]>
git.saurik.com Git - apple/xnu.git/blob - bsd/sys/queue.h
3f2d8db13f922478642345cbdc61cf72a4bdd2d7
2 * Copyright (c) 2006 Apple Computer, Inc. All Rights Reserved.
4 * @APPLE_LICENSE_OSREFERENCE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the
10 * License may not be used to create, or enable the creation or
11 * redistribution of, unlawful or unlicensed copies of an Apple operating
12 * system, or to circumvent, violate, or enable the circumvention or
13 * violation of, any terms of an Apple operating system software license
16 * Please obtain a copy of the License at
17 * http://www.opensource.apple.com/apsl/ and read it before using this
20 * The Original Code and all software distributed under the License are
21 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
22 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
23 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
24 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
25 * Please see the License for the specific language governing rights and
26 * limitations under the License.
28 * @APPLE_LICENSE_OSREFERENCE_HEADER_END@
31 * Copyright (c) 1991, 1993
32 * The Regents of the University of California. All rights reserved.
34 * Redistribution and use in source and binary forms, with or without
35 * modification, are permitted provided that the following conditions
37 * 1. Redistributions of source code must retain the above copyright
38 * notice, this list of conditions and the following disclaimer.
39 * 2. Redistributions in binary form must reproduce the above copyright
40 * notice, this list of conditions and the following disclaimer in the
41 * documentation and/or other materials provided with the distribution.
42 * 3. All advertising materials mentioning features or use of this software
43 * must display the following acknowledgement:
44 * This product includes software developed by the University of
45 * California, Berkeley and its contributors.
46 * 4. Neither the name of the University nor the names of its contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62 * @(#)queue.h 8.5 (Berkeley) 8/20/94
69 * This file defines five types of data structures: singly-linked lists,
70 * slingly-linked tail queues, lists, tail queues, and circular queues.
72 * A singly-linked list is headed by a single forward pointer. The elements
73 * are singly linked for minimum space and pointer manipulation overhead at
74 * the expense of O(n) removal for arbitrary elements. New elements can be
75 * added to the list after an existing element or at the head of the list.
76 * Elements being removed from the head of the list should use the explicit
77 * macro for this purpose for optimum efficiency. A singly-linked list may
78 * only be traversed in the forward direction. Singly-linked lists are ideal
79 * for applications with large datasets and few or no removals or for
80 * implementing a LIFO queue.
82 * A singly-linked tail queue is headed by a pair of pointers, one to the
83 * head of the list and the other to the tail of the list. The elements are
84 * singly linked for minimum space and pointer manipulation overhead at the
85 * expense of O(n) removal for arbitrary elements. New elements can be added
86 * to the list after an existing element, at the head of the list, or at the
87 * end of the list. Elements being removed from the head of the tail queue
88 * should use the explicit macro for this purpose for optimum efficiency.
89 * A singly-linked tail queue may only be traversed in the forward direction.
90 * Singly-linked tail queues are ideal for applications with large datasets
91 * and few or no removals or for implementing a FIFO queue.
93 * A list is headed by a single forward pointer (or an array of forward
94 * pointers for a hash table header). The elements are doubly linked
95 * so that an arbitrary element can be removed without a need to
96 * traverse the list. New elements can be added to the list before
97 * or after an existing element or at the head of the list. A list
98 * may only be traversed in the forward direction.
100 * A tail queue is headed by a pair of pointers, one to the head of the
101 * list and the other to the tail of the list. The elements are doubly
102 * linked so that an arbitrary element can be removed without a need to
103 * traverse the list. New elements can be added to the list before or
104 * after an existing element, at the head of the list, or at the end of
105 * the list. A tail queue may only be traversed in the forward direction.
107 * A circle queue is headed by a pair of pointers, one to the head of the
108 * list and the other to the tail of the list. The elements are doubly
109 * linked so that an arbitrary element can be removed without a need to
110 * traverse the list. New elements can be added to the list before or after
111 * an existing element, at the head of the list, or at the end of the list.
112 * A circle queue may be traversed in either direction, but has a more
113 * complex end of list detection.
115 * For details on the use of these macros, see the queue(3) manual page.
118 * SLIST LIST STAILQ TAILQ CIRCLEQ
128 * _INSERT_HEAD + + + + +
129 * _INSERT_BEFORE - + - + +
130 * _INSERT_AFTER + + + + +
131 * _INSERT_TAIL - - + + +
132 * _REMOVE_HEAD + - + - -
138 * Singly-linked List definitions.
140 #define SLIST_HEAD(name, type) \
142 struct type *slh_first; /* first element */ \
145 #define SLIST_ENTRY(type) \
147 struct type *sle_next; /* next element */ \
151 * Singly-linked List functions.
