, child_proc
);
920 if ((dtrace_proc_waitfor_hook
= dtrace_proc_waitfor_exec_ptr
) != NULL
) {
921 (*dtrace_proc_waitfor_hook
)(child_proc
);
925 /* "Return" to the child */
926 task_clear_return_wait(get_threadtask(child_thread
), TCRW_CLEAR_ALL_WAIT
);
928 /* drop the extra references we got during the creation */
929 if ((child_task
= (task_t
)get_threadtask(child_thread
)) != NULL
) {
930 task_deallocate(child_task
);
932 thread_deallocate(child_thread
);
942 * Description: Create a new process from a specified process.
944 * Parameters: parent_task The parent task to be cloned, or
945 * TASK_NULL is task characteristics
946 * are not to be inherited
947 * be cloned, or TASK_NULL if the new
948 * task is not to inherit the VM
949 * characteristics of the parent
950 * parent_proc The parent process to be cloned
951 * inherit_memory True if the child is to inherit
952 * memory from the parent; if this is
953 * non-NULL, then the parent_task must
955 * memstat_internal Whether to track the process in the
956 * jetsam priority list (if configured)
958 * Returns: !NULL pointer to new child thread
959 * NULL Failure (unspecified)
961 * Note: On return newly created child process has signal lock held
962 * to block delivery of signal to it if called with lock set.
963 * fork() code needs to explicity remove this lock before
964 * signals can be delivered
966 * In the case of bootstrap, this function can be called from
967 * bsd_utaskbootstrap() in order to bootstrap the first process;
968 * the net effect is to provide a uthread structure for the
969 * kernel process associated with the kernel task.
971 * XXX: Tristating using the value parent_task as the major key
972 * and inherit_memory as the minor key is something we should
973 * refactor later; we owe the current semantics, ultimately,
974 * to the semantics of task_create_internal. For now, we will
975 * live with this being somewhat awkward.
978 cloneproc(task_t parent_task
, coalition_t
*parent_coalitions
, proc_t parent_proc
, int inherit_memory
, int memstat_internal
)
980 #if !CONFIG_MEMORYSTATUS
981 #pragma unused(memstat_internal)
985 thread_t child_thread
= NULL
;
987 if ((child_proc
= forkproc(parent_proc
)) == NULL
) {
988 /* Failed to allocate new process */
993 * In the case where the parent_task is TASK_NULL (during the init path)
994 * we make the assumption that the register size will be the same as the
995 * address space size since there's no way to determine the possible
996 * register size until an image is exec'd.
998 * The only architecture that has different address space and register sizes
999 * (arm64_32) isn't being used within kernel-space, so the above assumption
1000 * always holds true for the init path.
1002 const int parent_64bit_addr
= parent_proc
->p_flag
& P_LP64
;
1003 const int parent_64bit_data
= (parent_task
== TASK_NULL
) ? parent_64bit_addr
: task_get_64bit_data(parent_task
);
1005 child_thread
= fork_create_child(parent_task
,
1013 if (child_thread
== NULL
) {
1015 * Failed to create thread; now we must deconstruct the new
1016 * process previously obtained from forkproc().
1018 forkproc_free(child_proc
);
1022 child_task
= get_threadtask(child_thread
);
1023 if (parent_64bit_addr
) {
1024 OSBitOrAtomic(P_LP64
, (UInt32
*)&child_proc
->p_flag
);
1026 OSBitAndAtomic(~((uint32_t)P_LP64
), (UInt32
*)&child_proc
->p_flag
);
1029 #if CONFIG_MEMORYSTATUS
1030 if (memstat_internal
) {
1032 child_proc
->p_memstat_state
|= P_MEMSTAT_INTERNAL
;
1037 /* make child visible */
1038 pinsertchild(parent_proc
, child_proc
);
1041 * Make child runnable, set start time.
1043 child_proc
->p_stat
= SRUN
;
1045 return child_thread
;
1050 * Destroy a process structure that resulted from a call to forkproc(), but
1051 * which must be returned to the system because of a subsequent failure
1052 * preventing it from becoming active.
1054 * Parameters: p The incomplete process from forkproc()
1058 * Note: This function should only be used in an error handler following
1059 * a call to forkproc().
1061 * Operations occur in reverse order of those in forkproc().
