2 * Copyright (c) 2000-2005 Apple Computer, Inc. All rights reserved.
4 * @APPLE_LICENSE_OSREFERENCE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the
10 * License may not be used to create, or enable the creation or
11 * redistribution of, unlawful or unlicensed copies of an Apple operating
12 * system, or to circumvent, violate, or enable the circumvention or
13 * violation of, any terms of an Apple operating system software license
16 * Please obtain a copy of the License at
17 * http://www.opensource.apple.com/apsl/ and read it before using this
20 * The Original Code and all software distributed under the License are
21 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
22 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
23 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
24 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
25 * Please see the License for the specific language governing rights and
26 * limitations under the License.
28 * @APPLE_LICENSE_OSREFERENCE_HEADER_END@
31 * This file is used to maintain the virtual to real mappings for a PowerPC machine.
32 * The code herein is primarily used to bridge between the pmap layer and the hardware layer.
33 * Currently, some of the function of this module is contained within pmap.c. We may want to move
34 * all of this into it (or most anyway) for the sake of performance. We shall see as we write it.
36 * We also depend upon the structure of the phys_entry control block. We do put some processor
37 * specific stuff in there.
42 #include <mach_kgdb.h>
43 #include <mach_vm_debug.h>
44 #include <db_machine_commands.h>
46 #include <mach/mach_types.h>
47 #include <mach/vm_attributes.h>
48 #include <mach/vm_param.h>
50 #include <kern/kern_types.h>
51 #include <kern/thread.h>
53 #include <kern/misc_protos.h>
55 #include <vm/vm_fault.h>
56 #include <vm/vm_kern.h>
57 #include <vm/vm_map.h>
58 #include <vm/vm_page.h>
61 #include <ppc/exception.h>
62 #include <ppc/misc_protos.h>
63 #include <ppc/proc_reg.h>
66 #include <ppc/new_screen.h>
67 #include <ppc/Firmware.h>
68 #include <ppc/mappings.h>
69 #include <ddb/db_output.h>
71 #include <console/video_console.h> /* (TEST/DEBUG) */
75 vm_map_t mapping_map
= VM_MAP_NULL
;
77 unsigned int incrVSID
= 0; /* VSID increment value */
78 unsigned int mappingdeb0
= 0;
79 unsigned int mappingdeb1
= 0;
80 int ppc_max_adrsp
; /* Maximum address spaces */
82 addr64_t
*mapdebug
; /* (BRINGUP) */
83 extern unsigned int DebugWork
; /* (BRINGUP) */
85 void mapping_verify(void);
86 void mapping_phys_unused(ppnum_t pa
);
88 int nx_enabled
= 0; /* enable no-execute protection */
91 * ppc_prot translates Mach's representation of protections to that of the PPC hardware.
92 * For Virtual Machines (VMM), we also provide translation entries where the output is
93 * the same as the input, allowing direct specification of PPC protections. Mach's
94 * representations are always in the range 0..7, so they always fall into the first
95 * 8 table entries; direct translations are placed in the range 8..16, so they fall into
96 * the second half of the table.
100 unsigned char ppc_prot
[16] = { 4, 7, 6, 6, 3, 3, 2, 2, /* Mach -> PPC translations */
101 0, 1, 2, 3, 4, 5, 6, 7 }; /* VMM direct translations */
105 vm_prot_t
getProtPPC(int key
, boolean_t disable_NX
) {
108 prot
= ppc_prot
[key
& 0xF];
110 if (key
<= 7 && disable_NX
== TRUE
)
118 * About PPC VSID generation:
120 * This function is called to generate an address space ID. This space ID must be unique within
121 * the system. For the PowerPC, it is used to build the VSID. We build a VSID in the following
122 * way: space ID << 4 | segment. Since a VSID is 24 bits, and out of that, we reserve the last
123 * 4, so, we can have 2^20 (2M) unique IDs. Each pmap has a unique space ID, so we should be able
124 * to have 2M pmaps at a time, which we couldn't, we'd run out of memory way before then. The
125 * problem is that only a certain number of pmaps are kept in a free list and if that is full,
126 * they are release. This causes us to lose track of what space IDs are free to be reused.
127 * We can do 4 things: 1) not worry about it, 2) keep all free pmaps, 3) rebuild all mappings
128 * when the space ID wraps, or 4) scan the list of pmaps and find a free one.
130 * Yet another consideration is the hardware use of the VSID. It is used as part of the hash
131 * calculation for virtual address lookup. An improperly chosen value could potentially cause
132 * too many hashes to hit the same bucket, causing PTEG overflows. The actual hash function
133 * is (page index XOR vsid) mod number of ptegs. For a 32MB machine, using the suggested
134 * hash table size, there are 2^12 (8192) PTEGs. Remember, though, that the bottom 4 bits
135 * are reserved for the segment number, which means that we really have 2^(12-4) 512 space IDs
136 * before we start hashing to the same buckets with the same vaddrs. Also, within a space ID,
137 * every 8192 pages (32MB) within a segment will hash to the same bucket. That's 8 collisions
138 * per segment. So, a scan of every page for 256MB would fill 32 PTEGs completely, but
139 * with no overflow. I don't think that this is a problem.
141 * There may be a problem with the space ID, though. A new space ID is generate (mainly)
142 * whenever there is a fork. There shouldn't really be any problem because (for a 32MB
143 * machine) we can have 512 pmaps and still not have hash collisions for the same address.
144 * The potential problem, though, is if we get long-term pmaps that have space IDs that are
145 * the same modulo 512. We can reduce this problem by having the segment number be bits
146 * 0-3 of the space ID rather than 20-23. Doing this means that, in effect, corresponding
147 * vaddrs in different segments hash to the same PTEG. While this is somewhat of a problem,
148 * I don't think that it is as signifigant as the other, so, I'll make the space ID
149 * with segment first.
151 * The final, and biggest problem is the wrap, which will happen every 2^20 space IDs.
152 * While this is a problem that should only happen in periods counted in weeks, it can and
153 * will happen. This is assuming a monotonically increasing space ID. If we were to search
154 * for an inactive space ID, there could not be a wrap until there was 2^20 concurrent space IDs.
155 * That's pretty unlikely to happen. There couldn't be enough storage to support a million tasks.
157 * So, what we do is to keep all active pmaps in a chain (anchored from kernel_pmap and
158 * locked by free_pmap_lock) that is sorted in VSID sequence order.
160 * Whenever we need a VSID, we walk the list looking for the next in the sequence from
161 * the last that was freed. The we allocate that.
163 * NOTE: We must be called with interruptions off and free_pmap_lock held.
169 * Do anything that needs to be done before the mapping system can be used.
170 * Hash table must be initialized before we call this.
172 * Calculate the SID increment. Currently we use size^(1/2) + size^(1/4) + 1;
175 void mapping_init(void) {
177 unsigned int tmp
, maxeff
, rwidth
;
179 ppc_max_adrsp
= maxAdrSp
; /* Set maximum address spaces */
181 maxeff
= 32; /* Assume 32-bit */
182 if(PerProcTable
[0].ppe_vaddr
->pf
.Available
& pf64Bit
) maxeff
= 64; /* Is this a 64-bit machine? */
184 rwidth
= PerProcTable
[0].ppe_vaddr
->pf
.pfMaxVAddr
- maxAdrSpb
; /* Reduce address width by width of address space ID */
185 if(rwidth
> maxeff
) rwidth
= maxeff
; /* If we still have more virtual than effective, clamp at effective */
187 vm_max_address
= 0xFFFFFFFFFFFFFFFFULL
>> (64 - rwidth
); /* Get maximum effective address supported */
188 vm_max_physical
= 0xFFFFFFFFFFFFFFFFULL
>> (64 - PerProcTable
[0].ppe_vaddr
->pf
.pfMaxPAddr
); /* Get maximum physical address supported */
190 if(PerProcTable
[0].ppe_vaddr
->pf
.Available
& pf64Bit
) { /* Are we 64 bit? */
191 tmp
= 12; /* Size of hash space */
194 __asm__
volatile("cntlzw %0, %1" : "=r" (tmp
) : "r" (hash_table_size
)); /* Get number of leading 0s */
195 tmp
= 32 - tmp
; /* Size of hash space */
198 incrVSID
= 1 << ((tmp
+ 1) >> 1); /* Get ceiling of sqrt of table size */
199 incrVSID
|= 1 << ((tmp
+ 1) >> 2); /* Get ceiling of quadroot of table size */
200 incrVSID
|= 1; /* Set bit and add 1 */
208 * mapping_remove(pmap_t pmap, addr64_t va);
209 * Given a pmap and virtual address, this routine finds the mapping and unmaps it.
210 * The mapping block will be added to
211 * the free list. If the free list threshold is reached, garbage collection will happen.
213 * We also pass back the next higher mapped address. This is done so that the higher level
214 * pmap_remove function can release a range of addresses simply by calling mapping_remove
215 * in a loop until it finishes the range or is returned a vaddr of 0.