153 #define SLIST_EMPTY(head) ((head)->slh_first == NULL)
155 #define SLIST_FIRST(head) ((head)->slh_first)
157 #define SLIST_FOREACH(var, head, field) \
158 for((var) = (head)->slh_first; (var); (var) = (var)->field.sle_next)
160 #define SLIST_INIT(head) { \
161 (head)->slh_first = NULL; \
164 #define SLIST_INSERT_AFTER(slistelm, elm, field) do { \
165 (elm)->field.sle_next = (slistelm)->field.sle_next; \
166 (slistelm)->field.sle_next = (elm); \
169 #define SLIST_INSERT_HEAD(head, elm, field) do { \
170 (elm)->field.sle_next = (head)->slh_first; \
171 (head)->slh_first = (elm); \
174 #define SLIST_NEXT(elm, field) ((elm)->field.sle_next)
176 #define SLIST_REMOVE_HEAD(head, field) do { \
177 (head)->slh_first = (head)->slh_first->field.sle_next; \
180 #define SLIST_REMOVE(head, elm, type, field) do { \
181 if ((head)->slh_first == (elm)) { \
182 SLIST_REMOVE_HEAD((head), field); \
185 struct type *curelm = (head)->slh_first; \
186 while( curelm->field.sle_next != (elm) ) \
187 curelm = curelm->field.sle_next; \
188 curelm->field.sle_next = \
189 curelm->field.sle_next->field.sle_next; \
194 * Singly-linked Tail queue definitions.
196 #define STAILQ_HEAD(name, type) \
198 struct type *stqh_first;/* first element */ \
199 struct type **stqh_last;/* addr of last next element */ \
202 #define STAILQ_HEAD_INITIALIZER(head) \
203 { NULL, &(head).stqh_first }
205 #define STAILQ_ENTRY(type) \
207 struct type *stqe_next; /* next element */ \
211 * Singly-linked Tail queue functions.
213 #define STAILQ_EMPTY(head) ((head)->stqh_first == NULL)
215 #define STAILQ_INIT(head) do { \
216 (head)->stqh_first = NULL; \
217 (head)->stqh_last = &(head)->stqh_first; \
220 #define STAILQ_FIRST(head) ((head)->stqh_first)
221 #define STAILQ_LAST(head) (*(head)->stqh_last)
223 #define STAILQ_INSERT_HEAD(head, elm, field) do { \
224 if (((elm)->field.stqe_next = (head)->stqh_first) == NULL) \
225 (head)->stqh_last = &(elm)->field.stqe_next; \
226 (head)->stqh_first = (elm); \
229 #define STAILQ_INSERT_TAIL(head, elm, field) do { \
230 (elm)->field.stqe_next = NULL; \
231 *(head)->stqh_last = (elm); \
232 (head)->stqh_last = &(elm)->field.stqe_next; \
235 #define STAILQ_INSERT_AFTER(head, tqelm, elm, field) do { \
236 if (((elm)->field.stqe_next = (tqelm)->field.stqe_next) == NULL)\
237 (head)->stqh_last = &(elm)->field.stqe_next; \
238 (tqelm)->field.stqe_next = (elm); \
241 #define STAILQ_NEXT(elm, field) ((elm)->field.stqe_next)
243 #define STAILQ_REMOVE_HEAD(head, field) do { \
244 if (((head)->stqh_first = \
245 (head)->stqh_first->field.stqe_next) == NULL) \
246 (head)->stqh_last = &(head)->stqh_first; \
249 #define STAILQ_REMOVE_HEAD_UNTIL(head, elm, field) do { \
250 if (((head)->stqh_first = (elm)->field.stqe_next) == NULL) \
251 (head)->stqh_last = &(head)->stqh_first; \
255 #define STAILQ_REMOVE(head, elm, type, field) do { \
256 if ((head)->stqh_first == (elm)) { \
257 STAILQ_REMOVE_HEAD(head, field); \
260 struct type *curelm = (head)->stqh_first; \
261 while( curelm->field.stqe_next != (elm) ) \
262 curelm = curelm->field.stqe_next; \
263 if((curelm->field.stqe_next = \
264 curelm->field.stqe_next->field.stqe_next) == NULL) \
265 (head)->stqh_last = &(curelm)->field.stqe_next; \
272 #define LIST_HEAD(name, type) \
274 struct type *lh_first; /* first element */ \
277 #define LIST_HEAD_INITIALIZER(head) \
280 #define LIST_ENTRY(type) \
282 struct type *le_next; /* next element */ \
283 struct type **le_prev; /* address of previous next element */ \
290 #define LIST_EMPTY(head) ((head)->lh_first == NULL)
292 #define LIST_FIRST(head) ((head)->lh_first)
294 #define LIST_FOREACH(var, head, field) \
295 for((var) = (head)->lh_first; (var); (var) = (var)->field.le_next)
297 #define LIST_INIT(head) do { \
