]> git.saurik.com Git - apple/xnu.git/blob - osfmk/kern/task_policy.c
4423fd07758a5edf93c75cfaf8ef854eff49fcd9
[apple/xnu.git] / osfmk / kern / task_policy.c
1 /*
2 * Copyright (c) 2000-2020 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28
29 #include <kern/policy_internal.h>
30 #include <mach/task_policy.h>
31
32 #include <mach/mach_types.h>
33 #include <mach/task_server.h>
34
35 #include <kern/host.h> /* host_priv_self() */
36 #include <mach/host_priv.h> /* host_get_special_port() */
37 #include <mach/host_special_ports.h> /* RESOURCE_NOTIFY_PORT */
38 #include <kern/sched.h>
39 #include <kern/task.h>
40 #include <mach/thread_policy.h>
41 #include <sys/errno.h>
42 #include <sys/resource.h>
43 #include <machine/limits.h>
44 #include <kern/ledger.h>
45 #include <kern/thread_call.h>
46 #include <kern/sfi.h>
47 #include <kern/coalition.h>
48 #if CONFIG_TELEMETRY
49 #include <kern/telemetry.h>
50 #endif
51 #if !defined(XNU_TARGET_OS_OSX)
52 #include <kern/kalloc.h>
53 #include <sys/errno.h>
54 #endif /* !defined(XNU_TARGET_OS_OSX) */
55
56 #if IMPORTANCE_INHERITANCE
57 #include <ipc/ipc_importance.h>
58 #if IMPORTANCE_TRACE
59 #include <mach/machine/sdt.h>
60 #endif /* IMPORTANCE_TRACE */
61 #endif /* IMPORTANCE_INHERITACE */
62
63 #include <sys/kdebug.h>
64
65 /*
66 * Task Policy
67 *
68 * This subsystem manages task and thread IO priority and backgrounding,
69 * as well as importance inheritance, process suppression, task QoS, and apptype.
70 * These properties have a suprising number of complex interactions, so they are
71 * centralized here in one state machine to simplify the implementation of those interactions.
72 *
73 * Architecture:
74 * Threads and tasks have two policy fields: requested, effective.
75 * Requested represents the wishes of each interface that influences task policy.
76 * Effective represents the distillation of that policy into a set of behaviors.
77 *
78 * Each thread making a modification in the policy system passes a 'pending' struct,
79 * which tracks updates that will be applied after dropping the policy engine lock.
80 *
81 * Each interface that has an input into the task policy state machine controls a field in requested.
82 * If the interface has a getter, it returns what is in the field in requested, but that is
83 * not necessarily what is actually in effect.
84 *
85 * All kernel subsystems that behave differently based on task policy call into
86 * the proc_get_effective_(task|thread)_policy functions, which return the decision of the task policy state machine
87 * for that subsystem by querying only the 'effective' field.
88 *
89 * Policy change operations:
90 * Here are the steps to change a policy on a task or thread:
91 * 1) Lock task
92 * 2) Change requested field for the relevant policy
93 * 3) Run a task policy update, which recalculates effective based on requested,
94 * then takes a diff between the old and new versions of requested and calls the relevant
95 * other subsystems to apply these changes, and updates the pending field.
96 * 4) Unlock task
97 * 5) Run task policy update complete, which looks at the pending field to update
98 * subsystems which cannot be touched while holding the task lock.
99 *
100 * To add a new requested policy, add the field in the requested struct, the flavor in task.h,
101 * the setter and getter in proc_(set|get)_task_policy*,
102 * then set up the effects of that behavior in task_policy_update*. If the policy manifests
103 * itself as a distinct effective policy, add it to the effective struct and add it to the
104 * proc_get_effective_task_policy accessor.
105 *
106 * Most policies are set via proc_set_task_policy, but policies that don't fit that interface
107 * roll their own lock/set/update/unlock/complete code inside this file.
108 *
109 *
110 * Suppression policy
111 *
112 * These are a set of behaviors that can be requested for a task. They currently have specific
113 * implied actions when they're enabled, but they may be made customizable in the future.
114 *
115 * When the affected task is boosted, we temporarily disable the suppression behaviors
116 * so that the affected process has a chance to run so it can call the API to permanently
117 * disable the suppression behaviors.
118 *
119 * Locking
120 *
121 * Changing task policy on a task takes the task lock.
122 * Changing task policy on a thread takes the thread mutex.
123 * Task policy changes that affect threads will take each thread's mutex to update it if necessary.
124 *
125 * Querying the effective policy does not take a lock, because callers
126 * may run in interrupt context or other place where locks are not OK.
127 *
128 * This means that any notification of state change needs to be externally synchronized.
129 * We do this by idempotent callouts after the state has changed to ask
130 * other subsystems to update their view of the world.
131 *
132 * TODO: Move all cpu/wakes/io monitor code into a separate file
133 * TODO: Move all importance code over to importance subsystem
134 * TODO: Move all taskwatch code into a separate file
135 * TODO: Move all VM importance code into a separate file
136 */
137
138 /* Task policy related helper functions */
139 static void proc_set_task_policy_locked(task_t task, int category, int flavor, int value, int value2);
140
141 static void task_policy_update_locked(task_t task, task_pend_token_t pend_token);
142 static void task_policy_update_internal_locked(task_t task, bool in_create, task_pend_token_t pend_token);
143
144 /* For attributes that have two scalars as input/output */
145 static void proc_set_task_policy2(task_t task, int category, int flavor, int value1, int value2);
146 static void proc_get_task_policy2(task_t task, int category, int flavor, int *value1, int *value2);
147
148 static boolean_t task_policy_update_coalition_focal_tasks(task_t task, int prev_role, int next_role, task_pend_token_t pend_token);
149
150 static uint64_t task_requested_bitfield(task_t task);
151 static uint64_t task_effective_bitfield(task_t task);
152
153 /* Convenience functions for munging a policy bitfield into a tracepoint */
154 static uintptr_t trequested_0(task_t task);
155 static uintptr_t trequested_1(task_t task);
156 static uintptr_t teffective_0(task_t task);
157 static uintptr_t teffective_1(task_t task);
158
159 /* CPU limits helper functions */
160 static int task_set_cpuusage(task_t task, uint8_t percentage, uint64_t interval, uint64_t deadline, int scope, int entitled);
161 static int task_get_cpuusage(task_t task, uint8_t *percentagep, uint64_t *intervalp, uint64_t *deadlinep, int *scope);
162 static int task_enable_cpumon_locked(task_t task);
163 static int task_disable_cpumon(task_t task);
164 static int task_clear_cpuusage_locked(task_t task, int cpumon_entitled);
165 static int task_apply_resource_actions(task_t task, int type);
166 static void task_action_cpuusage(thread_call_param_t param0, thread_call_param_t param1);
167
168 #ifdef MACH_BSD
169 typedef struct proc * proc_t;
170 int proc_pid(struct proc *proc);
171 extern int proc_selfpid(void);
172 extern char * proc_name_address(void *p);
173 extern char * proc_best_name(proc_t proc);
174
175 extern int proc_pidpathinfo_internal(proc_t p, uint64_t arg,
176 char *buffer, uint32_t buffersize,
177 int32_t *retval);
178 #endif /* MACH_BSD */
179
180
181 #if CONFIG_TASKWATCH
182 /* Taskwatch related helper functions */
183 static void set_thread_appbg(thread_t thread, int setbg, int importance);
184 static void add_taskwatch_locked(task_t task, task_watch_t * twp);
185 static void remove_taskwatch_locked(task_t task, task_watch_t * twp);
186 static void task_watch_lock(void);
187 static void task_watch_unlock(void);
188 static void apply_appstate_watchers(task_t task);
189
190 typedef struct task_watcher {
191 queue_chain_t tw_links; /* queueing of threads */
192 task_t tw_task; /* task that is being watched */
193 thread_t tw_thread; /* thread that is watching the watch_task */
194 int tw_state; /* the current app state of the thread */
195 int tw_importance; /* importance prior to backgrounding */
196 } task_watch_t;
197
198 typedef struct thread_watchlist {
199 thread_t thread; /* thread being worked on for taskwatch action */
200 int importance; /* importance to be restored if thread is being made active */
201 } thread_watchlist_t;
202
203 #endif /* CONFIG_TASKWATCH */
204
205 extern int memorystatus_update_priority_for_appnap(proc_t p, boolean_t is_appnap);
206
207 /* Importance Inheritance related helper functions */
208
209 #if IMPORTANCE_INHERITANCE
210
211 static void task_importance_mark_live_donor(task_t task, boolean_t donating);
212 static void task_importance_mark_receiver(task_t task, boolean_t receiving);
213 static void task_importance_mark_denap_receiver(task_t task, boolean_t denap);
214
215 static boolean_t task_is_marked_live_importance_donor(task_t task);
216 static boolean_t task_is_importance_receiver(task_t task);
217 static boolean_t task_is_importance_denap_receiver(task_t task);
218
219 static int task_importance_hold_internal_assertion(task_t target_task, uint32_t count);
220
221 static void task_add_importance_watchport(task_t task, mach_port_t port, int *boostp);
222 static void task_importance_update_live_donor(task_t target_task);
223
224 static void task_set_boost_locked(task_t task, boolean_t boost_active);
225
226 #endif /* IMPORTANCE_INHERITANCE */
227
228 #if IMPORTANCE_TRACE
229 #define __imptrace_only
230 #else /* IMPORTANCE_TRACE */
231 #define __imptrace_only __unused
232 #endif /* !IMPORTANCE_TRACE */
233
234 #if IMPORTANCE_INHERITANCE
235 #define __imp_only
236 #else
237 #define __imp_only __unused
238 #endif
239
240 /*
241 * Default parameters for certain policies
242 */
243
244 int proc_standard_daemon_tier = THROTTLE_LEVEL_TIER1;
245 int proc_suppressed_disk_tier = THROTTLE_LEVEL_TIER1;
246 int proc_tal_disk_tier = THROTTLE_LEVEL_TIER1;
247
248 int proc_graphics_timer_qos = (LATENCY_QOS_TIER_0 & 0xFF);
249
250 const int proc_default_bg_iotier = THROTTLE_LEVEL_TIER2;
251
252 /* Latency/throughput QoS fields remain zeroed, i.e. TIER_UNSPECIFIED at creation */
253 const struct task_requested_policy default_task_requested_policy = {
254 .trp_bg_iotier = proc_default_bg_iotier
255 };
256 const struct task_effective_policy default_task_effective_policy = {};
257
258 /*
259 * Default parameters for CPU usage monitor.
260 *
261 * Default setting is 50% over 3 minutes.
262 */
263 #define DEFAULT_CPUMON_PERCENTAGE 50
264 #define DEFAULT_CPUMON_INTERVAL (3 * 60)
265
266 uint8_t proc_max_cpumon_percentage;
267 uint64_t proc_max_cpumon_interval;
268
269
270 kern_return_t
271 qos_latency_policy_validate(task_latency_qos_t ltier)
272 {
273 if ((ltier != LATENCY_QOS_TIER_UNSPECIFIED) &&
274 ((ltier > LATENCY_QOS_TIER_5) || (ltier < LATENCY_QOS_TIER_0))) {
275 return KERN_INVALID_ARGUMENT;
276 }
277
278 return KERN_SUCCESS;
279 }
280
281 kern_return_t
282 qos_throughput_policy_validate(task_throughput_qos_t ttier)
283 {
284 if ((ttier != THROUGHPUT_QOS_TIER_UNSPECIFIED) &&
285 ((ttier > THROUGHPUT_QOS_TIER_5) || (ttier < THROUGHPUT_QOS_TIER_0))) {
286 return KERN_INVALID_ARGUMENT;
287 }
288
289 return KERN_SUCCESS;
290 }
291
292 static kern_return_t
293 task_qos_policy_validate(task_qos_policy_t qosinfo, mach_msg_type_number_t count)
294 {
295 if (count < TASK_QOS_POLICY_COUNT) {
296 return KERN_INVALID_ARGUMENT;
297 }
298
299 task_latency_qos_t ltier = qosinfo->task_latency_qos_tier;
300 task_throughput_qos_t ttier = qosinfo->task_throughput_qos_tier;
301
302 kern_return_t kr = qos_latency_policy_validate(ltier);
303
304 if (kr != KERN_SUCCESS) {
305 return kr;
306 }
307
308 kr = qos_throughput_policy_validate(ttier);
309
310 return kr;
311 }
312
313 uint32_t
314 qos_extract(uint32_t qv)
315 {
316 return qv & 0xFF;
317 }
318
319 uint32_t
320 qos_latency_policy_package(uint32_t qv)
321 {
322 return (qv == LATENCY_QOS_TIER_UNSPECIFIED) ? LATENCY_QOS_TIER_UNSPECIFIED : ((0xFF << 16) | qv);
323 }
324
325 uint32_t
326 qos_throughput_policy_package(uint32_t qv)
327 {
328 return (qv == THROUGHPUT_QOS_TIER_UNSPECIFIED) ? THROUGHPUT_QOS_TIER_UNSPECIFIED : ((0xFE << 16) | qv);
329 }
330
331 #define TASK_POLICY_SUPPRESSION_DISABLE 0x1
332 #define TASK_POLICY_SUPPRESSION_IOTIER2 0x2
333 #define TASK_POLICY_SUPPRESSION_NONDONOR 0x4
334 /* TEMPORARY boot-arg controlling task_policy suppression (App Nap) */
335 static boolean_t task_policy_suppression_flags = TASK_POLICY_SUPPRESSION_IOTIER2 |
336 TASK_POLICY_SUPPRESSION_NONDONOR;
337
338 kern_return_t
339 task_policy_set(
340 task_t task,
341 task_policy_flavor_t flavor,
342 task_policy_t policy_info,
343 mach_msg_type_number_t count)
344 {
345 kern_return_t result = KERN_SUCCESS;
346
347 if (task == TASK_NULL || task == kernel_task) {
348 return KERN_INVALID_ARGUMENT;
349 }
350
351 switch (flavor) {
352 case TASK_CATEGORY_POLICY: {
353 task_category_policy_t info = (task_category_policy_t)policy_info;
354
355 if (count < TASK_CATEGORY_POLICY_COUNT) {
356 return KERN_INVALID_ARGUMENT;
357 }
358
359 #if !defined(XNU_TARGET_OS_OSX)
360 /* On embedded, you can't modify your own role. */
361 if (current_task() == task) {
362 return KERN_INVALID_ARGUMENT;
363 }
364 #endif
365
366 switch (info->role) {
367 case TASK_FOREGROUND_APPLICATION:
368 case TASK_BACKGROUND_APPLICATION:
369 case TASK_DEFAULT_APPLICATION:
370 proc_set_task_policy(task,
371 TASK_POLICY_ATTRIBUTE, TASK_POLICY_ROLE,
372 info->role);
373 break;
374
375 case TASK_CONTROL_APPLICATION:
376 if (task != current_task() || task->sec_token.val[0] != 0) {
377 result = KERN_INVALID_ARGUMENT;
378 } else {
379 proc_set_task_policy(task,
380 TASK_POLICY_ATTRIBUTE, TASK_POLICY_ROLE,
381 info->role);
382 }
383 break;
384
385 case TASK_GRAPHICS_SERVER:
386 /* TODO: Restrict this role to FCFS <rdar://problem/12552788> */
387 if (task != current_task() || task->sec_token.val[0] != 0) {
388 result = KERN_INVALID_ARGUMENT;
389 } else {
390 proc_set_task_policy(task,
391 TASK_POLICY_ATTRIBUTE, TASK_POLICY_ROLE,
392 info->role);
393 }
394 break;
395 default:
396 result = KERN_INVALID_ARGUMENT;
397 break;
398 } /* switch (info->role) */
399
400 break;
401 }
402
403 /* Desired energy-efficiency/performance "quality-of-service" */
404 case TASK_BASE_QOS_POLICY:
405 case TASK_OVERRIDE_QOS_POLICY:
406 {
407 task_qos_policy_t qosinfo = (task_qos_policy_t)policy_info;
408 kern_return_t kr = task_qos_policy_validate(qosinfo, count);
409
410 if (kr != KERN_SUCCESS) {
411 return kr;
412 }
413
414
415 uint32_t lqos = qos_extract(qosinfo->task_latency_qos_tier);
416 uint32_t tqos = qos_extract(qosinfo->task_throughput_qos_tier);
417
418 proc_set_task_policy2(task, TASK_POLICY_ATTRIBUTE,
419 flavor == TASK_BASE_QOS_POLICY ? TASK_POLICY_BASE_LATENCY_AND_THROUGHPUT_QOS : TASK_POLICY_OVERRIDE_LATENCY_AND_THROUGHPUT_QOS,
420 lqos, tqos);
421 }
422 break;
423
424 case TASK_BASE_LATENCY_QOS_POLICY:
425 {
426 task_qos_policy_t qosinfo = (task_qos_policy_t)policy_info;
427 kern_return_t kr = task_qos_policy_validate(qosinfo, count);
428
429 if (kr != KERN_SUCCESS) {
430 return kr;
431 }
432
433 uint32_t lqos = qos_extract(qosinfo->task_latency_qos_tier);
434
435 proc_set_task_policy(task, TASK_POLICY_ATTRIBUTE, TASK_BASE_LATENCY_QOS_POLICY, lqos);
436 }
437 break;
438
439 case TASK_BASE_THROUGHPUT_QOS_POLICY:
440 {
441 task_qos_policy_t qosinfo = (task_qos_policy_t)policy_info;
442 kern_return_t kr = task_qos_policy_validate(qosinfo, count);
443
444 if (kr != KERN_SUCCESS) {
445 return kr;
446 }
447
448 uint32_t tqos = qos_extract(qosinfo->task_throughput_qos_tier);
449
450 proc_set_task_policy(task, TASK_POLICY_ATTRIBUTE, TASK_BASE_THROUGHPUT_QOS_POLICY, tqos);
451 }
452 break;
453
454 case TASK_SUPPRESSION_POLICY:
455 {
456 #if !defined(XNU_TARGET_OS_OSX)
457 /*
458 * Suppression policy is not enabled for embedded
459 * because apps aren't marked as denap receivers
460 */
461 result = KERN_INVALID_ARGUMENT;
462 break;
463 #else /* !defined(XNU_TARGET_OS_OSX) */
464
465 task_suppression_policy_t info = (task_suppression_policy_t)policy_info;
466
467 if (count < TASK_SUPPRESSION_POLICY_COUNT) {
468 return KERN_INVALID_ARGUMENT;
469 }
470
471 struct task_qos_policy qosinfo;
472
473 qosinfo.task_latency_qos_tier = info->timer_throttle;
474 qosinfo.task_throughput_qos_tier = info->throughput_qos;
475
476 kern_return_t kr = task_qos_policy_validate(&qosinfo, TASK_QOS_POLICY_COUNT);
477
478 if (kr != KERN_SUCCESS) {
479 return kr;
480 }
481
482 /* TEMPORARY disablement of task suppression */
483 if (info->active &&
484 (task_policy_suppression_flags & TASK_POLICY_SUPPRESSION_DISABLE)) {
485 return KERN_SUCCESS;
486 }
487
488 struct task_pend_token pend_token = {};
489
490 task_lock(task);
491
492 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
493 (IMPORTANCE_CODE(IMP_TASK_SUPPRESSION, info->active)) | DBG_FUNC_START,
494 proc_selfpid(), task_pid(task), trequested_0(task),
495 trequested_1(task), 0);
496
497 task->requested_policy.trp_sup_active = (info->active) ? 1 : 0;
498 task->requested_policy.trp_sup_lowpri_cpu = (info->lowpri_cpu) ? 1 : 0;
499 task->requested_policy.trp_sup_timer = qos_extract(info->timer_throttle);