217 * Note that if the mapping is not found, we return the next VA ORed with 1
221 addr64_t
mapping_remove(pmap_t pmap
, addr64_t va
) { /* Remove a single mapping for this VADDR
222 Returns TRUE if a mapping was found to remove */
228 va
&= ~PAGE_MASK
; /* Scrub noise bits */
230 do { /* Keep trying until we truely fail */
231 mp
= hw_rem_map(pmap
, va
, &nextva
); /* Remove a mapping from this pmap */
232 } while (mapRtRemove
== ((unsigned int)mp
& mapRetCode
));
234 switch ((unsigned int)mp
& mapRetCode
) {
236 break; /* Mapping removed */
238 return (nextva
| 1); /* Nothing found to unmap */
240 panic("mapping_remove: hw_rem_map failed - pmap = %08X, va = %016llX, code = %08X\n",
245 pgaddr
= mp
->mpPAddr
; /* Get page number from mapping */
247 mapping_free(mp
); /* Add mapping to the free list */
249 if ((pmap
->pmapFlags
& pmapVMhost
) && pmap
->pmapVmmExt
) {
250 /* If this is an assisted host, scrub any guest mappings */
252 phys_entry_t
*physent
= mapping_phys_lookup(pgaddr
, &idx
);
253 /* Get physent for our physical page */
254 if (!physent
) { /* No physent, could be in I/O area, so exit */
258 do { /* Iterate 'till all guest mappings are gone */
259 mp
= hw_scrub_guest(physent
, pmap
); /* Attempt to scrub a guest mapping */
260 switch ((unsigned int)mp
& mapRetCode
) {
261 case mapRtGuest
: /* Found a guest mapping */
262 case mapRtNotFnd
: /* Mapping was there, but disappeared, must retry */
263 case mapRtEmpty
: /* No guest mappings left to scrub */
266 panic("mapping_remove: hw_scrub_guest failed - physent = %08X, code = %08X\n",
267 physent
, mp
); /* Cry havoc, cry wrack,
268 at least we die with harness on our backs */
271 } while (mapRtEmpty
!= ((unsigned int)mp
& mapRetCode
));
274 return nextva
; /* Tell them we did it */
278 * mapping_make(pmap, va, pa, flags, size, prot) - map a virtual address to a real one
280 * This routine takes the given parameters, builds a mapping block, and queues it into the
283 * pmap (virtual address) is the pmap to map into
284 * va (virtual address) is the 64-bit virtual address that is being mapped
285 * pa (physical page number) is the physical page number (i.e., physcial address >> 12). This is
288 * block if 1, mapping is a block, size parameter is used. Note: we do not keep
289 * reference and change information or allow protection changes of blocks.
290 * any changes must first unmap and then remap the area.
291 * use attribute Use specified attributes for map, not defaults for physical page
292 * perm Mapping is permanent
293 * cache inhibited Cache inhibited (used if use attribute or block set )
294 * guarded Guarded access (used if use attribute or block set )
295 * size size of block in pages - 1 (not used if not block)
296 * prot VM protection bits
297 * attr Cachability/Guardedness
299 * Returns 0 if mapping was successful. Returns vaddr that overlaps/collides.
300 * Returns 1 for any other failure.
302 * Note that we make an assumption that all memory in the range 0f 0x0000000080000000 to 0x00000000FFFFFFFF is reserved
303 * for I/O and default the cache attrubutes appropriately. The caller is free to set whatever they want however.
305 * If there is any physical page that is not found in the physent table, the mapping is forced to be a
306 * block mapping of length 1. This keeps us from trying to update a physent during later mapping use,
307 * e.g., fault handling.
312 addr64_t
mapping_make(pmap_t pmap
, addr64_t va
, ppnum_t pa
, unsigned int flags
, unsigned int size
, vm_prot_t prot
) { /* Make an address mapping */
314 register mapping_t
*mp
;
315 addr64_t colladdr
, psmask
;
316 unsigned int pindex
, mflags
, pattr
, wimg
, rc
;
317 phys_entry_t
*physent
;
319 boolean_t disable_NX
= FALSE
;
323 mflags
= 0x01000000; /* Start building mpFlags field (busy count = 1) */
325 pcf
= (flags
& mmFlgPcfg
) >> 24; /* Get the physical page config index */
326 if(!(pPcfg
[pcf
].pcfFlags
)) { /* Validate requested physical page configuration */
327 panic("mapping_make: invalid physical page configuration request - pmap = %08X, va = %016llX, cfg = %d\n",
331 psmask
= (1ULL << pPcfg
[pcf
].pcfPSize
) - 1; /* Mask to isolate any offset into a page */
332 if(va
& psmask
) { /* Make sure we are page aligned on virtual */
333 panic("mapping_make: attempt to map unaligned vaddr - pmap = %08X, va = %016llX, cfg = %d\n",
336 if(((addr64_t
)pa
<< 12) & psmask
) { /* Make sure we are page aligned on physical */
337 panic("mapping_make: attempt to map unaligned paddr - pmap = %08X, pa = %016llX, cfg = %d\n",
341 mflags
|= (pcf
<< (31-mpPcfgb
)); /* Insert physical page configuration index */
343 if(!(flags
& mmFlgBlock
)) { /* Is this a block map? */
345 size
= 1; /* Set size to 1 page if not block */
347 physent
= mapping_phys_lookup(pa
, &pindex
); /* Get physical entry */
348 if(!physent
) { /* Did we find the physical page? */
349 mflags
|= mpBlock
; /* Force this to a block if no physent */
350 pattr
= 0; /* Assume normal, non-I/O memory */
351 if((pa
& 0xFFF80000) == 0x00080000) pattr
= mmFlgCInhib
| mmFlgGuarded
; /* If this page is in I/O range, set I/O attributes */
353 else pattr
= ((physent
->ppLink
& (ppI
| ppG
)) >> 60); /* Get the default attributes from physent */
355 if(flags
& mmFlgUseAttr
) pattr
= flags
& (mmFlgCInhib
| mmFlgGuarded
); /* Use requested attributes */
357 else { /* This is a block */
359 pattr
= flags
& (mmFlgCInhib
| mmFlgGuarded
); /* Use requested attributes */
360 mflags
|= mpBlock
; /* Show that this is a block */
362 if(size
> pmapSmallBlock
) { /* Is it one? */
363 if(size
& 0x00001FFF) return mapRtBadSz
; /* Fail if bigger than 256MB and not a 32MB multiple */
364 size
= size
>> 13; /* Convert to 32MB chunks */
365 mflags
= mflags
| mpBSu
; /* Show 32MB basic size unit */
369 wimg
= 0x2; /* Set basic PPC wimg to 0b0010 - Coherent */
370 if(pattr
& mmFlgCInhib
) wimg
|= 0x4; /* Add cache inhibited if we need to */
371 if(pattr
& mmFlgGuarded
) wimg
|= 0x1; /* Add guarded if we need to */
373 mflags
= mflags
| (pindex
<< 16); /* Stick in the physical entry table index */
375 if(flags
& mmFlgPerm
) mflags
|= mpPerm
; /* Set permanent mapping */
377 size
= size
- 1; /* Change size to offset */
378 if(size
> 0xFFFF) return mapRtBadSz
; /* Leave if size is too big */
380 nlists
= mapSetLists(pmap
); /* Set number of lists this will be on */
382 mp
= mapping_alloc(nlists
); /* Get a spare mapping block with this many lists */
384 /* the mapping is zero except that the mpLists field is set */
385 mp
->mpFlags
|= mflags
; /* Add in the rest of the flags to mpLists */
386 mp
->mpSpace
= pmap
->space
; /* Set the address space/pmap lookup ID */
387 mp
->u
.mpBSize
= size
; /* Set the size */
388 mp
->mpPte
= 0; /* Set the PTE invalid */
389 mp
->mpPAddr
= pa
; /* Set the physical page number */
391 if ( !nx_enabled
|| (pmap
->pmapFlags
& pmapNXdisabled
) )
394 mp
->mpVAddr
= (va
& ~mpHWFlags
) | (wimg
<< 3) | getProtPPC(prot
, disable_NX
); /* Add the protection and attributes to the field */
396 while(1) { /* Keep trying... */
397 colladdr
= hw_add_map(pmap
, mp
); /* Go add the mapping to the pmap */
398 rc
= colladdr
& mapRetCode
; /* Separate return code */
399 colladdr
&= ~mapRetCode
; /* Clean up collision effective address */
403 return mapRtOK
; /* Mapping added successfully */
405 case mapRtRemove
: /* Remove in progress */
406 (void)mapping_remove(pmap
, colladdr
); /* Lend a helping hand to another CPU doing block removal */
407 continue; /* Retry mapping add */
409 case mapRtMapDup
: /* Identical mapping already present */
410 mapping_free(mp
); /* Free duplicate mapping */
411 return mapRtOK
; /* Return success */
413 case mapRtSmash
: /* Mapping already present but does not match new mapping */
414 mapping_free(mp
); /* Free duplicate mapping */
415 return (colladdr
| mapRtSmash
); /* Return colliding address, with some dirt added to avoid
416 confusion if effective address is 0 */
418 panic("mapping_make: hw_add_map failed - collision addr = %016llX, code = %02X, pmap = %08X, va = %016llX, mapping = %08X\n",
419 colladdr
, rc
, pmap
, va
, mp
); /* Die dead */
424 return 1; /* Unreachable, but pleases compiler */
429 * mapping *mapping_find(pmap, va, *nextva, full) - Finds a mapping
431 * Looks up the vaddr and returns the mapping and the next mapped va
432 * If full is true, it will descend through all nested pmaps to find actual mapping
434 * Must be called with interruptions disabled or we can hang trying to remove found mapping.
436 * Returns 0 if not found and the virtual address of the mapping if it is
437 * Note that the mappings busy count is bumped. It is the responsibility of the caller
438 * to drop the count. If this is not done, any attempt to remove the mapping will hang.
440 * NOTE: The nextva field is not valid when full is TRUE.
