2 * Copyright (c) 2000-2010 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
32 * Mach Operating System
33 * Copyright (c) 1991,1990,1989,1988 Carnegie Mellon University
34 * All Rights Reserved.
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
46 * Carnegie Mellon requests users of this software to return to
48 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
49 * School of Computer Science
50 * Carnegie Mellon University
51 * Pittsburgh PA 15213-3890
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
61 * Author: Avadis Tevanian, Jr., Michael Wayne Young
62 * (These guys wrote the Vax version)
64 * Physical Map management code for Intel i386, i486, and i860.
66 * Manages physical address maps.
68 * In addition to hardware address maps, this
69 * module is called upon to provide software-use-only
70 * maps which may or may not be stored in the same
71 * form as hardware maps. These pseudo-maps are
72 * used to store intermediate results from copy
73 * operations to and from address spaces.
75 * Since the information managed by this module is
76 * also stored by the logical address mapping module,
77 * this module may throw away valid virtual-to-physical
78 * mappings at almost any time. However, invalidations
79 * of virtual-to-physical mappings must be done as
82 * In order to cope with hardware architectures which
83 * make virtual-to-physical map invalidates expensive,
84 * this module may delay invalidate or reduced protection
85 * operations until such time as they are actually
86 * necessary. This module is given full information as
87 * to which processors are currently using which maps,
88 * and to when physical maps must be made correct.
92 #include <mach_ldebug.h>
94 #include <libkern/OSAtomic.h>
96 #include <mach/machine/vm_types.h>
98 #include <mach/boolean.h>
99 #include <kern/thread.h>
100 #include <kern/zalloc.h>
101 #include <kern/queue.h>
102 #include <kern/ledger.h>
103 #include <kern/mach_param.h>
105 #include <kern/lock.h>
106 #include <kern/kalloc.h>
107 #include <kern/spl.h>
110 #include <vm/vm_map.h>
111 #include <vm/vm_kern.h>
112 #include <mach/vm_param.h>
113 #include <mach/vm_prot.h>
114 #include <vm/vm_object.h>
115 #include <vm/vm_page.h>
117 #include <mach/machine/vm_param.h>
118 #include <machine/thread.h>
120 #include <kern/misc_protos.h> /* prototyping */
121 #include <i386/misc_protos.h>
122 #include <i386/i386_lowmem.h>
123 #include <x86_64/lowglobals.h>
125 #include <i386/cpuid.h>
126 #include <i386/cpu_data.h>
127 #include <i386/cpu_number.h>
128 #include <i386/machine_cpu.h>
129 #include <i386/seg.h>
130 #include <i386/serial_io.h>
131 #include <i386/cpu_capabilities.h>
132 #include <i386/machine_routines.h>
133 #include <i386/proc_reg.h>
134 #include <i386/tsc.h>
135 #include <i386/pmap_internal.h>
136 #include <i386/pmap_pcid.h>
138 #include <vm/vm_protos.h>
141 #include <i386/mp_desc.h>
142 #include <libkern/kernel_mach_header.h>
144 #include <pexpert/i386/efi.h>
150 #define POSTCODE_DELAY 1
151 #include <i386/postcode.h>
152 #endif /* IWANTTODEBUG */
155 #define DBG(x...) kprintf("DBG: " x)
159 /* Compile time assert to ensure adjacency/alignment of per-CPU data fields used
160 * in the trampolines for kernel/user boundary TLB coherency.
162 char pmap_cpu_data_assert
[(((offsetof(cpu_data_t
, cpu_tlb_invalid
) - offsetof(cpu_data_t
, cpu_active_cr3
)) == 8) && (offsetof(cpu_data_t
, cpu_active_cr3
) % 64 == 0)) ? 1 : -1];
163 boolean_t pmap_trace
= FALSE
;
165 boolean_t no_shared_cr3
= DEBUG
; /* TRUE for DEBUG by default */
167 int nx_enabled
= 1; /* enable no-execute protection */
168 int allow_data_exec
= VM_ABI_32
; /* 32-bit apps may execute data by default, 64-bit apps may not */
169 int allow_stack_exec
= 0; /* No apps may execute from the stack by default */
171 const boolean_t cpu_64bit
= TRUE
; /* Mais oui! */
173 uint64_t max_preemption_latency_tsc
= 0;
175 pv_hashed_entry_t
*pv_hash_table
; /* hash lists */
177 uint32_t npvhash
= 0;
179 pv_hashed_entry_t pv_hashed_free_list
= PV_HASHED_ENTRY_NULL
;
180 pv_hashed_entry_t pv_hashed_kern_free_list
= PV_HASHED_ENTRY_NULL
;
181 decl_simple_lock_data(,pv_hashed_free_list_lock
)
182 decl_simple_lock_data(,pv_hashed_kern_free_list_lock
)
183 decl_simple_lock_data(,pv_hash_table_lock
)
185 zone_t pv_hashed_list_zone
; /* zone of pv_hashed_entry structures */
188 * First and last physical addresses that we maintain any information
189 * for. Initialized to zero so that pmap operations done before
190 * pmap_init won't touch any non-existent structures.
192 boolean_t pmap_initialized
= FALSE
;/* Has pmap_init completed? */
194 static struct vm_object kptobj_object_store
;
195 static struct vm_object kpml4obj_object_store
;
196 static struct vm_object kpdptobj_object_store
;
199 * Array of physical page attribites for managed pages.
200 * One byte per physical page.
202 char *pmap_phys_attributes
;
203 ppnum_t last_managed_page
= 0;
206 * Amount of virtual memory mapped by one
207 * page-directory entry.
210 uint64_t pde_mapped_size
= PDE_MAPPED_SIZE
;
212 unsigned pmap_memory_region_count
;
213 unsigned pmap_memory_region_current
;
215 pmap_memory_region_t pmap_memory_regions
[PMAP_MEMORY_REGIONS_SIZE
];
218 * Other useful macros.
220 #define current_pmap() (vm_map_pmap(current_thread()->map))
222 struct pmap kernel_pmap_store
;
225 struct zone
*pmap_zone
; /* zone of pmap structures */
227 struct zone
*pmap_anchor_zone
;
228 int pmap_debug
= 0; /* flag for debugging prints */
230 unsigned int inuse_ptepages_count
= 0;
231 long long alloc_ptepages_count
__attribute__((aligned(8))) = 0; /* aligned for atomic access */
232 unsigned int bootstrap_wired_pages
= 0;
233 int pt_fake_zone_index
= -1;
235 extern long NMIPI_acks
;
237 boolean_t kernel_text_ps_4K
= TRUE
;
238 boolean_t wpkernel
= TRUE
;
244 pt_entry_t
*DMAP1
, *DMAP2
;
248 const boolean_t pmap_disable_kheap_nx
= FALSE
;
249 const boolean_t pmap_disable_kstack_nx
= FALSE
;
250 extern boolean_t doconstro_override
;
252 extern long __stack_chk_guard
[];
255 * Map memory at initialization. The physical addresses being
256 * mapped are not managed and are never unmapped.
258 * For now, VM is already on, we only need to map the
264 vm_map_offset_t start_addr
,
265 vm_map_offset_t end_addr
,
272 while (start_addr
< end_addr
) {
273 pmap_enter(kernel_pmap
, (vm_map_offset_t
)virt
,
274 (ppnum_t
) i386_btop(start_addr
), prot
, VM_PROT_NONE
, flags
, TRUE
);
281 extern char *first_avail
;
282 extern vm_offset_t virtual_avail
, virtual_end
;
283 extern pmap_paddr_t avail_start
, avail_end
;
284 extern vm_offset_t sHIB
;
285 extern vm_offset_t eHIB
;
286 extern vm_offset_t stext
;
287 extern vm_offset_t etext
;
288 extern vm_offset_t sdata
, edata
;
289 extern vm_offset_t sconstdata
, econstdata
;
291 extern void *KPTphys
;
293 boolean_t pmap_smep_enabled
= FALSE
;
298 cpu_data_t
*cdp
= current_cpu_datap();
300 * Here early in the life of a processor (from cpu_mode_init()).
301 * Ensure global page feature is disabled at this point.
304 set_cr4(get_cr4() &~ CR4_PGE
);
307 * Initialize the per-cpu, TLB-related fields.
309 cdp
->cpu_kernel_cr3
= kernel_pmap
->pm_cr3
;
310 cdp
->cpu_active_cr3
= kernel_pmap
->pm_cr3
;
311 cdp
->cpu_tlb_invalid
= FALSE
;
312 cdp
->cpu_task_map
= TASK_MAP_64BIT
;
313 pmap_pcid_configure();
314 if (cpuid_leaf7_features() & CPUID_LEAF7_FEATURE_SMEP
) {
316 if (!PE_parse_boot_argn("-pmap_smep_disable", &nsmep
, sizeof(nsmep
))) {
317 set_cr4(get_cr4() | CR4_SMEP
);
318 pmap_smep_enabled
= TRUE
;
322 if (cdp
->cpu_fixed_pmcs_enabled
) {
323 boolean_t enable
= TRUE
;
324 cpu_pmc_control(&enable
);
331 * Bootstrap the system enough to run with virtual memory.