500 task->requested_policy.trp_sup_disk = (info->disk_throttle) ? 1 : 0;
501 task->requested_policy.trp_sup_throughput = qos_extract(info->throughput_qos);
502 task->requested_policy.trp_sup_cpu = (info->suppressed_cpu) ? 1 : 0;
503 task->requested_policy.trp_sup_bg_sockets = (info->background_sockets) ? 1 : 0;
504
505 task_policy_update_locked(task, &pend_token);
506
507 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
508 (IMPORTANCE_CODE(IMP_TASK_SUPPRESSION, info->active)) | DBG_FUNC_END,
509 proc_selfpid(), task_pid(task), trequested_0(task),
510 trequested_1(task), 0);
511
512 task_unlock(task);
513
514 task_policy_update_complete_unlocked(task, &pend_token);
515
516 break;
517
518 #endif /* !defined(XNU_TARGET_OS_OSX) */
519 }
520
521 default:
522 result = KERN_INVALID_ARGUMENT;
523 break;
524 }
525
526 return result;
527 }
528
529 /* Sets BSD 'nice' value on the task */
530 kern_return_t
531 task_importance(
532 task_t task,
533 integer_t importance)
534 {
535 if (task == TASK_NULL || task == kernel_task) {
536 return KERN_INVALID_ARGUMENT;
537 }
538
539 task_lock(task);
540
541 if (!task->active) {
542 task_unlock(task);
543
544 return KERN_TERMINATED;
545 }
546
547 if (proc_get_effective_task_policy(task, TASK_POLICY_ROLE) >= TASK_CONTROL_APPLICATION) {
548 task_unlock(task);
549
550 return KERN_INVALID_ARGUMENT;
551 }
552
553 task->importance = importance;
554
555 struct task_pend_token pend_token = {};
556
557 task_policy_update_locked(task, &pend_token);
558
559 task_unlock(task);
560
561 task_policy_update_complete_unlocked(task, &pend_token);
562
563 return KERN_SUCCESS;
564 }
565
566 kern_return_t
567 task_policy_get(
568 task_t task,
569 task_policy_flavor_t flavor,
570 task_policy_t policy_info,
571 mach_msg_type_number_t *count,
572 boolean_t *get_default)
573 {
574 if (task == TASK_NULL || task == kernel_task) {
575 return KERN_INVALID_ARGUMENT;
576 }
577
578 switch (flavor) {
579 case TASK_CATEGORY_POLICY:
580 {
581 task_category_policy_t info = (task_category_policy_t)policy_info;
582
583 if (*count < TASK_CATEGORY_POLICY_COUNT) {
584 return KERN_INVALID_ARGUMENT;
585 }
586
587 if (*get_default) {
588 info->role = TASK_UNSPECIFIED;
589 } else {
590 info->role = proc_get_task_policy(task, TASK_POLICY_ATTRIBUTE, TASK_POLICY_ROLE);
591 }
592 break;
593 }
594
595 case TASK_BASE_QOS_POLICY: /* FALLTHRU */
596 case TASK_OVERRIDE_QOS_POLICY:
597 {
598 task_qos_policy_t info = (task_qos_policy_t)policy_info;
599
600 if (*count < TASK_QOS_POLICY_COUNT) {
601 return KERN_INVALID_ARGUMENT;
602 }
603
604 if (*get_default) {
605 info->task_latency_qos_tier = LATENCY_QOS_TIER_UNSPECIFIED;
606 info->task_throughput_qos_tier = THROUGHPUT_QOS_TIER_UNSPECIFIED;
607 } else if (flavor == TASK_BASE_QOS_POLICY) {
608 int value1, value2;
609
610 proc_get_task_policy2(task, TASK_POLICY_ATTRIBUTE, TASK_POLICY_BASE_LATENCY_AND_THROUGHPUT_QOS, &value1, &value2);
611
612 info->task_latency_qos_tier = qos_latency_policy_package(value1);
613 info->task_throughput_qos_tier = qos_throughput_policy_package(value2);
614 } else if (flavor == TASK_OVERRIDE_QOS_POLICY) {
615 int value1, value2;
616
617 proc_get_task_policy2(task, TASK_POLICY_ATTRIBUTE, TASK_POLICY_OVERRIDE_LATENCY_AND_THROUGHPUT_QOS, &value1, &value2);
618
619 info->task_latency_qos_tier = qos_latency_policy_package(value1);
620 info->task_throughput_qos_tier = qos_throughput_policy_package(value2);
621 }
622
623 break;
624 }
625
626 case TASK_POLICY_STATE:
627 {
628 task_policy_state_t info = (task_policy_state_t)policy_info;
629
630 if (*count < TASK_POLICY_STATE_COUNT) {
631 return KERN_INVALID_ARGUMENT;
632 }
633
634 /* Only root can get this info */
635 if (current_task()->sec_token.val[0] != 0) {
636 return KERN_PROTECTION_FAILURE;
637 }
638
639 if (*get_default) {
640 info->requested = 0;
641 info->effective = 0;
642 info->pending = 0;
643 info->imp_assertcnt = 0;
644 info->imp_externcnt = 0;
645 info->flags = 0;
646 info->imp_transitions = 0;
647 } else {
648 task_lock(task);
649
650 info->requested = task_requested_bitfield(task);
651 info->effective = task_effective_bitfield(task);
652 info->pending = 0;
653
654 info->tps_requested_policy = *(uint64_t*)(&task->requested_policy);
655 info->tps_effective_policy = *(uint64_t*)(&task->effective_policy);
656
657 info->flags = 0;
658 if (task->task_imp_base != NULL) {
659 info->imp_assertcnt = task->task_imp_base->iit_assertcnt;
660 info->imp_externcnt = IIT_EXTERN(task->task_imp_base);
661 info->flags |= (task_is_marked_importance_receiver(task) ? TASK_IMP_RECEIVER : 0);
662 info->flags |= (task_is_marked_importance_denap_receiver(task) ? TASK_DENAP_RECEIVER : 0);
663 info->flags |= (task_is_marked_importance_donor(task) ? TASK_IMP_DONOR : 0);
664 info->flags |= (task_is_marked_live_importance_donor(task) ? TASK_IMP_LIVE_DONOR : 0);
665 info->flags |= (get_task_pidsuspended(task) ? TASK_IS_PIDSUSPENDED : 0);
666 info->imp_transitions = task->task_imp_base->iit_transitions;
667 } else {
668 info->imp_assertcnt = 0;
669 info->imp_externcnt = 0;
670 info->imp_transitions = 0;
671 }
672 task_unlock(task);
673 }
674
675 break;
676 }
677
678 case TASK_SUPPRESSION_POLICY:
679 {
680 task_suppression_policy_t info = (task_suppression_policy_t)policy_info;
681
682 if (*count < TASK_SUPPRESSION_POLICY_COUNT) {
683 return KERN_INVALID_ARGUMENT;
684 }
685
686 task_lock(task);
687
688 if (*get_default) {
689 info->active = 0;
690 info->lowpri_cpu = 0;
691 info->timer_throttle = LATENCY_QOS_TIER_UNSPECIFIED;
692 info->disk_throttle = 0;
693 info->cpu_limit = 0;
694 info->suspend = 0;
695 info->throughput_qos = 0;
696 info->suppressed_cpu = 0;
697 } else {
698 info->active = task->requested_policy.trp_sup_active;
699 info->lowpri_cpu = task->requested_policy.trp_sup_lowpri_cpu;
700 info->timer_throttle = qos_latency_policy_package(task->requested_policy.trp_sup_timer);
701 info->disk_throttle = task->requested_policy.trp_sup_disk;
702 info->cpu_limit = 0;
703 info->suspend = 0;
704 info->throughput_qos = qos_throughput_policy_package(task->requested_policy.trp_sup_throughput);
705 info->suppressed_cpu = task->requested_policy.trp_sup_cpu;
706 info->background_sockets = task->requested_policy.trp_sup_bg_sockets;
707 }
708
709 task_unlock(task);
710 break;
711 }
712
713 default:
714 return KERN_INVALID_ARGUMENT;
715 }
716
717 return KERN_SUCCESS;
718 }
719
720 /*
721 * Called at task creation
722 * We calculate the correct effective but don't apply it to anything yet.
723 * The threads, etc will inherit from the task as they get created.
724 */
725 void
726 task_policy_create(task_t task, task_t parent_task)
727 {
728 task->requested_policy.trp_apptype = parent_task->requested_policy.trp_apptype;
729
730 task->requested_policy.trp_int_darwinbg = parent_task->requested_policy.trp_int_darwinbg;
731 task->requested_policy.trp_ext_darwinbg = parent_task->requested_policy.trp_ext_darwinbg;
732 task->requested_policy.trp_int_iotier = parent_task->requested_policy.trp_int_iotier;
733 task->requested_policy.trp_ext_iotier = parent_task->requested_policy.trp_ext_iotier;
734 task->requested_policy.trp_int_iopassive = parent_task->requested_policy.trp_int_iopassive;
735 task->requested_policy.trp_ext_iopassive = parent_task->requested_policy.trp_ext_iopassive;
736 task->requested_policy.trp_bg_iotier = parent_task->requested_policy.trp_bg_iotier;
737 task->requested_policy.trp_terminated = parent_task->requested_policy.trp_terminated;
738 task->requested_policy.trp_qos_clamp = parent_task->requested_policy.trp_qos_clamp;
739
740 if (task->requested_policy.trp_apptype == TASK_APPTYPE_DAEMON_ADAPTIVE && !task_is_exec_copy(task)) {
741 /* Do not update the apptype for exec copy task */
742 if (parent_task->requested_policy.trp_boosted) {
743 task->requested_policy.trp_apptype = TASK_APPTYPE_DAEMON_INTERACTIVE;
744 task_importance_mark_donor(task, TRUE);
745 } else {
746 task->requested_policy.trp_apptype = TASK_APPTYPE_DAEMON_BACKGROUND;
747 task_importance_mark_receiver(task, FALSE);
748 }
749 }
750
751 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
752 (IMPORTANCE_CODE(IMP_UPDATE, (IMP_UPDATE_TASK_CREATE | TASK_POLICY_TASK))) | DBG_FUNC_START,
753 task_pid(task), teffective_0(task),
754 teffective_1(task), task->priority, 0);
755
756 task_policy_update_internal_locked(task, true, NULL);
757
758 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
759 (IMPORTANCE_CODE(IMP_UPDATE, (IMP_UPDATE_TASK_CREATE | TASK_POLICY_TASK))) | DBG_FUNC_END,
760 task_pid(task), teffective_0(task),
761 teffective_1(task), task->priority, 0);
762
763 task_importance_update_live_donor(task);
764 }
765
766
767 static void
768 task_policy_update_locked(task_t task, task_pend_token_t pend_token)
769 {
770 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
771 (IMPORTANCE_CODE(IMP_UPDATE, TASK_POLICY_TASK) | DBG_FUNC_START),
772 task_pid(task), teffective_0(task),
773 teffective_1(task), task->priority, 0);
774
775 task_policy_update_internal_locked(task, false, pend_token);
776
777 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
778 (IMPORTANCE_CODE(IMP_UPDATE, TASK_POLICY_TASK)) | DBG_FUNC_END,
779 task_pid(task), teffective_0(task),
780 teffective_1(task), task->priority, 0);
781 }
782
783 /*
784 * One state update function TO RULE THEM ALL
785 *
786 * This function updates the task or thread effective policy fields
787 * and pushes the results to the relevant subsystems.
788 *
789 * Must call update_complete after unlocking the task,
790 * as some subsystems cannot be updated while holding the task lock.
791 *
792 * Called with task locked, not thread
793 */
794
795 static void
796 task_policy_update_internal_locked(task_t task, bool in_create, task_pend_token_t pend_token)
797 {
798 /*
799 * Step 1:
800 * Gather requested policy
801 */
802
803 struct task_requested_policy requested = task->requested_policy;
804
805 /*
806 * Step 2:
807 * Calculate new effective policies from requested policy and task state
808 * Rules:
809 * Don't change requested, it won't take effect
810 */
811
812 struct task_effective_policy next = {};
813
814 /* Update task role */
815 next.tep_role = requested.trp_role;
816
817 /* Set task qos clamp and ceiling */
818 next.tep_qos_clamp = requested.trp_qos_clamp;
819
820 if (requested.trp_apptype == TASK_APPTYPE_APP_DEFAULT) {
821 switch (next.tep_role) {
822 case TASK_FOREGROUND_APPLICATION:
823 /* Foreground apps get urgent scheduler priority */
824 next.tep_qos_ui_is_urgent = 1;
825 next.tep_qos_ceiling = THREAD_QOS_UNSPECIFIED;
826 break;
827
828 case TASK_BACKGROUND_APPLICATION:
829 /* This is really 'non-focal but on-screen' */
830 next.tep_qos_ceiling = THREAD_QOS_UNSPECIFIED;
831 break;
832
833 case TASK_DEFAULT_APPLICATION:
834 /* This is 'may render UI but we don't know if it's focal/nonfocal' */
835 next.tep_qos_ceiling = THREAD_QOS_UNSPECIFIED;
836 break;
837
838 case TASK_NONUI_APPLICATION:
839 /* i.e. 'off-screen' */
840 next.tep_qos_ceiling = THREAD_QOS_LEGACY;
841 break;
842
843 case TASK_CONTROL_APPLICATION:
844 case TASK_GRAPHICS_SERVER:
845 next.tep_qos_ui_is_urgent = 1;
846 next.tep_qos_ceiling = THREAD_QOS_UNSPECIFIED;
847 break;
848
849 case TASK_THROTTLE_APPLICATION:
850 /* i.e. 'TAL launch' */
851 next.tep_qos_ceiling = THREAD_QOS_UTILITY;
852 break;
853
854 case TASK_DARWINBG_APPLICATION:
855 /* i.e. 'DARWIN_BG throttled background application' */
856 next.tep_qos_ceiling = THREAD_QOS_BACKGROUND;
857 break;
858
859 case TASK_UNSPECIFIED:
860 default:
861 /* Apps that don't have an application role get
862 * USER_INTERACTIVE and USER_INITIATED squashed to LEGACY */
863 next.tep_qos_ceiling = THREAD_QOS_LEGACY;
864 break;
865 }
866 } else {
867 /* Daemons and dext get USER_INTERACTIVE squashed to USER_INITIATED */
868 next.tep_qos_ceiling = THREAD_QOS_USER_INITIATED;
869 }
870
871 /* Calculate DARWIN_BG */
872 bool wants_darwinbg = false;
873 bool wants_all_sockets_bg = false; /* Do I want my existing sockets to be bg */
874 bool wants_watchersbg = false; /* Do I want my pidbound threads to be bg */
875 bool adaptive_bg_only = false; /* This task is BG only because it's adaptive unboosted */
876
877 /* Adaptive daemons are DARWIN_BG unless boosted, and don't get network throttled. */
878 if (requested.trp_apptype == TASK_APPTYPE_DAEMON_ADAPTIVE &&
879 requested.trp_boosted == 0) {
880 wants_darwinbg = true;
881 adaptive_bg_only = true;
882 }
883
884 /*
885 * If DARWIN_BG has been requested at either level, it's engaged.
886 * Only true DARWIN_BG changes cause watchers to transition.
887 *
888 * Backgrounding due to apptype does.
889 */
890 if (requested.trp_int_darwinbg || requested.trp_ext_darwinbg ||
891 next.tep_role == TASK_DARWINBG_APPLICATION) {
892 wants_watchersbg = wants_all_sockets_bg = wants_darwinbg = true;
893 adaptive_bg_only = false;
894 }
895
896 /* Application launching in special Transparent App Lifecycle throttle mode */
897 if (requested.trp_apptype == TASK_APPTYPE_APP_DEFAULT &&
898 requested.trp_role == TASK_THROTTLE_APPLICATION) {
899 next.tep_tal_engaged = 1;
900 }
901
902 /* Background daemons are always DARWIN_BG, no exceptions, and don't get network throttled. */
903 if (requested.trp_apptype == TASK_APPTYPE_DAEMON_BACKGROUND) {
904 wants_darwinbg = true;
905 adaptive_bg_only = false;
906 }
907
908 if (next.tep_qos_clamp == THREAD_QOS_BACKGROUND ||
909 next.tep_qos_clamp == THREAD_QOS_MAINTENANCE) {
910 wants_darwinbg = true;
911 adaptive_bg_only = false;
912 }
913
914 /* Calculate side effects of DARWIN_BG */
915
916 if (wants_darwinbg) {
917 next.tep_darwinbg = 1;
918 /* darwinbg tasks always create bg sockets, but we don't always loop over all sockets */
919 next.tep_new_sockets_bg = 1;
920 next.tep_lowpri_cpu = 1;
921 }
922
923 if (wants_all_sockets_bg) {
924 next.tep_all_sockets_bg = 1;
925 }
926
927 if (wants_watchersbg) {
928 next.tep_watchers_bg = 1;
929 }
930
931 next.tep_adaptive_bg = adaptive_bg_only;
932
933 /* Calculate low CPU priority */
934
935 boolean_t wants_lowpri_cpu = false;
936
937 if (wants_darwinbg) {
938 wants_lowpri_cpu = true;
939 }
940
941 if (next.tep_tal_engaged) {
942 wants_lowpri_cpu = true;
943 }
944
945 if (requested.trp_sup_lowpri_cpu && requested.trp_boosted == 0) {
946 wants_lowpri_cpu = true;
947 }
948
949 if (wants_lowpri_cpu) {
950 next.tep_lowpri_cpu = 1;
951 }
952
953 /* Calculate IO policy */
954
955 /* Update BG IO policy (so we can see if it has changed) */
956 next.tep_bg_iotier = requested.trp_bg_iotier;
957
958 int iopol = THROTTLE_LEVEL_TIER0;
959
960 if (wants_darwinbg) {
961 iopol = MAX(iopol, requested.trp_bg_iotier);
962 }
963
964 if (requested.trp_apptype == TASK_APPTYPE_DAEMON_STANDARD) {
965 iopol = MAX(iopol, proc_standard_daemon_tier);
966 }
967
968 if (requested.trp_sup_disk && requested.trp_boosted == 0) {
969 iopol = MAX(iopol, proc_suppressed_disk_tier);
970 }
971
972 if (next.tep_tal_engaged) {
973 iopol = MAX(iopol, proc_tal_disk_tier);
974 }
975
976 if (next.tep_qos_clamp != THREAD_QOS_UNSPECIFIED) {
977 iopol = MAX(iopol, thread_qos_policy_params.qos_iotier[next.tep_qos_clamp]);
978 }
979
980 iopol = MAX(iopol, requested.trp_int_iotier);
981 iopol = MAX(iopol, requested.trp_ext_iotier);
982
983 next.tep_io_tier = iopol;
984
985 /* Calculate Passive IO policy */
986
987 if (requested.trp_ext_iopassive || requested.trp_int_iopassive) {
988 next.tep_io_passive = 1;
989 }
990
991 /* Calculate suppression-active flag */
992 boolean_t appnap_transition = false;
993
994 if (requested.trp_sup_active && requested.trp_boosted == 0) {
995 next.tep_sup_active = 1;
996 }
997
998 if (task->effective_policy.tep_sup_active != next.tep_sup_active) {
999 appnap_transition = true;
1000 }
1001
1002 /* Calculate timer QOS */
1003 int latency_qos = requested.trp_base_latency_qos;
1004
1005 if (requested.trp_sup_timer && requested.trp_boosted == 0) {
1006 latency_qos = requested.trp_sup_timer;
1007 }
1008
1009 if (next.tep_qos_clamp != THREAD_QOS_UNSPECIFIED) {
1010 latency_qos = MAX(latency_qos, (int)thread_qos_policy_params.qos_latency_qos[next.tep_qos_clamp]);
1011 }
1012
1013 if (requested.trp_over_latency_qos != 0) {
1014 latency_qos = requested.trp_over_latency_qos;
1015 }
1016
1017 /* Treat the windowserver special */
1018 if (requested.trp_role == TASK_GRAPHICS_SERVER) {
1019 latency_qos = proc_graphics_timer_qos;
1020 }
1021
1022 next.tep_latency_qos = latency_qos;
1023
1024 /* Calculate throughput QOS */
1025 int through_qos = requested.trp_base_through_qos;
1026
1027 if (requested.trp_sup_throughput && requested.trp_boosted == 0) {
1028 through_qos = requested.trp_sup_throughput;
1029 }
1030
1031 if (next.tep_qos_clamp != THREAD_QOS_UNSPECIFIED) {
1032 through_qos = MAX(through_qos, (int)thread_qos_policy_params.qos_through_qos[next.tep_qos_clamp]);
1033 }
1034
1035 if (requested.trp_over_through_qos != 0) {
1036 through_qos = requested.trp_over_through_qos;
1037 }
1038
1039 next.tep_through_qos = through_qos;
1040
1041 /* Calculate suppressed CPU priority */
1042 if (requested.trp_sup_cpu && requested.trp_boosted == 0) {
1043 next.tep_suppressed_cpu = 1;
1044 }
1045
1046 /*
1047 * Calculate background sockets
1048 * Don't take into account boosting to limit transition frequency.
