2 * Copyright (c) 2006-2019 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
30 #include <kern/sched_prim.h>
31 #include <kern/kalloc.h>
32 #include <kern/assert.h>
33 #include <kern/debug.h>
34 #include <kern/locks.h>
35 #include <kern/task.h>
36 #include <kern/thread.h>
37 #include <kern/host.h>
38 #include <kern/policy_internal.h>
39 #include <kern/thread_group.h>
41 #include <corpses/task_corpse.h>
42 #include <libkern/libkern.h>
43 #include <mach/coalition.h>
44 #include <mach/mach_time.h>
45 #include <mach/task.h>
46 #include <mach/host_priv.h>
47 #include <mach/mach_host.h>
49 #include <pexpert/pexpert.h>
50 #include <sys/coalition.h>
51 #include <sys/kern_event.h>
53 #include <sys/proc_info.h>
54 #include <sys/reason.h>
55 #include <sys/signal.h>
56 #include <sys/signalvar.h>
57 #include <sys/sysctl.h>
58 #include <sys/sysproto.h>
63 #include <vm/vm_pageout.h>
64 #include <vm/vm_protos.h>
65 #include <mach/machine/sdt.h>
66 #include <libkern/section_keywords.h>
67 #include <stdatomic.h>
69 #include <IOKit/IOBSD.h>
72 #include <vm/vm_map.h>
73 #endif /* CONFIG_FREEZE */
75 #include <sys/kern_memorystatus.h>
76 #include <sys/kern_memorystatus_freeze.h>
77 #include <sys/kern_memorystatus_notify.h>
79 /* For logging clarity */
80 static const char *memorystatus_kill_cause_name
[] = {
81 "", /* kMemorystatusInvalid */
82 "jettisoned", /* kMemorystatusKilled */
83 "highwater", /* kMemorystatusKilledHiwat */
84 "vnode-limit", /* kMemorystatusKilledVnodes */
85 "vm-pageshortage", /* kMemorystatusKilledVMPageShortage */
86 "proc-thrashing", /* kMemorystatusKilledProcThrashing */
87 "fc-thrashing", /* kMemorystatusKilledFCThrashing */
88 "per-process-limit", /* kMemorystatusKilledPerProcessLimit */
89 "disk-space-shortage", /* kMemorystatusKilledDiskSpaceShortage */
90 "idle-exit", /* kMemorystatusKilledIdleExit */
91 "zone-map-exhaustion", /* kMemorystatusKilledZoneMapExhaustion */
92 "vm-compressor-thrashing", /* kMemorystatusKilledVMCompressorThrashing */
93 "vm-compressor-space-shortage", /* kMemorystatusKilledVMCompressorSpaceShortage */
97 memorystatus_priority_band_name(int32_t priority
)
100 case JETSAM_PRIORITY_FOREGROUND
:
102 case JETSAM_PRIORITY_AUDIO_AND_ACCESSORY
:
103 return "AUDIO_AND_ACCESSORY";
104 case JETSAM_PRIORITY_CONDUCTOR
:
106 case JETSAM_PRIORITY_DRIVER_APPLE
:
107 return "DRIVER_APPLE";
108 case JETSAM_PRIORITY_HOME
:
110 case JETSAM_PRIORITY_EXECUTIVE
:
112 case JETSAM_PRIORITY_IMPORTANT
:
114 case JETSAM_PRIORITY_CRITICAL
:
121 /* Does cause indicate vm or fc thrashing? */
123 is_reason_thrashing(unsigned cause
)
126 case kMemorystatusKilledFCThrashing
:
127 case kMemorystatusKilledVMCompressorThrashing
:
128 case kMemorystatusKilledVMCompressorSpaceShortage
:
135 /* Is the zone map almost full? */
137 is_reason_zone_map_exhaustion(unsigned cause
)
139 if (cause
== kMemorystatusKilledZoneMapExhaustion
) {
146 * Returns the current zone map size and capacity to include in the jetsam snapshot.
147 * Defined in zalloc.c
149 extern void get_zone_map_size(uint64_t *current_size
, uint64_t *capacity
);
152 * Returns the name of the largest zone and its size to include in the jetsam snapshot.
153 * Defined in zalloc.c
155 extern void get_largest_zone_info(char *zone_name
, size_t zone_name_len
, uint64_t *zone_size
);
158 * Active / Inactive limit support
159 * proc list must be locked
161 * The SET_*** macros are used to initialize a limit
162 * for the first time.
164 * The CACHE_*** macros are use to cache the limit that will
165 * soon be in effect down in the ledgers.
168 #define SET_ACTIVE_LIMITS_LOCKED(p, limit, is_fatal) \
170 (p)->p_memstat_memlimit_active = (limit); \
172 (p)->p_memstat_state |= P_MEMSTAT_MEMLIMIT_ACTIVE_FATAL; \
174 (p)->p_memstat_state &= ~P_MEMSTAT_MEMLIMIT_ACTIVE_FATAL; \
178 #define SET_INACTIVE_LIMITS_LOCKED(p, limit, is_fatal) \
180 (p)->p_memstat_memlimit_inactive = (limit); \
182 (p)->p_memstat_state |= P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL; \
184 (p)->p_memstat_state &= ~P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL; \
188 #define CACHE_ACTIVE_LIMITS_LOCKED(p, is_fatal) \
190 (p)->p_memstat_memlimit = (p)->p_memstat_memlimit_active; \
191 if ((p)->p_memstat_state & P_MEMSTAT_MEMLIMIT_ACTIVE_FATAL) { \
192 (p)->p_memstat_state |= P_MEMSTAT_FATAL_MEMLIMIT; \
195 (p)->p_memstat_state &= ~P_MEMSTAT_FATAL_MEMLIMIT; \
200 #define CACHE_INACTIVE_LIMITS_LOCKED(p, is_fatal) \
202 (p)->p_memstat_memlimit = (p)->p_memstat_memlimit_inactive; \
203 if ((p)->p_memstat_state & P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL) { \
204 (p)->p_memstat_state |= P_MEMSTAT_FATAL_MEMLIMIT; \
207 (p)->p_memstat_state &= ~P_MEMSTAT_FATAL_MEMLIMIT; \
213 /* General tunables */
215 unsigned long delta_percentage
= 5;
216 unsigned long critical_threshold_percentage
= 5;
217 // On embedded devices with more than 3GB of memory we lower the critical percentage.
218 uint64_t config_jetsam_large_memory_cutoff
= 3UL * (1UL << 30);
219 unsigned long critical_threshold_percentage_larger_devices
= 4;
220 unsigned long delta_percentage_larger_devices
= 4;
221 unsigned long idle_offset_percentage
= 5;
222 unsigned long pressure_threshold_percentage
= 15;
223 unsigned long policy_more_free_offset_percentage
= 5;
224 unsigned long sysproc_aging_aggr_threshold_percentage
= 7;
227 * default jetsam snapshot support
229 memorystatus_jetsam_snapshot_t
*memorystatus_jetsam_snapshot
;
230 memorystatus_jetsam_snapshot_t
*memorystatus_jetsam_snapshot_copy
;
233 memorystatus_jetsam_snapshot_t
*memorystatus_jetsam_snapshot_freezer
;
235 * The size of the freezer snapshot is given by memorystatus_jetsam_snapshot_max / JETSAM_SNAPSHOT_FREEZER_MAX_FACTOR
236 * The freezer snapshot can be much smaller than the default snapshot
237 * because it only includes apps that have been killed and dasd consumes it every 30 minutes.
238 * Since the snapshots are always wired we don't want to overallocate too much.
240 #define JETSAM_SNAPSHOT_FREEZER_MAX_FACTOR 20
241 unsigned int memorystatus_jetsam_snapshot_freezer_max
;
242 unsigned int memorystatus_jetsam_snapshot_freezer_size
;
243 TUNABLE(bool, memorystatus_jetsam_use_freezer_snapshot
, "kern.jetsam_user_freezer_snapshot", true);
244 #endif /* CONFIG_FREEZE */
246 unsigned int memorystatus_jetsam_snapshot_count
= 0;
247 unsigned int memorystatus_jetsam_snapshot_copy_count
= 0;
248 unsigned int memorystatus_jetsam_snapshot_max
= 0;
249 unsigned int memorystatus_jetsam_snapshot_size
= 0;
250 uint64_t memorystatus_jetsam_snapshot_last_timestamp
= 0;
251 uint64_t memorystatus_jetsam_snapshot_timeout
= 0;
253 #if DEVELOPMENT || DEBUG
255 * On development and debug kernels, we allow one pid to take ownership
256 * of the memorystatus snapshot (via memorystatus_control).
257 * If there's an owner, then only they may consume the snapshot.
258 * This is used when testing the snapshot interface to avoid racing with other
259 * processes on the system that consume snapshots.
261 static pid_t memorystatus_snapshot_owner
= 0;
262 SYSCTL_INT(_kern
, OID_AUTO
, memorystatus_snapshot_owner
, CTLTYPE_INT
| CTLFLAG_RD
| CTLFLAG_LOCKED
, &memorystatus_snapshot_owner
, 0, "");
263 #endif /* DEVELOPMENT || DEBUG */
264 static void memorystatus_init_jetsam_snapshot_header(memorystatus_jetsam_snapshot_t
*snapshot
);
266 /* General memorystatus stuff */
268 uint64_t memorystatus_sysprocs_idle_delay_time
= 0;
269 uint64_t memorystatus_apps_idle_delay_time
= 0;
270 /* Some devices give entitled apps a higher memory limit */
272 int32_t memorystatus_entitled_max_task_footprint_mb
= 0;
274 #if DEVELOPMENT || DEBUG
275 SYSCTL_INT(_kern
, OID_AUTO
, entitled_max_task_pmem
, CTLTYPE_INT
| CTLFLAG_RW
| CTLFLAG_LOCKED
, &memorystatus_entitled_max_task_footprint_mb
, 0, "");
276 #endif /* DEVELOPMENT || DEBUG */
277 #endif /* __arm64__ */
279 static lck_grp_attr_t
*memorystatus_jetsam_fg_band_lock_grp_attr
;
280 static lck_grp_t
*memorystatus_jetsam_fg_band_lock_grp
;
281 lck_mtx_t memorystatus_jetsam_fg_band_lock
;
283 /* Idle guard handling */
285 static int32_t memorystatus_scheduled_idle_demotions_sysprocs
= 0;
286 static int32_t memorystatus_scheduled_idle_demotions_apps
= 0;
288 static void memorystatus_perform_idle_demotion(__unused
void *spare1
, __unused
void *spare2
);
289 static void memorystatus_schedule_idle_demotion_locked(proc_t p
, boolean_t set_state
);
290 static void memorystatus_reschedule_idle_demotion_locked(void);
291 int memorystatus_update_priority_for_appnap(proc_t p
, boolean_t is_appnap
);
292 vm_pressure_level_t
convert_internal_pressure_level_to_dispatch_level(vm_pressure_level_t
);
293 boolean_t
is_knote_registered_modify_task_pressure_bits(struct knote
*, int, task_t
, vm_pressure_level_t
, vm_pressure_level_t
);
294 void memorystatus_klist_reset_all_for_level(vm_pressure_level_t pressure_level_to_clear
);
295 void memorystatus_send_low_swap_note(void);
296 int memorystatus_get_proccnt_upto_priority(int32_t max_bucket_index
);
297 boolean_t
memorystatus_kill_elevated_process(uint32_t cause
, os_reason_t jetsam_reason
, unsigned int band
, int aggr_count
,
298 uint32_t *errors
, uint64_t *memory_reclaimed
);
299 uint64_t memorystatus_available_memory_internal(proc_t p
);
301 unsigned int memorystatus_level
= 0;
302 static int memorystatus_list_count
= 0;
303 memstat_bucket_t memstat_bucket
[MEMSTAT_BUCKET_COUNT
];
304 static thread_call_t memorystatus_idle_demotion_call
;
305 uint64_t memstat_idle_demotion_deadline
= 0;
306 int system_procs_aging_band
= JETSAM_PRIORITY_AGING_BAND1
;
307 int applications_aging_band
= JETSAM_PRIORITY_IDLE
;
309 #define isProcessInAgingBands(p) ((isSysProc(p) && system_procs_aging_band && (p->p_memstat_effectivepriority == system_procs_aging_band)) || (isApp(p) && applications_aging_band && (p->p_memstat_effectivepriority == applications_aging_band)))
311 #define kJetsamAgingPolicyNone (0)
312 #define kJetsamAgingPolicyLegacy (1)
313 #define kJetsamAgingPolicySysProcsReclaimedFirst (2)
314 #define kJetsamAgingPolicyAppsReclaimedFirst (3)
315 #define kJetsamAgingPolicyMax kJetsamAgingPolicyAppsReclaimedFirst
317 unsigned int jetsam_aging_policy
= kJetsamAgingPolicySysProcsReclaimedFirst
;
319 extern int corpse_for_fatal_memkill
;
320 extern uint64_t vm_purgeable_purge_task_owned(task_t task
);
321 boolean_t
memorystatus_allowed_vm_map_fork(task_t
);
322 #if DEVELOPMENT || DEBUG
323 void memorystatus_abort_vm_map_fork(task_t
);
327 * Idle delay timeout factors for daemons based on relaunch behavior. Only used in
328 * kJetsamAgingPolicySysProcsReclaimedFirst aging policy.
330 #define kJetsamSysProcsIdleDelayTimeLowRatio (5)
331 #define kJetsamSysProcsIdleDelayTimeMedRatio (2)
332 #define kJetsamSysProcsIdleDelayTimeHighRatio (1)
333 static_assert(kJetsamSysProcsIdleDelayTimeLowRatio
<= DEFERRED_IDLE_EXIT_TIME_SECS
, "sysproc idle delay time for low relaunch daemons would be 0");
336 * For the kJetsamAgingPolicySysProcsReclaimedFirst aging policy, treat apps as well
337 * behaved daemons for aging purposes.
339 #define kJetsamAppsIdleDelayTimeRatio (kJetsamSysProcsIdleDelayTimeLowRatio)
342 memorystatus_sysprocs_idle_time(proc_t p
)
345 * The kJetsamAgingPolicySysProcsReclaimedFirst aging policy uses the relaunch behavior to
346 * determine the exact idle deferred time provided to the daemons. For all other aging
347 * policies, simply return the default aging idle time.
349 if (jetsam_aging_policy
!= kJetsamAgingPolicySysProcsReclaimedFirst
) {
350 return memorystatus_sysprocs_idle_delay_time
;
353 uint64_t idle_delay_time
= 0;
355 * For system processes, base the idle delay time on the
356 * jetsam relaunch behavior specified by launchd. The idea
357 * is to provide extra protection to the daemons which would
358 * relaunch immediately after jetsam.
360 switch (p
->p_memstat_relaunch_flags
) {
361 case P_MEMSTAT_RELAUNCH_UNKNOWN
:
362 case P_MEMSTAT_RELAUNCH_LOW
:
363 idle_delay_time
= memorystatus_sysprocs_idle_delay_time
/ kJetsamSysProcsIdleDelayTimeLowRatio
;
365 case P_MEMSTAT_RELAUNCH_MED
:
366 idle_delay_time
= memorystatus_sysprocs_idle_delay_time
/ kJetsamSysProcsIdleDelayTimeMedRatio
;
368 case P_MEMSTAT_RELAUNCH_HIGH
:
369 idle_delay_time
= memorystatus_sysprocs_idle_delay_time
/ kJetsamSysProcsIdleDelayTimeHighRatio
;
372 panic("Unknown relaunch flags on process!");
375 return idle_delay_time
;
379 memorystatus_apps_idle_time(__unused proc_t p
)
382 * For kJetsamAgingPolicySysProcsReclaimedFirst, the Apps are considered as low
383 * relaunch candidates. So only provide limited protection to them. In the other
384 * aging policies, return the default aging idle time.
386 if (jetsam_aging_policy
!= kJetsamAgingPolicySysProcsReclaimedFirst
) {
387 return memorystatus_apps_idle_delay_time
;
390 return memorystatus_apps_idle_delay_time
/ kJetsamAppsIdleDelayTimeRatio
;
396 /* Keeping around for future use if we need a utility that can do this OR an app that needs a dynamic adjustment. */
399 sysctl_set_jetsam_aging_policy SYSCTL_HANDLER_ARGS
401 #pragma unused(oidp, arg1, arg2)
403 int error
= 0, val
= 0;
404 memstat_bucket_t
*old_bucket
= 0;
405 int old_system_procs_aging_band
= 0, new_system_procs_aging_band
= 0;
406 int old_applications_aging_band
= 0, new_applications_aging_band
= 0;
407 proc_t p
= NULL
, next_proc
= NULL
;
410 error
= sysctl_io_number(req
, jetsam_aging_policy
, sizeof(int), &val
, NULL
);
411 if (error
|| !req
->newptr
) {
415 if ((val
< 0) || (val
> kJetsamAgingPolicyMax
)) {
416 printf("jetsam: ordering policy sysctl has invalid value - %d\n", val
);
421 * We need to synchronize with any potential adding/removal from aging bands
422 * that might be in progress currently. We use the proc_list_lock() just for
423 * consistency with all the routines dealing with 'aging' processes. We need
424 * a lighterweight lock.
