2 * Copyright (c) 2000-2020 Apple Computer, Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
29 #include <kern/policy_internal.h>
30 #include <mach/task_policy.h>
32 #include <mach/mach_types.h>
33 #include <mach/task_server.h>
35 #include <kern/host.h> /* host_priv_self() */
36 #include <mach/host_priv.h> /* host_get_special_port() */
37 #include <mach/host_special_ports.h> /* RESOURCE_NOTIFY_PORT */
38 #include <kern/sched.h>
39 #include <kern/task.h>
40 #include <mach/thread_policy.h>
41 #include <sys/errno.h>
42 #include <sys/resource.h>
43 #include <machine/limits.h>
44 #include <kern/ledger.h>
45 #include <kern/thread_call.h>
47 #include <kern/coalition.h>
49 #include <kern/telemetry.h>
51 #if !defined(XNU_TARGET_OS_OSX)
52 #include <kern/kalloc.h>
53 #include <sys/errno.h>
54 #endif /* !defined(XNU_TARGET_OS_OSX) */
56 #if IMPORTANCE_INHERITANCE
57 #include <ipc/ipc_importance.h>
59 #include <mach/machine/sdt.h>
60 #endif /* IMPORTANCE_TRACE */
61 #endif /* IMPORTANCE_INHERITACE */
63 #include <sys/kdebug.h>
68 * This subsystem manages task and thread IO priority and backgrounding,
69 * as well as importance inheritance, process suppression, task QoS, and apptype.
70 * These properties have a suprising number of complex interactions, so they are
71 * centralized here in one state machine to simplify the implementation of those interactions.
74 * Threads and tasks have two policy fields: requested, effective.
75 * Requested represents the wishes of each interface that influences task policy.
76 * Effective represents the distillation of that policy into a set of behaviors.
78 * Each thread making a modification in the policy system passes a 'pending' struct,
79 * which tracks updates that will be applied after dropping the policy engine lock.
81 * Each interface that has an input into the task policy state machine controls a field in requested.
82 * If the interface has a getter, it returns what is in the field in requested, but that is
83 * not necessarily what is actually in effect.
85 * All kernel subsystems that behave differently based on task policy call into
86 * the proc_get_effective_(task|thread)_policy functions, which return the decision of the task policy state machine
87 * for that subsystem by querying only the 'effective' field.
89 * Policy change operations:
90 * Here are the steps to change a policy on a task or thread:
92 * 2) Change requested field for the relevant policy
93 * 3) Run a task policy update, which recalculates effective based on requested,
94 * then takes a diff between the old and new versions of requested and calls the relevant
95 * other subsystems to apply these changes, and updates the pending field.
97 * 5) Run task policy update complete, which looks at the pending field to update
98 * subsystems which cannot be touched while holding the task lock.
100 * To add a new requested policy, add the field in the requested struct, the flavor in task.h,
101 * the setter and getter in proc_(set|get)_task_policy*,
102 * then set up the effects of that behavior in task_policy_update*. If the policy manifests
103 * itself as a distinct effective policy, add it to the effective struct and add it to the
104 * proc_get_effective_task_policy accessor.
106 * Most policies are set via proc_set_task_policy, but policies that don't fit that interface
107 * roll their own lock/set/update/unlock/complete code inside this file.
112 * These are a set of behaviors that can be requested for a task. They currently have specific
113 * implied actions when they're enabled, but they may be made customizable in the future.
115 * When the affected task is boosted, we temporarily disable the suppression behaviors
116 * so that the affected process has a chance to run so it can call the API to permanently
117 * disable the suppression behaviors.
121 * Changing task policy on a task takes the task lock.
122 * Changing task policy on a thread takes the thread mutex.
123 * Task policy changes that affect threads will take each thread's mutex to update it if necessary.
125 * Querying the effective policy does not take a lock, because callers
126 * may run in interrupt context or other place where locks are not OK.
128 * This means that any notification of state change needs to be externally synchronized.
129 * We do this by idempotent callouts after the state has changed to ask
130 * other subsystems to update their view of the world.
132 * TODO: Move all cpu/wakes/io monitor code into a separate file
133 * TODO: Move all importance code over to importance subsystem
134 * TODO: Move all taskwatch code into a separate file
135 * TODO: Move all VM importance code into a separate file
138 /* Task policy related helper functions */
139 static void proc_set_task_policy_locked(task_t task
, int category
, int flavor
, int value
, int value2
);
141 static void task_policy_update_locked(task_t task
, task_pend_token_t pend_token
);
142 static void task_policy_update_internal_locked(task_t task
, bool in_create
, task_pend_token_t pend_token
);
144 /* For attributes that have two scalars as input/output */
145 static void proc_set_task_policy2(task_t task
, int category
, int flavor
, int value1
, int value2
);
146 static void proc_get_task_policy2(task_t task
, int category
, int flavor
, int *value1
, int *value2
);
148 static boolean_t
task_policy_update_coalition_focal_tasks(task_t task
, int prev_role
, int next_role
, task_pend_token_t pend_token
);
150 static uint64_t task_requested_bitfield(task_t task
);
151 static uint64_t task_effective_bitfield(task_t task
);
153 /* Convenience functions for munging a policy bitfield into a tracepoint */
154 static uintptr_t trequested_0(task_t task
);
155 static uintptr_t trequested_1(task_t task
);
156 static uintptr_t teffective_0(task_t task
);
157 static uintptr_t teffective_1(task_t task
);
159 /* CPU limits helper functions */
160 static int task_set_cpuusage(task_t task
, uint8_t percentage
, uint64_t interval
, uint64_t deadline
, int scope
, int entitled
);
161 static int task_get_cpuusage(task_t task
, uint8_t *percentagep
, uint64_t *intervalp
, uint64_t *deadlinep
, int *scope
);
162 static int task_enable_cpumon_locked(task_t task
);
163 static int task_disable_cpumon(task_t task
);
164 static int task_clear_cpuusage_locked(task_t task
, int cpumon_entitled
);
165 static int task_apply_resource_actions(task_t task
, int type
);
166 static void task_action_cpuusage(thread_call_param_t param0
, thread_call_param_t param1
);
169 typedef struct proc
* proc_t
;
170 int proc_pid(struct proc
*proc
);
171 extern int proc_selfpid(void);
172 extern char * proc_name_address(void *p
);
173 extern char * proc_best_name(proc_t proc
);
175 extern int proc_pidpathinfo_internal(proc_t p
, uint64_t arg
,
176 char *buffer
, uint32_t buffersize
,
178 #endif /* MACH_BSD */
182 /* Taskwatch related helper functions */
183 static void set_thread_appbg(thread_t thread
, int setbg
, int importance
);
184 static void add_taskwatch_locked(task_t task
, task_watch_t
* twp
);
185 static void remove_taskwatch_locked(task_t task
, task_watch_t
* twp
);
186 static void task_watch_lock(void);
187 static void task_watch_unlock(void);
188 static void apply_appstate_watchers(task_t task
);
190 typedef struct task_watcher
{
191 queue_chain_t tw_links
; /* queueing of threads */
192 task_t tw_task
; /* task that is being watched */
193 thread_t tw_thread
; /* thread that is watching the watch_task */
194 int tw_state
; /* the current app state of the thread */
195 int tw_importance
; /* importance prior to backgrounding */
198 typedef struct thread_watchlist
{
199 thread_t thread
; /* thread being worked on for taskwatch action */
200 int importance
; /* importance to be restored if thread is being made active */
201 } thread_watchlist_t
;
203 #endif /* CONFIG_TASKWATCH */
205 extern int memorystatus_update_priority_for_appnap(proc_t p
, boolean_t is_appnap
);
207 /* Importance Inheritance related helper functions */
209 #if IMPORTANCE_INHERITANCE
211 static void task_importance_mark_live_donor(task_t task
, boolean_t donating
);
212 static void task_importance_mark_receiver(task_t task
, boolean_t receiving
);
213 static void task_importance_mark_denap_receiver(task_t task
, boolean_t denap
);
215 static boolean_t
task_is_marked_live_importance_donor(task_t task
);
216 static boolean_t
task_is_importance_receiver(task_t task
);
217 static boolean_t
task_is_importance_denap_receiver(task_t task
);
219 static int task_importance_hold_internal_assertion(task_t target_task
, uint32_t count
);
221 static void task_add_importance_watchport(task_t task
, mach_port_t port
, int *boostp
);
222 static void task_importance_update_live_donor(task_t target_task
);
224 static void task_set_boost_locked(task_t task
, boolean_t boost_active
);
226 #endif /* IMPORTANCE_INHERITANCE */
229 #define __imptrace_only
230 #else /* IMPORTANCE_TRACE */
231 #define __imptrace_only __unused
232 #endif /* !IMPORTANCE_TRACE */
234 #if IMPORTANCE_INHERITANCE
237 #define __imp_only __unused
241 * Default parameters for certain policies
244 int proc_standard_daemon_tier
= THROTTLE_LEVEL_TIER1
;
245 int proc_suppressed_disk_tier
= THROTTLE_LEVEL_TIER1
;
246 int proc_tal_disk_tier
= THROTTLE_LEVEL_TIER1
;
248 int proc_graphics_timer_qos
= (LATENCY_QOS_TIER_0
& 0xFF);
250 const int proc_default_bg_iotier
= THROTTLE_LEVEL_TIER2
;
252 /* Latency/throughput QoS fields remain zeroed, i.e. TIER_UNSPECIFIED at creation */
253 const struct task_requested_policy default_task_requested_policy
= {
254 .trp_bg_iotier
= proc_default_bg_iotier
256 const struct task_effective_policy default_task_effective_policy
= {};
259 * Default parameters for CPU usage monitor.
261 * Default setting is 50% over 3 minutes.
263 #define DEFAULT_CPUMON_PERCENTAGE 50
264 #define DEFAULT_CPUMON_INTERVAL (3 * 60)
266 uint8_t proc_max_cpumon_percentage
;
267 uint64_t proc_max_cpumon_interval
;
271 qos_latency_policy_validate(task_latency_qos_t ltier
)
273 if ((ltier
!= LATENCY_QOS_TIER_UNSPECIFIED
) &&
274 ((ltier
> LATENCY_QOS_TIER_5
) || (ltier
< LATENCY_QOS_TIER_0
))) {
275 return KERN_INVALID_ARGUMENT
;
282 qos_throughput_policy_validate(task_throughput_qos_t ttier
)
284 if ((ttier
!= THROUGHPUT_QOS_TIER_UNSPECIFIED
) &&
285 ((ttier
> THROUGHPUT_QOS_TIER_5
) || (ttier
< THROUGHPUT_QOS_TIER_0
))) {
286 return KERN_INVALID_ARGUMENT
;
293 task_qos_policy_validate(task_qos_policy_t qosinfo
, mach_msg_type_number_t count
)
295 if (count
< TASK_QOS_POLICY_COUNT
) {
296 return KERN_INVALID_ARGUMENT
;
299 task_latency_qos_t ltier
= qosinfo
->task_latency_qos_tier
;
300 task_throughput_qos_t ttier
= qosinfo
->task_throughput_qos_tier
;
302 kern_return_t kr
= qos_latency_policy_validate(ltier
);
304 if (kr
!= KERN_SUCCESS
) {
308 kr
= qos_throughput_policy_validate(ttier
);
314 qos_extract(uint32_t qv
)
320 qos_latency_policy_package(uint32_t qv
)
322 return (qv
== LATENCY_QOS_TIER_UNSPECIFIED
) ? LATENCY_QOS_TIER_UNSPECIFIED
: ((0xFF << 16) | qv
);
326 qos_throughput_policy_package(uint32_t qv
)
328 return (qv
== THROUGHPUT_QOS_TIER_UNSPECIFIED
) ? THROUGHPUT_QOS_TIER_UNSPECIFIED
: ((0xFE << 16) | qv
);
331 #define TASK_POLICY_SUPPRESSION_DISABLE 0x1
332 #define TASK_POLICY_SUPPRESSION_IOTIER2 0x2
333 #define TASK_POLICY_SUPPRESSION_NONDONOR 0x4
334 /* TEMPORARY boot-arg controlling task_policy suppression (App Nap) */
335 static boolean_t task_policy_suppression_flags
= TASK_POLICY_SUPPRESSION_IOTIER2
|
336 TASK_POLICY_SUPPRESSION_NONDONOR
;
341 task_policy_flavor_t flavor
,
342 task_policy_t policy_info
,
343 mach_msg_type_number_t count
)
345 kern_return_t result
= KERN_SUCCESS
;
347 if (task
== TASK_NULL
|| task
== kernel_task
) {
348 return KERN_INVALID_ARGUMENT
;
352 case TASK_CATEGORY_POLICY
: {
353 task_category_policy_t info
= (task_category_policy_t
)policy_info
;
355 if (count
< TASK_CATEGORY_POLICY_COUNT
) {
356 return KERN_INVALID_ARGUMENT
;
359 #if !defined(XNU_TARGET_OS_OSX)
360 /* On embedded, you can't modify your own role. */
361 if (current_task() == task
) {
362 return KERN_INVALID_ARGUMENT
;
366 switch (info
->role
) {
367 case TASK_FOREGROUND_APPLICATION
:
368 case TASK_BACKGROUND_APPLICATION
:
369 case TASK_DEFAULT_APPLICATION
:
370 proc_set_task_policy(task
,
371 TASK_POLICY_ATTRIBUTE
, TASK_POLICY_ROLE
,
375 case TASK_CONTROL_APPLICATION
:
376 if (task
!= current_task() || task
->sec_token
.val
[0] != 0) {
377 result
= KERN_INVALID_ARGUMENT
;
379 proc_set_task_policy(task
,
380 TASK_POLICY_ATTRIBUTE
, TASK_POLICY_ROLE
,
385 case TASK_GRAPHICS_SERVER
:
386 /* TODO: Restrict this role to FCFS <rdar://problem/12552788> */
387 if (task
!= current_task() || task
->sec_token
.val
[0] != 0) {
388 result
= KERN_INVALID_ARGUMENT
;
390 proc_set_task_policy(task
,
391 TASK_POLICY_ATTRIBUTE
, TASK_POLICY_ROLE
,
396 result
= KERN_INVALID_ARGUMENT
;
398 } /* switch (info->role) */
403 /* Desired energy-efficiency/performance "quality-of-service" */
404 case TASK_BASE_QOS_POLICY
:
405 case TASK_OVERRIDE_QOS_POLICY
:
407 task_qos_policy_t qosinfo
= (task_qos_policy_t
)policy_info
;
408 kern_return_t kr
= task_qos_policy_validate(qosinfo
, count
);
410 if (kr
!= KERN_SUCCESS
) {
415 uint32_t lqos
= qos_extract(qosinfo
->task_latency_qos_tier
);
416 uint32_t tqos
= qos_extract(qosinfo
->task_throughput_qos_tier
);
418 proc_set_task_policy2(task
