]> git.saurik.com Git - apple/xnu.git/blob - bsd/dev/random/randomdev.c
4a7741e2a78c551c47ebda5d9517d05b8feeed08
[apple/xnu.git] / bsd / dev / random / randomdev.c
1 /*
2 * Copyright (c) 1999-2006 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/proc.h>
32 #include <sys/errno.h>
33 #include <sys/ioctl.h>
34 #include <sys/conf.h>
35 #include <sys/fcntl.h>
36 #include <string.h>
37 #include <miscfs/devfs/devfs.h>
38 #include <kern/lock.h>
39 #include <kern/clock.h>
40 #include <sys/time.h>
41 #include <sys/malloc.h>
42 #include <sys/uio_internal.h>
43
44 #include <dev/random/randomdev.h>
45 #include <dev/random/YarrowCoreLib/include/yarrow.h>
46 #include <libkern/crypto/sha1.h>
47
48 #include <mach/mach_time.h>
49 #include <machine/machine_routines.h>
50
51 #define RANDOM_MAJOR -1 /* let the kernel pick the device number */
52
53 d_ioctl_t random_ioctl;
54
55 /*
56 * A struct describing which functions will get invoked for certain
57 * actions.
58 */
59 static struct cdevsw random_cdevsw =
60 {
61 random_open, /* open */
62 random_close, /* close */
63 random_read, /* read */
64 random_write, /* write */
65 random_ioctl, /* ioctl */
66 (stop_fcn_t *)nulldev, /* stop */
67 (reset_fcn_t *)nulldev, /* reset */
68 NULL, /* tty's */
69 eno_select, /* select */
70 eno_mmap, /* mmap */
71 eno_strat, /* strategy */
72 eno_getc, /* getc */
73 eno_putc, /* putc */
74 0 /* type */
75 };
76
77 /* Used to detect whether we've already been initialized */
78 static int gRandomInstalled = 0;
79 static PrngRef gPrngRef;
80 static int gRandomError = 1;
81 static lck_grp_t *gYarrowGrp;
82 static lck_attr_t *gYarrowAttr;
83 static lck_grp_attr_t *gYarrowGrpAttr;
84 static lck_mtx_t *gYarrowMutex = 0;
85
86 void CheckReseed(void);
87
88 #define RESEED_TICKS 50 /* how long a reseed operation can take */
89
90
91 enum {kBSizeInBits = 160}; // MUST be a multiple of 32!!!
92 enum {kBSizeInBytes = kBSizeInBits / 8};
93 typedef u_int32_t BlockWord;
94 enum {kWordSizeInBits = 32};
95 enum {kBSize = 5};
96 typedef BlockWord Block[kBSize];
97
98 /* define prototypes to keep the compiler happy... */
99
100 void add_blocks(Block a, Block b, BlockWord carry);
101 void fips_initialize(void);
102 void random_block(Block b);
103 u_int32_t CalculateCRC(u_int8_t* buffer, size_t length);
104
105 /*
106 * Get 120 bits from yarrow
107 */
108
109 /*
110 * add block b to block a
111 */
112 void
113 add_blocks(Block a, Block b, BlockWord carry)
114 {
115 int i = kBSize;
116 while (--i >= 0)
117 {
118 u_int64_t c = (u_int64_t)carry +
119 (u_int64_t)a[i] +
120 (u_int64_t)b[i];
121 a[i] = c & ((1LL << kWordSizeInBits) - 1);
122 carry = c >> kWordSizeInBits;
123 }
124 }
125
126
127
128 struct sha1_ctxt g_sha1_ctx;
129 char zeros[(512 - kBSizeInBits) / 8];
130 Block g_xkey;
131 Block g_random_data;
132 int g_bytes_used;
133 unsigned char g_SelfTestInitialized = 0;
134 u_int32_t gLastBlockChecksum;
135
136 static const u_int32_t g_crc_table[] =
137 {
