]> git.saurik.com Git - apple/xnu.git/blob - osfmk/default_pager/dp_memory_object.c
3ffa10e447a17a31aa5a3fb06cc7ddaa09136469
[apple/xnu.git] / osfmk / default_pager / dp_memory_object.c
1 /*
2 * Copyright (c) 2000-2006 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * @OSF_COPYRIGHT@
30 */
31 /*
32 * Mach Operating System
33 * Copyright (c) 1991,1990,1989 Carnegie Mellon University
34 * All Rights Reserved.
35 *
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
41 *
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
45 *
46 * Carnegie Mellon requests users of this software to return to
47 *
48 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
49 * School of Computer Science
50 * Carnegie Mellon University
51 * Pittsburgh PA 15213-3890
52 *
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
55 */
56
57 /*
58 * Default Pager.
59 * Memory Object Management.
60 */
61
62 #include "default_pager_internal.h"
63 #include <default_pager/default_pager_object_server.h>
64 #include <mach/memory_object_default_server.h>
65 #include <mach/memory_object_control.h>
66 #include <mach/memory_object_types.h>
67 #include <mach/memory_object_server.h>
68 #include <mach/upl.h>
69 #include <mach/vm_map.h>
70 #include <vm/memory_object.h>
71 #include <vm/vm_pageout.h>
72 #include <vm/vm_map.h>
73 #include <vm/vm_protos.h>
74
75 /* forward declaration */
76 vstruct_t vs_object_create(dp_size_t size);
77
78 /*
79 * List of all vstructs. A specific vstruct is
80 * found directly via its port, this list is
81 * only used for monitoring purposes by the
82 * default_pager_object* calls and by ps_delete
83 * when abstract memory objects must be scanned
84 * to remove any live storage on a segment which
85 * is to be removed.
86 */
87 struct vstruct_list_head vstruct_list;
88
89 __private_extern__ void
90 vstruct_list_insert(
91 vstruct_t vs)
92 {
93 VSL_LOCK();
94 queue_enter(&vstruct_list.vsl_queue, vs, vstruct_t, vs_links);
95 vstruct_list.vsl_count++;
96 VSL_UNLOCK();
97 }
98
99
100 __private_extern__ void
101 vstruct_list_delete(
102 vstruct_t vs)
103 {
104 queue_remove(&vstruct_list.vsl_queue, vs, vstruct_t, vs_links);
105 vstruct_list.vsl_count--;
106 }
107
108 /*
109 * We use the sequence numbers on requests to regulate
110 * our parallelism. In general, we allow multiple reads and writes
111 * to proceed in parallel, with the exception that reads must
112 * wait for previous writes to finish. (Because the kernel might
113 * generate a data-request for a page on the heels of a data-write
114 * for the same page, and we must avoid returning stale data.)
115 * terminate requests wait for proceeding reads and writes to finish.
116 */
117
118 static unsigned int default_pager_total = 0; /* debugging */
119 static unsigned int default_pager_wait_seqno = 0; /* debugging */
120 static unsigned int default_pager_wait_read = 0; /* debugging */
121 static unsigned int default_pager_wait_write = 0; /* debugging */
122
123 __private_extern__ void
124 vs_async_wait(
125 vstruct_t vs)
126 {
127
128 ASSERT(vs->vs_async_pending >= 0);
129 while (vs->vs_async_pending > 0) {
130 vs->vs_waiting_async = TRUE;
131 assert_wait(&vs->vs_async_pending, THREAD_UNINT);
132 VS_UNLOCK(vs);
133 thread_block(THREAD_CONTINUE_NULL);
134 VS_LOCK(vs);
135 }
136 ASSERT(vs->vs_async_pending == 0);
137 }
138
139
140 #if PARALLEL
141 /*
142 * Waits for correct sequence number. Leaves pager locked.
143 *
144 * JMM - Sequence numbers guarantee ordering of requests generated
145 * by a single thread if the receiver is multithreaded and
146 * the interfaces are asynchronous (i.e. sender can generate
147 * more than one request before the first is received in the
148 * pager). Normally, IPC would generate these number in that
149 * case. But we are trying to avoid using IPC for the in-kernel
150 * scenario. Since these are actually invoked synchronously
151 * anyway (in-kernel), we can just fake the sequence number
152 * generation here (thus avoiding the dependence on IPC).
153 */
154 __private_extern__ void
155 vs_lock(
156 vstruct_t vs)
157 {
158 mach_port_seqno_t seqno;
159
160 default_pager_total++;
161 VS_LOCK(vs);
162
163 seqno = vs->vs_next_seqno++;
164
165 while (vs->vs_seqno != seqno) {
166 default_pager_wait_seqno++;
167 vs->vs_waiting_seqno = TRUE;
168 assert_wait(&vs->vs_seqno, THREAD_UNINT);
169 VS_UNLOCK(vs);
170 thread_block(THREAD_CONTINUE_NULL);
171 VS_LOCK(vs);
172 }
173 }
174
175 /*
176 * Increments sequence number and unlocks pager.