, TASK_POLICY_ATTRIBUTE
,
419 flavor
== TASK_BASE_QOS_POLICY
? TASK_POLICY_BASE_LATENCY_AND_THROUGHPUT_QOS
: TASK_POLICY_OVERRIDE_LATENCY_AND_THROUGHPUT_QOS
,
424 case TASK_BASE_LATENCY_QOS_POLICY
:
426 task_qos_policy_t qosinfo
= (task_qos_policy_t
)policy_info
;
427 kern_return_t kr
= task_qos_policy_validate(qosinfo
, count
);
429 if (kr
!= KERN_SUCCESS
) {
433 uint32_t lqos
= qos_extract(qosinfo
->task_latency_qos_tier
);
435 proc_set_task_policy(task
, TASK_POLICY_ATTRIBUTE
, TASK_BASE_LATENCY_QOS_POLICY
, lqos
);
439 case TASK_BASE_THROUGHPUT_QOS_POLICY
:
441 task_qos_policy_t qosinfo
= (task_qos_policy_t
)policy_info
;
442 kern_return_t kr
= task_qos_policy_validate(qosinfo
, count
);
444 if (kr
!= KERN_SUCCESS
) {
448 uint32_t tqos
= qos_extract(qosinfo
->task_throughput_qos_tier
);
450 proc_set_task_policy(task
, TASK_POLICY_ATTRIBUTE
, TASK_BASE_THROUGHPUT_QOS_POLICY
, tqos
);
454 case TASK_SUPPRESSION_POLICY
:
456 #if !defined(XNU_TARGET_OS_OSX)
458 * Suppression policy is not enabled for embedded
459 * because apps aren't marked as denap receivers
461 result
= KERN_INVALID_ARGUMENT
;
463 #else /* !defined(XNU_TARGET_OS_OSX) */
465 task_suppression_policy_t info
= (task_suppression_policy_t
)policy_info
;
467 if (count
< TASK_SUPPRESSION_POLICY_COUNT
) {
468 return KERN_INVALID_ARGUMENT
;
471 struct task_qos_policy qosinfo
;
473 qosinfo
.task_latency_qos_tier
= info
->timer_throttle
;
474 qosinfo
.task_throughput_qos_tier
= info
->throughput_qos
;
476 kern_return_t kr
= task_qos_policy_validate(&qosinfo
, TASK_QOS_POLICY_COUNT
);
478 if (kr
!= KERN_SUCCESS
) {
482 /* TEMPORARY disablement of task suppression */
484 (task_policy_suppression_flags
& TASK_POLICY_SUPPRESSION_DISABLE
)) {
488 struct task_pend_token pend_token
= {};
492 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
493 (IMPORTANCE_CODE(IMP_TASK_SUPPRESSION
, info
->active
)) | DBG_FUNC_START
,
494 proc_selfpid(), task_pid(task
), trequested_0(task
),
495 trequested_1(task
), 0);
497 task
->requested_policy
.trp_sup_active
= (info
->active
) ? 1 : 0;
498 task
->requested_policy
.trp_sup_lowpri_cpu
= (info
->lowpri_cpu
) ? 1 : 0;
499 task
->requested_policy
.trp_sup_timer
= qos_extract(info
->timer_throttle
);
500 task
->requested_policy
.trp_sup_disk
= (info
->disk_throttle
) ? 1 : 0;
501 task
->requested_policy
.trp_sup_throughput
= qos_extract(info
->throughput_qos
);
502 task
->requested_policy
.trp_sup_cpu
= (info
->suppressed_cpu
) ? 1 : 0;
503 task
->requested_policy
.trp_sup_bg_sockets
= (info
->background_sockets
) ? 1 : 0;
505 task_policy_update_locked(task
, &pend_token
);
507 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
508 (IMPORTANCE_CODE(IMP_TASK_SUPPRESSION
, info
->active
)) | DBG_FUNC_END
,
509 proc_selfpid(), task_pid(task
), trequested_0(task
),
510 trequested_1(task
), 0);
514 task_policy_update_complete_unlocked(task
, &pend_token
);
518 #endif /* !defined(XNU_TARGET_OS_OSX) */
522 result
= KERN_INVALID_ARGUMENT
;
529 /* Sets BSD 'nice' value on the task */
533 integer_t importance
)
535 if (task
== TASK_NULL
|| task
== kernel_task
) {
536 return KERN_INVALID_ARGUMENT
;
544 return KERN_TERMINATED
;
547 if (proc_get_effective_task_policy(task
, TASK_POLICY_ROLE
) >= TASK_CONTROL_APPLICATION
) {
550 return KERN_INVALID_ARGUMENT
;
553 task
->importance
= importance
;
555 struct task_pend_token pend_token
= {};
557 task_policy_update_locked(task
, &pend_token
);
561 task_policy_update_complete_unlocked(task
, &pend_token
);
569 task_policy_flavor_t flavor
,
570 task_policy_t policy_info
,
571 mach_msg_type_number_t
*count
,
572 boolean_t
*get_default
)
574 if (task
== TASK_NULL
|| task
== kernel_task
) {
575 return KERN_INVALID_ARGUMENT
;
579 case TASK_CATEGORY_POLICY
:
581 task_category_policy_t info
= (task_category_policy_t
)policy_info
;
583 if (*count
< TASK_CATEGORY_POLICY_COUNT
) {
584 return KERN_INVALID_ARGUMENT
;
588 info
->role
= TASK_UNSPECIFIED
;
590 info
->role
= proc_get_task_policy(task
, TASK_POLICY_ATTRIBUTE
, TASK_POLICY_ROLE
);
595 case TASK_BASE_QOS_POLICY
: /* FALLTHRU */
596 case TASK_OVERRIDE_QOS_POLICY
:
598 task_qos_policy_t info
= (task_qos_policy_t
)policy_info
;
600 if (*count
< TASK_QOS_POLICY_COUNT
) {
601 return KERN_INVALID_ARGUMENT
;
605 info
->task_latency_qos_tier
= LATENCY_QOS_TIER_UNSPECIFIED
;
606 info
->task_throughput_qos_tier
= THROUGHPUT_QOS_TIER_UNSPECIFIED
;
607 } else if (flavor
== TASK_BASE_QOS_POLICY
) {
610 proc_get_task_policy2(task
, TASK_POLICY_ATTRIBUTE
, TASK_POLICY_BASE_LATENCY_AND_THROUGHPUT_QOS
, &value1
, &value2
);
612 info
->task_latency_qos_tier
= qos_latency_policy_package(value1
);
613 info
->task_throughput_qos_tier
= qos_throughput_policy_package(value2
);
614 } else if (flavor
== TASK_OVERRIDE_QOS_POLICY
) {
617 proc_get_task_policy2(task
, TASK_POLICY_ATTRIBUTE
, TASK_POLICY_OVERRIDE_LATENCY_AND_THROUGHPUT_QOS
, &value1
, &value2
);
619 info
->task_latency_qos_tier
= qos_latency_policy_package(value1
);
620 info
->task_throughput_qos_tier
= qos_throughput_policy_package(value2
);
626 case TASK_POLICY_STATE
:
628 task_policy_state_t info
= (task_policy_state_t
)policy_info
;
630 if (*count
< TASK_POLICY_STATE_COUNT
) {
631 return KERN_INVALID_ARGUMENT
;
634 /* Only root can get this info */
635 if (current_task()->sec_token
.val
[0] != 0) {
636 return KERN_PROTECTION_FAILURE
;
643 info
->imp_assertcnt
= 0;
644 info
->imp_externcnt
= 0;
646 info
->imp_transitions
= 0;
650 info
->requested
= task_requested_bitfield(task
);
651 info
->effective
= task_effective_bitfield(task
);
654 info
->tps_requested_policy
= *(uint64_t*)(&task
->requested_policy
);
655 info
->tps_effective_policy
= *(uint64_t*)(&task
->effective_policy
);
658 if (task
->task_imp_base
!= NULL
) {
659 info
->imp_assertcnt
= task
->task_imp_base
->iit_assertcnt
;
660 info
->imp_externcnt
= IIT_EXTERN(task
->task_imp_base
);
661 info
->flags
|= (task_is_marked_importance_receiver(task
) ? TASK_IMP_RECEIVER
: 0);
662 info
->flags
|= (task_is_marked_importance_denap_receiver(task
) ? TASK_DENAP_RECEIVER
: 0);
663 info
->flags
|= (task_is_marked_importance_donor(task
) ? TASK_IMP_DONOR
: 0);
664 info
->flags
|= (task_is_marked_live_importance_donor(task
) ? TASK_IMP_LIVE_DONOR
: 0);
665 info
->flags
|= (get_task_pidsuspended(task
) ? TASK_IS_PIDSUSPENDED
: 0);
666 info
->imp_transitions
= task
->task_imp_base
->iit_transitions
;
668 info
->imp_assertcnt
= 0;
669 info
->imp_externcnt
= 0;
670 info
->imp_transitions
= 0;
678 case TASK_SUPPRESSION_POLICY
:
680 task_suppression_policy_t info
= (task_suppression_policy_t
)policy_info
;
682 if (*count
< TASK_SUPPRESSION_POLICY_COUNT
) {
683 return KERN_INVALID_ARGUMENT
;
690 info
->lowpri_cpu
= 0;
691 info
->timer_throttle
= LATENCY_QOS_TIER_UNSPECIFIED
;
692 info
->disk_throttle
= 0;
695 info
->throughput_qos
= 0;
696 info
->suppressed_cpu
= 0;
698 info
->active
= task
->requested_policy
.trp_sup_active
;
699 info
->lowpri_cpu
= task
->requested_policy
.trp_sup_lowpri_cpu
;
700 info
->timer_throttle
= qos_latency_policy_package(task
->requested_policy
.trp_sup_timer
);
701 info
->disk_throttle
= task
->requested_policy
.trp_sup_disk
;
704 info
->throughput_qos
= qos_throughput_policy_package(task
->requested_policy
.trp_sup_throughput
);
705 info
->suppressed_cpu
= task
->requested_policy
.trp_sup_cpu
;
706 info
->background_sockets
= task
->requested_policy
.trp_sup_bg_sockets
;
714 return KERN_INVALID_ARGUMENT
;
721 * Called at task creation
722 * We calculate the correct effective but don't apply it to anything yet.
723 * The threads, etc will inherit from the task as they get created.
726 task_policy_create(task_t task
, task_t parent_task
)
728 task
->requested_policy
.trp_apptype
= parent_task
->requested_policy
.trp_apptype
;
730 task
->requested_policy
.trp_int_darwinbg
= parent_task
->requested_policy
.trp_int_darwinbg
;
731 task
->requested_policy
.trp_ext_darwinbg
= parent_task
->requested_policy
.trp_ext_darwinbg
;
732 task
->requested_policy
.trp_int_iotier
= parent_task
->requested_policy
.trp_int_iotier
;
733 task
->requested_policy
.trp_ext_iotier
= parent_task
->requested_policy
.trp_ext_iotier
;
734 task
->requested_policy
.trp_int_iopassive
= parent_task
->requested_policy
.trp_int_iopassive
;
735 task
->requested_policy
.trp_ext_iopassive
= parent_task
->requested_policy
.trp_ext_iopassive
;
736 task
->requested_policy
.trp_bg_iotier
= parent_task
->requested_policy
.trp_bg_iotier
;
737 task
->requested_policy
.trp_terminated
= parent_task
->requested_policy
.trp_terminated
;
738 task
->requested_policy
.trp_qos_clamp
= parent_task
->requested_policy
.trp_qos_clamp
;
740 if (task
->requested_policy
.trp_apptype
== TASK_APPTYPE_DAEMON_ADAPTIVE
&& !task_is_exec_copy(task
)) {
741 /* Do not update the apptype for exec copy task */
742 if (parent_task
->requested_policy
.trp_boosted
) {
743 task
->requested_policy
.trp_apptype
= TASK_APPTYPE_DAEMON_INTERACTIVE
;
744 task_importance_mark_donor(task
, TRUE
);
746 task
->requested_policy
.trp_apptype
= TASK_APPTYPE_DAEMON_BACKGROUND
;
747 task_importance_mark_receiver(task
, FALSE
);
751 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
752 (IMPORTANCE_CODE(IMP_UPDATE
, (IMP_UPDATE_TASK_CREATE
| TASK_POLICY_TASK
))) | DBG_FUNC_START
,
753 task_pid(task
), teffective_0(task
),
754 teffective_1(task
), task
->priority
, 0);
756 task_policy_update_internal_locked(task
, true, NULL
);
758 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
759 (IMPORTANCE_CODE(IMP_UPDATE
, (IMP_UPDATE_TASK_CREATE
| TASK_POLICY_TASK
))) | DBG_FUNC_END
,
760 task_pid(task
), teffective_0(task
),
761 teffective_1(task
), task
->priority
, 0);
763 task_importance_update_live_donor(task
);
768 task_policy_update_locked(task_t task
, task_pend_token_t pend_token
)
770 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
771 (IMPORTANCE_CODE(IMP_UPDATE
, TASK_POLICY_TASK
) | DBG_FUNC_START
),
772 task_pid(task
), teffective_0(task
),
773 teffective_1(task
), task
->priority
, 0);
775 task_policy_update_internal_locked(task
, false, pend_token
);
777 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
778 (IMPORTANCE_CODE(IMP_UPDATE
, TASK_POLICY_TASK
)) | DBG_FUNC_END
,
779 task_pid(task
), teffective_0(task
),
780 teffective_1(task
), task
->priority
, 0);
784 * One state update function TO RULE THEM ALL
786 * This function updates the task or thread effective policy fields
787 * and pushes the results to the relevant subsystems.
789 * Must call update_complete after unlocking the task,
790 * as some subsystems cannot be updated while holding the task lock.
792 * Called with task locked, not thread
796 task_policy_update_internal_locked(task_t task
, bool in_create
, task_pend_token_t pend_token
)
800 * Gather requested policy
803 struct task_requested_policy requested
= task
->requested_policy
;
807 * Calculate new effective policies from requested policy and task state
809 * Don't change requested, it won't take effect
812 struct task_effective_policy next
= {};
814 /* Update task role */
815 next
.tep_role
= requested
.trp_role
;
817 /* Set task qos clamp and ceiling */
818 next
.tep_qos_clamp
= requested
.trp_qos_clamp
;
820 if (requested
.trp_apptype
== TASK_APPTYPE_APP_DEFAULT
) {
821 switch (next
.tep_role
) {
822 case TASK_FOREGROUND_APPLICATION
:
823 /* Foreground apps get urgent scheduler priority */
824 next
.tep_qos_ui_is_urgent
= 1;
825 next
.tep_qos_ceiling
= THREAD_QOS_UNSPECIFIED
;
828 case TASK_BACKGROUND_APPLICATION
:
829 /* This is really 'non-focal but on-screen' */
830 next
.tep_qos_ceiling
= THREAD_QOS_UNSPECIFIED
;
833 case TASK_DEFAULT_APPLICATION
:
834 /* This is 'may render UI but we don't know if it's focal/nonfocal' */
835 next
.tep_qos_ceiling
= THREAD_QOS_UNSPECIFIED
;
838 case TASK_NONUI_APPLICATION
:
839 /* i.e. 'off-screen' */
840 next
.tep_qos_ceiling
= THREAD_QOS_LEGACY
;
843 case TASK_CONTROL_APPLICATION
:
844 case TASK_GRAPHICS_SERVER
:
845 next
.tep_qos_ui_is_urgent
= 1;
846 next
.tep_qos_ceiling
= THREAD_QOS_UNSPECIFIED
;
849 case TASK_THROTTLE_APPLICATION
:
850 /* i.e. 'TAL launch' */
851 next
.tep_qos_ceiling
= THREAD_QOS_UTILITY
;
854 case TASK_DARWINBG_APPLICATION
:
855 /* i.e. 'DARWIN_BG throttled background application' */
856 next
.tep_qos_ceiling
= THREAD_QOS_BACKGROUND
;
859 case TASK_UNSPECIFIED
:
861 /* Apps that don't have an application role get
862 * USER_INTERACTIVE and USER_INITIATED squashed to LEGACY */
863 next
.tep_qos_ceiling
= THREAD_QOS_LEGACY
;
867 /* Daemons and dext get USER_INTERACTIVE squashed to USER_INITIATED */
868 next
.tep_qos_ceiling
= THREAD_QOS_USER_INITIATED
;
871 /* Calculate DARWIN_BG */
872 bool wants_darwinbg
= false;
873 bool wants_all_sockets_bg
= false; /* Do I want my existing sockets to be bg */
874 bool wants_watchersbg
= false; /* Do I want my pidbound threads to be bg */
875 bool adaptive_bg_only
= false; /* This task is BG only because it's adaptive unboosted */
877 /* Adaptive daemons are DARWIN_BG unless boosted, and don't get network throttled. */
878 if (requested
.trp_apptype
== TASK_APPTYPE_DAEMON_ADAPTIVE
&&
879 requested
.trp_boosted
== 0) {
880 wants_darwinbg
= true;
881 adaptive_bg_only
= true;
885 * If DARWIN_BG has been requested at either level, it's engaged.
886 * Only true DARWIN_BG changes cause watchers to transition.
888 * Backgrounding due to apptype does.