1064 forkproc_free(proc_t p
)
1067 persona_proc_drop(p
);
1068 #endif /* CONFIG_PERSONAS */
1071 pth_proc_hashdelete(p
);
1074 /* We held signal and a transition locks; drop them */
1075 proc_signalend(p
, 0);
1076 proc_transend(p
, 0);
1079 * If we have our own copy of the resource limits structure, we
1080 * need to free it. If it's a shared copy, we need to drop our
1083 proc_limitdrop(p
, 0);
1087 /* Need to drop references to the shared memory segment(s), if any */
1090 * Use shmexec(): we have no address space, so no mappings
1092 * XXX Yes, the routine is badly named.
1098 /* Need to undo the effects of the fdcopy(), if any */
1102 * Drop the reference on a text vnode pointer, if any
1103 * XXX This code is broken in forkproc(); see <rdar://4256419>;
1104 * XXX if anyone ever uses this field, we will be extremely unhappy.
1107 vnode_rele(p
->p_textvp
);
1111 /* Update the audit session proc count */
1112 AUDIT_SESSION_PROCEXIT(p
);
1114 lck_mtx_destroy(&p
->p_mlock
, proc_mlock_grp
);
1115 lck_mtx_destroy(&p
->p_fdmlock
, proc_fdmlock_grp
);
1116 lck_mtx_destroy(&p
->p_ucred_mlock
, proc_ucred_mlock_grp
);
1118 lck_mtx_destroy(&p
->p_dtrace_sprlock
, proc_lck_grp
);
1120 lck_spin_destroy(&p
->p_slock
, proc_slock_grp
);
1122 /* Release the credential reference */
1123 kauth_cred_unref(&p
->p_ucred
);
1126 /* Decrement the count of processes in the system */
1129 /* Take it out of process hash */
1130 LIST_REMOVE(p
, p_hash
);
1134 thread_call_free(p
->p_rcall
);
1136 /* Free allocated memory */
1137 FREE_ZONE(p
->p_sigacts
, sizeof *p
->p_sigacts
, M_SIGACTS
);
1138 p
->p_sigacts
= NULL
;
1139 FREE_ZONE(p
->p_stats
, sizeof *p
->p_stats
, M_PSTATS
);
1142 proc_checkdeadrefs(p
);
1143 FREE_ZONE(p
, sizeof *p
, M_PROC
);
1150 * Description: Create a new process structure, given a parent process
1153 * Parameters: parent_proc The parent process
1155 * Returns: !NULL The new process structure
1156 * NULL Error (insufficient free memory)
1158 * Note: When successful, the newly created process structure is
1159 * partially initialized; if a caller needs to deconstruct the
1160 * returned structure, they must call forkproc_free() to do so.
1163 forkproc(proc_t parent_proc
)
1165 proc_t child_proc
; /* Our new process */
1166 static int nextpid
= 0, pidwrap
= 0;
1167 static uint64_t nextuniqueid
= 0;
1169 struct session
*sessp
;
1170 uthread_t parent_uthread
= (uthread_t
)get_bsdthread_info(current_thread());
1172 MALLOC_ZONE(child_proc
, proc_t
, sizeof *child_proc
, M_PROC
, M_WAITOK
);
1173 if (child_proc
== NULL
) {
1174 printf("forkproc: M_PROC zone exhausted\n");
1177 /* zero it out as we need to insert in hash */
1178 bzero(child_proc
, sizeof *child_proc
);
1180 MALLOC_ZONE(child_proc
->p_stats
, struct pstats
*,
1181 sizeof *child_proc
->p_stats
, M_PSTATS
, M_WAITOK
);
1182 if (child_proc
->p_stats
== NULL
) {
1183 printf("forkproc: M_SUBPROC zone exhausted (p_stats)\n");
1184 FREE_ZONE(child_proc
, sizeof *child_proc
, M_PROC
);
1188 MALLOC_ZONE(child_proc
->p_sigacts
, struct sigacts
*,
1189 sizeof *child_proc
->p_sigacts
, M_SIGACTS
, M_WAITOK
);
1190 if (child_proc
->p_sigacts
== NULL
) {
1191 printf("forkproc: M_SUBPROC zone exhausted (p_sigacts)\n");
1192 FREE_ZONE(child_proc
->p_stats
, sizeof *child_proc
->p_stats
, M_PSTATS
);
1193 child_proc
->p_stats
= NULL
;
1194 FREE_ZONE(child_proc
, sizeof *child_proc
, M_PROC
);
1199 /* allocate a callout for use by interval timers */
1200 child_proc
->p_rcall
= thread_call_allocate((thread_call_func_t
)realitexpire
, child_proc
);
1201 if (child_proc
->p_rcall
== NULL
) {
1202 FREE_ZONE(child_proc
->p_sigacts
, sizeof *child_proc
->p_sigacts
, M_SIGACTS
);
1203 child_proc
->p_sigacts
= NULL
;
1204 FREE_ZONE(child_proc
->p_stats
, sizeof *child_proc
->p_stats
, M_PSTATS
);
1205 child_proc
->p_stats
= NULL
;
1206 FREE_ZONE(child_proc
, sizeof *child_proc
, M_PROC
);
1213 * Find an unused PID.