445 mapping_t
*mapping_find(pmap_t pmap
, addr64_t va
, addr64_t
*nextva
, int full
) { /* Make an address mapping */
447 register mapping_t
*mp
;
452 curpmap
= pmap
; /* Remember entry */
453 nestdepth
= 0; /* Set nest depth */
454 curva
= (addr64_t
)va
; /* Set current va */
458 mp
= hw_find_map(curpmap
, curva
, nextva
); /* Find the mapping for this address */
459 if((unsigned int)mp
== mapRtBadLk
) { /* Did we lock up ok? */
460 panic("mapping_find: pmap lock failure - rc = %08X, pmap = %08X\n", mp
, curpmap
); /* Die... */
463 if(!mp
|| ((mp
->mpFlags
& mpType
) < mpMinSpecial
) || !full
) break; /* Are we done looking? */
465 if((mp
->mpFlags
& mpType
) != mpNest
) { /* Don't chain through anything other than a nested pmap */
466 mapping_drop_busy(mp
); /* We have everything we need from the mapping */
467 mp
= 0; /* Set not found */
471 if(nestdepth
++ > 64) { /* Have we nested too far down? */
472 panic("mapping_find: too many nested pmaps - va = %016llX, curva = %016llX, pmap = %08X, curpmap = %08X\n",
473 va
, curva
, pmap
, curpmap
);
476 curva
= curva
+ mp
->mpNestReloc
; /* Relocate va to new pmap */
477 curpmap
= (pmap_t
) pmapTrans
[mp
->mpSpace
].pmapVAddr
; /* Get the address of the nested pmap */
478 mapping_drop_busy(mp
); /* We have everything we need from the mapping */
482 return mp
; /* Return the mapping if we found one */
486 * void mapping_protect(pmap_t pmap, addt_t va, vm_prot_t prot, addr64_t *nextva) - change the protection of a virtual page
488 * This routine takes a pmap and virtual address and changes
489 * the protection. If there are PTEs associated with the mappings, they will be invalidated before
490 * the protection is changed.
492 * We return success if we change the protection or if there is no page mapped at va. We return failure if
493 * the va corresponds to a block mapped area or the mapping is permanant.
499 mapping_protect(pmap_t pmap
, addr64_t va
, vm_prot_t prot
, addr64_t
*nextva
) { /* Change protection of a virtual page */
502 boolean_t disable_NX
= FALSE
;
504 if ( !nx_enabled
|| (pmap
->pmapFlags
& pmapNXdisabled
) )
507 ret
= hw_protect(pmap
, va
, getProtPPC(prot
, disable_NX
), nextva
); /* Try to change the protect here */
509 switch (ret
) { /* Decode return code */
511 case mapRtOK
: /* Changed */
512 case mapRtNotFnd
: /* Didn't find it */
513 case mapRtBlock
: /* Block map, just ignore request */
514 case mapRtNest
: /* Nested pmap, just ignore request */
518 panic("mapping_protect: hw_protect failed - rc = %d, pmap = %08X, va = %016llX\n", ret
, pmap
, va
);
525 * void mapping_protect_phys(ppnum_t pa, vm_prot_t prot) - change the protection of a physical page
527 * This routine takes a physical entry and runs through all mappings attached to it and changes
528 * the protection. If there are PTEs associated with the mappings, they will be invalidated before
529 * the protection is changed. There is no limitation on changes, e.g., higher to lower, lower to
530 * higher; however, changes to execute protection are ignored.
532 * Any mapping that is marked permanent is not changed
534 * Phys_entry is unlocked.
537 void mapping_protect_phys(ppnum_t pa
, vm_prot_t prot
) { /* Change protection of all mappings to page */
540 phys_entry_t
*physent
;
542 physent
= mapping_phys_lookup(pa
, &pindex
); /* Get physical entry */
543 if(!physent
) { /* Did we find the physical page? */
544 panic("mapping_protect_phys: invalid physical page %08X\n", pa
);
547 hw_walk_phys(physent
, hwpNoop
, hwpSPrtMap
, hwpNoop
,
548 getProtPPC(prot
, FALSE
), hwpPurgePTE
); /* Set the new protection for page and mappings */
550 return; /* Leave... */
555 * void mapping_clr_mod(ppnum_t pa) - clears the change bit of a physical page
557 * This routine takes a physical entry and runs through all mappings attached to it and turns
558 * off the change bit.
561 void mapping_clr_mod(ppnum_t pa
) { /* Clears the change bit of a physical page */
564 phys_entry_t
*physent
;
566 physent
= mapping_phys_lookup(pa
, &pindex
); /* Get physical entry */
567 if(!physent
) { /* Did we find the physical page? */
568 panic("mapping_clr_mod: invalid physical page %08X\n", pa
);
571 hw_walk_phys(physent
, hwpNoop
, hwpCCngMap
, hwpCCngPhy
,
572 0, hwpPurgePTE
); /* Clear change for page and mappings */
573 return; /* Leave... */
578 * void mapping_set_mod(ppnum_t pa) - set the change bit of a physical page
580 * This routine takes a physical entry and runs through all mappings attached to it and turns
584 void mapping_set_mod(ppnum_t pa
) { /* Sets the change bit of a physical page */
587 phys_entry_t
*physent
;
589 physent
= mapping_phys_lookup(pa
, &pindex
); /* Get physical entry */
590 if(!physent
) { /* Did we find the physical page? */
591 panic("mapping_set_mod: invalid physical page %08X\n", pa
);
594 hw_walk_phys(physent
, hwpNoop
, hwpSCngMap
, hwpSCngPhy
,
595 0, hwpNoopPTE
); /* Set change for page and mappings */
596 return; /* Leave... */
601 * void mapping_clr_ref(ppnum_t pa) - clears the reference bit of a physical page
603 * This routine takes a physical entry and runs through all mappings attached to it and turns
604 * off the reference bit.
607 void mapping_clr_ref(ppnum_t pa
) { /* Clears the reference bit of a physical page */
610 phys_entry_t
*physent
;
612 physent
= mapping_phys_lookup(pa
, &pindex
); /* Get physical entry */
613 if(!physent
) { /* Did we find the physical page? */
614 panic("mapping_clr_ref: invalid physical page %08X\n", pa
);
617 hw_walk_phys(physent
, hwpNoop
, hwpCRefMap
, hwpCRefPhy
,
618 0, hwpPurgePTE
); /* Clear reference for page and mappings */
619 return; /* Leave... */
624 * void mapping_set_ref(ppnum_t pa) - set the reference bit of a physical page
626 * This routine takes a physical entry and runs through all mappings attached to it and turns
627 * on the reference bit.
630 void mapping_set_ref(ppnum_t pa
) { /* Sets the reference bit of a physical page */
633 phys_entry_t
*physent
;
635 physent
= mapping_phys_lookup(pa
, &pindex
); /* Get physical entry */
636 if(!physent
) { /* Did we find the physical page? */
637 panic("mapping_set_ref: invalid physical page %08X\n", pa
);
640 hw_walk_phys(physent
, hwpNoop
, hwpSRefMap
, hwpSRefPhy
,
641 0, hwpNoopPTE
); /* Set reference for page and mappings */
642 return; /* Leave... */
647 * boolean_t mapping_tst_mod(ppnum_t pa) - test the change bit of a physical page
649 * This routine takes a physical entry and runs through all mappings attached to it and tests
653 boolean_t
mapping_tst_mod(ppnum_t pa
) { /* Tests the change bit of a physical page */
655 unsigned int pindex
, rc
;
656 phys_entry_t
*physent
;
658 physent
= mapping_phys_lookup(pa
, &pindex
); /* Get physical entry */
659 if(!physent
) { /* Did we find the physical page? */
660 panic("mapping_tst_mod: invalid physical page %08X\n", pa
);
663 rc
= hw_walk_phys(physent
, hwpTCngPhy
, hwpTCngMap
, hwpNoop
,
664 0, hwpMergePTE
); /* Set change for page and mappings */
665 return ((rc
& (unsigned long)ppC
) != 0); /* Leave with change bit */
670 * boolean_t mapping_tst_ref(ppnum_t pa) - tests the reference bit of a physical page
672 * This routine takes a physical entry and runs through all mappings attached to it and tests
676 boolean_t
mapping_tst_ref(ppnum_t pa
) { /* Tests the reference bit of a physical page */
678 unsigned int pindex
, rc
;
679 phys_entry_t
*physent
;
681 physent
= mapping_phys_lookup(pa
, &pindex
); /* Get physical entry */
682 if(!physent
) { /* Did we find the physical page? */
683 panic("mapping_tst_ref: invalid physical page %08X\n", pa
);
686 rc
= hw_walk_phys(physent
, hwpTRefPhy
, hwpTRefMap
, hwpNoop
,
687 0, hwpMergePTE
); /* Test reference for page and mappings */
688 return ((rc
& (unsigned long)ppR
) != 0); /* Leave with reference bit */
693 * unsigned int mapping_tst_refmod(ppnum_t pa) - tests the reference and change bits of a physical page
695 * This routine takes a physical entry and runs through all mappings attached to it and tests
696 * their reference and changed bits.
699 unsigned int mapping_tst_refmod(ppnum_t pa
) { /* Tests the reference and change bits of a physical page */
701 unsigned int pindex
, rc
;
702 phys_entry_t
*physent
;
704 physent
= mapping_phys_lookup(pa
, &pindex
); /* Get physical entry */
705 if (!physent
) { /* Did we find the physical page? */
706 panic("mapping_tst_refmod: invalid physical page %08X\n", pa
);
709 rc
= hw_walk_phys(physent
, hwpTRefCngPhy
, hwpTRefCngMap
, hwpNoop
,
710 0, hwpMergePTE
); /* Test reference and change bits in page and mappings */
711 return (((rc
& ppC
)? VM_MEM_MODIFIED
: 0) | ((rc
& ppR
)? VM_MEM_REFERENCED
: 0));
712 /* Convert bits to generic format and return */
718 * void mapping_clr_refmod(ppnum_t pa, unsigned int mask) - clears the reference and change bits specified
719 * by mask of a physical page
721 * This routine takes a physical entry and runs through all mappings attached to it and turns
722 * off all the reference and change bits.
