]> git.saurik.com Git - apple/xnu.git/blob - bsd/netinet/udp_usrreq.c
3ecfaee90a435a7d2503312ebcceb567aeffa461
[apple/xnu.git] / bsd / netinet / udp_usrreq.c
1 /*
2 * Copyright (c) 2000 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_LICENSE_HEADER_START@
5 *
6 * The contents of this file constitute Original Code as defined in and
7 * are subject to the Apple Public Source License Version 1.1 (the
8 * "License"). You may not use this file except in compliance with the
9 * License. Please obtain a copy of the License at
10 * http://www.apple.com/publicsource and read it before using this file.
11 *
12 * This Original Code and all software distributed under the License are
13 * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
14 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
15 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the
17 * License for the specific language governing rights and limitations
18 * under the License.
19 *
20 * @APPLE_LICENSE_HEADER_END@
21 */
22 /*
23 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
24 * The Regents of the University of California. All rights reserved.
25 *
26 * Redistribution and use in source and binary forms, with or without
27 * modification, are permitted provided that the following conditions
28 * are met:
29 * 1. Redistributions of source code must retain the above copyright
30 * notice, this list of conditions and the following disclaimer.
31 * 2. Redistributions in binary form must reproduce the above copyright
32 * notice, this list of conditions and the following disclaimer in the
33 * documentation and/or other materials provided with the distribution.
34 * 3. All advertising materials mentioning features or use of this software
35 * must display the following acknowledgement:
36 * This product includes software developed by the University of
37 * California, Berkeley and its contributors.
38 * 4. Neither the name of the University nor the names of its contributors
39 * may be used to endorse or promote products derived from this software
40 * without specific prior written permission.
41 *
42 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
43 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
44 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
45 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
46 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
47 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
48 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
49 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
50 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
51 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
52 * SUCH DAMAGE.
53 *
54 * @(#)udp_usrreq.c 8.6 (Berkeley) 5/23/95
55 * $FreeBSD: src/sys/netinet/udp_usrreq.c,v 1.64.2.13 2001/08/08 18:59:54 ghelmer Exp $
56 */
57
58 #include <sys/param.h>
59 #include <sys/systm.h>
60 #include <sys/kernel.h>
61 #include <sys/malloc.h>
62 #include <sys/mbuf.h>
63 #include <sys/domain.h>
64 #include <sys/protosw.h>
65 #include <sys/socket.h>
66 #include <sys/socketvar.h>
67 #include <sys/sysctl.h>
68 #include <sys/syslog.h>
69
70 #include <net/if.h>
71 #include <net/if_types.h>
72 #include <net/route.h>
73
74 #include <netinet/in.h>
75 #include <netinet/in_systm.h>
76 #include <netinet/ip.h>
77 #if INET6
78 #include <netinet/ip6.h>
79 #endif
80 #include <netinet/in_pcb.h>
81 #include <netinet/in_var.h>
82 #include <netinet/ip_var.h>
83 #if INET6
84 #include <netinet6/ip6_var.h>
85 #endif
86 #include <netinet/ip_icmp.h>
87 #include <netinet/icmp_var.h>
88 #include <netinet/udp.h>
89 #include <netinet/udp_var.h>
90 #include <sys/kdebug.h>
91
92 #if IPSEC
93 #include <netinet6/ipsec.h>
94 extern int ipsec_bypass;
95 extern lck_mtx_t *sadb_mutex;
96 #endif /*IPSEC*/
97
98
99 #define DBG_LAYER_IN_BEG NETDBG_CODE(DBG_NETUDP, 0)
100 #define DBG_LAYER_IN_END NETDBG_CODE(DBG_NETUDP, 2)
101 #define DBG_LAYER_OUT_BEG NETDBG_CODE(DBG_NETUDP, 1)
102 #define DBG_LAYER_OUT_END NETDBG_CODE(DBG_NETUDP, 3)
103 #define DBG_FNC_UDP_INPUT NETDBG_CODE(DBG_NETUDP, (5 << 8))
104 #define DBG_FNC_UDP_OUTPUT NETDBG_CODE(DBG_NETUDP, (6 << 8) | 1)
105
106 /*
107 * UDP protocol implementation.
108 * Per RFC 768, August, 1980.
109 */
110 #ifndef COMPAT_42
111 static int udpcksum = 1;
112 #else
113 static int udpcksum = 0; /* XXX */
114 #endif
115 SYSCTL_INT(_net_inet_udp, UDPCTL_CHECKSUM, checksum, CTLFLAG_RW,
116 &udpcksum, 0, "");
117
118 int log_in_vain = 0;
119 SYSCTL_INT(_net_inet_udp, OID_AUTO, log_in_vain, CTLFLAG_RW,
120 &log_in_vain, 0, "Log all incoming UDP packets");
121
122 static int blackhole = 0;
123 SYSCTL_INT(_net_inet_udp, OID_AUTO, blackhole, CTLFLAG_RW,
124 &blackhole, 0, "Do not send port unreachables for refused connects");
125
126 struct inpcbhead udb; /* from udp_var.h */
127 #define udb6 udb /* for KAME src sync over BSD*'s */
128 struct inpcbinfo udbinfo;
129
130 #ifndef UDBHASHSIZE
131 #define UDBHASHSIZE 16
132 #endif
133
134 extern int apple_hwcksum_rx;
135 extern int esp_udp_encap_port;
136 extern u_long route_generation;
137
138 extern void ipfwsyslog( int level, char *format,...);
139
140 extern int fw_verbose;
141
142 #define log_in_vain_log( a ) { \
143 if ( (log_in_vain == 3 ) && (fw_verbose == 2)) { /* Apple logging, log to ipfw.log */ \
144 ipfwsyslog a ; \