138 0x00000000, 0x77073096, 0xEE0E612C, 0x990951BA, 0x076DC419, 0x706AF48F, 0xE963A535, 0x9E6495A3,
139 0x0EDB8832, 0x79DCB8A4, 0xE0D5E91E, 0x97D2D988, 0x09B64C2B, 0x7EB17CBD, 0xE7B82D07, 0x90BF1D91,
140 0x1DB71064, 0x6AB020F2, 0xF3B97148, 0x84BE41DE, 0x1ADAD47D, 0x6DDDE4EB, 0xF4D4B551, 0x83D385C7,
141 0x136C9856, 0x646BA8C0, 0xFD62F97A, 0x8A65C9EC, 0x14015C4F, 0x63066CD9, 0xFA0F3D63, 0x8D080DF5,
142 0x3B6E20C8, 0x4C69105E, 0xD56041E4, 0xA2677172, 0x3C03E4D1, 0x4B04D447, 0xD20D85FD, 0xA50AB56B,
143 0x35B5A8FA, 0x42B2986C, 0xDBBBC9D6, 0xACBCF940, 0x32D86CE3, 0x45DF5C75, 0xDCD60DCF, 0xABD13D59,
144 0x26D930AC, 0x51DE003A, 0xC8D75180, 0xBFD06116, 0x21B4F4B5, 0x56B3C423, 0xCFBA9599, 0xB8BDA50F,
145 0x2802B89E, 0x5F058808, 0xC60CD9B2, 0xB10BE924, 0x2F6F7C87, 0x58684C11, 0xC1611DAB, 0xB6662D3D,
146 0x76DC4190, 0x01DB7106, 0x98D220BC, 0xEFD5102A, 0x71B18589, 0x06B6B51F, 0x9FBFE4A5, 0xE8B8D433,
147 0x7807C9A2, 0x0F00F934, 0x9609A88E, 0xE10E9818, 0x7F6A0DBB, 0x086D3D2D, 0x91646C97, 0xE6635C01,
148 0x6B6B51F4, 0x1C6C6162, 0x856530D8, 0xF262004E, 0x6C0695ED, 0x1B01A57B, 0x8208F4C1, 0xF50FC457,
149 0x65B0D9C6, 0x12B7E950, 0x8BBEB8EA, 0xFCB9887C, 0x62DD1DDF, 0x15DA2D49, 0x8CD37CF3, 0xFBD44C65,
150 0x4DB26158, 0x3AB551CE, 0xA3BC0074, 0xD4BB30E2, 0x4ADFA541, 0x3DD895D7, 0xA4D1C46D, 0xD3D6F4FB,
151 0x4369E96A, 0x346ED9FC, 0xAD678846, 0xDA60B8D0, 0x44042D73, 0x33031DE5, 0xAA0A4C5F, 0xDD0D7CC9,
152 0x5005713C, 0x270241AA, 0xBE0B1010, 0xC90C2086, 0x5768B525, 0x206F85B3, 0xB966D409, 0xCE61E49F,
153 0x5EDEF90E, 0x29D9C998, 0xB0D09822, 0xC7D7A8B4, 0x59B33D17, 0x2EB40D81, 0xB7BD5C3B, 0xC0BA6CAD,
154 0xEDB88320, 0x9ABFB3B6, 0x03B6E20C, 0x74B1D29A, 0xEAD54739, 0x9DD277AF, 0x04DB2615, 0x73DC1683,
155 0xE3630B12, 0x94643B84, 0x0D6D6A3E, 0x7A6A5AA8, 0xE40ECF0B, 0x9309FF9D, 0x0A00AE27, 0x7D079EB1,
156 0xF00F9344, 0x8708A3D2, 0x1E01F268, 0x6906C2FE, 0xF762575D, 0x806567CB, 0x196C3671, 0x6E6B06E7,
157 0xFED41B76, 0x89D32BE0, 0x10DA7A5A, 0x67DD4ACC, 0xF9B9DF6F, 0x8EBEEFF9, 0x17B7BE43, 0x60B08ED5,
158 0xD6D6A3E8, 0xA1D1937E, 0x38D8C2C4, 0x4FDFF252, 0xD1BB67F1, 0xA6BC5767, 0x3FB506DD, 0x48B2364B,
159 0xD80D2BDA, 0xAF0A1B4C, 0x36034AF6, 0x41047A60, 0xDF60EFC3, 0xA867DF55, 0x316E8EEF, 0x4669BE79,
160 0xCB61B38C, 0xBC66831A, 0x256FD2A0, 0x5268E236, 0xCC0C7795, 0xBB0B4703, 0x220216B9, 0x5505262F,
161 0xC5BA3BBE, 0xB2BD0B28, 0x2BB45A92, 0x5CB36A04, 0xC2D7FFA7, 0xB5D0CF31, 0x2CD99E8B, 0x5BDEAE1D,
162 0x9B64C2B0, 0xEC63F226, 0x756AA39C, 0x026D930A, 0x9C0906A9, 0xEB0E363F, 0x72076785, 0x05005713,
163 0x95BF4A82, 0xE2B87A14, 0x7BB12BAE, 0x0CB61B38, 0x92D28E9B, 0xE5D5BE0D, 0x7CDCEFB7, 0x0BDBDF21,
164 0x86D3D2D4, 0xF1D4E242, 0x68DDB3F8, 0x1FDA836E, 0x81BE16CD, 0xF6B9265B, 0x6FB077E1, 0x18B74777,
165 0x88085AE6, 0xFF0F6A70, 0x66063BCA, 0x11010B5C, 0x8F659EFF, 0xF862AE69, 0x616BFFD3, 0x166CCF45,
166 0xA00AE278, 0xD70DD2EE, 0x4E048354, 0x3903B3C2, 0xA7672661, 0xD06016F7, 0x4969474D, 0x3E6E77DB,
167 0xAED16A4A, 0xD9D65ADC, 0x40DF0B66, 0x37D83BF0, 0xA9BCAE53, 0xDEBB9EC5, 0x47B2CF7F, 0x30B5FFE9,