1049 */
1050 if (requested.trp_sup_bg_sockets) {
1051 next.tep_all_sockets_bg = 1;
1052 next.tep_new_sockets_bg = 1;
1053 }
1054
1055 /* Apply SFI Managed class bit */
1056 next.tep_sfi_managed = requested.trp_sfi_managed;
1057
1058 /* Calculate 'live donor' status for live importance */
1059 switch (requested.trp_apptype) {
1060 case TASK_APPTYPE_APP_TAL:
1061 case TASK_APPTYPE_APP_DEFAULT:
1062 if (requested.trp_ext_darwinbg == 1 ||
1063 (next.tep_sup_active == 1 &&
1064 (task_policy_suppression_flags & TASK_POLICY_SUPPRESSION_NONDONOR)) ||
1065 next.tep_role == TASK_DARWINBG_APPLICATION) {
1066 next.tep_live_donor = 0;
1067 } else {
1068 next.tep_live_donor = 1;
1069 }
1070 break;
1071
1072 case TASK_APPTYPE_DAEMON_INTERACTIVE:
1073 case TASK_APPTYPE_DAEMON_STANDARD:
1074 case TASK_APPTYPE_DAEMON_ADAPTIVE:
1075 case TASK_APPTYPE_DAEMON_BACKGROUND:
1076 case TASK_APPTYPE_DRIVER:
1077 default:
1078 next.tep_live_donor = 0;
1079 break;
1080 }
1081
1082 if (requested.trp_terminated) {
1083 /*
1084 * Shoot down the throttles that slow down exit or response to SIGTERM
1085 * We don't need to shoot down:
1086 * passive (don't want to cause others to throttle)
1087 * all_sockets_bg (don't need to iterate FDs on every exit)
1088 * new_sockets_bg (doesn't matter for exiting process)
1089 * pidsuspend (jetsam-ed BG process shouldn't run again)
1090 * watchers_bg (watcher threads don't need to be unthrottled)
1091 * latency_qos (affects userspace timers only)
1092 */
1093
1094 next.tep_terminated = 1;
1095 next.tep_darwinbg = 0;
1096 next.tep_lowpri_cpu = 0;
1097 next.tep_io_tier = THROTTLE_LEVEL_TIER0;
1098 next.tep_tal_engaged = 0;
1099 next.tep_role = TASK_UNSPECIFIED;
1100 next.tep_suppressed_cpu = 0;
1101 }
1102
1103 /*
1104 * Step 3:
1105 * Swap out old policy for new policy
1106 */
1107
1108 struct task_effective_policy prev = task->effective_policy;
1109
1110 /* This is the point where the new values become visible to other threads */
1111 task->effective_policy = next;
1112
1113 /* Don't do anything further to a half-formed task */
1114 if (in_create) {
1115 return;
1116 }
1117
1118 if (task == kernel_task) {
1119 panic("Attempting to set task policy on kernel_task");
1120 }
1121
1122 /*
1123 * Step 4:
1124 * Pend updates that can't be done while holding the task lock
1125 */
1126
1127 if (prev.tep_all_sockets_bg != next.tep_all_sockets_bg) {
1128 pend_token->tpt_update_sockets = 1;
1129 }
1130
1131 /* Only re-scan the timer list if the qos level is getting less strong */
1132 if (prev.tep_latency_qos > next.tep_latency_qos) {
1133 pend_token->tpt_update_timers = 1;
1134 }
1135
1136 #if CONFIG_TASKWATCH
1137 if (prev.tep_watchers_bg != next.tep_watchers_bg) {
1138 pend_token->tpt_update_watchers = 1;
1139 }
1140 #endif /* CONFIG_TASKWATCH */
1141
1142 if (prev.tep_live_donor != next.tep_live_donor) {
1143 pend_token->tpt_update_live_donor = 1;
1144 }
1145
1146 /*
1147 * Step 5:
1148 * Update other subsystems as necessary if something has changed
1149 */
1150
1151 bool update_threads = false, update_sfi = false;
1152
1153 /*
1154 * Check for the attributes that thread_policy_update_internal_locked() consults,
1155 * and trigger thread policy re-evaluation.
1156 */
1157 if (prev.tep_io_tier != next.tep_io_tier ||
1158 prev.tep_bg_iotier != next.tep_bg_iotier ||
1159 prev.tep_io_passive != next.tep_io_passive ||
1160 prev.tep_darwinbg != next.tep_darwinbg ||
1161 prev.tep_qos_clamp != next.tep_qos_clamp ||
1162 prev.tep_qos_ceiling != next.tep_qos_ceiling ||
1163 prev.tep_qos_ui_is_urgent != next.tep_qos_ui_is_urgent ||
1164 prev.tep_latency_qos != next.tep_latency_qos ||
1165 prev.tep_through_qos != next.tep_through_qos ||
1166 prev.tep_lowpri_cpu != next.tep_lowpri_cpu ||
1167 prev.tep_new_sockets_bg != next.tep_new_sockets_bg ||
1168 prev.tep_terminated != next.tep_terminated ||
1169 prev.tep_adaptive_bg != next.tep_adaptive_bg) {
1170 update_threads = true;
1171 }
1172
1173 /*
1174 * Check for the attributes that sfi_thread_classify() consults,
1175 * and trigger SFI re-evaluation.
1176 */
1177 if (prev.tep_latency_qos != next.tep_latency_qos ||
1178 prev.tep_role != next.tep_role ||
1179 prev.tep_sfi_managed != next.tep_sfi_managed) {
1180 update_sfi = true;
1181 }
1182
1183 /* Reflect task role transitions into the coalition role counters */
1184 if (prev.tep_role != next.tep_role) {
1185 if (task_policy_update_coalition_focal_tasks(task, prev.tep_role, next.tep_role, pend_token)) {
1186 update_sfi = true;
1187 }
1188 }
1189
1190 bool update_priority = false;
1191
1192 int16_t priority = BASEPRI_DEFAULT;
1193 int16_t max_priority = MAXPRI_USER;
1194
1195 if (next.tep_lowpri_cpu) {
1196 priority = MAXPRI_THROTTLE;
1197 max_priority = MAXPRI_THROTTLE;
1198 } else if (next.tep_suppressed_cpu) {
1199 priority = MAXPRI_SUPPRESSED;
1200 max_priority = MAXPRI_SUPPRESSED;
1201 } else {
1202 switch (next.tep_role) {
1203 case TASK_CONTROL_APPLICATION:
1204 priority = BASEPRI_CONTROL;
1205 break;
1206 case TASK_GRAPHICS_SERVER:
1207 priority = BASEPRI_GRAPHICS;
1208 max_priority = MAXPRI_RESERVED;
1209 break;
1210 default:
1211 break;
1212 }
1213
1214 /* factor in 'nice' value */
1215 priority += task->importance;
1216
1217 if (task->effective_policy.tep_qos_clamp != THREAD_QOS_UNSPECIFIED) {
1218 int16_t qos_clamp_priority = thread_qos_policy_params.qos_pri[task->effective_policy.tep_qos_clamp];
1219
1220 priority = MIN(priority, qos_clamp_priority);
1221 max_priority = MIN(max_priority, qos_clamp_priority);
1222 }
1223
1224 if (priority > max_priority) {
1225 priority = max_priority;
1226 } else if (priority < MINPRI) {
1227 priority = MINPRI;
1228 }
1229 }
1230
1231 assert(priority <= max_priority);
1232
1233 /* avoid extra work if priority isn't changing */
1234 if (priority != task->priority ||
1235 max_priority != task->max_priority) {
1236 /* update the scheduling priority for the task */
1237 task->max_priority = max_priority;
1238 task->priority = priority;
1239 update_priority = true;
1240 }
1241
1242 /* Loop over the threads in the task:
1243 * only once
1244 * only if necessary
1245 * with one thread mutex hold per thread
1246 */
1247 if (update_threads || update_priority || update_sfi) {
1248 thread_t thread;
1249
1250 queue_iterate(&task->threads, thread, thread_t, task_threads) {
1251 struct task_pend_token thread_pend_token = {};
1252
1253 if (update_sfi) {
1254 thread_pend_token.tpt_update_thread_sfi = 1;
1255 }
1256
1257 if (update_priority || update_threads) {
1258 thread_policy_update_tasklocked(thread,
1259 task->priority, task->max_priority,
1260 &thread_pend_token);
1261 }
1262
1263 assert(!thread_pend_token.tpt_update_sockets);
1264
1265 // Slightly risky, as we still hold the task lock...
1266 thread_policy_update_complete_unlocked(thread, &thread_pend_token);
1267 }
1268 }
1269
1270 /*
1271 * Use the app-nap transitions to influence the
1272 * transition of the process within the jetsam band
1273 * [and optionally its live-donor status]
1274 * On macOS only.
1275 */
1276 if (appnap_transition) {
1277 if (task->effective_policy.tep_sup_active == 1) {
1278 memorystatus_update_priority_for_appnap(((proc_t) task->bsd_info), TRUE);
1279 } else {
1280 memorystatus_update_priority_for_appnap(((proc_t) task->bsd_info), FALSE);
1281 }
1282 }
1283 }
1284
1285
1286 /*
1287 * Yet another layering violation. We reach out and bang on the coalition directly.
1288 */
1289 static boolean_t
1290 task_policy_update_coalition_focal_tasks(task_t task,
1291 int prev_role,
1292 int next_role,
1293 task_pend_token_t pend_token)
1294 {
1295 boolean_t sfi_transition = FALSE;
1296 uint32_t new_count = 0;
1297
1298 /* task moving into/out-of the foreground */
1299 if (prev_role != TASK_FOREGROUND_APPLICATION && next_role == TASK_FOREGROUND_APPLICATION) {
1300 if (task_coalition_adjust_focal_count(task, 1, &new_count) && (new_count == 1)) {
1301 sfi_transition = TRUE;
1302 pend_token->tpt_update_tg_ui_flag = TRUE;
1303 }
1304 } else if (prev_role == TASK_FOREGROUND_APPLICATION && next_role != TASK_FOREGROUND_APPLICATION) {
1305 if (task_coalition_adjust_focal_count(task, -1, &new_count) && (new_count == 0)) {
1306 sfi_transition = TRUE;
1307 pend_token->tpt_update_tg_ui_flag = TRUE;
1308 }
1309 }
1310
1311 /* task moving into/out-of background */
1312 if (prev_role != TASK_BACKGROUND_APPLICATION && next_role == TASK_BACKGROUND_APPLICATION) {
1313 if (task_coalition_adjust_nonfocal_count(task, 1, &new_count) && (new_count == 1)) {
1314 sfi_transition = TRUE;
1315 }
1316 } else if (prev_role == TASK_BACKGROUND_APPLICATION && next_role != TASK_BACKGROUND_APPLICATION) {
1317 if (task_coalition_adjust_nonfocal_count(task, -1, &new_count) && (new_count == 0)) {
1318 sfi_transition = TRUE;
1319 }
1320 }
1321
1322 if (sfi_transition) {
1323 pend_token->tpt_update_coal_sfi = 1;
1324 }
1325 return sfi_transition;
1326 }
1327
1328 #if CONFIG_SCHED_SFI
1329
1330 /* coalition object is locked */
1331 static void
1332 task_sfi_reevaluate_cb(coalition_t coal, void *ctx, task_t task)
1333 {
1334 thread_t thread;
1335
1336 /* unused for now */
1337 (void)coal;
1338
1339 /* skip the task we're re-evaluating on behalf of: it's already updated */
1340 if (task == (task_t)ctx) {
1341 return;
1342 }
1343
1344 task_lock(task);
1345
1346 queue_iterate(&task->threads, thread, thread_t, task_threads) {
1347 sfi_reevaluate(thread);
1348 }
1349
1350 task_unlock(task);
1351 }
1352 #endif /* CONFIG_SCHED_SFI */
1353
1354 /*
1355 * Called with task unlocked to do things that can't be done while holding the task lock
1356 */
1357 void
1358 task_policy_update_complete_unlocked(task_t task, task_pend_token_t pend_token)
1359 {
1360 #ifdef MACH_BSD
1361 if (pend_token->tpt_update_sockets) {
1362 proc_apply_task_networkbg(task->bsd_info, THREAD_NULL);
1363 }
1364 #endif /* MACH_BSD */
1365
1366 /* The timer throttle has been removed or reduced, we need to look for expired timers and fire them */
1367 if (pend_token->tpt_update_timers) {
1368 ml_timer_evaluate();
1369 }
1370
1371 #if CONFIG_TASKWATCH
1372 if (pend_token->tpt_update_watchers) {
1373 apply_appstate_watchers(task);
1374 }
1375 #endif /* CONFIG_TASKWATCH */
1376
1377 if (pend_token->tpt_update_live_donor) {
1378 task_importance_update_live_donor(task);
1379 }
1380
1381 #if CONFIG_SCHED_SFI
1382 /* use the resource coalition for SFI re-evaluation */
1383 if (pend_token->tpt_update_coal_sfi) {
1384 coalition_for_each_task(task->coalition[COALITION_TYPE_RESOURCE],
1385 (void *)task, task_sfi_reevaluate_cb);
1386 }
1387 #endif /* CONFIG_SCHED_SFI */
1388
1389 #if CONFIG_THREAD_GROUPS
1390 if (pend_token->tpt_update_tg_ui_flag) {
1391 task_coalition_thread_group_focal_update(task);
1392 }
1393 #endif /* CONFIG_THREAD_GROUPS */
1394 }
1395
1396 /*
1397 * Initiate a task policy state transition
1398 *
1399 * Everything that modifies requested except functions that need to hold the task lock
1400 * should use this function
1401 *
1402 * Argument validation should be performed before reaching this point.
1403 *
1404 * TODO: Do we need to check task->active?
1405 */
1406 void
1407 proc_set_task_policy(task_t task,
1408 int category,
1409 int flavor,
1410 int value)
1411 {
1412 struct task_pend_token pend_token = {};
1413
1414 task_lock(task);
1415
1416 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
1417 (IMPORTANCE_CODE(flavor, (category | TASK_POLICY_TASK))) | DBG_FUNC_START,
1418 task_pid(task), trequested_0(task),
1419 trequested_1(task), value, 0);
1420
1421 proc_set_task_policy_locked(task, category, flavor, value, 0);
1422
1423 task_policy_update_locked(task, &pend_token);
1424
1425
1426 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
1427 (IMPORTANCE_CODE(flavor, (category | TASK_POLICY_TASK))) | DBG_FUNC_END,
1428 task_pid(task), trequested_0(task),
1429 trequested_1(task), tpending(&pend_token), 0);
1430
1431 task_unlock(task);
1432
1433 task_policy_update_complete_unlocked(task, &pend_token);
1434 }
1435
1436 /*
1437 * Variant of proc_set_task_policy() that sets two scalars in the requested policy structure.
1438 * Same locking rules apply.
1439 */
1440 void
1441 proc_set_task_policy2(task_t task,
1442 int category,
1443 int flavor,
1444 int value,
1445 int value2)
1446 {
1447 struct task_pend_token pend_token = {};
1448
1449 task_lock(task);
1450
1451 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
1452 (IMPORTANCE_CODE(flavor, (category | TASK_POLICY_TASK))) | DBG_FUNC_START,
1453 task_pid(task), trequested_0(task),
1454 trequested_1(task), value, 0);
1455
1456 proc_set_task_policy_locked(task, category, flavor, value, value2);
1457
1458 task_policy_update_locked(task, &pend_token);
1459
1460 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
1461 (IMPORTANCE_CODE(flavor, (category | TASK_POLICY_TASK))) | DBG_FUNC_END,
1462 task_pid(task), trequested_0(task),
1463 trequested_1(task), tpending(&pend_token), 0);
1464
1465 task_unlock(task);
1466
1467 task_policy_update_complete_unlocked(task, &pend_token);
1468 }
1469
1470 /*
1471 * Set the requested state for a specific flavor to a specific value.