177 */
178 __private_extern__ void
179 vs_unlock(vstruct_t vs)
180 {
181 vs->vs_seqno++;
182 if (vs->vs_waiting_seqno) {
183 vs->vs_waiting_seqno = FALSE;
184 VS_UNLOCK(vs);
185 thread_wakeup(&vs->vs_seqno);
186 return;
187 }
188 VS_UNLOCK(vs);
189 }
190
191 /*
192 * Start a read - one more reader. Pager must be locked.
193 */
194 __private_extern__ void
195 vs_start_read(
196 vstruct_t vs)
197 {
198 vs->vs_readers++;
199 }
200
201 /*
202 * Wait for readers. Unlocks and relocks pager if wait needed.
203 */
204 __private_extern__ void
205 vs_wait_for_readers(
206 vstruct_t vs)
207 {
208 while (vs->vs_readers != 0) {
209 default_pager_wait_read++;
210 vs->vs_waiting_read = TRUE;
211 assert_wait(&vs->vs_readers, THREAD_UNINT);
212 VS_UNLOCK(vs);
213 thread_block(THREAD_CONTINUE_NULL);
214 VS_LOCK(vs);
215 }
216 }
217
218 /*
219 * Finish a read. Pager is unlocked and returns unlocked.
220 */
221 __private_extern__ void
222 vs_finish_read(
223 vstruct_t vs)
224 {
225 VS_LOCK(vs);
226 if (--vs->vs_readers == 0 && vs->vs_waiting_read) {
227 vs->vs_waiting_read = FALSE;
228 VS_UNLOCK(vs);
229 thread_wakeup(&vs->vs_readers);
230 return;
231 }
232 VS_UNLOCK(vs);
233 }
234
235 /*
236 * Start a write - one more writer. Pager must be locked.
237 */
238 __private_extern__ void
239 vs_start_write(
240 vstruct_t vs)
241 {
242 vs->vs_writers++;
243 }
244
245 /*
246 * Wait for writers. Unlocks and relocks pager if wait needed.
247 */
248 __private_extern__ void
249 vs_wait_for_writers(
250 vstruct_t vs)
251 {
252 while (vs->vs_writers != 0) {
253 default_pager_wait_write++;
254 vs->vs_waiting_write = TRUE;
255 assert_wait(&vs->vs_writers, THREAD_UNINT);
256 VS_UNLOCK(vs);
257 thread_block(THREAD_CONTINUE_NULL);
258 VS_LOCK(vs);
259 }
260 vs_async_wait(vs);
261 }
262
263 /* This is to be used for the transfer from segment code ONLY */
264 /* The transfer code holds off vs destruction by keeping the */
265 /* vs_async_wait count non-zero. It will not ocnflict with */
266 /* other writers on an async basis because it only writes on */
267 /* a cluster basis into fresh (as of sync time) cluster locations */
268
269 __private_extern__ void
270 vs_wait_for_sync_writers(
271 vstruct_t vs)
272 {
273 while (vs->vs_writers != 0) {
274 default_pager_wait_write++;
275 vs->vs_waiting_write = TRUE;
276 assert_wait(&vs->vs_writers, THREAD_UNINT);
277 VS_UNLOCK(vs);
278 thread_block(THREAD_CONTINUE_NULL);
279 VS_LOCK(vs);
280 }
281 }
282
283
284 /*
285 * Finish a write. Pager is unlocked and returns unlocked.
286 */
287 __private_extern__ void
288 vs_finish_write(
289 vstruct_t vs)
290 {
291 VS_LOCK(vs);
292 if (--vs->vs_writers == 0 && vs->vs_waiting_write) {
293 vs->vs_waiting_write = FALSE;
294 VS_UNLOCK(vs);
295 thread_wakeup(&vs->vs_writers);
296 return;
297 }
298 VS_UNLOCK(vs);
299 }
300 #endif /* PARALLEL */
301
302 vstruct_t
303 vs_object_create(
304 dp_size_t size)
305 {
306 vstruct_t vs;
307
308 /*
309 * Allocate a vstruct. If there are any problems, then report them
310 * to the console.
311 */
312 vs = ps_vstruct_create(size);
313 if (vs == VSTRUCT_NULL) {
314 dprintf(("vs_object_create: unable to allocate %s\n",
315 "-- either run swapon command or reboot"));
316 return VSTRUCT_NULL;
317 }
318
319 return vs;
320 }
321
322 #if 0
323 void default_pager_add(vstruct_t, boolean_t); /* forward */
324
325 void
326 default_pager_add(
327 vstruct_t vs,
328 boolean_t internal)
329 {
330 memory_object_t mem_obj = vs->vs_mem_obj;
331 mach_port_t pset;
332 mach_port_mscount_t sync;
333 mach_port_t previous;
334 kern_return_t kr;
335 static char here[] = "default_pager_add";
336
337 /*
338 * The port currently has a make-send count of zero,
339 * because either we just created the port or we just
340 * received the port in a memory_object_create request.