145 } \
146 else log a ; \
147 }
148
149 struct udpstat udpstat; /* from udp_var.h */
150 SYSCTL_STRUCT(_net_inet_udp, UDPCTL_STATS, stats, CTLFLAG_RD,
151 &udpstat, udpstat, "UDP statistics (struct udpstat, netinet/udp_var.h)");
152 SYSCTL_INT(_net_inet_udp, OID_AUTO, pcbcount, CTLFLAG_RD,
153 &udbinfo.ipi_count, 0, "Number of active PCBs");
154
155 static struct sockaddr_in udp_in = { sizeof(udp_in), AF_INET };
156 #if INET6
157 struct udp_in6 {
158 struct sockaddr_in6 uin6_sin;
159 u_char uin6_init_done : 1;
160 } udp_in6 = {
161 { sizeof(udp_in6.uin6_sin), AF_INET6 },
162 0
163 };
164 struct udp_ip6 {
165 struct ip6_hdr uip6_ip6;
166 u_char uip6_init_done : 1;
167 } udp_ip6;
168 #endif /* INET6 */
169
170 static void udp_append(struct inpcb *last, struct ip *ip,
171 struct mbuf *n, int off);
172 #if INET6
173 static void ip_2_ip6_hdr(struct ip6_hdr *ip6, struct ip *ip);
174 #endif
175
176 static int udp_detach(struct socket *so);
177 static int udp_output(struct inpcb *, struct mbuf *, struct sockaddr *,
178 struct mbuf *, struct proc *);
179 extern int ChkAddressOK( __uint32_t dstaddr, __uint32_t srcaddr );
180
181 void
182 udp_init()
183 {
184 vm_size_t str_size;
185 struct inpcbinfo *pcbinfo;
186
187
188 LIST_INIT(&udb);
189 udbinfo.listhead = &udb;
190 udbinfo.hashbase = hashinit(UDBHASHSIZE, M_PCB, &udbinfo.hashmask);
191 udbinfo.porthashbase = hashinit(UDBHASHSIZE, M_PCB,
192 &udbinfo.porthashmask);
193 #ifdef __APPLE__
194 str_size = (vm_size_t) sizeof(struct inpcb);
195 udbinfo.ipi_zone = (void *) zinit(str_size, 80000*str_size, 8192, "udpcb");
196
197 pcbinfo = &udbinfo;
198 /*
199 * allocate lock group attribute and group for udp pcb mutexes
200 */
201 pcbinfo->mtx_grp_attr = lck_grp_attr_alloc_init();
202 lck_grp_attr_setdefault(pcbinfo->mtx_grp_attr);
203
204 pcbinfo->mtx_grp = lck_grp_alloc_init("udppcb", pcbinfo->mtx_grp_attr);
205
206 pcbinfo->mtx_attr = lck_attr_alloc_init();
207 lck_attr_setdefault(pcbinfo->mtx_attr);
208
209 if ((pcbinfo->mtx = lck_rw_alloc_init(pcbinfo->mtx_grp, pcbinfo->mtx_attr)) == NULL)
210 return; /* pretty much dead if this fails... */
211
212 in_pcb_nat_init(&udbinfo, AF_INET, IPPROTO_UDP, SOCK_DGRAM);
213 #else
214 udbinfo.ipi_zone = zinit("udpcb", sizeof(struct inpcb), maxsockets,
215 ZONE_INTERRUPT, 0);
216 #endif
217
218 #if 0
219 /* for pcb sharing testing only */
220 stat = in_pcb_new_share_client(&udbinfo, &fake_owner);
221 kprintf("udp_init in_pcb_new_share_client - stat = %d\n", stat);
222
223 laddr.s_addr = 0x11646464;
224 faddr.s_addr = 0x11646465;
225
226 lport = 1500;
227 in_pcb_grab_port(&udbinfo, 0, laddr, &lport, faddr, 1600, 0, fake_owner);
228 kprintf("udp_init in_pcb_grab_port - stat = %d\n", stat);
229
230 stat = in_pcb_rem_share_client(&udbinfo, fake_owner);
231 kprintf("udp_init in_pcb_rem_share_client - stat = %d\n", stat);
232
233 stat = in_pcb_new_share_client(&udbinfo, &fake_owner);
234 kprintf("udp_init in_pcb_new_share_client(2) - stat = %d\n", stat);
235
236 laddr.s_addr = 0x11646464;
237 faddr.s_addr = 0x11646465;
238
239 lport = 1500;
240 stat = in_pcb_grab_port(&udbinfo, 0, laddr, &lport, faddr, 1600, 0, fake_owner);
241 kprintf("udp_init in_pcb_grab_port(2) - stat = %d\n", stat);
242 #endif
243 }
244
245 void
246 udp_input(m, iphlen)
247 register struct mbuf *m;
248 int iphlen;
249 {
250 register struct ip *ip;
251 register struct udphdr *uh;
252 register struct inpcb *inp;
253 struct mbuf *opts = 0;
254 int len;
255 struct ip save_ip;
256 struct sockaddr *append_sa;
257 struct inpcbinfo *pcbinfo = &udbinfo;
258
259 udpstat.udps_ipackets++;
260
261 KERNEL_DEBUG(DBG_FNC_UDP_INPUT | DBG_FUNC_START, 0,0,0,0,0);
262 if (m->m_pkthdr.csum_flags & CSUM_TCP_SUM16)
263 m->m_pkthdr.csum_flags = 0; /* invalidate hwcksum for UDP */
264
265 /*
266 * Strip IP options, if any; should skip this,
267 * make available to user, and use on returned packets,
268 * but we don't yet have a way to check the checksum
269 * with options still present.
270 */
271 if (iphlen > sizeof (struct ip)) {
272 ip_stripoptions(m, (struct mbuf *)0);
273 iphlen = sizeof(struct ip);
274 }
275
276 /*
277 * Get IP and UDP header together in first mbuf.
278 */
279 ip = mtod(m, struct ip *);
280 if (m->m_len < iphlen + sizeof(struct udphdr)) {
281 if ((m = m_pullup(m, iphlen + sizeof(struct udphdr))) == 0) {
282 udpstat.udps_hdrops++;
283 KERNEL_DEBUG(DBG_FNC_UDP_INPUT | DBG_FUNC_END, 0,0,0,0,0);
284 return;
285 }
286 ip = mtod(m, struct ip *);
287 }
288 uh = (struct udphdr *)((caddr_t)ip + iphlen);
289
290 /* destination port of 0 is illegal, based on RFC768. */
291 if (uh->uh_dport == 0)
292 goto bad;
293
294 KERNEL_DEBUG(DBG_LAYER_IN_BEG, uh->uh_dport, uh->uh_sport,
295 ip->ip_src.s_addr, ip->ip_dst.s_addr, uh->uh_ulen);
296
297 /*
298 * Make mbuf data length reflect UDP length.
299 * If not enough data to reflect UDP length, drop.
300 */
301 len = ntohs((u_short)uh->uh_ulen);
302 if (ip->ip_len != len) {
303 if (len > ip->ip_len || len < sizeof(struct udphdr)) {
304 udpstat.udps_badlen++;
305 goto bad;
306 }
307 m_adj(m, len - ip->ip_len);
308 /* ip->ip_len = len; */
309 }
310 /*
311 * Save a copy of the IP header in case we want restore it
312 * for sending an ICMP error message in response.
313 */
314 save_ip = *ip;
315
316 /*
317 * Checksum extended UDP header and data.