168 0xBDBDF21C, 0xCABAC28A, 0x53B39330, 0x24B4A3A6, 0xBAD03605, 0xCDD70693, 0x54DE5729, 0x23D967BF,
169 0xB3667A2E, 0xC4614AB8, 0x5D681B02, 0x2A6F2B94, 0xB40BBE37, 0xC30C8EA1, 0x5A05DF1B, 0x2D02EF8D,
170 };
171
172 /*
173 * Setup for fips compliance
174 */
175
176 /*
177 * calculate a crc-32 checksum
178 */
179 u_int32_t CalculateCRC(u_int8_t* buffer, size_t length)
180 {
181 u_int32_t crc = 0;
182
183 size_t i;
184 for (i = 0; i < length; ++i)
185 {
186 u_int32_t temp = (crc ^ ((u_int32_t) buffer[i])) & 0xFF;
187 crc = (crc >> 8) ^ g_crc_table[temp];
188 }
189
190 return crc;
191 }
192
193 /*
194 * get a random block of data per fips 186-2
195 */
196 void
197 random_block(Block b)
198 {
199 int repeatCount = 0;
200 do
201 {
202 // do one iteration
203 Block xSeed;
204 prngOutput (gPrngRef, (BYTE*) &xSeed, sizeof (xSeed));
205
206 // add the seed to the previous value of g_xkey
207 add_blocks (g_xkey, xSeed, 0);
208
209 // compute "G"
210 SHA1Update (&g_sha1_ctx, (const u_int8_t *) &g_xkey, sizeof (g_xkey));
211
212 // add zeros to fill the internal SHA-1 buffer
213 SHA1Update (&g_sha1_ctx, (const u_int8_t *)zeros, sizeof (zeros));
214
215 // write the resulting block
216 memmove(b, g_sha1_ctx.h.b8, sizeof (Block));
217
218 // calculate the CRC-32 of the block
219 u_int32_t new_crc = CalculateCRC(g_sha1_ctx.h.b8, sizeof (Block));
220
221 // make sure we don't repeat
222 int cmp = new_crc == gLastBlockChecksum;
223 gLastBlockChecksum = new_crc;
224 if (!g_SelfTestInitialized)
225 {
226 g_SelfTestInitialized = 1;
227 return;
228 }
229 else if (!cmp)
230 {
231 return;
232 }
233
234 repeatCount += 1;
235
236 // fix up the next value of g_xkey
237 add_blocks (g_xkey, b, 1);
238 } while (repeatCount < 2);
239
240 /*
241 * If we got here, three sucessive checksums of the random number
242 * generator have been the same. Since the odds of this happening are
243 * 1 in 18,446,744,073,709,551,616, (1 in 18 quintillion) one of the following has
244 * most likely happened:
245 *
246 * 1: There is a significant bug in this code.
247 * 2: There has been a massive system failure.
248 * 3: The universe has ceased to exist.
249 *
250 * There is no good way to recover from any of these cases. We
251 * therefore panic.
252 */
253
254 panic("FIPS random self-test failed.");
255 }
256
257 /*
258 *Initialize ONLY the Yarrow generator.
259 */
260 void
261 PreliminarySetup(void)
262 {
263 prng_error_status perr;
264
265 /* create a Yarrow object */
266 perr = prngInitialize(&gPrngRef);
267 if (perr != 0) {
268 printf ("Couldn't initialize Yarrow, /dev/random will not work.\n");
269 return;
270 }
271
272 /* clear the error flag, reads and write should then work */
273 gRandomError = 0;
274
275 {
276 struct timeval tt;
277 char buffer [16];
278
279 /* get a little non-deterministic data as an initial seed. */
280 microtime(&tt);
281
282 /*
283 * So how much of the system clock is entropic?