341 */
342
343 if (internal) {
344 /* possibly generate an immediate no-senders notification */
345 sync = 0;
346 pset = default_pager_internal_set;
347 } else {
348 /* delay notification till send right is created */
349 sync = 1;
350 pset = default_pager_external_set;
351 }
352
353 ip_lock(mem_obj); /* unlocked in nsrequest below */
354 ipc_port_make_sonce_locked(mem_obj);
355 ipc_port_nsrequest(mem_obj, sync, mem_obj, &previous);
356 }
357
358 #endif
359
360 const struct memory_object_pager_ops default_pager_ops = {
361 dp_memory_object_reference,
362 dp_memory_object_deallocate,
363 dp_memory_object_init,
364 dp_memory_object_terminate,
365 dp_memory_object_data_request,
366 dp_memory_object_data_return,
367 dp_memory_object_data_initialize,
368 dp_memory_object_data_unlock,
369 dp_memory_object_synchronize,
370 dp_memory_object_map,
371 dp_memory_object_last_unmap,
372 dp_memory_object_data_reclaim,
373 "default pager"
374 };
375
376 kern_return_t
377 dp_memory_object_init(
378 memory_object_t mem_obj,
379 memory_object_control_t control,
380 __unused memory_object_cluster_size_t pager_page_size)
381 {
382 vstruct_t vs;
383
384 assert(pager_page_size == vm_page_size);
385
386 memory_object_control_reference(control);
387
388 vs_lookup(mem_obj, vs);
389 vs_lock(vs);
390
391 if (vs->vs_control != MEMORY_OBJECT_CONTROL_NULL)
392 Panic("bad request");
393
394 vs->vs_control = control;
395 vs_unlock(vs);
396
397 return KERN_SUCCESS;
398 }
399
400 kern_return_t
401 dp_memory_object_synchronize(
402 memory_object_t mem_obj,
403 memory_object_offset_t offset,
404 memory_object_size_t length,
405 __unused vm_sync_t flags)
406 {
407 vstruct_t vs;
408
409 vs_lookup(mem_obj, vs);
410 vs_lock(vs);
411 vs_unlock(vs);
412
413 memory_object_synchronize_completed(vs->vs_control, offset, length);
414
415 return KERN_SUCCESS;
416 }
417
418 kern_return_t
419 dp_memory_object_map(
420 __unused memory_object_t mem_obj,
421 __unused vm_prot_t prot)
422 {
423 panic("dp_memory_object_map");
424 return KERN_FAILURE;
425 }
426
427 kern_return_t
428 dp_memory_object_last_unmap(
429 __unused memory_object_t mem_obj)
430 {
431 panic("dp_memory_object_last_unmap");
432 return KERN_FAILURE;
433 }
434
435 kern_return_t
436 dp_memory_object_data_reclaim(
437 memory_object_t mem_obj,
438 boolean_t reclaim_backing_store)
439 {
440 vstruct_t vs;
441 kern_return_t retval;
442
443 vs_lookup(mem_obj, vs);
444 for (;;) {
445 vs_lock(vs);
446 vs_async_wait(vs);
447 if (!vs->vs_xfer_pending) {
448 break;
449 }
450 }
451 vs->vs_xfer_pending = TRUE;
452 vs_unlock(vs);
453
454 retval = ps_vstruct_reclaim(vs, TRUE, reclaim_backing_store);
455
456 vs_lock(vs);
457 vs->vs_xfer_pending = FALSE;
458 vs_unlock(vs);
459
460 return retval;
461 }
462
463 kern_return_t
464 dp_memory_object_terminate(
465 memory_object_t mem_obj)
466 {
467 memory_object_control_t control;
468 vstruct_t vs;
469
470 /*
471 * control port is a receive right, not a send right.
472 */
473
474 vs_lookup(mem_obj, vs);
475 vs_lock(vs);
476
477 /*
478 * Wait for read and write requests to terminate.
479 */
480
481 vs_wait_for_readers(vs);
482 vs_wait_for_writers(vs);
483
484 /*
485 * After memory_object_terminate both memory_object_init
486 * and a no-senders notification are possible, so we need
487 * to clean up our reference to the memory_object_control
488 * to prepare for a new init.
489 */
490
491 control = vs->vs_control;
492 vs->vs_control = MEMORY_OBJECT_CONTROL_NULL;
493
494 /* a bit of special case ugliness here. Wakeup any waiting reads */
495 /* these data requests had to be removed from the seqno traffic */
496 /* based on a performance bottleneck with large memory objects */
497 /* the problem will right itself with the new component based */
498 /* synchronous interface. The new async will be able to return */
499 /* failure during its sync phase. In the mean time ... */
500
501 thread_wakeup(&vs->vs_writers);
502 thread_wakeup(&vs->vs_async_pending);
503
504 vs_unlock(vs);
505
506 /*
507 * Now we deallocate our reference on the control.