1221 * If the process ID prototype has wrapped around,
1222 * restart somewhat above 0, as the low-numbered procs
1223 * tend to include daemons that don't exit.
1225 if (nextpid
>= PID_MAX
) {
1230 /* if the pid stays in hash both for zombie and runniing state */
1231 if (pfind_locked(nextpid
) != PROC_NULL
) {
1236 if (pgfind_internal(nextpid
) != PGRP_NULL
) {
1240 if (session_find_internal(nextpid
) != SESSION_NULL
) {
1246 child_proc
->p_pid
= nextpid
;
1247 child_proc
->p_idversion
= OSIncrementAtomic(&nextpidversion
);
1248 /* kernel process is handcrafted and not from fork, so start from 1 */
1249 child_proc
->p_uniqueid
= ++nextuniqueid
;
1251 if (child_proc
->p_pid
!= 0) {
1252 if (pfind_locked(child_proc
->p_pid
) != PROC_NULL
) {
1253 panic("proc in the list already\n");
1257 /* Insert in the hash */
1258 child_proc
->p_listflag
|= (P_LIST_INHASH
| P_LIST_INCREATE
);
1259 LIST_INSERT_HEAD(PIDHASH(child_proc
->p_pid
), child_proc
, p_hash
);
1262 if (child_proc
->p_uniqueid
== startup_serial_num_procs
) {
1264 * Turn off startup serial logging now that we have reached
1265 * the defined number of startup processes.
1267 startup_serial_logging_active
= false;
1271 * We've identified the PID we are going to use; initialize the new
1272 * process structure.
1274 child_proc
->p_stat
= SIDL
;
1275 child_proc
->p_pgrpid
= PGRPID_DEAD
;
1278 * The zero'ing of the proc was at the allocation time due to need
1279 * for insertion to hash. Copy the section that is to be copied
1280 * directly from the parent.
1282 __nochk_bcopy(&parent_proc
->p_startcopy
, &child_proc
->p_startcopy
,
1283 (unsigned) ((caddr_t
)&child_proc
->p_endcopy
- (caddr_t
)&child_proc
->p_startcopy
));
1286 * Some flags are inherited from the parent.
1287 * Duplicate sub-structures as needed.
1288 * Increase reference counts on shared objects.
1289 * The p_stats and p_sigacts substructs are set in vm_fork.
1291 #if !CONFIG_EMBEDDED
1292 child_proc
->p_flag
= (parent_proc
->p_flag
& (P_LP64
| P_DISABLE_ASLR
| P_DELAYIDLESLEEP
| P_SUGID
));
1293 #else /* !CONFIG_EMBEDDED */
1294 child_proc
->p_flag
= (parent_proc
->p_flag
& (P_LP64
| P_DISABLE_ASLR
| P_SUGID
));
1295 #endif /* !CONFIG_EMBEDDED */
1297 child_proc
->p_vfs_iopolicy
= (parent_proc
->p_vfs_iopolicy
& (P_VFS_IOPOLICY_VALID_MASK
));
1299 child_proc
->p_responsible_pid
= parent_proc
->p_responsible_pid
;
1302 * Note that if the current thread has an assumed identity, this
1303 * credential will be granted to the new process.