332 * Map the kernel's code and data, and allocate the system page table.
333 * Called with mapping OFF. Page_size must already be set.
338 __unused vm_offset_t load_start
,
339 __unused boolean_t IA32e
)
341 #if NCOPY_WINDOWS > 0
347 vm_last_addr
= VM_MAX_KERNEL_ADDRESS
; /* Set the highest address
350 * The kernel's pmap is statically allocated so we don't
351 * have to use pmap_create, which is unlikely to work
352 * correctly at this part of the boot sequence.
355 kernel_pmap
= &kernel_pmap_store
;
356 kernel_pmap
->ref_count
= 1;
357 kernel_pmap
->nx_enabled
= TRUE
;
358 kernel_pmap
->pm_task_map
= TASK_MAP_64BIT
;
359 kernel_pmap
->pm_obj
= (vm_object_t
) NULL
;
360 kernel_pmap
->dirbase
= (pd_entry_t
*)((uintptr_t)IdlePTD
);
361 kernel_pmap
->pm_pdpt
= (pd_entry_t
*) ((uintptr_t)IdlePDPT
);
362 kernel_pmap
->pm_pml4
= IdlePML4
;
363 kernel_pmap
->pm_cr3
= (uintptr_t)ID_MAP_VTOP(IdlePML4
);
364 pmap_pcid_initialize_kernel(kernel_pmap
);
368 current_cpu_datap()->cpu_kernel_cr3
= (addr64_t
) kernel_pmap
->pm_cr3
;
371 OSAddAtomic(NKPT
, &inuse_ptepages_count
);
372 OSAddAtomic64(NKPT
, &alloc_ptepages_count
);
373 bootstrap_wired_pages
= NKPT
;
375 virtual_avail
= (vm_offset_t
)(VM_MIN_KERNEL_ADDRESS
) + (vm_offset_t
)first_avail
;
376 virtual_end
= (vm_offset_t
)(VM_MAX_KERNEL_ADDRESS
);
378 #if NCOPY_WINDOWS > 0
380 * Reserve some special page table entries/VA space for temporary
383 #define SYSMAP(c, p, v, n) \
384 v = (c)va; va += ((n)*INTEL_PGBYTES);
388 for (i
=0; i
<PMAP_NWINDOWS
; i
++) {
390 kprintf("trying to do SYSMAP idx %d %p\n", i
,
391 current_cpu_datap());
392 kprintf("cpu_pmap %p\n", current_cpu_datap()->cpu_pmap
);
393 kprintf("mapwindow %p\n", current_cpu_datap()->cpu_pmap
->mapwindow
);
394 kprintf("two stuff %p %p\n",
395 (void *)(current_cpu_datap()->cpu_pmap
->mapwindow
[i
].prv_CMAP
),
396 (void *)(current_cpu_datap()->cpu_pmap
->mapwindow
[i
].prv_CADDR
));
399 (current_cpu_datap()->cpu_pmap
->mapwindow
[i
].prv_CMAP
),
400 (current_cpu_datap()->cpu_pmap
->mapwindow
[i
].prv_CADDR
),
402 current_cpu_datap()->cpu_pmap
->mapwindow
[i
].prv_CMAP
=
403 &(current_cpu_datap()->cpu_pmap
->mapwindow
[i
].prv_CMAP_store
);
404 *current_cpu_datap()->cpu_pmap
->mapwindow
[i
].prv_CMAP
= 0;
407 /* DMAP user for debugger */
408 SYSMAP(caddr_t
, DMAP1
, DADDR1
, 1);
409 SYSMAP(caddr_t
, DMAP2
, DADDR2
, 1); /* XXX temporary - can remove */
414 if (PE_parse_boot_argn("npvhash", &npvhash
, sizeof (npvhash
))) {
415 if (0 != ((npvhash
+ 1) & npvhash
)) {
416 kprintf("invalid hash %d, must be ((2^N)-1), "
417 "using default %d\n", npvhash
, NPVHASH
);
424 simple_lock_init(&kernel_pmap
->lock
, 0);
425 simple_lock_init(&pv_hashed_free_list_lock
, 0);
426 simple_lock_init(&pv_hashed_kern_free_list_lock
, 0);
427 simple_lock_init(&pv_hash_table_lock
,0);
432 printf("PMAP: PCID enabled\n");
434 if (pmap_smep_enabled
)
435 printf("PMAP: Supervisor Mode Execute Protection enabled\n");
438 printf("Stack canary: 0x%lx\n", __stack_chk_guard
[0]);
439 printf("ml_early_random(): 0x%qx\n", ml_early_random());
442 /* Check if the user has requested disabling stack or heap no-execute
443 * enforcement. These are "const" variables; that qualifier is cast away
444 * when altering them. The TEXT/DATA const sections are marked
445 * write protected later in the kernel startup sequence, so altering
446 * them is possible at this point, in pmap_bootstrap().
448 if (PE_parse_boot_argn("-pmap_disable_kheap_nx", &ptmp
, sizeof(ptmp
))) {
449 boolean_t
*pdknxp
= (boolean_t
*) &pmap_disable_kheap_nx
;
453 if (PE_parse_boot_argn("-pmap_disable_kstack_nx", &ptmp
, sizeof(ptmp
))) {
454 boolean_t
*pdknhp
= (boolean_t
*) &pmap_disable_kstack_nx
;
458 boot_args
*args
= (boot_args
*)PE_state
.bootArgs
;
459 if (args
->efiMode
== kBootArgsEfiMode32
) {
460 printf("EFI32: kernel virtual space limited to 4GB\n");
461 virtual_end
= VM_MAX_KERNEL_ADDRESS_EFI32
;
463 kprintf("Kernel virtual space from 0x%lx to 0x%lx.\n",
464 (long)KERNEL_BASE
, (long)virtual_end
);
465 kprintf("Available physical space from 0x%llx to 0x%llx\n",
466 avail_start
, avail_end
);
469 * The -no_shared_cr3 boot-arg is a debugging feature (set by default
470 * in the DEBUG kernel) to force the kernel to switch to its own map
471 * (and cr3) when control is in kernelspace. The kernel's map does not
472 * include (i.e. share) userspace so wild references will cause
473 * a panic. Only copyin and copyout are exempt from this.
475 (void) PE_parse_boot_argn("-no_shared_cr3",
476 &no_shared_cr3
, sizeof (no_shared_cr3
));
478 kprintf("Kernel not sharing user map\n");
481 if (PE_parse_boot_argn("-pmap_trace", &pmap_trace
, sizeof (pmap_trace
))) {
482 kprintf("Kernel traces for pmap operations enabled\n");
484 #endif /* PMAP_TRACES */
492 *startp
= virtual_avail
;
497 * Initialize the pmap module.
498 * Called by vm_init, to initialize any structures that the pmap
499 * system needs to map virtual memory.
507 vm_map_offset_t vaddr
;
511 kernel_pmap
->pm_obj_pml4
= &kpml4obj_object_store
;
512 _vm_object_allocate((vm_object_size_t
)NPML4PGS
, &kpml4obj_object_store
);
514 kernel_pmap
->pm_obj_pdpt
= &kpdptobj_object_store
;
515 _vm_object_allocate((vm_object_size_t
)NPDPTPGS
, &kpdptobj_object_store
);
517 kernel_pmap
->pm_obj
= &kptobj_object_store
;
518 _vm_object_allocate((vm_object_size_t
)NPDEPGS
, &kptobj_object_store
);
521 * Allocate memory for the pv_head_table and its lock bits,
522 * the modify bit array, and the pte_page table.
526 * zero bias all these arrays now instead of off avail_start
527 * so we cover all memory
530 npages
= i386_btop(avail_end
);
531 s
= (vm_size_t
) (sizeof(struct pv_rooted_entry
) * npages
532 + (sizeof (struct pv_hashed_entry_t
*) * (npvhash
+1))
533 + pv_lock_table_size(npages
)
534 + pv_hash_lock_table_size((npvhash
+1))
538 if (kernel_memory_allocate(kernel_map
, &addr
, s
, 0,
539 KMA_KOBJECT
| KMA_PERMANENT
)
543 memset((char *)addr
, 0, s
);
549 if (0 == npvhash
) panic("npvhash not initialized");
553 * Allocate the structures first to preserve word-alignment.