508 */
509 memory_object_control_deallocate(control);
510 return KERN_SUCCESS;
511 }
512
513 void
514 dp_memory_object_reference(
515 memory_object_t mem_obj)
516 {
517 vstruct_t vs;
518
519 vs_lookup_safe(mem_obj, vs);
520 if (vs == VSTRUCT_NULL)
521 return;
522
523 VS_LOCK(vs);
524 assert(vs->vs_references > 0);
525 vs->vs_references++;
526 VS_UNLOCK(vs);
527 }
528
529 void
530 dp_memory_object_deallocate(
531 memory_object_t mem_obj)
532 {
533 vstruct_t vs;
534 mach_port_seqno_t seqno;
535
536 /*
537 * Because we don't give out multiple first references
538 * for a memory object, there can't be a race
539 * between getting a deallocate call and creating
540 * a new reference for the object.
541 */
542
543 vs_lookup_safe(mem_obj, vs);
544 if (vs == VSTRUCT_NULL)
545 return;
546
547 VS_LOCK(vs);
548 if (--vs->vs_references > 0) {
549 VS_UNLOCK(vs);
550 return;
551 }
552
553 seqno = vs->vs_next_seqno++;
554 while (vs->vs_seqno != seqno) {
555 default_pager_wait_seqno++;
556 vs->vs_waiting_seqno = TRUE;
557 assert_wait(&vs->vs_seqno, THREAD_UNINT);
558 VS_UNLOCK(vs);
559 thread_block(THREAD_CONTINUE_NULL);
560 VS_LOCK(vs);
561 }
562
563 vs_async_wait(vs); /* wait for pending async IO */
564
565 /* do not delete the vs structure until the referencing pointers */
566 /* in the vstruct list have been expunged */
567
568 /* get VSL_LOCK out of order by using TRY mechanism */
569 while(!VSL_LOCK_TRY()) {
570 VS_UNLOCK(vs);
571 VSL_LOCK();
572 VSL_UNLOCK();
573 VS_LOCK(vs);
574 vs_async_wait(vs); /* wait for pending async IO */
575 }
576
577
578 /*
579 * We shouldn't get a deallocation call
580 * when the kernel has the object cached.
581 */
582 if (vs->vs_control != MEMORY_OBJECT_CONTROL_NULL)
583 Panic("bad request");
584
585 /*
586 * Unlock the pager (though there should be no one
587 * waiting for it).
588 */
589 VS_UNLOCK(vs);
590
591 /* Lock out paging segment removal for the duration of this */
592 /* call. We are vulnerable to losing a paging segment we rely */
593 /* on as soon as we remove ourselves from the VSL and unlock */
594
595 /* Keep our thread from blocking on attempt to trigger backing */
596 /* store release */
597 backing_store_release_trigger_disable += 1;
598
599 /*
600 * Remove the memory object port association, and then
601 * the destroy the port itself. We must remove the object
602 * from the port list before deallocating the pager,
603 * because of default_pager_objects.
604 */
605 vstruct_list_delete(vs);
606 VSL_UNLOCK();
607
608 ps_vstruct_dealloc(vs);
609
610 VSL_LOCK();
611 backing_store_release_trigger_disable -= 1;
612 if(backing_store_release_trigger_disable == 0) {
613 thread_wakeup((event_t)&backing_store_release_trigger_disable);
614 }
615 VSL_UNLOCK();
616 }
617
618 kern_return_t
619 dp_memory_object_data_request(
620 memory_object_t mem_obj,
621 memory_object_offset_t offset,
622 memory_object_cluster_size_t length,
623 __unused vm_prot_t protection_required,
624 memory_object_fault_info_t fault_info)
625 {
626 vstruct_t vs;
627 kern_return_t kr = KERN_SUCCESS;
628
629 GSTAT(global_stats.gs_pagein_calls++);
630
631
632 /* CDY at this moment vs_lookup panics when presented with the wrong */
633 /* port. As we are expanding this pager to support user interfaces */
634 /* this should be changed to return kern_failure */
635 vs_lookup(mem_obj, vs);
636 vs_lock(vs);
637
638 /* We are going to relax the strict sequencing here for performance */
639 /* reasons. We can do this because we know that the read and */
640 /* write threads are different and we rely on synchronization */
641 /* of read and write requests at the cache memory_object level */
642 /* break out wait_for_writers, all of this goes away when */
643 /* we get real control of seqno with the new component interface */
644
645 if (vs->vs_writers != 0) {
646 /* you can't hold on to the seqno and go */
647 /* to sleep like that */
648 vs_unlock(vs); /* bump internal count of seqno */
649 VS_LOCK(vs);
650 while (vs->vs_writers != 0) {
651 default_pager_wait_write++;
652 vs->vs_waiting_write = TRUE;
653 assert_wait(&vs->vs_writers, THREAD_UNINT);
654 VS_UNLOCK(vs);
655 thread_block(THREAD_CONTINUE_NULL);
656 VS_LOCK(vs);
657 vs_async_wait(vs);
658 }
659 if(vs->vs_control == MEMORY_OBJECT_CONTROL_NULL) {
660 VS_UNLOCK(vs);
661 return KERN_FAILURE;
662 }
663 vs_start_read(vs);
664 VS_UNLOCK(vs);
665 } else {
666 vs_start_read(vs);
667 vs_unlock(vs);
668 }
669
670 /*
671 * Request must be on a page boundary and a multiple of pages.