1305 child_proc
->p_ucred
= kauth_cred_get_with_ref();
1306 /* update cred on proc */
1307 PROC_UPDATE_CREDS_ONPROC(child_proc
);
1308 /* update audit session proc count */
1309 AUDIT_SESSION_PROCNEW(child_proc
);
1311 lck_mtx_init(&child_proc
->p_mlock
, proc_mlock_grp
, proc_lck_attr
);
1312 lck_mtx_init(&child_proc
->p_fdmlock
, proc_fdmlock_grp
, proc_lck_attr
);
1313 lck_mtx_init(&child_proc
->p_ucred_mlock
, proc_ucred_mlock_grp
, proc_lck_attr
);
1315 lck_mtx_init(&child_proc
->p_dtrace_sprlock
, proc_lck_grp
, proc_lck_attr
);
1317 lck_spin_init(&child_proc
->p_slock
, proc_slock_grp
, proc_lck_attr
);
1319 klist_init(&child_proc
->p_klist
);
1321 if (child_proc
->p_textvp
!= NULLVP
) {
1322 /* bump references to the text vnode */
1323 /* Need to hold iocount across the ref call */
1324 if (vnode_getwithref(child_proc
->p_textvp
) == 0) {
1325 error
= vnode_ref(child_proc
->p_textvp
);
1326 vnode_put(child_proc
->p_textvp
);
1328 child_proc
->p_textvp
= NULLVP
;
1334 * Copy the parents per process open file table to the child; if
1335 * there is a per-thread current working directory, set the childs
1336 * per-process current working directory to that instead of the
1339 * XXX may fail to copy descriptors to child
1341 child_proc
->p_fd
= fdcopy(parent_proc
, parent_uthread
->uu_cdir
);
1344 if (parent_proc
->vm_shm
) {
1345 /* XXX may fail to attach shm to child */
1346 (void)shmfork(parent_proc
, child_proc
);
1350 * inherit the limit structure to child
1352 proc_limitfork(parent_proc
, child_proc
);
1354 if (child_proc
->p_limit
->pl_rlimit
[RLIMIT_CPU
].rlim_cur
!= RLIM_INFINITY
) {
1355 uint64_t rlim_cur
= child_proc
->p_limit
->pl_rlimit
[RLIMIT_CPU
].rlim_cur
;
1356 child_proc
->p_rlim_cpu
.tv_sec
= (rlim_cur
> __INT_MAX__
) ? __INT_MAX__
: rlim_cur
;
1359 /* Intialize new process stats, including start time */
1360 /* <rdar://6640543> non-zeroed portion contains garbage AFAICT */
1361 bzero(child_proc
->p_stats
, sizeof(*child_proc
->p_stats
));
1362 microtime_with_abstime(&child_proc
->p_start
, &child_proc
->p_stats
->ps_start
);
1364 if (parent_proc
->p_sigacts
!= NULL
) {
1365 (void)memcpy(child_proc
->p_sigacts
,
1366 parent_proc
->p_sigacts
, sizeof *child_proc
->p_sigacts
);
1368 (void)memset(child_proc
->p_sigacts
, 0, sizeof *child_proc
->p_sigacts
);
1371 sessp
= proc_session(parent_proc
);
1372 if (sessp
->s_ttyvp
!= NULL
&& parent_proc
->p_flag
& P_CONTROLT
) {
1373 OSBitOrAtomic(P_CONTROLT
, &child_proc
->p_flag
);
1375 session_rele(sessp
);
1378 * block all signals to reach the process.
1379 * no transition race should be occuring with the child yet,
1380 * but indicate that the process is in (the creation) transition.