555 pv_head_table
= (pv_rooted_entry_t
) addr
;
556 addr
= (vm_offset_t
) (pv_head_table
+ npages
);
558 pv_hash_table
= (pv_hashed_entry_t
*)addr
;
559 addr
= (vm_offset_t
) (pv_hash_table
+ (npvhash
+ 1));
561 pv_lock_table
= (char *) addr
;
562 addr
= (vm_offset_t
) (pv_lock_table
+ pv_lock_table_size(npages
));
564 pv_hash_lock_table
= (char *) addr
;
565 addr
= (vm_offset_t
) (pv_hash_lock_table
+ pv_hash_lock_table_size((npvhash
+1)));
567 pmap_phys_attributes
= (char *) addr
;
569 ppnum_t last_pn
= i386_btop(avail_end
);
571 pmap_memory_region_t
*pmptr
= pmap_memory_regions
;
572 for (i
= 0; i
< pmap_memory_region_count
; i
++, pmptr
++) {
573 if (pmptr
->type
!= kEfiConventionalMemory
)
576 for (pn
= pmptr
->base
; pn
<= pmptr
->end
; pn
++) {
578 pmap_phys_attributes
[pn
] |= PHYS_MANAGED
;
580 if (pn
> last_managed_page
)
581 last_managed_page
= pn
;
583 if (pn
>= lowest_hi
&& pn
<= highest_hi
)
584 pmap_phys_attributes
[pn
] |= PHYS_NOENCRYPT
;
589 ppn
= pmap_find_phys(kernel_pmap
, vaddr
);
591 pmap_phys_attributes
[ppn
] |= PHYS_NOENCRYPT
;
597 * Create the zone of physical maps,
598 * and of the physical-to-virtual entries.
600 s
= (vm_size_t
) sizeof(struct pmap
);
601 pmap_zone
= zinit(s
, 400*s
, 4096, "pmap"); /* XXX */
602 zone_change(pmap_zone
, Z_NOENCRYPT
, TRUE
);
604 pmap_anchor_zone
= zinit(PAGE_SIZE
, task_max
, PAGE_SIZE
, "pagetable anchors");
605 zone_change(pmap_anchor_zone
, Z_NOENCRYPT
, TRUE
);
607 /* The anchor is required to be page aligned. Zone debugging adds
608 * padding which may violate that requirement. Tell the zone
609 * subsystem that alignment is required.
612 zone_change(pmap_anchor_zone
, Z_ALIGNMENT_REQUIRED
, TRUE
);
614 s
= (vm_size_t
) sizeof(struct pv_hashed_entry
);
615 pv_hashed_list_zone
= zinit(s
, 10000*s
/* Expandable zone */,
616 4096 * 3 /* LCM x86_64*/, "pv_list");
617 zone_change(pv_hashed_list_zone
, Z_NOENCRYPT
, TRUE
);
619 /* create pv entries for kernel pages mapped by low level
620 startup code. these have to exist so we can pmap_remove()
621 e.g. kext pages from the middle of our addr space */
623 vaddr
= (vm_map_offset_t
) VM_MIN_KERNEL_ADDRESS
;
624 for (ppn
= VM_MIN_KERNEL_PAGE
; ppn
< i386_btop(avail_start
); ppn
++) {
625 pv_rooted_entry_t pv_e
;
627 pv_e
= pai_to_pvh(ppn
);
630 pv_e
->pmap
= kernel_pmap
;
631 queue_init(&pv_e
->qlink
);
633 pmap_initialized
= TRUE
;
635 max_preemption_latency_tsc
= tmrCvt((uint64_t)MAX_PREEMPTION_LATENCY_NS
, tscFCvtn2t
);
638 * Ensure the kernel's PML4 entry exists for the basement
639 * before this is shared with any user.
641 pmap_expand_pml4(kernel_pmap
, KERNEL_BASEMENT
, PMAP_EXPAND_OPTIONS_NONE
);
645 void pmap_mark_range(pmap_t npmap
, uint64_t sv
, uint64_t nxrosz
, boolean_t NX
, boolean_t ro
) {
646 uint64_t ev
= sv
+ nxrosz
, cv
= sv
;
648 pt_entry_t
*ptep
= NULL
;
650 assert(((sv
& 0xFFFULL
) | (nxrosz
& 0xFFFULL
)) == 0);
652 for (pdep
= pmap_pde(npmap
, cv
); pdep
!= NULL
&& (cv
< ev
);) {
653 uint64_t pdev
= (cv
& ~((uint64_t)PDEMASK
));
655 if (*pdep
& INTEL_PTE_PS
) {
657 *pdep
|= INTEL_PTE_NX
;
659 *pdep
&= ~INTEL_PTE_WRITE
;
661 cv
&= ~((uint64_t) PDEMASK
);
662 pdep
= pmap_pde(npmap
, cv
);
666 for (ptep
= pmap_pte(npmap
, cv
); ptep
!= NULL
&& (cv
< (pdev
+ NBPD
)) && (cv
< ev
);) {
668 *ptep
|= INTEL_PTE_NX
;
670 *ptep
&= ~INTEL_PTE_WRITE
;
672 ptep
= pmap_pte(npmap
, cv
);
675 DPRINTF("%s(0x%llx, 0x%llx, %u, %u): 0x%llx, 0x%llx\n", __FUNCTION__
, sv
, nxrosz
, NX
, ro
, cv
, ptep
? *ptep
: 0);
679 * Called once VM is fully initialized so that we can release unused
680 * sections of low memory to the general pool.
681 * Also complete the set-up of identity-mapped sections of the kernel:
682 * 1) write-protect kernel text
683 * 2) map kernel text using large pages if possible
684 * 3) read and write-protect page zero (for K32)
685 * 4) map the global page at the appropriate virtual address.
689 * To effectively map and write-protect all kernel text pages, the text
690 * must be 2M-aligned at the base, and the data section above must also be
691 * 2M-aligned. That is, there's padding below and above. This is achieved
692 * through linker directives. Large pages are used only if this alignment
693 * exists (and not overriden by the -kernel_text_page_4K boot-arg). The
698 * sdata: ================== 2Meg
702 * etext: ------------------
710 * stext: ================== 2Meg
714 * eHIB: ------------------
718 * Prior to changing the mapping from 4K to 2M, the zero-padding pages
719 * [eHIB,stext] and [etext,sdata] are ml_static_mfree()'d. Then all the
720 * 4K pages covering [stext,etext] are coalesced as 2M large pages.
721 * The now unused level-1 PTE pages are also freed.
723 extern ppnum_t vm_kernel_base_page
;
725 pmap_lowmem_finalize(void)
731 * Update wired memory statistics for early boot pages
733 PMAP_ZINFO_PALLOC(kernel_pmap
, bootstrap_wired_pages
* PAGE_SIZE
);
736 * Free pages in pmap regions below the base:
738 * We can't free all the pages to VM that EFI reports available.
739 * Pages in the range 0xc0000-0xff000 aren't safe over sleep/wake.
740 * There's also a size miscalculation here: pend is one page less
741 * than it should be but this is not fixed to be backwards
743 * This is important for KASLR because up to 256*2MB = 512MB of space
744 * needs has to be released to VM.
747 pmap_memory_regions
[i
].end
< vm_kernel_base_page
;
749 vm_offset_t pbase
= i386_ptob(pmap_memory_regions
[i
].base
);
750 vm_offset_t pend
= i386_ptob(pmap_memory_regions
[i
].end
+1);
752 DBG("pmap region %d [%p..[%p\n",
753 i
, (void *) pbase
, (void *) pend
);
755 if (pmap_memory_regions
[i
].attribute
& EFI_MEMORY_KERN_RESERVED
)
759 * Adjust limits not to free pages in range 0xc0000-0xff000.
761 if (pbase
>= 0xc0000 && pend
<= 0x100000)
763 if (pbase
< 0xc0000 && pend
> 0x100000) {
764 /* page range entirely within region, free lower part */
765 DBG("- ml_static_mfree(%p,%p)\n",
766 (void *) ml_static_ptovirt(pbase
),
767 (void *) (0xc0000-pbase
));
768 ml_static_mfree(ml_static_ptovirt(pbase
),0xc0000-pbase
);
772 pend
= MIN(pend
, 0xc0000);
774 pbase
= MAX(pbase
, 0x100000);
775 DBG("- ml_static_mfree(%p,%p)\n",
776 (void *) ml_static_ptovirt(pbase
),
777 (void *) (pend
- pbase
));
778 ml_static_mfree(ml_static_ptovirt(pbase
), pend
- pbase
);
781 /* A final pass to get rid of all initial identity mappings to
784 DPRINTF("%s: Removing mappings from 0->0x%lx\n", __FUNCTION__
, vm_kernel_base
);
786 /* Remove all mappings past the descriptor aliases and low globals */
787 pmap_remove(kernel_pmap
, LOWGLOBAL_ALIAS
+ PAGE_SIZE
, vm_kernel_base
);
790 * If text and data are both 2MB-aligned,
791 * we can map text with large-pages,
792 * unless the -kernel_text_ps_4K boot-arg overrides.
794 if ((stext
& I386_LPGMASK
) == 0 && (sdata
& I386_LPGMASK
) == 0) {
795 kprintf("Kernel text is 2MB aligned");
796 kernel_text_ps_4K
= FALSE
;
797 if (PE_parse_boot_argn("-kernel_text_ps_4K",
799 sizeof (kernel_text_ps_4K
)))
800 kprintf(" but will be mapped with 4K pages\n");
802 kprintf(" and will be mapped with 2M pages\n");
805 (void) PE_parse_boot_argn("wpkernel", &wpkernel
, sizeof (wpkernel
));
807 kprintf("Kernel text %p-%p to be write-protected\n",
808 (void *) stext
, (void *) etext
);
813 * Scan over text if mappings are to be changed:
814 * - Remap kernel text readonly unless the "wpkernel" boot-arg is 0
815 * - Change to large-pages if possible and not overriden.