890 if (requested
.trp_int_darwinbg
|| requested
.trp_ext_darwinbg
||
891 next
.tep_role
== TASK_DARWINBG_APPLICATION
) {
892 wants_watchersbg
= wants_all_sockets_bg
= wants_darwinbg
= true;
893 adaptive_bg_only
= false;
896 /* Application launching in special Transparent App Lifecycle throttle mode */
897 if (requested
.trp_apptype
== TASK_APPTYPE_APP_DEFAULT
&&
898 requested
.trp_role
== TASK_THROTTLE_APPLICATION
) {
899 next
.tep_tal_engaged
= 1;
902 /* Background daemons are always DARWIN_BG, no exceptions, and don't get network throttled. */
903 if (requested
.trp_apptype
== TASK_APPTYPE_DAEMON_BACKGROUND
) {
904 wants_darwinbg
= true;
905 adaptive_bg_only
= false;
908 if (next
.tep_qos_clamp
== THREAD_QOS_BACKGROUND
||
909 next
.tep_qos_clamp
== THREAD_QOS_MAINTENANCE
) {
910 wants_darwinbg
= true;
911 adaptive_bg_only
= false;
914 /* Calculate side effects of DARWIN_BG */
916 if (wants_darwinbg
) {
917 next
.tep_darwinbg
= 1;
918 /* darwinbg tasks always create bg sockets, but we don't always loop over all sockets */
919 next
.tep_new_sockets_bg
= 1;
920 next
.tep_lowpri_cpu
= 1;
923 if (wants_all_sockets_bg
) {
924 next
.tep_all_sockets_bg
= 1;
927 if (wants_watchersbg
) {
928 next
.tep_watchers_bg
= 1;
931 next
.tep_adaptive_bg
= adaptive_bg_only
;
933 /* Calculate low CPU priority */
935 boolean_t wants_lowpri_cpu
= false;
937 if (wants_darwinbg
) {
938 wants_lowpri_cpu
= true;
941 if (next
.tep_tal_engaged
) {
942 wants_lowpri_cpu
= true;
945 if (requested
.trp_sup_lowpri_cpu
&& requested
.trp_boosted
== 0) {
946 wants_lowpri_cpu
= true;
949 if (wants_lowpri_cpu
) {
950 next
.tep_lowpri_cpu
= 1;
953 /* Calculate IO policy */
955 /* Update BG IO policy (so we can see if it has changed) */
956 next
.tep_bg_iotier
= requested
.trp_bg_iotier
;
958 int iopol
= THROTTLE_LEVEL_TIER0
;
960 if (wants_darwinbg
) {
961 iopol
= MAX(iopol
, requested
.trp_bg_iotier
);
964 if (requested
.trp_apptype
== TASK_APPTYPE_DAEMON_STANDARD
) {
965 iopol
= MAX(iopol
, proc_standard_daemon_tier
);
968 if (requested
.trp_sup_disk
&& requested
.trp_boosted
== 0) {
969 iopol
= MAX(iopol
, proc_suppressed_disk_tier
);
972 if (next
.tep_tal_engaged
) {
973 iopol
= MAX(iopol
, proc_tal_disk_tier
);
976 if (next
.tep_qos_clamp
!= THREAD_QOS_UNSPECIFIED
) {
977 iopol
= MAX(iopol
, thread_qos_policy_params
.qos_iotier
[next
.tep_qos_clamp
]);
980 iopol
= MAX(iopol
, requested
.trp_int_iotier
);
981 iopol
= MAX(iopol
, requested
.trp_ext_iotier
);
983 next
.tep_io_tier
= iopol
;
985 /* Calculate Passive IO policy */
987 if (requested
.trp_ext_iopassive
|| requested
.trp_int_iopassive
) {
988 next
.tep_io_passive
= 1;
991 /* Calculate suppression-active flag */
992 boolean_t appnap_transition
= false;
994 if (requested
.trp_sup_active
&& requested
.trp_boosted
== 0) {
995 next
.tep_sup_active
= 1;
998 if (task
->effective_policy
.tep_sup_active
!= next
.tep_sup_active
) {
999 appnap_transition
= true;
1002 /* Calculate timer QOS */
1003 int latency_qos
= requested
.trp_base_latency_qos
;
1005 if (requested
.trp_sup_timer
&& requested
.trp_boosted
== 0) {
1006 latency_qos
= requested
.trp_sup_timer
;
1009 if (next
.tep_qos_clamp
!= THREAD_QOS_UNSPECIFIED
) {
1010 latency_qos
= MAX(latency_qos
, (int)thread_qos_policy_params
.qos_latency_qos
[next
.tep_qos_clamp
]);
1013 if (requested
.trp_over_latency_qos
!= 0) {
1014 latency_qos
= requested
.trp_over_latency_qos
;
1017 /* Treat the windowserver special */
1018 if (requested
.trp_role
== TASK_GRAPHICS_SERVER
) {
1019 latency_qos
= proc_graphics_timer_qos
;
1022 next
.tep_latency_qos
= latency_qos
;
1024 /* Calculate throughput QOS */
1025 int through_qos
= requested
.trp_base_through_qos
;
1027 if (requested
.trp_sup_throughput
&& requested
.trp_boosted
== 0) {
1028 through_qos
= requested
.trp_sup_throughput
;
1031 if (next
.tep_qos_clamp
!= THREAD_QOS_UNSPECIFIED
) {
1032 through_qos
= MAX(through_qos
, (int)thread_qos_policy_params
.qos_through_qos
[next
.tep_qos_clamp
]);
1035 if (requested
.trp_over_through_qos
!= 0) {
1036 through_qos
= requested
.trp_over_through_qos
;
1039 next
.tep_through_qos
= through_qos
;
1041 /* Calculate suppressed CPU priority */
1042 if (requested
.trp_sup_cpu
&& requested
.trp_boosted
== 0) {
1043 next
.tep_suppressed_cpu
= 1;
1047 * Calculate background sockets
1048 * Don't take into account boosting to limit transition frequency.
1050 if (requested
.trp_sup_bg_sockets
) {
1051 next
.tep_all_sockets_bg
= 1;
1052 next
.tep_new_sockets_bg
= 1;
1055 /* Apply SFI Managed class bit */
1056 next
.tep_sfi_managed
= requested
.trp_sfi_managed
;
1058 /* Calculate 'live donor' status for live importance */
1059 switch (requested
.trp_apptype
) {
1060 case TASK_APPTYPE_APP_TAL
:
1061 case TASK_APPTYPE_APP_DEFAULT
:
1062 if (requested
.trp_ext_darwinbg
== 1 ||
1063 (next
.tep_sup_active
== 1 &&
1064 (task_policy_suppression_flags
& TASK_POLICY_SUPPRESSION_NONDONOR
)) ||
1065 next
.tep_role
== TASK_DARWINBG_APPLICATION
) {
1066 next
.tep_live_donor
= 0;
1068 next
.tep_live_donor
= 1;
1072 case TASK_APPTYPE_DAEMON_INTERACTIVE
:
1073 case TASK_APPTYPE_DAEMON_STANDARD
:
1074 case TASK_APPTYPE_DAEMON_ADAPTIVE
:
1075 case TASK_APPTYPE_DAEMON_BACKGROUND
:
1076 case TASK_APPTYPE_DRIVER
:
1078 next
.tep_live_donor
= 0;
1082 if (requested
.trp_terminated
) {
1084 * Shoot down the throttles that slow down exit or response to SIGTERM
1085 * We don't need to shoot down:
1086 * passive (don't want to cause others to throttle)
1087 * all_sockets_bg (don't need to iterate FDs on every exit)
1088 * new_sockets_bg (doesn't matter for exiting process)
1089 * pidsuspend (jetsam-ed BG process shouldn't run again)
1090 * watchers_bg (watcher threads don't need to be unthrottled)
1091 * latency_qos (affects userspace timers only)
1094 next
.tep_terminated
= 1;
1095 next
.tep_darwinbg
= 0;
1096 next
.tep_lowpri_cpu
= 0;
1097 next
.tep_io_tier
= THROTTLE_LEVEL_TIER0
;
1098 next
.tep_tal_engaged
= 0;
1099 next
.tep_role
= TASK_UNSPECIFIED
;
1100 next
.tep_suppressed_cpu
= 0;
1105 * Swap out old policy for new policy
1108 struct task_effective_policy prev
= task
->effective_policy
;
1110 /* This is the point where the new values become visible to other threads */
1111 task
->effective_policy
= next
;
1113 /* Don't do anything further to a half-formed task */
1118 if (task
== kernel_task
) {
1119 panic("Attempting to set task policy on kernel_task");
1124 * Pend updates that can't be done while holding the task lock
1127 if (prev
.tep_all_sockets_bg
!= next
.tep_all_sockets_bg
) {
1128 pend_token
->tpt_update_sockets
= 1;
1131 /* Only re-scan the timer list if the qos level is getting less strong */
1132 if (prev
.tep_latency_qos
> next
.tep_latency_qos
) {
1133 pend_token
->tpt_update_timers
= 1;
1136 #if CONFIG_TASKWATCH
1137 if (prev
.tep_watchers_bg
!= next
.tep_watchers_bg
) {
1138 pend_token
->tpt_update_watchers
= 1;
1140 #endif /* CONFIG_TASKWATCH */
1142 if (prev
.tep_live_donor
!= next
.tep_live_donor
) {
1143 pend_token
->tpt_update_live_donor
= 1;
1148 * Update other subsystems as necessary if something has changed
1151 bool update_threads
= false, update_sfi
= false;
1154 * Check for the attributes that thread_policy_update_internal_locked() consults,
1155 * and trigger thread policy re-evaluation.
1157 if (prev
.tep_io_tier
!= next
.tep_io_tier
||
1158 prev
.tep_bg_iotier
!= next
.tep_bg_iotier
||
1159 prev
.tep_io_passive
!= next
.tep_io_passive
||
1160 prev
.tep_darwinbg
!= next
.tep_darwinbg
||
1161 prev
.tep_qos_clamp
!= next
.tep_qos_clamp
||
1162 prev
.tep_qos_ceiling
!= next
.tep_qos_ceiling
||
1163 prev
.tep_qos_ui_is_urgent
!= next
.tep_qos_ui_is_urgent
||
1164 prev
.tep_latency_qos
!= next
.tep_latency_qos
||
1165 prev
.tep_through_qos
!= next
.tep_through_qos
||
1166 prev
.tep_lowpri_cpu
!= next
.tep_lowpri_cpu
||
1167 prev
.tep_new_sockets_bg
!= next
.tep_new_sockets_bg
||
1168 prev
.tep_terminated
!= next
.tep_terminated
||
1169 prev
.tep_adaptive_bg
!= next
.tep_adaptive_bg
) {
1170 update_threads
= true;
1174 * Check for the attributes that sfi_thread_classify() consults,
1175 * and trigger SFI re-evaluation.
1177 if (prev
.tep_latency_qos
!= next
.tep_latency_qos
||
1178 prev
.tep_role
!= next
.tep_role
||
1179 prev
.tep_sfi_managed
!= next
.tep_sfi_managed
) {
1183 /* Reflect task role transitions into the coalition role counters */
1184 if (prev
.tep_role
!= next
.tep_role
) {
1185 if (task_policy_update_coalition_focal_tasks(task
, prev
.tep_role
, next
.tep_role
, pend_token
)) {
1190 bool update_priority
= false;
1192 int16_t priority
= BASEPRI_DEFAULT
;
1193 int16_t max_priority
= MAXPRI_USER
;
1195 if (next
.tep_lowpri_cpu
) {
1196 priority
= MAXPRI_THROTTLE
;
1197 max_priority
= MAXPRI_THROTTLE
;
1198 } else if (next
.tep_suppressed_cpu
) {
1199 priority
= MAXPRI_SUPPRESSED
;
1200 max_priority
= MAXPRI_SUPPRESSED
;
1202 switch (next
.tep_role
) {
1203 case TASK_CONTROL_APPLICATION
:
1204 priority
= BASEPRI_CONTROL
;
1206 case TASK_GRAPHICS_SERVER
:
1207 priority
= BASEPRI_GRAPHICS
;
1208 max_priority
= MAXPRI_RESERVED
;
1214 /* factor in 'nice' value */
1215 priority
+= task
->importance
;
1217 if (task
->effective_policy
.tep_qos_clamp
!= THREAD_QOS_UNSPECIFIED
) {
1218 int16_t qos_clamp_priority
= thread_qos_policy_params
.qos_pri
[task
->effective_policy
.tep_qos_clamp
];
1220 priority
= MIN(priority
, qos_clamp_priority
);
1221 max_priority
= MIN(max_priority
, qos_clamp_priority
);
1224 if (priority
> max_priority
) {
1225 priority
= max_priority
;
1226 } else if (priority
< MINPRI
) {
1231 assert(priority
<= max_priority
);
1233 /* avoid extra work if priority isn't changing */
1234 if (priority
!= task
->priority
||
1235 max_priority
!= task
->max_priority
) {
1236 /* update the scheduling priority for the task */
1237 task
->max_priority
= max_priority
;
1238 task
->priority
= priority
;
1239 update_priority
= true;
1242 /* Loop over the threads in the task:
1245 * with one thread mutex hold per thread
1247 if (update_threads
|| update_priority
|| update_sfi
) {
1250 queue_iterate(&task
->threads
, thread
, thread_t
, task_threads
) {
1251 struct task_pend_token thread_pend_token
= {};
1254 thread_pend_token
.tpt_update_thread_sfi
= 1;
1257 if (update_priority
|| update_threads
) {
1258 thread_policy_update_tasklocked(thread
,
1259 task
->priority
, task
->max_priority
,
1260 &thread_pend_token
);
1263 assert(!thread_pend_token
.tpt_update_sockets
);
1265 // Slightly risky, as we still hold the task lock...
1266 thread_policy_update_complete_unlocked(thread
, &thread_pend_token
);
1271 * Use the app-nap transitions to influence the
1272 * transition of the process within the jetsam band
1273 * [and optionally its live-donor status]
1276 if (appnap_transition
) {
1277 if (task
->effective_policy
.tep_sup_active
== 1) {
1278 memorystatus_update_priority_for_appnap(((proc_t
) task
->bsd_info
), TRUE
);
1280 memorystatus_update_priority_for_appnap(((proc_t
) task
->bsd_info
), FALSE
);
1287 * Yet another layering violation. We reach out and bang on the coalition directly.
1290 task_policy_update_coalition_focal_tasks(task_t task
,
1293 task_pend_token_t pend_token
)
1295 boolean_t sfi_transition
= FALSE
;
1296 uint32_t new_count
= 0;
1298 /* task moving into/out-of the foreground */
1299 if (prev_role
!= TASK_FOREGROUND_APPLICATION
&& next_role
== TASK_FOREGROUND_APPLICATION
) {
1300 if (task_coalition_adjust_focal_count(task
, 1, &new_count
) && (new_count
== 1)) {
1301 sfi_transition
= TRUE
;
1302 pend_token
->tpt_update_tg_ui_flag
= TRUE
;
1304 } else if (prev_role
== TASK_FOREGROUND_APPLICATION
&& next_role
!= TASK_FOREGROUND_APPLICATION
) {
1305 if (task_coalition_adjust_focal_count(task
, -1, &new_count
) && (new_count
== 0)) {
1306 sfi_transition
= TRUE
;
1307 pend_token
->tpt_update_tg_ui_flag
= TRUE
;
1311 /* task moving into/out-of background */
1312 if (prev_role
!= TASK_BACKGROUND_APPLICATION
&& next_role
== TASK_BACKGROUND_APPLICATION
) {
1313 if (task_coalition_adjust_nonfocal_count(task
, 1, &new_count
) && (new_count
== 1)) {
1314 sfi_transition
= TRUE
;
1316 } else if (prev_role
== TASK_BACKGROUND_APPLICATION
&& next_role
!= TASK_BACKGROUND_APPLICATION
) {
1317 if (task_coalition_adjust_nonfocal_count(task
, -1, &new_count
) && (new_count
== 0)) {
1318 sfi_transition
= TRUE
;
1322 if (sfi_transition
) {
1323 pend_token
->tpt_update_coal_sfi
= 1;
1325 return sfi_transition
;
1328 #if CONFIG_SCHED_SFI
1330 /* coalition object is locked */
1332 task_sfi_reevaluate_cb(coalition_t coal
, void *ctx
, task_t task
)
1336 /* unused for now */
1339 /* skip the task we're re-evaluating on behalf of: it's already updated */
1340 if (task
== (task_t
)ctx
) {
1346 queue_iterate(&task
->threads
, thread
, thread_t
, task_threads
) {
1347 sfi_reevaluate(thread
);
1352 #endif /* CONFIG_SCHED_SFI */
1355 * Called with task unlocked to do things that can't be done while holding the task lock
1358 task_policy_update_complete_unlocked(task_t task
, task_pend_token_t pend_token
)
1361 if (pend_token
->tpt_update_sockets
) {
1362 proc_apply_task_networkbg(task
->bsd_info
, THREAD_NULL
);
1364 #endif /* MACH_BSD */
1366 /* The timer throttle has been removed or reduced, we need to look for expired timers and fire them */
1367 if (pend_token
->tpt_update_timers
) {
1368 ml_timer_evaluate();
1371 #if CONFIG_TASKWATCH
1372 if (pend_token
->tpt_update_watchers
) {
1373 apply_appstate_watchers(task
);
1375 #endif /* CONFIG_TASKWATCH */
1377 if (pend_token
->tpt_update_live_donor
) {
1378 task_importance_update_live_donor(task
);
1381 #if CONFIG_SCHED_SFI
1382 /* use the resource coalition for SFI re-evaluation */
1383 if (pend_token
->tpt_update_coal_sfi
) {
1384 coalition_for_each_task(task
->coalition
[COALITION_TYPE_RESOURCE
],
1385 (void *)task
, task_sfi_reevaluate_cb
);
1387 #endif /* CONFIG_SCHED_SFI */
1389 #if CONFIG_THREAD_GROUPS
1390 if (pend_token
->tpt_update_tg_ui_flag
) {
1391 task_coalition_thread_group_focal_update(task
);
1393 #endif /* CONFIG_THREAD_GROUPS */
1397 * Initiate a task policy state transition
1399 * Everything that modifies requested except functions that need to hold the task lock
1400 * should use this function
1402 * Argument validation should be performed before reaching this point.
1404 * TODO: Do we need to check task->active?
1407 proc_set_task_policy(task_t task
,
1412 struct task_pend_token pend_token
= {};
1416 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
1417 (IMPORTANCE_CODE(flavor
, (category
| TASK_POLICY_TASK
))) | DBG_FUNC_START
,
1418 task_pid(task
), trequested_0(task
),
1419 trequested_1(task
), value
, 0);
1421 proc_set_task_policy_locked(task
, category
, flavor
, value
, 0);
1423 task_policy_update_locked(task
, &pend_token
);
1426 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
1427 (IMPORTANCE_CODE(flavor
, (category
| TASK_POLICY_TASK
))) | DBG_FUNC_END
,
1428 task_pid(task
), trequested_0(task
),
1429 trequested_1(task
), tpending(&pend_token
), 0);
1433 task_policy_update_complete_unlocked(task
, &pend_token
);
1437 * Variant of proc_set_task_policy() that sets two scalars in the requested policy structure.