318 */
319 if (uh->uh_sum) {
320 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
321 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
322 uh->uh_sum = m->m_pkthdr.csum_data;
323 else
324 goto doudpcksum;
325 uh->uh_sum ^= 0xffff;
326 } else {
327 char b[9];
328 doudpcksum:
329 *(uint32_t*)&b[0] = *(uint32_t*)&((struct ipovly *)ip)->ih_x1[0];
330 *(uint32_t*)&b[4] = *(uint32_t*)&((struct ipovly *)ip)->ih_x1[4];
331 *(uint8_t*)&b[8] = *(uint8_t*)&((struct ipovly *)ip)->ih_x1[8];
332
333 bzero(((struct ipovly *)ip)->ih_x1, 9);
334 ((struct ipovly *)ip)->ih_len = uh->uh_ulen;
335 uh->uh_sum = in_cksum(m, len + sizeof (struct ip));
336
337 *(uint32_t*)&((struct ipovly *)ip)->ih_x1[0] = *(uint32_t*)&b[0];
338 *(uint32_t*)&((struct ipovly *)ip)->ih_x1[4] = *(uint32_t*)&b[4];
339 *(uint8_t*)&((struct ipovly *)ip)->ih_x1[8] = *(uint8_t*)&b[8];
340 }
341 if (uh->uh_sum) {
342 udpstat.udps_badsum++;
343 m_freem(m);
344 KERNEL_DEBUG(DBG_FNC_UDP_INPUT | DBG_FUNC_END, 0,0,0,0,0);
345 return;
346 }
347 }
348 #ifndef __APPLE__
349 else
350 udpstat.udps_nosum++;
351 #endif
352
353 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
354 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) {
355 struct inpcb *last;
356 lck_rw_lock_shared(pcbinfo->mtx);
357 /*
358 * Deliver a multicast or broadcast datagram to *all* sockets
359 * for which the local and remote addresses and ports match
360 * those of the incoming datagram. This allows more than
361 * one process to receive multi/broadcasts on the same port.
362 * (This really ought to be done for unicast datagrams as
363 * well, but that would cause problems with existing
364 * applications that open both address-specific sockets and
365 * a wildcard socket listening to the same port -- they would
366 * end up receiving duplicates of every unicast datagram.
367 * Those applications open the multiple sockets to overcome an
368 * inadequacy of the UDP socket interface, but for backwards
369 * compatibility we avoid the problem here rather than
370 * fixing the interface. Maybe 4.5BSD will remedy this?)
371 */
372
373
374 /*
375 * Construct sockaddr format source address.
376 */
377 udp_in.sin_port = uh->uh_sport;
378 udp_in.sin_addr = ip->ip_src;
379 /*
380 * Locate pcb(s) for datagram.
381 * (Algorithm copied from raw_intr().)
382 */
383 last = NULL;
384 #if INET6
385 udp_in6.uin6_init_done = udp_ip6.uip6_init_done = 0;
386 #endif
387 LIST_FOREACH(inp, &udb, inp_list) {
388 #ifdef __APPLE__
389 /* Ignore nat/SharedIP dummy pcbs */
390 if (inp->inp_socket == &udbinfo.nat_dummy_socket)
391 continue;
392 #endif
393 if (inp->inp_socket == NULL)
394 continue;
395 if (inp != sotoinpcb(inp->inp_socket))
396 panic("udp_input: bad so back ptr inp=%x\n", inp);
397 #if INET6
398 if ((inp->inp_vflag & INP_IPV4) == 0)
399 continue;
400 #endif
401 if (in_pcb_checkstate(inp, WNT_ACQUIRE, 0) == WNT_STOPUSING) {
402 continue;
403 }
404
405 udp_lock(inp->inp_socket, 1, 0);
406
407 if (in_pcb_checkstate(inp, WNT_RELEASE, 1) == WNT_STOPUSING) {
408 udp_unlock(inp->inp_socket, 1, 0);
409 continue;
410 }
411
412 if (inp->inp_lport != uh->uh_dport) {
413 udp_unlock(inp->inp_socket, 1, 0);
414 continue;
415 }
416 if (inp->inp_laddr.s_addr != INADDR_ANY) {
417 if (inp->inp_laddr.s_addr !=
418 ip->ip_dst.s_addr) {
419 udp_unlock(inp->inp_socket, 1, 0);
420 continue;
421 }
422 }
423 if (inp->inp_faddr.s_addr != INADDR_ANY) {
424 if (inp->inp_faddr.s_addr !=
425 ip->ip_src.s_addr ||
426 inp->inp_fport != uh->uh_sport) {
427 udp_unlock(inp->inp_socket, 1, 0);
428 continue;
429 }
430 }
431
432 if (last != NULL) {
433 struct mbuf *n;
434 #if IPSEC
435 int skipit = 0;
436 /* check AH/ESP integrity. */
437 if (ipsec_bypass == 0) {
438 lck_mtx_lock(sadb_mutex);
439 if (ipsec4_in_reject_so(m, last->inp_socket)) {
440 ipsecstat.in_polvio++;
441 /* do not inject data to pcb */
442 skipit = 1;
443 }
444 lck_mtx_unlock(sadb_mutex);
445 }
446 if (skipit == 0)
447 #endif /*IPSEC*/
448 if ((n = m_copy(m, 0, M_COPYALL)) != NULL) {
449 udp_append(last, ip, n,
450 iphlen +
451 sizeof(struct udphdr));
452 }
453 udp_unlock(last->inp_socket, 1, 0);
454 }
455 last = inp;
456 /*
457 * Don't look for additional matches if this one does
458 * not have either the SO_REUSEPORT or SO_REUSEADDR
459 * socket options set. This heuristic avoids searching
460 * through all pcbs in the common case of a non-shared
461 * port. It * assumes that an application will never
462 * clear these options after setting them.
463 */
464 if ((last->inp_socket->so_options&(SO_REUSEPORT|SO_REUSEADDR)) == 0)
465 break;
466 }
467 lck_rw_done(pcbinfo->mtx);
468
469 if (last == NULL) {
470 /*
471 * No matching pcb found; discard datagram.
472 * (No need to send an ICMP Port Unreachable
473 * for a broadcast or multicast datgram.)
474 */
475 udpstat.udps_noportbcast++;
476 goto bad;
477 }
478 #if IPSEC
479 /* check AH/ESP integrity. */
480 if (ipsec_bypass == 0 && m) {
481 lck_mtx_lock(sadb_mutex);
482 if (ipsec4_in_reject_so(m, last->inp_socket)) {
483 ipsecstat.in_polvio++;
484 lck_mtx_unlock(sadb_mutex);
485 udp_unlock(last->inp_socket, 1, 0);
486 goto bad;
487 }
488 lck_mtx_unlock(sadb_mutex);
489 }
490 #endif /*IPSEC*/
491 udp_append(last, ip, m, iphlen + sizeof(struct udphdr));
492 udp_unlock(last->inp_socket, 1, 0);
493 return;
494 }
495
496 #if IPSEC
497 /*
498 * UDP to port 4500 with a payload where the first four bytes are
499 * not zero is a UDP encapsulated IPSec packet. Packets where
500 * the payload is one byte and that byte is 0xFF are NAT keepalive
501 * packets. Decapsulate the ESP packet and carry on with IPSec input
502 * or discard the NAT keep-alive.