1382 proc_signalstart(child_proc
, 0);
1383 proc_transstart(child_proc
, 0, 0);
1385 child_proc
->p_pcaction
= 0;
1387 TAILQ_INIT(&child_proc
->p_uthlist
);
1388 TAILQ_INIT(&child_proc
->p_aio_activeq
);
1389 TAILQ_INIT(&child_proc
->p_aio_doneq
);
1391 /* Inherit the parent flags for code sign */
1392 child_proc
->p_csflags
= (parent_proc
->p_csflags
& ~CS_KILLED
);
1395 * Copy work queue information
1397 * Note: This should probably only happen in the case where we are
1398 * creating a child that is a copy of the parent; since this
1399 * routine is called in the non-duplication case of vfork()
1400 * or posix_spawn(), then this information should likely not
1403 * <rdar://6640553> Work queue pointers that no longer point to code
1405 child_proc
->p_wqthread
= parent_proc
->p_wqthread
;
1406 child_proc
->p_threadstart
= parent_proc
->p_threadstart
;
1407 child_proc
->p_pthsize
= parent_proc
->p_pthsize
;
1408 if ((parent_proc
->p_lflag
& P_LREGISTER
) != 0) {
1409 child_proc
->p_lflag
|= P_LREGISTER
;
1411 child_proc
->p_dispatchqueue_offset
= parent_proc
->p_dispatchqueue_offset
;
1412 child_proc
->p_dispatchqueue_serialno_offset
= parent_proc
->p_dispatchqueue_serialno_offset
;
1413 child_proc
->p_dispatchqueue_label_offset
= parent_proc
->p_dispatchqueue_label_offset
;
1414 child_proc
->p_return_to_kernel_offset
= parent_proc
->p_return_to_kernel_offset
;
1415 child_proc
->p_mach_thread_self_offset
= parent_proc
->p_mach_thread_self_offset
;
1416 child_proc
->p_pth_tsd_offset
= parent_proc
->p_pth_tsd_offset
;
1418 pth_proc_hashinit(child_proc
);
1422 child_proc
->p_persona
= NULL
;
1423 error
= persona_proc_inherit(child_proc
, parent_proc
);
1425 printf("forkproc: persona_proc_inherit failed (persona %d being destroyed?)\n", persona_get_uid(parent_proc
->p_persona
));
1426 forkproc_free(child_proc
);
1432 #if CONFIG_MEMORYSTATUS
1433 /* Memorystatus init */
1434 child_proc
->p_memstat_state
= 0;
1435 child_proc
->p_memstat_effectivepriority
= JETSAM_PRIORITY_DEFAULT
;
1436 child_proc
->p_memstat_requestedpriority
= JETSAM_PRIORITY_DEFAULT
;
1437 child_proc
->p_memstat_assertionpriority
= 0;
1438 child_proc
->p_memstat_userdata
= 0;
1439 child_proc
->p_memstat_idle_start
= 0;
1440 child_proc
->p_memstat_idle_delta
= 0;
1441 child_proc
->p_memstat_memlimit
= 0;
1442 child_proc
->p_memstat_memlimit_active
= 0;
1443 child_proc
->p_memstat_memlimit_inactive
= 0;
1444 child_proc
->p_memstat_relaunch_flags
= P_MEMSTAT_RELAUNCH_UNKNOWN
;
1446 child_proc
->p_memstat_freeze_sharedanon_pages
= 0;
1448 child_proc
->p_memstat_dirty
= 0;
1449 child_proc
->p_memstat_idledeadline
= 0;
1450 #endif /* CONFIG_MEMORYSTATUS */
1459 LCK_MTX_ASSERT(proc_list_mlock
, LCK_MTX_ASSERT_NOTOWNED
);
1460 lck_mtx_lock(&p
->p_mlock
);
1464 proc_unlock(proc_t p
)
1466 lck_mtx_unlock(&p
->p_mlock
);
1470 proc_spinlock(proc_t p
)
1472 lck_spin_lock_grp(&p
->p_slock
, proc_slock_grp
);
1476 proc_spinunlock(proc_t p
)
1478 lck_spin_unlock(&p
->p_slock
);
1482 proc_list_lock(void)
1484 lck_mtx_lock(proc_list_mlock
);
1488 proc_list_unlock(void)
1490 lck_mtx_unlock(proc_list_mlock
);
1494 proc_ucred_lock(proc_t p
)
1496 lck_mtx_lock(&p
->p_ucred_mlock
);
1500 proc_ucred_unlock(proc_t p
)
1502 lck_mtx_unlock(&p
->p_ucred_mlock
);
1505 #include <kern/zalloc.h>
1507 struct zone
*uthread_zone
= NULL
;
1509 static lck_grp_t
*rethrottle_lock_grp
;
1510 static lck_attr_t
*rethrottle_lock_attr
;
1511 static lck_grp_attr_t
*rethrottle_lock_grp_attr
;
1514 uthread_zone_init(void)
1516 assert(uthread_zone
== NULL
);
1518 rethrottle_lock_grp_attr
= lck_grp_attr_alloc_init();
1519 rethrottle_lock_grp
= lck_grp_alloc_init("rethrottle", rethrottle_lock_grp_attr
);
1520 rethrottle_lock_attr
= lck_attr_alloc_init();
1522 uthread_zone
= zinit(sizeof(struct uthread
),
1523 thread_max
* sizeof(struct uthread
),
1524 THREAD_CHUNK
* sizeof(struct uthread
),
1529 uthread_alloc(task_t task
, thread_t thread
, int noinherit
)
1533 uthread_t uth_parent
;
1536 if (uthread_zone
== NULL
) {
1537 uthread_zone_init();
1540 ut
= (void *)zalloc(uthread_zone
);
1541 bzero(ut
, sizeof(struct uthread
));
1543 p
= (proc_t
) get_bsdtask_info(task
);
1544 uth
= (uthread_t
)ut
;
1545 uth
->uu_thread
= thread
;
1547 lck_spin_init(&uth
->uu_rethrottle_lock
, rethrottle_lock_grp
,
1548 rethrottle_lock_attr
);
1551 * Thread inherits credential from the creating thread, if both
1552 * are in the same task.