817 if (kernel_text_ps_4K
&& wpkernel
) {
819 for (myva
= stext
; myva
< etext
; myva
+= PAGE_SIZE
) {
822 ptep
= pmap_pte(kernel_pmap
, (vm_map_offset_t
)myva
);
824 pmap_store_pte(ptep
, *ptep
& ~INTEL_PTE_WRITE
);
828 if (!kernel_text_ps_4K
) {
832 * Release zero-filled page padding used for 2M-alignment.
834 DBG("ml_static_mfree(%p,%p) for padding below text\n",
835 (void *) eHIB
, (void *) (stext
- eHIB
));
836 ml_static_mfree(eHIB
, stext
- eHIB
);
837 DBG("ml_static_mfree(%p,%p) for padding above text\n",
838 (void *) etext
, (void *) (sdata
- etext
));
839 ml_static_mfree(etext
, sdata
- etext
);
842 * Coalesce text pages into large pages.
844 for (myva
= stext
; myva
< sdata
; myva
+= I386_LPGBYTES
) {
846 vm_offset_t pte_phys
;
850 pdep
= pmap_pde(kernel_pmap
, (vm_map_offset_t
)myva
);
851 ptep
= pmap_pte(kernel_pmap
, (vm_map_offset_t
)myva
);
852 DBG("myva: %p pdep: %p ptep: %p\n",
853 (void *) myva
, (void *) pdep
, (void *) ptep
);
854 if ((*ptep
& INTEL_PTE_VALID
) == 0)
856 pte_phys
= (vm_offset_t
)(*ptep
& PG_FRAME
);
857 pde
= *pdep
& PTMASK
; /* page attributes from pde */
858 pde
|= INTEL_PTE_PS
; /* make it a 2M entry */
859 pde
|= pte_phys
; /* take page frame from pte */
862 pde
&= ~INTEL_PTE_WRITE
;
863 DBG("pmap_store_pte(%p,0x%llx)\n",
865 pmap_store_pte(pdep
, pde
);
868 * Free the now-unused level-1 pte.
869 * Note: ptep is a virtual address to the pte in the
870 * recursive map. We can't use this address to free
871 * the page. Instead we need to compute its address
872 * in the Idle PTEs in "low memory".
874 vm_offset_t vm_ptep
= (vm_offset_t
) KPTphys
875 + (pte_phys
>> PTPGSHIFT
);
876 DBG("ml_static_mfree(%p,0x%x) for pte\n",
877 (void *) vm_ptep
, PAGE_SIZE
);
878 ml_static_mfree(vm_ptep
, PAGE_SIZE
);
881 /* Change variable read by sysctl machdep.pmap */
882 pmap_kernel_text_ps
= I386_LPGBYTES
;
885 boolean_t doconstro
= TRUE
;
887 (void) PE_parse_boot_argn("dataconstro", &doconstro
, sizeof(doconstro
));
889 if ((sconstdata
| econstdata
) & PAGE_MASK
) {
890 kprintf("Const DATA misaligned 0x%lx 0x%lx\n", sconstdata
, econstdata
);
891 if ((sconstdata
& PAGE_MASK
) || (doconstro_override
== FALSE
))
895 if ((sconstdata
> edata
) || (sconstdata
< sdata
) || ((econstdata
- sconstdata
) >= (edata
- sdata
))) {
896 kprintf("Const DATA incorrect size 0x%lx 0x%lx 0x%lx 0x%lx\n", sconstdata
, econstdata
, sdata
, edata
);
901 kprintf("Marking const DATA read-only\n");
905 for (dva
= sdata
; dva
< edata
; dva
+= I386_PGBYTES
) {
906 assert(((sdata
| edata
) & PAGE_MASK
) == 0);
907 if ( (sdata
| edata
) & PAGE_MASK
) {
908 kprintf("DATA misaligned, 0x%lx, 0x%lx\n", sdata
, edata
);
912 pt_entry_t dpte
, *dptep
= pmap_pte(kernel_pmap
, dva
);
916 assert((dpte
& INTEL_PTE_VALID
));
917 if ((dpte
& INTEL_PTE_VALID
) == 0) {
918 kprintf("Missing data mapping 0x%lx 0x%lx 0x%lx\n", dva
, sdata
, edata
);
922 dpte
|= INTEL_PTE_NX
;
923 if (doconstro
&& (dva
>= sconstdata
) && (dva
< econstdata
)) {
924 dpte
&= ~INTEL_PTE_WRITE
;
926 pmap_store_pte(dptep
, dpte
);
928 kernel_segment_command_t
* seg
;
929 kernel_section_t
* sec
;
931 for (seg
= firstseg(); seg
!= NULL
; seg
= nextsegfromheader(&_mh_execute_header
, seg
)) {
932 if (!strcmp(seg
->segname
, "__TEXT") ||
933 !strcmp(seg
->segname
, "__DATA")) {
937 if (!strcmp(seg
->segname
, "__KLD")) {
940 if (!strcmp(seg
->segname
, "__HIB")) {
941 for (sec
= firstsect(seg
); sec
!= NULL
; sec
= nextsect(seg
, sec
)) {
942 if (sec
->addr
& PAGE_MASK
)
943 panic("__HIB segment's sections misaligned");
944 if (!strcmp(sec
->sectname
, "__text")) {
945 pmap_mark_range(kernel_pmap
, sec
->addr
, round_page(sec
->size
), FALSE
, TRUE
);
947 pmap_mark_range(kernel_pmap
, sec
->addr
, round_page(sec
->size
), TRUE
, FALSE
);
951 pmap_mark_range(kernel_pmap
, seg
->vmaddr
, round_page_64(seg
->vmsize
), TRUE
, FALSE
);
956 * If we're debugging, map the low global vector page at the fixed
957 * virtual address. Otherwise, remove the mapping for this.
959 if (debug_boot_arg
) {
960 pt_entry_t
*pte
= NULL
;
961 if (0 == (pte
= pmap_pte(kernel_pmap
, LOWGLOBAL_ALIAS
)))
963 /* make sure it is defined on page boundary */
964 assert(0 == ((vm_offset_t
) &lowGlo
& PAGE_MASK
));
965 pmap_store_pte(pte
, kvtophys((vm_offset_t
)&lowGlo
)
973 pmap_remove(kernel_pmap
,
974 LOWGLOBAL_ALIAS
, LOWGLOBAL_ALIAS
+ PAGE_SIZE
);
985 * this function is only used for debugging fron the vm layer
991 pv_rooted_entry_t pv_h
;
995 assert(pn
!= vm_page_fictitious_addr
);
997 if (!pmap_initialized
)
1000 if (pn
== vm_page_guard_addr
)
1003 pai
= ppn_to_pai(pn
);
1004 if (!IS_MANAGED_PAGE(pai
))
1006 pv_h
= pai_to_pvh(pn
);
1007 result
= (pv_h
->pmap
== PMAP_NULL
);
1014 vm_map_offset_t va_start
,
1015 vm_map_offset_t va_end
)
1017 vm_map_offset_t offset
;
1020 if (pmap
== PMAP_NULL
) {
1025 * Check the resident page count
1026 * - if it's zero, the pmap is completely empty.
1027 * This short-circuit test prevents a virtual address scan which is
1028 * painfully slow for 64-bit spaces.
1029 * This assumes the count is correct
1030 * .. the debug kernel ought to be checking perhaps by page table walk.
1032 if (pmap
->stats
.resident_count
== 0)
1035 for (offset
= va_start
;
1037 offset
+= PAGE_SIZE_64
) {
1038 phys_page
= pmap_find_phys(pmap
, offset
);
1040 kprintf("pmap_is_empty(%p,0x%llx,0x%llx): "
1041 "page %d at 0x%llx\n",
1042 pmap
, va_start
, va_end
, phys_page
, offset
);
1052 * Create and return a physical map.
1054 * If the size specified for the map
1055 * is zero, the map is an actual physical
1056 * map, and may be referenced by the
1059 * If the size specified is non-zero,
1060 * the map will be used in software only, and
1061 * is bounded by that size.
1072 pml4_entry_t
*kpml4
;
1074 PMAP_TRACE(PMAP_CODE(PMAP__CREATE
) | DBG_FUNC_START
,
1075 (uint32_t) (sz
>>32), (uint32_t) sz
, is_64bit
, 0, 0);
1077 size
= (vm_size_t
) sz
;
1080 * A software use-only map doesn't even need a map.