725 void mapping_clr_refmod(ppnum_t pa
, unsigned int mask
) { /* Clears the reference and change bits of a physical page */
728 phys_entry_t
*physent
;
729 unsigned int ppcMask
;
731 physent
= mapping_phys_lookup(pa
, &pindex
); /* Get physical entry */
732 if(!physent
) { /* Did we find the physical page? */
733 panic("mapping_clr_refmod: invalid physical page %08X\n", pa
);
736 ppcMask
= (((mask
& VM_MEM_MODIFIED
)? ppC
: 0) | ((mask
& VM_MEM_REFERENCED
)? ppR
: 0));
737 /* Convert mask bits to PPC-specific format */
738 hw_walk_phys(physent
, hwpNoop
, hwpCRefCngMap
, hwpCRefCngPhy
,
739 ppcMask
, hwpPurgePTE
); /* Clear reference and change bits for page and mappings */
740 return; /* Leave... */
746 * phys_ent *mapping_phys_lookup(ppnum_t pp, unsigned int *pindex) - tests the reference bit of a physical page
748 * This routine takes a physical page number and returns the phys_entry associated with it. It also
749 * calculates the bank address associated with the entry
753 phys_entry_t
*mapping_phys_lookup(ppnum_t pp
, unsigned int *pindex
) { /* Finds the physical entry for the page */
757 for(i
= 0; i
< pmap_mem_regions_count
; i
++) { /* Walk through the list */
758 if(!(unsigned int)pmap_mem_regions
[i
].mrPhysTab
) continue; /* Skip any empty lists */
759 if((pp
< pmap_mem_regions
[i
].mrStart
) || (pp
> pmap_mem_regions
[i
].mrEnd
)) continue; /* This isn't ours */
761 *pindex
= (i
* sizeof(mem_region_t
)) / 4; /* Make the word index to this list */
763 return &pmap_mem_regions
[i
].mrPhysTab
[pp
- pmap_mem_regions
[i
].mrStart
]; /* Return the physent pointer */
766 return (phys_entry_t
*)0; /* Shucks, can't find it... */
774 * mapping_adjust(void) - Releases free mapping blocks and/or allocates new ones
776 * This routine frees any mapping blocks queued to mapCtl.mapcrel. It also checks
777 * the number of free mappings remaining, and if below a threshold, replenishes them.
778 * The list will be replenshed from mapCtl.mapcrel if there are enough. Otherwise,
779 * a new one is allocated.
781 * This routine allocates and/or frees memory and must be called from a safe place.
782 * Currently, vm_pageout_scan is the safest place.
785 thread_call_t mapping_adjust_call
;
786 static thread_call_data_t mapping_adjust_call_data
;
788 void mapping_adjust(void) { /* Adjust free mappings */
790 kern_return_t retr
= KERN_SUCCESS
;
791 mappingblok_t
*mb
, *mbn
;
795 if(mapCtl
.mapcmin
<= MAPPERBLOK
) {
796 mapCtl
.mapcmin
= (sane_size
/ PAGE_SIZE
) / 16;
799 kprintf("mapping_adjust: minimum entries rqrd = %08X\n", mapCtl
.mapcmin
);
800 kprintf("mapping_adjust: free = %08X; in use = %08X; release = %08X\n",
801 mapCtl
.mapcfree
, mapCtl
.mapcinuse
, mapCtl
.mapcreln
);
805 s
= splhigh(); /* Don't bother from now on */
806 if(!hw_lock_to((hw_lock_t
)&mapCtl
.mapclock
, LockTimeOut
)) { /* Lock the control header */
807 panic("mapping_adjust - timeout getting control lock (1)\n"); /* Tell all and die */
810 if (mapping_adjust_call
== NULL
) {
811 thread_call_setup(&mapping_adjust_call_data
,
812 (thread_call_func_t
)mapping_adjust
,
813 (thread_call_param_t
)NULL
);
814 mapping_adjust_call
= &mapping_adjust_call_data
;
817 while(1) { /* Keep going until we've got enough */
819 allocsize
= mapCtl
.mapcmin
- mapCtl
.mapcfree
; /* Figure out how much we need */
820 if(allocsize
< 1) break; /* Leave if we have all we need */
822 if((unsigned int)(mbn
= mapCtl
.mapcrel
)) { /* Can we rescue a free one? */
823 mapCtl
.mapcrel
= mbn
->nextblok
; /* Dequeue it */
824 mapCtl
.mapcreln
--; /* Back off the count */
825 allocsize
= MAPPERBLOK
; /* Show we allocated one block */
827 else { /* No free ones, try to get it */
829 allocsize
= (allocsize
+ MAPPERBLOK
- 1) / MAPPERBLOK
; /* Get the number of pages we need */
831 hw_lock_unlock((hw_lock_t
)&mapCtl
.mapclock
); /* Unlock our stuff */
832 splx(s
); /* Restore 'rupts */
834 for(; allocsize
> 0; allocsize
>>= 1) { /* Try allocating in descending halves */
835 retr
= kmem_alloc_wired(mapping_map
, (vm_offset_t
*)&mbn
, PAGE_SIZE
* allocsize
); /* Find a virtual address to use */
836 if((retr
!= KERN_SUCCESS
) && (allocsize
== 1)) { /* Did we find any memory at all? */
839 if(retr
== KERN_SUCCESS
) break; /* We got some memory, bail out... */
842 allocsize
= allocsize
* MAPPERBLOK
; /* Convert pages to number of maps allocated */
843 s
= splhigh(); /* Don't bother from now on */
844 if(!hw_lock_to((hw_lock_t
)&mapCtl
.mapclock
, LockTimeOut
)) { /* Lock the control header */
845 panic("mapping_adjust - timeout getting control lock (2)\n"); /* Tell all and die */
849 if (retr
!= KERN_SUCCESS
)
850 break; /* Fail to alocate, bail out... */
851 for(; allocsize
> 0; allocsize
-= MAPPERBLOK
) { /* Release one block at a time */
852 mapping_free_init((vm_offset_t
)mbn
, 0, 1); /* Initialize a non-permanent block */
853 mbn
= (mappingblok_t
*)((unsigned int)mbn
+ PAGE_SIZE
); /* Point to the next slot */
856 if ((mapCtl
.mapcinuse
+ mapCtl
.mapcfree
+ (mapCtl
.mapcreln
* (MAPPERBLOK
+ 1))) > mapCtl
.mapcmaxalloc
)
857 mapCtl
.mapcmaxalloc
= mapCtl
.mapcinuse
+ mapCtl
.mapcfree
+ (mapCtl
.mapcreln
* (MAPPERBLOK
+ 1));
860 if(mapCtl
.mapcholdoff
) { /* Should we hold off this release? */
861 mapCtl
.mapcrecurse
= 0; /* We are done now */
862 hw_lock_unlock((hw_lock_t
)&mapCtl
.mapclock
); /* Unlock our stuff */
863 splx(s
); /* Restore 'rupts */
864 return; /* Return... */
867 mbn
= mapCtl
.mapcrel
; /* Get first pending release block */
868 mapCtl
.mapcrel
= 0; /* Dequeue them */
869 mapCtl
.mapcreln
= 0; /* Set count to 0 */
871 hw_lock_unlock((hw_lock_t
)&mapCtl
.mapclock
); /* Unlock our stuff */
872 splx(s
); /* Restore 'rupts */
874 while((unsigned int)mbn
) { /* Toss 'em all */
875 mb
= mbn
->nextblok
; /* Get the next */
877 kmem_free(mapping_map
, (vm_offset_t
) mbn
, PAGE_SIZE
); /* Release this mapping block */
879 mbn
= mb
; /* Chain to the next */
882 __asm__
volatile("eieio"); /* Make sure all is well */
883 mapCtl
.mapcrecurse
= 0; /* We are done now */
888 * mapping_free(mapping *mp) - release a mapping to the free list
890 * This routine takes a mapping and adds it to the free list.
891 * If this mapping make the block non-empty, we queue it to the free block list.
892 * NOTE: we might want to queue it to the end to keep quelch the pathalogical
893 * case when we get a mapping and free it repeatedly causing the block to chain and unchain.