284 * It's hard to say, but assume that at least the
285 * least significant byte of a 64 bit structure
286 * is entropic. It's probably more, how can you figure
287 * the exact time the user turned the computer on, for example.
288 */
289 perr = prngInput(gPrngRef, (BYTE*) &tt, sizeof (tt), SYSTEM_SOURCE, 8);
290 if (perr != 0) {
291 /* an error, complain */
292 printf ("Couldn't seed Yarrow.\n");
293 return;
294 }
295
296 /* turn the data around */
297 perr = prngOutput(gPrngRef, (BYTE*) buffer, sizeof (buffer));
298
299 /* and scramble it some more */
300 perr = prngForceReseed(gPrngRef, RESEED_TICKS);
301 }
302
303 /* make a mutex to control access */
304 gYarrowGrpAttr = lck_grp_attr_alloc_init();
305 gYarrowGrp = lck_grp_alloc_init("random", gYarrowGrpAttr);
306 gYarrowAttr = lck_attr_alloc_init();
307 gYarrowMutex = lck_mtx_alloc_init(gYarrowGrp, gYarrowAttr);
308
309 fips_initialize ();
310 }
311
312 void
313 fips_initialize(void)
314 {
315 /* Read the initial value of g_xkey from yarrow */
316 prngOutput (gPrngRef, (BYTE*) &g_xkey, sizeof (g_xkey));
317
318 /* initialize our SHA1 generator */
319 SHA1Init (&g_sha1_ctx);
320
321 /* other initializations */
322 memset (zeros, 0, sizeof (zeros));
323 g_bytes_used = 0;
324 random_block(g_random_data);
325 }
326
327 /*
328 * Called to initialize our device,
329 * and to register ourselves with devfs
330 */
331 void
332 random_init(void)
333 {
334 int ret;
335
336 if (gRandomInstalled)
337 return;
338
339 /* install us in the file system */
340 gRandomInstalled = 1;
341
342 #ifndef ARM_BOARD_CONFIG_S5L8900XFPGA_1136JFS
343 /* setup yarrow and the mutex */
344 PreliminarySetup();
345 #endif
346
347 ret = cdevsw_add(RANDOM_MAJOR, &random_cdevsw);
348 if (ret < 0) {
349 printf("random_init: failed to allocate a major number!\n");
350 gRandomInstalled = 0;
351 return;
352 }
353
354 devfs_make_node(makedev (ret, 0), DEVFS_CHAR,
355 UID_ROOT, GID_WHEEL, 0666, "random", 0);
356
357 /*
358 * also make urandom
359 * (which is exactly the same thing in our context)
360 */
361 devfs_make_node(makedev (ret, 1), DEVFS_CHAR,
362 UID_ROOT, GID_WHEEL, 0666, "urandom", 0);
363 }
364
365 int
366 random_ioctl( __unused dev_t dev, u_long cmd, __unused caddr_t data,
367 __unused int flag, __unused struct proc *p )
368 {
369 switch (cmd) {
370 case FIONBIO:
371 case FIOASYNC:
372 break;
373 default:
374 return ENODEV;
375 }
376
377 return (0);
378 }
379
380 /*
381 * Open the device. Make sure init happened, and make sure the caller is
382 * authorized.
383 */
384
385 int
386 random_open(__unused dev_t dev, int flags, __unused int devtype, __unused struct proc *p)
387 {
388 if (gRandomError != 0) {
389 /* forget it, yarrow didn't come up */
390 return (ENOTSUP);
391 }
392
393 /*
394 * if we are being opened for write,
395 * make sure that we have privledges do so
396 */
397 if (flags & FWRITE) {
398 if (securelevel >= 2)
399 return (EPERM);
400 #ifndef __APPLE__
401 if ((securelevel >= 1) && proc_suser(p))
402 return (EPERM);
403 #endif /* !__APPLE__ */
404 }
405
406 return (0);
407 }
408
409
410 /*
411 * close the device.
412 */
413
414 int
415 random_close(__unused dev_t dev, __unused int flags, __unused int mode, __unused struct proc *p)
416 {
417 return (0);
418 }
419
420
421 /*
422 * Get entropic data from the Security Server, and use it to reseed the
423 * prng.