1087 p
= (pmap_t
) zalloc(pmap_zone
);
1089 panic("pmap_create zalloc");
1090 /* Zero all fields */
1091 bzero(p
, sizeof(*p
));
1092 /* init counts now since we'll be bumping some */
1093 simple_lock_init(&p
->lock
, 0);
1094 p
->stats
.resident_count
= 0;
1095 p
->stats
.resident_max
= 0;
1096 p
->stats
.wired_count
= 0;
1099 p
->pm_shared
= FALSE
;
1100 ledger_reference(ledger
);
1103 p
->pm_task_map
= is_64bit
? TASK_MAP_64BIT
: TASK_MAP_32BIT
;;
1104 if (pmap_pcid_ncpus
)
1105 pmap_pcid_initialize(p
);
1107 p
->pm_pml4
= zalloc(pmap_anchor_zone
);
1109 pmap_assert((((uintptr_t)p
->pm_pml4
) & PAGE_MASK
) == 0);
1111 memset((char *)p
->pm_pml4
, 0, PAGE_SIZE
);
1113 p
->pm_cr3
= (pmap_paddr_t
)kvtophys((vm_offset_t
)p
->pm_pml4
);
1115 /* allocate the vm_objs to hold the pdpt, pde and pte pages */
1117 p
->pm_obj_pml4
= vm_object_allocate((vm_object_size_t
)(NPML4PGS
));
1118 if (NULL
== p
->pm_obj_pml4
)
1119 panic("pmap_create pdpt obj");
1121 p
->pm_obj_pdpt
= vm_object_allocate((vm_object_size_t
)(NPDPTPGS
));
1122 if (NULL
== p
->pm_obj_pdpt
)
1123 panic("pmap_create pdpt obj");
1125 p
->pm_obj
= vm_object_allocate((vm_object_size_t
)(NPDEPGS
));
1126 if (NULL
== p
->pm_obj
)
1127 panic("pmap_create pte obj");
1129 /* All pmaps share the kernel's pml4 */
1130 pml4
= pmap64_pml4(p
, 0ULL);
1131 kpml4
= kernel_pmap
->pm_pml4
;
1132 pml4
[KERNEL_PML4_INDEX
] = kpml4
[KERNEL_PML4_INDEX
];
1133 pml4
[KERNEL_KEXTS_INDEX
] = kpml4
[KERNEL_KEXTS_INDEX
];
1134 pml4
[KERNEL_PHYSMAP_PML4_INDEX
] = kpml4
[KERNEL_PHYSMAP_PML4_INDEX
];
1136 PMAP_TRACE(PMAP_CODE(PMAP__CREATE
) | DBG_FUNC_START
,
1137 p
, is_64bit
, 0, 0, 0);
1143 * Retire the given physical map from service.
1144 * Should only be called if the map contains
1145 * no valid mappings.
1149 pmap_destroy(pmap_t p
)
1156 PMAP_TRACE(PMAP_CODE(PMAP__DESTROY
) | DBG_FUNC_START
,
1163 pmap_assert((current_thread() && (current_thread()->map
)) ? (current_thread()->map
->pmap
!= p
) : TRUE
);
1167 * If some cpu is not using the physical pmap pointer that it
1168 * is supposed to be (see set_dirbase), we might be using the
1169 * pmap that is being destroyed! Make sure we are
1170 * physically on the right pmap:
1172 PMAP_UPDATE_TLBS(p
, 0x0ULL
, 0xFFFFFFFFFFFFF000ULL
);
1173 if (pmap_pcid_ncpus
)
1174 pmap_destroy_pcid_sync(p
);
1180 PMAP_TRACE(PMAP_CODE(PMAP__DESTROY
) | DBG_FUNC_END
,
1182 pmap_assert(p
== kernel_pmap
);
1183 return; /* still in use */
1187 * Free the memory maps, then the
1190 int inuse_ptepages
= 0;
1192 zfree(pmap_anchor_zone
, p
->pm_pml4
);
1194 inuse_ptepages
+= p
->pm_obj_pml4
->resident_page_count
;
1195 vm_object_deallocate(p
->pm_obj_pml4
);
1197 inuse_ptepages
+= p
->pm_obj_pdpt
->resident_page_count
;
1198 vm_object_deallocate(p
->pm_obj_pdpt
);
1200 inuse_ptepages
+= p
->pm_obj
->resident_page_count
;
1201 vm_object_deallocate(p
->pm_obj
);
1203 OSAddAtomic(-inuse_ptepages
, &inuse_ptepages_count
);
1204 PMAP_ZINFO_PFREE(p
, inuse_ptepages
* PAGE_SIZE
);
1205 ledger_dereference(p
->ledger
);
1206 zfree(pmap_zone
, p
);
1208 PMAP_TRACE(PMAP_CODE(PMAP__DESTROY
) | DBG_FUNC_END
,
1213 * Add a reference to the specified pmap.
1217 pmap_reference(pmap_t p
)
1219 if (p
!= PMAP_NULL
) {
1227 * Remove phys addr if mapped in specified map
1231 pmap_remove_some_phys(
1232 __unused pmap_t map
,
1233 __unused ppnum_t pn
)
1236 /* Implement to support working set code */
1241 * Set the physical protection on the
1242 * specified range of this map as requested.
1243 * Will not increase permissions.
1248 vm_map_offset_t sva
,
1249 vm_map_offset_t eva
,
1253 pt_entry_t
*spte
, *epte
;
1254 vm_map_offset_t lva
;
1255 vm_map_offset_t orig_sva
;
1261 if (map
== PMAP_NULL
)
1264 if (prot
== VM_PROT_NONE
) {
1265 pmap_remove(map
, sva
, eva
);
1268 PMAP_TRACE(PMAP_CODE(PMAP__PROTECT
) | DBG_FUNC_START
,
1270 (uint32_t) (sva
>> 32), (uint32_t) sva
,
1271 (uint32_t) (eva
>> 32), (uint32_t) eva
);
1273 if ((prot
& VM_PROT_EXECUTE
) || !nx_enabled
|| !map
->nx_enabled
)
1282 lva
= (sva
+ pde_mapped_size
) & ~(pde_mapped_size
- 1);
1285 pde
= pmap_pde(map
, sva
);
1286 if (pde
&& (*pde
& INTEL_PTE_VALID
)) {
1287 if (*pde
& INTEL_PTE_PS
) {
1290 epte
= spte
+1; /* excluded */
1292 spte
= pmap_pte(map
, (sva
& ~(pde_mapped_size
- 1)));
1293 spte
= &spte
[ptenum(sva
)];
1294 epte
= &spte
[intel_btop(lva
- sva
)];
1297 for (; spte
< epte
; spte
++) {
1298 if (!(*spte
& INTEL_PTE_VALID
))
1301 if (prot
& VM_PROT_WRITE
)
1302 pmap_update_pte(spte
, 0, INTEL_PTE_WRITE
);
1304 pmap_update_pte(spte
, INTEL_PTE_WRITE
, 0);
1307 pmap_update_pte(spte
, 0, INTEL_PTE_NX
);
1309 pmap_update_pte(spte
, INTEL_PTE_NX
, 0);
1316 PMAP_UPDATE_TLBS(map
, orig_sva
, eva
);
1320 PMAP_TRACE(PMAP_CODE(PMAP__PROTECT
) | DBG_FUNC_END
,
1325 /* Map a (possibly) autogenned block */
1334 __unused
unsigned int flags
)
1339 if (attr
& VM_MEM_SUPERPAGE
)
1340 cur_page_size
= SUPERPAGE_SIZE
;
1342 cur_page_size
= PAGE_SIZE
;
1344 for (page
= 0; page
< size
; page
+=cur_page_size
/PAGE_SIZE
) {
1345 pmap_enter(pmap
, va
, pa
, prot
, VM_PROT_NONE
, attr
, TRUE
);
1346 va
+= cur_page_size
;
1347 pa
+=cur_page_size
/PAGE_SIZE
;
1354 vm_map_offset_t vaddr
,
1355 unsigned int options
)
1361 pml4_entry_t
*pml4p
;
1363 DBG("pmap_expand_pml4(%p,%p)\n", map
, (void *)vaddr
);
1366 * Allocate a VM page for the pml4 page
1368 while ((m
= vm_page_grab()) == VM_PAGE_NULL
) {
1369 if (options
& PMAP_EXPAND_OPTIONS_NOWAIT
)
1370 return KERN_RESOURCE_SHORTAGE
;
1374 * put the page into the pmap's obj list so it
1375 * can be found later.
1379 i
= pml4idx(map
, vaddr
);
1386 vm_page_lockspin_queues();
1388 vm_page_unlock_queues();
1390 OSAddAtomic(1, &inuse_ptepages_count
);
1391 OSAddAtomic64(1, &alloc_ptepages_count
);
1392 PMAP_ZINFO_PALLOC(map
, PAGE_SIZE
);
1394 /* Take the oject lock (mutex) before the PMAP_LOCK (spinlock) */
1395 vm_object_lock(map
->pm_obj_pml4
);
1399 * See if someone else expanded us first
1401 if (pmap64_pdpt(map
, vaddr
) != PDPT_ENTRY_NULL
) {
1403 vm_object_unlock(map
->pm_obj_pml4
);
1407 OSAddAtomic(-1, &inuse_ptepages_count
);
1408 PMAP_ZINFO_PFREE(map
, PAGE_SIZE
);
1409 return KERN_SUCCESS
;
1413 if (0 != vm_page_lookup(map
->pm_obj_pml4
, (vm_object_offset_t
)i
)) {
1414 panic("pmap_expand_pml4: obj not empty, pmap %p pm_obj %p vaddr 0x%llx i 0x%llx\n",
1415 map
, map
->pm_obj_pml4
, vaddr
, i
);
1418 vm_page_insert(m
, map
->pm_obj_pml4
, (vm_object_offset_t
)i
);
1419 vm_object_unlock(map
->pm_obj_pml4
);
1422 * Set the page directory entry for this page table.