672 */
673 if ((offset & vm_page_mask) != 0 || (length & vm_page_mask) != 0)
674 Panic("bad alignment");
675
676 assert((dp_offset_t) offset == offset);
677 kr = pvs_cluster_read(vs, (dp_offset_t) offset, length, fault_info);
678
679 /* Regular data requests have a non-zero length and always return KERN_SUCCESS.
680 Their actual success is determined by the fact that they provide a page or not,
681 i.e whether we call upl_commit() or upl_abort(). A length of 0 means that the
682 caller is only asking if the pager has a copy of that page or not. The answer to
683 that question is provided by the return value. KERN_SUCCESS means that the pager
684 does have that page.
685 */
686 if(length) {
687 kr = KERN_SUCCESS;
688 }
689
690 vs_finish_read(vs);
691
692 return kr;
693 }
694
695 /*
696 * memory_object_data_initialize: check whether we already have each page, and
697 * write it if we do not. The implementation is far from optimized, and
698 * also assumes that the default_pager is single-threaded.
699 */
700 /* It is questionable whether or not a pager should decide what is relevant */
701 /* and what is not in data sent from the kernel. Data initialize has been */
702 /* changed to copy back all data sent to it in preparation for its eventual */
703 /* merge with data return. It is the kernel that should decide what pages */
704 /* to write back. As of the writing of this note, this is indeed the case */
705 /* the kernel writes back one page at a time through this interface */
706
707 kern_return_t
708 dp_memory_object_data_initialize(
709 memory_object_t mem_obj,
710 memory_object_offset_t offset,
711 memory_object_cluster_size_t size)
712 {
713 vstruct_t vs;
714
715 DP_DEBUG(DEBUG_MO_EXTERNAL,
716 ("mem_obj=0x%x,offset=0x%x,cnt=0x%x\n",
717 (int)mem_obj, (int)offset, (int)size));
718 GSTAT(global_stats.gs_pages_init += atop_32(size));
719
720 vs_lookup(mem_obj, vs);
721 vs_lock(vs);
722 vs_start_write(vs);
723 vs_unlock(vs);
724
725 /*
726 * Write the data via clustered writes. vs_cluster_write will
727 * loop if the address range specified crosses cluster
728 * boundaries.
729 */
730 assert((upl_offset_t) offset == offset);
731 vs_cluster_write(vs, 0, (upl_offset_t)offset, size, FALSE, 0);
732
733 vs_finish_write(vs);
734
735 return KERN_SUCCESS;
736 }
737
738 kern_return_t
739 dp_memory_object_data_unlock(
740 __unused memory_object_t mem_obj,
741 __unused memory_object_offset_t offset,
742 __unused memory_object_size_t size,
743 __unused vm_prot_t desired_access)
744 {
745 Panic("dp_memory_object_data_unlock: illegal");
746 return KERN_FAILURE;
747 }
748
749
750 /*ARGSUSED8*/
751 kern_return_t
752 dp_memory_object_data_return(
753 memory_object_t mem_obj,
754 memory_object_offset_t offset,
755 memory_object_cluster_size_t size,
756 __unused memory_object_offset_t *resid_offset,
757 __unused int *io_error,
758 __unused boolean_t dirty,
759 __unused boolean_t kernel_copy,
760 __unused int upl_flags)
761 {
762 vstruct_t vs;
763
764 DP_DEBUG(DEBUG_MO_EXTERNAL,
765 ("mem_obj=0x%x,offset=0x%x,size=0x%x\n",
766 (int)mem_obj, (int)offset, (int)size));
767 GSTAT(global_stats.gs_pageout_calls++);
768
769 /* This routine is called by the pageout thread. The pageout thread */
770 /* cannot be blocked by read activities unless the read activities */
771 /* Therefore the grant of vs lock must be done on a try versus a */
772 /* blocking basis. The code below relies on the fact that the */
773 /* interface is synchronous. Should this interface be again async */
774 /* for some type of pager in the future the pages will have to be */