424 */
425 int
426 random_write (__unused dev_t dev, struct uio *uio, __unused int ioflag)
427 {
428 int retCode = 0;
429 char rdBuffer[256];
430
431 if (gRandomError != 0) {
432 return (ENOTSUP);
433 }
434
435 /* get control of the Yarrow instance, Yarrow is NOT thread safe */
436 lck_mtx_lock(gYarrowMutex);
437
438 /* Security server is sending us entropy */
439
440 while (uio_resid(uio) > 0 && retCode == 0) {
441 /* get the user's data */
442 // LP64todo - fix this! uio_resid may be 64-bit value
443 int bytesToInput = min(uio_resid(uio), sizeof (rdBuffer));
444 retCode = uiomove(rdBuffer, bytesToInput, uio);
445 if (retCode != 0)
446 goto /*ugh*/ error_exit;
447
448 /* put it in Yarrow */
449 if (prngInput(gPrngRef, (BYTE*) rdBuffer,
450 bytesToInput, SYSTEM_SOURCE,
451 bytesToInput * 8) != 0) {
452 retCode = EIO;
453 goto error_exit;
454 }
455 }
456
457 /* force a reseed */
458 if (prngForceReseed(gPrngRef, RESEED_TICKS) != 0) {
459 retCode = EIO;
460 goto error_exit;
461 }
462
463 /* retCode should be 0 at this point */
464
465 error_exit: /* do this to make sure the mutex unlocks. */
466 lck_mtx_unlock(gYarrowMutex);
467 return (retCode);
468 }
469
470 /*
471 * return data to the caller. Results unpredictable.
472 */
473 int
474 random_read(__unused dev_t dev, struct uio *uio, __unused int ioflag)
475 {
476 int retCode = 0;
477
478 if (gRandomError != 0)
479 return (ENOTSUP);
480
481 /* lock down the mutex */
482 lck_mtx_lock(gYarrowMutex);
483
484 CheckReseed();
485 int bytes_remaining = uio_resid(uio);
486 while (bytes_remaining > 0 && retCode == 0) {
487 /* get the user's data */
488 int bytes_to_read = 0;
489
490 int bytes_available = kBSizeInBytes - g_bytes_used;
491 if (bytes_available == 0)
492 {
493 random_block(g_random_data);
494 g_bytes_used = 0;
495 bytes_available = kBSizeInBytes;
496 }
497
498 bytes_to_read = min (bytes_remaining, bytes_available);
499
500 retCode = uiomove(((caddr_t)g_random_data)+ g_bytes_used, bytes_to_read, uio);
501 g_bytes_used += bytes_to_read;
502
503 if (retCode != 0)
504 goto error_exit;
505
506 bytes_remaining = uio_resid(uio);
507 }
508
509 retCode = 0;
510
511 error_exit:
512 lck_mtx_unlock(gYarrowMutex);
513 return retCode;
514 }
515
516 /* export good random numbers to the rest of the kernel */
517 void
518 read_random(void* buffer, u_int numbytes)
519 {
520 if (gYarrowMutex == 0) { /* are we initialized? */
521 #ifndef ARM_BOARD_CONFIG_S5L8900XFPGA_1136JFS
522 PreliminarySetup ();
523 #endif
524 }
525
526 lck_mtx_lock(gYarrowMutex);
527 CheckReseed();
528
529 int bytes_read = 0;
530
531 int bytes_remaining = numbytes;
532 while (bytes_remaining > 0) {
533 int bytes_to_read = min(bytes_remaining, kBSizeInBytes - g_bytes_used);
534 if (bytes_to_read == 0)
535 {
536 random_block(g_random_data);
537 g_bytes_used = 0;
538 bytes_to_read = min(bytes_remaining, kBSizeInBytes);
539 }
540
541 memmove ((u_int8_t*) buffer + bytes_read, ((u_int8_t*)g_random_data)+ g_bytes_used, bytes_to_read);
542 g_bytes_used += bytes_to_read;
543 bytes_read += bytes_to_read;
544 bytes_remaining -= bytes_to_read;
545 }
546
547 lck_mtx_unlock(gYarrowMutex);
548 }
549
550 /*
551 * Return an unsigned long pseudo-random number.
552 */
553 u_long
554 RandomULong(void)
555 {
556 u_long buf;
557 read_random(&buf, sizeof (buf));
558 return (buf);
559 }
560
561 void
562 CheckReseed(void)
563 {
564 }