428 old_system_procs_aging_band
= system_procs_aging_band
;
429 old_applications_aging_band
= applications_aging_band
;
432 case kJetsamAgingPolicyNone
:
433 new_system_procs_aging_band
= JETSAM_PRIORITY_IDLE
;
434 new_applications_aging_band
= JETSAM_PRIORITY_IDLE
;
437 case kJetsamAgingPolicyLegacy
:
439 * Legacy behavior where some daemons get a 10s protection once and only before the first clean->dirty->clean transition before going into IDLE band.
441 new_system_procs_aging_band
= JETSAM_PRIORITY_AGING_BAND1
;
442 new_applications_aging_band
= JETSAM_PRIORITY_IDLE
;
445 case kJetsamAgingPolicySysProcsReclaimedFirst
:
446 new_system_procs_aging_band
= JETSAM_PRIORITY_AGING_BAND1
;
447 new_applications_aging_band
= JETSAM_PRIORITY_AGING_BAND2
;
450 case kJetsamAgingPolicyAppsReclaimedFirst
:
451 new_system_procs_aging_band
= JETSAM_PRIORITY_AGING_BAND2
;
452 new_applications_aging_band
= JETSAM_PRIORITY_AGING_BAND1
;
459 if (old_system_procs_aging_band
&& (old_system_procs_aging_band
!= new_system_procs_aging_band
)) {
460 old_bucket
= &memstat_bucket
[old_system_procs_aging_band
];
461 p
= TAILQ_FIRST(&old_bucket
->list
);
464 next_proc
= TAILQ_NEXT(p
, p_memstat_list
);
467 if (new_system_procs_aging_band
== JETSAM_PRIORITY_IDLE
) {
468 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
471 memorystatus_update_priority_locked(p
, new_system_procs_aging_band
, false, true);
479 if (old_applications_aging_band
&& (old_applications_aging_band
!= new_applications_aging_band
)) {
480 old_bucket
= &memstat_bucket
[old_applications_aging_band
];
481 p
= TAILQ_FIRST(&old_bucket
->list
);
484 next_proc
= TAILQ_NEXT(p
, p_memstat_list
);
487 if (new_applications_aging_band
== JETSAM_PRIORITY_IDLE
) {
488 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
491 memorystatus_update_priority_locked(p
, new_applications_aging_band
, false, true);
499 jetsam_aging_policy
= val
;
500 system_procs_aging_band
= new_system_procs_aging_band
;
501 applications_aging_band
= new_applications_aging_band
;
508 SYSCTL_PROC(_kern
, OID_AUTO
, set_jetsam_aging_policy
, CTLTYPE_INT
| CTLFLAG_RW
,
509 0, 0, sysctl_set_jetsam_aging_policy
, "I", "Jetsam Aging Policy");
513 sysctl_jetsam_set_sysprocs_idle_delay_time SYSCTL_HANDLER_ARGS
515 #pragma unused(oidp, arg1, arg2)
517 int error
= 0, val
= 0, old_time_in_secs
= 0;
518 uint64_t old_time_in_ns
= 0;
520 absolutetime_to_nanoseconds(memorystatus_sysprocs_idle_delay_time
, &old_time_in_ns
);
521 old_time_in_secs
= (int) (old_time_in_ns
/ NSEC_PER_SEC
);
523 error
= sysctl_io_number(req
, old_time_in_secs
, sizeof(int), &val
, NULL
);
524 if (error
|| !req
->newptr
) {
528 if ((val
< 0) || (val
> INT32_MAX
)) {
529 printf("jetsam: new idle delay interval has invalid value.\n");
533 nanoseconds_to_absolutetime((uint64_t)val
* NSEC_PER_SEC
, &memorystatus_sysprocs_idle_delay_time
);
538 SYSCTL_PROC(_kern
, OID_AUTO
, memorystatus_sysprocs_idle_delay_time
, CTLTYPE_INT
| CTLFLAG_RW
,
539 0, 0, sysctl_jetsam_set_sysprocs_idle_delay_time
, "I", "Aging window for system processes");
543 sysctl_jetsam_set_apps_idle_delay_time SYSCTL_HANDLER_ARGS
545 #pragma unused(oidp, arg1, arg2)
547 int error
= 0, val
= 0, old_time_in_secs
= 0;
548 uint64_t old_time_in_ns
= 0;
550 absolutetime_to_nanoseconds(memorystatus_apps_idle_delay_time
, &old_time_in_ns
);
551 old_time_in_secs
= (int) (old_time_in_ns
/ NSEC_PER_SEC
);
553 error
= sysctl_io_number(req
, old_time_in_secs
, sizeof(int), &val
, NULL
);
554 if (error
|| !req
->newptr
) {
558 if ((val
< 0) || (val
> INT32_MAX
)) {
559 printf("jetsam: new idle delay interval has invalid value.\n");
563 nanoseconds_to_absolutetime((uint64_t)val
* NSEC_PER_SEC
, &memorystatus_apps_idle_delay_time
);
568 SYSCTL_PROC(_kern
, OID_AUTO
, memorystatus_apps_idle_delay_time
, CTLTYPE_INT
| CTLFLAG_RW
,
569 0, 0, sysctl_jetsam_set_apps_idle_delay_time
, "I", "Aging window for applications");
571 SYSCTL_INT(_kern
, OID_AUTO
, jetsam_aging_policy
, CTLTYPE_INT
| CTLFLAG_RD
, &jetsam_aging_policy
, 0, "");
573 static unsigned int memorystatus_dirty_count
= 0;
575 SYSCTL_INT(_kern
, OID_AUTO
, max_task_pmem
, CTLFLAG_RD
| CTLFLAG_LOCKED
| CTLFLAG_MASKED
, &max_task_footprint_mb
, 0, "");
577 static int memorystatus_highwater_enabled
= 1; /* Update the cached memlimit data. */
578 static boolean_t
proc_jetsam_state_is_active_locked(proc_t
);
581 int legacy_footprint_bonus_mb
= 50; /* This value was chosen after looking at the top 30 apps
582 * that needed the additional room in their footprint when
583 * the 'correct' accounting methods were applied to them.
586 #if DEVELOPMENT || DEBUG
587 SYSCTL_INT(_kern
, OID_AUTO
, legacy_footprint_bonus_mb
, CTLFLAG_RW
| CTLFLAG_LOCKED
, &legacy_footprint_bonus_mb
, 0, "");
588 #endif /* DEVELOPMENT || DEBUG */
590 * Raise the inactive and active memory limits to new values.
591 * Will only raise the limits and will do nothing if either of the current
593 * Caller must hold the proc_list_lock
596 memorystatus_raise_memlimit(proc_t p
, int new_memlimit_active
, int new_memlimit_inactive
)
598 int memlimit_mb_active
= 0, memlimit_mb_inactive
= 0;
599 boolean_t memlimit_active_is_fatal
= FALSE
, memlimit_inactive_is_fatal
= FALSE
, use_active_limit
= FALSE
;
601 LCK_MTX_ASSERT(proc_list_mlock
, LCK_MTX_ASSERT_OWNED
);
603 if (p
->p_memstat_memlimit_active
> 0) {
604 memlimit_mb_active
= p
->p_memstat_memlimit_active
;
605 } else if (p
->p_memstat_memlimit_active
== -1) {
606 memlimit_mb_active
= max_task_footprint_mb
;
609 * Nothing to do for '0' which is
610 * a special value only used internally
611 * to test 'no limits'.
616 if (p
->p_memstat_memlimit_inactive
> 0) {
617 memlimit_mb_inactive
= p
->p_memstat_memlimit_inactive
;
618 } else if (p
->p_memstat_memlimit_inactive
== -1) {
619 memlimit_mb_inactive
= max_task_footprint_mb
;
622 * Nothing to do for '0' which is
623 * a special value only used internally
624 * to test 'no limits'.
629 memlimit_mb_active
= MAX(new_memlimit_active
, memlimit_mb_active
);
630 memlimit_mb_inactive
= MAX(new_memlimit_inactive
, memlimit_mb_inactive
);
632 memlimit_active_is_fatal
= (p
->p_memstat_state
& P_MEMSTAT_MEMLIMIT_ACTIVE_FATAL
);
633 memlimit_inactive_is_fatal
= (p
->p_memstat_state
& P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL
);
635 SET_ACTIVE_LIMITS_LOCKED(p
, memlimit_mb_active
, memlimit_active_is_fatal
);
636 SET_INACTIVE_LIMITS_LOCKED(p
, memlimit_mb_inactive
, memlimit_inactive_is_fatal
);
638 if (proc_jetsam_state_is_active_locked(p
) == TRUE
) {
639 use_active_limit
= TRUE
;
640 CACHE_ACTIVE_LIMITS_LOCKED(p
, memlimit_active_is_fatal
);
642 CACHE_INACTIVE_LIMITS_LOCKED(p
, memlimit_inactive_is_fatal
);
645 if (memorystatus_highwater_enabled
) {
646 task_set_phys_footprint_limit_internal(p
->task
,
647 (p
->p_memstat_memlimit
> 0) ? p
->p_memstat_memlimit
: -1,
648 NULL
, /*return old value */
649 use_active_limit
, /*active limit?*/
650 (use_active_limit
? memlimit_active_is_fatal
: memlimit_inactive_is_fatal
));
655 memorystatus_act_on_legacy_footprint_entitlement(proc_t p
, boolean_t footprint_increase
)
657 int memlimit_mb_active
= 0, memlimit_mb_inactive
= 0;
665 if (p
->p_memstat_memlimit_active
> 0) {
666 memlimit_mb_active
= p
->p_memstat_memlimit_active
;
667 } else if (p
->p_memstat_memlimit_active
== -1) {
668 memlimit_mb_active
= max_task_footprint_mb
;
671 * Nothing to do for '0' which is
672 * a special value only used internally
673 * to test 'no limits'.
679 if (p
->p_memstat_memlimit_inactive
> 0) {
680 memlimit_mb_inactive
= p
->p_memstat_memlimit_inactive
;
681 } else if (p
->p_memstat_memlimit_inactive
== -1) {
682 memlimit_mb_inactive
= max_task_footprint_mb
;
685 * Nothing to do for '0' which is
686 * a special value only used internally
687 * to test 'no limits'.
693 if (footprint_increase
) {
694 memlimit_mb_active
+= legacy_footprint_bonus_mb
;
695 memlimit_mb_inactive
+= legacy_footprint_bonus_mb
;
697 memlimit_mb_active
-= legacy_footprint_bonus_mb
;
698 if (memlimit_mb_active
== max_task_footprint_mb
) {
699 memlimit_mb_active
= -1; /* reverting back to default system limit */
702 memlimit_mb_inactive
-= legacy_footprint_bonus_mb
;
703 if (memlimit_mb_inactive
== max_task_footprint_mb
) {
704 memlimit_mb_inactive
= -1; /* reverting back to default system limit */
707 memorystatus_raise_memlimit(p
, memlimit_mb_active
, memlimit_mb_inactive
);
713 memorystatus_act_on_ios13extended_footprint_entitlement(proc_t p
)
715 if (max_mem
< 1500ULL * 1024 * 1024 ||
716 max_mem
> 2ULL * 1024 * 1024 * 1024) {
717 /* ios13extended_footprint is only for 2GB devices */
720 /* limit to "almost 2GB" */
722 memorystatus_raise_memlimit(p
, 1800, 1800);
727 memorystatus_act_on_entitled_task_limit(proc_t p
)
729 if (memorystatus_entitled_max_task_footprint_mb
== 0) {
730 // Entitlement is not supported on this device.
734 memorystatus_raise_memlimit(p
, memorystatus_entitled_max_task_footprint_mb
, memorystatus_entitled_max_task_footprint_mb
);
737 #endif /* __arm64__ */
739 SYSCTL_INT(_kern
, OID_AUTO
, memorystatus_level
, CTLFLAG_RD
| CTLFLAG_LOCKED
, &memorystatus_level
, 0, "");
742 memorystatus_get_level(__unused
struct proc
*p
, struct memorystatus_get_level_args
*args
, __unused
int *ret
)
744 user_addr_t level
= 0;
748 if (copyout(&memorystatus_level
, level
, sizeof(memorystatus_level
)) != 0) {
755 static void memorystatus_thread(void *param __unused
, wait_result_t wr __unused
);
759 static boolean_t
memorystatus_kill_specific_process(pid_t victim_pid
, uint32_t cause
, os_reason_t jetsam_reason
);
760 static boolean_t
memorystatus_kill_process_sync(pid_t victim_pid
, uint32_t cause
, os_reason_t jetsam_reason
);
763 static int memorystatus_cmd_set_memlimit_properties(pid_t pid
, user_addr_t buffer
, size_t buffer_size
, __unused
int32_t *retval
);
765 static int memorystatus_set_memlimit_properties(pid_t pid
, memorystatus_memlimit_properties_t
*entry
);
767 static int memorystatus_cmd_get_memlimit_properties(pid_t pid
, user_addr_t buffer
, size_t buffer_size
, __unused
int32_t *retval
);
769 static int memorystatus_cmd_get_memlimit_excess_np(pid_t pid
, uint32_t flags
, user_addr_t buffer
, size_t buffer_size
, __unused
int32_t *retval
);
771 static void memorystatus_get_memlimit_properties_internal(proc_t p
, memorystatus_memlimit_properties_t
*p_entry
);
772 static int memorystatus_set_memlimit_properties_internal(proc_t p
, memorystatus_memlimit_properties_t
*p_entry
);
774 int proc_get_memstat_priority(proc_t
, boolean_t
);
776 static boolean_t memorystatus_idle_snapshot
= 0;
778 unsigned int memorystatus_delta
= 0;
780 /* Jetsam Loop Detection */
781 static boolean_t memorystatus_jld_enabled
= FALSE
; /* Enable jetsam loop detection */
782 static uint32_t memorystatus_jld_eval_period_msecs
= 0; /* Init pass sets this based on device memory size */
783 static int memorystatus_jld_eval_aggressive_count
= 3; /* Raise the priority max after 'n' aggressive loops */
784 static int memorystatus_jld_eval_aggressive_priority_band_max
= 15; /* Kill aggressively up through this band */
787 * A FG app can request that the aggressive jetsam mechanism display some leniency in the FG band. This 'lenient' mode is described as:
788 * --- if aggressive jetsam kills an app in the FG band and gets back >=AGGRESSIVE_JETSAM_LENIENT_MODE_THRESHOLD memory, it will stop the aggressive march further into and up the jetsam bands.
791 * - Such a request is respected/acknowledged only once while that 'requesting' app is in the FG band i.e. if aggressive jetsam was
792 * needed and the 'lenient' mode was deployed then that's it for this special mode while the app is in the FG band.
794 * - If the app is still in the FG band and aggressive jetsam is needed again, there will be no stop-and-check the next time around.
796 * - Also, the transition of the 'requesting' app away from the FG band will void this special behavior.
799 #define AGGRESSIVE_JETSAM_LENIENT_MODE_THRESHOLD 25
800 boolean_t memorystatus_aggressive_jetsam_lenient_allowed
= FALSE
;
801 boolean_t memorystatus_aggressive_jetsam_lenient
= FALSE
;
803 #if DEVELOPMENT || DEBUG
805 * Jetsam Loop Detection tunables.
808 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_jld_eval_period_msecs
, CTLFLAG_RW
| CTLFLAG_LOCKED
, &memorystatus_jld_eval_period_msecs
, 0, "");
809 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_jld_eval_aggressive_count
, CTLFLAG_RW
| CTLFLAG_LOCKED
, &memorystatus_jld_eval_aggressive_count
, 0, "");
810 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_jld_eval_aggressive_priority_band_max
, CTLFLAG_RW
| CTLFLAG_LOCKED
, &memorystatus_jld_eval_aggressive_priority_band_max
, 0, "");
811 #endif /* DEVELOPMENT || DEBUG */
813 static uint32_t kill_under_pressure_cause
= 0;
816 * snapshot support for memstats collected at boot.