1424 pml4p
= pmap64_pml4(map
, vaddr
); /* refetch under lock */
1426 pmap_store_pte(pml4p
, pa_to_pte(pa
)
1433 return KERN_SUCCESS
;
1437 pmap_expand_pdpt(pmap_t map
, vm_map_offset_t vaddr
, unsigned int options
)
1443 pdpt_entry_t
*pdptp
;
1445 DBG("pmap_expand_pdpt(%p,%p)\n", map
, (void *)vaddr
);
1447 while ((pdptp
= pmap64_pdpt(map
, vaddr
)) == PDPT_ENTRY_NULL
) {
1448 kern_return_t pep4kr
= pmap_expand_pml4(map
, vaddr
, options
);
1449 if (pep4kr
!= KERN_SUCCESS
)
1454 * Allocate a VM page for the pdpt page
1456 while ((m
= vm_page_grab()) == VM_PAGE_NULL
) {
1457 if (options
& PMAP_EXPAND_OPTIONS_NOWAIT
)
1458 return KERN_RESOURCE_SHORTAGE
;
1463 * put the page into the pmap's obj list so it
1464 * can be found later.
1468 i
= pdptidx(map
, vaddr
);
1475 vm_page_lockspin_queues();
1477 vm_page_unlock_queues();
1479 OSAddAtomic(1, &inuse_ptepages_count
);
1480 OSAddAtomic64(1, &alloc_ptepages_count
);
1481 PMAP_ZINFO_PALLOC(map
, PAGE_SIZE
);
1483 /* Take the oject lock (mutex) before the PMAP_LOCK (spinlock) */
1484 vm_object_lock(map
->pm_obj_pdpt
);
1488 * See if someone else expanded us first
1490 if (pmap64_pde(map
, vaddr
) != PD_ENTRY_NULL
) {
1492 vm_object_unlock(map
->pm_obj_pdpt
);
1496 OSAddAtomic(-1, &inuse_ptepages_count
);
1497 PMAP_ZINFO_PFREE(map
, PAGE_SIZE
);
1498 return KERN_SUCCESS
;
1502 if (0 != vm_page_lookup(map
->pm_obj_pdpt
, (vm_object_offset_t
)i
)) {
1503 panic("pmap_expand_pdpt: obj not empty, pmap %p pm_obj %p vaddr 0x%llx i 0x%llx\n",
1504 map
, map
->pm_obj_pdpt
, vaddr
, i
);
1507 vm_page_insert(m
, map
->pm_obj_pdpt
, (vm_object_offset_t
)i
);
1508 vm_object_unlock(map
->pm_obj_pdpt
);
1511 * Set the page directory entry for this page table.
1513 pdptp
= pmap64_pdpt(map
, vaddr
); /* refetch under lock */
1515 pmap_store_pte(pdptp
, pa_to_pte(pa
)
1522 return KERN_SUCCESS
;
1529 * Routine: pmap_expand
1531 * Expands a pmap to be able to map the specified virtual address.
1533 * Allocates new virtual memory for the P0 or P1 portion of the
1534 * pmap, then re-maps the physical pages that were in the old
1535 * pmap to be in the new pmap.
1537 * Must be called with the pmap system and the pmap unlocked,
1538 * since these must be unlocked to use vm_allocate or vm_deallocate.
1539 * Thus it must be called in a loop that checks whether the map
1540 * has been expanded enough.
1541 * (We won't loop forever, since page tables aren't shrunk.)
1546 vm_map_offset_t vaddr
,
1547 unsigned int options
)
1550 register vm_page_t m
;
1551 register pmap_paddr_t pa
;
1557 * For the kernel, the virtual address must be in or above the basement
1558 * which is for kexts and is in the 512GB immediately below the kernel..
1559 * XXX - should use VM_MIN_KERNEL_AND_KEXT_ADDRESS not KERNEL_BASEMENT
1561 if (map
== kernel_pmap
&&
1562 !(vaddr
>= KERNEL_BASEMENT
&& vaddr
<= VM_MAX_KERNEL_ADDRESS
))
1563 panic("pmap_expand: bad vaddr 0x%llx for kernel pmap", vaddr
);
1566 while ((pdp
= pmap64_pde(map
, vaddr
)) == PD_ENTRY_NULL
) {
1567 kern_return_t pepkr
= pmap_expand_pdpt(map
, vaddr
, options
);
1568 if (pepkr
!= KERN_SUCCESS
)
1573 * Allocate a VM page for the pde entries.
1575 while ((m
= vm_page_grab()) == VM_PAGE_NULL
) {
1576 if (options
& PMAP_EXPAND_OPTIONS_NOWAIT
)
1577 return KERN_RESOURCE_SHORTAGE
;
1582 * put the page into the pmap's obj list so it
1583 * can be found later.
1587 i
= pdeidx(map
, vaddr
);
1594 vm_page_lockspin_queues();
1596 vm_page_unlock_queues();
1598 OSAddAtomic(1, &inuse_ptepages_count
);
1599 OSAddAtomic64(1, &alloc_ptepages_count
);
1600 PMAP_ZINFO_PALLOC(map
, PAGE_SIZE
);
1602 /* Take the oject lock (mutex) before the PMAP_LOCK (spinlock) */
1603 vm_object_lock(map
->pm_obj
);
1608 * See if someone else expanded us first
1610 if (pmap_pte(map
, vaddr
) != PT_ENTRY_NULL
) {
1612 vm_object_unlock(map
->pm_obj
);
1616 OSAddAtomic(-1, &inuse_ptepages_count
);
1617 PMAP_ZINFO_PFREE(map
, PAGE_SIZE
);
1618 return KERN_SUCCESS
;
1622 if (0 != vm_page_lookup(map
->pm_obj
, (vm_object_offset_t
)i
)) {
1623 panic("pmap_expand: obj not empty, pmap 0x%x pm_obj 0x%x vaddr 0x%llx i 0x%llx\n",
1624 map
, map
->pm_obj
, vaddr
, i
);
1627 vm_page_insert(m
, map
->pm_obj
, (vm_object_offset_t
)i
);
1628 vm_object_unlock(map
->pm_obj
);
1631 * Set the page directory entry for this page table.
1633 pdp
= pmap_pde(map
, vaddr
);
1634 pmap_store_pte(pdp
, pa_to_pte(pa
)
1641 return KERN_SUCCESS
;
1644 /* On K64 machines with more than 32GB of memory, pmap_steal_memory
1645 * will allocate past the 1GB of pre-expanded virtual kernel area. This
1646 * function allocates all the page tables using memory from the same pool
1647 * that pmap_steal_memory uses, rather than calling vm_page_grab (which
1648 * isn't available yet). */
1650 pmap_pre_expand(pmap_t pmap
, vm_map_offset_t vaddr
)
1657 if(pmap64_pdpt(pmap
, vaddr
) == PDPT_ENTRY_NULL
) {
1658 if (!pmap_next_page_hi(&pn
))
1659 panic("pmap_pre_expand");
1663 pte
= pmap64_pml4(pmap
, vaddr
);
1665 pmap_store_pte(pte
, pa_to_pte(i386_ptob(pn
))
1671 if(pmap64_pde(pmap
, vaddr
) == PD_ENTRY_NULL
) {
1672 if (!pmap_next_page_hi(&pn
))
1673 panic("pmap_pre_expand");
1677 pte
= pmap64_pdpt(pmap
, vaddr
);
1679 pmap_store_pte(pte
, pa_to_pte(i386_ptob(pn
))
1685 if(pmap_pte(pmap
, vaddr
) == PT_ENTRY_NULL
) {
1686 if (!pmap_next_page_hi(&pn
))
1687 panic("pmap_pre_expand");
1691 pte
= pmap64_pde(pmap
, vaddr
);
1693 pmap_store_pte(pte
, pa_to_pte(i386_ptob(pn
))
1703 * pmap_sync_page_data_phys(ppnum_t pa)
1705 * Invalidates all of the instruction cache on a physical page and
1706 * pushes any dirty data from the data cache for the same physical page
1707 * Not required in i386.
1710 pmap_sync_page_data_phys(__unused ppnum_t pa
)
1716 * pmap_sync_page_attributes_phys(ppnum_t pa)
1718 * Write back and invalidate all cachelines on a physical page.