1438 * Same locking rules apply.
1441 proc_set_task_policy2(task_t task
,
1447 struct task_pend_token pend_token
= {};
1451 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
1452 (IMPORTANCE_CODE(flavor
, (category
| TASK_POLICY_TASK
))) | DBG_FUNC_START
,
1453 task_pid(task
), trequested_0(task
),
1454 trequested_1(task
), value
, 0);
1456 proc_set_task_policy_locked(task
, category
, flavor
, value
, value2
);
1458 task_policy_update_locked(task
, &pend_token
);
1460 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
1461 (IMPORTANCE_CODE(flavor
, (category
| TASK_POLICY_TASK
))) | DBG_FUNC_END
,
1462 task_pid(task
), trequested_0(task
),
1463 trequested_1(task
), tpending(&pend_token
), 0);
1467 task_policy_update_complete_unlocked(task
, &pend_token
);
1471 * Set the requested state for a specific flavor to a specific value.
1474 * Verify that arguments to non iopol things are 1 or 0
1477 proc_set_task_policy_locked(task_t task
,
1485 struct task_requested_policy requested
= task
->requested_policy
;
1488 /* Category: EXTERNAL and INTERNAL */
1490 case TASK_POLICY_DARWIN_BG
:
1491 if (category
== TASK_POLICY_EXTERNAL
) {
1492 requested
.trp_ext_darwinbg
= value
;
1494 requested
.trp_int_darwinbg
= value
;
1498 case TASK_POLICY_IOPOL
:
1499 proc_iopol_to_tier(value
, &tier
, &passive
);
1500 if (category
== TASK_POLICY_EXTERNAL
) {
1501 requested
.trp_ext_iotier
= tier
;
1502 requested
.trp_ext_iopassive
= passive
;
1504 requested
.trp_int_iotier
= tier
;
1505 requested
.trp_int_iopassive
= passive
;
1509 case TASK_POLICY_IO
:
1510 if (category
== TASK_POLICY_EXTERNAL
) {
1511 requested
.trp_ext_iotier
= value
;
1513 requested
.trp_int_iotier
= value
;
1517 case TASK_POLICY_PASSIVE_IO
:
1518 if (category
== TASK_POLICY_EXTERNAL
) {
1519 requested
.trp_ext_iopassive
= value
;
1521 requested
.trp_int_iopassive
= value
;
1525 /* Category: INTERNAL */
1527 case TASK_POLICY_DARWIN_BG_IOPOL
:
1528 assert(category
== TASK_POLICY_INTERNAL
);
1529 proc_iopol_to_tier(value
, &tier
, &passive
);
1530 requested
.trp_bg_iotier
= tier
;
1533 /* Category: ATTRIBUTE */
1535 case TASK_POLICY_BOOST
:
1536 assert(category
== TASK_POLICY_ATTRIBUTE
);
1537 requested
.trp_boosted
= value
;
1540 case TASK_POLICY_ROLE
:
1541 assert(category
== TASK_POLICY_ATTRIBUTE
);
1542 requested
.trp_role
= value
;
1545 case TASK_POLICY_TERMINATED
:
1546 assert(category
== TASK_POLICY_ATTRIBUTE
);
1547 requested
.trp_terminated
= value
;
1550 case TASK_BASE_LATENCY_QOS_POLICY
:
1551 assert(category
== TASK_POLICY_ATTRIBUTE
);
1552 requested
.trp_base_latency_qos
= value
;
1555 case TASK_BASE_THROUGHPUT_QOS_POLICY
:
1556 assert(category
== TASK_POLICY_ATTRIBUTE
);
1557 requested
.trp_base_through_qos
= value
;
1560 case TASK_POLICY_SFI_MANAGED
:
1561 assert(category
== TASK_POLICY_ATTRIBUTE
);
1562 requested
.trp_sfi_managed
= value
;
1565 case TASK_POLICY_BASE_LATENCY_AND_THROUGHPUT_QOS
:
1566 assert(category
== TASK_POLICY_ATTRIBUTE
);
1567 requested
.trp_base_latency_qos
= value
;
1568 requested
.trp_base_through_qos
= value2
;
1571 case TASK_POLICY_OVERRIDE_LATENCY_AND_THROUGHPUT_QOS
:
1572 assert(category
== TASK_POLICY_ATTRIBUTE
);
1573 requested
.trp_over_latency_qos
= value
;
1574 requested
.trp_over_through_qos
= value2
;
1578 panic("unknown task policy: %d %d %d %d", category
, flavor
, value
, value2
);
1582 task
->requested_policy
= requested
;
1586 * Gets what you set. Effective values may be different.
1589 proc_get_task_policy(task_t task
,
1597 struct task_requested_policy requested
= task
->requested_policy
;
1600 case TASK_POLICY_DARWIN_BG
:
1601 if (category
== TASK_POLICY_EXTERNAL
) {
1602 value
= requested
.trp_ext_darwinbg
;
1604 value
= requested
.trp_int_darwinbg
;
1607 case TASK_POLICY_IOPOL
:
1608 if (category
== TASK_POLICY_EXTERNAL
) {
1609 value
= proc_tier_to_iopol(requested
.trp_ext_iotier
,
1610 requested
.trp_ext_iopassive
);
1612 value
= proc_tier_to_iopol(requested
.trp_int_iotier
,
1613 requested
.trp_int_iopassive
);
1616 case TASK_POLICY_IO
:
1617 if (category
== TASK_POLICY_EXTERNAL
) {
1618 value
= requested
.trp_ext_iotier
;
1620 value
= requested
.trp_int_iotier
;
1623 case TASK_POLICY_PASSIVE_IO
:
1624 if (category
== TASK_POLICY_EXTERNAL
) {
1625 value
= requested
.trp_ext_iopassive
;
1627 value
= requested
.trp_int_iopassive
;
1630 case TASK_POLICY_DARWIN_BG_IOPOL
:
1631 assert(category
== TASK_POLICY_INTERNAL
);
1632 value
= proc_tier_to_iopol(requested
.trp_bg_iotier
, 0);
1634 case TASK_POLICY_ROLE
:
1635 assert(category
== TASK_POLICY_ATTRIBUTE
);
1636 value
= requested
.trp_role
;
1638 case TASK_POLICY_SFI_MANAGED
:
1639 assert(category
== TASK_POLICY_ATTRIBUTE
);
1640 value
= requested
.trp_sfi_managed
;
1643 panic("unknown policy_flavor %d", flavor
);
1653 * Variant of proc_get_task_policy() that returns two scalar outputs.
1656 proc_get_task_policy2(task_t task
,
1657 __assert_only
int category
,
1664 struct task_requested_policy requested
= task
->requested_policy
;
1667 case TASK_POLICY_BASE_LATENCY_AND_THROUGHPUT_QOS
:
1668 assert(category
== TASK_POLICY_ATTRIBUTE
);
1669 *value1
= requested
.trp_base_latency_qos
;
1670 *value2
= requested
.trp_base_through_qos
;
1673 case TASK_POLICY_OVERRIDE_LATENCY_AND_THROUGHPUT_QOS
:
1674 assert(category
== TASK_POLICY_ATTRIBUTE
);
1675 *value1
= requested
.trp_over_latency_qos
;
1676 *value2
= requested
.trp_over_through_qos
;
1680 panic("unknown policy_flavor %d", flavor
);
1688 * Function for querying effective state for relevant subsystems
1689 * Gets what is actually in effect, for subsystems which pull policy instead of receive updates.
1691 * ONLY the relevant subsystem should query this.
1692 * NEVER take a value from the 'effective' function and stuff it into a setter.
1694 * NOTE: This accessor does not take the task lock.
1695 * Notifications of state updates need to be externally synchronized with state queries.
1696 * This routine *MUST* remain interrupt safe, as it is potentially invoked
1697 * within the context of a timer interrupt. It is also called in KDP context for stackshot.
1700 proc_get_effective_task_policy(task_t task
,
1706 case TASK_POLICY_DARWIN_BG
:
1708 * This backs the KPI call proc_pidbackgrounded to find
1709 * out if a pid is backgrounded.
1710 * It is used to communicate state to the VM system, as well as
1711 * prioritizing requests to the graphics system.
1712 * Returns 1 for background mode, 0 for normal mode
1714 value
= task
->effective_policy
.tep_darwinbg
;
1716 case TASK_POLICY_ALL_SOCKETS_BG
:
1718 * do_background_socket() calls this to determine what it should do to the proc's sockets
1719 * Returns 1 for background mode, 0 for normal mode
1721 * This consults both thread and task so un-DBGing a thread while the task is BG
1722 * doesn't get you out of the network throttle.
1724 value
= task
->effective_policy
.tep_all_sockets_bg
;
1726 case TASK_POLICY_SUP_ACTIVE
:
1728 * Is the task in AppNap? This is used to determine the urgency
1729 * that's passed to the performance management subsystem for threads
1730 * that are running at a priority <= MAXPRI_THROTTLE.
1732 value
= task
->effective_policy
.tep_sup_active
;
1734 case TASK_POLICY_LATENCY_QOS
:
1736 * timer arming calls into here to find out the timer coalescing level
1737 * Returns a QoS tier (0-6)
1739 value
= task
->effective_policy
.tep_latency_qos
;
1741 case TASK_POLICY_THROUGH_QOS
:
1743 * This value is passed into the urgency callout from the scheduler
1744 * to the performance management subsystem.
1745 * Returns a QoS tier (0-6)
1747 value
= task
->effective_policy
.tep_through_qos
;
1749 case TASK_POLICY_ROLE
:
1751 * This controls various things that ask whether a process is foreground,
1752 * like SFI, VM, access to GPU, etc
1754 value
= task
->effective_policy
.tep_role
;
1756 case TASK_POLICY_WATCHERS_BG
:
1758 * This controls whether or not a thread watching this process should be BG.
1760 value
= task
->effective_policy
.tep_watchers_bg
;
1762 case TASK_POLICY_SFI_MANAGED
:
1764 * This controls whether or not a process is targeted for specific control by thermald.
1766 value
= task
->effective_policy
.tep_sfi_managed
;
1769 panic("unknown policy_flavor %d", flavor
);
1777 * Convert from IOPOL_* values to throttle tiers.
1779 * TODO: Can this be made more compact, like an array lookup
1780 * Note that it is possible to support e.g. IOPOL_PASSIVE_STANDARD in the future
1784 proc_iopol_to_tier(int iopolicy
, int *tier
, int *passive
)
1789 case IOPOL_IMPORTANT
:
1790 *tier
= THROTTLE_LEVEL_TIER0
;
1793 *tier
= THROTTLE_LEVEL_TIER0
;
1796 case IOPOL_STANDARD
:
1797 *tier
= THROTTLE_LEVEL_TIER1
;
1800 *tier
= THROTTLE_LEVEL_TIER2
;
1802 case IOPOL_THROTTLE
:
1803 *tier
= THROTTLE_LEVEL_TIER3
;
1806 panic("unknown I/O policy %d", iopolicy
);
1812 proc_tier_to_iopol(int tier
, int passive
)
1816 case THROTTLE_LEVEL_TIER0
:
1817 return IOPOL_PASSIVE
;
1819 panic("unknown passive tier %d", tier
);
1820 return IOPOL_DEFAULT
;
1824 case THROTTLE_LEVEL_NONE
:
1825 case THROTTLE_LEVEL_TIER0
:
1826 return IOPOL_DEFAULT
;
1827 case THROTTLE_LEVEL_TIER1
:
1828 return IOPOL_STANDARD
;
1829 case THROTTLE_LEVEL_TIER2
:
1830 return IOPOL_UTILITY
;
1831 case THROTTLE_LEVEL_TIER3
:
1832 return IOPOL_THROTTLE
;
1834 panic("unknown tier %d", tier
);
1835 return IOPOL_DEFAULT
;
1841 proc_darwin_role_to_task_role(int darwin_role
, task_role_t
* task_role
)
1843 integer_t role
= TASK_UNSPECIFIED
;
1845 switch (darwin_role
) {
1846 case PRIO_DARWIN_ROLE_DEFAULT
:
1847 role
= TASK_UNSPECIFIED
;
1849 case PRIO_DARWIN_ROLE_UI_FOCAL
:
1850 role
= TASK_FOREGROUND_APPLICATION
;
1852 case PRIO_DARWIN_ROLE_UI
:
1853 role
= TASK_DEFAULT_APPLICATION
;
1855 case PRIO_DARWIN_ROLE_NON_UI
:
1856 role
= TASK_NONUI_APPLICATION
;
1858 case PRIO_DARWIN_ROLE_UI_NON_FOCAL
:
1859 role
= TASK_BACKGROUND_APPLICATION
;
1861 case PRIO_DARWIN_ROLE_TAL_LAUNCH
:
1862 role
= TASK_THROTTLE_APPLICATION
;
1864 case PRIO_DARWIN_ROLE_DARWIN_BG
:
1865 role
= TASK_DARWINBG_APPLICATION
;
1877 proc_task_role_to_darwin_role(task_role_t task_role
)
1879 switch (task_role
) {
1880 case TASK_FOREGROUND_APPLICATION
:
1881 return PRIO_DARWIN_ROLE_UI_FOCAL
;
1882 case TASK_BACKGROUND_APPLICATION
:
1883 return PRIO_DARWIN_ROLE_UI_NON_FOCAL
;
1884 case TASK_NONUI_APPLICATION
:
1885 return PRIO_DARWIN_ROLE_NON_UI
;
1886 case TASK_DEFAULT_APPLICATION
:
1887 return PRIO_DARWIN_ROLE_UI
;
1888 case TASK_THROTTLE_APPLICATION
:
1889 return PRIO_DARWIN_ROLE_TAL_LAUNCH
;
1890 case TASK_DARWINBG_APPLICATION
:
1891 return PRIO_DARWIN_ROLE_DARWIN_BG
;
1892 case TASK_UNSPECIFIED
:
1894 return PRIO_DARWIN_ROLE_DEFAULT
;
1899 /* TODO: remove this variable when interactive daemon audit period is over */
1900 static TUNABLE(bool, ipc_importance_interactive_receiver
,
1901 "imp_interactive_receiver", false);
1904 * Called at process exec to initialize the apptype, qos clamp, and qos seed of a process
1906 * TODO: Make this function more table-driven instead of ad-hoc
1909 proc_set_task_spawnpolicy(task_t task
, thread_t thread
, int apptype
, int qos_clamp
, task_role_t role
,
1910 ipc_port_t
* portwatch_ports
, uint32_t portwatch_count
)
1912 struct task_pend_token pend_token
= {};
1914 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
1915 (IMPORTANCE_CODE(IMP_TASK_APPTYPE
, apptype
)) | DBG_FUNC_START
,
1916 task_pid(task
), trequested_0(task
), trequested_1(task
),
1920 case TASK_APPTYPE_APP_DEFAULT
:
1921 /* Apps become donors via the 'live-donor' flag instead of the static donor flag */
1922 task_importance_mark_donor(task
, FALSE
);
1923 task_importance_mark_live_donor(task
, TRUE
);
1924 task_importance_mark_receiver(task
, FALSE
);
1925 #if !defined(XNU_TARGET_OS_OSX)
1926 task_importance_mark_denap_receiver(task
, FALSE
);
1928 /* Apps are de-nap recievers on macOS for suppression behaviors */
1929 task_importance_mark_denap_receiver(task
, TRUE
);
1930 #endif /* !defined(XNU_TARGET_OS_OSX) */
1933 case TASK_APPTYPE_DAEMON_INTERACTIVE
:
1934 task_importance_mark_donor(task
, TRUE
);
1935 task_importance_mark_live_donor(task
, FALSE
);
1938 * A boot arg controls whether interactive daemons are importance receivers.
1939 * Normally, they are not. But for testing their behavior as an adaptive
1940 * daemon, the boot-arg can be set.
1942 * TODO: remove this when the interactive daemon audit period is over.