503 */
504 if (ipsec_bypass == 0 && (esp_udp_encap_port & 0xFFFF) != 0 &&
505 uh->uh_dport == ntohs((u_short)esp_udp_encap_port)) {
506 int payload_len = len - sizeof(struct udphdr) > 4 ? 4 : len - sizeof(struct udphdr);
507 if (m->m_len < iphlen + sizeof(struct udphdr) + payload_len) {
508 if ((m = m_pullup(m, iphlen + sizeof(struct udphdr) + payload_len)) == 0) {
509 udpstat.udps_hdrops++;
510 KERNEL_DEBUG(DBG_FNC_UDP_INPUT | DBG_FUNC_END, 0,0,0,0,0);
511 return;
512 }
513 ip = mtod(m, struct ip *);
514 uh = (struct udphdr *)((caddr_t)ip + iphlen);
515 }
516 /* Check for NAT keepalive packet */
517 if (payload_len == 1 && *(u_int8_t*)((caddr_t)uh + sizeof(struct udphdr)) == 0xFF) {
518 m_freem(m);
519 KERNEL_DEBUG(DBG_FNC_UDP_INPUT | DBG_FUNC_END, 0,0,0,0,0);
520 return;
521 }
522 else if (payload_len == 4 && *(u_int32_t*)((caddr_t)uh + sizeof(struct udphdr)) != 0) {
523 /* UDP encapsulated IPSec packet to pass through NAT */
524 size_t stripsiz;
525
526 stripsiz = sizeof(struct udphdr);
527
528 ip = mtod(m, struct ip *);
529 ovbcopy((caddr_t)ip, (caddr_t)(((u_char *)ip) + stripsiz), iphlen);
530 m->m_data += stripsiz;
531 m->m_len -= stripsiz;
532 m->m_pkthdr.len -= stripsiz;
533 ip = mtod(m, struct ip *);
534 ip->ip_len = ip->ip_len - stripsiz;
535 ip->ip_p = IPPROTO_ESP;
536
537 KERNEL_DEBUG(DBG_FNC_UDP_INPUT | DBG_FUNC_END, 0,0,0,0,0);
538 esp4_input(m, iphlen);
539 return;
540 }
541 }
542 #endif
543
544 /*
545 * Locate pcb for datagram.
546 */
547 inp = in_pcblookup_hash(&udbinfo, ip->ip_src, uh->uh_sport,
548 ip->ip_dst, uh->uh_dport, 1, m->m_pkthdr.rcvif);
549 if (inp == NULL) {
550 if (log_in_vain) {
551 char buf[MAX_IPv4_STR_LEN];
552 char buf2[MAX_IPv4_STR_LEN];
553
554 /* check src and dst address */
555 if (log_in_vain != 3)
556 log(LOG_INFO,
557 "Connection attempt to UDP %s:%d from %s:%d\n",
558 inet_ntop(AF_INET, &ip->ip_dst, buf, sizeof(buf)),
559 ntohs(uh->uh_dport),
560 inet_ntop(AF_INET, &ip->ip_src, buf2, sizeof(buf2)),
561 ntohs(uh->uh_sport));
562 else if (!(m->m_flags & (M_BCAST | M_MCAST)) &&
563 ip->ip_dst.s_addr != ip->ip_src.s_addr)
564 log_in_vain_log((LOG_INFO,
565 "Stealth Mode connection attempt to UDP %s:%d from %s:%d\n",
566 inet_ntop(AF_INET, &ip->ip_dst, buf, sizeof(buf)),
567 ntohs(uh->uh_dport),
568 inet_ntop(AF_INET, &ip->ip_src, buf2, sizeof(buf2)),
569 ntohs(uh->uh_sport)))
570 }
571 udpstat.udps_noport++;
572 if (m->m_flags & (M_BCAST | M_MCAST)) {
573 udpstat.udps_noportbcast++;
574 goto bad;
575 }
576 #if ICMP_BANDLIM
577 if (badport_bandlim(BANDLIM_ICMP_UNREACH) < 0)
578 goto bad;
579 #endif
580 if (blackhole)
581 if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type != IFT_LOOP)
582 goto bad;
583 *ip = save_ip;
584 ip->ip_len += iphlen;
585 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_PORT, 0, 0);
586 KERNEL_DEBUG(DBG_FNC_UDP_INPUT | DBG_FUNC_END, 0,0,0,0,0);
587 return;
588 }
589 udp_lock(inp->inp_socket, 1, 0);
590
591 if (in_pcb_checkstate(inp, WNT_RELEASE, 1) == WNT_STOPUSING) {
592 udp_unlock(inp->inp_socket, 1, 0);
593 goto bad;
594 }
595 #if IPSEC
596 if (ipsec_bypass == 0 && inp != NULL) {
597 lck_mtx_lock(sadb_mutex);
598 if (ipsec4_in_reject_so(m, inp->inp_socket)) {
599 ipsecstat.in_polvio++;
600 lck_mtx_unlock(sadb_mutex);
601 udp_unlock(inp->inp_socket, 1, 0);
602 goto bad;
603 }
604 lck_mtx_unlock(sadb_mutex);
605 }
606 #endif /*IPSEC*/
607
608 /*
609 * Construct sockaddr format source address.
610 * Stuff source address and datagram in user buffer.