1721 pmap_sync_page_attributes_phys(ppnum_t pa
)
1723 cache_flush_page_phys(pa
);
1728 #ifdef CURRENTLY_UNUSED_AND_UNTESTED
1734 * Routine: pmap_collect
1736 * Garbage collects the physical map system for
1737 * pages which are no longer used.
1738 * Success need not be guaranteed -- that is, there
1739 * may well be pages which are not referenced, but
1740 * others may be collected.
1742 * Called by the pageout daemon when pages are scarce.
1748 register pt_entry_t
*pdp
, *ptp
;
1755 if (p
== kernel_pmap
)
1759 * Garbage collect map.
1763 for (pdp
= (pt_entry_t
*)p
->dirbase
;
1764 pdp
< (pt_entry_t
*)&p
->dirbase
[(UMAXPTDI
+1)];
1767 if (*pdp
& INTEL_PTE_VALID
) {
1768 if(*pdp
& INTEL_PTE_REF
) {
1769 pmap_store_pte(pdp
, *pdp
& ~INTEL_PTE_REF
);
1773 ptp
= pmap_pte(p
, pdetova(pdp
- (pt_entry_t
*)p
->dirbase
));
1774 eptp
= ptp
+ NPTEPG
;
1777 * If the pte page has any wired mappings, we cannot
1782 register pt_entry_t
*ptep
;
1783 for (ptep
= ptp
; ptep
< eptp
; ptep
++) {
1784 if (iswired(*ptep
)) {
1792 * Remove the virtual addresses mapped by this pte page.
1794 pmap_remove_range(p
,
1795 pdetova(pdp
- (pt_entry_t
*)p
->dirbase
),
1800 * Invalidate the page directory pointer.
1802 pmap_store_pte(pdp
, 0x0);
1807 * And free the pte page itself.
1810 register vm_page_t m
;
1812 vm_object_lock(p
->pm_obj
);
1814 m
= vm_page_lookup(p
->pm_obj
,(vm_object_offset_t
)(pdp
- (pt_entry_t
*)&p
->dirbase
[0]));
1815 if (m
== VM_PAGE_NULL
)
1816 panic("pmap_collect: pte page not in object");
1818 vm_object_unlock(p
->pm_obj
);
1822 OSAddAtomic(-1, &inuse_ptepages_count
);
1823 PMAP_ZINFO_PFREE(p
, PAGE_SIZE
);
1832 PMAP_UPDATE_TLBS(p
, 0x0, 0xFFFFFFFFFFFFF000ULL
);
1841 pmap_copy_page(ppnum_t src
, ppnum_t dst
)
1843 bcopy_phys((addr64_t
)i386_ptob(src
),
1844 (addr64_t
)i386_ptob(dst
),
1850 * Routine: pmap_pageable
1852 * Make the specified pages (by pmap, offset)
1853 * pageable (or not) as requested.
1855 * A page which is not pageable may not take
1856 * a fault; therefore, its page table entry
1857 * must remain valid for the duration.
1859 * This routine is merely advisory; pmap_enter
1860 * will specify that these pages are to be wired
1861 * down (or not) as appropriate.
1865 __unused pmap_t pmap
,
1866 __unused vm_map_offset_t start_addr
,
1867 __unused vm_map_offset_t end_addr
,
1868 __unused boolean_t pageable
)
1871 pmap
++; start_addr
++; end_addr
++; pageable
++;
1876 invalidate_icache(__unused vm_offset_t addr
,
1877 __unused
unsigned cnt
,
1884 flush_dcache(__unused vm_offset_t addr
,
1885 __unused
unsigned count
,
1893 * Constrain DTrace copyin/copyout actions
1895 extern kern_return_t
dtrace_copyio_preflight(addr64_t
);
1896 extern kern_return_t
dtrace_copyio_postflight(addr64_t
);
1898 kern_return_t
dtrace_copyio_preflight(__unused addr64_t va
)
1900 thread_t thread
= current_thread();
1903 if (current_map() == kernel_map
)
1904 return KERN_FAILURE
;
1905 else if (((ccr3
= get_cr3_base()) != thread
->map
->pmap
->pm_cr3
) && (no_shared_cr3
== FALSE
))
1906 return KERN_FAILURE
;
1907 else if (no_shared_cr3
&& (ccr3
!= kernel_pmap
->pm_cr3
))
1908 return KERN_FAILURE
;
1909 else if (thread
->machine
.specFlags
& CopyIOActive
)
1910 return KERN_FAILURE
;
1912 return KERN_SUCCESS
;
1915 kern_return_t
dtrace_copyio_postflight(__unused addr64_t va
)
1917 return KERN_SUCCESS
;
1919 #endif /* CONFIG_DTRACE */
1921 #include <mach_vm_debug.h>
1923 #include <vm/vm_debug.h>
1926 pmap_list_resident_pages(
1927 __unused pmap_t pmap
,
1928 __unused vm_offset_t
*listp
,
1933 #endif /* MACH_VM_DEBUG */
1937 /* temporary workaround */
1939 coredumpok(__unused vm_map_t map
, __unused vm_offset_t va
)
1944 ptep
= pmap_pte(map
->pmap
, va
);
1947 return ((*ptep
& (INTEL_PTE_NCACHE
| INTEL_PTE_WIRED
)) != (INTEL_PTE_NCACHE
| INTEL_PTE_WIRED
));
1955 phys_page_exists(ppnum_t pn
)
1957 assert(pn
!= vm_page_fictitious_addr
);
1959 if (!pmap_initialized
)
1962 if (pn
== vm_page_guard_addr
)
1965 if (!IS_MANAGED_PAGE(ppn_to_pai(pn
)))
1974 pmap_switch(pmap_t tpmap
)
1978 s
= splhigh(); /* Make sure interruptions are disabled */
1979 set_dirbase(tpmap
, current_thread());
1985 * disable no-execute capability on
1986 * the specified pmap
1989 pmap_disable_NX(pmap_t pmap
)
1991 pmap
->nx_enabled
= 0;
1995 pt_fake_zone_init(int zone_index
)
1997 pt_fake_zone_index
= zone_index
;
2003 vm_size_t
*cur_size
,
2004 vm_size_t
*max_size
,
2005 vm_size_t
*elem_size
,
2006 vm_size_t
*alloc_size
,
2012 *count
= inuse_ptepages_count
;
2013 *cur_size
= PAGE_SIZE
* inuse_ptepages_count
;
2014 *max_size
= PAGE_SIZE
* (inuse_ptepages_count
+
2015 vm_page_inactive_count
+
2016 vm_page_active_count
+
2017 vm_page_free_count
);
2018 *elem_size
= PAGE_SIZE
;
2019 *alloc_size
= PAGE_SIZE
;
2020 *sum_size
= alloc_ptepages_count
* PAGE_SIZE
;
2028 pmap_cpuset_NMIPI(cpu_set cpu_mask
) {
2029 unsigned int cpu
, cpu_bit
;
2032 for (cpu
= 0, cpu_bit
= 1; cpu
< real_ncpus
; cpu
++, cpu_bit
<<= 1) {
2033 if (cpu_mask
& cpu_bit
)
2034 cpu_NMI_interrupt(cpu
);
2036 deadline
= mach_absolute_time() + (LockTimeOut
);
2037 while (mach_absolute_time() < deadline
)
2042 * Called with pmap locked, we:
2043 * - scan through per-cpu data to see which other cpus need to flush
2044 * - send an IPI to each non-idle cpu to be flushed
2045 * - wait for all to signal back that they are inactive or we see that
2046 * they are at a safe point (idle).
2047 * - flush the local tlb if active for this pmap
2048 * - return ... the caller will unlock the pmap
2052 pmap_flush_tlbs(pmap_t pmap
, vm_map_offset_t startv
, vm_map_offset_t endv
)
2055 unsigned int cpu_bit
;
2056 cpu_set cpus_to_signal
;
2057 unsigned int my_cpu
= cpu_number();
2058 pmap_paddr_t pmap_cr3
= pmap
->pm_cr3
;
2059 boolean_t flush_self
= FALSE
;
2061 boolean_t pmap_is_shared
= (pmap
->pm_shared
|| (pmap
== kernel_pmap
));
2063 assert((processor_avail_count
< 2) ||
2064 (ml_get_interrupts_enabled() && get_preemption_level() != 0));
2067 * Scan other cpus for matching active or task CR3.
2068 * For idle cpus (with no active map) we mark them invalid but
2069 * don't signal -- they'll check as they go busy.
2073 if (pmap_pcid_ncpus
) {
2074 pmap_pcid_invalidate_all_cpus(pmap
);
2075 __asm__
volatile("mfence":::"memory");
2078 for (cpu
= 0, cpu_bit
= 1; cpu
< real_ncpus
; cpu
++, cpu_bit
<<= 1) {
2079 if (!cpu_datap(cpu
)->cpu_running
)
2081 uint64_t cpu_active_cr3
= CPU_GET_ACTIVE_CR3(cpu
);
2082 uint64_t cpu_task_cr3
= CPU_GET_TASK_CR3(cpu
);
2084 if ((pmap_cr3
== cpu_task_cr3
) ||
2085 (pmap_cr3
== cpu_active_cr3
) ||
2087 if (cpu
== my_cpu
) {
2091 if (pmap_pcid_ncpus
&& pmap_is_shared
)
2092 cpu_datap(cpu
)->cpu_tlb_invalid_global
= TRUE
;
2094 cpu_datap(cpu
)->cpu_tlb_invalid_local
= TRUE
;
2095 __asm__
volatile("mfence":::"memory");
2098 * We don't need to signal processors which will flush
2099 * lazily at the idle state or kernel boundary.