1472 *
1473 * TODO:
1474 * Verify that arguments to non iopol things are 1 or 0
1475 */
1476 static void
1477 proc_set_task_policy_locked(task_t task,
1478 int category,
1479 int flavor,
1480 int value,
1481 int value2)
1482 {
1483 int tier, passive;
1484
1485 struct task_requested_policy requested = task->requested_policy;
1486
1487 switch (flavor) {
1488 /* Category: EXTERNAL and INTERNAL */
1489
1490 case TASK_POLICY_DARWIN_BG:
1491 if (category == TASK_POLICY_EXTERNAL) {
1492 requested.trp_ext_darwinbg = value;
1493 } else {
1494 requested.trp_int_darwinbg = value;
1495 }
1496 break;
1497
1498 case TASK_POLICY_IOPOL:
1499 proc_iopol_to_tier(value, &tier, &passive);
1500 if (category == TASK_POLICY_EXTERNAL) {
1501 requested.trp_ext_iotier = tier;
1502 requested.trp_ext_iopassive = passive;
1503 } else {
1504 requested.trp_int_iotier = tier;
1505 requested.trp_int_iopassive = passive;
1506 }
1507 break;
1508
1509 case TASK_POLICY_IO:
1510 if (category == TASK_POLICY_EXTERNAL) {
1511 requested.trp_ext_iotier = value;
1512 } else {
1513 requested.trp_int_iotier = value;
1514 }
1515 break;
1516
1517 case TASK_POLICY_PASSIVE_IO:
1518 if (category == TASK_POLICY_EXTERNAL) {
1519 requested.trp_ext_iopassive = value;
1520 } else {
1521 requested.trp_int_iopassive = value;
1522 }
1523 break;
1524
1525 /* Category: INTERNAL */
1526
1527 case TASK_POLICY_DARWIN_BG_IOPOL:
1528 assert(category == TASK_POLICY_INTERNAL);
1529 proc_iopol_to_tier(value, &tier, &passive);
1530 requested.trp_bg_iotier = tier;
1531 break;
1532
1533 /* Category: ATTRIBUTE */
1534
1535 case TASK_POLICY_BOOST:
1536 assert(category == TASK_POLICY_ATTRIBUTE);
1537 requested.trp_boosted = value;
1538 break;
1539
1540 case TASK_POLICY_ROLE:
1541 assert(category == TASK_POLICY_ATTRIBUTE);
1542 requested.trp_role = value;
1543 break;
1544
1545 case TASK_POLICY_TERMINATED:
1546 assert(category == TASK_POLICY_ATTRIBUTE);
1547 requested.trp_terminated = value;
1548 break;
1549
1550 case TASK_BASE_LATENCY_QOS_POLICY:
1551 assert(category == TASK_POLICY_ATTRIBUTE);
1552 requested.trp_base_latency_qos = value;
1553 break;
1554
1555 case TASK_BASE_THROUGHPUT_QOS_POLICY:
1556 assert(category == TASK_POLICY_ATTRIBUTE);
1557 requested.trp_base_through_qos = value;
1558 break;
1559
1560 case TASK_POLICY_SFI_MANAGED:
1561 assert(category == TASK_POLICY_ATTRIBUTE);
1562 requested.trp_sfi_managed = value;
1563 break;
1564
1565 case TASK_POLICY_BASE_LATENCY_AND_THROUGHPUT_QOS:
1566 assert(category == TASK_POLICY_ATTRIBUTE);
1567 requested.trp_base_latency_qos = value;
1568 requested.trp_base_through_qos = value2;
1569 break;
1570
1571 case TASK_POLICY_OVERRIDE_LATENCY_AND_THROUGHPUT_QOS:
1572 assert(category == TASK_POLICY_ATTRIBUTE);
1573 requested.trp_over_latency_qos = value;
1574 requested.trp_over_through_qos = value2;
1575 break;
1576
1577 default:
1578 panic("unknown task policy: %d %d %d %d", category, flavor, value, value2);
1579 break;
1580 }
1581
1582 task->requested_policy = requested;
1583 }
1584
1585 /*
1586 * Gets what you set. Effective values may be different.
1587 */
1588 int
1589 proc_get_task_policy(task_t task,
1590 int category,
1591 int flavor)
1592 {
1593 int value = 0;
1594
1595 task_lock(task);
1596
1597 struct task_requested_policy requested = task->requested_policy;
1598
1599 switch (flavor) {
1600 case TASK_POLICY_DARWIN_BG:
1601 if (category == TASK_POLICY_EXTERNAL) {
1602 value = requested.trp_ext_darwinbg;
1603 } else {
1604 value = requested.trp_int_darwinbg;
1605 }
1606 break;
1607 case TASK_POLICY_IOPOL:
1608 if (category == TASK_POLICY_EXTERNAL) {
1609 value = proc_tier_to_iopol(requested.trp_ext_iotier,
1610 requested.trp_ext_iopassive);
1611 } else {
1612 value = proc_tier_to_iopol(requested.trp_int_iotier,
1613 requested.trp_int_iopassive);
1614 }
1615 break;
1616 case TASK_POLICY_IO:
1617 if (category == TASK_POLICY_EXTERNAL) {
1618 value = requested.trp_ext_iotier;
1619 } else {
1620 value = requested.trp_int_iotier;
1621 }
1622 break;
1623 case TASK_POLICY_PASSIVE_IO:
1624 if (category == TASK_POLICY_EXTERNAL) {
1625 value = requested.trp_ext_iopassive;
1626 } else {
1627 value = requested.trp_int_iopassive;
1628 }
1629 break;
1630 case TASK_POLICY_DARWIN_BG_IOPOL:
1631 assert(category == TASK_POLICY_INTERNAL);
1632 value = proc_tier_to_iopol(requested.trp_bg_iotier, 0);
1633 break;
1634 case TASK_POLICY_ROLE:
1635 assert(category == TASK_POLICY_ATTRIBUTE);
1636 value = requested.trp_role;
1637 break;
1638 case TASK_POLICY_SFI_MANAGED:
1639 assert(category == TASK_POLICY_ATTRIBUTE);
1640 value = requested.trp_sfi_managed;
1641 break;
1642 default:
1643 panic("unknown policy_flavor %d", flavor);
1644 break;
1645 }
1646
1647 task_unlock(task);
1648
1649 return value;
1650 }
1651
1652 /*
1653 * Variant of proc_get_task_policy() that returns two scalar outputs.
1654 */
1655 void
1656 proc_get_task_policy2(task_t task,
1657 __assert_only int category,
1658 int flavor,
1659 int *value1,
1660 int *value2)
1661 {
1662 task_lock(task);
1663
1664 struct task_requested_policy requested = task->requested_policy;
1665
1666 switch (flavor) {
1667 case TASK_POLICY_BASE_LATENCY_AND_THROUGHPUT_QOS:
1668 assert(category == TASK_POLICY_ATTRIBUTE);
1669 *value1 = requested.trp_base_latency_qos;
1670 *value2 = requested.trp_base_through_qos;
1671 break;
1672
1673 case TASK_POLICY_OVERRIDE_LATENCY_AND_THROUGHPUT_QOS:
1674 assert(category == TASK_POLICY_ATTRIBUTE);
1675 *value1 = requested.trp_over_latency_qos;
1676 *value2 = requested.trp_over_through_qos;
1677 break;
1678
1679 default:
1680 panic("unknown policy_flavor %d", flavor);
1681 break;
1682 }
1683
1684 task_unlock(task);
1685 }
1686
1687 /*
1688 * Function for querying effective state for relevant subsystems
1689 * Gets what is actually in effect, for subsystems which pull policy instead of receive updates.
1690 *
1691 * ONLY the relevant subsystem should query this.
1692 * NEVER take a value from the 'effective' function and stuff it into a setter.
1693 *
1694 * NOTE: This accessor does not take the task lock.
1695 * Notifications of state updates need to be externally synchronized with state queries.
1696 * This routine *MUST* remain interrupt safe, as it is potentially invoked
1697 * within the context of a timer interrupt. It is also called in KDP context for stackshot.
1698 */
1699 int
1700 proc_get_effective_task_policy(task_t task,
1701 int flavor)
1702 {
1703 int value = 0;
1704
1705 switch (flavor) {
1706 case TASK_POLICY_DARWIN_BG:
1707 /*
1708 * This backs the KPI call proc_pidbackgrounded to find
1709 * out if a pid is backgrounded.
1710 * It is used to communicate state to the VM system, as well as
1711 * prioritizing requests to the graphics system.
1712 * Returns 1 for background mode, 0 for normal mode
1713 */
1714 value = task->effective_policy.tep_darwinbg;
1715 break;
1716 case TASK_POLICY_ALL_SOCKETS_BG:
1717 /*
1718 * do_background_socket() calls this to determine what it should do to the proc's sockets
1719 * Returns 1 for background mode, 0 for normal mode
1720 *
1721 * This consults both thread and task so un-DBGing a thread while the task is BG
1722 * doesn't get you out of the network throttle.
1723 */
1724 value = task->effective_policy.tep_all_sockets_bg;
1725 break;
1726 case TASK_POLICY_SUP_ACTIVE:
1727 /*
1728 * Is the task in AppNap? This is used to determine the urgency
1729 * that's passed to the performance management subsystem for threads
1730 * that are running at a priority <= MAXPRI_THROTTLE.
1731 */
1732 value = task->effective_policy.tep_sup_active;
1733 break;
1734 case TASK_POLICY_LATENCY_QOS:
1735 /*
1736 * timer arming calls into here to find out the timer coalescing level
1737 * Returns a QoS tier (0-6)
1738 */
1739 value = task->effective_policy.tep_latency_qos;
1740 break;
1741 case TASK_POLICY_THROUGH_QOS:
1742 /*
1743 * This value is passed into the urgency callout from the scheduler
1744 * to the performance management subsystem.
1745 * Returns a QoS tier (0-6)
1746 */
1747 value = task->effective_policy.tep_through_qos;
1748 break;
1749 case TASK_POLICY_ROLE:
1750 /*
1751 * This controls various things that ask whether a process is foreground,
1752 * like SFI, VM, access to GPU, etc
1753 */
1754 value = task->effective_policy.tep_role;
1755 break;
1756 case TASK_POLICY_WATCHERS_BG:
1757 /*
1758 * This controls whether or not a thread watching this process should be BG.
1759 */
1760 value = task->effective_policy.tep_watchers_bg;
1761 break;
1762 case TASK_POLICY_SFI_MANAGED:
1763 /*
1764 * This controls whether or not a process is targeted for specific control by thermald.
1765 */
1766 value = task->effective_policy.tep_sfi_managed;
1767 break;
1768 default:
1769 panic("unknown policy_flavor %d", flavor);
1770 break;
1771 }
1772
1773 return value;
1774 }
1775
1776 /*
1777 * Convert from IOPOL_* values to throttle tiers.
1778 *
1779 * TODO: Can this be made more compact, like an array lookup
1780 * Note that it is possible to support e.g. IOPOL_PASSIVE_STANDARD in the future
1781 */
1782
1783 void
1784 proc_iopol_to_tier(int iopolicy, int *tier, int *passive)
1785 {
1786 *passive = 0;
1787 *tier = 0;
1788 switch (iopolicy) {
1789 case IOPOL_IMPORTANT:
1790 *tier = THROTTLE_LEVEL_TIER0;
1791 break;
1792 case IOPOL_PASSIVE:
1793 *tier = THROTTLE_LEVEL_TIER0;
1794 *passive = 1;
1795 break;
1796 case IOPOL_STANDARD:
1797 *tier = THROTTLE_LEVEL_TIER1;
1798 break;
1799 case IOPOL_UTILITY:
1800 *tier = THROTTLE_LEVEL_TIER2;
1801 break;
1802 case IOPOL_THROTTLE:
1803 *tier = THROTTLE_LEVEL_TIER3;
1804 break;
1805 default:
1806 panic("unknown I/O policy %d", iopolicy);
1807 break;
1808 }
1809 }
1810
1811 int
1812 proc_tier_to_iopol(int tier, int passive)
1813 {
1814 if (passive == 1) {
1815 switch (tier) {
1816 case THROTTLE_LEVEL_TIER0:
1817 return IOPOL_PASSIVE;
1818 default:
1819 panic("unknown passive tier %d", tier);
1820 return IOPOL_DEFAULT;
1821 }
1822 } else {
1823 switch (tier) {
1824 case THROTTLE_LEVEL_NONE:
1825 case THROTTLE_LEVEL_TIER0:
1826 return IOPOL_DEFAULT;
1827 case THROTTLE_LEVEL_TIER1:
1828 return IOPOL_STANDARD;
1829 case THROTTLE_LEVEL_TIER2:
1830 return IOPOL_UTILITY;
1831 case THROTTLE_LEVEL_TIER3:
1832 return IOPOL_THROTTLE;
1833 default:
1834 panic("unknown tier %d", tier);
1835 return IOPOL_DEFAULT;
1836 }
1837 }
1838 }
1839
1840 int
1841 proc_darwin_role_to_task_role(int darwin_role, task_role_t* task_role)
1842 {
1843 integer_t role = TASK_UNSPECIFIED;
1844
1845 switch (darwin_role) {
1846 case PRIO_DARWIN_ROLE_DEFAULT:
1847 role = TASK_UNSPECIFIED;
1848 break;
1849 case PRIO_DARWIN_ROLE_UI_FOCAL:
1850 role = TASK_FOREGROUND_APPLICATION;
1851 break;
1852 case PRIO_DARWIN_ROLE_UI:
1853 role = TASK_DEFAULT_APPLICATION;
1854 break;
1855 case PRIO_DARWIN_ROLE_NON_UI:
1856 role = TASK_NONUI_APPLICATION;
1857 break;
1858 case PRIO_DARWIN_ROLE_UI_NON_FOCAL:
1859 role = TASK_BACKGROUND_APPLICATION;
1860 break;
1861 case PRIO_DARWIN_ROLE_TAL_LAUNCH:
1862 role = TASK_THROTTLE_APPLICATION;
1863 break;
1864 case PRIO_DARWIN_ROLE_DARWIN_BG:
1865 role = TASK_DARWINBG_APPLICATION;
1866 break;
1867 default:
1868 return EINVAL;
1869 }
1870
1871 *task_role = role;
1872
1873 return 0;
1874 }
1875
1876 int
1877 proc_task_role_to_darwin_role(task_role_t task_role)
1878 {
1879 switch (task_role) {
1880 case TASK_FOREGROUND_APPLICATION:
1881 return PRIO_DARWIN_ROLE_UI_FOCAL;
1882 case TASK_BACKGROUND_APPLICATION:
1883 return PRIO_DARWIN_ROLE_UI_NON_FOCAL;
1884 case TASK_NONUI_APPLICATION:
1885 return PRIO_DARWIN_ROLE_NON_UI;
1886 case TASK_DEFAULT_APPLICATION:
1887 return PRIO_DARWIN_ROLE_UI;
1888 case TASK_THROTTLE_APPLICATION:
1889 return PRIO_DARWIN_ROLE_TAL_LAUNCH;
1890 case TASK_DARWINBG_APPLICATION:
1891 return PRIO_DARWIN_ROLE_DARWIN_BG;
1892 case TASK_UNSPECIFIED:
1893 default:
1894 return PRIO_DARWIN_ROLE_DEFAULT;
1895 }
1896 }
1897
1898
1899 /* TODO: remove this variable when interactive daemon audit period is over */
1900 static TUNABLE(bool, ipc_importance_interactive_receiver,
1901 "imp_interactive_receiver", false);
1902
1903 /*
1904 * Called at process exec to initialize the apptype, qos clamp, and qos seed of a process
1905 *
1906 * TODO: Make this function more table-driven instead of ad-hoc
1907 */
1908 void
1909 proc_set_task_spawnpolicy(task_t task, thread_t thread, int apptype, int qos_clamp, task_role_t role,
1910 ipc_port_t * portwatch_ports, uint32_t portwatch_count)
1911 {
1912 struct task_pend_token pend_token = {};
1913
1914 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
1915 (IMPORTANCE_CODE(IMP_TASK_APPTYPE, apptype)) | DBG_FUNC_START,
1916 task_pid(task), trequested_0(task), trequested_1(task),
1917 apptype, 0);
1918
1919 switch (apptype) {
1920 case TASK_APPTYPE_APP_DEFAULT:
1921 /* Apps become donors via the 'live-donor' flag instead of the static donor flag */
1922 task_importance_mark_donor(task, FALSE);
1923 task_importance_mark_live_donor(task, TRUE);
1924 task_importance_mark_receiver(task, FALSE);
1925 #if !defined(XNU_TARGET_OS_OSX)
1926 task_importance_mark_denap_receiver(task, FALSE);
1927 #else
1928 /* Apps are de-nap recievers on macOS for suppression behaviors */
1929 task_importance_mark_denap_receiver(task, TRUE);
1930 #endif /* !defined(XNU_TARGET_OS_OSX) */
1931 break;
1932
1933 case TASK_APPTYPE_DAEMON_INTERACTIVE:
1934 task_importance_mark_donor(task, TRUE);
1935 task_importance_mark_live_donor(task, FALSE);
1936
1937 /*
1938 * A boot arg controls whether interactive daemons are importance receivers.
1939 * Normally, they are not. But for testing their behavior as an adaptive
1940 * daemon, the boot-arg can be set.
1941 *
1942 * TODO: remove this when the interactive daemon audit period is over.