1944 task_importance_mark_receiver(task
, /* FALSE */ ipc_importance_interactive_receiver
);
1945 task_importance_mark_denap_receiver(task
, FALSE
);
1948 case TASK_APPTYPE_DAEMON_STANDARD
:
1949 task_importance_mark_donor(task
, TRUE
);
1950 task_importance_mark_live_donor(task
, FALSE
);
1951 task_importance_mark_receiver(task
, FALSE
);
1952 task_importance_mark_denap_receiver(task
, FALSE
);
1955 case TASK_APPTYPE_DAEMON_ADAPTIVE
:
1956 task_importance_mark_donor(task
, FALSE
);
1957 task_importance_mark_live_donor(task
, FALSE
);
1958 task_importance_mark_receiver(task
, TRUE
);
1959 task_importance_mark_denap_receiver(task
, FALSE
);
1962 case TASK_APPTYPE_DAEMON_BACKGROUND
:
1963 task_importance_mark_donor(task
, FALSE
);
1964 task_importance_mark_live_donor(task
, FALSE
);
1965 task_importance_mark_receiver(task
, FALSE
);
1966 task_importance_mark_denap_receiver(task
, FALSE
);
1969 case TASK_APPTYPE_DRIVER
:
1970 task_importance_mark_donor(task
, FALSE
);
1971 task_importance_mark_live_donor(task
, FALSE
);
1972 task_importance_mark_receiver(task
, FALSE
);
1973 task_importance_mark_denap_receiver(task
, FALSE
);
1976 case TASK_APPTYPE_NONE
:
1980 if (portwatch_ports
!= NULL
&& apptype
== TASK_APPTYPE_DAEMON_ADAPTIVE
) {
1981 int portwatch_boosts
= 0;
1983 for (uint32_t i
= 0; i
< portwatch_count
; i
++) {
1984 ipc_port_t port
= NULL
;
1986 if (IP_VALID(port
= portwatch_ports
[i
])) {
1988 task_add_importance_watchport(task
, port
, &boost
);
1989 portwatch_boosts
+= boost
;
1993 if (portwatch_boosts
> 0) {
1994 task_importance_hold_internal_assertion(task
, portwatch_boosts
);
1998 /* Redirect the turnstile push of watchports to task */
1999 if (portwatch_count
&& portwatch_ports
!= NULL
) {
2000 task_add_turnstile_watchports(task
, thread
, portwatch_ports
, portwatch_count
);
2005 if (apptype
!= TASK_APPTYPE_NONE
) {
2006 task
->requested_policy
.trp_apptype
= apptype
;
2009 #if !defined(XNU_TARGET_OS_OSX)
2010 /* Remove this after launchd starts setting it properly */
2011 if (apptype
== TASK_APPTYPE_APP_DEFAULT
&& role
== TASK_UNSPECIFIED
) {
2012 task
->requested_policy
.trp_role
= TASK_FOREGROUND_APPLICATION
;
2015 if (role
!= TASK_UNSPECIFIED
) {
2016 task
->requested_policy
.trp_role
= (uint32_t)role
;
2019 if (qos_clamp
!= THREAD_QOS_UNSPECIFIED
) {
2020 task
->requested_policy
.trp_qos_clamp
= qos_clamp
;
2023 task_policy_update_locked(task
, &pend_token
);
2027 /* Ensure the donor bit is updated to be in sync with the new live donor status */
2028 pend_token
.tpt_update_live_donor
= 1;
2030 task_policy_update_complete_unlocked(task
, &pend_token
);
2032 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
2033 (IMPORTANCE_CODE(IMP_TASK_APPTYPE
, apptype
)) | DBG_FUNC_END
,
2034 task_pid(task
), trequested_0(task
), trequested_1(task
),
2035 task_is_importance_receiver(task
), 0);
2039 * Inherit task role across exec
2042 proc_inherit_task_role(task_t new_task
,
2047 /* inherit the role from old task to new task */
2048 role
= proc_get_task_policy(old_task
, TASK_POLICY_ATTRIBUTE
, TASK_POLICY_ROLE
);
2049 proc_set_task_policy(new_task
, TASK_POLICY_ATTRIBUTE
, TASK_POLICY_ROLE
, role
);
2052 extern void * XNU_PTRAUTH_SIGNED_PTR("initproc") initproc
;
2055 * Compute the default main thread qos for a task
2058 task_compute_main_thread_qos(task_t task
)
2060 thread_qos_t primordial_qos
= THREAD_QOS_UNSPECIFIED
;
2062 thread_qos_t qos_clamp
= task
->requested_policy
.trp_qos_clamp
;
2064 switch (task
->requested_policy
.trp_apptype
) {
2065 case TASK_APPTYPE_APP_TAL
:
2066 case TASK_APPTYPE_APP_DEFAULT
:
2067 primordial_qos
= THREAD_QOS_USER_INTERACTIVE
;
2070 case TASK_APPTYPE_DAEMON_INTERACTIVE
:
2071 case TASK_APPTYPE_DAEMON_STANDARD
:
2072 case TASK_APPTYPE_DAEMON_ADAPTIVE
:
2073 case TASK_APPTYPE_DRIVER
:
2074 primordial_qos
= THREAD_QOS_LEGACY
;
2077 case TASK_APPTYPE_DAEMON_BACKGROUND
:
2078 primordial_qos
= THREAD_QOS_BACKGROUND
;
2082 if (task
->bsd_info
== initproc
) {
2083 /* PID 1 gets a special case */
2084 primordial_qos
= MAX(primordial_qos
, THREAD_QOS_USER_INITIATED
);
2087 if (qos_clamp
!= THREAD_QOS_UNSPECIFIED
) {
2088 if (primordial_qos
!= THREAD_QOS_UNSPECIFIED
) {
2089 primordial_qos
= MIN(qos_clamp
, primordial_qos
);
2091 primordial_qos
= qos_clamp
;
2095 return primordial_qos
;
2099 /* for process_policy to check before attempting to set */
2101 proc_task_is_tal(task_t task
)
2103 return (task
->requested_policy
.trp_apptype
== TASK_APPTYPE_APP_TAL
) ? TRUE
: FALSE
;
2107 task_get_apptype(task_t task
)
2109 return task
->requested_policy
.trp_apptype
;
2113 task_is_daemon(task_t task
)
2115 switch (task
->requested_policy
.trp_apptype
) {
2116 case TASK_APPTYPE_DAEMON_INTERACTIVE
:
2117 case TASK_APPTYPE_DAEMON_STANDARD
:
2118 case TASK_APPTYPE_DAEMON_ADAPTIVE
:
2119 case TASK_APPTYPE_DAEMON_BACKGROUND
:
2127 task_is_driver(task_t task
)
2132 return task
->requested_policy
.trp_apptype
== TASK_APPTYPE_DRIVER
;
2136 task_is_app(task_t task
)
2138 switch (task
->requested_policy
.trp_apptype
) {
2139 case TASK_APPTYPE_APP_DEFAULT
:
2140 case TASK_APPTYPE_APP_TAL
:
2149 task_grab_latency_qos(task_t task
)
2151 return qos_latency_policy_package(proc_get_effective_task_policy(task
, TASK_POLICY_LATENCY_QOS
));
2154 /* update the darwin background action state in the flags field for libproc */
2156 proc_get_darwinbgstate(task_t task
, uint32_t * flagsp
)
2158 if (task
->requested_policy
.trp_ext_darwinbg
) {
2159 *flagsp
|= PROC_FLAG_EXT_DARWINBG
;
2162 if (task
->requested_policy
.trp_int_darwinbg
) {
2163 *flagsp
|= PROC_FLAG_DARWINBG
;
2166 #if !defined(XNU_TARGET_OS_OSX)
2167 if (task
->requested_policy
.trp_apptype
== TASK_APPTYPE_DAEMON_BACKGROUND
) {
2168 *flagsp
|= PROC_FLAG_IOS_APPLEDAEMON
;
2171 if (task
->requested_policy
.trp_apptype
== TASK_APPTYPE_DAEMON_ADAPTIVE
) {
2172 *flagsp
|= PROC_FLAG_IOS_IMPPROMOTION
;
2174 #endif /* !defined(XNU_TARGET_OS_OSX) */
2176 if (task
->requested_policy
.trp_apptype
== TASK_APPTYPE_APP_DEFAULT
||
2177 task
->requested_policy
.trp_apptype
== TASK_APPTYPE_APP_TAL
) {
2178 *flagsp
|= PROC_FLAG_APPLICATION
;
2181 if (task
->requested_policy
.trp_apptype
== TASK_APPTYPE_DAEMON_ADAPTIVE
) {
2182 *flagsp
|= PROC_FLAG_ADAPTIVE
;
2185 if (task
->requested_policy
.trp_apptype
== TASK_APPTYPE_DAEMON_ADAPTIVE
&&
2186 task
->requested_policy
.trp_boosted
== 1) {
2187 *flagsp
|= PROC_FLAG_ADAPTIVE_IMPORTANT
;
2190 if (task_is_importance_donor(task
)) {
2191 *flagsp
|= PROC_FLAG_IMPORTANCE_DONOR
;
2194 if (task
->effective_policy
.tep_sup_active
) {
2195 *flagsp
|= PROC_FLAG_SUPPRESSED
;
2202 * Tracepoint data... Reading the tracepoint data can be somewhat complicated.
2203 * The current scheme packs as much data into a single tracepoint as it can.
2205 * Each task/thread requested/effective structure is 64 bits in size. Any
2206 * given tracepoint will emit either requested or effective data, but not both.
2208 * A tracepoint may emit any of task, thread, or task & thread data.
2210 * The type of data emitted varies with pointer size. Where possible, both
2211 * task and thread data are emitted. In LP32 systems, the first and second
2212 * halves of either the task or thread data is emitted.
2214 * The code uses uintptr_t array indexes instead of high/low to avoid
2215 * confusion WRT big vs little endian.
2217 * The truth table for the tracepoint data functions is below, and has the
2218 * following invariants:
2220 * 1) task and thread are uintptr_t*
2221 * 2) task may never be NULL
2225 * trequested_0(task, NULL) task[0] task[0]
2226 * trequested_1(task, NULL) task[1] NULL
2227 * trequested_0(task, thread) thread[0] task[0]
2228 * trequested_1(task, thread) thread[1] thread[0]
2230 * Basically, you get a full task or thread on LP32, and both on LP64.
2232 * The uintptr_t munging here is squicky enough to deserve a comment.
2234 * The variables we are accessing are laid out in memory like this:
2236 * [ LP64 uintptr_t 0 ]
2237 * [ LP32 uintptr_t 0 ] [ LP32 uintptr_t 1 ]
2244 trequested_0(task_t task
)
2246 static_assert(sizeof(struct task_requested_policy
) == sizeof(uint64_t), "size invariant violated");
2248 uintptr_t* raw
= (uintptr_t*)&task
->requested_policy
;
2254 trequested_1(task_t task
)
2256 #if defined __LP64__
2260 uintptr_t* raw
= (uintptr_t*)(&task
->requested_policy
);
2266 teffective_0(task_t task
)
2268 uintptr_t* raw
= (uintptr_t*)&task
->effective_policy
;
2274 teffective_1(task_t task
)
2276 #if defined __LP64__
2280 uintptr_t* raw
= (uintptr_t*)(&task
->effective_policy
);
2285 /* dump pending for tracepoint */
2287 tpending(task_pend_token_t pend_token
)
2289 return *(uint32_t*)(void*)(pend_token
);
2293 task_requested_bitfield(task_t task
)
2296 struct task_requested_policy requested
= task
->requested_policy
;
2298 bits
|= (requested
.trp_int_darwinbg
? POLICY_REQ_INT_DARWIN_BG
: 0);
2299 bits
|= (requested
.trp_ext_darwinbg
? POLICY_REQ_EXT_DARWIN_BG
: 0);
2300 bits
|= (requested
.trp_int_iotier
? (((uint64_t)requested
.trp_int_iotier
) << POLICY_REQ_INT_IO_TIER_SHIFT
) : 0);
2301 bits
|= (requested
.trp_ext_iotier
? (((uint64_t)requested
.trp_ext_iotier
) << POLICY_REQ_EXT_IO_TIER_SHIFT
) : 0);
2302 bits
|= (requested
.trp_int_iopassive
? POLICY_REQ_INT_PASSIVE_IO
: 0);
2303 bits
|= (requested
.trp_ext_iopassive
? POLICY_REQ_EXT_PASSIVE_IO
: 0);
2304 bits
|= (requested
.trp_bg_iotier
? (((uint64_t)requested
.trp_bg_iotier
) << POLICY_REQ_BG_IOTIER_SHIFT
) : 0);
2305 bits
|= (requested
.trp_terminated
? POLICY_REQ_TERMINATED
: 0);
2307 bits
|= (requested
.trp_boosted
? POLICY_REQ_BOOSTED
: 0);
2308 bits
|= (requested
.trp_tal_enabled
? POLICY_REQ_TAL_ENABLED
: 0);
2309 bits
|= (requested
.trp_apptype
? (((uint64_t)requested
.trp_apptype
) << POLICY_REQ_APPTYPE_SHIFT
) : 0);
2310 bits
|= (requested
.trp_role
? (((uint64_t)requested
.trp_role
) << POLICY_REQ_ROLE_SHIFT
) : 0);
2312 bits
|= (requested
.trp_sup_active
? POLICY_REQ_SUP_ACTIVE
: 0);
2313 bits
|= (requested
.trp_sup_lowpri_cpu
? POLICY_REQ_SUP_LOWPRI_CPU
: 0);
2314 bits
|= (requested
.trp_sup_cpu
? POLICY_REQ_SUP_CPU
: 0);
2315 bits
|= (requested
.trp_sup_timer
? (((uint64_t)requested
.trp_sup_timer
) << POLICY_REQ_SUP_TIMER_THROTTLE_SHIFT
) : 0);
2316 bits
|= (requested
.trp_sup_throughput
? (((uint64_t)requested
.trp_sup_throughput
) << POLICY_REQ_SUP_THROUGHPUT_SHIFT
) : 0);
2317 bits
|= (requested
.trp_sup_disk
? POLICY_REQ_SUP_DISK_THROTTLE
: 0);
2318 bits
|= (requested
.trp_sup_bg_sockets
? POLICY_REQ_SUP_BG_SOCKETS
: 0);
2320 bits
|= (requested
.trp_base_latency_qos
? (((uint64_t)requested
.trp_base_latency_qos
) << POLICY_REQ_BASE_LATENCY_QOS_SHIFT
) : 0);
2321 bits
|= (requested
.trp_over_latency_qos
? (((uint64_t)requested
.trp_over_latency_qos
) << POLICY_REQ_OVER_LATENCY_QOS_SHIFT
) : 0);
2322 bits
|= (requested
.trp_base_through_qos
? (((uint64_t)requested
.trp_base_through_qos
) << POLICY_REQ_BASE_THROUGH_QOS_SHIFT
) : 0);
2323 bits
|= (requested
.trp_over_through_qos
? (((uint64_t)requested
.trp_over_through_qos
) << POLICY_REQ_OVER_THROUGH_QOS_SHIFT
) : 0);
2324 bits
|= (requested
.trp_sfi_managed
? POLICY_REQ_SFI_MANAGED
: 0);
2325 bits
|= (requested
.trp_qos_clamp
? (((uint64_t)requested
.trp_qos_clamp
) << POLICY_REQ_QOS_CLAMP_SHIFT
) : 0);
2331 task_effective_bitfield(task_t task
)
2334 struct task_effective_policy effective
= task
->effective_policy
;
2336 bits
|= (effective
.tep_io_tier
? (((uint64_t)effective
.tep_io_tier
) << POLICY_EFF_IO_TIER_SHIFT
) : 0);
2337 bits
|= (effective
.tep_io_passive
? POLICY_EFF_IO_PASSIVE
: 0);
2338 bits
|= (effective
.tep_darwinbg
? POLICY_EFF_DARWIN_BG
: 0);
2339 bits
|= (effective
.tep_lowpri_cpu
? POLICY_EFF_LOWPRI_CPU
: 0);
2340 bits
|= (effective
.tep_terminated
? POLICY_EFF_TERMINATED
: 0);
2341 bits
|= (effective
.tep_all_sockets_bg
? POLICY_EFF_ALL_SOCKETS_BG
: 0);
2342 bits
|= (effective
.tep_new_sockets_bg
? POLICY_EFF_NEW_SOCKETS_BG
: 0);
2343 bits
|= (effective
.tep_bg_iotier
? (((uint64_t)effective
.tep_bg_iotier
) << POLICY_EFF_BG_IOTIER_SHIFT
) : 0);
2344 bits
|= (effective
.tep_qos_ui_is_urgent
? POLICY_EFF_QOS_UI_IS_URGENT
: 0);
2346 bits
|= (effective
.tep_tal_engaged
? POLICY_EFF_TAL_ENGAGED
: 0);
2347 bits
|= (effective
.tep_watchers_bg
? POLICY_EFF_WATCHERS_BG
: 0);
2348 bits
|= (effective
.tep_sup_active
? POLICY_EFF_SUP_ACTIVE
: 0);
2349 bits
|= (effective
.tep_suppressed_cpu
? POLICY_EFF_SUP_CPU
: 0);
2350 bits
|= (effective
.tep_role
? (((uint64_t)effective
.tep_role
) << POLICY_EFF_ROLE_SHIFT
) : 0);
2351 bits
|= (effective
.tep_latency_qos
? (((uint64_t)effective
.tep_latency_qos
) << POLICY_EFF_LATENCY_QOS_SHIFT
) : 0);
2352 bits
|= (effective
.tep_through_qos
? (((uint64_t)effective
.tep_through_qos
) << POLICY_EFF_THROUGH_QOS_SHIFT
) : 0);
2353 bits
|= (effective
.tep_sfi_managed
? POLICY_EFF_SFI_MANAGED
: 0);
2354 bits
|= (effective
.tep_qos_ceiling
? (((uint64_t)effective
.tep_qos_ceiling
) << POLICY_EFF_QOS_CEILING_SHIFT
) : 0);
2361 * Resource usage and CPU related routines
2365 proc_get_task_ruse_cpu(task_t task
, uint32_t *policyp
, uint8_t *percentagep
, uint64_t *intervalp
, uint64_t *deadlinep
)
2373 error
= task_get_cpuusage(task
, percentagep
, intervalp
, deadlinep
, &scope
);
2377 * Reverse-map from CPU resource limit scopes back to policies (see comment below).