2100 * For example, if we're invalidating the kernel pmap,
2101 * processors currently in userspace don't need to flush
2102 * their TLBs until the next time they enter the kernel.
2103 * Alterations to the address space of a task active
2104 * on a remote processor result in a signal, to
2105 * account for copy operations. (There may be room
2106 * for optimization in such cases).
2107 * The order of the loads below with respect
2108 * to the store to the "cpu_tlb_invalid" field above
2109 * is important--hence the barrier.
2111 if (CPU_CR3_IS_ACTIVE(cpu
) &&
2112 (pmap_cr3
== CPU_GET_ACTIVE_CR3(cpu
) ||
2114 (pmap_cr3
== CPU_GET_TASK_CR3(cpu
)))) {
2115 cpus_to_signal
|= cpu_bit
;
2116 i386_signal_cpu(cpu
, MP_TLB_FLUSH
, ASYNC
);
2121 PMAP_TRACE_CONSTANT(PMAP_CODE(PMAP__FLUSH_TLBS
) | DBG_FUNC_START
,
2122 pmap
, cpus_to_signal
, flush_self
, startv
, endv
);
2125 * Flush local tlb if required.
2126 * Do this now to overlap with other processors responding.
2129 if (pmap_pcid_ncpus
) {
2130 pmap_pcid_validate_cpu(pmap
, my_cpu
);
2140 if (cpus_to_signal
) {
2141 cpu_set cpus_to_respond
= cpus_to_signal
;
2143 deadline
= mach_absolute_time() + LockTimeOut
;
2145 * Wait for those other cpus to acknowledge
2147 while (cpus_to_respond
!= 0) {
2150 for (cpu
= 0, cpu_bit
= 1; cpu
< real_ncpus
; cpu
++, cpu_bit
<<= 1) {
2151 /* Consider checking local/global invalidity
2152 * as appropriate in the PCID case.
2154 if ((cpus_to_respond
& cpu_bit
) != 0) {
2155 if (!cpu_datap(cpu
)->cpu_running
||
2156 cpu_datap(cpu
)->cpu_tlb_invalid
== FALSE
||
2157 !CPU_CR3_IS_ACTIVE(cpu
)) {
2158 cpus_to_respond
&= ~cpu_bit
;
2162 if (cpus_to_respond
== 0)
2165 if (cpus_to_respond
&& (mach_absolute_time() > deadline
)) {
2166 if (machine_timeout_suspended())
2168 pmap_tlb_flush_timeout
= TRUE
;
2169 orig_acks
= NMIPI_acks
;
2170 pmap_cpuset_NMIPI(cpus_to_respond
);
2172 panic("TLB invalidation IPI timeout: "
2173 "CPU(s) failed to respond to interrupts, unresponsive CPU bitmap: 0x%lx, NMIPI acks: orig: 0x%lx, now: 0x%lx",
2174 cpus_to_respond
, orig_acks
, NMIPI_acks
);
2179 if (__improbable((pmap
== kernel_pmap
) && (flush_self
!= TRUE
))) {
2180 panic("pmap_flush_tlbs: pmap == kernel_pmap && flush_self != TRUE; kernel CR3: 0x%llX, CPU active CR3: 0x%llX, CPU Task Map: %d", kernel_pmap
->pm_cr3
, current_cpu_datap()->cpu_active_cr3
, current_cpu_datap()->cpu_task_map
);
2183 PMAP_TRACE_CONSTANT(PMAP_CODE(PMAP__FLUSH_TLBS
) | DBG_FUNC_END
,
2184 pmap
, cpus_to_signal
, startv
, endv
, 0);
2188 process_pmap_updates(void)
2190 int ccpu
= cpu_number();
2191 pmap_assert(ml_get_interrupts_enabled() == 0 || get_preemption_level() != 0);
2192 if (pmap_pcid_ncpus
) {
2193 pmap_pcid_validate_current();
2194 if (cpu_datap(ccpu
)->cpu_tlb_invalid_global
) {
2195 cpu_datap(ccpu
)->cpu_tlb_invalid
= FALSE
;
2199 cpu_datap(ccpu
)->cpu_tlb_invalid_local
= FALSE
;
2204 current_cpu_datap()->cpu_tlb_invalid
= FALSE
;
2208 __asm__
volatile("mfence");
2212 pmap_update_interrupt(void)
2214 PMAP_TRACE(PMAP_CODE(PMAP__UPDATE_INTERRUPT
) | DBG_FUNC_START
,
2217 process_pmap_updates();
2219 PMAP_TRACE(PMAP_CODE(PMAP__UPDATE_INTERRUPT
) | DBG_FUNC_END
,
2223 #include <mach/mach_vm.h> /* mach_vm_region_recurse() */
2224 /* Scan kernel pmap for W+X PTEs, scan kernel VM map for W+X map entries
2225 * and identify ranges with mismatched VM permissions and PTE permissions
2228 pmap_permissions_verify(pmap_t ipmap
, vm_map_t ivmmap
, vm_offset_t sv
, vm_offset_t ev
) {
2229 vm_offset_t cv
= sv
;
2230 kern_return_t rv
= KERN_SUCCESS
;
2231 uint64_t skip4
= 0, skip2
= 0;
2233 sv
&= ~PAGE_MASK_64
;
2234 ev
&= ~PAGE_MASK_64
;
2236 if (__improbable((cv
> 0x00007FFFFFFFFFFFULL
) &&
2237 (cv
< 0xFFFF800000000000ULL
))) {
2238 cv
= 0xFFFF800000000000ULL
;
2240 /* Potential inconsistencies from not holding pmap lock
2241 * but harmless for the moment.
2243 if (((cv
& PML4MASK
) == 0) && (pmap64_pml4(ipmap
, cv
) == 0)) {
2244 if ((cv
+ NBPML4
) > cv
)
2251 if (((cv
& PDMASK
) == 0) && (pmap_pde(ipmap
, cv
) == 0)) {
2252 if ((cv
+ NBPD
) > cv
)
2260 pt_entry_t
*ptep
= pmap_pte(ipmap
, cv
);
2261 if (ptep
&& (*ptep
& INTEL_PTE_VALID
)) {
2262 if (*ptep
& INTEL_PTE_WRITE
) {
2263 if (!(*ptep
& INTEL_PTE_NX
)) {
2264 kprintf("W+X PTE at 0x%lx, P4: 0x%llx, P3: 0x%llx, P2: 0x%llx, PT: 0x%llx, VP: %u\n", cv
, *pmap64_pml4(ipmap
, cv
), *pmap64_pdpt(ipmap
, cv
), *pmap64_pde(ipmap
, cv
), *ptep
, pmap_valid_page((ppnum_t
)(i386_btop(pte_to_pa(*ptep
)))));
2271 kprintf("Completed pmap scan\n");
2274 struct vm_region_submap_info_64 vbr
;
2275 mach_msg_type_number_t vbrcount
= 0;
2276 mach_vm_size_t vmsize
;
2278 uint32_t nesting_depth
= 0;
2284 vbrcount
= VM_REGION_SUBMAP_INFO_COUNT_64
;
2285 if((kret
= mach_vm_region_recurse(ivmmap
,
2286 (mach_vm_address_t
*) &cv
, &vmsize
, &nesting_depth
,
2287 (vm_region_recurse_info_t
)&vbr
,
2288 &vbrcount
)) != KERN_SUCCESS
) {
2300 if(kret
!= KERN_SUCCESS
)
2303 prot
= vbr
.protection
;
2305 if ((prot
& (VM_PROT_WRITE
| VM_PROT_EXECUTE
)) == (VM_PROT_WRITE
| VM_PROT_EXECUTE
)) {
2306 kprintf("W+X map entry at address 0x%lx\n", cv
);
2312 for (pcv
= cv
; pcv
< cv
+ vmsize
; pcv
+= PAGE_SIZE
) {
2313 pt_entry_t
*ptep
= pmap_pte(ipmap
, pcv
);
2316 if ((ptep
== NULL
) || !(*ptep
& INTEL_PTE_VALID
))
2318 tprot
= VM_PROT_READ
;
2319 if (*ptep
& INTEL_PTE_WRITE
)
2320 tprot
|= VM_PROT_WRITE
;
2321 if ((*ptep
& INTEL_PTE_NX
) == 0)
2322 tprot
|= VM_PROT_EXECUTE
;
2323 if (tprot
!= prot
) {
2324 kprintf("PTE/map entry permissions mismatch at address 0x%lx, pte: 0x%llx, protection: 0x%x\n", pcv
, *ptep
, prot
);