894 * If this release fills a block and we are above the threshold, we release the block
897 void mapping_free(struct mapping
*mp
) { /* Release a mapping */
899 mappingblok_t
*mb
, *mbn
;
901 unsigned int full
, mindx
, lists
;
903 mindx
= ((unsigned int)mp
& (PAGE_SIZE
- 1)) >> 6; /* Get index to mapping */
904 mb
= (mappingblok_t
*)((unsigned int)mp
& -PAGE_SIZE
); /* Point to the mapping block */
905 lists
= (mp
->mpFlags
& mpLists
); /* get #lists */
906 if ((lists
== 0) || (lists
> kSkipListMaxLists
)) /* panic if out of range */
907 panic("mapping_free: mpLists invalid\n");
910 mp
->mpFlags
= 0x99999999; /* (BRINGUP) */
911 mp
->mpSpace
= 0x9999; /* (BRINGUP) */
912 mp
->u
.mpBSize
= 0x9999; /* (BRINGUP) */
913 mp
->mpPte
= 0x99999998; /* (BRINGUP) */
914 mp
->mpPAddr
= 0x99999999; /* (BRINGUP) */
915 mp
->mpVAddr
= 0x9999999999999999ULL
; /* (BRINGUP) */
916 mp
->mpAlias
= 0x9999999999999999ULL
; /* (BRINGUP) */
917 mp
->mpList0
= 0x9999999999999999ULL
; /* (BRINGUP) */
918 mp
->mpList
[0] = 0x9999999999999999ULL
; /* (BRINGUP) */
919 mp
->mpList
[1] = 0x9999999999999999ULL
; /* (BRINGUP) */
920 mp
->mpList
[2] = 0x9999999999999999ULL
; /* (BRINGUP) */
922 if(lists
> mpBasicLists
) { /* (BRINGUP) */
923 mp
->mpList
[3] = 0x9999999999999999ULL
; /* (BRINGUP) */
924 mp
->mpList
[4] = 0x9999999999999999ULL
; /* (BRINGUP) */
925 mp
->mpList
[5] = 0x9999999999999999ULL
; /* (BRINGUP) */
926 mp
->mpList
[6] = 0x9999999999999999ULL
; /* (BRINGUP) */
927 mp
->mpList
[7] = 0x9999999999999999ULL
; /* (BRINGUP) */
928 mp
->mpList
[8] = 0x9999999999999999ULL
; /* (BRINGUP) */
929 mp
->mpList
[9] = 0x9999999999999999ULL
; /* (BRINGUP) */
930 mp
->mpList
[10] = 0x9999999999999999ULL
; /* (BRINGUP) */
935 s
= splhigh(); /* Don't bother from now on */
936 if(!hw_lock_to((hw_lock_t
)&mapCtl
.mapclock
, LockTimeOut
)) { /* Lock the control header */
937 panic("mapping_free - timeout getting control lock\n"); /* Tell all and die */
940 full
= !(mb
->mapblokfree
[0] | mb
->mapblokfree
[1]); /* See if full now */
941 mb
->mapblokfree
[mindx
>> 5] |= (0x80000000 >> (mindx
& 31)); /* Flip on the free bit */
942 if ( lists
> mpBasicLists
) { /* if big block, lite the 2nd bit too */
944 mb
->mapblokfree
[mindx
>> 5] |= (0x80000000 >> (mindx
& 31));
949 if(full
) { /* If it was full before this: */
950 mb
->nextblok
= mapCtl
.mapcnext
; /* Move head of list to us */
951 mapCtl
.mapcnext
= mb
; /* Chain us to the head of the list */
952 if(!((unsigned int)mapCtl
.mapclast
))
953 mapCtl
.mapclast
= mb
;
956 mapCtl
.mapcfree
++; /* Bump free count */
957 mapCtl
.mapcinuse
--; /* Decriment in use count */
959 mapCtl
.mapcfreec
++; /* Count total calls */
961 if(mapCtl
.mapcfree
> mapCtl
.mapcmin
) { /* Should we consider releasing this? */
962 if(((mb
->mapblokfree
[0] | 0x80000000) & mb
->mapblokfree
[1]) == 0xFFFFFFFF) { /* See if empty now */
964 if(mapCtl
.mapcnext
== mb
) { /* Are we first on the list? */
965 mapCtl
.mapcnext
= mb
->nextblok
; /* Unchain us */
966 if(!((unsigned int)mapCtl
.mapcnext
)) mapCtl
.mapclast
= 0; /* If last, remove last */
968 else { /* We're not first */
969 for(mbn
= mapCtl
.mapcnext
; mbn
!= 0; mbn
= mbn
->nextblok
) { /* Search for our block */
970 if(mbn
->nextblok
== mb
) break; /* Is the next one our's? */
972 if(!mbn
) panic("mapping_free: attempt to release mapping block (%08X) not on list\n", mp
);
973 mbn
->nextblok
= mb
->nextblok
; /* Dequeue us */
974 if(mapCtl
.mapclast
== mb
) mapCtl
.mapclast
= mbn
; /* If last, make our predecessor last */
977 if(mb
->mapblokflags
& mbPerm
) { /* Is this permanently assigned? */
978 mb
->nextblok
= mapCtl
.mapcnext
; /* Move chain head to us */
979 mapCtl
.mapcnext
= mb
; /* Chain us to the head */
980 if(!((unsigned int)mb
->nextblok
)) mapCtl
.mapclast
= mb
; /* If last, make us so */
983 mapCtl
.mapcfree
-= MAPPERBLOK
; /* Remove the block from the free count */
984 mapCtl
.mapcreln
++; /* Count on release list */
985 mb
->nextblok
= mapCtl
.mapcrel
; /* Move pointer */
986 mapCtl
.mapcrel
= mb
; /* Chain us in front */
991 if(mapCtl
.mapcreln
> MAPFRTHRSH
) { /* Do we have way too many releasable mappings? */
992 if(hw_compare_and_store(0, 1, &mapCtl
.mapcrecurse
)) { /* Make sure we aren't recursing */
993 thread_call_enter(mapping_adjust_call
); /* Go toss some */
996 hw_lock_unlock((hw_lock_t
)&mapCtl
.mapclock
); /* Unlock our stuff */
997 splx(s
); /* Restore 'rupts */
999 return; /* Bye, dude... */
1004 * mapping_alloc(lists) - obtain a mapping from the free list
1006 * This routine takes a mapping off of the free list and returns its address.
1007 * The mapping is zeroed, and its mpLists count is set. The caller passes in
1008 * the number of skiplists it would prefer; if this number is greater than
1009 * mpBasicLists (ie, 4) then we need to allocate a 128-byte mapping, which is
1010 * just two consequtive free entries coallesced into one. If we cannot find
1011 * two consequtive free entries, we clamp the list count down to mpBasicLists
1012 * and return a basic 64-byte node. Our caller never knows the difference.
1014 * If this allocation empties a block, we remove it from the free list.
1015 * If this allocation drops the total number of free entries below a threshold,
1016 * we allocate a new block.
1019 decl_simple_lock_data(extern,free_pmap_lock
)
1022 mapping_alloc(int lists
) { /* Obtain a mapping */
1024 register mapping_t
*mp
;
1025 mappingblok_t
*mb
, *mbn
;
1028 int big
= (lists
> mpBasicLists
); /* set flag if big block req'd */
1029 pmap_t refpmap
, ckpmap
;
1030 unsigned int space
, i
;
1031 addr64_t va
, nextva
;
1032 boolean_t found_mapping
;
1033 boolean_t do_rescan
;
1035 s
= splhigh(); /* Don't bother from now on */
1036 if(!hw_lock_to((hw_lock_t
)&mapCtl
.mapclock
, LockTimeOut
)) { /* Lock the control header */
1037 panic("mapping_alloc - timeout getting control lock\n"); /* Tell all and die */
1040 if(!((unsigned int)mapCtl
.mapcnext
)) { /* Are there any free mappings? */
1043 * No free mappings. First, there may be some mapping blocks on the "to be released"
1044 * list. If so, rescue one. Otherwise, try to steal a couple blocks worth.
1047 if((mbn
= mapCtl
.mapcrel
) != 0) { /* Try to rescue a block from impending doom */
1048 mapCtl
.mapcrel
= mbn
->nextblok
; /* Pop the queue */
1049 mapCtl
.mapcreln
--; /* Back off the count */
1050 mapping_free_init((vm_offset_t
)mbn
, 0, 1); /* Initialize a non-permanent block */
1054 hw_lock_unlock((hw_lock_t
)&mapCtl
.mapclock
);
1056 simple_lock(&free_pmap_lock
);
1058 if(!hw_lock_to((hw_lock_t
)&mapCtl
.mapclock
, LockTimeOut
)) { /* Lock the control header */
1059 panic("mapping_alloc - timeout getting control lock\n"); /* Tell all and die */
1062 if (!((unsigned int)mapCtl
.mapcnext
)) {
1064 refpmap
= (pmap_t
)cursor_pmap
->pmap_link
.next
;
1065 space
= mapCtl
.mapcflush
.spacenum
;
1066 while (refpmap
!= cursor_pmap
) {
1067 if(((pmap_t
)(refpmap
->pmap_link
.next
))->spaceNum
> space
) break;
1068 refpmap
= (pmap_t
)refpmap
->pmap_link
.next
;
1072 va
= mapCtl
.mapcflush
.addr
;
1073 found_mapping
= FALSE
;
1075 while (mapCtl
.mapcfree
<= (MAPPERBLOK
*2)) {
1077 hw_lock_unlock((hw_lock_t
)&mapCtl
.mapclock
);
1079 ckpmap
= (pmap_t
)ckpmap
->pmap_link
.next
;
1081 /* We don't steal mappings from the kernel pmap, a VMM host pmap, or a VMM guest pmap with guest
1082 shadow assist active.