818 static memorystatus_jetsam_snapshot_t memorystatus_at_boot_snapshot
;
820 static void memorystatus_init_jetsam_snapshot_locked(memorystatus_jetsam_snapshot_t
*od_snapshot
, uint32_t ods_list_count
);
821 static boolean_t
memorystatus_init_jetsam_snapshot_entry_locked(proc_t p
, memorystatus_jetsam_snapshot_entry_t
*entry
, uint64_t gencount
);
822 static void memorystatus_update_jetsam_snapshot_entry_locked(proc_t p
, uint32_t kill_cause
, uint64_t killtime
);
824 static void memorystatus_clear_errors(void);
825 static void memorystatus_get_task_phys_footprint_page_counts(task_t task
,
826 uint64_t *internal_pages
, uint64_t *internal_compressed_pages
,
827 uint64_t *purgeable_nonvolatile_pages
, uint64_t *purgeable_nonvolatile_compressed_pages
,
828 uint64_t *alternate_accounting_pages
, uint64_t *alternate_accounting_compressed_pages
,
829 uint64_t *iokit_mapped_pages
, uint64_t *page_table_pages
, uint64_t *frozen_to_swap_pages
);
831 static void memorystatus_get_task_memory_region_count(task_t task
, uint64_t *count
);
833 static uint32_t memorystatus_build_state(proc_t p
);
834 //static boolean_t memorystatus_issue_pressure_kevent(boolean_t pressured);
836 static boolean_t
memorystatus_kill_top_process(boolean_t any
, boolean_t sort_flag
, uint32_t cause
, os_reason_t jetsam_reason
, int32_t *priority
,
837 uint32_t *errors
, uint64_t *memory_reclaimed
);
838 static boolean_t
memorystatus_kill_processes_aggressive(uint32_t cause
, int aggr_count
, int32_t priority_max
, uint32_t *errors
, uint64_t *memory_reclaimed
);
839 static boolean_t
memorystatus_kill_hiwat_proc(uint32_t *errors
, boolean_t
*purged
, uint64_t *memory_reclaimed
);
841 static boolean_t
memorystatus_kill_process_async(pid_t victim_pid
, uint32_t cause
);
843 /* Priority Band Sorting Routines */
844 static int memorystatus_sort_bucket(unsigned int bucket_index
, int sort_order
);
845 static int memorystatus_sort_by_largest_coalition_locked(unsigned int bucket_index
, int coal_sort_order
);
846 static void memorystatus_sort_by_largest_process_locked(unsigned int bucket_index
);
847 static int memorystatus_move_list_locked(unsigned int bucket_index
, pid_t
*pid_list
, int list_sz
);
850 typedef int (*cmpfunc_t
)(const void *a
, const void *b
);
851 extern void qsort(void *a
, size_t n
, size_t es
, cmpfunc_t cmp
);
852 static int memstat_asc_cmp(const void *a
, const void *b
);
856 extern unsigned int vm_page_free_count
;
857 extern unsigned int vm_page_active_count
;
858 extern unsigned int vm_page_inactive_count
;
859 extern unsigned int vm_page_throttled_count
;
860 extern unsigned int vm_page_purgeable_count
;
861 extern unsigned int vm_page_wire_count
;
862 extern unsigned int vm_page_speculative_count
;
865 #define MEMORYSTATUS_LOG_AVAILABLE_PAGES memorystatus_available_pages
866 #else /* CONFIG_JETSAM */
867 #define MEMORYSTATUS_LOG_AVAILABLE_PAGES (vm_page_active_count + vm_page_inactive_count + vm_page_free_count + vm_page_speculative_count)
868 #endif /* CONFIG_JETSAM */
869 #if CONFIG_SECLUDED_MEMORY
870 extern unsigned int vm_page_secluded_count
;
871 extern unsigned int vm_page_secluded_count_over_target
;
872 #endif /* CONFIG_SECLUDED_MEMORY */
874 /* Aggressive jetsam pages threshold for sysproc aging policy */
875 unsigned int memorystatus_sysproc_aging_aggr_pages
= 0;
878 unsigned int memorystatus_available_pages
= (unsigned int)-1;
879 unsigned int memorystatus_available_pages_pressure
= 0;
880 unsigned int memorystatus_available_pages_critical
= 0;
881 unsigned int memorystatus_available_pages_critical_base
= 0;
882 unsigned int memorystatus_available_pages_critical_idle_offset
= 0;
884 #if DEVELOPMENT || DEBUG
885 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_available_pages
, CTLFLAG_RD
| CTLFLAG_LOCKED
, &memorystatus_available_pages
, 0, "");
887 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_available_pages
, CTLFLAG_RD
| CTLFLAG_MASKED
| CTLFLAG_LOCKED
, &memorystatus_available_pages
, 0, "");
888 #endif /* DEVELOPMENT || DEBUG */
890 static unsigned int memorystatus_jetsam_policy
= kPolicyDefault
;
891 unsigned int memorystatus_policy_more_free_offset_pages
= 0;
892 static void memorystatus_update_levels_locked(boolean_t critical_only
);
893 static unsigned int memorystatus_thread_wasted_wakeup
= 0;
895 /* Callback into vm_compressor.c to signal that thrashing has been mitigated. */
896 extern void vm_thrashing_jetsam_done(void);
897 static int memorystatus_cmd_set_jetsam_memory_limit(pid_t pid
, int32_t high_water_mark
, __unused
int32_t *retval
, boolean_t is_fatal_limit
);
898 #if DEVELOPMENT || DEBUG
899 static inline uint32_t
900 roundToNearestMB(uint32_t in
)
902 return (in
+ ((1 << 20) - 1)) >> 20;
905 static int memorystatus_cmd_increase_jetsam_task_limit(pid_t pid
, uint32_t byte_increase
);
908 int32_t max_kill_priority
= JETSAM_PRIORITY_MAX
;
910 #else /* CONFIG_JETSAM */
912 uint64_t memorystatus_available_pages
= (uint64_t)-1;
913 uint64_t memorystatus_available_pages_pressure
= (uint64_t)-1;
914 uint64_t memorystatus_available_pages_critical
= (uint64_t)-1;
916 int32_t max_kill_priority
= JETSAM_PRIORITY_IDLE
;
917 #endif /* CONFIG_JETSAM */
919 #if DEVELOPMENT || DEBUG
921 lck_grp_attr_t
*disconnect_page_mappings_lck_grp_attr
;
922 lck_grp_t
*disconnect_page_mappings_lck_grp
;
923 static lck_mtx_t disconnect_page_mappings_mutex
;
925 extern bool kill_on_no_paging_space
;
926 #endif /* DEVELOPMENT || DEBUG */
931 extern struct knote
*vm_find_knote_from_pid(pid_t
, struct klist
*);
933 #if DEVELOPMENT || DEBUG
935 static unsigned int memorystatus_debug_dump_this_bucket
= 0;
938 memorystatus_debug_dump_bucket_locked(unsigned int bucket_index
)
942 int ledger_limit
= 0;
943 unsigned int b
= bucket_index
;
944 boolean_t traverse_all_buckets
= FALSE
;
946 if (bucket_index
>= MEMSTAT_BUCKET_COUNT
) {
947 traverse_all_buckets
= TRUE
;
950 traverse_all_buckets
= FALSE
;
955 * footprint reported in [pages / MB ]
956 * limits reported as:
957 * L-limit proc's Ledger limit
958 * C-limit proc's Cached limit, should match Ledger
959 * A-limit proc's Active limit
960 * IA-limit proc's Inactive limit
961 * F==Fatal, NF==NonFatal
964 printf("memorystatus_debug_dump ***START*(PAGE_SIZE_64=%llu)**\n", PAGE_SIZE_64
);
965 printf("bucket [pid] [pages / MB] [state] [EP / RP / AP] dirty deadline [L-limit / C-limit / A-limit / IA-limit] name\n");
966 p
= memorystatus_get_first_proc_locked(&b
, traverse_all_buckets
);
968 bytes
= get_task_phys_footprint(p
->task
);
969 task_get_phys_footprint_limit(p
->task
, &ledger_limit
);
970 printf("%2d [%5d] [%5lld /%3lldMB] 0x%-8x [%2d / %2d / %2d] 0x%-3x %10lld [%3d / %3d%s / %3d%s / %3d%s] %s\n",
972 (bytes
/ PAGE_SIZE_64
), /* task's footprint converted from bytes to pages */
973 (bytes
/ (1024ULL * 1024ULL)), /* task's footprint converted from bytes to MB */
974 p
->p_memstat_state
, p
->p_memstat_effectivepriority
, p
->p_memstat_requestedpriority
, p
->p_memstat_assertionpriority
,
975 p
->p_memstat_dirty
, p
->p_memstat_idledeadline
,
977 p
->p_memstat_memlimit
,
978 (p
->p_memstat_state
& P_MEMSTAT_FATAL_MEMLIMIT
? "F " : "NF"),
979 p
->p_memstat_memlimit_active
,
980 (p
->p_memstat_state
& P_MEMSTAT_MEMLIMIT_ACTIVE_FATAL
? "F " : "NF"),
981 p
->p_memstat_memlimit_inactive
,
982 (p
->p_memstat_state
& P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL
? "F " : "NF"),
983 (*p
->p_name
? p
->p_name
: "unknown"));
984 p
= memorystatus_get_next_proc_locked(&b
, p
, traverse_all_buckets
);
986 printf("memorystatus_debug_dump ***END***\n");
990 sysctl_memorystatus_debug_dump_bucket SYSCTL_HANDLER_ARGS
992 #pragma unused(oidp, arg2)
993 int bucket_index
= 0;
995 error
= SYSCTL_OUT(req
, arg1
, sizeof(int));
996 if (error
|| !req
->newptr
) {
999 error
= SYSCTL_IN(req
, &bucket_index
, sizeof(int));
1000 if (error
|| !req
->newptr
) {
1003 if (bucket_index
>= MEMSTAT_BUCKET_COUNT
) {
1005 * All jetsam buckets will be dumped.
1009 * Only a single bucket will be dumped.
1014 memorystatus_debug_dump_bucket_locked(bucket_index
);
1016 memorystatus_debug_dump_this_bucket
= bucket_index
;
1021 * Debug aid to look at jetsam buckets and proc jetsam fields.
1022 * Use this sysctl to act on a particular jetsam bucket.
1023 * Writing the sysctl triggers the dump.
1024 * Usage: sysctl kern.memorystatus_debug_dump_this_bucket=<bucket_index>
1027 SYSCTL_PROC(_kern
, OID_AUTO
, memorystatus_debug_dump_this_bucket
, CTLTYPE_INT
| CTLFLAG_RW
| CTLFLAG_LOCKED
, &memorystatus_debug_dump_this_bucket
, 0, sysctl_memorystatus_debug_dump_bucket
, "I", "");
1030 /* Debug aid to aid determination of limit */
1033 sysctl_memorystatus_highwater_enable SYSCTL_HANDLER_ARGS
1035 #pragma unused(oidp, arg2)
1038 int error
, enable
= 0;
1039 boolean_t use_active
; /* use the active limit and active limit attributes */
1042 error
= SYSCTL_OUT(req
, arg1
, sizeof(int));
1043 if (error
|| !req
->newptr
) {
1047 error
= SYSCTL_IN(req
, &enable
, sizeof(int));
1048 if (error
|| !req
->newptr
) {
1052 if (!(enable
== 0 || enable
== 1)) {
1058 p
= memorystatus_get_first_proc_locked(&b
, TRUE
);
1060 use_active
= proc_jetsam_state_is_active_locked(p
);
1063 if (use_active
== TRUE
) {
1064 CACHE_ACTIVE_LIMITS_LOCKED(p
, is_fatal
);
1066 CACHE_INACTIVE_LIMITS_LOCKED(p
, is_fatal
);
1070 * Disabling limits does not touch the stored variants.
1071 * Set the cached limit fields to system_wide defaults.
1073 p
->p_memstat_memlimit
= -1;
1074 p
->p_memstat_state
|= P_MEMSTAT_FATAL_MEMLIMIT
;
1079 * Enforce the cached limit by writing to the ledger.
1081 task_set_phys_footprint_limit_internal(p
->task
, (p
->p_memstat_memlimit
> 0) ? p
->p_memstat_memlimit
: -1, NULL
, use_active
, is_fatal
);
1083 p
= memorystatus_get_next_proc_locked(&b
, p
, TRUE
);
1086 memorystatus_highwater_enabled
= enable
;
1093 SYSCTL_PROC(_kern
, OID_AUTO
, memorystatus_highwater_enabled
, CTLTYPE_INT
| CTLFLAG_RW
| CTLFLAG_LOCKED
, &memorystatus_highwater_enabled
, 0, sysctl_memorystatus_highwater_enable
, "I", "");
1095 SYSCTL_INT(_kern
, OID_AUTO
, memorystatus_idle_snapshot
, CTLFLAG_RW
| CTLFLAG_LOCKED
, &memorystatus_idle_snapshot
, 0, "");
1098 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_available_pages_critical
, CTLFLAG_RD
| CTLFLAG_LOCKED
, &memorystatus_available_pages_critical
, 0, "");
1099 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_available_pages_critical_base
, CTLFLAG_RW
| CTLFLAG_LOCKED
, &memorystatus_available_pages_critical_base
, 0, "");
1100 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_available_pages_critical_idle_offset
, CTLFLAG_RW
| CTLFLAG_LOCKED
, &memorystatus_available_pages_critical_idle_offset
, 0, "");
1101 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_policy_more_free_offset_pages
, CTLFLAG_RW
, &memorystatus_policy_more_free_offset_pages
, 0, "");
1103 static unsigned int memorystatus_jetsam_panic_debug
= 0;
1105 #if VM_PRESSURE_EVENTS
1107 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_available_pages_pressure
, CTLFLAG_RW
| CTLFLAG_LOCKED
, &memorystatus_available_pages_pressure
, 0, "");
1109 #endif /* VM_PRESSURE_EVENTS */
1111 #endif /* CONFIG_JETSAM */
1113 #endif /* DEVELOPMENT || DEBUG */
1115 extern kern_return_t
kernel_thread_start_priority(thread_continue_t continuation
,
1118 thread_t
*new_thread
);
1120 #if DEVELOPMENT || DEBUG
1123 sysctl_memorystatus_disconnect_page_mappings SYSCTL_HANDLER_ARGS
1125 #pragma unused(arg1, arg2)
1126 int error
= 0, pid
= 0;
1129 error
= sysctl_handle_int(oidp
, &pid
, 0, req
);
1130 if (error
|| !req
->newptr
) {
1134 lck_mtx_lock(&disconnect_page_mappings_mutex
);
1137 vm_pageout_disconnect_all_pages();
1142 error
= task_disconnect_page_mappings(p
->task
);
1153 lck_mtx_unlock(&disconnect_page_mappings_mutex
);
1158 SYSCTL_PROC(_kern
, OID_AUTO
, memorystatus_disconnect_page_mappings
, CTLTYPE_INT
| CTLFLAG_WR
| CTLFLAG_LOCKED
| CTLFLAG_MASKED
,
1159 0, 0, &sysctl_memorystatus_disconnect_page_mappings
, "I", "");
1161 #endif /* DEVELOPMENT || DEBUG */
1164 * Sorts the given bucket.
1167 * bucket_index - jetsam priority band to be sorted.
1168 * sort_order - JETSAM_SORT_xxx from kern_memorystatus.h
1169 * Currently sort_order is only meaningful when handling
1172 * proc_list_lock must be held by the caller.
1175 memorystatus_sort_bucket_locked(unsigned int bucket_index
, int sort_order
)
1177 LCK_MTX_ASSERT(proc_list_mlock
, LCK_MTX_ASSERT_OWNED
);
1178 if (memstat_bucket
[bucket_index
].count
== 0) {
1182 switch (bucket_index
) {
1183 case JETSAM_PRIORITY_FOREGROUND
:
1184 if (memorystatus_sort_by_largest_coalition_locked(bucket_index
, sort_order
) == 0) {
1186 * Fall back to per process sorting when zero coalitions are found.
1188 memorystatus_sort_by_largest_process_locked(bucket_index
);
1192 memorystatus_sort_by_largest_process_locked(bucket_index
);
1198 * Picks the sorting routine for a given jetsam priority band.
1201 * bucket_index - jetsam priority band to be sorted.
1202 * sort_order - JETSAM_SORT_xxx from kern_memorystatus.h
1203 * Currently sort_order is only meaningful when handling
1211 memorystatus_sort_bucket(unsigned int bucket_index
, int sort_order
)
1213 int coal_sort_order
;
1216 * Verify the jetsam priority
1218 if (bucket_index
>= MEMSTAT_BUCKET_COUNT
) {
1222 #if DEVELOPMENT || DEBUG
1223 if (sort_order
== JETSAM_SORT_DEFAULT
) {
1224 coal_sort_order
= COALITION_SORT_DEFAULT
;
1226 coal_sort_order
= sort_order
; /* only used for testing scenarios */
1229 /* Verify default */
1230 if (sort_order
== JETSAM_SORT_DEFAULT
) {
1231 coal_sort_order
= COALITION_SORT_DEFAULT
;
1238 memorystatus_sort_bucket_locked(bucket_index
, coal_sort_order
);
1245 * Sort processes by size for a single jetsam bucket.