298 (head)->lh_first = NULL; \
301 #define LIST_INSERT_AFTER(listelm, elm, field) do { \
302 if (((elm)->field.le_next = (listelm)->field.le_next) != NULL) \
303 (listelm)->field.le_next->field.le_prev = \
304 &(elm)->field.le_next; \
305 (listelm)->field.le_next = (elm); \
306 (elm)->field.le_prev = &(listelm)->field.le_next; \
309 #define LIST_INSERT_BEFORE(listelm, elm, field) do { \
310 (elm)->field.le_prev = (listelm)->field.le_prev; \
311 (elm)->field.le_next = (listelm); \
312 *(listelm)->field.le_prev = (elm); \
313 (listelm)->field.le_prev = &(elm)->field.le_next; \
316 #define LIST_INSERT_HEAD(head, elm, field) do { \
317 if (((elm)->field.le_next = (head)->lh_first) != NULL) \
318 (head)->lh_first->field.le_prev = &(elm)->field.le_next;\
319 (head)->lh_first = (elm); \
320 (elm)->field.le_prev = &(head)->lh_first; \
323 #define LIST_NEXT(elm, field) ((elm)->field.le_next)
325 #define LIST_REMOVE(elm, field) do { \
326 if ((elm)->field.le_next != NULL) \
327 (elm)->field.le_next->field.le_prev = \
328 (elm)->field.le_prev; \
329 *(elm)->field.le_prev = (elm)->field.le_next; \
333 * Tail queue definitions.
335 #define TAILQ_HEAD(name, type) \
337 struct type *tqh_first; /* first element */ \
338 struct type **tqh_last; /* addr of last next element */ \
341 #define TAILQ_HEAD_INITIALIZER(head) \
342 { NULL, &(head).tqh_first }
344 #define TAILQ_ENTRY(type) \
346 struct type *tqe_next; /* next element */ \
347 struct type **tqe_prev; /* address of previous next element */ \
351 * Tail queue functions.
353 #define TAILQ_EMPTY(head) ((head)->tqh_first == NULL)
355 #define TAILQ_FOREACH(var, head, field) \
356 for (var = TAILQ_FIRST(head); var; var = TAILQ_NEXT(var, field))
358 #define TAILQ_FOREACH_REVERSE(var, head, field, headname) \
359 for (var = TAILQ_LAST(head, headname); \
360 var; var = TAILQ_PREV(var, headname, field))
362 #define TAILQ_FIRST(head) ((head)->tqh_first)
364 #define TAILQ_LAST(head, headname) \
365 (*(((struct headname *)((head)->tqh_last))->tqh_last))
367 #define TAILQ_NEXT(elm, field) ((elm)->field.tqe_next)
369 #define TAILQ_PREV(elm, headname, field) \
370 (*(((struct headname *)((elm)->field.tqe_prev))->tqh_last))
372 #define TAILQ_INIT(head) do { \
373 (head)->tqh_first = NULL; \
374 (head)->tqh_last = &(head)->tqh_first; \
377 #define TAILQ_INSERT_HEAD(head, elm, field) do { \
378 if (((elm)->field.tqe_next = (head)->tqh_first) != NULL) \
379 (head)->tqh_first->field.tqe_prev = \
380 &(elm)->field.tqe_next; \
382 (head)->tqh_last = &(elm)->field.tqe_next; \
383 (head)->tqh_first = (elm); \
384 (elm)->field.tqe_prev = &(head)->tqh_first; \
387 #define TAILQ_INSERT_TAIL(head, elm, field) do { \
388 (elm)->field.tqe_next = NULL; \
389 (elm)->field.tqe_prev = (head)->tqh_last; \
390 *(head)->tqh_last = (elm); \
391 (head)->tqh_last = &(elm)->field.tqe_next; \
394 #define TAILQ_INSERT_AFTER(head, listelm, elm, field) do { \
395 if (((elm)->field.tqe_next = (listelm)->field.tqe_next) != NULL)\
396 (elm)->field.tqe_next->field.tqe_prev = \
397 &(elm)->field.tqe_next; \
399 (head)->tqh_last = &(elm)->field.tqe_next; \
400 (listelm)->field.tqe_next = (elm); \
401 (elm)->field.tqe_prev = &(listelm)->field.tqe_next; \
404 #define TAILQ_INSERT_BEFORE(listelm, elm, field) do { \
405 (elm)->field.tqe_prev = (listelm)->field.tqe_prev; \
406 (elm)->field.tqe_next = (listelm); \
407 *(listelm)->field.tqe_prev = (elm); \
408 (listelm)->field.tqe_prev = &(elm)->field.tqe_next; \
411 #define TAILQ_REMOVE(head, elm, field) do { \
412 if (((elm)->field.tqe_next) != NULL) \
413 (elm)->field.tqe_next->field.tqe_prev = \
414 (elm)->field.tqe_prev; \
416 (head)->tqh_last = (elm)->field.tqe_prev; \
417 *(elm)->field.tqe_prev = (elm)->field.tqe_next; \
421 * Circular queue definitions.