1084 if ((ckpmap
->stats
.resident_count
!= 0) && (ckpmap
!= kernel_pmap
)
1085 && !(ckpmap
->pmapFlags
& (pmapVMgsaa
|pmapVMhost
))) {
1088 mp
= hw_purge_map(ckpmap
, va
, &nextva
);
1090 switch ((unsigned int)mp
& mapRetCode
) {
1093 found_mapping
= TRUE
;
1098 panic("mapping_alloc: hw_purge_map failed - pmap = %08X, va = %16llX, code = %08X\n", ckpmap
, va
, mp
);
1102 if (mapRtNotFnd
== ((unsigned int)mp
& mapRetCode
))
1112 if (ckpmap
== refpmap
) {
1113 if (found_mapping
== FALSE
)
1114 panic("no valid pmap to purge mappings\n");
1116 found_mapping
= FALSE
;
1119 if(!hw_lock_to((hw_lock_t
)&mapCtl
.mapclock
, LockTimeOut
)) { /* Lock the control header */
1120 panic("mapping_alloc - timeout getting control lock\n"); /* Tell all and die */
1125 mapCtl
.mapcflush
.spacenum
= ckpmap
->spaceNum
;
1126 mapCtl
.mapcflush
.addr
= nextva
;
1129 simple_unlock(&free_pmap_lock
);
1134 mb
= mapCtl
.mapcnext
;
1136 if ( big
) { /* if we need a big (128-byte) mapping */
1137 mapCtl
.mapcbig
++; /* count attempts to allocate a big mapping */
1138 mbn
= NULL
; /* this will be prev ptr */
1140 while( mb
) { /* loop over mapping blocks with free entries */
1141 mindx
= mapalc2(mb
); /* try for 2 consequtive free bits in this block */
1143 if ( mindx
) break; /* exit loop if we found them */
1144 mbn
= mb
; /* remember previous block */
1145 mb
= mb
->nextblok
; /* move on to next block */
1147 if ( mindx
== 0 ) { /* if we couldn't find 2 consequtive bits... */
1148 mapCtl
.mapcbigfails
++; /* count failures */
1149 big
= 0; /* forget that we needed a big mapping */
1150 lists
= mpBasicLists
; /* clamp list count down to the max in a 64-byte mapping */
1151 mb
= mapCtl
.mapcnext
; /* back to the first block with a free entry */
1153 else { /* if we did find a big mapping */
1154 mapCtl
.mapcfree
--; /* Decrement free count twice */
1155 mapCtl
.mapcinuse
++; /* Bump in use count twice */
1156 if ( mindx
< 0 ) { /* if we just used the last 2 free bits in this block */
1157 if (mbn
) { /* if this wasn't the first block */
1158 mindx
= -mindx
; /* make positive */
1159 mbn
->nextblok
= mb
->nextblok
; /* unlink this one from the middle of block list */
1160 if (mb
== mapCtl
.mapclast
) { /* if we emptied last block */
1161 mapCtl
.mapclast
= mbn
; /* then prev block is now last */
1168 if ( !big
) { /* if we need a small (64-byte) mapping */
1169 if(!(mindx
= mapalc1(mb
))) /* Allocate a 1-bit slot */
1170 panic("mapping_alloc - empty mapping block detected at %08X\n", mb
);
1173 if(mindx
< 0) { /* Did we just take the last one */
1174 mindx
= -mindx
; /* Make positive */
1175 mapCtl
.mapcnext
= mb
->nextblok
; /* Remove us from the list */
1176 if(!((unsigned int)mapCtl
.mapcnext
)) mapCtl
.mapclast
= 0; /* Removed the last one */
1179 mapCtl
.mapcfree
--; /* Decrement free count */
1180 mapCtl
.mapcinuse
++; /* Bump in use count */
1182 mapCtl
.mapcallocc
++; /* Count total calls */
1185 * Note: in the following code, we will attempt to rescue blocks only one at a time.
1186 * Eventually, after a few more mapping_alloc calls, we will catch up. If there are none
1187 * rescueable, we will kick the misc scan who will allocate some for us. We only do this
1188 * if we haven't already done it.
1189 * For early boot, we are set up to only rescue one block at a time. This is because we prime
1190 * the release list with as much as we need until threads start.
1193 if(mapCtl
.mapcfree
< mapCtl
.mapcmin
) { /* See if we need to replenish */
1194 if((mbn
= mapCtl
.mapcrel
) != 0) { /* Try to rescue a block from impending doom */
1195 mapCtl
.mapcrel
= mbn
->nextblok
; /* Pop the queue */
1196 mapCtl
.mapcreln
--; /* Back off the count */
1197 mapping_free_init((vm_offset_t
)mbn
, 0, 1); /* Initialize a non-permanent block */
1199 else { /* We need to replenish */
1200 if (mapCtl
.mapcfree
< (mapCtl
.mapcmin
/ 4)) {
1201 if(hw_compare_and_store(0, 1, &mapCtl
.mapcrecurse
)) { /* Make sure we aren't recursing */
1202 thread_call_enter(mapping_adjust_call
); /* Go allocate some more */
1208 hw_lock_unlock((hw_lock_t
)&mapCtl
.mapclock
); /* Unlock our stuff */
1209 splx(s
); /* Restore 'rupts */
1211 mp
= &((mapping_t
*)mb
)[mindx
]; /* Point to the allocated mapping */
1212 mp
->mpFlags
= lists
; /* set the list count */
1215 return mp
; /* Send it back... */
1220 consider_mapping_adjust(void)
1224 s
= splhigh(); /* Don't bother from now on */
1225 if(!hw_lock_to((hw_lock_t
)&mapCtl
.mapclock
, LockTimeOut
)) { /* Lock the control header */
1226 panic("consider_mapping_adjust -- lock timeout\n");
1229 if (mapCtl
.mapcfree
< (mapCtl
.mapcmin
/ 4)) {
1230 if(hw_compare_and_store(0, 1, &mapCtl
.mapcrecurse
)) { /* Make sure we aren't recursing */
1231 thread_call_enter(mapping_adjust_call
); /* Go allocate some more */
1235 hw_lock_unlock((hw_lock_t
)&mapCtl
.mapclock
); /* Unlock our stuff */
1236 splx(s
); /* Restore 'rupts */
1243 * void mapping_free_init(mb, perm) - Adds a block of storage to the free mapping list
1245 * The mapping block is a page size area on a page boundary. It contains 1 header and 63
1246 * mappings. This call adds and initializes a block for use. Mappings come in two sizes,
1247 * 64 and 128 bytes (the only difference is the number of skip-lists.) When we allocate a
1248 * 128-byte mapping we just look for two consequtive free 64-byte mappings, so most of the
1249 * code only deals with "basic" 64-byte mappings. This works for two reasons:
1250 * - Only one in 256 mappings is big, so they are rare.
1251 * - If we cannot find two consequtive free mappings, we just return a small one.
1252 * There is no problem with doing this, except a minor performance degredation.
1253 * Therefore, all counts etc in the mapping control structure are in units of small blocks.
1255 * The header contains a chain link, bit maps, a virtual to real translation mask, and
1256 * some statistics. Bit maps map each slot on the page (bit 0 is not used because it
1257 * corresponds to the header). The translation mask is the XOR of the virtual and real
1258 * addresses (needless to say, the block must be wired).
1260 * We handle these mappings the same way as saveareas: the block is only on the chain so
1261 * long as there are free entries in it.
1263 * Empty blocks are garbage collected when there are at least mapCtl.mapcmin pages worth of free
1264 * mappings. Blocks marked PERM won't ever be released.
1266 * If perm is negative, the mapping is initialized, but immediately queued to the mapCtl.mapcrel
1267 * list. We do this only at start up time. This is done because we only allocate blocks
1268 * in the pageout scan and it doesn't start up until after we run out of the initial mappings.
1269 * Therefore, we need to preallocate a bunch, but we don't want them to be permanent. If we put
1270 * them on the release queue, the allocate routine will rescue them. Then when the
1271 * pageout scan starts, all extra ones will be released.
1276 void mapping_free_init(vm_offset_t mbl
, int perm
, boolean_t locked
) {
1277 /* Set's start and end of a block of mappings
1278 perm indicates if the block can be released
1279 or goes straight to the release queue .
1280 locked indicates if the lock is held already */
1287 mb
= (mappingblok_t
*)mbl
; /* Start of area */
1289 if(perm
>= 0) { /* See if we need to initialize the block */
1291 raddr
= (addr64_t
)((unsigned int)mbl
); /* Perm means V=R */
1292 mb
->mapblokflags
= mbPerm
; /* Set perm */
1293 // mb->mapblokflags |= (unsigned int)mb; /* (BRINGUP) */
1296 pp
= pmap_find_phys(kernel_pmap
, (addr64_t
)mbl
); /* Get the physical page */
1297 if(!pp
) { /* What gives? Where's the page? */
1298 panic("mapping_free_init: could not find translation for vaddr %016llX\n", (addr64_t
)mbl
);
1301 raddr
= (addr64_t
)pp
<< 12; /* Convert physical page to physical address */
1302 mb
->mapblokflags
= 0; /* Set not perm */
1303 // mb->mapblokflags |= (unsigned int)mb; /* (BRINGUP) */
1306 mb
->mapblokvrswap
= raddr
^ (addr64_t
)((unsigned int)mbl
); /* Form translation mask */
1308 mb
->mapblokfree
[0] = 0x7FFFFFFF; /* Set first 32 (minus 1) free */
1309 mb
->mapblokfree
[1] = 0xFFFFFFFF; /* Set next 32 free */
1312 s
= splhigh(); /* Don't bother from now on */
1313 if(!locked
) { /* Do we need the lock? */
1314 if(!hw_lock_to((hw_lock_t
)&mapCtl
.mapclock
, LockTimeOut
)) { /* Lock the control header */
1315 panic("mapping_free_init: timeout getting control lock\n"); /* Tell all and die */
1319 if(perm
< 0) { /* Direct to release queue? */
1320 mb
->nextblok
= mapCtl
.mapcrel
; /* Move forward pointer */
1321 mapCtl
.mapcrel
= mb
; /* Queue us on in */
1322 mapCtl
.mapcreln
++; /* Count the free block */
1324 else { /* Add to the free list */
1326 mb
->nextblok
= 0; /* We always add to the end */
1327 mapCtl
.mapcfree
+= MAPPERBLOK
; /* Bump count */
1329 if(!((unsigned int)mapCtl
.mapcnext
)) { /* First entry on list? */
1330 mapCtl
.mapcnext
= mapCtl
.mapclast
= mb
; /* Chain to us */
1332 else { /* We are not the first */
1333 mapCtl
.mapclast
->nextblok
= mb
; /* Point the last to us */
1334 mapCtl
.mapclast
= mb
; /* We are now last */
1338 if(!locked
) { /* Do we need to unlock? */
1339 hw_lock_unlock((hw_lock_t
)&mapCtl
.mapclock
); /* Unlock our stuff */
1342 splx(s
); /* Restore 'rupts */
1343 return; /* All done, leave... */
1348 * void mapping_prealloc(unsigned int) - Preallocates mapppings for large request
1350 * No locks can be held, because we allocate memory here.