611 */
612 udp_in.sin_port = uh->uh_sport;
613 udp_in.sin_addr = ip->ip_src;
614 if (inp->inp_flags & INP_CONTROLOPTS
615 || inp->inp_socket->so_options & SO_TIMESTAMP) {
616 #if INET6
617 if (inp->inp_vflag & INP_IPV6) {
618 int savedflags;
619
620 ip_2_ip6_hdr(&udp_ip6.uip6_ip6, ip);
621 savedflags = inp->inp_flags;
622 inp->inp_flags &= ~INP_UNMAPPABLEOPTS;
623 ip6_savecontrol(inp, &opts, &udp_ip6.uip6_ip6, m);
624 inp->inp_flags = savedflags;
625 } else
626 #endif
627 ip_savecontrol(inp, &opts, ip, m);
628 }
629 m_adj(m, iphlen + sizeof(struct udphdr));
630
631 KERNEL_DEBUG(DBG_LAYER_IN_END, uh->uh_dport, uh->uh_sport,
632 save_ip.ip_src.s_addr, save_ip.ip_dst.s_addr, uh->uh_ulen);
633
634 #if INET6
635 if (inp->inp_vflag & INP_IPV6) {
636 in6_sin_2_v4mapsin6(&udp_in, &udp_in6.uin6_sin);
637 append_sa = (struct sockaddr *)&udp_in6;
638 } else
639 #endif
640 append_sa = (struct sockaddr *)&udp_in;
641 if (sbappendaddr(&inp->inp_socket->so_rcv, append_sa, m, opts, NULL) == 0) {
642 udpstat.udps_fullsock++;
643 }
644 else {
645 sorwakeup(inp->inp_socket);
646 }
647 udp_unlock(inp->inp_socket, 1, 0);
648 KERNEL_DEBUG(DBG_FNC_UDP_INPUT | DBG_FUNC_END, 0,0,0,0,0);
649 return;
650 bad:
651 m_freem(m);
652 if (opts)
653 m_freem(opts);
654 KERNEL_DEBUG(DBG_FNC_UDP_INPUT | DBG_FUNC_END, 0,0,0,0,0);
655 return;
656 }
657
658 #if INET6
659 static void
660 ip_2_ip6_hdr(ip6, ip)
661 struct ip6_hdr *ip6;
662 struct ip *ip;
663 {
664 bzero(ip6, sizeof(*ip6));
665
666 ip6->ip6_vfc = IPV6_VERSION;
667 ip6->ip6_plen = ip->ip_len;
668 ip6->ip6_nxt = ip->ip_p;
669 ip6->ip6_hlim = ip->ip_ttl;
670 ip6->ip6_src.s6_addr32[2] = ip6->ip6_dst.s6_addr32[2] =
671 IPV6_ADDR_INT32_SMP;
672 ip6->ip6_src.s6_addr32[3] = ip->ip_src.s_addr;
673 ip6->ip6_dst.s6_addr32[3] = ip->ip_dst.s_addr;
674 }
675 #endif
676
677 /*
678 * subroutine of udp_input(), mainly for source code readability.
679 * caller must properly init udp_ip6 and udp_in6 beforehand.
680 */
681 static void
682 udp_append(last, ip, n, off)
683 struct inpcb *last;
684 struct ip *ip;
685 struct mbuf *n;
686 int off;
687 {
688 struct sockaddr *append_sa;
689 struct mbuf *opts = 0;
690
691 if (last->inp_flags & INP_CONTROLOPTS ||
692 last->inp_socket->so_options & SO_TIMESTAMP) {
693 #if INET6
694 if (last->inp_vflag & INP_IPV6) {
695 int savedflags;
696
697 if (udp_ip6.uip6_init_done == 0) {
698 ip_2_ip6_hdr(&udp_ip6.uip6_ip6, ip);
699 udp_ip6.uip6_init_done = 1;
700 }
701 savedflags = last->inp_flags;
702 last->inp_flags &= ~INP_UNMAPPABLEOPTS;
703 ip6_savecontrol(last, &opts, &udp_ip6.uip6_ip6, n);
704 last->inp_flags = savedflags;
705 } else
706 #endif
707 ip_savecontrol(last, &opts, ip, n);
708 }
709 #if INET6
710 if (last->inp_vflag & INP_IPV6) {
711 if (udp_in6.uin6_init_done == 0) {
712 in6_sin_2_v4mapsin6(&udp_in, &udp_in6.uin6_sin);
713 udp_in6.uin6_init_done = 1;
714 }
715 append_sa = (struct sockaddr *)&udp_in6.uin6_sin;
716 } else
717 #endif
718 append_sa = (struct sockaddr *)&udp_in;
719 m_adj(n, off);
720 if (sbappendaddr(&last->inp_socket->so_rcv, append_sa, n, opts, NULL) == 0) {
721 udpstat.udps_fullsock++;
722 } else
723 sorwakeup(last->inp_socket);
724 }
725
726 /*
727 * Notify a udp user of an asynchronous error;
728 * just wake up so that he can collect error status.
729 */
730 void
731 udp_notify(inp, errno)
732 register struct inpcb *inp;
733 int errno;
734 {
735 inp->inp_socket->so_error = errno;
736 sorwakeup(inp->inp_socket);
737 sowwakeup(inp->inp_socket);
738 }
739
740 void
741 udp_ctlinput(cmd, sa, vip)
742 int cmd;
743 struct sockaddr *sa;
744 void *vip;
745 {
746 struct ip *ip = vip;
747 struct udphdr *uh;
748 void (*notify)(struct inpcb *, int) = udp_notify;
749 struct in_addr faddr;
750 struct inpcb *inp;
751
752 faddr = ((struct sockaddr_in *)sa)->sin_addr;
753 if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
754 return;
755
756 if (PRC_IS_REDIRECT(cmd)) {
757 ip = 0;
758 notify = in_rtchange;
759 } else if (cmd == PRC_HOSTDEAD)
760 ip = 0;
761 else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
762 return;
763 if (ip) {
764 uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2));
765 inp = in_pcblookup_hash(&udbinfo, faddr, uh->uh_dport,
766 ip->ip_src, uh->uh_sport, 0, NULL);
767 if (inp != NULL && inp->inp_socket != NULL) {
768 udp_lock(inp->inp_socket, 1, 0);
769 if (in_pcb_checkstate(inp, WNT_RELEASE, 1) == WNT_STOPUSING) {
770 udp_unlock(inp->inp_socket, 1, 0);
771 return;
772 }
773 (*notify)(inp, inetctlerrmap[cmd]);
774 udp_unlock(inp->inp_socket, 1, 0);
775 }
776 } else
777 in_pcbnotifyall(&udbinfo, faddr, inetctlerrmap[cmd], notify);
778 }
779
780 static int
781 udp_pcblist SYSCTL_HANDLER_ARGS
782 {
783 int error, i, n;
784 struct inpcb *inp, **inp_list;
785 inp_gen_t gencnt;
786 struct xinpgen xig;
787
788 /*
789 * The process of preparing the TCB list is too time-consuming and
790 * resource-intensive to repeat twice on every request.
791 */
792 lck_rw_lock_exclusive(udbinfo.mtx);
793 if (req->oldptr == USER_ADDR_NULL) {
794 n = udbinfo.ipi_count;
795 req->oldidx = 2 * (sizeof xig)
796 + (n + n/8) * sizeof(struct xinpcb);
797 lck_rw_done(udbinfo.mtx);
798 return 0;
799 }
800
801 if (req->newptr != USER_ADDR_NULL) {
802 lck_rw_done(udbinfo.mtx);
803 return EPERM;
804 }
805
806 /*
807 * OK, now we're committed to doing something.