1943 */
1944 task_importance_mark_receiver(task, /* FALSE */ ipc_importance_interactive_receiver);
1945 task_importance_mark_denap_receiver(task, FALSE);
1946 break;
1947
1948 case TASK_APPTYPE_DAEMON_STANDARD:
1949 task_importance_mark_donor(task, TRUE);
1950 task_importance_mark_live_donor(task, FALSE);
1951 task_importance_mark_receiver(task, FALSE);
1952 task_importance_mark_denap_receiver(task, FALSE);
1953 break;
1954
1955 case TASK_APPTYPE_DAEMON_ADAPTIVE:
1956 task_importance_mark_donor(task, FALSE);
1957 task_importance_mark_live_donor(task, FALSE);
1958 task_importance_mark_receiver(task, TRUE);
1959 task_importance_mark_denap_receiver(task, FALSE);
1960 break;
1961
1962 case TASK_APPTYPE_DAEMON_BACKGROUND:
1963 task_importance_mark_donor(task, FALSE);
1964 task_importance_mark_live_donor(task, FALSE);
1965 task_importance_mark_receiver(task, FALSE);
1966 task_importance_mark_denap_receiver(task, FALSE);
1967 break;
1968
1969 case TASK_APPTYPE_DRIVER:
1970 task_importance_mark_donor(task, FALSE);
1971 task_importance_mark_live_donor(task, FALSE);
1972 task_importance_mark_receiver(task, FALSE);
1973 task_importance_mark_denap_receiver(task, FALSE);
1974 break;
1975
1976 case TASK_APPTYPE_NONE:
1977 break;
1978 }
1979
1980 if (portwatch_ports != NULL && apptype == TASK_APPTYPE_DAEMON_ADAPTIVE) {
1981 int portwatch_boosts = 0;
1982
1983 for (uint32_t i = 0; i < portwatch_count; i++) {
1984 ipc_port_t port = NULL;
1985
1986 if (IP_VALID(port = portwatch_ports[i])) {
1987 int boost = 0;
1988 task_add_importance_watchport(task, port, &boost);
1989 portwatch_boosts += boost;
1990 }
1991 }
1992
1993 if (portwatch_boosts > 0) {
1994 task_importance_hold_internal_assertion(task, portwatch_boosts);
1995 }
1996 }
1997
1998 /* Redirect the turnstile push of watchports to task */
1999 if (portwatch_count && portwatch_ports != NULL) {
2000 task_add_turnstile_watchports(task, thread, portwatch_ports, portwatch_count);
2001 }
2002
2003 task_lock(task);
2004
2005 if (apptype != TASK_APPTYPE_NONE) {
2006 task->requested_policy.trp_apptype = apptype;
2007 }
2008
2009 #if !defined(XNU_TARGET_OS_OSX)
2010 /* Remove this after launchd starts setting it properly */
2011 if (apptype == TASK_APPTYPE_APP_DEFAULT && role == TASK_UNSPECIFIED) {
2012 task->requested_policy.trp_role = TASK_FOREGROUND_APPLICATION;
2013 } else
2014 #endif
2015 if (role != TASK_UNSPECIFIED) {
2016 task->requested_policy.trp_role = (uint32_t)role;
2017 }
2018
2019 if (qos_clamp != THREAD_QOS_UNSPECIFIED) {
2020 task->requested_policy.trp_qos_clamp = qos_clamp;
2021 }
2022
2023 task_policy_update_locked(task, &pend_token);
2024
2025 task_unlock(task);
2026
2027 /* Ensure the donor bit is updated to be in sync with the new live donor status */
2028 pend_token.tpt_update_live_donor = 1;
2029
2030 task_policy_update_complete_unlocked(task, &pend_token);
2031
2032 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
2033 (IMPORTANCE_CODE(IMP_TASK_APPTYPE, apptype)) | DBG_FUNC_END,
2034 task_pid(task), trequested_0(task), trequested_1(task),
2035 task_is_importance_receiver(task), 0);
2036 }
2037
2038 /*
2039 * Inherit task role across exec
2040 */
2041 void
2042 proc_inherit_task_role(task_t new_task,
2043 task_t old_task)
2044 {
2045 int role;
2046
2047 /* inherit the role from old task to new task */
2048 role = proc_get_task_policy(old_task, TASK_POLICY_ATTRIBUTE, TASK_POLICY_ROLE);
2049 proc_set_task_policy(new_task, TASK_POLICY_ATTRIBUTE, TASK_POLICY_ROLE, role);
2050 }
2051
2052 extern void * XNU_PTRAUTH_SIGNED_PTR("initproc") initproc;
2053
2054 /*
2055 * Compute the default main thread qos for a task
2056 */
2057 thread_qos_t
2058 task_compute_main_thread_qos(task_t task)
2059 {
2060 thread_qos_t primordial_qos = THREAD_QOS_UNSPECIFIED;
2061
2062 thread_qos_t qos_clamp = task->requested_policy.trp_qos_clamp;
2063
2064 switch (task->requested_policy.trp_apptype) {
2065 case TASK_APPTYPE_APP_TAL:
2066 case TASK_APPTYPE_APP_DEFAULT:
2067 primordial_qos = THREAD_QOS_USER_INTERACTIVE;
2068 break;
2069
2070 case TASK_APPTYPE_DAEMON_INTERACTIVE:
2071 case TASK_APPTYPE_DAEMON_STANDARD:
2072 case TASK_APPTYPE_DAEMON_ADAPTIVE:
2073 case TASK_APPTYPE_DRIVER:
2074 primordial_qos = THREAD_QOS_LEGACY;
2075 break;
2076
2077 case TASK_APPTYPE_DAEMON_BACKGROUND:
2078 primordial_qos = THREAD_QOS_BACKGROUND;
2079 break;
2080 }
2081
2082 if (task->bsd_info == initproc) {
2083 /* PID 1 gets a special case */
2084 primordial_qos = MAX(primordial_qos, THREAD_QOS_USER_INITIATED);
2085 }
2086
2087 if (qos_clamp != THREAD_QOS_UNSPECIFIED) {
2088 if (primordial_qos != THREAD_QOS_UNSPECIFIED) {
2089 primordial_qos = MIN(qos_clamp, primordial_qos);
2090 } else {
2091 primordial_qos = qos_clamp;
2092 }
2093 }
2094
2095 return primordial_qos;
2096 }
2097
2098
2099 /* for process_policy to check before attempting to set */
2100 boolean_t
2101 proc_task_is_tal(task_t task)
2102 {
2103 return (task->requested_policy.trp_apptype == TASK_APPTYPE_APP_TAL) ? TRUE : FALSE;
2104 }
2105
2106 int
2107 task_get_apptype(task_t task)
2108 {
2109 return task->requested_policy.trp_apptype;
2110 }
2111
2112 boolean_t
2113 task_is_daemon(task_t task)
2114 {
2115 switch (task->requested_policy.trp_apptype) {
2116 case TASK_APPTYPE_DAEMON_INTERACTIVE:
2117 case TASK_APPTYPE_DAEMON_STANDARD:
2118 case TASK_APPTYPE_DAEMON_ADAPTIVE:
2119 case TASK_APPTYPE_DAEMON_BACKGROUND:
2120 return TRUE;
2121 default:
2122 return FALSE;
2123 }
2124 }
2125
2126 bool
2127 task_is_driver(task_t task)
2128 {
2129 if (!task) {
2130 return FALSE;
2131 }
2132 return task->requested_policy.trp_apptype == TASK_APPTYPE_DRIVER;
2133 }
2134
2135 boolean_t
2136 task_is_app(task_t task)
2137 {
2138 switch (task->requested_policy.trp_apptype) {
2139 case TASK_APPTYPE_APP_DEFAULT:
2140 case TASK_APPTYPE_APP_TAL:
2141 return TRUE;
2142 default:
2143 return FALSE;
2144 }
2145 }
2146
2147 /* for telemetry */
2148 integer_t
2149 task_grab_latency_qos(task_t task)
2150 {
2151 return qos_latency_policy_package(proc_get_effective_task_policy(task, TASK_POLICY_LATENCY_QOS));
2152 }
2153
2154 /* update the darwin background action state in the flags field for libproc */
2155 int
2156 proc_get_darwinbgstate(task_t task, uint32_t * flagsp)
2157 {
2158 if (task->requested_policy.trp_ext_darwinbg) {
2159 *flagsp |= PROC_FLAG_EXT_DARWINBG;
2160 }
2161
2162 if (task->requested_policy.trp_int_darwinbg) {
2163 *flagsp |= PROC_FLAG_DARWINBG;
2164 }
2165
2166 #if !defined(XNU_TARGET_OS_OSX)
2167 if (task->requested_policy.trp_apptype == TASK_APPTYPE_DAEMON_BACKGROUND) {
2168 *flagsp |= PROC_FLAG_IOS_APPLEDAEMON;
2169 }
2170
2171 if (task->requested_policy.trp_apptype == TASK_APPTYPE_DAEMON_ADAPTIVE) {
2172 *flagsp |= PROC_FLAG_IOS_IMPPROMOTION;
2173 }
2174 #endif /* !defined(XNU_TARGET_OS_OSX) */
2175
2176 if (task->requested_policy.trp_apptype == TASK_APPTYPE_APP_DEFAULT ||
2177 task->requested_policy.trp_apptype == TASK_APPTYPE_APP_TAL) {
2178 *flagsp |= PROC_FLAG_APPLICATION;
2179 }
2180
2181 if (task->requested_policy.trp_apptype == TASK_APPTYPE_DAEMON_ADAPTIVE) {
2182 *flagsp |= PROC_FLAG_ADAPTIVE;
2183 }
2184
2185 if (task->requested_policy.trp_apptype == TASK_APPTYPE_DAEMON_ADAPTIVE &&
2186 task->requested_policy.trp_boosted == 1) {
2187 *flagsp |= PROC_FLAG_ADAPTIVE_IMPORTANT;
2188 }
2189
2190 if (task_is_importance_donor(task)) {
2191 *flagsp |= PROC_FLAG_IMPORTANCE_DONOR;
2192 }
2193
2194 if (task->effective_policy.tep_sup_active) {
2195 *flagsp |= PROC_FLAG_SUPPRESSED;
2196 }
2197
2198 return 0;
2199 }
2200
2201 /*
2202 * Tracepoint data... Reading the tracepoint data can be somewhat complicated.
2203 * The current scheme packs as much data into a single tracepoint as it can.
2204 *
2205 * Each task/thread requested/effective structure is 64 bits in size. Any
2206 * given tracepoint will emit either requested or effective data, but not both.
2207 *
2208 * A tracepoint may emit any of task, thread, or task & thread data.
2209 *
2210 * The type of data emitted varies with pointer size. Where possible, both
2211 * task and thread data are emitted. In LP32 systems, the first and second
2212 * halves of either the task or thread data is emitted.
2213 *
2214 * The code uses uintptr_t array indexes instead of high/low to avoid
2215 * confusion WRT big vs little endian.
2216 *
2217 * The truth table for the tracepoint data functions is below, and has the
2218 * following invariants:
2219 *
2220 * 1) task and thread are uintptr_t*
2221 * 2) task may never be NULL
2222 *
2223 *
2224 * LP32 LP64
2225 * trequested_0(task, NULL) task[0] task[0]
2226 * trequested_1(task, NULL) task[1] NULL
2227 * trequested_0(task, thread) thread[0] task[0]
2228 * trequested_1(task, thread) thread[1] thread[0]
2229 *
2230 * Basically, you get a full task or thread on LP32, and both on LP64.
2231 *
2232 * The uintptr_t munging here is squicky enough to deserve a comment.
2233 *
2234 * The variables we are accessing are laid out in memory like this:
2235 *
2236 * [ LP64 uintptr_t 0 ]
2237 * [ LP32 uintptr_t 0 ] [ LP32 uintptr_t 1 ]
2238 *
2239 * 1 2 3 4 5 6 7 8
2240 *
2241 */
2242
2243 static uintptr_t
2244 trequested_0(task_t task)
2245 {
2246 static_assert(sizeof(struct task_requested_policy) == sizeof(uint64_t), "size invariant violated");
2247
2248 uintptr_t* raw = (uintptr_t*)&task->requested_policy;
2249
2250 return raw[0];
2251 }
2252
2253 static uintptr_t
2254 trequested_1(task_t task)
2255 {
2256 #if defined __LP64__
2257 (void)task;
2258 return 0;
2259 #else
2260 uintptr_t* raw = (uintptr_t*)(&task->requested_policy);
2261 return raw[1];
2262 #endif
2263 }
2264
2265 static uintptr_t
2266 teffective_0(task_t task)
2267 {
2268 uintptr_t* raw = (uintptr_t*)&task->effective_policy;
2269
2270 return raw[0];
2271 }
2272
2273 static uintptr_t
2274 teffective_1(task_t task)
2275 {
2276 #if defined __LP64__
2277 (void)task;
2278 return 0;
2279 #else
2280 uintptr_t* raw = (uintptr_t*)(&task->effective_policy);
2281 return raw[1];
2282 #endif
2283 }
2284
2285 /* dump pending for tracepoint */
2286 uint32_t
2287 tpending(task_pend_token_t pend_token)
2288 {
2289 return *(uint32_t*)(void*)(pend_token);
2290 }
2291
2292 uint64_t
2293 task_requested_bitfield(task_t task)
2294 {
2295 uint64_t bits = 0;
2296 struct task_requested_policy requested = task->requested_policy;
2297
2298 bits |= (requested.trp_int_darwinbg ? POLICY_REQ_INT_DARWIN_BG : 0);
2299 bits |= (requested.trp_ext_darwinbg ? POLICY_REQ_EXT_DARWIN_BG : 0);
2300 bits |= (requested.trp_int_iotier ? (((uint64_t)requested.trp_int_iotier) << POLICY_REQ_INT_IO_TIER_SHIFT) : 0);
2301 bits |= (requested.trp_ext_iotier ? (((uint64_t)requested.trp_ext_iotier) << POLICY_REQ_EXT_IO_TIER_SHIFT) : 0);
2302 bits |= (requested.trp_int_iopassive ? POLICY_REQ_INT_PASSIVE_IO : 0);
2303 bits |= (requested.trp_ext_iopassive ? POLICY_REQ_EXT_PASSIVE_IO : 0);
2304 bits |= (requested.trp_bg_iotier ? (((uint64_t)requested.trp_bg_iotier) << POLICY_REQ_BG_IOTIER_SHIFT) : 0);
2305 bits |= (requested.trp_terminated ? POLICY_REQ_TERMINATED : 0);
2306
2307 bits |= (requested.trp_boosted ? POLICY_REQ_BOOSTED : 0);
2308 bits |= (requested.trp_tal_enabled ? POLICY_REQ_TAL_ENABLED : 0);
2309 bits |= (requested.trp_apptype ? (((uint64_t)requested.trp_apptype) << POLICY_REQ_APPTYPE_SHIFT) : 0);
2310 bits |= (requested.trp_role ? (((uint64_t)requested.trp_role) << POLICY_REQ_ROLE_SHIFT) : 0);
2311
2312 bits |= (requested.trp_sup_active ? POLICY_REQ_SUP_ACTIVE : 0);
2313 bits |= (requested.trp_sup_lowpri_cpu ? POLICY_REQ_SUP_LOWPRI_CPU : 0);
2314 bits |= (requested.trp_sup_cpu ? POLICY_REQ_SUP_CPU : 0);
2315 bits |= (requested.trp_sup_timer ? (((uint64_t)requested.trp_sup_timer) << POLICY_REQ_SUP_TIMER_THROTTLE_SHIFT) : 0);
2316 bits |= (requested.trp_sup_throughput ? (((uint64_t)requested.trp_sup_throughput) << POLICY_REQ_SUP_THROUGHPUT_SHIFT) : 0);
2317 bits |= (requested.trp_sup_disk ? POLICY_REQ_SUP_DISK_THROTTLE : 0);
2318 bits |= (requested.trp_sup_bg_sockets ? POLICY_REQ_SUP_BG_SOCKETS : 0);
2319
2320 bits |= (requested.trp_base_latency_qos ? (((uint64_t)requested.trp_base_latency_qos) << POLICY_REQ_BASE_LATENCY_QOS_SHIFT) : 0);
2321 bits |= (requested.trp_over_latency_qos ? (((uint64_t)requested.trp_over_latency_qos) << POLICY_REQ_OVER_LATENCY_QOS_SHIFT) : 0);
2322 bits |= (requested.trp_base_through_qos ? (((uint64_t)requested.trp_base_through_qos) << POLICY_REQ_BASE_THROUGH_QOS_SHIFT) : 0);
2323 bits |= (requested.trp_over_through_qos ? (((uint64_t)requested.trp_over_through_qos) << POLICY_REQ_OVER_THROUGH_QOS_SHIFT) : 0);
2324 bits |= (requested.trp_sfi_managed ? POLICY_REQ_SFI_MANAGED : 0);
2325 bits |= (requested.trp_qos_clamp ? (((uint64_t)requested.trp_qos_clamp) << POLICY_REQ_QOS_CLAMP_SHIFT) : 0);
2326
2327 return bits;
2328 }
2329
2330 uint64_t
2331 task_effective_bitfield(task_t task)
2332 {
2333 uint64_t bits = 0;
2334 struct task_effective_policy effective = task->effective_policy;
2335
2336 bits |= (effective.tep_io_tier ? (((uint64_t)effective.tep_io_tier) << POLICY_EFF_IO_TIER_SHIFT) : 0);
2337 bits |= (effective.tep_io_passive ? POLICY_EFF_IO_PASSIVE : 0);
2338 bits |= (effective.tep_darwinbg ? POLICY_EFF_DARWIN_BG : 0);
2339 bits |= (effective.tep_lowpri_cpu ? POLICY_EFF_LOWPRI_CPU : 0);
2340 bits |= (effective.tep_terminated ? POLICY_EFF_TERMINATED : 0);
2341 bits |= (effective.tep_all_sockets_bg ? POLICY_EFF_ALL_SOCKETS_BG : 0);
2342 bits |= (effective.tep_new_sockets_bg ? POLICY_EFF_NEW_SOCKETS_BG : 0);
2343 bits |= (effective.tep_bg_iotier ? (((uint64_t)effective.tep_bg_iotier) << POLICY_EFF_BG_IOTIER_SHIFT) : 0);
2344 bits |= (effective.tep_qos_ui_is_urgent ? POLICY_EFF_QOS_UI_IS_URGENT : 0);
2345
2346 bits |= (effective.tep_tal_engaged ? POLICY_EFF_TAL_ENGAGED : 0);
2347 bits |= (effective.tep_watchers_bg ? POLICY_EFF_WATCHERS_BG : 0);
2348 bits |= (effective.tep_sup_active ? POLICY_EFF_SUP_ACTIVE : 0);
2349 bits |= (effective.tep_suppressed_cpu ? POLICY_EFF_SUP_CPU : 0);
2350 bits |= (effective.tep_role ? (((uint64_t)effective.tep_role) << POLICY_EFF_ROLE_SHIFT) : 0);
2351 bits |= (effective.tep_latency_qos ? (((uint64_t)effective.tep_latency_qos) << POLICY_EFF_LATENCY_QOS_SHIFT) : 0);
2352 bits |= (effective.tep_through_qos ? (((uint64_t)effective.tep_through_qos) << POLICY_EFF_THROUGH_QOS_SHIFT) : 0);
2353 bits |= (effective.tep_sfi_managed ? POLICY_EFF_SFI_MANAGED : 0);
2354 bits |= (effective.tep_qos_ceiling ? (((uint64_t)effective.tep_qos_ceiling) << POLICY_EFF_QOS_CEILING_SHIFT) : 0);
2355
2356 return bits;
2357 }
2358
2359
2360 /*
2361 * Resource usage and CPU related routines
2362 */
2363
2364 int
2365 proc_get_task_ruse_cpu(task_t task, uint32_t *policyp, uint8_t *percentagep, uint64_t *intervalp, uint64_t *deadlinep)
2366 {
2367 int error = 0;
2368 int scope;
2369
2370 task_lock(task);
2371
2372
2373 error = task_get_cpuusage(task, percentagep, intervalp, deadlinep, &scope);
2374 task_unlock(task);
2375
2376 /*
2377 * Reverse-map from CPU resource limit scopes back to policies (see comment below).
2378 */
2379 if (scope == TASK_RUSECPU_FLAGS_PERTHR_LIMIT) {
2380 *policyp = TASK_POLICY_RESOURCE_ATTRIBUTE_NOTIFY_EXC;
2381 } else if (scope == TASK_RUSECPU_FLAGS_PROC_LIMIT) {
2382 *policyp = TASK_POLICY_RESOURCE_ATTRIBUTE_THROTTLE;
2383 } else if (scope == TASK_RUSECPU_FLAGS_DEADLINE) {
2384 *policyp = TASK_POLICY_RESOURCE_ATTRIBUTE_NONE;
2385 }
2386
2387 return error;
2388 }
2389
2390 /*
2391 * Configure the default CPU usage monitor parameters.
2392 *
2393 * For tasks which have this mechanism activated: if any thread in the
2394 * process consumes more CPU than this, an EXC_RESOURCE exception will be generated.
2395 */
2396 void
2397 proc_init_cpumon_params(void)
2398 {
2399 /*
2400 * The max CPU percentage can be configured via the boot-args and
2401 * a key in the device tree. The boot-args are honored first, then the
2402 * device tree.