2379 if (scope
== TASK_RUSECPU_FLAGS_PERTHR_LIMIT
) {
2380 *policyp
= TASK_POLICY_RESOURCE_ATTRIBUTE_NOTIFY_EXC
;
2381 } else if (scope
== TASK_RUSECPU_FLAGS_PROC_LIMIT
) {
2382 *policyp
= TASK_POLICY_RESOURCE_ATTRIBUTE_THROTTLE
;
2383 } else if (scope
== TASK_RUSECPU_FLAGS_DEADLINE
) {
2384 *policyp
= TASK_POLICY_RESOURCE_ATTRIBUTE_NONE
;
2391 * Configure the default CPU usage monitor parameters.
2393 * For tasks which have this mechanism activated: if any thread in the
2394 * process consumes more CPU than this, an EXC_RESOURCE exception will be generated.
2397 proc_init_cpumon_params(void)
2400 * The max CPU percentage can be configured via the boot-args and
2401 * a key in the device tree. The boot-args are honored first, then the
2404 if (!PE_parse_boot_argn("max_cpumon_percentage", &proc_max_cpumon_percentage
,
2405 sizeof(proc_max_cpumon_percentage
))) {
2406 uint64_t max_percentage
= 0ULL;
2408 if (!PE_get_default("kern.max_cpumon_percentage", &max_percentage
,
2409 sizeof(max_percentage
))) {
2410 max_percentage
= DEFAULT_CPUMON_PERCENTAGE
;
2413 assert(max_percentage
<= UINT8_MAX
);
2414 proc_max_cpumon_percentage
= (uint8_t) max_percentage
;
2417 if (proc_max_cpumon_percentage
> 100) {
2418 proc_max_cpumon_percentage
= 100;
2422 * The interval should be specified in seconds.
2424 * Like the max CPU percentage, the max CPU interval can be configured
2425 * via boot-args and the device tree.
2427 if (!PE_parse_boot_argn("max_cpumon_interval", &proc_max_cpumon_interval
,
2428 sizeof(proc_max_cpumon_interval
))) {
2429 if (!PE_get_default("kern.max_cpumon_interval", &proc_max_cpumon_interval
,
2430 sizeof(proc_max_cpumon_interval
))) {
2431 proc_max_cpumon_interval
= DEFAULT_CPUMON_INTERVAL
;
2435 proc_max_cpumon_interval
*= NSEC_PER_SEC
;
2437 /* TEMPORARY boot arg to control App suppression */
2438 PE_parse_boot_argn("task_policy_suppression_flags",
2439 &task_policy_suppression_flags
,
2440 sizeof(task_policy_suppression_flags
));
2442 /* adjust suppression disk policy if called for in boot arg */
2443 if (task_policy_suppression_flags
& TASK_POLICY_SUPPRESSION_IOTIER2
) {
2444 proc_suppressed_disk_tier
= THROTTLE_LEVEL_TIER2
;
2449 * Currently supported configurations for CPU limits.
2451 * Policy | Deadline-based CPU limit | Percentage-based CPU limit
2452 * -------------------------------------+--------------------------+------------------------------
2453 * PROC_POLICY_RSRCACT_THROTTLE | ENOTSUP | Task-wide scope only
2454 * PROC_POLICY_RSRCACT_SUSPEND | Task-wide scope only | ENOTSUP
2455 * PROC_POLICY_RSRCACT_TERMINATE | Task-wide scope only | ENOTSUP
2456 * PROC_POLICY_RSRCACT_NOTIFY_KQ | Task-wide scope only | ENOTSUP
2457 * PROC_POLICY_RSRCACT_NOTIFY_EXC | ENOTSUP | Per-thread scope only
2459 * A deadline-based CPU limit is actually a simple wallclock timer - the requested action is performed
2460 * after the specified amount of wallclock time has elapsed.
2462 * A percentage-based CPU limit performs the requested action after the specified amount of actual CPU time
2463 * has been consumed -- regardless of how much wallclock time has elapsed -- by either the task as an
2464 * aggregate entity (so-called "Task-wide" or "Proc-wide" scope, whereby the CPU time consumed by all threads
2465 * in the task are added together), or by any one thread in the task (so-called "per-thread" scope).
2467 * We support either deadline != 0 OR percentage != 0, but not both. The original intention in having them
2468 * share an API was to use actual CPU time as the basis of the deadline-based limit (as in: perform an action
2469 * after I have used some amount of CPU time; this is different than the recurring percentage/interval model)
2470 * but the potential consumer of the API at the time was insisting on wallclock time instead.
2472 * Currently, requesting notification via an exception is the only way to get per-thread scope for a
2473 * CPU limit. All other types of notifications force task-wide scope for the limit.
2476 proc_set_task_ruse_cpu(task_t task
, uint16_t policy
, uint8_t percentage
, uint64_t interval
, uint64_t deadline
,
2477 int cpumon_entitled
)
2483 * Enforce the matrix of supported configurations for policy, percentage, and deadline.
2486 // If no policy is explicitly given, the default is to throttle.
2487 case TASK_POLICY_RESOURCE_ATTRIBUTE_NONE
:
2488 case TASK_POLICY_RESOURCE_ATTRIBUTE_THROTTLE
:
2489 if (deadline
!= 0) {
2492 scope
= TASK_RUSECPU_FLAGS_PROC_LIMIT
;
2494 case TASK_POLICY_RESOURCE_ATTRIBUTE_SUSPEND
:
2495 case TASK_POLICY_RESOURCE_ATTRIBUTE_TERMINATE
:
2496 case TASK_POLICY_RESOURCE_ATTRIBUTE_NOTIFY_KQ
:
2497 if (percentage
!= 0) {
2500 scope
= TASK_RUSECPU_FLAGS_DEADLINE
;
2502 case TASK_POLICY_RESOURCE_ATTRIBUTE_NOTIFY_EXC
:
2503 if (deadline
!= 0) {
2506 scope
= TASK_RUSECPU_FLAGS_PERTHR_LIMIT
;
2507 #ifdef CONFIG_NOMONITORS
2509 #endif /* CONFIG_NOMONITORS */
2516 if (task
!= current_task()) {
2517 task
->policy_ru_cpu_ext
= policy
;
2519 task
->policy_ru_cpu
= policy
;
2521 error
= task_set_cpuusage(task
, percentage
, interval
, deadline
, scope
, cpumon_entitled
);
2526 /* TODO: get rid of these */
2527 #define TASK_POLICY_CPU_RESOURCE_USAGE 0
2528 #define TASK_POLICY_WIREDMEM_RESOURCE_USAGE 1
2529 #define TASK_POLICY_VIRTUALMEM_RESOURCE_USAGE 2
2530 #define TASK_POLICY_DISK_RESOURCE_USAGE 3
2531 #define TASK_POLICY_NETWORK_RESOURCE_USAGE 4
2532 #define TASK_POLICY_POWER_RESOURCE_USAGE 5
2534 #define TASK_POLICY_RESOURCE_USAGE_COUNT 6
2537 proc_clear_task_ruse_cpu(task_t task
, int cpumon_entitled
)
2541 void * bsdinfo
= NULL
;
2544 if (task
!= current_task()) {
2545 task
->policy_ru_cpu_ext
= TASK_POLICY_RESOURCE_ATTRIBUTE_DEFAULT
;
2547 task
->policy_ru_cpu
= TASK_POLICY_RESOURCE_ATTRIBUTE_DEFAULT
;
2550 error
= task_clear_cpuusage_locked(task
, cpumon_entitled
);
2555 action
= task
->applied_ru_cpu
;
2556 if (task
->applied_ru_cpu_ext
!= TASK_POLICY_RESOURCE_ATTRIBUTE_NONE
) {
2558 task
->applied_ru_cpu_ext
= TASK_POLICY_RESOURCE_ATTRIBUTE_NONE
;
2560 if (action
!= TASK_POLICY_RESOURCE_ATTRIBUTE_NONE
) {
2561 bsdinfo
= task
->bsd_info
;
2563 proc_restore_resource_actions(bsdinfo
, TASK_POLICY_CPU_RESOURCE_USAGE
, action
);
2573 /* used to apply resource limit related actions */
2575 task_apply_resource_actions(task_t task
, int type
)
2577 int action
= TASK_POLICY_RESOURCE_ATTRIBUTE_NONE
;
2578 void * bsdinfo
= NULL
;
2581 case TASK_POLICY_CPU_RESOURCE_USAGE
:
2583 case TASK_POLICY_WIREDMEM_RESOURCE_USAGE
:
2584 case TASK_POLICY_VIRTUALMEM_RESOURCE_USAGE
:
2585 case TASK_POLICY_DISK_RESOURCE_USAGE
:
2586 case TASK_POLICY_NETWORK_RESOURCE_USAGE
:
2587 case TASK_POLICY_POWER_RESOURCE_USAGE
:
2595 /* only cpu actions for now */
2598 if (task
->applied_ru_cpu_ext
== TASK_POLICY_RESOURCE_ATTRIBUTE_NONE
) {
2600 task
->applied_ru_cpu_ext
= task
->policy_ru_cpu_ext
;
2601 action
= task
->applied_ru_cpu_ext
;
2603 action
= task
->applied_ru_cpu_ext
;
2606 if (action
!= TASK_POLICY_RESOURCE_ATTRIBUTE_NONE
) {
2607 bsdinfo
= task
->bsd_info
;
2609 proc_apply_resource_actions(bsdinfo
, TASK_POLICY_CPU_RESOURCE_USAGE
, action
);
2618 * XXX This API is somewhat broken; we support multiple simultaneous CPU limits, but the get/set API
2619 * only allows for one at a time. This means that if there is a per-thread limit active, the other
2620 * "scopes" will not be accessible via this API. We could change it to pass in the scope of interest
2621 * to the caller, and prefer that, but there's no need for that at the moment.
2624 task_get_cpuusage(task_t task
, uint8_t *percentagep
, uint64_t *intervalp
, uint64_t *deadlinep
, int *scope
)
2630 if ((task
->rusage_cpu_flags
& TASK_RUSECPU_FLAGS_PERTHR_LIMIT
) != 0) {
2631 *scope
= TASK_RUSECPU_FLAGS_PERTHR_LIMIT
;
2632 *percentagep
= task
->rusage_cpu_perthr_percentage
;
2633 *intervalp
= task
->rusage_cpu_perthr_interval
;
2634 } else if ((task
->rusage_cpu_flags
& TASK_RUSECPU_FLAGS_PROC_LIMIT
) != 0) {
2635 *scope
= TASK_RUSECPU_FLAGS_PROC_LIMIT
;
2636 *percentagep
= task
->rusage_cpu_percentage
;
2637 *intervalp
= task
->rusage_cpu_interval
;
2638 } else if ((task
->rusage_cpu_flags
& TASK_RUSECPU_FLAGS_DEADLINE
) != 0) {
2639 *scope
= TASK_RUSECPU_FLAGS_DEADLINE
;
2640 *deadlinep
= task
->rusage_cpu_deadline
;
2649 * Suspend the CPU usage monitor for the task. Return value indicates
2650 * if the mechanism was actually enabled.
2653 task_suspend_cpumon(task_t task
)
2657 task_lock_assert_owned(task
);
2659 if ((task
->rusage_cpu_flags
& TASK_RUSECPU_FLAGS_PERTHR_LIMIT
) == 0) {
2660 return KERN_INVALID_ARGUMENT
;
2663 #if CONFIG_TELEMETRY
2665 * Disable task-wide telemetry if it was ever enabled by the CPU usage
2666 * monitor's warning zone.
2668 telemetry_task_ctl_locked(task
, TF_CPUMON_WARNING
, 0);
2672 * Suspend monitoring for the task, and propagate that change to each thread.
2674 task
->rusage_cpu_flags
&= ~(TASK_RUSECPU_FLAGS_PERTHR_LIMIT
| TASK_RUSECPU_FLAGS_FATAL_CPUMON
);
2675 queue_iterate(&task
->threads
, thread
, thread_t
, task_threads
) {
2676 act_set_astledger(thread
);
2679 return KERN_SUCCESS
;
2683 * Remove all traces of the CPU monitor.
2686 task_disable_cpumon(task_t task
)
2690 task_lock_assert_owned(task
);
2692 kret
= task_suspend_cpumon(task
);
2697 /* Once we clear these values, the monitor can't be resumed */
2698 task
->rusage_cpu_perthr_percentage
= 0;
2699 task
->rusage_cpu_perthr_interval
= 0;
2701 return KERN_SUCCESS
;
2706 task_enable_cpumon_locked(task_t task
)
2709 task_lock_assert_owned(task
);
2711 if (task
->rusage_cpu_perthr_percentage
== 0 ||
2712 task
->rusage_cpu_perthr_interval
== 0) {
2713 return KERN_INVALID_ARGUMENT
;
2716 task
->rusage_cpu_flags
|= TASK_RUSECPU_FLAGS_PERTHR_LIMIT
;
2717 queue_iterate(&task
->threads
, thread
, thread_t
, task_threads
) {
2718 act_set_astledger(thread
);
2721 return KERN_SUCCESS
;
2725 task_resume_cpumon(task_t task
)
2734 kret
= task_enable_cpumon_locked(task
);
2741 /* duplicate values from bsd/sys/process_policy.h */
2742 #define PROC_POLICY_CPUMON_DISABLE 0xFF
2743 #define PROC_POLICY_CPUMON_DEFAULTS 0xFE
2746 task_set_cpuusage(task_t task
, uint8_t percentage
, uint64_t interval
, uint64_t deadline
, int scope
, int cpumon_entitled
)
2748 uint64_t abstime
= 0;
2749 uint64_t limittime
= 0;
2751 lck_mtx_assert(&task
->lock
, LCK_MTX_ASSERT_OWNED
);
2753 /* By default, refill once per second */
2754 if (interval
== 0) {
2755 interval
= NSEC_PER_SEC
;
2758 if (percentage
!= 0) {
2759 if (scope
== TASK_RUSECPU_FLAGS_PERTHR_LIMIT
) {
2760 boolean_t warn
= FALSE
;
2763 * A per-thread CPU limit on a task generates an exception
2764 * (LEDGER_ACTION_EXCEPTION) if any one thread in the task
2765 * exceeds the limit.
2768 if (percentage
== PROC_POLICY_CPUMON_DISABLE
) {
2769 if (cpumon_entitled
) {
2770 /* 25095698 - task_disable_cpumon() should be reliable */
2771 task_disable_cpumon(task
);
2776 * This task wishes to disable the CPU usage monitor, but it's
2777 * missing the required entitlement:
2778 * com.apple.private.kernel.override-cpumon
2780 * Instead, treat this as a request to reset its params
2781 * back to the defaults.
2784 percentage
= PROC_POLICY_CPUMON_DEFAULTS
;
2787 if (percentage
== PROC_POLICY_CPUMON_DEFAULTS
) {
2788 percentage
= proc_max_cpumon_percentage
;
2789 interval
= proc_max_cpumon_interval
;
2792 if (percentage
> 100) {
2797 * Passing in an interval of -1 means either:
2798 * - Leave the interval as-is, if there's already a per-thread
2800 * - Use the system default.
2802 if (interval
== -1ULL) {
2803 if (task
->rusage_cpu_flags
& TASK_RUSECPU_FLAGS_PERTHR_LIMIT
) {
2804 interval
= task
->rusage_cpu_perthr_interval
;
2806 interval
= proc_max_cpumon_interval
;
2811 * Enforce global caps on CPU usage monitor here if the process is not
2812 * entitled to escape the global caps.
2814 if ((percentage
> proc_max_cpumon_percentage
) && (cpumon_entitled
== 0)) {
2816 percentage
= proc_max_cpumon_percentage
;
2819 if ((interval
> proc_max_cpumon_interval
) && (cpumon_entitled
== 0)) {
2821 interval
= proc_max_cpumon_interval
;
2826 const char *procname
= "unknown";
2829 pid
= proc_selfpid();
2830 if (current_task()->bsd_info
!= NULL
) {
2831 procname
= proc_name_address(current_task()->bsd_info
);
2835 printf("process %s[%d] denied attempt to escape CPU monitor"
2836 " (missing required entitlement).\n", procname
, pid
);
2839 /* configure the limit values */
2840 task
->rusage_cpu_perthr_percentage
= percentage
;
2841 task
->rusage_cpu_perthr_interval
= interval
;
2843 /* and enable the CPU monitor */
2844 (void)task_enable_cpumon_locked(task
);
2845 } else if (scope
== TASK_RUSECPU_FLAGS_PROC_LIMIT
) {
2847 * Currently, a proc-wide CPU limit always blocks if the limit is
2848 * exceeded (LEDGER_ACTION_BLOCK).