1249 memorystatus_sort_by_largest_process_locked(unsigned int bucket_index
)
1251 proc_t p
= NULL
, insert_after_proc
= NULL
, max_proc
= NULL
;
1252 proc_t next_p
= NULL
, prev_max_proc
= NULL
;
1253 uint32_t pages
= 0, max_pages
= 0;
1254 memstat_bucket_t
*current_bucket
;
1256 if (bucket_index
>= MEMSTAT_BUCKET_COUNT
) {
1260 current_bucket
= &memstat_bucket
[bucket_index
];
1262 p
= TAILQ_FIRST(¤t_bucket
->list
);
1265 memorystatus_get_task_page_counts(p
->task
, &pages
, NULL
, NULL
);
1270 while ((next_p
= TAILQ_NEXT(p
, p_memstat_list
)) != NULL
) {
1271 /* traversing list until we find next largest process */
1273 memorystatus_get_task_page_counts(p
->task
, &pages
, NULL
, NULL
);
1274 if (pages
> max_pages
) {
1280 if (prev_max_proc
!= max_proc
) {
1281 /* found a larger process, place it in the list */
1282 TAILQ_REMOVE(¤t_bucket
->list
, max_proc
, p_memstat_list
);
1283 if (insert_after_proc
== NULL
) {
1284 TAILQ_INSERT_HEAD(¤t_bucket
->list
, max_proc
, p_memstat_list
);
1286 TAILQ_INSERT_AFTER(¤t_bucket
->list
, insert_after_proc
, max_proc
, p_memstat_list
);
1288 prev_max_proc
= max_proc
;
1291 insert_after_proc
= max_proc
;
1293 p
= TAILQ_NEXT(max_proc
, p_memstat_list
);
1298 memorystatus_get_first_proc_locked(unsigned int *bucket_index
, boolean_t search
)
1300 memstat_bucket_t
*current_bucket
;
1303 if ((*bucket_index
) >= MEMSTAT_BUCKET_COUNT
) {
1307 current_bucket
= &memstat_bucket
[*bucket_index
];
1308 next_p
= TAILQ_FIRST(¤t_bucket
->list
);
1309 if (!next_p
&& search
) {
1310 while (!next_p
&& (++(*bucket_index
) < MEMSTAT_BUCKET_COUNT
)) {
1311 current_bucket
= &memstat_bucket
[*bucket_index
];
1312 next_p
= TAILQ_FIRST(¤t_bucket
->list
);
1320 memorystatus_get_next_proc_locked(unsigned int *bucket_index
, proc_t p
, boolean_t search
)
1322 memstat_bucket_t
*current_bucket
;
1325 if (!p
|| ((*bucket_index
) >= MEMSTAT_BUCKET_COUNT
)) {
1329 next_p
= TAILQ_NEXT(p
, p_memstat_list
);
1330 while (!next_p
&& search
&& (++(*bucket_index
) < MEMSTAT_BUCKET_COUNT
)) {
1331 current_bucket
= &memstat_bucket
[*bucket_index
];
1332 next_p
= TAILQ_FIRST(¤t_bucket
->list
);
1339 * Structure to hold state for a jetsam thread.
1340 * Typically there should be a single jetsam thread
1341 * unless parallel jetsam is enabled.
1343 struct jetsam_thread_state
{
1344 uint8_t inited
; /* boolean - if the thread is initialized */
1345 uint8_t limit_to_low_bands
; /* boolean */
1346 int memorystatus_wakeup
; /* wake channel */
1347 int index
; /* jetsam thread index */
1348 thread_t thread
; /* jetsam thread pointer */
1351 /* Maximum number of jetsam threads allowed */
1352 #define JETSAM_THREADS_LIMIT 3
1354 /* Number of active jetsam threads */
1355 _Atomic
int active_jetsam_threads
= 1;
1357 /* Number of maximum jetsam threads configured */
1358 int max_jetsam_threads
= JETSAM_THREADS_LIMIT
;
1361 * Global switch for enabling fast jetsam. Fast jetsam is
1362 * hooked up via the system_override() system call. It has the
1363 * following effects:
1364 * - Raise the jetsam threshold ("clear-the-deck")
1365 * - Enabled parallel jetsam on eligible devices
1368 int fast_jetsam_enabled
= 1;
1370 int fast_jetsam_enabled
= 0;
1371 #endif /* __AMP__ */
1373 #if CONFIG_DIRTYSTATUS_TRACKING
1374 int dirtystatus_tracking_enabled
= 0;
1375 SYSCTL_INT(_kern
, OID_AUTO
, dirtystatus_tracking_enabled
, CTLTYPE_INT
| CTLFLAG_RW
| CTLFLAG_LOCKED
, &dirtystatus_tracking_enabled
, 0, "");
1378 /* Routine to find the jetsam state structure for the current jetsam thread */
1379 static inline struct jetsam_thread_state
*
1380 jetsam_current_thread(void)
1382 for (int thr_id
= 0; thr_id
< max_jetsam_threads
; thr_id
++) {
1383 if (jetsam_threads
[thr_id
].thread
== current_thread()) {
1384 return &(jetsam_threads
[thr_id
]);
1391 __private_extern__
void
1392 memorystatus_init(void)
1394 kern_return_t result
;
1398 memorystatus_freeze_jetsam_band
= JETSAM_PRIORITY_UI_SUPPORT
;
1399 memorystatus_frozen_processes_max
= FREEZE_PROCESSES_MAX
;
1400 memorystatus_frozen_shared_mb_max
= ((MAX_FROZEN_SHARED_MB_PERCENT
* max_task_footprint_mb
) / 100); /* 10% of the system wide task limit */
1401 memorystatus_freeze_shared_mb_per_process_max
= (memorystatus_frozen_shared_mb_max
/ 4);
1402 memorystatus_freeze_pages_min
= FREEZE_PAGES_MIN
;
1403 memorystatus_freeze_pages_max
= FREEZE_PAGES_MAX
;
1404 memorystatus_max_frozen_demotions_daily
= MAX_FROZEN_PROCESS_DEMOTIONS
;
1405 memorystatus_thaw_count_demotion_threshold
= MIN_THAW_DEMOTION_THRESHOLD
;
1408 #if DEVELOPMENT || DEBUG
1409 disconnect_page_mappings_lck_grp_attr
= lck_grp_attr_alloc_init();
1410 disconnect_page_mappings_lck_grp
= lck_grp_alloc_init("disconnect_page_mappings", disconnect_page_mappings_lck_grp_attr
);
1412 lck_mtx_init(&disconnect_page_mappings_mutex
, disconnect_page_mappings_lck_grp
, NULL
);
1414 if (kill_on_no_paging_space
) {
1415 max_kill_priority
= JETSAM_PRIORITY_MAX
;
1419 memorystatus_jetsam_fg_band_lock_grp_attr
= lck_grp_attr_alloc_init();
1420 memorystatus_jetsam_fg_band_lock_grp
=
1421 lck_grp_alloc_init("memorystatus_jetsam_fg_band", memorystatus_jetsam_fg_band_lock_grp_attr
);
1422 lck_mtx_init(&memorystatus_jetsam_fg_band_lock
, memorystatus_jetsam_fg_band_lock_grp
, NULL
);
1425 for (i
= 0; i
< MEMSTAT_BUCKET_COUNT
; i
++) {
1426 TAILQ_INIT(&memstat_bucket
[i
].list
);
1427 memstat_bucket
[i
].count
= 0;
1428 memstat_bucket
[i
].relaunch_high_count
= 0;
1430 memorystatus_idle_demotion_call
= thread_call_allocate((thread_call_func_t
)memorystatus_perform_idle_demotion
, NULL
);
1432 nanoseconds_to_absolutetime((uint64_t)DEFERRED_IDLE_EXIT_TIME_SECS
* NSEC_PER_SEC
, &memorystatus_sysprocs_idle_delay_time
);
1433 nanoseconds_to_absolutetime((uint64_t)DEFERRED_IDLE_EXIT_TIME_SECS
* NSEC_PER_SEC
, &memorystatus_apps_idle_delay_time
);
1436 /* Apply overrides */
1437 if (!PE_parse_boot_argn("kern.jetsam_delta", &delta_percentage
, sizeof(delta_percentage
))) {
1438 PE_get_default("kern.jetsam_delta", &delta_percentage
, sizeof(delta_percentage
));
1440 if (delta_percentage
== 0) {
1441 delta_percentage
= 5;
1443 if (max_mem
> config_jetsam_large_memory_cutoff
) {
1444 critical_threshold_percentage
= critical_threshold_percentage_larger_devices
;
1445 delta_percentage
= delta_percentage_larger_devices
;
1447 assert(delta_percentage
< 100);
1448 if (!PE_parse_boot_argn("kern.jetsam_critical_threshold", &critical_threshold_percentage
, sizeof(critical_threshold_percentage
))) {
1449 PE_get_default("kern.jetsam_critical_threshold", &critical_threshold_percentage
, sizeof(critical_threshold_percentage
));
1451 assert(critical_threshold_percentage
< 100);
1452 PE_get_default("kern.jetsam_idle_offset", &idle_offset_percentage
, sizeof(idle_offset_percentage
));
1453 assert(idle_offset_percentage
< 100);
1454 PE_get_default("kern.jetsam_pressure_threshold", &pressure_threshold_percentage
, sizeof(pressure_threshold_percentage
));
1455 assert(pressure_threshold_percentage
< 100);
1456 PE_get_default("kern.jetsam_freeze_threshold", &freeze_threshold_percentage
, sizeof(freeze_threshold_percentage
));
1457 assert(freeze_threshold_percentage
< 100);
1460 if (!PE_parse_boot_argn("jetsam_aging_policy", &jetsam_aging_policy
,
1461 sizeof(jetsam_aging_policy
))) {
1462 if (!PE_get_default("kern.jetsam_aging_policy", &jetsam_aging_policy
,
1463 sizeof(jetsam_aging_policy
))) {
1464 jetsam_aging_policy
= kJetsamAgingPolicySysProcsReclaimedFirst
;
1468 if (jetsam_aging_policy
> kJetsamAgingPolicyMax
) {
1469 jetsam_aging_policy
= kJetsamAgingPolicySysProcsReclaimedFirst
;
1472 switch (jetsam_aging_policy
) {
1473 case kJetsamAgingPolicyNone
:
1474 system_procs_aging_band
= JETSAM_PRIORITY_IDLE
;
1475 applications_aging_band
= JETSAM_PRIORITY_IDLE
;
1478 case kJetsamAgingPolicyLegacy
:
1480 * Legacy behavior where some daemons get a 10s protection once
1481 * AND only before the first clean->dirty->clean transition before
1482 * going into IDLE band.
1484 system_procs_aging_band
= JETSAM_PRIORITY_AGING_BAND1
;
1485 applications_aging_band
= JETSAM_PRIORITY_IDLE
;
1488 case kJetsamAgingPolicySysProcsReclaimedFirst
:
1489 system_procs_aging_band
= JETSAM_PRIORITY_AGING_BAND1
;
1490 applications_aging_band
= JETSAM_PRIORITY_AGING_BAND2
;
1493 case kJetsamAgingPolicyAppsReclaimedFirst
:
1494 system_procs_aging_band
= JETSAM_PRIORITY_AGING_BAND2
;
1495 applications_aging_band
= JETSAM_PRIORITY_AGING_BAND1
;
1503 * The aging bands cannot overlap with the JETSAM_PRIORITY_ELEVATED_INACTIVE
1504 * band and must be below it in priority. This is so that we don't have to make
1505 * our 'aging' code worry about a mix of processes, some of which need to age
1506 * and some others that need to stay elevated in the jetsam bands.
1508 assert(JETSAM_PRIORITY_ELEVATED_INACTIVE
> system_procs_aging_band
);
1509 assert(JETSAM_PRIORITY_ELEVATED_INACTIVE
> applications_aging_band
);
1511 /* Take snapshots for idle-exit kills by default? First check the boot-arg... */
1512 if (!PE_parse_boot_argn("jetsam_idle_snapshot", &memorystatus_idle_snapshot
, sizeof(memorystatus_idle_snapshot
))) {
1513 /* ...no boot-arg, so check the device tree */
1514 PE_get_default("kern.jetsam_idle_snapshot", &memorystatus_idle_snapshot
, sizeof(memorystatus_idle_snapshot
));
1517 memorystatus_delta
= (unsigned int) (delta_percentage
* atop_64(max_mem
) / 100);
1518 memorystatus_available_pages_critical_idle_offset
= (unsigned int) (idle_offset_percentage
* atop_64(max_mem
) / 100);
1519 memorystatus_available_pages_critical_base
= (unsigned int) ((critical_threshold_percentage
/ delta_percentage
) * memorystatus_delta
);
1520 memorystatus_policy_more_free_offset_pages
= (unsigned int) ((policy_more_free_offset_percentage
/ delta_percentage
) * memorystatus_delta
);
1521 memorystatus_sysproc_aging_aggr_pages
= (unsigned int) (sysproc_aging_aggr_threshold_percentage
* atop_64(max_mem
) / 100);
1523 /* Jetsam Loop Detection */
1524 if (max_mem
<= (512 * 1024 * 1024)) {
1525 /* 512 MB devices */
1526 memorystatus_jld_eval_period_msecs
= 8000; /* 8000 msecs == 8 second window */
1528 /* 1GB and larger devices */
1529 memorystatus_jld_eval_period_msecs
= 6000; /* 6000 msecs == 6 second window */
1532 memorystatus_jld_enabled
= TRUE
;
1534 /* No contention at this point */
1535 memorystatus_update_levels_locked(FALSE
);
1537 #endif /* CONFIG_JETSAM */
1540 if (!PE_parse_boot_argn("entitled_max_task_pmem", &memorystatus_entitled_max_task_footprint_mb
,
1541 sizeof(memorystatus_entitled_max_task_footprint_mb
))) {
1542 if (!PE_get_default("kern.entitled_max_task_pmem", &memorystatus_entitled_max_task_footprint_mb
,
1543 sizeof(memorystatus_entitled_max_task_footprint_mb
))) {
1544 // entitled_max_task_pmem is not supported on this system.