1351 * This routine needs a corresponding mapping_relpre call to remove the
1352 * hold off flag so that the adjust routine will free the extra mapping
1353 * blocks on the release list. I don't like this, but I don't know
1354 * how else to do this for now...
1358 void mapping_prealloc(unsigned int size
) { /* Preallocates mapppings for large request */
1365 s
= splhigh(); /* Don't bother from now on */
1366 if(!hw_lock_to((hw_lock_t
)&mapCtl
.mapclock
, LockTimeOut
)) { /* Lock the control header */
1367 panic("mapping_prealloc - timeout getting control lock\n"); /* Tell all and die */
1370 nmapb
= (size
>> 12) + mapCtl
.mapcmin
; /* Get number of entries needed for this and the minimum */
1372 mapCtl
.mapcholdoff
++; /* Bump the hold off count */
1374 if((nmapb
= (nmapb
- mapCtl
.mapcfree
)) <= 0) { /* Do we already have enough? */
1375 hw_lock_unlock((hw_lock_t
)&mapCtl
.mapclock
); /* Unlock our stuff */
1376 splx(s
); /* Restore 'rupts */
1379 if (!hw_compare_and_store(0, 1, &mapCtl
.mapcrecurse
)) { /* Make sure we aren't recursing */
1380 hw_lock_unlock((hw_lock_t
)&mapCtl
.mapclock
); /* Unlock our stuff */
1381 splx(s
); /* Restore 'rupts */
1384 nmapb
= (nmapb
+ MAPPERBLOK
- 1) / MAPPERBLOK
; /* Get number of blocks to get */
1386 hw_lock_unlock((hw_lock_t
)&mapCtl
.mapclock
); /* Unlock our stuff */
1387 splx(s
); /* Restore 'rupts */
1389 for(i
= 0; i
< nmapb
; i
++) { /* Allocate 'em all */
1390 retr
= kmem_alloc_wired(mapping_map
, (vm_offset_t
*)&mbn
, PAGE_SIZE
); /* Find a virtual address to use */
1391 if(retr
!= KERN_SUCCESS
) /* Did we get some memory? */
1393 mapping_free_init((vm_offset_t
)mbn
, -1, 0); /* Initialize on to the release queue */
1395 if ((mapCtl
.mapcinuse
+ mapCtl
.mapcfree
+ (mapCtl
.mapcreln
* (MAPPERBLOK
+ 1))) > mapCtl
.mapcmaxalloc
)
1396 mapCtl
.mapcmaxalloc
= mapCtl
.mapcinuse
+ mapCtl
.mapcfree
+ (mapCtl
.mapcreln
* (MAPPERBLOK
+ 1));
1398 mapCtl
.mapcrecurse
= 0; /* We are done now */
1402 * void mapping_relpre(void) - Releases preallocation release hold off
1404 * This routine removes the
1405 * hold off flag so that the adjust routine will free the extra mapping
1406 * blocks on the release list. I don't like this, but I don't know
1407 * how else to do this for now...
1411 void mapping_relpre(void) { /* Releases release hold off */
1415 s
= splhigh(); /* Don't bother from now on */
1416 if(!hw_lock_to((hw_lock_t
)&mapCtl
.mapclock
, LockTimeOut
)) { /* Lock the control header */
1417 panic("mapping_relpre - timeout getting control lock\n"); /* Tell all and die */
1419 if(--mapCtl
.mapcholdoff
< 0) { /* Back down the hold off count */
1420 panic("mapping_relpre: hold-off count went negative\n");
1423 hw_lock_unlock((hw_lock_t
)&mapCtl
.mapclock
); /* Unlock our stuff */
1424 splx(s
); /* Restore 'rupts */
1428 * void mapping_free_prime(void) - Primes the mapping block release list
1430 * See mapping_free_init.
1431 * No locks can be held, because we allocate memory here.
1432 * One processor running only.
1436 void mapping_free_prime(void) { /* Primes the mapping block release list */
1441 vm_offset_t mapping_min
;
1443 retr
= kmem_suballoc(kernel_map
, &mapping_min
, sane_size
/ 16,
1444 FALSE
, VM_FLAGS_ANYWHERE
, &mapping_map
);
1446 if (retr
!= KERN_SUCCESS
)
1447 panic("mapping_free_prime: kmem_suballoc failed");
1450 nmapb
= (mapCtl
.mapcfree
+ mapCtl
.mapcinuse
+ MAPPERBLOK
- 1) / MAPPERBLOK
; /* Get permanent allocation */
1451 nmapb
= nmapb
* 4; /* Get 4 times our initial allocation */
1454 kprintf("mapping_free_prime: free = %08X; in use = %08X; priming = %08X\n",
1455 mapCtl
.mapcfree
, mapCtl
.mapcinuse
, nmapb
);
1458 for(i
= 0; i
< nmapb
; i
++) { /* Allocate 'em all */
1459 retr
= kmem_alloc_wired(mapping_map
, (vm_offset_t
*)&mbn
, PAGE_SIZE
); /* Find a virtual address to use */
1460 if(retr
!= KERN_SUCCESS
) { /* Did we get some memory? */
1461 panic("Whoops... Not a bit of wired memory left for anyone\n");
1463 mapping_free_init((vm_offset_t
)mbn
, -1, 0); /* Initialize onto release queue */
1465 if ((mapCtl
.mapcinuse
+ mapCtl
.mapcfree
+ (mapCtl
.mapcreln
* (MAPPERBLOK
+ 1))) > mapCtl
.mapcmaxalloc
)
1466 mapCtl
.mapcmaxalloc
= mapCtl
.mapcinuse
+ mapCtl
.mapcfree
+ (mapCtl
.mapcreln
* (MAPPERBLOK
+ 1));
1471 mapping_fake_zone_info(int *count
, vm_size_t
*cur_size
, vm_size_t
*max_size
, vm_size_t
*elem_size
,
1472 vm_size_t
*alloc_size
, int *collectable
, int *exhaustable
)
1474 *count
= mapCtl
.mapcinuse
;
1475 *cur_size
= ((PAGE_SIZE
/ (MAPPERBLOK
+ 1)) * (mapCtl
.mapcinuse
+ mapCtl
.mapcfree
)) + (PAGE_SIZE
* mapCtl
.mapcreln
);
1476 *max_size
= (PAGE_SIZE
/ (MAPPERBLOK
+ 1)) * mapCtl
.mapcmaxalloc
;
1477 *elem_size
= (PAGE_SIZE
/ (MAPPERBLOK
+ 1));
1478 *alloc_size
= PAGE_SIZE
;
1486 * addr64_t mapping_p2v(pmap_t pmap, ppnum_t pa) - Finds first virtual mapping of a physical page in a space
1488 * First looks up the physical entry associated witht the physical page. Then searches the alias
1489 * list for a matching pmap. It grabs the virtual address from the mapping, drops busy, and returns
1494 addr64_t
mapping_p2v(pmap_t pmap
, ppnum_t pa
) { /* Finds first virtual mapping of a physical page in a space */
1498 unsigned int pindex
;
1499 phys_entry_t
*physent
;
1502 physent
= mapping_phys_lookup(pa
, &pindex
); /* Get physical entry */
1503 if(!physent
) { /* Did we find the physical page? */
1504 panic("mapping_p2v: invalid physical page %08X\n", pa
);
1507 s
= splhigh(); /* Make sure interruptions are disabled */
1509 mp
= hw_find_space(physent
, pmap
->space
); /* Go find the first mapping to the page from the requested pmap */
1511 if(mp
) { /* Did we find one? */
1512 va
= mp
->mpVAddr
& -4096; /* If so, get the cleaned up vaddr */
1513 mapping_drop_busy(mp
); /* Go ahead and relase the mapping now */
1515 else va
= 0; /* Return failure */
1517 splx(s
); /* Restore 'rupts */
1519 return va
; /* Bye, bye... */
1527 * Convert a kernel virtual address to a physical address
1529 addr64_t
kvtophys(vm_offset_t va
) {
1531 return pmap_extract(kernel_pmap
, va
); /* Find mapping and lock the physical entry for this mapping */
1536 * void ignore_zero_fault(boolean_t) - Sets up to ignore or honor any fault on
1537 * page 0 access for the current thread.
1539 * If parameter is TRUE, faults are ignored
1540 * If parameter is FALSE, faults are honored
1544 void ignore_zero_fault(boolean_t type
) { /* Sets up to ignore or honor any fault on page 0 access for the current thread */
1546 if(type
) current_thread()->machine
.specFlags
|= ignoreZeroFault
; /* Ignore faults on page 0 */
1547 else current_thread()->machine
.specFlags
&= ~ignoreZeroFault
; /* Honor faults on page 0 */
1549 return; /* Return the result or 0... */
1553 * nop in current ppc implementation
1555 void inval_copy_windows(__unused thread_t t
)
1561 * Copies data between a physical page and a virtual page, or 2 physical. This is used to
1562 * move data from the kernel to user state. Note that the "which" parm
1563 * says which of the parameters is physical and if we need to flush sink/source.