1554 * If the creating thread has no credential or is from another
1555 * task we can leave the new thread credential NULL. If it needs
1556 * one later, it will be lazily assigned from the task's process.
1558 uth_parent
= (uthread_t
)get_bsdthread_info(current_thread());
1559 if ((noinherit
== 0) && task
== current_task() &&
1560 uth_parent
!= NULL
&&
1561 IS_VALID_CRED(uth_parent
->uu_ucred
)) {
1563 * XXX The new thread is, in theory, being created in context
1564 * XXX of parent thread, so a direct reference to the parent
1567 kauth_cred_ref(uth_parent
->uu_ucred
);
1568 uth
->uu_ucred
= uth_parent
->uu_ucred
;
1569 /* the credential we just inherited is an assumed credential */
1570 if (uth_parent
->uu_flag
& UT_SETUID
) {
1571 uth
->uu_flag
|= UT_SETUID
;
1574 /* sometimes workqueue threads are created out task context */
1575 if ((task
!= kernel_task
) && (p
!= PROC_NULL
)) {
1576 uth
->uu_ucred
= kauth_cred_proc_ref(p
);
1578 uth
->uu_ucred
= NOCRED
;
1583 if ((task
!= kernel_task
) && p
) {
1585 if (noinherit
!= 0) {
1586 /* workq threads will not inherit masks */
1587 uth
->uu_sigmask
= ~workq_threadmask
;
1588 } else if (uth_parent
) {
1589 if (uth_parent
->uu_flag
& UT_SAS_OLDMASK
) {
1590 uth
->uu_sigmask
= uth_parent
->uu_oldmask
;
1592 uth
->uu_sigmask
= uth_parent
->uu_sigmask
;
1595 uth
->uu_context
.vc_thread
= thread
;
1597 * Do not add the uthread to proc uthlist for exec copy task,
1598 * since they do not hold a ref on proc.
1600 if (!task_is_exec_copy(task
)) {
1601 TAILQ_INSERT_TAIL(&p
->p_uthlist
, uth
, uu_list
);
1606 if (p
->p_dtrace_ptss_pages
!= NULL
&& !task_is_exec_copy(task
)) {
1607 uth
->t_dtrace_scratch
= dtrace_ptss_claim_entry(p
);
1616 * This routine frees the thread name field of the uthread_t structure. Split out of
1617 * uthread_cleanup() so thread name does not get deallocated while generating a corpse fork.
1620 uthread_cleanup_name(void *uthread
)
1622 uthread_t uth
= (uthread_t
)uthread
;
1626 * Set pth_name to NULL before calling free().
1627 * Previously there was a race condition in the
1628 * case this code was executing during a stackshot
1629 * where the stackshot could try and copy pth_name
1630 * after it had been freed and before if was marked
1633 if (uth
->pth_name
!= NULL
) {
1634 void *pth_name
= uth
->pth_name
;
1635 uth
->pth_name
= NULL
;
1636 kfree(pth_name
, MAXTHREADNAMESIZE
);
1642 * This routine frees all the BSD context in uthread except the credential.