2403 */
2404 if (!PE_parse_boot_argn("max_cpumon_percentage", &proc_max_cpumon_percentage,
2405 sizeof(proc_max_cpumon_percentage))) {
2406 uint64_t max_percentage = 0ULL;
2407
2408 if (!PE_get_default("kern.max_cpumon_percentage", &max_percentage,
2409 sizeof(max_percentage))) {
2410 max_percentage = DEFAULT_CPUMON_PERCENTAGE;
2411 }
2412
2413 assert(max_percentage <= UINT8_MAX);
2414 proc_max_cpumon_percentage = (uint8_t) max_percentage;
2415 }
2416
2417 if (proc_max_cpumon_percentage > 100) {
2418 proc_max_cpumon_percentage = 100;
2419 }
2420
2421 /*
2422 * The interval should be specified in seconds.
2423 *
2424 * Like the max CPU percentage, the max CPU interval can be configured
2425 * via boot-args and the device tree.
2426 */
2427 if (!PE_parse_boot_argn("max_cpumon_interval", &proc_max_cpumon_interval,
2428 sizeof(proc_max_cpumon_interval))) {
2429 if (!PE_get_default("kern.max_cpumon_interval", &proc_max_cpumon_interval,
2430 sizeof(proc_max_cpumon_interval))) {
2431 proc_max_cpumon_interval = DEFAULT_CPUMON_INTERVAL;
2432 }
2433 }
2434
2435 proc_max_cpumon_interval *= NSEC_PER_SEC;
2436
2437 /* TEMPORARY boot arg to control App suppression */
2438 PE_parse_boot_argn("task_policy_suppression_flags",
2439 &task_policy_suppression_flags,
2440 sizeof(task_policy_suppression_flags));
2441
2442 /* adjust suppression disk policy if called for in boot arg */
2443 if (task_policy_suppression_flags & TASK_POLICY_SUPPRESSION_IOTIER2) {
2444 proc_suppressed_disk_tier = THROTTLE_LEVEL_TIER2;
2445 }
2446 }
2447
2448 /*
2449 * Currently supported configurations for CPU limits.
2450 *
2451 * Policy | Deadline-based CPU limit | Percentage-based CPU limit
2452 * -------------------------------------+--------------------------+------------------------------
2453 * PROC_POLICY_RSRCACT_THROTTLE | ENOTSUP | Task-wide scope only
2454 * PROC_POLICY_RSRCACT_SUSPEND | Task-wide scope only | ENOTSUP
2455 * PROC_POLICY_RSRCACT_TERMINATE | Task-wide scope only | ENOTSUP
2456 * PROC_POLICY_RSRCACT_NOTIFY_KQ | Task-wide scope only | ENOTSUP
2457 * PROC_POLICY_RSRCACT_NOTIFY_EXC | ENOTSUP | Per-thread scope only
2458 *
2459 * A deadline-based CPU limit is actually a simple wallclock timer - the requested action is performed
2460 * after the specified amount of wallclock time has elapsed.
2461 *
2462 * A percentage-based CPU limit performs the requested action after the specified amount of actual CPU time
2463 * has been consumed -- regardless of how much wallclock time has elapsed -- by either the task as an
2464 * aggregate entity (so-called "Task-wide" or "Proc-wide" scope, whereby the CPU time consumed by all threads
2465 * in the task are added together), or by any one thread in the task (so-called "per-thread" scope).
2466 *
2467 * We support either deadline != 0 OR percentage != 0, but not both. The original intention in having them
2468 * share an API was to use actual CPU time as the basis of the deadline-based limit (as in: perform an action
2469 * after I have used some amount of CPU time; this is different than the recurring percentage/interval model)
2470 * but the potential consumer of the API at the time was insisting on wallclock time instead.
2471 *
2472 * Currently, requesting notification via an exception is the only way to get per-thread scope for a
2473 * CPU limit. All other types of notifications force task-wide scope for the limit.
2474 */
2475 int
2476 proc_set_task_ruse_cpu(task_t task, uint16_t policy, uint8_t percentage, uint64_t interval, uint64_t deadline,
2477 int cpumon_entitled)
2478 {
2479 int error = 0;
2480 int scope;
2481
2482 /*
2483 * Enforce the matrix of supported configurations for policy, percentage, and deadline.
2484 */
2485 switch (policy) {
2486 // If no policy is explicitly given, the default is to throttle.
2487 case TASK_POLICY_RESOURCE_ATTRIBUTE_NONE:
2488 case TASK_POLICY_RESOURCE_ATTRIBUTE_THROTTLE:
2489 if (deadline != 0) {
2490 return ENOTSUP;
2491 }
2492 scope = TASK_RUSECPU_FLAGS_PROC_LIMIT;
2493 break;
2494 case TASK_POLICY_RESOURCE_ATTRIBUTE_SUSPEND:
2495 case TASK_POLICY_RESOURCE_ATTRIBUTE_TERMINATE:
2496 case TASK_POLICY_RESOURCE_ATTRIBUTE_NOTIFY_KQ:
2497 if (percentage != 0) {
2498 return ENOTSUP;
2499 }
2500 scope = TASK_RUSECPU_FLAGS_DEADLINE;
2501 break;
2502 case TASK_POLICY_RESOURCE_ATTRIBUTE_NOTIFY_EXC:
2503 if (deadline != 0) {
2504 return ENOTSUP;
2505 }
2506 scope = TASK_RUSECPU_FLAGS_PERTHR_LIMIT;
2507 #ifdef CONFIG_NOMONITORS
2508 return error;
2509 #endif /* CONFIG_NOMONITORS */
2510 break;
2511 default:
2512 return EINVAL;
2513 }
2514
2515 task_lock(task);
2516 if (task != current_task()) {
2517 task->policy_ru_cpu_ext = policy;
2518 } else {
2519 task->policy_ru_cpu = policy;
2520 }
2521 error = task_set_cpuusage(task, percentage, interval, deadline, scope, cpumon_entitled);
2522 task_unlock(task);
2523 return error;
2524 }
2525
2526 /* TODO: get rid of these */
2527 #define TASK_POLICY_CPU_RESOURCE_USAGE 0
2528 #define TASK_POLICY_WIREDMEM_RESOURCE_USAGE 1
2529 #define TASK_POLICY_VIRTUALMEM_RESOURCE_USAGE 2
2530 #define TASK_POLICY_DISK_RESOURCE_USAGE 3
2531 #define TASK_POLICY_NETWORK_RESOURCE_USAGE 4
2532 #define TASK_POLICY_POWER_RESOURCE_USAGE 5
2533
2534 #define TASK_POLICY_RESOURCE_USAGE_COUNT 6
2535
2536 int
2537 proc_clear_task_ruse_cpu(task_t task, int cpumon_entitled)
2538 {
2539 int error = 0;
2540 int action;
2541 void * bsdinfo = NULL;
2542
2543 task_lock(task);
2544 if (task != current_task()) {
2545 task->policy_ru_cpu_ext = TASK_POLICY_RESOURCE_ATTRIBUTE_DEFAULT;
2546 } else {
2547 task->policy_ru_cpu = TASK_POLICY_RESOURCE_ATTRIBUTE_DEFAULT;
2548 }
2549
2550 error = task_clear_cpuusage_locked(task, cpumon_entitled);
2551 if (error != 0) {
2552 goto out;
2553 }
2554
2555 action = task->applied_ru_cpu;
2556 if (task->applied_ru_cpu_ext != TASK_POLICY_RESOURCE_ATTRIBUTE_NONE) {
2557 /* reset action */
2558 task->applied_ru_cpu_ext = TASK_POLICY_RESOURCE_ATTRIBUTE_NONE;
2559 }
2560 if (action != TASK_POLICY_RESOURCE_ATTRIBUTE_NONE) {
2561 bsdinfo = task->bsd_info;
2562 task_unlock(task);
2563 proc_restore_resource_actions(bsdinfo, TASK_POLICY_CPU_RESOURCE_USAGE, action);
2564 goto out1;
2565 }
2566
2567 out:
2568 task_unlock(task);
2569 out1:
2570 return error;
2571 }
2572
2573 /* used to apply resource limit related actions */
2574 static int
2575 task_apply_resource_actions(task_t task, int type)
2576 {
2577 int action = TASK_POLICY_RESOURCE_ATTRIBUTE_NONE;
2578 void * bsdinfo = NULL;
2579
2580 switch (type) {
2581 case TASK_POLICY_CPU_RESOURCE_USAGE:
2582 break;
2583 case TASK_POLICY_WIREDMEM_RESOURCE_USAGE:
2584 case TASK_POLICY_VIRTUALMEM_RESOURCE_USAGE:
2585 case TASK_POLICY_DISK_RESOURCE_USAGE:
2586 case TASK_POLICY_NETWORK_RESOURCE_USAGE:
2587 case TASK_POLICY_POWER_RESOURCE_USAGE:
2588 return 0;
2589
2590 default:
2591 return 1;
2592 }
2593 ;
2594
2595 /* only cpu actions for now */
2596 task_lock(task);
2597
2598 if (task->applied_ru_cpu_ext == TASK_POLICY_RESOURCE_ATTRIBUTE_NONE) {
2599 /* apply action */
2600 task->applied_ru_cpu_ext = task->policy_ru_cpu_ext;
2601 action = task->applied_ru_cpu_ext;
2602 } else {
2603 action = task->applied_ru_cpu_ext;
2604 }
2605
2606 if (action != TASK_POLICY_RESOURCE_ATTRIBUTE_NONE) {
2607 bsdinfo = task->bsd_info;
2608 task_unlock(task);
2609 proc_apply_resource_actions(bsdinfo, TASK_POLICY_CPU_RESOURCE_USAGE, action);
2610 } else {
2611 task_unlock(task);
2612 }
2613
2614 return 0;
2615 }
2616
2617 /*
2618 * XXX This API is somewhat broken; we support multiple simultaneous CPU limits, but the get/set API
2619 * only allows for one at a time. This means that if there is a per-thread limit active, the other
2620 * "scopes" will not be accessible via this API. We could change it to pass in the scope of interest
2621 * to the caller, and prefer that, but there's no need for that at the moment.
2622 */
2623 static int
2624 task_get_cpuusage(task_t task, uint8_t *percentagep, uint64_t *intervalp, uint64_t *deadlinep, int *scope)
2625 {
2626 *percentagep = 0;
2627 *intervalp = 0;
2628 *deadlinep = 0;
2629
2630 if ((task->rusage_cpu_flags & TASK_RUSECPU_FLAGS_PERTHR_LIMIT) != 0) {
2631 *scope = TASK_RUSECPU_FLAGS_PERTHR_LIMIT;
2632 *percentagep = task->rusage_cpu_perthr_percentage;
2633 *intervalp = task->rusage_cpu_perthr_interval;
2634 } else if ((task->rusage_cpu_flags & TASK_RUSECPU_FLAGS_PROC_LIMIT) != 0) {
2635 *scope = TASK_RUSECPU_FLAGS_PROC_LIMIT;
2636 *percentagep = task->rusage_cpu_percentage;
2637 *intervalp = task->rusage_cpu_interval;
2638 } else if ((task->rusage_cpu_flags & TASK_RUSECPU_FLAGS_DEADLINE) != 0) {
2639 *scope = TASK_RUSECPU_FLAGS_DEADLINE;
2640 *deadlinep = task->rusage_cpu_deadline;
2641 } else {
2642 *scope = 0;
2643 }
2644
2645 return 0;
2646 }
2647
2648 /*
2649 * Suspend the CPU usage monitor for the task. Return value indicates
2650 * if the mechanism was actually enabled.
2651 */
2652 int
2653 task_suspend_cpumon(task_t task)
2654 {
2655 thread_t thread;
2656
2657 task_lock_assert_owned(task);
2658
2659 if ((task->rusage_cpu_flags & TASK_RUSECPU_FLAGS_PERTHR_LIMIT) == 0) {
2660 return KERN_INVALID_ARGUMENT;
2661 }
2662
2663 #if CONFIG_TELEMETRY
2664 /*
2665 * Disable task-wide telemetry if it was ever enabled by the CPU usage
2666 * monitor's warning zone.
2667 */
2668 telemetry_task_ctl_locked(task, TF_CPUMON_WARNING, 0);
2669 #endif
2670
2671 /*
2672 * Suspend monitoring for the task, and propagate that change to each thread.
2673 */
2674 task->rusage_cpu_flags &= ~(TASK_RUSECPU_FLAGS_PERTHR_LIMIT | TASK_RUSECPU_FLAGS_FATAL_CPUMON);
2675 queue_iterate(&task->threads, thread, thread_t, task_threads) {
2676 act_set_astledger(thread);
2677 }
2678
2679 return KERN_SUCCESS;
2680 }
2681
2682 /*
2683 * Remove all traces of the CPU monitor.
2684 */
2685 int
2686 task_disable_cpumon(task_t task)
2687 {
2688 int kret;
2689
2690 task_lock_assert_owned(task);
2691
2692 kret = task_suspend_cpumon(task);
2693 if (kret) {
2694 return kret;
2695 }
2696
2697 /* Once we clear these values, the monitor can't be resumed */
2698 task->rusage_cpu_perthr_percentage = 0;
2699 task->rusage_cpu_perthr_interval = 0;
2700
2701 return KERN_SUCCESS;
2702 }
2703
2704
2705 static int
2706 task_enable_cpumon_locked(task_t task)
2707 {
2708 thread_t thread;
2709 task_lock_assert_owned(task);
2710
2711 if (task->rusage_cpu_perthr_percentage == 0 ||
2712 task->rusage_cpu_perthr_interval == 0) {
2713 return KERN_INVALID_ARGUMENT;
2714 }
2715
2716 task->rusage_cpu_flags |= TASK_RUSECPU_FLAGS_PERTHR_LIMIT;
2717 queue_iterate(&task->threads, thread, thread_t, task_threads) {
2718 act_set_astledger(thread);
2719 }
2720
2721 return KERN_SUCCESS;
2722 }
2723
2724 int
2725 task_resume_cpumon(task_t task)
2726 {
2727 kern_return_t kret;
2728
2729 if (!task) {
2730 return EINVAL;
2731 }
2732
2733 task_lock(task);
2734 kret = task_enable_cpumon_locked(task);
2735 task_unlock(task);
2736
2737 return kret;
2738 }
2739
2740
2741 /* duplicate values from bsd/sys/process_policy.h */
2742 #define PROC_POLICY_CPUMON_DISABLE 0xFF
2743 #define PROC_POLICY_CPUMON_DEFAULTS 0xFE
2744
2745 static int
2746 task_set_cpuusage(task_t task, uint8_t percentage, uint64_t interval, uint64_t deadline, int scope, int cpumon_entitled)
2747 {
2748 uint64_t abstime = 0;
2749 uint64_t limittime = 0;
2750
2751 lck_mtx_assert(&task->lock, LCK_MTX_ASSERT_OWNED);
2752
2753 /* By default, refill once per second */
2754 if (interval == 0) {
2755 interval = NSEC_PER_SEC;
2756 }
2757
2758 if (percentage != 0) {
2759 if (scope == TASK_RUSECPU_FLAGS_PERTHR_LIMIT) {
2760 boolean_t warn = FALSE;
2761
2762 /*
2763 * A per-thread CPU limit on a task generates an exception
2764 * (LEDGER_ACTION_EXCEPTION) if any one thread in the task
2765 * exceeds the limit.
2766 */
2767
2768 if (percentage == PROC_POLICY_CPUMON_DISABLE) {
2769 if (cpumon_entitled) {
2770 /* 25095698 - task_disable_cpumon() should be reliable */
2771 task_disable_cpumon(task);
2772 return 0;
2773 }
2774
2775 /*
2776 * This task wishes to disable the CPU usage monitor, but it's
2777 * missing the required entitlement:
2778 * com.apple.private.kernel.override-cpumon
2779 *
2780 * Instead, treat this as a request to reset its params
2781 * back to the defaults.
2782 */
2783 warn = TRUE;
2784 percentage = PROC_POLICY_CPUMON_DEFAULTS;
2785 }
2786
2787 if (percentage == PROC_POLICY_CPUMON_DEFAULTS) {
2788 percentage = proc_max_cpumon_percentage;
2789 interval = proc_max_cpumon_interval;
2790 }
2791
2792 if (percentage > 100) {
2793 percentage = 100;
2794 }
2795
2796 /*
2797 * Passing in an interval of -1 means either:
2798 * - Leave the interval as-is, if there's already a per-thread
2799 * limit configured
2800 * - Use the system default.
2801 */
2802 if (interval == -1ULL) {
2803 if (task->rusage_cpu_flags & TASK_RUSECPU_FLAGS_PERTHR_LIMIT) {
2804 interval = task->rusage_cpu_perthr_interval;
2805 } else {
2806 interval = proc_max_cpumon_interval;
2807 }
2808 }
2809
2810 /*
2811 * Enforce global caps on CPU usage monitor here if the process is not
2812 * entitled to escape the global caps.
2813 */
2814 if ((percentage > proc_max_cpumon_percentage) && (cpumon_entitled == 0)) {
2815 warn = TRUE;
2816 percentage = proc_max_cpumon_percentage;
2817 }
2818
2819 if ((interval > proc_max_cpumon_interval) && (cpumon_entitled == 0)) {
2820 warn = TRUE;
2821 interval = proc_max_cpumon_interval;
2822 }
2823
2824 if (warn) {
2825 int pid = 0;
2826 const char *procname = "unknown";
2827
2828 #ifdef MACH_BSD
2829 pid = proc_selfpid();
2830 if (current_task()->bsd_info != NULL) {
2831 procname = proc_name_address(current_task()->bsd_info);
2832 }
2833 #endif
2834
2835 printf("process %s[%d] denied attempt to escape CPU monitor"
2836 " (missing required entitlement).\n", procname, pid);
2837 }
2838
2839 /* configure the limit values */
2840 task->rusage_cpu_perthr_percentage = percentage;
2841 task->rusage_cpu_perthr_interval = interval;
2842
2843 /* and enable the CPU monitor */
2844 (void)task_enable_cpumon_locked(task);
2845 } else if (scope == TASK_RUSECPU_FLAGS_PROC_LIMIT) {
2846 /*
2847 * Currently, a proc-wide CPU limit always blocks if the limit is
2848 * exceeded (LEDGER_ACTION_BLOCK).