1564 * Note that both addresses may be physical, but only one may be virtual.
1566 * The rules are that the size can be anything. Either address can be on any boundary
1567 * and span pages. The physical data must be contiguous as must the virtual.
1569 * We can block when we try to resolve the virtual address at each page boundary.
1570 * We don't check protection on the physical page.
1572 * Note that we will not check the entire range and if a page translation fails,
1573 * we will stop with partial contents copied.
1577 kern_return_t
hw_copypv_32(addr64_t source
, addr64_t sink
, unsigned int size
, int which
) {
1581 addr64_t nextva
, vaddr
, paddr
;
1582 register mapping_t
*mp
;
1584 unsigned int lop
, csize
;
1585 int needtran
, bothphys
;
1586 unsigned int pindex
;
1587 phys_entry_t
*physent
;
1593 map
= (which
& cppvKmap
) ? kernel_map
: current_map_fast();
1595 if((which
& (cppvPsrc
| cppvPsnk
)) == 0 ) { /* Make sure that only one is virtual */
1596 panic("copypv: no more than 1 parameter may be virtual\n"); /* Not allowed */
1599 bothphys
= 1; /* Assume both are physical */
1601 if(!(which
& cppvPsnk
)) { /* Is sink page virtual? */
1602 vaddr
= sink
; /* Sink side is virtual */
1603 bothphys
= 0; /* Show both aren't physical */
1604 prot
= VM_PROT_READ
| VM_PROT_WRITE
; /* Sink always must be read/write */
1605 } else if (!(which
& cppvPsrc
)) { /* Is source page virtual? */
1606 vaddr
= source
; /* Source side is virtual */
1607 bothphys
= 0; /* Show both aren't physical */
1608 prot
= VM_PROT_READ
; /* Virtual source is always read only */
1611 needtran
= 1; /* Show we need to map the virtual the first time */
1612 s
= splhigh(); /* Don't bother me */
1616 if(!bothphys
&& (needtran
|| !(vaddr
& 4095LL))) { /* If first time or we stepped onto a new page, we need to translate */
1617 if(!needtran
) { /* If this is not the first translation, we need to drop the old busy */
1618 mapping_drop_busy(mp
); /* Release the old mapping now */
1623 mp
= mapping_find(map
->pmap
, vaddr
, &nextva
, 1); /* Find and busy the mapping */
1624 if(!mp
) { /* Was it there? */
1625 if(getPerProc()->istackptr
== 0)
1626 panic("copypv: No vaild mapping on memory %s %x", "RD", vaddr
);
1628 splx(s
); /* Restore the interrupt level */
1629 ret
= vm_fault(map
, vm_map_trunc_page(vaddr
), prot
, FALSE
, THREAD_UNINT
, NULL
, 0); /* Didn't find it, try to fault it in... */
1631 if(ret
!= KERN_SUCCESS
)return KERN_FAILURE
; /* Didn't find any, return no good... */
1633 s
= splhigh(); /* Don't bother me */
1634 continue; /* Go try for the map again... */
1637 if (mp
->mpVAddr
& mpI
) { /* cache inhibited, so force the appropriate page to be flushed before */
1638 if (which
& cppvPsrc
) /* and after the copy to avoid cache paradoxes */
1645 /* Note that we have to have the destination writable. So, if we already have it, or we are mapping the source,
1648 if((which
& cppvPsnk
) || !(mp
->mpVAddr
& 1)) break; /* We got it mapped R/W or the source is not virtual, leave... */
1650 mapping_drop_busy(mp
); /* Go ahead and release the mapping for now */
1651 if(getPerProc()->istackptr
== 0)
1652 panic("copypv: No vaild mapping on memory %s %x", "RDWR", vaddr
);
1653 splx(s
); /* Restore the interrupt level */
1655 ret
= vm_fault(map
, vm_map_trunc_page(vaddr
), VM_PROT_READ
| VM_PROT_WRITE
, FALSE
, THREAD_UNINT
, NULL
, 0); /* check for a COW area */
1656 if (ret
!= KERN_SUCCESS
) return KERN_FAILURE
; /* We couldn't get it R/W, leave in disgrace... */
1657 s
= splhigh(); /* Don't bother me */
1659 paddr
= ((addr64_t
)mp
->mpPAddr
<< 12) + (vaddr
- (mp
->mpVAddr
& -4096LL)); /* construct the physical address... this calculation works */
1660 /* properly on both single page and block mappings */
1661 if(which
& cppvPsrc
) sink
= paddr
; /* If source is physical, then the sink is virtual */
1662 else source
= paddr
; /* Otherwise the source is */
1665 lop
= (unsigned int)(4096LL - (sink
& 4095LL)); /* Assume sink smallest */
1666 if(lop
> (unsigned int)(4096LL - (source
& 4095LL))) lop
= (unsigned int)(4096LL - (source
& 4095LL)); /* No, source is smaller */
1668 csize
= size
; /* Assume we can copy it all */
1669 if(lop
< size
) csize
= lop
; /* Nope, we can't do it all */
1671 if(which
& cppvFsrc
) flush_dcache64(source
, csize
, 1); /* If requested, flush source before move */
1672 if(which
& cppvFsnk
) flush_dcache64(sink
, csize
, 1); /* If requested, flush sink before move */
1674 bcopy_physvir_32(source
, sink
, csize
); /* Do a physical copy, virtually */
1676 if(which
& cppvFsrc
) flush_dcache64(source
, csize
, 1); /* If requested, flush source after move */
1677 if(which
& cppvFsnk
) flush_dcache64(sink
, csize
, 1); /* If requested, flush sink after move */
1680 * Note that for certain ram disk flavors, we may be copying outside of known memory.
1681 * Therefore, before we try to mark it modifed, we check if it exists.
1684 if( !(which
& cppvNoModSnk
)) {
1685 physent
= mapping_phys_lookup(sink
>> 12, &pindex
); /* Get physical entry for sink */
1686 if(physent
) mapping_set_mod((ppnum_t
)(sink
>> 12)); /* Make sure we know that it is modified */
1688 if( !(which
& cppvNoRefSrc
)) {
1689 physent
= mapping_phys_lookup(source
>> 12, &pindex
); /* Get physical entry for source */
1690 if(physent
) mapping_set_ref((ppnum_t
)(source
>> 12)); /* Make sure we know that it is modified */
1692 size
= size
- csize
; /* Calculate what is left */
1693 vaddr
= vaddr
+ csize
; /* Move to next sink address */
1694 source
= source
+ csize
; /* Bump source to next physical address */
1695 sink
= sink
+ csize
; /* Bump sink to next physical address */
1698 if(!bothphys
) mapping_drop_busy(mp
); /* Go ahead and release the mapping of the virtual page if any */
1699 splx(s
); /* Open up for interrupts */
1701 return KERN_SUCCESS
;
1709 void mapping_verify(void) {
1712 mappingblok_t
*mb
, *mbn
;
1713 unsigned int relncnt
;
1714 unsigned int dumbodude
;
1718 s
= splhigh(); /* Don't bother from now on */
1720 mbn
= 0; /* Start with none */
1721 for(mb
= mapCtl
.mapcnext
; mb
; mb
= mb
->nextblok
) { /* Walk the free chain */
1722 if((mappingblok_t
*)(mb
->mapblokflags
& 0x7FFFFFFF) != mb
) { /* Is tag ok? */
1723 panic("mapping_verify: flags tag bad, free chain; mb = %08X, tag = %08X\n", mb
, mb
->mapblokflags
);
1725 mbn
= mb
; /* Remember the last one */
1728 if(mapCtl
.mapcnext
&& (mapCtl
.mapclast
!= mbn
)) { /* Do we point to the last one? */
1729 panic("mapping_verify: last pointer bad; mb = %08X, mapclast = %08X\n", mb
, mapCtl
.mapclast
);
1732 relncnt
= 0; /* Clear count */
1733 for(mb
= mapCtl
.mapcrel
; mb
; mb
= mb
->nextblok
) { /* Walk the release chain */
1734 dumbodude
|= mb
->mapblokflags
; /* Just touch it to make sure it is mapped */
1735 relncnt
++; /* Count this one */
1738 if(mapCtl
.mapcreln
!= relncnt
) { /* Is the count on release queue ok? */
1739 panic("mapping_verify: bad release queue count; mapcreln = %d, cnt = %d, ignore this = %08X\n", mapCtl
.mapcreln
, relncnt
, dumbodude
);
1742 splx(s
); /* Restore 'rupts */
1747 void mapping_phys_unused(ppnum_t pa
) {
1749 unsigned int pindex
;
1750 phys_entry_t
*physent
;
1752 physent
= mapping_phys_lookup(pa
, &pindex
); /* Get physical entry */
1753 if(!physent
) return; /* Did we find the physical page? */
1755 if(!(physent
->ppLink
& ~(ppLock
| ppFlags
))) return; /* No one else is here */
1757 panic("mapping_phys_unused: physical page (%08X) in use, physent = %08X\n", pa
, physent
);
1761 void mapping_hibernate_flush(void)
1765 struct phys_entry
* entry
;
1767 for (bank
= 0; bank
< pmap_mem_regions_count
; bank
++)
1769 entry
= (struct phys_entry
*) pmap_mem_regions
[bank
].mrPhysTab
;
1770 for (page
= pmap_mem_regions
[bank
].mrStart
; page
<= pmap_mem_regions
[bank
].mrEnd
; page
++)
1772 hw_walk_phys(entry
, hwpNoop
, hwpNoop
, hwpNoop
, 0, hwpPurgePTE
);