423 #define CIRCLEQ_HEAD(name, type) \
425 struct type *cqh_first; /* first element */ \
426 struct type *cqh_last; /* last element */ \
429 #define CIRCLEQ_ENTRY(type) \
431 struct type *cqe_next; /* next element */ \
432 struct type *cqe_prev; /* previous element */ \
436 * Circular queue functions.
438 #define CIRCLEQ_EMPTY(head) ((head)->cqh_first == (void *)(head))
440 #define CIRCLEQ_FIRST(head) ((head)->cqh_first)
442 #define CIRCLEQ_FOREACH(var, head, field) \
443 for((var) = (head)->cqh_first; \
444 (var) != (void *)(head); \
445 (var) = (var)->field.cqe_next)
447 #define CIRCLEQ_INIT(head) do { \
448 (head)->cqh_first = (void *)(head); \
449 (head)->cqh_last = (void *)(head); \
452 #define CIRCLEQ_INSERT_AFTER(head, listelm, elm, field) do { \
453 (elm)->field.cqe_next = (listelm)->field.cqe_next; \
454 (elm)->field.cqe_prev = (listelm); \
455 if ((listelm)->field.cqe_next == (void *)(head)) \
456 (head)->cqh_last = (elm); \
458 (listelm)->field.cqe_next->field.cqe_prev = (elm); \
459 (listelm)->field.cqe_next = (elm); \
462 #define CIRCLEQ_INSERT_BEFORE(head, listelm, elm, field) do { \
463 (elm)->field.cqe_next = (listelm); \
464 (elm)->field.cqe_prev = (listelm)->field.cqe_prev; \
465 if ((listelm)->field.cqe_prev == (void *)(head)) \
466 (head)->cqh_first = (elm); \
468 (listelm)->field.cqe_prev->field.cqe_next = (elm); \
469 (listelm)->field.cqe_prev = (elm); \
472 #define CIRCLEQ_INSERT_HEAD(head, elm, field) do { \
473 (elm)->field.cqe_next = (head)->cqh_first; \
474 (elm)->field.cqe_prev = (void *)(head); \
475 if ((head)->cqh_last == (void *)(head)) \
476 (head)->cqh_last = (elm); \
478 (head)->cqh_first->field.cqe_prev = (elm); \
479 (head)->cqh_first = (elm); \
482 #define CIRCLEQ_INSERT_TAIL(head, elm, field) do { \
483 (elm)->field.cqe_next = (void *)(head); \
484 (elm)->field.cqe_prev = (head)->cqh_last; \
485 if ((head)->cqh_first == (void *)(head)) \
486 (head)->cqh_first = (elm); \
488 (head)->cqh_last->field.cqe_next = (elm); \
489 (head)->cqh_last = (elm); \
492 #define CIRCLEQ_LAST(head) ((head)->cqh_last)
494 #define CIRCLEQ_NEXT(elm,field) ((elm)->field.cqe_next)
496 #define CIRCLEQ_PREV(elm,field) ((elm)->field.cqe_prev)
498 #define CIRCLEQ_REMOVE(head, elm, field) do { \
499 if ((elm)->field.cqe_next == (void *)(head)) \
500 (head)->cqh_last = (elm)->field.cqe_prev; \
502 (elm)->field.cqe_next->field.cqe_prev = \
503 (elm)->field.cqe_prev; \
504 if ((elm)->field.cqe_prev == (void *)(head)) \
505 (head)->cqh_first = (elm)->field.cqe_next; \
507 (elm)->field.cqe_prev->field.cqe_next = \
508 (elm)->field.cqe_next; \
516 * XXX insque() and remque() are an old way of handling certain queues.
517 * They bogusly assumes that all queue heads look alike.
521 struct quehead
*qh_link
;
522 struct quehead
*qh_rlink
;
528 insque(void *a
, void *b
)
530 struct quehead
*element
= a
, *head
= b
;
532 element
->qh_link
= head
->qh_link
;
533 element
->qh_rlink
= head
;
534 head
->qh_link
= element
;
535 element
->qh_link
->qh_rlink
= element
;
541 struct quehead
*element
= a
;
543 element
->qh_link
->qh_rlink
= element
->qh_rlink
;
544 element
->qh_rlink
->qh_link
= element
->qh_link
;
545 element
->qh_rlink
= 0;
548 #else /* !__GNUC__ */
550 void insque(void *a
, void *b
);
551 void remque(void *a
);
553 #endif /* __GNUC__ */
558 #endif /* !_SYS_QUEUE_H_ */