1545 memorystatus_entitled_max_task_footprint_mb
= 0;
1548 if (memorystatus_entitled_max_task_footprint_mb
> max_mem
/ (1UL << 20) || memorystatus_entitled_max_task_footprint_mb
< 0) {
1549 os_log_with_startup_serial(OS_LOG_DEFAULT
, "Invalid value (%d) for entitled_max_task_pmem. Setting to 0",
1550 memorystatus_entitled_max_task_footprint_mb
);
1552 #endif /* __arm64__ */
1554 memorystatus_jetsam_snapshot_max
= maxproc
;
1556 memorystatus_jetsam_snapshot_size
= sizeof(memorystatus_jetsam_snapshot_t
) +
1557 (sizeof(memorystatus_jetsam_snapshot_entry_t
) * memorystatus_jetsam_snapshot_max
);
1559 memorystatus_jetsam_snapshot
= kalloc_flags(memorystatus_jetsam_snapshot_size
, Z_WAITOK
| Z_ZERO
);
1560 if (!memorystatus_jetsam_snapshot
) {
1561 panic("Could not allocate memorystatus_jetsam_snapshot");
1564 memorystatus_jetsam_snapshot_copy
= kalloc_flags(memorystatus_jetsam_snapshot_size
, Z_WAITOK
| Z_ZERO
);
1565 if (!memorystatus_jetsam_snapshot_copy
) {
1566 panic("Could not allocate memorystatus_jetsam_snapshot_copy");
1570 memorystatus_jetsam_snapshot_freezer_max
= memorystatus_jetsam_snapshot_max
/ JETSAM_SNAPSHOT_FREEZER_MAX_FACTOR
;
1571 memorystatus_jetsam_snapshot_freezer_size
= sizeof(memorystatus_jetsam_snapshot_t
) +
1572 (sizeof(memorystatus_jetsam_snapshot_entry_t
) * memorystatus_jetsam_snapshot_freezer_max
);
1574 memorystatus_jetsam_snapshot_freezer
= kalloc_flags(memorystatus_jetsam_snapshot_freezer_size
, Z_WAITOK
| Z_ZERO
);
1575 if (!memorystatus_jetsam_snapshot_freezer
) {
1576 panic("Could not allocate memorystatus_jetsam_snapshot_freezer");
1578 #endif /* CONFIG_FREEZE */
1580 nanoseconds_to_absolutetime((uint64_t)JETSAM_SNAPSHOT_TIMEOUT_SECS
* NSEC_PER_SEC
, &memorystatus_jetsam_snapshot_timeout
);
1582 memset(&memorystatus_at_boot_snapshot
, 0, sizeof(memorystatus_jetsam_snapshot_t
));
1585 memorystatus_freeze_threshold
= (unsigned int) ((freeze_threshold_percentage
/ delta_percentage
) * memorystatus_delta
);
1588 /* Check the boot-arg to see if fast jetsam is allowed */
1589 if (!PE_parse_boot_argn("fast_jetsam_enabled", &fast_jetsam_enabled
, sizeof(fast_jetsam_enabled
))) {
1590 fast_jetsam_enabled
= 0;
1593 /* Check the boot-arg to configure the maximum number of jetsam threads */
1594 if (!PE_parse_boot_argn("max_jetsam_threads", &max_jetsam_threads
, sizeof(max_jetsam_threads
))) {
1595 max_jetsam_threads
= JETSAM_THREADS_LIMIT
;
1598 /* Restrict the maximum number of jetsam threads to JETSAM_THREADS_LIMIT */
1599 if (max_jetsam_threads
> JETSAM_THREADS_LIMIT
) {
1600 max_jetsam_threads
= JETSAM_THREADS_LIMIT
;
1603 /* For low CPU systems disable fast jetsam mechanism */
1604 if (vm_pageout_state
.vm_restricted_to_single_processor
== TRUE
) {
1605 max_jetsam_threads
= 1;
1606 fast_jetsam_enabled
= 0;
1609 /* Initialize the jetsam_threads state array */
1610 jetsam_threads
= zalloc_permanent(sizeof(struct jetsam_thread_state
) *
1611 max_jetsam_threads
, ZALIGN(struct jetsam_thread_state
));
1613 /* Initialize all the jetsam threads */
1614 for (i
= 0; i
< max_jetsam_threads
; i
++) {
1615 jetsam_threads
[i
].inited
= FALSE
;
1616 jetsam_threads
[i
].index
= i
;
1617 result
= kernel_thread_start_priority(memorystatus_thread
, NULL
, 95 /* MAXPRI_KERNEL */, &jetsam_threads
[i
].thread
);
1618 if (result
!= KERN_SUCCESS
) {
1619 panic("Could not create memorystatus_thread %d", i
);
1621 thread_deallocate(jetsam_threads
[i
].thread
);
1625 /* Centralised for the purposes of allowing panic-on-jetsam */
1627 vm_run_compactor(void);
1630 * The jetsam no frills kill call
1631 * Return: 0 on success
1632 * error code on failure (EINVAL...)
1635 jetsam_do_kill(proc_t p
, int jetsam_flags
, os_reason_t jetsam_reason
)
1638 error
= exit_with_reason(p
, W_EXITCODE(0, SIGKILL
), (int *)NULL
, FALSE
, FALSE
, jetsam_flags
, jetsam_reason
);
1643 * Wrapper for processes exiting with memorystatus details
1646 memorystatus_do_kill(proc_t p
, uint32_t cause
, os_reason_t jetsam_reason
, uint64_t *footprint_of_killed_proc
)
1649 __unused pid_t victim_pid
= p
->p_pid
;
1650 uint64_t footprint
= get_task_phys_footprint(p
->task
);
1651 #if (KDEBUG_LEVEL >= KDEBUG_LEVEL_STANDARD)
1652 int32_t memstat_effectivepriority
= p
->p_memstat_effectivepriority
;
1653 #endif /* (KDEBUG_LEVEL >= KDEBUG_LEVEL_STANDARD) */
1655 KERNEL_DEBUG_CONSTANT((BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_DO_KILL
)) | DBG_FUNC_START
,
1656 victim_pid
, cause
, vm_page_free_count
, footprint
, 0);
1657 DTRACE_MEMORYSTATUS4(memorystatus_do_kill
, proc_t
, p
, os_reason_t
, jetsam_reason
, uint32_t, cause
, uint64_t, footprint
);
1658 #if CONFIG_JETSAM && (DEVELOPMENT || DEBUG)
1659 if (memorystatus_jetsam_panic_debug
& (1 << cause
)) {
1660 panic("memorystatus_do_kill(): jetsam debug panic (cause: %d)", cause
);
1663 #pragma unused(cause)
1666 if (p
->p_memstat_effectivepriority
>= JETSAM_PRIORITY_FOREGROUND
) {
1667 printf("memorystatus: killing process %d [%s] in high band %s (%d) - memorystatus_available_pages: %llu\n", p
->p_pid
,
1668 (*p
->p_name
? p
->p_name
: "unknown"),
1669 memorystatus_priority_band_name(p
->p_memstat_effectivepriority
), p
->p_memstat_effectivepriority
,
1670 (uint64_t)MEMORYSTATUS_LOG_AVAILABLE_PAGES
);
1674 * The jetsam_reason (os_reason_t) has enough information about the kill cause.
1675 * We don't really need jetsam_flags anymore, so it's okay that not all possible kill causes have been mapped.
1677 int jetsam_flags
= P_LTERM_JETSAM
;
1679 case kMemorystatusKilledHiwat
: jetsam_flags
|= P_JETSAM_HIWAT
; break;
1680 case kMemorystatusKilledVnodes
: jetsam_flags
|= P_JETSAM_VNODE
; break;
1681 case kMemorystatusKilledVMPageShortage
: jetsam_flags
|= P_JETSAM_VMPAGESHORTAGE
; break;
1682 case kMemorystatusKilledVMCompressorThrashing
:
1683 case kMemorystatusKilledVMCompressorSpaceShortage
: jetsam_flags
|= P_JETSAM_VMTHRASHING
; break;
1684 case kMemorystatusKilledFCThrashing
: jetsam_flags
|= P_JETSAM_FCTHRASHING
; break;
1685 case kMemorystatusKilledPerProcessLimit
: jetsam_flags
|= P_JETSAM_PID
; break;
1686 case kMemorystatusKilledIdleExit
: jetsam_flags
|= P_JETSAM_IDLEEXIT
; break;
1688 error
= jetsam_do_kill(p
, jetsam_flags
, jetsam_reason
);
1689 *footprint_of_killed_proc
= ((error
== 0) ? footprint
: 0);
1691 KERNEL_DEBUG_CONSTANT((BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_DO_KILL
)) | DBG_FUNC_END
,
1692 victim_pid
, memstat_effectivepriority
, vm_page_free_count
, error
, 0);
1694 KERNEL_DEBUG_CONSTANT((BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_COMPACTOR_RUN
)) | DBG_FUNC_START
,
1695 victim_pid
, cause
, vm_page_free_count
, *footprint_of_killed_proc
, 0);
1699 KERNEL_DEBUG_CONSTANT((BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_COMPACTOR_RUN
)) | DBG_FUNC_END
,
1700 victim_pid
, cause
, vm_page_free_count
, 0, 0);
1710 memorystatus_check_levels_locked(void)
1714 memorystatus_update_levels_locked(TRUE
);
1715 #else /* CONFIG_JETSAM */
1717 * Nothing to do here currently since we update
1718 * memorystatus_available_pages in vm_pressure_response.
1720 #endif /* CONFIG_JETSAM */
1724 * Pin a process to a particular jetsam band when it is in the background i.e. not doing active work.
1725 * For an application: that means no longer in the FG band
1726 * For a daemon: that means no longer in its 'requested' jetsam priority band
1730 memorystatus_update_inactive_jetsam_priority_band(pid_t pid
, uint32_t op_flags
, int jetsam_prio
, boolean_t effective_now
)
1733 boolean_t enable
= FALSE
;
1736 if (op_flags
== MEMORYSTATUS_CMD_ELEVATED_INACTIVEJETSAMPRIORITY_ENABLE
) {
1738 } else if (op_flags
== MEMORYSTATUS_CMD_ELEVATED_INACTIVEJETSAMPRIORITY_DISABLE
) {
1746 if ((enable
&& ((p
->p_memstat_state
& P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
) == P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
)) ||
1747 (!enable
&& ((p
->p_memstat_state
& P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
) == 0))) {
1749 * No change in state.
1755 p
->p_memstat_state
|= P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
;
1756 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
1758 if (effective_now
) {
1759 if (p
->p_memstat_effectivepriority
< jetsam_prio
) {
1760 if (memorystatus_highwater_enabled
) {
1762 * Process is about to transition from
1763 * inactive --> active
1764 * assign active state
1767 boolean_t use_active
= TRUE
;
1768 CACHE_ACTIVE_LIMITS_LOCKED(p
, is_fatal
);
1769 task_set_phys_footprint_limit_internal(p
->task
, (p
->p_memstat_memlimit
> 0) ? p
->p_memstat_memlimit
: -1, NULL
, use_active
, is_fatal
);
1771 memorystatus_update_priority_locked(p
, jetsam_prio
, FALSE
, FALSE
);
1774 if (isProcessInAgingBands(p
)) {
1775 memorystatus_update_priority_locked(p
, JETSAM_PRIORITY_IDLE
, FALSE
, TRUE
);
1779 p
->p_memstat_state
&= ~P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
;
1780 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
1782 if (effective_now
) {
1783 if (p
->p_memstat_effectivepriority
== jetsam_prio
) {
1784 memorystatus_update_priority_locked(p
, JETSAM_PRIORITY_IDLE
, FALSE
, TRUE
);
1787 if (isProcessInAgingBands(p
)) {
1788 memorystatus_update_priority_locked(p
, JETSAM_PRIORITY_IDLE
, FALSE
, TRUE
);
1805 memorystatus_perform_idle_demotion(__unused
void *spare1
, __unused
void *spare2
)
1808 uint64_t current_time
= 0, idle_delay_time
= 0;
1809 int demote_prio_band
= 0;
1810 memstat_bucket_t
*demotion_bucket
;
1812 MEMORYSTATUS_DEBUG(1, "memorystatus_perform_idle_demotion()\n");
1814 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_IDLE_DEMOTE
) | DBG_FUNC_START
, 0, 0, 0, 0, 0);
1816 current_time
= mach_absolute_time();
1820 demote_prio_band
= JETSAM_PRIORITY_IDLE
+ 1;
1822 for (; demote_prio_band
< JETSAM_PRIORITY_MAX
; demote_prio_band
++) {
1823 if (demote_prio_band
!= system_procs_aging_band
&& demote_prio_band
!= applications_aging_band
) {
1827 demotion_bucket
= &memstat_bucket
[demote_prio_band
];
1828 p
= TAILQ_FIRST(&demotion_bucket
->list
);
1831 MEMORYSTATUS_DEBUG(1, "memorystatus_perform_idle_demotion() found %d\n", p
->p_pid
);
1833 assert(p
->p_memstat_idledeadline
);
1835 assert(p
->p_memstat_dirty
& P_DIRTY_AGING_IN_PROGRESS
);
1837 if (current_time
>= p
->p_memstat_idledeadline
) {
1838 if ((isSysProc(p
) &&
1839 ((p
->p_memstat_dirty
& (P_DIRTY_IDLE_EXIT_ENABLED
| P_DIRTY_IS_DIRTY
)) != P_DIRTY_IDLE_EXIT_ENABLED
)) || /* system proc marked dirty*/
1840 task_has_assertions((struct task
*)(p
->task
))) { /* has outstanding assertions which might indicate outstanding work too */
1841 idle_delay_time
= (isSysProc(p
)) ? memorystatus_sysprocs_idle_time(p
) : memorystatus_apps_idle_time(p
);
1843 p
->p_memstat_idledeadline
+= idle_delay_time
;
1844 p
= TAILQ_NEXT(p
, p_memstat_list
);
1846 proc_t next_proc
= NULL
;
1848 next_proc
= TAILQ_NEXT(p
, p_memstat_list
);
1849 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
1851 memorystatus_update_priority_locked(p
, JETSAM_PRIORITY_IDLE
, false, true);
1857 // No further candidates
1863 memorystatus_reschedule_idle_demotion_locked();
1867 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_IDLE_DEMOTE
) | DBG_FUNC_END
, 0, 0, 0, 0, 0);
1871 memorystatus_schedule_idle_demotion_locked(proc_t p
, boolean_t set_state
)
1873 boolean_t present_in_sysprocs_aging_bucket
= FALSE
;
1874 boolean_t present_in_apps_aging_bucket
= FALSE
;
1875 uint64_t idle_delay_time
= 0;
1877 if (jetsam_aging_policy
== kJetsamAgingPolicyNone
) {
1881 if ((p
->p_memstat_state
& P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
) ||
1882 (p
->p_memstat_state
& P_MEMSTAT_PRIORITY_ASSERTION
)) {
1884 * This process isn't going to be making the trip to the lower bands.
1889 if (isProcessInAgingBands(p
)) {
1890 if (jetsam_aging_policy
!= kJetsamAgingPolicyLegacy
) {
1891 assert((p
->p_memstat_dirty
& P_DIRTY_AGING_IN_PROGRESS
) != P_DIRTY_AGING_IN_PROGRESS
);
1894 if (isSysProc(p
) && system_procs_aging_band
) {
1895 present_in_sysprocs_aging_bucket
= TRUE
;
1896 } else if (isApp(p
) && applications_aging_band
) {
1897 present_in_apps_aging_bucket
= TRUE
;
1901 assert(!present_in_sysprocs_aging_bucket
);
1902 assert(!present_in_apps_aging_bucket
);
1904 MEMORYSTATUS_DEBUG(1, "memorystatus_schedule_idle_demotion_locked: scheduling demotion to idle band for pid %d (dirty:0x%x, set_state %d, demotions %d).\n",
1905 p
->p_pid
, p
->p_memstat_dirty
, set_state
, (memorystatus_scheduled_idle_demotions_sysprocs
+ memorystatus_scheduled_idle_demotions_apps
));
1908 assert((p
->p_memstat_dirty
& P_DIRTY_IDLE_EXIT_ENABLED
) == P_DIRTY_IDLE_EXIT_ENABLED
);
1911 idle_delay_time
= (isSysProc(p
)) ? memorystatus_sysprocs_idle_time(p
) : memorystatus_apps_idle_time(p
);
1913 p
->p_memstat_dirty
|= P_DIRTY_AGING_IN_PROGRESS
;
1914 p
->p_memstat_idledeadline
= mach_absolute_time() + idle_delay_time
;
1917 assert(p
->p_memstat_idledeadline
);
1919 if (isSysProc(p
) && present_in_sysprocs_aging_bucket
== FALSE
) {
1920 memorystatus_scheduled_idle_demotions_sysprocs
++;
1921 } else if (isApp(p
) && present_in_apps_aging_bucket
== FALSE
) {
1922 memorystatus_scheduled_idle_demotions_apps
++;
1927 memorystatus_invalidate_idle_demotion_locked(proc_t p
, boolean_t clear_state
)
1929 boolean_t present_in_sysprocs_aging_bucket
= FALSE
;
1930 boolean_t present_in_apps_aging_bucket
= FALSE
;
1932 if (!system_procs_aging_band
&& !applications_aging_band
) {
1936 if ((p
->p_memstat_dirty
& P_DIRTY_AGING_IN_PROGRESS
) == 0) {
1940 if (isProcessInAgingBands(p
)) {
1941 if (jetsam_aging_policy
!= kJetsamAgingPolicyLegacy
) {
1942 assert((p
->p_memstat_dirty
& P_DIRTY_AGING_IN_PROGRESS
) == P_DIRTY_AGING_IN_PROGRESS
);
1945 if (isSysProc(p
) && system_procs_aging_band
) {
1946 assert(p
->p_memstat_effectivepriority
== system_procs_aging_band
);
1947 assert(p
->p_memstat_idledeadline
);
1948 present_in_sysprocs_aging_bucket
= TRUE
;
1949 } else if (isApp(p
) && applications_aging_band
) {
1950 assert(p
->p_memstat_effectivepriority
== applications_aging_band
);
1951 assert(p
->p_memstat_idledeadline
);
1952 present_in_apps_aging_bucket
= TRUE
;
1956 MEMORYSTATUS_DEBUG(1, "memorystatus_invalidate_idle_demotion(): invalidating demotion to idle band for pid %d (clear_state %d, demotions %d).\n",
1957 p
->p_pid
, clear_state
, (memorystatus_scheduled_idle_demotions_sysprocs
+ memorystatus_scheduled_idle_demotions_apps
));
1961 p
->p_memstat_idledeadline
= 0;
1962 p
->p_memstat_dirty
&= ~P_DIRTY_AGING_IN_PROGRESS
;
1965 if (isSysProc(p
) && present_in_sysprocs_aging_bucket
== TRUE
) {
1966 memorystatus_scheduled_idle_demotions_sysprocs
--;
1967 assert(memorystatus_scheduled_idle_demotions_sysprocs
>= 0);
1968 } else if (isApp(p
) && present_in_apps_aging_bucket
== TRUE
) {
1969 memorystatus_scheduled_idle_demotions_apps
--;
1970 assert(memorystatus_scheduled_idle_demotions_apps
>= 0);
1973 assert((memorystatus_scheduled_idle_demotions_sysprocs
+ memorystatus_scheduled_idle_demotions_apps
) >= 0);
1977 memorystatus_reschedule_idle_demotion_locked(void)
1979 if (0 == (memorystatus_scheduled_idle_demotions_sysprocs
+ memorystatus_scheduled_idle_demotions_apps
)) {
1980 if (memstat_idle_demotion_deadline
) {
1981 /* Transitioned 1->0, so cancel next call */
1982 thread_call_cancel(memorystatus_idle_demotion_call
);
1983 memstat_idle_demotion_deadline
= 0;
1986 memstat_bucket_t
*demotion_bucket
;
1987 proc_t p
= NULL
, p1
= NULL
, p2
= NULL
;
1989 if (system_procs_aging_band
) {
1990 demotion_bucket
= &memstat_bucket
[system_procs_aging_band
];
1991 p1
= TAILQ_FIRST(&demotion_bucket
->list
);
1996 if (applications_aging_band
) {
1997 demotion_bucket
= &memstat_bucket
[applications_aging_band
];
1998 p2
= TAILQ_FIRST(&demotion_bucket
->list
);
2001 p
= (p1
->p_memstat_idledeadline
> p2
->p_memstat_idledeadline
) ? p2
: p1
;
2003 p
= (p1
== NULL
) ? p2
: p1
;
2010 assert(p
&& p
->p_memstat_idledeadline
);
2011 if (memstat_idle_demotion_deadline
!= p
->p_memstat_idledeadline
) {
2012 thread_call_enter_delayed(memorystatus_idle_demotion_call
, p
->p_memstat_idledeadline
);
2013 memstat_idle_demotion_deadline
= p
->p_memstat_idledeadline
;
2024 memorystatus_add(proc_t p
, boolean_t locked
)
2026 memstat_bucket_t
*bucket
;
2028 MEMORYSTATUS_DEBUG(1, "memorystatus_list_add(): adding pid %d with priority %d.\n", p
->p_pid
, p
->p_memstat_effectivepriority
);
2034 DTRACE_MEMORYSTATUS2(memorystatus_add
, proc_t
, p
, int32_t, p
->p_memstat_effectivepriority
);
2036 /* Processes marked internal do not have priority tracked */
2037 if (p
->p_memstat_state
& P_MEMSTAT_INTERNAL
) {
2042 * Opt out system processes from being frozen by default.