2849 */
2850 task->rusage_cpu_flags |= TASK_RUSECPU_FLAGS_PROC_LIMIT;
2851 task->rusage_cpu_percentage = percentage;
2852 task->rusage_cpu_interval = interval;
2853
2854 limittime = (interval * percentage) / 100;
2855 nanoseconds_to_absolutetime(limittime, &abstime);
2856
2857 ledger_set_limit(task->ledger, task_ledgers.cpu_time, abstime, 0);
2858 ledger_set_period(task->ledger, task_ledgers.cpu_time, interval);
2859 ledger_set_action(task->ledger, task_ledgers.cpu_time, LEDGER_ACTION_BLOCK);
2860 }
2861 }
2862
2863 if (deadline != 0) {
2864 assert(scope == TASK_RUSECPU_FLAGS_DEADLINE);
2865
2866 /* if already in use, cancel and wait for it to cleanout */
2867 if (task->rusage_cpu_callt != NULL) {
2868 task_unlock(task);
2869 thread_call_cancel_wait(task->rusage_cpu_callt);
2870 task_lock(task);
2871 }
2872 if (task->rusage_cpu_callt == NULL) {
2873 task->rusage_cpu_callt = thread_call_allocate_with_priority(task_action_cpuusage, (thread_call_param_t)task, THREAD_CALL_PRIORITY_KERNEL);
2874 }
2875 /* setup callout */
2876 if (task->rusage_cpu_callt != 0) {
2877 uint64_t save_abstime = 0;
2878
2879 task->rusage_cpu_flags |= TASK_RUSECPU_FLAGS_DEADLINE;
2880 task->rusage_cpu_deadline = deadline;
2881
2882 nanoseconds_to_absolutetime(deadline, &abstime);
2883 save_abstime = abstime;
2884 clock_absolutetime_interval_to_deadline(save_abstime, &abstime);
2885 thread_call_enter_delayed(task->rusage_cpu_callt, abstime);
2886 }
2887 }
2888
2889 return 0;
2890 }
2891
2892 int
2893 task_clear_cpuusage(task_t task, int cpumon_entitled)
2894 {
2895 int retval = 0;
2896
2897 task_lock(task);
2898 retval = task_clear_cpuusage_locked(task, cpumon_entitled);
2899 task_unlock(task);
2900
2901 return retval;
2902 }
2903
2904 static int
2905 task_clear_cpuusage_locked(task_t task, int cpumon_entitled)
2906 {
2907 thread_call_t savecallt;
2908
2909 /* cancel percentage handling if set */
2910 if (task->rusage_cpu_flags & TASK_RUSECPU_FLAGS_PROC_LIMIT) {
2911 task->rusage_cpu_flags &= ~TASK_RUSECPU_FLAGS_PROC_LIMIT;
2912 ledger_set_limit(task->ledger, task_ledgers.cpu_time, LEDGER_LIMIT_INFINITY, 0);
2913 task->rusage_cpu_percentage = 0;
2914 task->rusage_cpu_interval = 0;
2915 }
2916
2917 /*
2918 * Disable the CPU usage monitor.
2919 */
2920 if (cpumon_entitled) {
2921 task_disable_cpumon(task);
2922 }
2923
2924 /* cancel deadline handling if set */
2925 if (task->rusage_cpu_flags & TASK_RUSECPU_FLAGS_DEADLINE) {
2926 task->rusage_cpu_flags &= ~TASK_RUSECPU_FLAGS_DEADLINE;
2927 if (task->rusage_cpu_callt != 0) {
2928 savecallt = task->rusage_cpu_callt;
2929 task->rusage_cpu_callt = NULL;
2930 task->rusage_cpu_deadline = 0;
2931 task_unlock(task);
2932 thread_call_cancel_wait(savecallt);
2933 thread_call_free(savecallt);
2934 task_lock(task);
2935 }
2936 }
2937 return 0;
2938 }
2939
2940 /* called by ledger unit to enforce action due to resource usage criteria being met */
2941 static void
2942 task_action_cpuusage(thread_call_param_t param0, __unused thread_call_param_t param1)
2943 {
2944 task_t task = (task_t)param0;
2945 (void)task_apply_resource_actions(task, TASK_POLICY_CPU_RESOURCE_USAGE);
2946 return;
2947 }
2948
2949
2950 /*
2951 * Routines for taskwatch and pidbind
2952 */
2953
2954 #if CONFIG_TASKWATCH
2955
2956 LCK_MTX_DECLARE_ATTR(task_watch_mtx, &task_lck_grp, &task_lck_attr);
2957
2958 static void
2959 task_watch_lock(void)
2960 {
2961 lck_mtx_lock(&task_watch_mtx);
2962 }
2963
2964 static void
2965 task_watch_unlock(void)
2966 {
2967 lck_mtx_unlock(&task_watch_mtx);
2968 }
2969
2970 static void
2971 add_taskwatch_locked(task_t task, task_watch_t * twp)
2972 {
2973 queue_enter(&task->task_watchers, twp, task_watch_t *, tw_links);
2974 task->num_taskwatchers++;
2975 }
2976
2977 static void
2978 remove_taskwatch_locked(task_t task, task_watch_t * twp)
2979 {
2980 queue_remove(&task->task_watchers, twp, task_watch_t *, tw_links);
2981 task->num_taskwatchers--;
2982 }
2983
2984
2985 int
2986 proc_lf_pidbind(task_t curtask, uint64_t tid, task_t target_task, int bind)
2987 {
2988 thread_t target_thread = NULL;
2989 int ret = 0, setbg = 0;
2990 task_watch_t *twp = NULL;
2991 task_t task = TASK_NULL;
2992
2993 target_thread = task_findtid(curtask, tid);
2994 if (target_thread == NULL) {
2995 return ESRCH;
2996 }
2997 /* holds thread reference */
2998
2999 if (bind != 0) {
3000 /* task is still active ? */
3001 task_lock(target_task);
3002 if (target_task->active == 0) {
3003 task_unlock(target_task);
3004 ret = ESRCH;
3005 goto out;
3006 }
3007 task_unlock(target_task);
3008
3009 twp = (task_watch_t *)kalloc(sizeof(task_watch_t));
3010 if (twp == NULL) {
3011 task_watch_unlock();
3012 ret = ENOMEM;
3013 goto out;
3014 }
3015
3016 bzero(twp, sizeof(task_watch_t));
3017
3018 task_watch_lock();
3019
3020 if (target_thread->taskwatch != NULL) {
3021 /* already bound to another task */
3022 task_watch_unlock();
3023
3024 kfree(twp, sizeof(task_watch_t));
3025 ret = EBUSY;
3026 goto out;
3027 }
3028
3029 task_reference(target_task);
3030
3031 setbg = proc_get_effective_task_policy(target_task, TASK_POLICY_WATCHERS_BG);
3032
3033 twp->tw_task = target_task; /* holds the task reference */
3034 twp->tw_thread = target_thread; /* holds the thread reference */
3035 twp->tw_state = setbg;
3036 twp->tw_importance = target_thread->importance;
3037
3038 add_taskwatch_locked(target_task, twp);
3039
3040 target_thread->taskwatch = twp;
3041
3042 task_watch_unlock();
3043
3044 if (setbg) {
3045 set_thread_appbg(target_thread, setbg, INT_MIN);
3046 }
3047
3048 /* retain the thread reference as it is in twp */
3049 target_thread = NULL;
3050 } else {
3051 /* unbind */
3052 task_watch_lock();
3053 if ((twp = target_thread->taskwatch) != NULL) {
3054 task = twp->tw_task;
3055 target_thread->taskwatch = NULL;
3056 remove_taskwatch_locked(task, twp);
3057
3058 task_watch_unlock();
3059
3060 task_deallocate(task); /* drop task ref in twp */
3061 set_thread_appbg(target_thread, 0, twp->tw_importance);
3062 thread_deallocate(target_thread); /* drop thread ref in twp */
3063 kfree(twp, sizeof(task_watch_t));
3064 } else {
3065 task_watch_unlock();
3066 ret = 0; /* return success if it not alredy bound */
3067 goto out;
3068 }
3069 }
3070 out:
3071 thread_deallocate(target_thread); /* drop thread ref acquired in this routine */
3072 return ret;
3073 }
3074
3075 static void
3076 set_thread_appbg(thread_t thread, int setbg, __unused int importance)
3077 {
3078 int enable = (setbg ? TASK_POLICY_ENABLE : TASK_POLICY_DISABLE);
3079
3080 proc_set_thread_policy(thread, TASK_POLICY_ATTRIBUTE, TASK_POLICY_PIDBIND_BG, enable);
3081 }
3082
3083 static void
3084 apply_appstate_watchers(task_t task)
3085 {
3086 int numwatchers = 0, i, j, setbg;
3087 thread_watchlist_t * threadlist;
3088 task_watch_t * twp;
3089
3090 retry:
3091 /* if no watchers on the list return */
3092 if ((numwatchers = task->num_taskwatchers) == 0) {
3093 return;
3094 }
3095
3096 threadlist = kheap_alloc(KHEAP_TEMP,
3097 numwatchers * sizeof(thread_watchlist_t), Z_WAITOK | Z_ZERO);
3098 if (threadlist == NULL) {
3099 return;
3100 }
3101
3102 task_watch_lock();
3103 /*serialize application of app state changes */
3104
3105 if (task->watchapplying != 0) {
3106 lck_mtx_sleep(&task_watch_mtx, LCK_SLEEP_DEFAULT, &task->watchapplying, THREAD_UNINT);
3107 task_watch_unlock();
3108 kheap_free(KHEAP_TEMP, threadlist, numwatchers * sizeof(thread_watchlist_t));
3109 goto retry;
3110 }
3111
3112 if (numwatchers != task->num_taskwatchers) {
3113 task_watch_unlock();
3114 kheap_free(KHEAP_TEMP, threadlist, numwatchers * sizeof(thread_watchlist_t));
3115 goto retry;
3116 }
3117
3118 setbg = proc_get_effective_task_policy(task, TASK_POLICY_WATCHERS_BG);
3119
3120 task->watchapplying = 1;
3121 i = 0;
3122 queue_iterate(&task->task_watchers, twp, task_watch_t *, tw_links) {
3123 threadlist[i].thread = twp->tw_thread;
3124 thread_reference(threadlist[i].thread);
3125 if (setbg != 0) {
3126 twp->tw_importance = twp->tw_thread->importance;
3127 threadlist[i].importance = INT_MIN;
3128 } else {
3129 threadlist[i].importance = twp->tw_importance;
3130 }
3131 i++;
3132 if (i > numwatchers) {
3133 break;
3134 }
3135 }
3136
3137 task_watch_unlock();
3138
3139 for (j = 0; j < i; j++) {
3140 set_thread_appbg(threadlist[j].thread, setbg, threadlist[j].importance);
3141 thread_deallocate(threadlist[j].thread);
3142 }
3143 kheap_free(KHEAP_TEMP, threadlist, numwatchers * sizeof(thread_watchlist_t));
3144
3145
3146 task_watch_lock();
3147 task->watchapplying = 0;
3148 thread_wakeup_one(&task->watchapplying);
3149 task_watch_unlock();
3150 }
3151
3152 void
3153 thead_remove_taskwatch(thread_t thread)
3154 {
3155 task_watch_t * twp;
3156 int importance = 0;
3157
3158 task_watch_lock();
3159 if ((twp = thread->taskwatch) != NULL) {
3160 thread->taskwatch = NULL;
3161 remove_taskwatch_locked(twp->tw_task, twp);
3162 }
3163 task_watch_unlock();
3164 if (twp != NULL) {
3165 thread_deallocate(twp->tw_thread);
3166 task_deallocate(twp->tw_task);
3167 importance = twp->tw_importance;
3168 kfree(twp, sizeof(task_watch_t));
3169 /* remove the thread and networkbg */
3170 set_thread_appbg(thread, 0, importance);
3171 }
3172 }
3173
3174 void
3175 task_removewatchers(task_t task)
3176 {
3177 queue_head_t queue;
3178 task_watch_t *twp;
3179
3180 queue_init(&queue);
3181
3182 task_watch_lock();
3183 movqueue(&queue, &task->task_watchers);
3184
3185 queue_iterate(&queue, twp, task_watch_t *, tw_links) {
3186 /*
3187 * Since the linkage is removed and thead state cleanup is already set up,
3188 * remove the refernce from the thread.
3189 */
3190 twp->tw_thread->taskwatch = NULL; /* removed linkage, clear thread holding ref */
3191 }
3192
3193 task->num_taskwatchers = 0;
3194 task_watch_unlock();
3195
3196 while ((twp = qe_dequeue_head(&task->task_watchers, task_watch_t, tw_links)) != NULL) {
3197 /* remove thread and network bg */
3198 set_thread_appbg(twp->tw_thread, 0, twp->tw_importance);
3199 thread_deallocate(twp->tw_thread);
3200 task_deallocate(twp->tw_task);
3201 kfree(twp, sizeof(task_watch_t));
3202 }
3203 }
3204 #endif /* CONFIG_TASKWATCH */
3205
3206 /*
3207 * Routines for importance donation/inheritance/boosting
3208 */
3209
3210 static void
3211 task_importance_update_live_donor(task_t target_task)
3212 {
3213 #if IMPORTANCE_INHERITANCE
3214
3215 ipc_importance_task_t task_imp;
3216
3217 task_imp = ipc_importance_for_task(target_task, FALSE);
3218 if (IIT_NULL != task_imp) {
3219 ipc_importance_task_update_live_donor(task_imp);
3220 ipc_importance_task_release(task_imp);
3221 }
3222 #endif /* IMPORTANCE_INHERITANCE */
3223 }
3224
3225 void
3226 task_importance_mark_donor(task_t task, boolean_t donating)
3227 {
3228 #if IMPORTANCE_INHERITANCE
3229 ipc_importance_task_t task_imp;
3230
3231 task_imp = ipc_importance_for_task(task, FALSE);
3232 if (IIT_NULL != task_imp) {
3233 ipc_importance_task_mark_donor(task_imp, donating);
3234 ipc_importance_task_release(task_imp);
3235 }
3236 #endif /* IMPORTANCE_INHERITANCE */
3237 }
3238
3239 void
3240 task_importance_mark_live_donor(task_t task, boolean_t live_donating)
3241 {
3242 #if IMPORTANCE_INHERITANCE
3243 ipc_importance_task_t task_imp;
3244
3245 task_imp = ipc_importance_for_task(task, FALSE);
3246 if (IIT_NULL != task_imp) {
3247 ipc_importance_task_mark_live_donor(task_imp, live_donating);
3248 ipc_importance_task_release(task_imp);
3249 }
3250 #endif /* IMPORTANCE_INHERITANCE */
3251 }
3252
3253 void
3254 task_importance_mark_receiver(task_t task, boolean_t receiving)
3255 {
3256 #if IMPORTANCE_INHERITANCE
3257 ipc_importance_task_t task_imp;
3258
3259 task_imp = ipc_importance_for_task(task, FALSE);
3260 if (IIT_NULL != task_imp) {
3261 ipc_importance_task_mark_receiver(task_imp, receiving);
3262 ipc_importance_task_release(task_imp);
3263 }
3264 #endif /* IMPORTANCE_INHERITANCE */
3265 }
3266
3267 void
3268 task_importance_mark_denap_receiver(task_t task, boolean_t denap)
3269 {
3270 #if IMPORTANCE_INHERITANCE
3271 ipc_importance_task_t task_imp;
3272
3273 task_imp = ipc_importance_for_task(task, FALSE);
3274 if (IIT_NULL != task_imp) {
3275 ipc_importance_task_mark_denap_receiver(task_imp, denap);
3276 ipc_importance_task_release(task_imp);
3277 }
3278 #endif /* IMPORTANCE_INHERITANCE */
3279 }
3280
3281 void
3282 task_importance_reset(__imp_only task_t task)
3283 {
3284 #if IMPORTANCE_INHERITANCE
3285 ipc_importance_task_t task_imp;
3286
3287 /* TODO: Lower importance downstream before disconnect */
3288 task_imp = task->task_imp_base;
3289 ipc_importance_reset(task_imp, FALSE);
3290 task_importance_update_live_donor(task);
3291 #endif /* IMPORTANCE_INHERITANCE */
3292 }
3293
3294 void
3295 task_importance_init_from_parent(__imp_only task_t new_task, __imp_only task_t parent_task)
3296 {
3297 #if IMPORTANCE_INHERITANCE
3298 ipc_importance_task_t new_task_imp = IIT_NULL;
3299
3300 new_task->task_imp_base = NULL;
3301 if (!parent_task) {
3302 return;
3303 }
3304
3305 if (task_is_marked_importance_donor(parent_task)) {
3306 new_task_imp = ipc_importance_for_task(new_task, FALSE);
3307 assert(IIT_NULL != new_task_imp);
3308 ipc_importance_task_mark_donor(new_task_imp, TRUE);
3309 }
3310 if (task_is_marked_live_importance_donor(parent_task)) {
3311 if (IIT_NULL == new_task_imp) {
3312 new_task_imp = ipc_importance_for_task(new_task, FALSE);
3313 }
3314 assert(IIT_NULL != new_task_imp);
3315 ipc_importance_task_mark_live_donor(new_task_imp, TRUE);
3316 }
3317 /* Do not inherit 'receiver' on fork, vfexec or true spawn */
3318 if (task_is_exec_copy(new_task) &&
3319 task_is_marked_importance_receiver(parent_task)) {
3320 if (IIT_NULL == new_task_imp) {
3321 new_task_imp = ipc_importance_for_task(new_task, FALSE);
3322 }
3323 assert(IIT_NULL != new_task_imp);
3324 ipc_importance_task_mark_receiver(new_task_imp, TRUE);
3325 }
3326 if (task_is_marked_importance_denap_receiver(parent_task)) {
3327 if (IIT_NULL == new_task_imp) {
3328 new_task_imp = ipc_importance_for_task(new_task, FALSE);
3329 }
3330 assert(IIT_NULL != new_task_imp);
3331 ipc_importance_task_mark_denap_receiver(new_task_imp, TRUE);
3332 }
3333 if (IIT_NULL != new_task_imp) {
3334 assert(new_task->task_imp_base == new_task_imp);
3335 ipc_importance_task_release(new_task_imp);
3336 }
3337 #endif /* IMPORTANCE_INHERITANCE */
3338 }
3339
3340 #if IMPORTANCE_INHERITANCE
3341 /*
3342 * Sets the task boost bit to the provided value. Does NOT run the update function.
3343 *
3344 * Task lock must be held.
3345 */
3346 static void
3347 task_set_boost_locked(task_t task, boolean_t boost_active)
3348 {
3349 #if IMPORTANCE_TRACE
3350 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, (IMPORTANCE_CODE(IMP_BOOST, (boost_active ? IMP_BOOSTED : IMP_UNBOOSTED)) | DBG_FUNC_START),
3351 proc_selfpid(), task_pid(task), trequested_0(task), trequested_1(task), 0);
3352 #endif /* IMPORTANCE_TRACE */
3353
3354 task->requested_policy.trp_boosted = boost_active;
3355
3356 #if IMPORTANCE_TRACE
3357 if (boost_active == TRUE) {
3358 DTRACE_BOOST2(boost, task_t, task, int, task_pid(task));
3359 } else {
3360 DTRACE_BOOST2(unboost, task_t, task, int, task_pid(task));
3361 }
3362 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, (IMPORTANCE_CODE(IMP_BOOST, (boost_active ? IMP_BOOSTED : IMP_UNBOOSTED)) | DBG_FUNC_END),
3363 proc_selfpid(), task_pid(task),
3364 trequested_0(task), trequested_1(task), 0);
3365 #endif /* IMPORTANCE_TRACE */
3366 }
3367
3368 /*
3369 * Sets the task boost bit to the provided value and applies the update.
3370 *
3371 * Task lock must be held. Must call update complete after unlocking the task.
3372 */
3373 void
3374 task_update_boost_locked(task_t task, boolean_t boost_active, task_pend_token_t pend_token)
3375 {
3376 task_set_boost_locked(task, boost_active);
3377
3378 task_policy_update_locked(task, pend_token);
3379 }
3380
3381 /*
3382 * Check if this task should donate importance.
3383 *
3384 * May be called without taking the task lock. In that case, donor status can change
3385 * so you must check only once for each donation event.