2850 task
->rusage_cpu_flags
|= TASK_RUSECPU_FLAGS_PROC_LIMIT
;
2851 task
->rusage_cpu_percentage
= percentage
;
2852 task
->rusage_cpu_interval
= interval
;
2854 limittime
= (interval
* percentage
) / 100;
2855 nanoseconds_to_absolutetime(limittime
, &abstime
);
2857 ledger_set_limit(task
->ledger
, task_ledgers
.cpu_time
, abstime
, 0);
2858 ledger_set_period(task
->ledger
, task_ledgers
.cpu_time
, interval
);
2859 ledger_set_action(task
->ledger
, task_ledgers
.cpu_time
, LEDGER_ACTION_BLOCK
);
2863 if (deadline
!= 0) {
2864 assert(scope
== TASK_RUSECPU_FLAGS_DEADLINE
);
2866 /* if already in use, cancel and wait for it to cleanout */
2867 if (task
->rusage_cpu_callt
!= NULL
) {
2869 thread_call_cancel_wait(task
->rusage_cpu_callt
);
2872 if (task
->rusage_cpu_callt
== NULL
) {
2873 task
->rusage_cpu_callt
= thread_call_allocate_with_priority(task_action_cpuusage
, (thread_call_param_t
)task
, THREAD_CALL_PRIORITY_KERNEL
);
2876 if (task
->rusage_cpu_callt
!= 0) {
2877 uint64_t save_abstime
= 0;
2879 task
->rusage_cpu_flags
|= TASK_RUSECPU_FLAGS_DEADLINE
;
2880 task
->rusage_cpu_deadline
= deadline
;
2882 nanoseconds_to_absolutetime(deadline
, &abstime
);
2883 save_abstime
= abstime
;
2884 clock_absolutetime_interval_to_deadline(save_abstime
, &abstime
);
2885 thread_call_enter_delayed(task
->rusage_cpu_callt
, abstime
);
2893 task_clear_cpuusage(task_t task
, int cpumon_entitled
)
2898 retval
= task_clear_cpuusage_locked(task
, cpumon_entitled
);
2905 task_clear_cpuusage_locked(task_t task
, int cpumon_entitled
)
2907 thread_call_t savecallt
;
2909 /* cancel percentage handling if set */
2910 if (task
->rusage_cpu_flags
& TASK_RUSECPU_FLAGS_PROC_LIMIT
) {
2911 task
->rusage_cpu_flags
&= ~TASK_RUSECPU_FLAGS_PROC_LIMIT
;
2912 ledger_set_limit(task
->ledger
, task_ledgers
.cpu_time
, LEDGER_LIMIT_INFINITY
, 0);
2913 task
->rusage_cpu_percentage
= 0;
2914 task
->rusage_cpu_interval
= 0;
2918 * Disable the CPU usage monitor.
2920 if (cpumon_entitled
) {
2921 task_disable_cpumon(task
);
2924 /* cancel deadline handling if set */
2925 if (task
->rusage_cpu_flags
& TASK_RUSECPU_FLAGS_DEADLINE
) {
2926 task
->rusage_cpu_flags
&= ~TASK_RUSECPU_FLAGS_DEADLINE
;
2927 if (task
->rusage_cpu_callt
!= 0) {
2928 savecallt
= task
->rusage_cpu_callt
;
2929 task
->rusage_cpu_callt
= NULL
;
2930 task
->rusage_cpu_deadline
= 0;
2932 thread_call_cancel_wait(savecallt
);
2933 thread_call_free(savecallt
);
2940 /* called by ledger unit to enforce action due to resource usage criteria being met */
2942 task_action_cpuusage(thread_call_param_t param0
, __unused thread_call_param_t param1
)
2944 task_t task
= (task_t
)param0
;
2945 (void)task_apply_resource_actions(task
, TASK_POLICY_CPU_RESOURCE_USAGE
);
2951 * Routines for taskwatch and pidbind
2954 #if CONFIG_TASKWATCH
2956 LCK_MTX_DECLARE_ATTR(task_watch_mtx
, &task_lck_grp
, &task_lck_attr
);
2959 task_watch_lock(void)
2961 lck_mtx_lock(&task_watch_mtx
);
2965 task_watch_unlock(void)
2967 lck_mtx_unlock(&task_watch_mtx
);
2971 add_taskwatch_locked(task_t task
, task_watch_t
* twp
)
2973 queue_enter(&task
->task_watchers
, twp
, task_watch_t
*, tw_links
);
2974 task
->num_taskwatchers
++;
2978 remove_taskwatch_locked(task_t task
, task_watch_t
* twp
)
2980 queue_remove(&task
->task_watchers
, twp
, task_watch_t
*, tw_links
);
2981 task
->num_taskwatchers
--;
2986 proc_lf_pidbind(task_t curtask
, uint64_t tid
, task_t target_task
, int bind
)
2988 thread_t target_thread
= NULL
;
2989 int ret
= 0, setbg
= 0;
2990 task_watch_t
*twp
= NULL
;
2991 task_t task
= TASK_NULL
;
2993 target_thread
= task_findtid(curtask
, tid
);
2994 if (target_thread
== NULL
) {
2997 /* holds thread reference */
3000 /* task is still active ? */
3001 task_lock(target_task
);
3002 if (target_task
->active
== 0) {
3003 task_unlock(target_task
);
3007 task_unlock(target_task
);
3009 twp
= (task_watch_t
*)kalloc(sizeof(task_watch_t
));
3011 task_watch_unlock();
3016 bzero(twp
, sizeof(task_watch_t
));
3020 if (target_thread
->taskwatch
!= NULL
) {
3021 /* already bound to another task */
3022 task_watch_unlock();
3024 kfree(twp
, sizeof(task_watch_t
));
3029 task_reference(target_task
);
3031 setbg
= proc_get_effective_task_policy(target_task
, TASK_POLICY_WATCHERS_BG
);
3033 twp
->tw_task
= target_task
; /* holds the task reference */
3034 twp
->tw_thread
= target_thread
; /* holds the thread reference */
3035 twp
->tw_state
= setbg
;
3036 twp
->tw_importance
= target_thread
->importance
;
3038 add_taskwatch_locked(target_task
, twp
);
3040 target_thread
->taskwatch
= twp
;
3042 task_watch_unlock();
3045 set_thread_appbg(target_thread
, setbg
, INT_MIN
);
3048 /* retain the thread reference as it is in twp */
3049 target_thread
= NULL
;
3053 if ((twp
= target_thread
->taskwatch
) != NULL
) {
3054 task
= twp
->tw_task
;
3055 target_thread
->taskwatch
= NULL
;
3056 remove_taskwatch_locked(task
, twp
);
3058 task_watch_unlock();
3060 task_deallocate(task
); /* drop task ref in twp */
3061 set_thread_appbg(target_thread
, 0, twp
->tw_importance
);
3062 thread_deallocate(target_thread
); /* drop thread ref in twp */
3063 kfree(twp
, sizeof(task_watch_t
));
3065 task_watch_unlock();
3066 ret
= 0; /* return success if it not alredy bound */
3071 thread_deallocate(target_thread
); /* drop thread ref acquired in this routine */
3076 set_thread_appbg(thread_t thread
, int setbg
, __unused
int importance
)
3078 int enable
= (setbg
? TASK_POLICY_ENABLE
: TASK_POLICY_DISABLE
);
3080 proc_set_thread_policy(thread
, TASK_POLICY_ATTRIBUTE
, TASK_POLICY_PIDBIND_BG
, enable
);
3084 apply_appstate_watchers(task_t task
)
3086 int numwatchers
= 0, i
, j
, setbg
;
3087 thread_watchlist_t
* threadlist
;
3091 /* if no watchers on the list return */
3092 if ((numwatchers
= task
->num_taskwatchers
) == 0) {
3096 threadlist
= kheap_alloc(KHEAP_TEMP
,
3097 numwatchers
* sizeof(thread_watchlist_t
), Z_WAITOK
| Z_ZERO
);
3098 if (threadlist
== NULL
) {
3103 /*serialize application of app state changes */
3105 if (task
->watchapplying
!= 0) {
3106 lck_mtx_sleep(&task_watch_mtx
, LCK_SLEEP_DEFAULT
, &task
->watchapplying
, THREAD_UNINT
);
3107 task_watch_unlock();
3108 kheap_free(KHEAP_TEMP
, threadlist
, numwatchers
* sizeof(thread_watchlist_t
));
3112 if (numwatchers
!= task
->num_taskwatchers
) {
3113 task_watch_unlock();
3114 kheap_free(KHEAP_TEMP
, threadlist
, numwatchers
* sizeof(thread_watchlist_t
));
3118 setbg
= proc_get_effective_task_policy(task
, TASK_POLICY_WATCHERS_BG
);
3120 task
->watchapplying
= 1;
3122 queue_iterate(&task
->task_watchers
, twp
, task_watch_t
*, tw_links
) {
3123 threadlist
[i
].thread
= twp
->tw_thread
;
3124 thread_reference(threadlist
[i
].thread
);
3126 twp
->tw_importance
= twp
->tw_thread
->importance
;
3127 threadlist
[i
].importance
= INT_MIN
;
3129 threadlist
[i
].importance
= twp
->tw_importance
;
3132 if (i
> numwatchers
) {
3137 task_watch_unlock();
3139 for (j
= 0; j
< i
; j
++) {
3140 set_thread_appbg(threadlist
[j
].thread
, setbg
, threadlist
[j
].importance
);
3141 thread_deallocate(threadlist
[j
].thread
);
3143 kheap_free(KHEAP_TEMP
, threadlist
, numwatchers
* sizeof(thread_watchlist_t
));
3147 task
->watchapplying
= 0;
3148 thread_wakeup_one(&task
->watchapplying
);
3149 task_watch_unlock();
3153 thead_remove_taskwatch(thread_t thread
)
3159 if ((twp
= thread
->taskwatch
) != NULL
) {
3160 thread
->taskwatch
= NULL
;
3161 remove_taskwatch_locked(twp
->tw_task
, twp
);
3163 task_watch_unlock();
3165 thread_deallocate(twp
->tw_thread
);
3166 task_deallocate(twp
->tw_task
);
3167 importance
= twp
->tw_importance
;
3168 kfree(twp
, sizeof(task_watch_t
));
3169 /* remove the thread and networkbg */
3170 set_thread_appbg(thread
, 0, importance
);
3175 task_removewatchers(task_t task
)
3183 movqueue(&queue
, &task
->task_watchers
);
3185 queue_iterate(&queue
, twp
, task_watch_t
*, tw_links
) {
3187 * Since the linkage is removed and thead state cleanup is already set up,
3188 * remove the refernce from the thread.
3190 twp
->tw_thread
->taskwatch
= NULL
; /* removed linkage, clear thread holding ref */
3193 task
->num_taskwatchers
= 0;
3194 task_watch_unlock();
3196 while ((twp
= qe_dequeue_head(&task
->task_watchers
, task_watch_t
, tw_links
)) != NULL
) {
3197 /* remove thread and network bg */
3198 set_thread_appbg(twp
->tw_thread
, 0, twp
->tw_importance
);
3199 thread_deallocate(twp
->tw_thread
);
3200 task_deallocate(twp
->tw_task
);
3201 kfree(twp
, sizeof(task_watch_t
));
3204 #endif /* CONFIG_TASKWATCH */
3207 * Routines for importance donation/inheritance/boosting
3211 task_importance_update_live_donor(task_t target_task
)
3213 #if IMPORTANCE_INHERITANCE
3215 ipc_importance_task_t task_imp
;
3217 task_imp
= ipc_importance_for_task(target_task
, FALSE
);
3218 if (IIT_NULL
!= task_imp
) {
3219 ipc_importance_task_update_live_donor(task_imp
);
3220 ipc_importance_task_release(task_imp
);
3222 #endif /* IMPORTANCE_INHERITANCE */
3226 task_importance_mark_donor(task_t task
, boolean_t donating
)
3228 #if IMPORTANCE_INHERITANCE
3229 ipc_importance_task_t task_imp
;
3231 task_imp
= ipc_importance_for_task(task
, FALSE
);
3232 if (IIT_NULL
!= task_imp
) {
3233 ipc_importance_task_mark_donor(task_imp
, donating
);
3234 ipc_importance_task_release(task_imp
);
3236 #endif /* IMPORTANCE_INHERITANCE */
3240 task_importance_mark_live_donor(task_t task
, boolean_t live_donating
)
3242 #if IMPORTANCE_INHERITANCE
3243 ipc_importance_task_t task_imp
;
3245 task_imp
= ipc_importance_for_task(task
, FALSE
);
3246 if (IIT_NULL
!= task_imp
) {
3247 ipc_importance_task_mark_live_donor(task_imp
, live_donating
);
3248 ipc_importance_task_release(task_imp
);
3250 #endif /* IMPORTANCE_INHERITANCE */
3254 task_importance_mark_receiver(task_t task
, boolean_t receiving
)
3256 #if IMPORTANCE_INHERITANCE
3257 ipc_importance_task_t task_imp
;
3259 task_imp
= ipc_importance_for_task(task
, FALSE
);
3260 if (IIT_NULL
!= task_imp
) {
3261 ipc_importance_task_mark_receiver(task_imp
, receiving
);
3262 ipc_importance_task_release(task_imp
);
3264 #endif /* IMPORTANCE_INHERITANCE */
3268 task_importance_mark_denap_receiver(task_t task
, boolean_t denap
)
3270 #if IMPORTANCE_INHERITANCE
3271 ipc_importance_task_t task_imp
;
3273 task_imp
= ipc_importance_for_task(task
, FALSE
);
3274 if (IIT_NULL
!= task_imp
) {
3275 ipc_importance_task_mark_denap_receiver(task_imp
, denap
);
3276 ipc_importance_task_release(task_imp
);
3278 #endif /* IMPORTANCE_INHERITANCE */
3282 task_importance_reset(__imp_only task_t task
)
3284 #if IMPORTANCE_INHERITANCE
3285 ipc_importance_task_t task_imp
;
3287 /* TODO: Lower importance downstream before disconnect */
3288 task_imp
= task
->task_imp_base
;
3289 ipc_importance_reset(task_imp
, FALSE
);
3290 task_importance_update_live_donor(task
);
3291 #endif /* IMPORTANCE_INHERITANCE */
3295 task_importance_init_from_parent(__imp_only task_t new_task
, __imp_only task_t parent_task
)
3297 #if IMPORTANCE_INHERITANCE
3298 ipc_importance_task_t new_task_imp
= IIT_NULL
;
3300 new_task
->task_imp_base
= NULL
;
3305 if (task_is_marked_importance_donor(parent_task
)) {
3306 new_task_imp
= ipc_importance_for_task(new_task
, FALSE
);
3307 assert(IIT_NULL
!= new_task_imp
);
3308 ipc_importance_task_mark_donor(new_task_imp
, TRUE
);
3310 if (task_is_marked_live_importance_donor(parent_task
)) {
3311 if (IIT_NULL
== new_task_imp
) {
3312 new_task_imp
= ipc_importance_for_task(new_task
, FALSE
);
3314 assert(IIT_NULL
!= new_task_imp
);
3315 ipc_importance_task_mark_live_donor(new_task_imp
, TRUE
);
3317 /* Do not inherit 'receiver' on fork, vfexec or true spawn */
3318 if (task_is_exec_copy(new_task
) &&
3319 task_is_marked_importance_receiver(parent_task
)) {
3320 if (IIT_NULL
== new_task_imp
) {
3321 new_task_imp
= ipc_importance_for_task(new_task
, FALSE
);
3323 assert(IIT_NULL
!= new_task_imp
);
3324 ipc_importance_task_mark_receiver(new_task_imp
, TRUE
);
3326 if (task_is_marked_importance_denap_receiver(parent_task
)) {
3327 if (IIT_NULL
== new_task_imp
) {
3328 new_task_imp
= ipc_importance_for_task(new_task
, FALSE
);
3330 assert(IIT_NULL
!= new_task_imp
);
3331 ipc_importance_task_mark_denap_receiver(new_task_imp
, TRUE
);
3333 if (IIT_NULL
!= new_task_imp
) {
3334 assert(new_task
->task_imp_base
== new_task_imp
);
3335 ipc_importance_task_release(new_task_imp
);
3337 #endif /* IMPORTANCE_INHERITANCE */
3340 #if IMPORTANCE_INHERITANCE
3342 * Sets the task boost bit to the provided value. Does NOT run the update function.
3344 * Task lock must be held.