2043 * For coalition-based freezing, we only want to freeze sysprocs that have specifically opted in.
2046 p
->p_memstat_state
|= P_MEMSTAT_FREEZE_DISABLED
;
2049 bucket
= &memstat_bucket
[p
->p_memstat_effectivepriority
];
2051 if (isSysProc(p
) && system_procs_aging_band
&& (p
->p_memstat_effectivepriority
== system_procs_aging_band
)) {
2052 assert(bucket
->count
== memorystatus_scheduled_idle_demotions_sysprocs
- 1);
2053 } else if (isApp(p
) && applications_aging_band
&& (p
->p_memstat_effectivepriority
== applications_aging_band
)) {
2054 assert(bucket
->count
== memorystatus_scheduled_idle_demotions_apps
- 1);
2055 } else if (p
->p_memstat_effectivepriority
== JETSAM_PRIORITY_IDLE
) {
2057 * Entering the idle band.
2058 * Record idle start time.
2060 p
->p_memstat_idle_start
= mach_absolute_time();
2063 TAILQ_INSERT_TAIL(&bucket
->list
, p
, p_memstat_list
);
2065 if (p
->p_memstat_relaunch_flags
& (P_MEMSTAT_RELAUNCH_HIGH
)) {
2066 bucket
->relaunch_high_count
++;
2069 memorystatus_list_count
++;
2071 memorystatus_check_levels_locked();
2083 * Moves a process from one jetsam bucket to another.
2084 * which changes the LRU position of the process.
2086 * Monitors transition between buckets and if necessary
2087 * will update cached memory limits accordingly.
2089 * skip_demotion_check:
2090 * - if the 'jetsam aging policy' is NOT 'legacy':
2091 * When this flag is TRUE, it means we are going
2092 * to age the ripe processes out of the aging bands and into the
2093 * IDLE band and apply their inactive memory limits.
2095 * - if the 'jetsam aging policy' is 'legacy':
2096 * When this flag is TRUE, it might mean the above aging mechanism
2098 * It might be that we have a process that has used up its 'idle deferral'
2099 * stay that is given to it once per lifetime. And in this case, the process
2100 * won't be going through any aging codepaths. But we still need to apply
2101 * the right inactive limits and so we explicitly set this to TRUE if the
2102 * new priority for the process is the IDLE band.
2105 memorystatus_update_priority_locked(proc_t p
, int priority
, boolean_t head_insert
, boolean_t skip_demotion_check
)
2107 memstat_bucket_t
*old_bucket
, *new_bucket
;
2109 assert(priority
< MEMSTAT_BUCKET_COUNT
);
2111 /* Ensure that exit isn't underway, leaving the proc retained but removed from its bucket */
2112 if ((p
->p_listflag
& P_LIST_EXITED
) != 0) {
2116 MEMORYSTATUS_DEBUG(1, "memorystatus_update_priority_locked(): setting %s(%d) to priority %d, inserting at %s\n",
2117 (*p
->p_name
? p
->p_name
: "unknown"), p
->p_pid
, priority
, head_insert
? "head" : "tail");
2119 DTRACE_MEMORYSTATUS3(memorystatus_update_priority
, proc_t
, p
, int32_t, p
->p_memstat_effectivepriority
, int, priority
);
2121 old_bucket
= &memstat_bucket
[p
->p_memstat_effectivepriority
];
2123 if (skip_demotion_check
== FALSE
) {
2126 * For system processes, the memorystatus_dirty_* routines take care of adding/removing
2127 * the processes from the aging bands and balancing the demotion counts.
2128 * We can, however, override that if the process has an 'elevated inactive jetsam band' attribute.
2131 if (p
->p_memstat_state
& P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
) {
2133 * 2 types of processes can use the non-standard elevated inactive band:
2134 * - Frozen processes that always land in memorystatus_freeze_jetsam_band
2136 * - processes that specifically opt-in to the elevated inactive support e.g. docked processes.
2139 if (p
->p_memstat_state
& P_MEMSTAT_FROZEN
) {
2140 if (priority
<= memorystatus_freeze_jetsam_band
) {
2141 priority
= memorystatus_freeze_jetsam_band
;
2144 #endif /* CONFIG_FREEZE */
2146 if (priority
<= JETSAM_PRIORITY_ELEVATED_INACTIVE
) {
2147 priority
= JETSAM_PRIORITY_ELEVATED_INACTIVE
;
2150 assert(!(p
->p_memstat_dirty
& P_DIRTY_AGING_IN_PROGRESS
));
2152 } else if (isApp(p
)) {
2154 * Check to see if the application is being lowered in jetsam priority. If so, and:
2155 * - it has an 'elevated inactive jetsam band' attribute, then put it in the appropriate band.
2156 * - it is a normal application, then let it age in the aging band if that policy is in effect.
2159 if (p
->p_memstat_state
& P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
) {
2161 if (p
->p_memstat_state
& P_MEMSTAT_FROZEN
) {
2162 if (priority
<= memorystatus_freeze_jetsam_band
) {
2163 priority
= memorystatus_freeze_jetsam_band
;
2166 #endif /* CONFIG_FREEZE */
2168 if (priority
<= JETSAM_PRIORITY_ELEVATED_INACTIVE
) {
2169 priority
= JETSAM_PRIORITY_ELEVATED_INACTIVE
;
2173 if (applications_aging_band
) {
2174 if (p
->p_memstat_effectivepriority
== applications_aging_band
) {
2175 assert(old_bucket
->count
== (memorystatus_scheduled_idle_demotions_apps
+ 1));
2178 if ((jetsam_aging_policy
!= kJetsamAgingPolicyLegacy
) && (priority
<= applications_aging_band
)) {
2179 assert(!(p
->p_memstat_dirty
& P_DIRTY_AGING_IN_PROGRESS
));
2180 priority
= applications_aging_band
;
2181 memorystatus_schedule_idle_demotion_locked(p
, TRUE
);
2188 if ((system_procs_aging_band
&& (priority
== system_procs_aging_band
)) || (applications_aging_band
&& (priority
== applications_aging_band
))) {
2189 assert(p
->p_memstat_dirty
& P_DIRTY_AGING_IN_PROGRESS
);
2192 #if DEVELOPMENT || DEBUG
2193 if (priority
== JETSAM_PRIORITY_IDLE
&& /* if the process is on its way into the IDLE band */
2194 skip_demotion_check
== FALSE
&& /* and it isn't via the path that will set the INACTIVE memlimits */
2195 (p
->p_memstat_dirty
& P_DIRTY_TRACK
) && /* and it has 'DIRTY' tracking enabled */
2196 ((p
->p_memstat_memlimit
!= p
->p_memstat_memlimit_inactive
) || /* and we notice that the current limit isn't the right value (inactive) */
2197 ((p
->p_memstat_state
& P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL
) ? (!(p
->p_memstat_state
& P_MEMSTAT_FATAL_MEMLIMIT
)) : (p
->p_memstat_state
& P_MEMSTAT_FATAL_MEMLIMIT
)))) { /* OR type (fatal vs non-fatal) */
2198 printf("memorystatus_update_priority_locked: on %s with 0x%x, prio: %d and %d\n", p
->p_name
, p
->p_memstat_state
, priority
, p
->p_memstat_memlimit
); /* then we must catch this */
2200 #endif /* DEVELOPMENT || DEBUG */
2202 TAILQ_REMOVE(&old_bucket
->list
, p
, p_memstat_list
);
2203 old_bucket
->count
--;
2204 if (p
->p_memstat_relaunch_flags
& (P_MEMSTAT_RELAUNCH_HIGH
)) {
2205 old_bucket
->relaunch_high_count
--;
2208 new_bucket
= &memstat_bucket
[priority
];
2210 TAILQ_INSERT_HEAD(&new_bucket
->list
, p
, p_memstat_list
);
2212 TAILQ_INSERT_TAIL(&new_bucket
->list
, p
, p_memstat_list
);
2214 new_bucket
->count
++;
2215 if (p
->p_memstat_relaunch_flags
& (P_MEMSTAT_RELAUNCH_HIGH
)) {
2216 new_bucket
->relaunch_high_count
++;
2219 if (memorystatus_highwater_enabled
) {
2221 boolean_t use_active
;
2224 * If cached limit data is updated, then the limits
2225 * will be enforced by writing to the ledgers.
2227 boolean_t ledger_update_needed
= TRUE
;
2230 * Here, we must update the cached memory limit if the task
2231 * is transitioning between:
2232 * active <--> inactive
2235 * dirty <--> clean is ignored
2237 * We bypass non-idle processes that have opted into dirty tracking because
2238 * a move between buckets does not imply a transition between the
2239 * dirty <--> clean state.
2242 if (p
->p_memstat_dirty
& P_DIRTY_TRACK
) {
2243 if (skip_demotion_check
== TRUE
&& priority
== JETSAM_PRIORITY_IDLE
) {
2244 CACHE_INACTIVE_LIMITS_LOCKED(p
, is_fatal
);
2247 ledger_update_needed
= FALSE
;
2249 } else if ((priority
>= JETSAM_PRIORITY_FOREGROUND
) && (p
->p_memstat_effectivepriority
< JETSAM_PRIORITY_FOREGROUND
)) {
2251 * inactive --> active
2253 * assign active state
2255 CACHE_ACTIVE_LIMITS_LOCKED(p
, is_fatal
);
2257 } else if ((priority
< JETSAM_PRIORITY_FOREGROUND
) && (p
->p_memstat_effectivepriority
>= JETSAM_PRIORITY_FOREGROUND
)) {
2259 * active --> inactive
2261 * assign inactive state
2263 CACHE_INACTIVE_LIMITS_LOCKED(p
, is_fatal
);
2267 * The transition between jetsam priority buckets apparently did
2268 * not affect active/inactive state.
2269 * This is not unusual... especially during startup when
2270 * processes are getting established in their respective bands.
2272 ledger_update_needed
= FALSE
;
2276 * Enforce the new limits by writing to the ledger
2278 if (ledger_update_needed
) {
2279 task_set_phys_footprint_limit_internal(p
->task
, (p
->p_memstat_memlimit
> 0) ? p
->p_memstat_memlimit
: -1, NULL
, use_active
, is_fatal
);
2281 MEMORYSTATUS_DEBUG(3, "memorystatus_update_priority_locked: new limit on pid %d (%dMB %s) priority old --> new (%d --> %d) dirty?=0x%x %s\n",
2282 p
->p_pid
, (p
->p_memstat_memlimit
> 0 ? p
->p_memstat_memlimit
: -1),
2283 (p
->p_memstat_state
& P_MEMSTAT_FATAL_MEMLIMIT
? "F " : "NF"), p
->p_memstat_effectivepriority
, priority
, p
->p_memstat_dirty
,
2284 (p
->p_memstat_dirty
? ((p
->p_memstat_dirty
& P_DIRTY
) ? "isdirty" : "isclean") : ""));
2289 * Record idle start or idle delta.
2291 if (p
->p_memstat_effectivepriority
== priority
) {
2293 * This process is not transitioning between
2294 * jetsam priority buckets. Do nothing.
2296 } else if (p
->p_memstat_effectivepriority
== JETSAM_PRIORITY_IDLE
) {
2299 * Transitioning out of the idle priority bucket.
2300 * Record idle delta.
2302 assert(p
->p_memstat_idle_start
!= 0);
2303 now
= mach_absolute_time();
2304 if (now
> p
->p_memstat_idle_start
) {
2305 p
->p_memstat_idle_delta
= now
- p
->p_memstat_idle_start
;
2309 * About to become active and so memory footprint could change.
2310 * So mark it eligible for freeze-considerations next time around.
2312 if (p
->p_memstat_state
& P_MEMSTAT_FREEZE_IGNORE
) {
2313 p
->p_memstat_state
&= ~P_MEMSTAT_FREEZE_IGNORE
;
2315 } else if (priority
== JETSAM_PRIORITY_IDLE
) {
2317 * Transitioning into the idle priority bucket.
2318 * Record idle start.
2320 p
->p_memstat_idle_start
= mach_absolute_time();
2323 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_CHANGE_PRIORITY
), p
->p_pid
, priority
, p
->p_memstat_effectivepriority
, 0, 0);
2325 p
->p_memstat_effectivepriority
= priority
;
2327 #if CONFIG_SECLUDED_MEMORY
2328 if (secluded_for_apps
&&
2329 task_could_use_secluded_mem(p
->task
)) {
2330 task_set_can_use_secluded_mem(
2332 (priority
>= JETSAM_PRIORITY_FOREGROUND
));
2334 #endif /* CONFIG_SECLUDED_MEMORY */
2336 memorystatus_check_levels_locked();
2340 memorystatus_relaunch_flags_update(proc_t p
, int relaunch_flags
)
2342 p
->p_memstat_relaunch_flags
= relaunch_flags
;
2343 KDBG(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_RELAUNCH_FLAGS
), p
->p_pid
, relaunch_flags
, 0, 0, 0);
2349 * Description: Update the jetsam priority and memory limit attributes for a given process.
2352 * p init this process's jetsam information.
2353 * priority The jetsam priority band
2354 * user_data user specific data, unused by the kernel
2355 * is_assertion When true, a priority update is driven by an assertion.
2356 * effective guards against race if process's update already occurred
2357 * update_memlimit When true we know this is the init step via the posix_spawn path.
2359 * memlimit_active Value in megabytes; The monitored footprint level while the
2360 * process is active. Exceeding it may result in termination
2361 * based on it's associated fatal flag.
2363 * memlimit_active_is_fatal When a process is active and exceeds its memory footprint,
2364 * this describes whether or not it should be immediately fatal.
2366 * memlimit_inactive Value in megabytes; The monitored footprint level while the
2367 * process is inactive. Exceeding it may result in termination
2368 * based on it's associated fatal flag.
2370 * memlimit_inactive_is_fatal When a process is inactive and exceeds its memory footprint,
2371 * this describes whether or not it should be immediatly fatal.