775 /* returned through a separate, asynchronous path. */
776
777 vs_lookup(mem_obj, vs);
778
779 default_pager_total++;
780
781 /* might be unreachable if VS_TRY_LOCK is, by definition, always true */
782 __unreachable_ok_push
783 if(!VS_TRY_LOCK(vs)) {
784 /* the call below will not be done by caller when we have */
785 /* a synchronous interface */
786 /* return KERN_LOCK_OWNED; */
787 upl_t upl;
788 unsigned int page_list_count = 0;
789 memory_object_super_upl_request(vs->vs_control,
790 (memory_object_offset_t)offset,
791 size, size,
792 &upl, NULL, &page_list_count,
793 UPL_NOBLOCK | UPL_CLEAN_IN_PLACE
794 | UPL_NO_SYNC | UPL_COPYOUT_FROM);
795 upl_abort(upl,0);
796 upl_deallocate(upl);
797 return KERN_SUCCESS;
798 }
799 __unreachable_ok_pop
800
801 if ((vs->vs_seqno != vs->vs_next_seqno++)
802 || (vs->vs_readers)
803 || (vs->vs_xfer_pending)) {
804 upl_t upl;
805 unsigned int page_list_count = 0;
806
807 vs->vs_next_seqno--;
808 VS_UNLOCK(vs);
809
810 /* the call below will not be done by caller when we have */
811 /* a synchronous interface */
812 /* return KERN_LOCK_OWNED; */
813 memory_object_super_upl_request(vs->vs_control,
814 (memory_object_offset_t)offset,
815 size, size,
816 &upl, NULL, &page_list_count,
817 UPL_NOBLOCK | UPL_CLEAN_IN_PLACE
818 | UPL_NO_SYNC | UPL_COPYOUT_FROM);
819 upl_abort(upl,0);
820 upl_deallocate(upl);
821 return KERN_SUCCESS;
822 }
823
824 if ((size % vm_page_size) != 0)
825 Panic("bad alignment");
826
827 vs_start_write(vs);
828
829
830 vs->vs_async_pending += 1; /* protect from backing store contraction */
831 vs_unlock(vs);
832
833 /*
834 * Write the data via clustered writes. vs_cluster_write will
835 * loop if the address range specified crosses cluster
836 * boundaries.
837 */
838 assert((upl_offset_t) offset == offset);
839 vs_cluster_write(vs, 0, (upl_offset_t) offset, size, FALSE, 0);
840
841 vs_finish_write(vs);
842
843 /* temporary, need a finer lock based on cluster */
844
845 VS_LOCK(vs);
846 vs->vs_async_pending -= 1; /* release vs_async_wait */
847 if (vs->vs_async_pending == 0 && vs->vs_waiting_async) {
848 vs->vs_waiting_async = FALSE;
849 VS_UNLOCK(vs);
850 thread_wakeup(&vs->vs_async_pending);
851 } else {
852 VS_UNLOCK(vs);
853 }
854
855
856 return KERN_SUCCESS;
857 }
858
859 /*
860 * Routine: default_pager_memory_object_create
861 * Purpose:
862 * Handle requests for memory objects from the
863 * kernel.
864 * Notes:
865 * Because we only give out the default memory
866 * manager port to the kernel, we don't have to
867 * be so paranoid about the contents.
868 */
869 kern_return_t
870 default_pager_memory_object_create(
871 __unused memory_object_default_t dmm,
872 vm_size_t new_size,
873 memory_object_t *new_mem_obj)
874 {
875 vstruct_t vs;
876
877 assert(dmm == default_pager_object);
878
879 if ((dp_size_t) new_size != new_size) {
880 /* 32-bit overflow */
881 return KERN_INVALID_ARGUMENT;
882 }
883
884 vs = vs_object_create((dp_size_t) new_size);
885 if (vs == VSTRUCT_NULL)
886 return KERN_RESOURCE_SHORTAGE;
887
888 vs->vs_next_seqno = 0;
889
890 /*
891 * Set up associations between this memory object
892 * and this default_pager structure
893 */
894
895 vs->vs_pager_ops = &default_pager_ops;
896 vs->vs_pager_header.io_bits = IKOT_MEMORY_OBJECT;
897
898 /*
899 * After this, other threads might receive requests
900 * for this memory object or find it in the port list.
901 */
902
903 vstruct_list_insert(vs);
904 *new_mem_obj = vs_to_mem_obj(vs);
905 return KERN_SUCCESS;
906 }
907
908 /*
909 * Create an external object.