808 */
809 gencnt = udbinfo.ipi_gencnt;
810 n = udbinfo.ipi_count;
811
812 bzero(&xig, sizeof(xig));
813 xig.xig_len = sizeof xig;
814 xig.xig_count = n;
815 xig.xig_gen = gencnt;
816 xig.xig_sogen = so_gencnt;
817 error = SYSCTL_OUT(req, &xig, sizeof xig);
818 if (error) {
819 lck_rw_done(udbinfo.mtx);
820 return error;
821 }
822 /*
823 * We are done if there is no pcb
824 */
825 if (n == 0) {
826 lck_rw_done(udbinfo.mtx);
827 return 0;
828 }
829
830 inp_list = _MALLOC(n * sizeof *inp_list, M_TEMP, M_WAITOK);
831 if (inp_list == 0) {
832 lck_rw_done(udbinfo.mtx);
833 return ENOMEM;
834 }
835
836 for (inp = LIST_FIRST(udbinfo.listhead), i = 0; inp && i < n;
837 inp = LIST_NEXT(inp, inp_list)) {
838 if (inp->inp_gencnt <= gencnt && inp->inp_state != INPCB_STATE_DEAD)
839 inp_list[i++] = inp;
840 }
841 n = i;
842
843 error = 0;
844 for (i = 0; i < n; i++) {
845 inp = inp_list[i];
846 if (inp->inp_gencnt <= gencnt && inp->inp_state != INPCB_STATE_DEAD) {
847 struct xinpcb xi;
848
849 bzero(&xi, sizeof(xi));
850 xi.xi_len = sizeof xi;
851 /* XXX should avoid extra copy */
852 inpcb_to_compat(inp, &xi.xi_inp);
853 if (inp->inp_socket)
854 sotoxsocket(inp->inp_socket, &xi.xi_socket);
855 error = SYSCTL_OUT(req, &xi, sizeof xi);
856 }
857 }
858 if (!error) {
859 /*
860 * Give the user an updated idea of our state.
861 * If the generation differs from what we told
862 * her before, she knows that something happened
863 * while we were processing this request, and it
864 * might be necessary to retry.
865 */
866 bzero(&xig, sizeof(xig));
867 xig.xig_len = sizeof xig;
868 xig.xig_gen = udbinfo.ipi_gencnt;
869 xig.xig_sogen = so_gencnt;
870 xig.xig_count = udbinfo.ipi_count;
871 error = SYSCTL_OUT(req, &xig, sizeof xig);
872 }
873 FREE(inp_list, M_TEMP);
874 lck_rw_done(udbinfo.mtx);
875 return error;
876 }
877
878 SYSCTL_PROC(_net_inet_udp, UDPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
879 udp_pcblist, "S,xinpcb", "List of active UDP sockets");
880
881
882
883 static __inline__ u_int16_t
884 get_socket_id(struct socket * s)
885 {
886 u_int16_t val;
887
888 if (s == NULL) {
889 return (0);
890 }
891 val = (u_int16_t)(((u_int32_t)s) / sizeof(struct socket));
892 if (val == 0) {
893 val = 0xffff;
894 }
895 return (val);
896 }
897
898 static int
899 udp_output(inp, m, addr, control, p)
900 register struct inpcb *inp;
901 struct mbuf *m;
902 struct sockaddr *addr;
903 struct mbuf *control;
904 struct proc *p;
905 {
906 register struct udpiphdr *ui;
907 register int len = m->m_pkthdr.len;
908 struct sockaddr_in *sin, src;
909 struct in_addr origladdr, laddr, faddr;
910 u_short lport, fport;
911 struct sockaddr_in *ifaddr;
912 int error = 0, udp_dodisconnect = 0;
913
914
915 KERNEL_DEBUG(DBG_FNC_UDP_OUTPUT | DBG_FUNC_START, 0,0,0,0,0);
916
917 if (control)
918 m_freem(control); /* XXX */
919
920 KERNEL_DEBUG(DBG_LAYER_OUT_BEG, inp->inp_fport, inp->inp_lport,
921 inp->inp_laddr.s_addr, inp->inp_faddr.s_addr,
922 (htons((u_short)len + sizeof (struct udphdr))));
923
924 if (len + sizeof(struct udpiphdr) > IP_MAXPACKET) {
925 error = EMSGSIZE;
926 goto release;
927 }
928
929 /* If there was a routing change, discard cached route and check
930 * that we have a valid source address.
931 * Reacquire a new source address if INADDR_ANY was specified
932 */
933
934 #if 1
935 lck_mtx_assert(inp->inpcb_mtx, LCK_MTX_ASSERT_OWNED);
936 #endif
937
938 if (inp->inp_route.ro_rt && inp->inp_route.ro_rt->generation_id != route_generation) {
939 if (ifa_foraddr(inp->inp_laddr.s_addr) == 0) { /* src address is gone */
940 if (inp->inp_flags & INP_INADDR_ANY)
941 inp->inp_faddr.s_addr = INADDR_ANY; /* new src will be set later */
942 else {
943 error = EADDRNOTAVAIL;
944 goto release;
945 }
946 }
947 rtfree(inp->inp_route.ro_rt);
948 inp->inp_route.ro_rt = (struct rtentry *)0;
949 }
950
951 origladdr= laddr = inp->inp_laddr;
952 faddr = inp->inp_faddr;
953 lport = inp->inp_lport;
954 fport = inp->inp_fport;
955
956 if (addr) {
957 sin = (struct sockaddr_in *)addr;
958 if (faddr.s_addr != INADDR_ANY) {
959 error = EISCONN;
960 goto release;
961 }
962 if (lport == 0) {
963 /*
964 * In case we don't have a local port set, go through the full connect.
965 * We don't have a local port yet (ie, we can't be looked up),
966 * so it's not an issue if the input runs at the same time we do this.
967 */
968 error = in_pcbconnect(inp, addr, p);
969 if (error) {
970 goto release;
971 }
972 laddr = inp->inp_laddr;
973 lport = inp->inp_lport;
974 faddr = inp->inp_faddr;
975 fport = inp->inp_fport;
976 udp_dodisconnect = 1;
977 }
978 else {
979 /* Fast path case
980 * we have a full address and a local port.
981 * use those info to build the packet without changing the pcb
982 * and interfering with the input path. See 3851370
983 */
984 if (laddr.s_addr == INADDR_ANY) {
985 if ((error = in_pcbladdr(inp, addr, &ifaddr)) != 0)
986 goto release;
987 laddr = ifaddr->sin_addr;
988 inp->inp_flags |= INP_INADDR_ANY; /* from pcbconnect: remember we don't care about src addr.*/
989 }
990
991 faddr = sin->sin_addr;
992 fport = sin->sin_port;
993 }
994 } else {
995 if (faddr.s_addr == INADDR_ANY) {
996 error = ENOTCONN;
997 goto release;
998 }
999 }
1000
1001
1002 /*
1003 * Calculate data length and get a mbuf
1004 * for UDP and IP headers.