3386 */
3387 boolean_t
3388 task_is_importance_donor(task_t task)
3389 {
3390 if (task->task_imp_base == IIT_NULL) {
3391 return FALSE;
3392 }
3393 return ipc_importance_task_is_donor(task->task_imp_base);
3394 }
3395
3396 /*
3397 * Query the status of the task's donor mark.
3398 */
3399 boolean_t
3400 task_is_marked_importance_donor(task_t task)
3401 {
3402 if (task->task_imp_base == IIT_NULL) {
3403 return FALSE;
3404 }
3405 return ipc_importance_task_is_marked_donor(task->task_imp_base);
3406 }
3407
3408 /*
3409 * Query the status of the task's live donor and donor mark.
3410 */
3411 boolean_t
3412 task_is_marked_live_importance_donor(task_t task)
3413 {
3414 if (task->task_imp_base == IIT_NULL) {
3415 return FALSE;
3416 }
3417 return ipc_importance_task_is_marked_live_donor(task->task_imp_base);
3418 }
3419
3420
3421 /*
3422 * This routine may be called without holding task lock
3423 * since the value of imp_receiver can never be unset.
3424 */
3425 boolean_t
3426 task_is_importance_receiver(task_t task)
3427 {
3428 if (task->task_imp_base == IIT_NULL) {
3429 return FALSE;
3430 }
3431 return ipc_importance_task_is_marked_receiver(task->task_imp_base);
3432 }
3433
3434 /*
3435 * Query the task's receiver mark.
3436 */
3437 boolean_t
3438 task_is_marked_importance_receiver(task_t task)
3439 {
3440 if (task->task_imp_base == IIT_NULL) {
3441 return FALSE;
3442 }
3443 return ipc_importance_task_is_marked_receiver(task->task_imp_base);
3444 }
3445
3446 /*
3447 * This routine may be called without holding task lock
3448 * since the value of de-nap receiver can never be unset.
3449 */
3450 boolean_t
3451 task_is_importance_denap_receiver(task_t task)
3452 {
3453 if (task->task_imp_base == IIT_NULL) {
3454 return FALSE;
3455 }
3456 return ipc_importance_task_is_denap_receiver(task->task_imp_base);
3457 }
3458
3459 /*
3460 * Query the task's de-nap receiver mark.
3461 */
3462 boolean_t
3463 task_is_marked_importance_denap_receiver(task_t task)
3464 {
3465 if (task->task_imp_base == IIT_NULL) {
3466 return FALSE;
3467 }
3468 return ipc_importance_task_is_marked_denap_receiver(task->task_imp_base);
3469 }
3470
3471 /*
3472 * This routine may be called without holding task lock
3473 * since the value of imp_receiver can never be unset.
3474 */
3475 boolean_t
3476 task_is_importance_receiver_type(task_t task)
3477 {
3478 if (task->task_imp_base == IIT_NULL) {
3479 return FALSE;
3480 }
3481 return task_is_importance_receiver(task) ||
3482 task_is_importance_denap_receiver(task);
3483 }
3484
3485 /*
3486 * External importance assertions are managed by the process in userspace
3487 * Internal importance assertions are the responsibility of the kernel
3488 * Assertions are changed from internal to external via task_importance_externalize_assertion
3489 */
3490
3491 int
3492 task_importance_hold_internal_assertion(task_t target_task, uint32_t count)
3493 {
3494 ipc_importance_task_t task_imp;
3495 kern_return_t ret;
3496
3497 /* may be first time, so allow for possible importance setup */
3498 task_imp = ipc_importance_for_task(target_task, FALSE);
3499 if (IIT_NULL == task_imp) {
3500 return EOVERFLOW;
3501 }
3502 ret = ipc_importance_task_hold_internal_assertion(task_imp, count);
3503 ipc_importance_task_release(task_imp);
3504
3505 return (KERN_SUCCESS != ret) ? ENOTSUP : 0;
3506 }
3507
3508 int
3509 task_importance_hold_file_lock_assertion(task_t target_task, uint32_t count)
3510 {
3511 ipc_importance_task_t task_imp;
3512 kern_return_t ret;
3513
3514 /* may be first time, so allow for possible importance setup */
3515 task_imp = ipc_importance_for_task(target_task, FALSE);
3516 if (IIT_NULL == task_imp) {
3517 return EOVERFLOW;
3518 }
3519 ret = ipc_importance_task_hold_file_lock_assertion(task_imp, count);
3520 ipc_importance_task_release(task_imp);
3521
3522 return (KERN_SUCCESS != ret) ? ENOTSUP : 0;
3523 }
3524
3525 int
3526 task_importance_hold_legacy_external_assertion(task_t target_task, uint32_t count)
3527 {
3528 ipc_importance_task_t task_imp;
3529 kern_return_t ret;
3530
3531 /* must already have set up an importance */
3532 task_imp = target_task->task_imp_base;
3533 if (IIT_NULL == task_imp) {
3534 return EOVERFLOW;
3535 }
3536 ret = ipc_importance_task_hold_legacy_external_assertion(task_imp, count);
3537 return (KERN_SUCCESS != ret) ? ENOTSUP : 0;
3538 }
3539
3540 int
3541 task_importance_drop_file_lock_assertion(task_t target_task, uint32_t count)
3542 {
3543 ipc_importance_task_t task_imp;
3544 kern_return_t ret;
3545
3546 /* must already have set up an importance */
3547 task_imp = target_task->task_imp_base;
3548 if (IIT_NULL == task_imp) {
3549 return EOVERFLOW;
3550 }
3551 ret = ipc_importance_task_drop_file_lock_assertion(target_task->task_imp_base, count);
3552 return (KERN_SUCCESS != ret) ? EOVERFLOW : 0;
3553 }
3554
3555 int
3556 task_importance_drop_legacy_external_assertion(task_t target_task, uint32_t count)
3557 {
3558 ipc_importance_task_t task_imp;
3559 kern_return_t ret;
3560
3561 /* must already have set up an importance */
3562 task_imp = target_task->task_imp_base;
3563 if (IIT_NULL == task_imp) {
3564 return EOVERFLOW;
3565 }
3566 ret = ipc_importance_task_drop_legacy_external_assertion(task_imp, count);
3567 return (KERN_SUCCESS != ret) ? EOVERFLOW : 0;
3568 }
3569
3570 static void
3571 task_add_importance_watchport(task_t task, mach_port_t port, int *boostp)
3572 {
3573 int boost = 0;
3574
3575 __imptrace_only int released_pid = 0;
3576 __imptrace_only int pid = task_pid(task);
3577
3578 ipc_importance_task_t release_imp_task = IIT_NULL;
3579
3580 if (IP_VALID(port) != 0) {
3581 ipc_importance_task_t new_imp_task = ipc_importance_for_task(task, FALSE);
3582
3583 ip_lock(port);
3584
3585 /*
3586 * The port must have been marked tempowner already.
3587 * This also filters out ports whose receive rights
3588 * are already enqueued in a message, as you can't
3589 * change the right's destination once it's already
3590 * on its way.
3591 */
3592 if (port->ip_tempowner != 0) {
3593 assert(port->ip_impdonation != 0);
3594
3595 boost = port->ip_impcount;
3596 if (IIT_NULL != port->ip_imp_task) {
3597 /*
3598 * if this port is already bound to a task,
3599 * release the task reference and drop any
3600 * watchport-forwarded boosts
3601 */
3602 release_imp_task = port->ip_imp_task;
3603 port->ip_imp_task = IIT_NULL;
3604 }
3605
3606 /* mark the port is watching another task (reference held in port->ip_imp_task) */
3607 if (ipc_importance_task_is_marked_receiver(new_imp_task)) {
3608 port->ip_imp_task = new_imp_task;
3609 new_imp_task = IIT_NULL;
3610 }
3611 }
3612 ip_unlock(port);
3613
3614 if (IIT_NULL != new_imp_task) {
3615 ipc_importance_task_release(new_imp_task);
3616 }
3617
3618 if (IIT_NULL != release_imp_task) {
3619 if (boost > 0) {
3620 ipc_importance_task_drop_internal_assertion(release_imp_task, boost);
3621 }
3622
3623 // released_pid = task_pid(release_imp_task); /* TODO: Need ref-safe way to get pid */
3624 ipc_importance_task_release(release_imp_task);
3625 }
3626 #if IMPORTANCE_TRACE
3627 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, (IMPORTANCE_CODE(IMP_WATCHPORT, 0)) | DBG_FUNC_NONE,
3628 proc_selfpid(), pid, boost, released_pid, 0);
3629 #endif /* IMPORTANCE_TRACE */
3630 }
3631
3632 *boostp = boost;
3633 return;
3634 }
3635
3636 #endif /* IMPORTANCE_INHERITANCE */
3637
3638 /*
3639 * Routines for VM to query task importance
3640 */
3641
3642
3643 /*
3644 * Order to be considered while estimating importance
3645 * for low memory notification and purging purgeable memory.
3646 */
3647 #define TASK_IMPORTANCE_FOREGROUND 4
3648 #define TASK_IMPORTANCE_NOTDARWINBG 1
3649
3650
3651 /*
3652 * (Un)Mark the task as a privileged listener for memory notifications.
3653 * if marked, this task will be among the first to be notified amongst
3654 * the bulk of all other tasks when the system enters a pressure level
3655 * of interest to this task.
3656 */
3657 int
3658 task_low_mem_privileged_listener(task_t task, boolean_t new_value, boolean_t *old_value)
3659 {
3660 if (old_value != NULL) {
3661 *old_value = (boolean_t)task->low_mem_privileged_listener;
3662 } else {
3663 task_lock(task);
3664 task->low_mem_privileged_listener = (uint32_t)new_value;
3665 task_unlock(task);
3666 }
3667
3668 return 0;
3669 }
3670
3671 /*
3672 * Checks if the task is already notified.
3673 *
3674 * Condition: task lock should be held while calling this function.
3675 */
3676 boolean_t
3677 task_has_been_notified(task_t task, int pressurelevel)
3678 {
3679 if (task == NULL) {
3680 return FALSE;
3681 }
3682
3683 if (pressurelevel == kVMPressureWarning) {
3684 return task->low_mem_notified_warn ? TRUE : FALSE;
3685 } else if (pressurelevel == kVMPressureCritical) {
3686 return task->low_mem_notified_critical ? TRUE : FALSE;
3687 } else {
3688 return TRUE;
3689 }
3690 }
3691
3692
3693 /*
3694 * Checks if the task is used for purging.
3695 *
3696 * Condition: task lock should be held while calling this function.
3697 */
3698 boolean_t
3699 task_used_for_purging(task_t task, int pressurelevel)
3700 {
3701 if (task == NULL) {
3702 return FALSE;
3703 }
3704
3705 if (pressurelevel == kVMPressureWarning) {
3706 return task->purged_memory_warn ? TRUE : FALSE;
3707 } else if (pressurelevel == kVMPressureCritical) {
3708 return task->purged_memory_critical ? TRUE : FALSE;
3709 } else {
3710 return TRUE;
3711 }
3712 }
3713
3714
3715 /*
3716 * Mark the task as notified with memory notification.
3717 *
3718 * Condition: task lock should be held while calling this function.
3719 */
3720 void
3721 task_mark_has_been_notified(task_t task, int pressurelevel)
3722 {
3723 if (task == NULL) {
3724 return;
3725 }
3726
3727 if (pressurelevel == kVMPressureWarning) {
3728 task->low_mem_notified_warn = 1;
3729 } else if (pressurelevel == kVMPressureCritical) {
3730 task->low_mem_notified_critical = 1;
3731 }
3732 }
3733
3734
3735 /*
3736 * Mark the task as purged.
3737 *
3738 * Condition: task lock should be held while calling this function.
3739 */
3740 void
3741 task_mark_used_for_purging(task_t task, int pressurelevel)
3742 {
3743 if (task == NULL) {
3744 return;
3745 }
3746
3747 if (pressurelevel == kVMPressureWarning) {
3748 task->purged_memory_warn = 1;
3749 } else if (pressurelevel == kVMPressureCritical) {
3750 task->purged_memory_critical = 1;
3751 }
3752 }
3753
3754
3755 /*
3756 * Mark the task eligible for low memory notification.
3757 *
3758 * Condition: task lock should be held while calling this function.
3759 */
3760 void
3761 task_clear_has_been_notified(task_t task, int pressurelevel)
3762 {
3763 if (task == NULL) {
3764 return;
3765 }
3766
3767 if (pressurelevel == kVMPressureWarning) {
3768 task->low_mem_notified_warn = 0;
3769 } else if (pressurelevel == kVMPressureCritical) {
3770 task->low_mem_notified_critical = 0;
3771 }
3772 }
3773
3774
3775 /*
3776 * Mark the task eligible for purging its purgeable memory.
3777 *
3778 * Condition: task lock should be held while calling this function.
3779 */
3780 void
3781 task_clear_used_for_purging(task_t task)
3782 {
3783 if (task == NULL) {
3784 return;
3785 }
3786
3787 task->purged_memory_warn = 0;
3788 task->purged_memory_critical = 0;
3789 }
3790
3791
3792 /*
3793 * Estimate task importance for purging its purgeable memory
3794 * and low memory notification.
3795 *
3796 * Importance is calculated in the following order of criteria:
3797 * -Task role : Background vs Foreground
3798 * -Boost status: Not boosted vs Boosted
3799 * -Darwin BG status.
3800 *
3801 * Returns: Estimated task importance. Less important task will have lower
3802 * estimated importance.
3803 */
3804 int
3805 task_importance_estimate(task_t task)
3806 {
3807 int task_importance = 0;
3808
3809 if (task == NULL) {
3810 return 0;
3811 }
3812
3813 if (proc_get_effective_task_policy(task, TASK_POLICY_ROLE) == TASK_FOREGROUND_APPLICATION) {
3814 task_importance += TASK_IMPORTANCE_FOREGROUND;
3815 }
3816
3817 if (proc_get_effective_task_policy(task, TASK_POLICY_DARWIN_BG) == 0) {
3818 task_importance += TASK_IMPORTANCE_NOTDARWINBG;
3819 }
3820
3821 return task_importance;
3822 }
3823
3824 boolean_t
3825 task_has_assertions(task_t task)
3826 {
3827 return task->task_imp_base->iit_assertcnt? TRUE : FALSE;
3828 }
3829
3830
3831 kern_return_t
3832 send_resource_violation(typeof(send_cpu_usage_violation) sendfunc,
3833 task_t violator,
3834 struct ledger_entry_info *linfo,
3835 resource_notify_flags_t flags)
3836 {
3837 #ifndef MACH_BSD
3838 return KERN_NOT_SUPPORTED;
3839 #else
3840 kern_return_t kr = KERN_SUCCESS;
3841 proc_t proc = NULL;
3842 posix_path_t proc_path = "";
3843 proc_name_t procname = "<unknown>";
3844 int pid = -1;
3845 clock_sec_t secs;
3846 clock_nsec_t nsecs;
3847 mach_timespec_t timestamp;
3848 thread_t curthread = current_thread();
3849 ipc_port_t dstport = MACH_PORT_NULL;
3850
3851 if (!violator) {
3852 kr = KERN_INVALID_ARGUMENT; goto finish;
3853 }
3854
3855 /* extract violator information */
3856 task_lock(violator);
3857 if (!(proc = get_bsdtask_info(violator))) {
3858 task_unlock(violator);
3859 kr = KERN_INVALID_ARGUMENT; goto finish;
3860 }
3861 (void)mig_strncpy(procname, proc_best_name(proc), sizeof(procname));
3862 pid = task_pid(violator);
3863 if (flags & kRNFatalLimitFlag) {
3864 kr = proc_pidpathinfo_internal(proc, 0, proc_path,
3865 sizeof(proc_path), NULL);
3866 }
3867 task_unlock(violator);
3868 if (kr) {
3869 goto finish;
3870 }
3871
3872 /* violation time ~ now */
3873 clock_get_calendar_nanotime(&secs, &nsecs);
3874 timestamp.tv_sec = (int32_t)secs;
3875 timestamp.tv_nsec = (int32_t)nsecs;
3876 /* 25567702 tracks widening mach_timespec_t */
3877
3878 /* send message */
3879 kr = host_get_special_port(host_priv_self(), HOST_LOCAL_NODE,
3880 HOST_RESOURCE_NOTIFY_PORT, &dstport);
3881 if (kr) {
3882 goto finish;
3883 }
3884
3885 thread_set_honor_qlimit(curthread);
3886 kr = sendfunc(dstport,
3887 procname, pid, proc_path, timestamp,
3888 linfo->lei_balance, linfo->lei_last_refill,
3889 linfo->lei_limit, linfo->lei_refill_period,
3890 flags);
3891 thread_clear_honor_qlimit(curthread);
3892
3893 ipc_port_release_send(dstport);
3894
3895 finish:
3896 return kr;
3897 #endif /* MACH_BSD */
3898 }
3899
3900
3901 /*
3902 * Resource violations trace four 64-bit integers. For K32, two additional
3903 * codes are allocated, the first with the low nibble doubled. So if the K64
3904 * code is 0x042, the K32 codes would be 0x044 and 0x45.
3905 */
3906 #ifdef __LP64__
3907 void
3908 trace_resource_violation(uint16_t code,
3909 struct ledger_entry_info *linfo)
3910 {
3911 KERNEL_DBG_IST_SANE(KDBG_CODE(DBG_MACH, DBG_MACH_RESOURCE, code),
3912 linfo->lei_balance, linfo->lei_last_refill,
3913 linfo->lei_limit, linfo->lei_refill_period);
3914 }
3915 #else /* K32 */
3916 /* TODO: create/find a trace_two_LLs() for K32 systems */
3917 #define MASK32 0xffffffff
3918 void
3919 trace_resource_violation(uint16_t code,
3920 struct ledger_entry_info *linfo)
3921 {
3922 int8_t lownibble = (code & 0x3) * 2;
3923 int16_t codeA = (code & 0xffc) | lownibble;
3924 int16_t codeB = codeA + 1;
3925
3926 int32_t balance_high = (linfo->lei_balance >> 32) & MASK32;
3927 int32_t balance_low = linfo->lei_balance & MASK32;
3928 int32_t last_refill_high = (linfo->lei_last_refill >> 32) & MASK32;
3929 int32_t last_refill_low = linfo->lei_last_refill & MASK32;
3930
3931 int32_t limit_high = (linfo->lei_limit >> 32) & MASK32;
3932 int32_t limit_low = linfo->lei_limit & MASK32;
3933 int32_t refill_period_high = (linfo->lei_refill_period >> 32) & MASK32;
3934 int32_t refill_period_low = linfo->lei_refill_period & MASK32;
3935
3936 KERNEL_DBG_IST_SANE(KDBG_CODE(DBG_MACH, DBG_MACH_RESOURCE, codeA),
3937 balance_high, balance_low,
3938 last_refill_high, last_refill_low);
3939 KERNEL_DBG_IST_SANE(KDBG_CODE(DBG_MACH, DBG_MACH_RESOURCE, codeB),
3940 limit_high, limit_low,
3941 refill_period_high, refill_period_low);
3942 }
3943 #endif /* K64/K32 */