910 */
911 kern_return_t
912 default_pager_object_create(
913 default_pager_t default_pager,
914 vm_size_t size,
915 memory_object_t *mem_objp)
916 {
917 vstruct_t vs;
918
919 if (default_pager != default_pager_object)
920 return KERN_INVALID_ARGUMENT;
921
922 if ((dp_size_t) size != size) {
923 /* 32-bit overflow */
924 return KERN_INVALID_ARGUMENT;
925 }
926
927 vs = vs_object_create((dp_size_t) size);
928 if (vs == VSTRUCT_NULL)
929 return KERN_RESOURCE_SHORTAGE;
930
931 /*
932 * Set up associations between the default pager
933 * and this vstruct structure
934 */
935 vs->vs_pager_ops = &default_pager_ops;
936 vstruct_list_insert(vs);
937 *mem_objp = vs_to_mem_obj(vs);
938 return KERN_SUCCESS;
939 }
940
941 kern_return_t
942 default_pager_objects(
943 default_pager_t default_pager,
944 default_pager_object_array_t *objectsp,
945 mach_msg_type_number_t *ocountp,
946 mach_port_array_t *portsp,
947 mach_msg_type_number_t *pcountp)
948 {
949 vm_offset_t oaddr = 0; /* memory for objects */
950 vm_size_t osize = 0; /* current size */
951 default_pager_object_t * objects;
952 unsigned int opotential = 0;
953
954 vm_map_copy_t pcopy = 0; /* copy handle for pagers */
955 vm_size_t psize = 0; /* current size */
956 memory_object_t * pagers;
957 unsigned int ppotential = 0;
958
959 unsigned int actual;
960 unsigned int num_objects;
961 kern_return_t kr;
962 vstruct_t entry;
963
964 if (default_pager != default_pager_object)
965 return KERN_INVALID_ARGUMENT;
966
967 /*
968 * We will send no more than this many
969 */
970 actual = vstruct_list.vsl_count;
971
972 /*
973 * Out out-of-line port arrays are simply kalloc'ed.
974 */
975 psize = vm_map_round_page(actual * sizeof (*pagers),
976 vm_map_page_mask(ipc_kernel_map));
977 ppotential = (unsigned int) (psize / sizeof (*pagers));
978 pagers = (memory_object_t *)kalloc(psize);
979 if (0 == pagers)
980 return KERN_RESOURCE_SHORTAGE;
981
982 /*
983 * returned out of line data must be allocated out
984 * the ipc_kernel_map, wired down, filled in, and
985 * then "copied in" as if it had been sent by a
986 * user process.
987 */
988 osize = vm_map_round_page(actual * sizeof (*objects),
989 vm_map_page_mask(ipc_kernel_map));
990 opotential = (unsigned int) (osize / sizeof (*objects));
991 kr = kmem_alloc(ipc_kernel_map, &oaddr, osize);
992 if (KERN_SUCCESS != kr) {
993 kfree(pagers, psize);
994 return KERN_RESOURCE_SHORTAGE;
995 }
996 objects = (default_pager_object_t *)oaddr;
997
998
999 /*
1000 * Now scan the list.
1001 */
1002
1003 VSL_LOCK();
1004
1005 num_objects = 0;
1006 queue_iterate(&vstruct_list.vsl_queue, entry, vstruct_t, vs_links) {
1007
1008 memory_object_t pager;
1009 vm_size_t size;
1010
1011 if ((num_objects >= opotential) ||
1012 (num_objects >= ppotential)) {
1013
1014 /*
1015 * This should be rare. In any case,
1016 * we will only miss recent objects,
1017 * because they are added at the end.
1018 */
1019 break;
1020 }
1021
1022 /*
1023 * Avoid interfering with normal operations
1024 */
1025 if (!VS_MAP_TRY_LOCK(entry))
1026 goto not_this_one;
1027 size = ps_vstruct_allocated_size(entry);
1028 VS_MAP_UNLOCK(entry);
1029
1030 VS_LOCK(entry);
1031
1032 /*
1033 * We need a reference for our caller. Adding this
1034 * reference through the linked list could race with
1035 * destruction of the object. If we find the object
1036 * has no references, just give up on it.