1005 */
1006 M_PREPEND(m, sizeof(struct udpiphdr), M_DONTWAIT);
1007 if (m == 0) {
1008 error = ENOBUFS;
1009 goto abort;
1010 }
1011
1012 /*
1013 * Fill in mbuf with extended UDP header
1014 * and addresses and length put into network format.
1015 */
1016 ui = mtod(m, struct udpiphdr *);
1017 bzero(ui->ui_x1, sizeof(ui->ui_x1)); /* XXX still needed? */
1018 ui->ui_pr = IPPROTO_UDP;
1019 ui->ui_src = laddr;
1020 ui->ui_dst = faddr;
1021 ui->ui_sport = lport;
1022 ui->ui_dport = fport;
1023 ui->ui_ulen = htons((u_short)len + sizeof(struct udphdr));
1024
1025 /*
1026 * Set up checksum and output datagram.
1027 */
1028 if (udpcksum) {
1029 ui->ui_sum = in_pseudo(ui->ui_src.s_addr, ui->ui_dst.s_addr,
1030 htons((u_short)len + sizeof(struct udphdr) + IPPROTO_UDP));
1031 m->m_pkthdr.csum_flags = CSUM_UDP;
1032 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
1033 } else {
1034 ui->ui_sum = 0;
1035 }
1036 ((struct ip *)ui)->ip_len = sizeof (struct udpiphdr) + len;
1037 ((struct ip *)ui)->ip_ttl = inp->inp_ip_ttl; /* XXX */
1038 ((struct ip *)ui)->ip_tos = inp->inp_ip_tos; /* XXX */
1039 udpstat.udps_opackets++;
1040
1041 KERNEL_DEBUG(DBG_LAYER_OUT_END, ui->ui_dport, ui->ui_sport,
1042 ui->ui_src.s_addr, ui->ui_dst.s_addr, ui->ui_ulen);
1043
1044 #if IPSEC
1045 if (ipsec_bypass == 0 && ipsec_setsocket(m, inp->inp_socket) != 0) {
1046 error = ENOBUFS;
1047 goto abort;
1048 }
1049 #endif /*IPSEC*/
1050 m->m_pkthdr.socket_id = get_socket_id(inp->inp_socket);
1051 error = ip_output_list(m, 0, inp->inp_options, &inp->inp_route,
1052 (inp->inp_socket->so_options & (SO_DONTROUTE | SO_BROADCAST)),
1053 inp->inp_moptions);
1054
1055 if (udp_dodisconnect) {
1056 in_pcbdisconnect(inp);
1057 inp->inp_laddr = origladdr; /* XXX rehash? */
1058 }
1059 KERNEL_DEBUG(DBG_FNC_UDP_OUTPUT | DBG_FUNC_END, error, 0,0,0,0);
1060 return (error);
1061
1062 abort:
1063 if (udp_dodisconnect) {
1064 in_pcbdisconnect(inp);
1065 inp->inp_laddr = origladdr; /* XXX rehash? */
1066 }
1067
1068 release:
1069 m_freem(m);
1070 KERNEL_DEBUG(DBG_FNC_UDP_OUTPUT | DBG_FUNC_END, error, 0,0,0,0);
1071 return (error);
1072 }
1073
1074 u_long udp_sendspace = 9216; /* really max datagram size */
1075 /* 40 1K datagrams */
1076 SYSCTL_INT(_net_inet_udp, UDPCTL_MAXDGRAM, maxdgram, CTLFLAG_RW,
1077 &udp_sendspace, 0, "Maximum outgoing UDP datagram size");
1078
1079 u_long udp_recvspace = 40 * (1024 +
1080 #if INET6
1081 sizeof(struct sockaddr_in6)
1082 #else
1083 sizeof(struct sockaddr_in)
1084 #endif
1085 );
1086 SYSCTL_INT(_net_inet_udp, UDPCTL_RECVSPACE, recvspace, CTLFLAG_RW,
1087 &udp_recvspace, 0, "Maximum incoming UDP datagram size");
1088
1089 static int
1090 udp_abort(struct socket *so)
1091 {
1092 struct inpcb *inp;
1093
1094 inp = sotoinpcb(so);
1095 if (inp == 0)
1096 panic("udp_abort: so=%x null inp\n", so); /* ??? possible? panic instead? */
1097 soisdisconnected(so);
1098 in_pcbdetach(inp);
1099 return 0;
1100 }
1101
1102 static int
1103 udp_attach(struct socket *so, int proto, struct proc *p)
1104 {
1105 struct inpcb *inp;
1106 int error;
1107
1108 inp = sotoinpcb(so);
1109 if (inp != 0)
1110 panic ("udp_attach so=%x inp=%x\n", so, inp);
1111
1112 error = in_pcballoc(so, &udbinfo, p);
1113 if (error)
1114 return error;
1115 error = soreserve(so, udp_sendspace, udp_recvspace);
1116 if (error)
1117 return error;
1118 inp = (struct inpcb *)so->so_pcb;
1119 inp->inp_vflag |= INP_IPV4;
1120 inp->inp_ip_ttl = ip_defttl;
1121 return 0;
1122 }
1123
1124 static int
1125 udp_bind(struct socket *so, struct sockaddr *nam, struct proc *p)
1126 {
1127 struct inpcb *inp;
1128 int error;
1129
1130 inp = sotoinpcb(so);
1131 if (inp == 0)
1132 return EINVAL;
1133 error = in_pcbbind(inp, nam, p);
1134 return error;
1135 }
1136
1137 static int
1138 udp_connect(struct socket *so, struct sockaddr *nam, struct proc *p)
1139 {
1140 struct inpcb *inp;
1141 int error;
1142
1143 inp = sotoinpcb(so);
1144 if (inp == 0)
1145 return EINVAL;
1146 if (inp->inp_faddr.s_addr != INADDR_ANY)
1147 return EISCONN;
1148 error = in_pcbconnect(inp, nam, p);
1149 if (error == 0)
1150 soisconnected(so);
1151 return error;
1152 }
1153
1154 static int
1155 udp_detach(struct socket *so)
1156 {
1157 struct inpcb *inp;
1158
1159 inp = sotoinpcb(so);
1160 if (inp == 0)
1161 panic("udp_detach: so=%x null inp\n", so); /* ??? possible? panic instead? */
1162 in_pcbdetach(inp);
1163 inp->inp_state = INPCB_STATE_DEAD;