1643 * It does not free the uthread structure as well
1646 uthread_cleanup(task_t task
, void *uthread
, void * bsd_info
)
1648 struct _select
*sel
;
1649 uthread_t uth
= (uthread_t
)uthread
;
1650 proc_t p
= (proc_t
)bsd_info
;
1653 if (__improbable(uthread_get_proc_refcount(uthread
) != 0)) {
1654 panic("uthread_cleanup called for uthread %p with uu_proc_refcount != 0", uthread
);
1658 if (uth
->uu_lowpri_window
|| uth
->uu_throttle_info
) {
1660 * task is marked as a low priority I/O type
1661 * and we've somehow managed to not dismiss the throttle
1662 * through the normal exit paths back to user space...
1663 * no need to throttle this thread since its going away
1664 * but we do need to update our bookeeping w/r to throttled threads
1666 * Calling this routine will clean up any throttle info reference
1667 * still inuse by the thread.
1669 throttle_lowpri_io(0);
1672 * Per-thread audit state should never last beyond system
1673 * call return. Since we don't audit the thread creation/
1674 * removal, the thread state pointer should never be
1675 * non-NULL when we get here.
1677 assert(uth
->uu_ar
== NULL
);
1679 if (uth
->uu_kqr_bound
) {
1680 kqueue_threadreq_unbind(p
, uth
->uu_kqr_bound
);
1683 sel
= &uth
->uu_select
;
1684 /* cleanup the select bit space */
1686 FREE(sel
->ibits
, M_TEMP
);
1687 FREE(sel
->obits
, M_TEMP
);
1692 vnode_rele(uth
->uu_cdir
);
1693 uth
->uu_cdir
= NULLVP
;
1696 if (uth
->uu_wqset
) {
1697 if (waitq_set_is_valid(uth
->uu_wqset
)) {
1698 waitq_set_deinit(uth
->uu_wqset
);
1700 FREE(uth
->uu_wqset
, M_SELECT
);
1701 uth
->uu_wqset
= NULL
;
1702 uth
->uu_wqstate_sz
= 0;
1705 os_reason_free(uth
->uu_exit_reason
);
1707 if ((task
!= kernel_task
) && p
) {
1708 if (((uth
->uu_flag
& UT_VFORK
) == UT_VFORK
) && (uth
->uu_proc
!= PROC_NULL
)) {
1709 vfork_exit_internal(uth
->uu_proc
, 0, 1);
1712 * Remove the thread from the process list and
1713 * transfer [appropriate] pending signals to the process.
1714 * Do not remove the uthread from proc uthlist for exec
1715 * copy task, since they does not have a ref on proc and
1716 * would not have been added to the list.
1718 if (get_bsdtask_info(task
) == p
&& !task_is_exec_copy(task
)) {
1721 TAILQ_REMOVE(&p
->p_uthlist
, uth
, uu_list
);
1722 p
->p_siglist
|= (uth
->uu_siglist
& execmask
& (~p
->p_sigignore
| sigcantmask
));
1726 struct dtrace_ptss_page_entry
*tmpptr
= uth
->t_dtrace_scratch
;
1727 uth
->t_dtrace_scratch
= NULL
;
1728 if (tmpptr
!= NULL
&& !task_is_exec_copy(task
)) {
1729 dtrace_ptss_release_entry(p
, tmpptr
);
1735 /* This routine releases the credential stored in uthread */
1737 uthread_cred_free(void *uthread
)
1739 uthread_t uth
= (uthread_t
)uthread
;
1741 /* and free the uthread itself */
1742 if (IS_VALID_CRED(uth
->uu_ucred
)) {
1743 kauth_cred_t oldcred
= uth
->uu_ucred
;
1744 uth
->uu_ucred
= NOCRED
;
1745 kauth_cred_unref(&oldcred
);
1749 /* This routine frees the uthread structure held in thread structure */
1751 uthread_zone_free(void *uthread
)
1753 uthread_t uth
= (uthread_t
)uthread
;
1755 if (uth
->t_tombstone
) {
1756 kfree(uth
->t_tombstone
, sizeof(struct doc_tombstone
));
1757 uth
->t_tombstone
= NULL
;
1760 lck_spin_destroy(&uth
->uu_rethrottle_lock
, rethrottle_lock_grp
);
1762 uthread_cleanup_name(uthread
);
1763 /* and free the uthread itself */
1764 zfree(uthread_zone
, uthread
);