1037 */
1038 VS_LOCK(entry);
1039 if (entry->vs_references == 0) {
1040 VS_UNLOCK(entry);
1041 goto not_this_one;
1042 }
1043 pager = vs_to_mem_obj(entry);
1044 dp_memory_object_reference(pager);
1045 VS_UNLOCK(entry);
1046
1047 /* the arrays are wired, so no deadlock worries */
1048
1049 objects[num_objects].dpo_object = (vm_offset_t) entry;
1050 objects[num_objects].dpo_size = size;
1051 pagers [num_objects++] = pager;
1052 continue;
1053
1054 not_this_one:
1055 /*
1056 * Do not return garbage
1057 */
1058 objects[num_objects].dpo_object = (vm_offset_t) 0;
1059 objects[num_objects].dpo_size = 0;
1060 pagers[num_objects++] = MEMORY_OBJECT_NULL;
1061
1062 }
1063
1064 VSL_UNLOCK();
1065
1066 /* clear out any excess allocation */
1067 while (num_objects < opotential) {
1068 objects[--opotential].dpo_object = (vm_offset_t) 0;
1069 objects[opotential].dpo_size = 0;
1070 }
1071 while (num_objects < ppotential) {
1072 pagers[--ppotential] = MEMORY_OBJECT_NULL;
1073 }
1074
1075 kr = vm_map_unwire(ipc_kernel_map,
1076 vm_map_trunc_page(oaddr,
1077 vm_map_page_mask(ipc_kernel_map)),
1078 vm_map_round_page(oaddr + osize,
1079 vm_map_page_mask(ipc_kernel_map)),
1080 FALSE);
1081 assert(KERN_SUCCESS == kr);
1082 kr = vm_map_copyin(ipc_kernel_map, (vm_map_address_t)oaddr,
1083 (vm_map_size_t)osize, TRUE, &pcopy);
1084 assert(KERN_SUCCESS == kr);
1085
1086 *objectsp = (default_pager_object_array_t)objects;
1087 *ocountp = num_objects;
1088 *portsp = (mach_port_array_t)pcopy;
1089 *pcountp = num_objects;
1090
1091 return KERN_SUCCESS;
1092 }
1093
1094 kern_return_t
1095 default_pager_object_pages(
1096 default_pager_t default_pager,
1097 mach_port_t memory_object,
1098 default_pager_page_array_t *pagesp,
1099 mach_msg_type_number_t *countp)
1100 {
1101 vm_offset_t addr = 0; /* memory for page offsets */
1102 vm_size_t size = 0; /* current memory size */
1103 vm_map_copy_t copy;
1104 default_pager_page_t * pages = 0;
1105 unsigned int potential;
1106 unsigned int actual;
1107 kern_return_t kr;
1108 memory_object_t object;
1109
1110 if (default_pager != default_pager_object)
1111 return KERN_INVALID_ARGUMENT;
1112
1113 object = (memory_object_t) memory_object;
1114
1115 potential = 0;
1116 for (;;) {
1117 vstruct_t entry;
1118
1119 VSL_LOCK();
1120 queue_iterate(&vstruct_list.vsl_queue, entry, vstruct_t,
1121 vs_links) {
1122 VS_LOCK(entry);
1123 if (vs_to_mem_obj(entry) == object) {
1124 VSL_UNLOCK();
1125 goto found_object;
1126 }
1127 VS_UNLOCK(entry);
1128 }
1129 VSL_UNLOCK();
1130
1131 /* did not find the object */
1132 if (0 != addr)
1133 kmem_free(ipc_kernel_map, addr, size);
1134
1135 return KERN_INVALID_ARGUMENT;
1136
1137 found_object:
1138
1139 if (!VS_MAP_TRY_LOCK(entry)) {
1140 /* oh well bad luck */
1141 int wresult;
1142
1143 VS_UNLOCK(entry);
1144
1145 assert_wait_timeout((event_t)assert_wait_timeout, THREAD_UNINT, 1, 1000*NSEC_PER_USEC);
1146 wresult = thread_block(THREAD_CONTINUE_NULL);
1147 assert(wresult == THREAD_TIMED_OUT);
1148 continue;
1149 }
1150
1151 actual = ps_vstruct_allocated_pages(entry, pages, potential);
1152 VS_MAP_UNLOCK(entry);
1153 VS_UNLOCK(entry);
1154
1155 if (actual <= potential)
1156 break;
1157
1158 /* allocate more memory */
1159 if (0 != addr)
1160 kmem_free(ipc_kernel_map, addr, size);
1161
1162 size = vm_map_round_page(actual * sizeof (*pages),
1163 vm_map_page_mask(ipc_kernel_map));
1164 kr = kmem_alloc(ipc_kernel_map, &addr, size);
1165 if (KERN_SUCCESS != kr)
1166 return KERN_RESOURCE_SHORTAGE;
1167
1168 pages = (default_pager_page_t *)addr;
1169 potential = (unsigned int) (size / sizeof (*pages));
1170 }
1171
1172 /*
1173 * Clear unused memory.
1174 */
1175 while (actual < potential)
1176 pages[--potential].dpp_offset = 0;
1177
1178 kr = vm_map_unwire(ipc_kernel_map,
1179 vm_map_trunc_page(addr,
1180 vm_map_page_mask(ipc_kernel_map)),
1181 vm_map_round_page(addr + size,
1182 vm_map_page_mask(ipc_kernel_map)),
1183 FALSE);
1184 assert(KERN_SUCCESS == kr);
1185 kr = vm_map_copyin(ipc_kernel_map, (vm_map_address_t)addr,
1186 (vm_map_size_t)size, TRUE, &copy);
1187 assert(KERN_SUCCESS == kr);
1188
1189
1190 *pagesp = (default_pager_page_array_t)copy;
1191 *countp = actual;
1192 return KERN_SUCCESS;
1193 }