2373 * Returns: 0 Success
2378 memorystatus_update(proc_t p
, int priority
, uint64_t user_data
, boolean_t is_assertion
, boolean_t effective
, boolean_t update_memlimit
,
2379 int32_t memlimit_active
, boolean_t memlimit_active_is_fatal
,
2380 int32_t memlimit_inactive
, boolean_t memlimit_inactive_is_fatal
)
2383 boolean_t head_insert
= false;
2385 MEMORYSTATUS_DEBUG(1, "memorystatus_update: changing (%s) pid %d: priority %d, user_data 0x%llx\n", (*p
->p_name
? p
->p_name
: "unknown"), p
->p_pid
, priority
, user_data
);
2387 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_UPDATE
) | DBG_FUNC_START
, p
->p_pid
, priority
, user_data
, effective
, 0);
2389 if (priority
== -1) {
2390 /* Use as shorthand for default priority */
2391 priority
= JETSAM_PRIORITY_DEFAULT
;
2392 } else if ((priority
== system_procs_aging_band
) || (priority
== applications_aging_band
)) {
2393 /* Both the aging bands are reserved for internal use; if requested, adjust to JETSAM_PRIORITY_IDLE. */
2394 priority
= JETSAM_PRIORITY_IDLE
;
2395 } else if (priority
== JETSAM_PRIORITY_IDLE_HEAD
) {
2396 /* JETSAM_PRIORITY_IDLE_HEAD inserts at the head of the idle queue */
2397 priority
= JETSAM_PRIORITY_IDLE
;
2399 } else if ((priority
< 0) || (priority
>= MEMSTAT_BUCKET_COUNT
)) {
2407 assert(!(p
->p_memstat_state
& P_MEMSTAT_INTERNAL
));
2409 if (effective
&& (p
->p_memstat_state
& P_MEMSTAT_PRIORITYUPDATED
)) {
2412 MEMORYSTATUS_DEBUG(1, "memorystatus_update: effective change specified for pid %d, but change already occurred.\n", p
->p_pid
);
2416 if ((p
->p_memstat_state
& P_MEMSTAT_TERMINATED
) || ((p
->p_listflag
& P_LIST_EXITED
) != 0)) {
2418 * This could happen when a process calling posix_spawn() is exiting on the jetsam thread.
2425 p
->p_memstat_state
|= P_MEMSTAT_PRIORITYUPDATED
;
2426 p
->p_memstat_userdata
= user_data
;
2429 if (priority
== JETSAM_PRIORITY_IDLE
) {
2431 * Assertions relinquish control when the process is heading to IDLE.
2433 if (p
->p_memstat_state
& P_MEMSTAT_PRIORITY_ASSERTION
) {
2435 * Mark the process as no longer being managed by assertions.
2437 p
->p_memstat_state
&= ~P_MEMSTAT_PRIORITY_ASSERTION
;
2440 * Ignore an idle priority transition if the process is not
2441 * already managed by assertions. We won't treat this as
2442 * an error, but we will log the unexpected behavior and bail.
2444 os_log(OS_LOG_DEFAULT
, "memorystatus: Ignore assertion driven idle priority. Process not previously controlled %s:%d\n",
2445 (*p
->p_name
? p
->p_name
: "unknown"), p
->p_pid
);
2453 * Process is now being managed by assertions,
2455 p
->p_memstat_state
|= P_MEMSTAT_PRIORITY_ASSERTION
;
2458 /* Always update the assertion priority in this path */
2460 p
->p_memstat_assertionpriority
= priority
;
2462 int memstat_dirty_flags
= memorystatus_dirty_get(p
, TRUE
); /* proc_list_lock is held */
2464 if (memstat_dirty_flags
!= 0) {
2466 * Calculate maximum priority only when dirty tracking processes are involved.
2469 if (memstat_dirty_flags
& PROC_DIRTY_IS_DIRTY
) {
2470 maxpriority
= MAX(p
->p_memstat_assertionpriority
, p
->p_memstat_requestedpriority
);
2474 if (memstat_dirty_flags
& PROC_DIRTY_ALLOWS_IDLE_EXIT
) {
2476 * The aging policy must be evaluated and applied here because runnningboardd
2477 * has relinquished its hold on the jetsam priority by attempting to move a
2478 * clean process to the idle band.
2481 int newpriority
= JETSAM_PRIORITY_IDLE
;
2482 if ((p
->p_memstat_dirty
& (P_DIRTY_IDLE_EXIT_ENABLED
| P_DIRTY_IS_DIRTY
)) == P_DIRTY_IDLE_EXIT_ENABLED
) {
2483 newpriority
= (p
->p_memstat_dirty
& P_DIRTY_AGING_IN_PROGRESS
) ? system_procs_aging_band
: JETSAM_PRIORITY_IDLE
;
2486 maxpriority
= MAX(p
->p_memstat_assertionpriority
, newpriority
);
2488 if (newpriority
== system_procs_aging_band
) {
2489 memorystatus_schedule_idle_demotion_locked(p
, FALSE
);
2493 * Preserves requestedpriority when the process does not support pressured exit.
2495 maxpriority
= MAX(p
->p_memstat_assertionpriority
, p
->p_memstat_requestedpriority
);
2498 priority
= maxpriority
;
2501 p
->p_memstat_requestedpriority
= priority
;
2504 if (update_memlimit
) {
2506 boolean_t use_active
;
2509 * Posix_spawn'd processes come through this path to instantiate ledger limits.
2510 * Forked processes do not come through this path, so no ledger limits exist.
2511 * (That's why forked processes can consume unlimited memory.)
2514 MEMORYSTATUS_DEBUG(3, "memorystatus_update(enter): pid %d, priority %d, dirty=0x%x, Active(%dMB %s), Inactive(%dMB, %s)\n",
2515 p
->p_pid
, priority
, p
->p_memstat_dirty
,
2516 memlimit_active
, (memlimit_active_is_fatal
? "F " : "NF"),
2517 memlimit_inactive
, (memlimit_inactive_is_fatal
? "F " : "NF"));
2519 if (memlimit_active
<= 0) {
2521 * This process will have a system_wide task limit when active.
2522 * System_wide task limit is always fatal.
2523 * It's quite common to see non-fatal flag passed in here.
2524 * It's not an error, we just ignore it.
2528 * For backward compatibility with some unexplained launchd behavior,
2529 * we allow a zero sized limit. But we still enforce system_wide limit
2530 * when written to the ledgers.
2533 if (memlimit_active
< 0) {
2534 memlimit_active
= -1; /* enforces system_wide task limit */
2536 memlimit_active_is_fatal
= TRUE
;
2539 if (memlimit_inactive
<= 0) {
2541 * This process will have a system_wide task limit when inactive.
2542 * System_wide task limit is always fatal.
2545 memlimit_inactive
= -1;
2546 memlimit_inactive_is_fatal
= TRUE
;
2550 * Initialize the active limit variants for this process.
2552 SET_ACTIVE_LIMITS_LOCKED(p
, memlimit_active
, memlimit_active_is_fatal
);
2555 * Initialize the inactive limit variants for this process.
2557 SET_INACTIVE_LIMITS_LOCKED(p
, memlimit_inactive
, memlimit_inactive_is_fatal
);
2560 * Initialize the cached limits for target process.
2561 * When the target process is dirty tracked, it's typically
2562 * in a clean state. Non dirty tracked processes are
2563 * typically active (Foreground or above).
2564 * But just in case, we don't make assumptions...
2567 if (proc_jetsam_state_is_active_locked(p
) == TRUE
) {
2568 CACHE_ACTIVE_LIMITS_LOCKED(p
, is_fatal
);
2571 CACHE_INACTIVE_LIMITS_LOCKED(p
, is_fatal
);
2576 * Enforce the cached limit by writing to the ledger.
2578 if (memorystatus_highwater_enabled
) {
2580 task_set_phys_footprint_limit_internal(p
->task
, ((p
->p_memstat_memlimit
> 0) ? p
->p_memstat_memlimit
: -1), NULL
, use_active
, is_fatal
);
2582 MEMORYSTATUS_DEBUG(3, "memorystatus_update: init: limit on pid %d (%dMB %s) targeting priority(%d) dirty?=0x%x %s\n",
2583 p
->p_pid
, (p
->p_memstat_memlimit
> 0 ? p
->p_memstat_memlimit
: -1),
2584 (p
->p_memstat_state
& P_MEMSTAT_FATAL_MEMLIMIT
? "F " : "NF"), priority
, p
->p_memstat_dirty
,
2585 (p
->p_memstat_dirty
? ((p
->p_memstat_dirty
& P_DIRTY
) ? "isdirty" : "isclean") : ""));
2590 * We can't add to the aging bands buckets here.
2591 * But, we could be removing it from those buckets.
2592 * Check and take appropriate steps if so.
2595 if (isProcessInAgingBands(p
)) {
2596 if ((jetsam_aging_policy
!= kJetsamAgingPolicyLegacy
) && isApp(p
) && (priority
> applications_aging_band
)) {
2598 * Runningboardd is pulling up an application that is in the aging band.
2599 * We reset the app's state here so that it'll get a fresh stay in the
2600 * aging band on the way back.
2602 * We always handled the app 'aging' in the memorystatus_update_priority_locked()
2603 * function. Daemons used to be handled via the dirty 'set/clear/track' path.
2604 * But with extensions (daemon-app hybrid), runningboardd is now going through
2605 * this routine for daemons too and things have gotten a bit tangled. This should
2606 * be simplified/untangled at some point and might require some assistance from
2609 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
2611 memorystatus_invalidate_idle_demotion_locked(p
, FALSE
);
2613 memorystatus_update_priority_locked(p
, JETSAM_PRIORITY_IDLE
, FALSE
, TRUE
);
2615 if (jetsam_aging_policy
== kJetsamAgingPolicyLegacy
&& priority
== JETSAM_PRIORITY_IDLE
) {
2617 * Daemons with 'inactive' limits will go through the dirty tracking codepath.
2618 * This path deals with apps that may have 'inactive' limits e.g. WebContent processes.
2619 * If this is the legacy aging policy we explicitly need to apply those limits. If it
2620 * is any other aging policy, then we don't need to worry because all processes
2621 * will go through the aging bands and then the demotion thread will take care to
2622 * move them into the IDLE band and apply the required limits.
2624 memorystatus_update_priority_locked(p
, priority
, head_insert
, TRUE
);
2628 memorystatus_update_priority_locked(p
, priority
, head_insert
, FALSE
);
2634 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_UPDATE
) | DBG_FUNC_END
, ret
, 0, 0, 0, 0);
2640 memorystatus_remove(proc_t p
)
2643 memstat_bucket_t
*bucket
;
2644 boolean_t reschedule
= FALSE
;
2646 MEMORYSTATUS_DEBUG(1, "memorystatus_list_remove: removing pid %d\n", p
->p_pid
);
2649 * Check if this proc is locked (because we're performing a freeze).
2650 * If so, we fail and instruct the caller to try again later.
2652 if (p
->p_memstat_state
& P_MEMSTAT_LOCKED
) {
2656 assert(!(p
->p_memstat_state
& P_MEMSTAT_INTERNAL
));
2658 bucket
= &memstat_bucket
[p
->p_memstat_effectivepriority
];
2660 if (isSysProc(p
) && system_procs_aging_band
&& (p
->p_memstat_effectivepriority
== system_procs_aging_band
)) {
2661 assert(bucket
->count
== memorystatus_scheduled_idle_demotions_sysprocs
);
2663 } else if (isApp(p
) && applications_aging_band
&& (p
->p_memstat_effectivepriority
== applications_aging_band
)) {
2664 assert(bucket
->count
== memorystatus_scheduled_idle_demotions_apps
);
2672 if (p
->p_memstat_effectivepriority
== JETSAM_PRIORITY_IDLE
) {
2673 uint64_t now
= mach_absolute_time();
2674 if (now
> p
->p_memstat_idle_start
) {
2675 p
->p_memstat_idle_delta
= now
- p
->p_memstat_idle_start
;
2679 TAILQ_REMOVE(&bucket
->list
, p
, p_memstat_list
);
2681 if (p
->p_memstat_relaunch_flags
& (P_MEMSTAT_RELAUNCH_HIGH
)) {
2682 bucket
->relaunch_high_count
--;
2685 memorystatus_list_count
--;
2687 /* If awaiting demotion to the idle band, clean up */
2689 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
2690 memorystatus_reschedule_idle_demotion_locked();
2693 memorystatus_check_levels_locked();
2696 if (p
->p_memstat_state
& (P_MEMSTAT_FROZEN
)) {
2697 if (p
->p_memstat_state
& P_MEMSTAT_REFREEZE_ELIGIBLE
) {
2698 p
->p_memstat_state
&= ~P_MEMSTAT_REFREEZE_ELIGIBLE
;
2699 memorystatus_refreeze_eligible_count
--;
2702 memorystatus_frozen_count
--;
2703 memorystatus_frozen_shared_mb
-= p
->p_memstat_freeze_sharedanon_pages
;
2704 p
->p_memstat_freeze_sharedanon_pages
= 0;
2707 if (p
->p_memstat_state
& P_MEMSTAT_SUSPENDED
) {
2708 memorystatus_suspended_count
--;
2712 #if DEVELOPMENT || DEBUG
2713 if (p
->p_pid
== memorystatus_snapshot_owner
) {
2714 memorystatus_snapshot_owner
= 0;
2716 #endif /* DEVELOPMENT || DEBUG */
2728 * Validate dirty tracking flags with process state.
2734 * The proc_list_lock is held by the caller.
2738 memorystatus_validate_track_flags(struct proc
*target_p
, uint32_t pcontrol
)
2740 /* See that the process isn't marked for termination */
2741 if (target_p
->p_memstat_dirty
& P_DIRTY_TERMINATED
) {
2745 /* Idle exit requires that process be tracked */
2746 if ((pcontrol
& PROC_DIRTY_ALLOW_IDLE_EXIT
) &&
2747 !(pcontrol
& PROC_DIRTY_TRACK
)) {
2751 /* 'Launch in progress' tracking requires that process have enabled dirty tracking too. */
2752 if ((pcontrol
& PROC_DIRTY_LAUNCH_IN_PROGRESS
) &&
2753 !(pcontrol
& PROC_DIRTY_TRACK
)) {
2757 /* Only one type of DEFER behavior is allowed.*/
2758 if ((pcontrol
& PROC_DIRTY_DEFER
) &&
2759 (pcontrol
& PROC_DIRTY_DEFER_ALWAYS
)) {
2763 /* Deferral is only relevant if idle exit is specified */
2764 if (((pcontrol
& PROC_DIRTY_DEFER
) ||
2765 (pcontrol
& PROC_DIRTY_DEFER_ALWAYS
)) &&
2766 !(pcontrol
& PROC_DIRTY_ALLOWS_IDLE_EXIT
)) {
2774 memorystatus_update_idle_priority_locked(proc_t p
)
2778 MEMORYSTATUS_DEBUG(1, "memorystatus_update_idle_priority_locked(): pid %d dirty 0x%X\n", p
->p_pid
, p
->p_memstat_dirty
);
2780 assert(isSysProc(p
));
2782 if ((p
->p_memstat_dirty
& (P_DIRTY_IDLE_EXIT_ENABLED
| P_DIRTY_IS_DIRTY
)) == P_DIRTY_IDLE_EXIT_ENABLED
) {
2783 priority
= (p
->p_memstat_dirty
& P_DIRTY_AGING_IN_PROGRESS
) ? system_procs_aging_band
: JETSAM_PRIORITY_IDLE
;
2785 priority
= p
->p_memstat_requestedpriority
;
2788 if (p
->p_memstat_state
& P_MEMSTAT_PRIORITY_ASSERTION
) {
2790 * This process has a jetsam priority managed by an assertion.
2791 * Policy is to choose the max priority.
2793 if (p
->p_memstat_assertionpriority
> priority
) {
2794 os_log(OS_LOG_DEFAULT
, "memorystatus: assertion priority %d overrides priority %d for %s:%d\n",
2795 p
->p_memstat_assertionpriority
, priority
,
2796 (*p
->p_name
? p
->p_name
: "unknown"), p
->p_pid
);
2797 priority
= p
->p_memstat_assertionpriority
;
2801 if (priority
!= p
->p_memstat_effectivepriority
) {
2802 if ((jetsam_aging_policy
== kJetsamAgingPolicyLegacy
) &&
2803 (priority
== JETSAM_PRIORITY_IDLE
)) {
2805 * This process is on its way into the IDLE band. The system is
2806 * using 'legacy' jetsam aging policy. That means, this process
2807 * has already used up its idle-deferral aging time that is given
2808 * once per its lifetime. So we need to set the INACTIVE limits
2809 * explicitly because it won't be going through the demotion paths
2810 * that take care to apply the limits appropriately.