3347 task_set_boost_locked(task_t task
, boolean_t boost_active
)
3349 #if IMPORTANCE_TRACE
3350 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
, (IMPORTANCE_CODE(IMP_BOOST
, (boost_active
? IMP_BOOSTED
: IMP_UNBOOSTED
)) | DBG_FUNC_START
),
3351 proc_selfpid(), task_pid(task
), trequested_0(task
), trequested_1(task
), 0);
3352 #endif /* IMPORTANCE_TRACE */
3354 task
->requested_policy
.trp_boosted
= boost_active
;
3356 #if IMPORTANCE_TRACE
3357 if (boost_active
== TRUE
) {
3358 DTRACE_BOOST2(boost
, task_t
, task
, int, task_pid(task
));
3360 DTRACE_BOOST2(unboost
, task_t
, task
, int, task_pid(task
));
3362 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
, (IMPORTANCE_CODE(IMP_BOOST
, (boost_active
? IMP_BOOSTED
: IMP_UNBOOSTED
)) | DBG_FUNC_END
),
3363 proc_selfpid(), task_pid(task
),
3364 trequested_0(task
), trequested_1(task
), 0);
3365 #endif /* IMPORTANCE_TRACE */
3369 * Sets the task boost bit to the provided value and applies the update.
3371 * Task lock must be held. Must call update complete after unlocking the task.
3374 task_update_boost_locked(task_t task
, boolean_t boost_active
, task_pend_token_t pend_token
)
3376 task_set_boost_locked(task
, boost_active
);
3378 task_policy_update_locked(task
, pend_token
);
3382 * Check if this task should donate importance.
3384 * May be called without taking the task lock. In that case, donor status can change
3385 * so you must check only once for each donation event.
3388 task_is_importance_donor(task_t task
)
3390 if (task
->task_imp_base
== IIT_NULL
) {
3393 return ipc_importance_task_is_donor(task
->task_imp_base
);
3397 * Query the status of the task's donor mark.
3400 task_is_marked_importance_donor(task_t task
)
3402 if (task
->task_imp_base
== IIT_NULL
) {
3405 return ipc_importance_task_is_marked_donor(task
->task_imp_base
);
3409 * Query the status of the task's live donor and donor mark.
3412 task_is_marked_live_importance_donor(task_t task
)
3414 if (task
->task_imp_base
== IIT_NULL
) {
3417 return ipc_importance_task_is_marked_live_donor(task
->task_imp_base
);
3422 * This routine may be called without holding task lock
3423 * since the value of imp_receiver can never be unset.
3426 task_is_importance_receiver(task_t task
)
3428 if (task
->task_imp_base
== IIT_NULL
) {
3431 return ipc_importance_task_is_marked_receiver(task
->task_imp_base
);
3435 * Query the task's receiver mark.
3438 task_is_marked_importance_receiver(task_t task
)
3440 if (task
->task_imp_base
== IIT_NULL
) {
3443 return ipc_importance_task_is_marked_receiver(task
->task_imp_base
);
3447 * This routine may be called without holding task lock
3448 * since the value of de-nap receiver can never be unset.
3451 task_is_importance_denap_receiver(task_t task
)
3453 if (task
->task_imp_base
== IIT_NULL
) {
3456 return ipc_importance_task_is_denap_receiver(task
->task_imp_base
);
3460 * Query the task's de-nap receiver mark.
3463 task_is_marked_importance_denap_receiver(task_t task
)
3465 if (task
->task_imp_base
== IIT_NULL
) {
3468 return ipc_importance_task_is_marked_denap_receiver(task
->task_imp_base
);
3472 * This routine may be called without holding task lock
3473 * since the value of imp_receiver can never be unset.
3476 task_is_importance_receiver_type(task_t task
)
3478 if (task
->task_imp_base
== IIT_NULL
) {
3481 return task_is_importance_receiver(task
) ||
3482 task_is_importance_denap_receiver(task
);
3486 * External importance assertions are managed by the process in userspace
3487 * Internal importance assertions are the responsibility of the kernel
3488 * Assertions are changed from internal to external via task_importance_externalize_assertion
3492 task_importance_hold_internal_assertion(task_t target_task
, uint32_t count
)
3494 ipc_importance_task_t task_imp
;
3497 /* may be first time, so allow for possible importance setup */
3498 task_imp
= ipc_importance_for_task(target_task
, FALSE
);
3499 if (IIT_NULL
== task_imp
) {
3502 ret
= ipc_importance_task_hold_internal_assertion(task_imp
, count
);
3503 ipc_importance_task_release(task_imp
);
3505 return (KERN_SUCCESS
!= ret
) ? ENOTSUP
: 0;
3509 task_importance_hold_file_lock_assertion(task_t target_task
, uint32_t count
)
3511 ipc_importance_task_t task_imp
;
3514 /* may be first time, so allow for possible importance setup */
3515 task_imp
= ipc_importance_for_task(target_task
, FALSE
);
3516 if (IIT_NULL
== task_imp
) {
3519 ret
= ipc_importance_task_hold_file_lock_assertion(task_imp
, count
);
3520 ipc_importance_task_release(task_imp
);
3522 return (KERN_SUCCESS
!= ret
) ? ENOTSUP
: 0;
3526 task_importance_hold_legacy_external_assertion(task_t target_task
, uint32_t count
)
3528 ipc_importance_task_t task_imp
;
3531 /* must already have set up an importance */
3532 task_imp
= target_task
->task_imp_base
;
3533 if (IIT_NULL
== task_imp
) {
3536 ret
= ipc_importance_task_hold_legacy_external_assertion(task_imp
, count
);
3537 return (KERN_SUCCESS
!= ret
) ? ENOTSUP
: 0;
3541 task_importance_drop_file_lock_assertion(task_t target_task
, uint32_t count
)
3543 ipc_importance_task_t task_imp
;
3546 /* must already have set up an importance */
3547 task_imp
= target_task
->task_imp_base
;
3548 if (IIT_NULL
== task_imp
) {
3551 ret
= ipc_importance_task_drop_file_lock_assertion(target_task
->task_imp_base
, count
);
3552 return (KERN_SUCCESS
!= ret
) ? EOVERFLOW
: 0;
3556 task_importance_drop_legacy_external_assertion(task_t target_task
, uint32_t count
)
3558 ipc_importance_task_t task_imp
;
3561 /* must already have set up an importance */
3562 task_imp
= target_task
->task_imp_base
;
3563 if (IIT_NULL
== task_imp
) {
3566 ret
= ipc_importance_task_drop_legacy_external_assertion(task_imp
, count
);
3567 return (KERN_SUCCESS
!= ret
) ? EOVERFLOW
: 0;
3571 task_add_importance_watchport(task_t task
, mach_port_t port
, int *boostp
)
3575 __imptrace_only
int released_pid
= 0;
3576 __imptrace_only
int pid
= task_pid(task
);
3578 ipc_importance_task_t release_imp_task
= IIT_NULL
;
3580 if (IP_VALID(port
) != 0) {
3581 ipc_importance_task_t new_imp_task
= ipc_importance_for_task(task
, FALSE
);
3586 * The port must have been marked tempowner already.
3587 * This also filters out ports whose receive rights
3588 * are already enqueued in a message, as you can't
3589 * change the right's destination once it's already
3592 if (port
->ip_tempowner
!= 0) {
3593 assert(port
->ip_impdonation
!= 0);
3595 boost
= port
->ip_impcount
;
3596 if (IIT_NULL
!= port
->ip_imp_task
) {
3598 * if this port is already bound to a task,
3599 * release the task reference and drop any
3600 * watchport-forwarded boosts
3602 release_imp_task
= port
->ip_imp_task
;
3603 port
->ip_imp_task
= IIT_NULL
;
3606 /* mark the port is watching another task (reference held in port->ip_imp_task) */
3607 if (ipc_importance_task_is_marked_receiver(new_imp_task
)) {
3608 port
->ip_imp_task
= new_imp_task
;
3609 new_imp_task
= IIT_NULL
;
3614 if (IIT_NULL
!= new_imp_task
) {
3615 ipc_importance_task_release(new_imp_task
);
3618 if (IIT_NULL
!= release_imp_task
) {
3620 ipc_importance_task_drop_internal_assertion(release_imp_task
, boost
);
3623 // released_pid = task_pid(release_imp_task); /* TODO: Need ref-safe way to get pid */
3624 ipc_importance_task_release(release_imp_task
);
3626 #if IMPORTANCE_TRACE
3627 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
, (IMPORTANCE_CODE(IMP_WATCHPORT
, 0)) | DBG_FUNC_NONE
,
3628 proc_selfpid(), pid
, boost
, released_pid
, 0);
3629 #endif /* IMPORTANCE_TRACE */
3636 #endif /* IMPORTANCE_INHERITANCE */
3639 * Routines for VM to query task importance
3644 * Order to be considered while estimating importance
3645 * for low memory notification and purging purgeable memory.
3647 #define TASK_IMPORTANCE_FOREGROUND 4
3648 #define TASK_IMPORTANCE_NOTDARWINBG 1
3652 * (Un)Mark the task as a privileged listener for memory notifications.
3653 * if marked, this task will be among the first to be notified amongst
3654 * the bulk of all other tasks when the system enters a pressure level
3655 * of interest to this task.
3658 task_low_mem_privileged_listener(task_t task
, boolean_t new_value
, boolean_t
*old_value
)
3660 if (old_value
!= NULL
) {
3661 *old_value
= (boolean_t
)task
->low_mem_privileged_listener
;
3664 task
->low_mem_privileged_listener
= (uint32_t)new_value
;
3672 * Checks if the task is already notified.
3674 * Condition: task lock should be held while calling this function.
3677 task_has_been_notified(task_t task
, int pressurelevel
)
3683 if (pressurelevel
== kVMPressureWarning
) {
3684 return task
->low_mem_notified_warn
? TRUE
: FALSE
;
3685 } else if (pressurelevel
== kVMPressureCritical
) {
3686 return task
->low_mem_notified_critical
? TRUE
: FALSE
;
3694 * Checks if the task is used for purging.
3696 * Condition: task lock should be held while calling this function.
3699 task_used_for_purging(task_t task
, int pressurelevel
)
3705 if (pressurelevel
== kVMPressureWarning
) {
3706 return task
->purged_memory_warn
? TRUE
: FALSE
;
3707 } else if (pressurelevel
== kVMPressureCritical
) {
3708 return task
->purged_memory_critical
? TRUE
: FALSE
;
3716 * Mark the task as notified with memory notification.
3718 * Condition: task lock should be held while calling this function.
3721 task_mark_has_been_notified(task_t task
, int pressurelevel
)
3727 if (pressurelevel
== kVMPressureWarning
) {
3728 task
->low_mem_notified_warn
= 1;
3729 } else if (pressurelevel
== kVMPressureCritical
) {
3730 task
->low_mem_notified_critical
= 1;
3736 * Mark the task as purged.
3738 * Condition: task lock should be held while calling this function.
3741 task_mark_used_for_purging(task_t task
, int pressurelevel
)
3747 if (pressurelevel
== kVMPressureWarning
) {
3748 task
->purged_memory_warn
= 1;
3749 } else if (pressurelevel
== kVMPressureCritical
) {
3750 task
->purged_memory_critical
= 1;
3756 * Mark the task eligible for low memory notification.
3758 * Condition: task lock should be held while calling this function.
3761 task_clear_has_been_notified(task_t task
, int pressurelevel
)
3767 if (pressurelevel
== kVMPressureWarning
) {
3768 task
->low_mem_notified_warn
= 0;
3769 } else if (pressurelevel
== kVMPressureCritical
) {
3770 task
->low_mem_notified_critical
= 0;
3776 * Mark the task eligible for purging its purgeable memory.
3778 * Condition: task lock should be held while calling this function.
3781 task_clear_used_for_purging(task_t task
)
3787 task
->purged_memory_warn
= 0;
3788 task
->purged_memory_critical
= 0;
3793 * Estimate task importance for purging its purgeable memory
3794 * and low memory notification.
3796 * Importance is calculated in the following order of criteria:
3797 * -Task role : Background vs Foreground
3798 * -Boost status: Not boosted vs Boosted
3799 * -Darwin BG status.
3801 * Returns: Estimated task importance. Less important task will have lower
3802 * estimated importance.
3805 task_importance_estimate(task_t task
)
3807 int task_importance
= 0;
3813 if (proc_get_effective_task_policy(task
, TASK_POLICY_ROLE
) == TASK_FOREGROUND_APPLICATION
) {
3814 task_importance
+= TASK_IMPORTANCE_FOREGROUND
;
3817 if (proc_get_effective_task_policy(task
, TASK_POLICY_DARWIN_BG
) == 0) {
3818 task_importance
+= TASK_IMPORTANCE_NOTDARWINBG
;
3821 return task_importance
;
3825 task_has_assertions(task_t task
)
3827 return task
->task_imp_base
->iit_assertcnt
? TRUE
: FALSE
;
3832 send_resource_violation(typeof(send_cpu_usage_violation
) sendfunc
,
3834 struct ledger_entry_info
*linfo
,
3835 resource_notify_flags_t flags
)
3838 return KERN_NOT_SUPPORTED
;
3840 kern_return_t kr
= KERN_SUCCESS
;
3842 posix_path_t proc_path
= "";
3843 proc_name_t procname
= "<unknown>";
3847 mach_timespec_t timestamp
;
3848 thread_t curthread
= current_thread();
3849 ipc_port_t dstport
= MACH_PORT_NULL
;
3852 kr
= KERN_INVALID_ARGUMENT
; goto finish
;
3855 /* extract violator information */
3856 task_lock(violator
);
3857 if (!(proc
= get_bsdtask_info(violator
))) {
3858 task_unlock(violator
);
3859 kr
= KERN_INVALID_ARGUMENT
; goto finish
;
3861 (void)mig_strncpy(procname
, proc_best_name(proc
), sizeof(procname
));
3862 pid
= task_pid(violator
);
3863 if (flags
& kRNFatalLimitFlag
) {
3864 kr
= proc_pidpathinfo_internal(proc
, 0, proc_path
,
3865 sizeof(proc_path
), NULL
);
3867 task_unlock(violator
);
3872 /* violation time ~ now */
3873 clock_get_calendar_nanotime(&secs
, &nsecs
);
3874 timestamp
.tv_sec
= (int32_t)secs
;
3875 timestamp
.tv_nsec
= (int32_t)nsecs
;
3876 /* 25567702 tracks widening mach_timespec_t */
3879 kr
= host_get_special_port(host_priv_self(), HOST_LOCAL_NODE
,
3880 HOST_RESOURCE_NOTIFY_PORT
, &dstport
);
3885 thread_set_honor_qlimit(curthread
);
3886 kr
= sendfunc(dstport
,
3887 procname
, pid
, proc_path
, timestamp
,
3888 linfo
->lei_balance
, linfo
->lei_last_refill
,
3889 linfo
->lei_limit
, linfo
->lei_refill_period
,
3891 thread_clear_honor_qlimit(curthread
);
3893 ipc_port_release_send(dstport
);
3897 #endif /* MACH_BSD */
3902 * Resource violations trace four 64-bit integers. For K32, two additional
3903 * codes are allocated, the first with the low nibble doubled. So if the K64
3904 * code is 0x042, the K32 codes would be 0x044 and 0x45.
3908 trace_resource_violation(uint16_t code
,
3909 struct ledger_entry_info
*linfo
)
3911 KERNEL_DBG_IST_SANE(KDBG_CODE(DBG_MACH
, DBG_MACH_RESOURCE
, code
),
3912 linfo
->lei_balance
, linfo
->lei_last_refill
,
3913 linfo
->lei_limit
, linfo
->lei_refill_period
);
3916 /* TODO: create/find a trace_two_LLs() for K32 systems */
3917 #define MASK32 0xffffffff
3919 trace_resource_violation(uint16_t code
,
3920 struct ledger_entry_info
*linfo
)
3922 int8_t lownibble
= (code
& 0x3) * 2;
3923 int16_t codeA
= (code
& 0xffc) | lownibble
;
3924 int16_t codeB
= codeA
+ 1;
3926 int32_t balance_high
= (linfo
->lei_balance
>> 32) & MASK32
;
3927 int32_t balance_low
= linfo
->lei_balance
& MASK32
;
3928 int32_t last_refill_high
= (linfo
->lei_last_refill
>> 32) & MASK32
;
3929 int32_t last_refill_low
= linfo
->lei_last_refill
& MASK32
;
3931 int32_t limit_high
= (linfo
->lei_limit
>> 32) & MASK32
;
3932 int32_t limit_low
= linfo
->lei_limit
& MASK32
;
3933 int32_t refill_period_high
= (linfo
->lei_refill_period
>> 32) & MASK32
;
3934 int32_t refill_period_low
= linfo
->lei_refill_period
& MASK32
;
3936 KERNEL_DBG_IST_SANE(KDBG_CODE(DBG_MACH
, DBG_MACH_RESOURCE
, codeA
),
3937 balance_high
, balance_low
,
3938 last_refill_high
, last_refill_low
);
3939 KERNEL_DBG_IST_SANE(KDBG_CODE(DBG_MACH
, DBG_MACH_RESOURCE
, codeB
),
3940 limit_high
, limit_low
,
3941 refill_period_high
, refill_period_low
);
3943 #endif /* K64/K32 */