1164 return 0;
1165 }
1166
1167 static int
1168 udp_disconnect(struct socket *so)
1169 {
1170 struct inpcb *inp;
1171
1172 inp = sotoinpcb(so);
1173 if (inp == 0)
1174 return EINVAL;
1175 if (inp->inp_faddr.s_addr == INADDR_ANY)
1176 return ENOTCONN;
1177
1178 in_pcbdisconnect(inp);
1179 inp->inp_laddr.s_addr = INADDR_ANY;
1180 so->so_state &= ~SS_ISCONNECTED; /* XXX */
1181 return 0;
1182 }
1183
1184 static int
1185 udp_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *addr,
1186 struct mbuf *control, struct proc *p)
1187 {
1188 struct inpcb *inp;
1189
1190 inp = sotoinpcb(so);
1191 if (inp == 0) {
1192 m_freem(m);
1193 return EINVAL;
1194 }
1195 return udp_output(inp, m, addr, control, p);
1196 }
1197
1198 int
1199 udp_shutdown(struct socket *so)
1200 {
1201 struct inpcb *inp;
1202
1203 inp = sotoinpcb(so);
1204 if (inp == 0)
1205 return EINVAL;
1206 socantsendmore(so);
1207 return 0;
1208 }
1209
1210 struct pr_usrreqs udp_usrreqs = {
1211 udp_abort, pru_accept_notsupp, udp_attach, udp_bind, udp_connect,
1212 pru_connect2_notsupp, in_control, udp_detach, udp_disconnect,
1213 pru_listen_notsupp, in_setpeeraddr, pru_rcvd_notsupp,
1214 pru_rcvoob_notsupp, udp_send, pru_sense_null, udp_shutdown,
1215 in_setsockaddr, sosend, soreceive, pru_sopoll_notsupp
1216 };
1217
1218
1219 int
1220 udp_lock(so, refcount, debug)
1221 struct socket *so;
1222 int refcount, debug;
1223 {
1224 int lr_saved;
1225 #ifdef __ppc__
1226 if (debug == 0) {
1227 __asm__ volatile("mflr %0" : "=r" (lr_saved));
1228 }
1229 else lr_saved = debug;
1230 #endif
1231
1232 if (so->so_pcb) {
1233 lck_mtx_assert(((struct inpcb *)so->so_pcb)->inpcb_mtx, LCK_MTX_ASSERT_NOTOWNED);
1234 lck_mtx_lock(((struct inpcb *)so->so_pcb)->inpcb_mtx);
1235 }
1236 else {
1237 panic("udp_lock: so=%x NO PCB! lr=%x\n", so, lr_saved);
1238 lck_mtx_assert(so->so_proto->pr_domain->dom_mtx, LCK_MTX_ASSERT_NOTOWNED);
1239 lck_mtx_lock(so->so_proto->pr_domain->dom_mtx);
1240 }
1241
1242 if (refcount)
1243 so->so_usecount++;
1244
1245 so->reserved3= lr_saved;
1246 return (0);
1247 }
1248
1249 int
1250 udp_unlock(so, refcount, debug)
1251 struct socket *so;
1252 int refcount;
1253 int debug;
1254 {
1255 int lr_saved;
1256 struct inpcb *inp = sotoinpcb(so);
1257 struct inpcbinfo *pcbinfo = &udbinfo;
1258 #ifdef __ppc__
1259 if (debug == 0) {
1260 __asm__ volatile("mflr %0" : "=r" (lr_saved));
1261 }
1262 else lr_saved = debug;
1263 #endif
1264 if (refcount) {
1265 so->so_usecount--;
1266 #if 0
1267 if (so->so_usecount == 0 && (inp->inp_wantcnt == WNT_STOPUSING)) {
1268 if (lck_rw_try_lock_exclusive(pcbinfo->mtx)) {
1269 in_pcbdispose(inp);
1270 lck_rw_done(pcbinfo->mtx);
1271 return(0);
1272 }
1273 }
1274 #endif
1275 }
1276 if (so->so_pcb == NULL) {
1277 panic("udp_unlock: so=%x NO PCB! lr=%x\n", so, lr_saved);
1278 lck_mtx_assert(so->so_proto->pr_domain->dom_mtx, LCK_MTX_ASSERT_OWNED);
1279 lck_mtx_unlock(so->so_proto->pr_domain->dom_mtx);
1280 }
1281 else {
1282 lck_mtx_assert(((struct inpcb *)so->so_pcb)->inpcb_mtx, LCK_MTX_ASSERT_OWNED);
1283 lck_mtx_unlock(((struct inpcb *)so->so_pcb)->inpcb_mtx);
1284 }
1285
1286
1287 so->reserved4 = lr_saved;
1288 return (0);
1289 }
1290
1291 lck_mtx_t *
1292 udp_getlock(so, locktype)
1293 struct socket *so;
1294 int locktype;
1295 {
1296 struct inpcb *inp = sotoinpcb(so);
1297
1298
1299 if (so->so_pcb)
1300 return(inp->inpcb_mtx);
1301 else {
1302 panic("udp_getlock: so=%x NULL so_pcb\n", so);
1303 return (so->so_proto->pr_domain->dom_mtx);
1304 }
1305 }
1306
1307 void
1308 udp_slowtimo()
1309 {
1310 struct inpcb *inp, *inpnxt;
1311 struct socket *so;
1312 struct inpcbinfo *pcbinfo = &udbinfo;
1313
1314 lck_rw_lock_exclusive(pcbinfo->mtx);
1315
1316 for (inp = udb.lh_first; inp != NULL; inp = inpnxt) {
1317 inpnxt = inp->inp_list.le_next;
1318
1319 /* Ignore nat/SharedIP dummy pcbs */
1320 if (inp->inp_socket == &udbinfo.nat_dummy_socket)
1321 continue;
1322
1323 if (inp->inp_wantcnt != WNT_STOPUSING)
1324 continue;
1325
1326 so = inp->inp_socket;
1327 if (!lck_mtx_try_lock(inp->inpcb_mtx)) /* skip if busy, no hurry for cleanup... */
1328 continue;
1329
1330 if (so->so_usecount == 0)
1331 in_pcbdispose(inp);
1332 else
1333 lck_mtx_unlock(inp->inpcb_mtx);
1334 }
1335 lck_rw_done(pcbinfo->mtx);
1336 }
1337
1338 int
1339 ChkAddressOK( __uint32_t dstaddr, __uint32_t srcaddr )
1340 {
1341 if ( dstaddr == srcaddr ){
1342 return 0;
1343 }
1344 return 1;
1345 }
1346