2813 if (p
->p_memstat_state
& P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
) {
2815 * This process has the 'elevated inactive jetsam band' attribute.
2816 * So, there will be no trip to IDLE after all.
2817 * Instead, we pin the process in the elevated band,
2818 * where its ACTIVE limits will apply.
2821 priority
= JETSAM_PRIORITY_ELEVATED_INACTIVE
;
2824 memorystatus_update_priority_locked(p
, priority
, false, true);
2826 memorystatus_update_priority_locked(p
, priority
, false, false);
2832 * Processes can opt to have their state tracked by the kernel, indicating when they are busy (dirty) or idle
2833 * (clean). They may also indicate that they support termination when idle, with the result that they are promoted
2834 * to their desired, higher, jetsam priority when dirty (and are therefore killed later), and demoted to the low
2835 * priority idle band when clean (and killed earlier, protecting higher priority procesess).
2837 * If the deferral flag is set, then newly tracked processes will be protected for an initial period (as determined by
2838 * memorystatus_sysprocs_idle_delay_time); if they go clean during this time, then they will be moved to a deferred-idle band
2839 * with a slightly higher priority, guarding against immediate termination under memory pressure and being unable to
2840 * make forward progress. Finally, when the guard expires, they will be moved to the standard, lowest-priority, idle
2841 * band. The deferral can be cleared early by clearing the appropriate flag.
2843 * The deferral timer is active only for the duration that the process is marked as guarded and clean; if the process
2844 * is marked dirty, the timer will be cancelled. Upon being subsequently marked clean, the deferment will either be
2845 * re-enabled or the guard state cleared, depending on whether the guard deadline has passed.
2849 memorystatus_dirty_track(proc_t p
, uint32_t pcontrol
)
2851 unsigned int old_dirty
;
2852 boolean_t reschedule
= FALSE
;
2853 boolean_t already_deferred
= FALSE
;
2854 boolean_t defer_now
= FALSE
;
2857 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_DIRTY_TRACK
),
2858 p
->p_pid
, p
->p_memstat_dirty
, pcontrol
, 0, 0);
2862 if ((p
->p_listflag
& P_LIST_EXITED
) != 0) {
2864 * Process is on its way out.
2870 if (p
->p_memstat_state
& P_MEMSTAT_INTERNAL
) {
2875 if ((ret
= memorystatus_validate_track_flags(p
, pcontrol
)) != 0) {
2880 old_dirty
= p
->p_memstat_dirty
;
2882 /* These bits are cumulative, as per <rdar://problem/11159924> */
2883 if (pcontrol
& PROC_DIRTY_TRACK
) {
2884 p
->p_memstat_dirty
|= P_DIRTY_TRACK
;
2887 if (pcontrol
& PROC_DIRTY_ALLOW_IDLE_EXIT
) {
2888 p
->p_memstat_dirty
|= P_DIRTY_ALLOW_IDLE_EXIT
;
2891 if (pcontrol
& PROC_DIRTY_LAUNCH_IN_PROGRESS
) {
2892 p
->p_memstat_dirty
|= P_DIRTY_LAUNCH_IN_PROGRESS
;
2895 if (old_dirty
& P_DIRTY_AGING_IN_PROGRESS
) {
2896 already_deferred
= TRUE
;
2900 /* This can be set and cleared exactly once. */
2901 if (pcontrol
& (PROC_DIRTY_DEFER
| PROC_DIRTY_DEFER_ALWAYS
)) {
2902 if ((pcontrol
& (PROC_DIRTY_DEFER
)) &&
2903 !(old_dirty
& P_DIRTY_DEFER
)) {
2904 p
->p_memstat_dirty
|= P_DIRTY_DEFER
;
2907 if ((pcontrol
& (PROC_DIRTY_DEFER_ALWAYS
)) &&
2908 !(old_dirty
& P_DIRTY_DEFER_ALWAYS
)) {
2909 p
->p_memstat_dirty
|= P_DIRTY_DEFER_ALWAYS
;
2915 MEMORYSTATUS_DEBUG(1, "memorystatus_on_track_dirty(): set idle-exit %s / defer %s / dirty %s for pid %d\n",
2916 ((p
->p_memstat_dirty
& P_DIRTY_IDLE_EXIT_ENABLED
) == P_DIRTY_IDLE_EXIT_ENABLED
) ? "Y" : "N",
2917 defer_now
? "Y" : "N",
2918 p
->p_memstat_dirty
& P_DIRTY
? "Y" : "N",
2921 /* Kick off or invalidate the idle exit deferment if there's a state transition. */
2922 if (!(p
->p_memstat_dirty
& P_DIRTY_IS_DIRTY
)) {
2923 if ((p
->p_memstat_dirty
& P_DIRTY_IDLE_EXIT_ENABLED
) == P_DIRTY_IDLE_EXIT_ENABLED
) {
2924 if (defer_now
&& !already_deferred
) {
2926 * Request to defer a clean process that's idle-exit enabled
2927 * and not already in the jetsam deferred band. Most likely a
2930 memorystatus_schedule_idle_demotion_locked(p
, TRUE
);
2932 } else if (!defer_now
) {
2934 * The process isn't asking for the 'aging' facility.
2935 * Could be that it is:
2938 if (already_deferred
) {
2940 * already in the aging bands. Traditionally,
2941 * some processes have tried to use this to
2942 * opt out of the 'aging' facility.
2945 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
2948 * agnostic to the 'aging' facility. In that case,
2949 * we'll go ahead and opt it in because this is likely
2950 * a new launch (clean process, dirty tracking enabled)
2953 memorystatus_schedule_idle_demotion_locked(p
, TRUE
);
2961 * We are trying to operate on a dirty process. Dirty processes have to
2962 * be removed from the deferred band. The question is do we reset the
2963 * deferred state or not?
2965 * This could be a legal request like:
2966 * - this process had opted into the 'aging' band
2967 * - but it's now dirty and requests to opt out.
2968 * In this case, we remove the process from the band and reset its
2969 * state too. It'll opt back in properly when needed.
2971 * OR, this request could be a user-space bug. E.g.:
2972 * - this process had opted into the 'aging' band when clean
2973 * - and, then issues another request to again put it into the band except
2974 * this time the process is dirty.
2975 * The process going dirty, as a transition in memorystatus_dirty_set(), will pull the process out of
2976 * the deferred band with its state intact. So our request below is no-op.
2977 * But we do it here anyways for coverage.
2979 * memorystatus_update_idle_priority_locked()
2980 * single-mindedly treats a dirty process as "cannot be in the aging band".
2983 if (!defer_now
&& already_deferred
) {
2984 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
2987 boolean_t reset_state
= (jetsam_aging_policy
!= kJetsamAgingPolicyLegacy
) ? TRUE
: FALSE
;
2989 memorystatus_invalidate_idle_demotion_locked(p
, reset_state
);
2994 memorystatus_update_idle_priority_locked(p
);
2997 memorystatus_reschedule_idle_demotion_locked();
3009 memorystatus_dirty_set(proc_t p
, boolean_t self
, uint32_t pcontrol
)
3012 boolean_t kill
= false;
3013 boolean_t reschedule
= FALSE
;
3014 boolean_t was_dirty
= FALSE
;
3015 boolean_t now_dirty
= FALSE
;
3016 #if CONFIG_DIRTYSTATUS_TRACKING
3017 boolean_t notify_change
= FALSE
;
3018 dirty_status_change_event_t change_event
;
3021 MEMORYSTATUS_DEBUG(1, "memorystatus_dirty_set(): %d %d 0x%x 0x%x\n", self
, p
->p_pid
, pcontrol
, p
->p_memstat_dirty
);
3022 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_DIRTY_SET
), p
->p_pid
, self
, pcontrol
, 0, 0);
3026 if ((p
->p_listflag
& P_LIST_EXITED
) != 0) {
3028 * Process is on its way out.
3034 if (p
->p_memstat_state
& P_MEMSTAT_INTERNAL
) {
3039 if (p
->p_memstat_dirty
& P_DIRTY_IS_DIRTY
) {
3043 if (!(p
->p_memstat_dirty
& P_DIRTY_TRACK
)) {
3044 /* Dirty tracking not enabled */
3046 } else if (pcontrol
&& (p
->p_memstat_dirty
& P_DIRTY_TERMINATED
)) {
3048 * Process is set to be terminated and we're attempting to mark it dirty.
3049 * Set for termination and marking as clean is OK - see <rdar://problem/10594349>.
3053 int flag
= (self
== TRUE
) ? P_DIRTY
: P_DIRTY_SHUTDOWN
;
3054 if (pcontrol
&& !(p
->p_memstat_dirty
& flag
)) {
3055 /* Mark the process as having been dirtied at some point */
3056 p
->p_memstat_dirty
|= (flag
| P_DIRTY_MARKED
);
3057 memorystatus_dirty_count
++;
3059 } else if ((pcontrol
== 0) && (p
->p_memstat_dirty
& flag
)) {
3060 if ((flag
== P_DIRTY_SHUTDOWN
) && (!(p
->p_memstat_dirty
& P_DIRTY
))) {
3061 /* Clearing the dirty shutdown flag, and the process is otherwise clean - kill */
3062 p
->p_memstat_dirty
|= P_DIRTY_TERMINATED
;
3064 } else if ((flag
== P_DIRTY
) && (p
->p_memstat_dirty
& P_DIRTY_TERMINATED
)) {
3065 /* Kill previously terminated processes if set clean */
3068 p
->p_memstat_dirty
&= ~flag
;
3069 memorystatus_dirty_count
--;
3081 if (p
->p_memstat_dirty
& P_DIRTY_IS_DIRTY
) {
3085 if ((was_dirty
== TRUE
&& now_dirty
== FALSE
) ||
3086 (was_dirty
== FALSE
&& now_dirty
== TRUE
)) {
3087 #if CONFIG_DIRTYSTATUS_TRACKING
3088 if (dirtystatus_tracking_enabled
) {
3090 memorystatus_get_task_page_counts(p
->task
, &pages
, NULL
, NULL
);
3091 change_event
.dsc_pid
= p
->p_pid
;
3092 change_event
.dsc_event_type
= (now_dirty
== TRUE
) ? kDirtyStatusChangedDirty
: kDirtyStatusChangedClean
;
3093 change_event
.dsc_time
= mach_absolute_time();
3094 change_event
.dsc_pages
= pages
;
3095 change_event
.dsc_priority
= p
->p_memstat_effectivepriority
;
3096 strlcpy(&change_event
.dsc_process_name
[0], p
->p_name
, sizeof(change_event
.dsc_process_name
));
3097 notify_change
= TRUE
;
3101 /* Manage idle exit deferral, if applied */
3102 if ((p
->p_memstat_dirty
& P_DIRTY_IDLE_EXIT_ENABLED
) == P_DIRTY_IDLE_EXIT_ENABLED
) {
3104 * Legacy mode: P_DIRTY_AGING_IN_PROGRESS means the process is in the aging band OR it might be heading back
3105 * there once it's clean again. For the legacy case, this only applies if it has some protection window left.
3106 * P_DIRTY_DEFER: one-time protection window given at launch
3107 * P_DIRTY_DEFER_ALWAYS: protection window given for every dirty->clean transition. Like non-legacy mode.
3109 * Non-Legacy mode: P_DIRTY_AGING_IN_PROGRESS means the process is in the aging band. It will always stop over
3110 * in that band on it's way to IDLE.
3113 if (p
->p_memstat_dirty
& P_DIRTY_IS_DIRTY
) {
3115 * New dirty process i.e. "was_dirty == FALSE && now_dirty == TRUE"
3117 * The process will move from its aging band to its higher requested
3120 boolean_t reset_state
= (jetsam_aging_policy
!= kJetsamAgingPolicyLegacy
) ? TRUE
: FALSE
;
3122 memorystatus_invalidate_idle_demotion_locked(p
, reset_state
);
3126 * Process is back from "dirty" to "clean".
3129 if (jetsam_aging_policy
== kJetsamAgingPolicyLegacy
) {
3130 if (((p
->p_memstat_dirty
& P_DIRTY_DEFER_ALWAYS
) == FALSE
) &&
3131 (mach_absolute_time() >= p
->p_memstat_idledeadline
)) {
3133 * The process' hasn't enrolled in the "always defer after dirty"
3134 * mode and its deadline has expired. It currently
3135 * does not reside in any of the aging buckets.
3137 * It's on its way to the JETSAM_PRIORITY_IDLE
3138 * bucket via memorystatus_update_idle_priority_locked()
3141 * So all we need to do is reset all the state on the
3142 * process that's related to the aging bucket i.e.
3143 * the AGING_IN_PROGRESS flag and the timer deadline.
3146 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
3150 * Process enrolled in "always stop in deferral band after dirty" OR
3151 * it still has some protection window left and so
3152 * we just re-arm the timer without modifying any
3153 * state on the process iff it still wants into that band.
3156 if (p
->p_memstat_dirty
& P_DIRTY_DEFER_ALWAYS
) {
3157 memorystatus_schedule_idle_demotion_locked(p
, TRUE
);
3159 } else if (p
->p_memstat_dirty
& P_DIRTY_AGING_IN_PROGRESS
) {
3160 memorystatus_schedule_idle_demotion_locked(p
, FALSE
);
3165 memorystatus_schedule_idle_demotion_locked(p
, TRUE
);
3171 memorystatus_update_idle_priority_locked(p
);
3173 if (memorystatus_highwater_enabled
) {
3174 boolean_t ledger_update_needed
= TRUE
;
3175 boolean_t use_active
;
3178 * We are in this path because this process transitioned between
3179 * dirty <--> clean state. Update the cached memory limits.
3182 if (proc_jetsam_state_is_active_locked(p
) == TRUE
) {
3184 * process is pinned in elevated band
3188 CACHE_ACTIVE_LIMITS_LOCKED(p
, is_fatal
);
3190 ledger_update_needed
= TRUE
;
3193 * process is clean...but if it has opted into pressured-exit
3194 * we don't apply the INACTIVE limit till the process has aged
3195 * out and is entering the IDLE band.
3196 * See memorystatus_update_priority_locked() for that.
3199 if (p
->p_memstat_dirty
& P_DIRTY_ALLOW_IDLE_EXIT
) {
3200 ledger_update_needed
= FALSE
;
3202 CACHE_INACTIVE_LIMITS_LOCKED(p
, is_fatal
);
3204 ledger_update_needed
= TRUE
;
3209 * Enforce the new limits by writing to the ledger.
3211 * This is a hot path and holding the proc_list_lock while writing to the ledgers,
3212 * (where the task lock is taken) is bad. So, we temporarily drop the proc_list_lock.
3213 * We aren't traversing the jetsam bucket list here, so we should be safe.
3214 * See rdar://21394491.
3217 if (ledger_update_needed
&& proc_ref_locked(p
) == p
) {
3219 if (p
->p_memstat_memlimit
> 0) {
3220 ledger_limit
= p
->p_memstat_memlimit
;
3225 task_set_phys_footprint_limit_internal(p
->task
, ledger_limit
, NULL
, use_active
, is_fatal
);
3227 proc_rele_locked(p
);
3229 MEMORYSTATUS_DEBUG(3, "memorystatus_dirty_set: new limit on pid %d (%dMB %s) priority(%d) dirty?=0x%x %s\n",
3230 p
->p_pid
, (p
->p_memstat_memlimit
> 0 ? p
->p_memstat_memlimit
: -1),
3231 (p
->p_memstat_state
& P_MEMSTAT_FATAL_MEMLIMIT
? "F " : "NF"), p
->p_memstat_effectivepriority
, p
->p_memstat_dirty
,
3232 (p
->p_memstat_dirty
? ((p
->p_memstat_dirty
& P_DIRTY
) ? "isdirty" : "isclean") : ""));
3236 /* If the deferral state changed, reschedule the demotion timer */
3238 memorystatus_reschedule_idle_demotion_locked();
3243 if (proc_ref_locked(p
) == p
) {
3245 psignal(p
, SIGKILL
);
3247 proc_rele_locked(p
);
3254 #if CONFIG_DIRTYSTATUS_TRACKING
3255 // Before returning, let's notify the dirtiness status if we have to
3256 if (notify_change
) {
3257 memorystatus_send_dirty_status_change_note(&change_event
, sizeof(change_event
));
3265 memorystatus_dirty_clear(proc_t p
, uint32_t pcontrol
)
3269 MEMORYSTATUS_DEBUG(1, "memorystatus_dirty_clear(): %d 0x%x 0x%x\n", p
->p_pid
, pcontrol
, p
->p_memstat_dirty
);
3271 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_DIRTY_CLEAR
), p
->p_pid
, pcontrol
, 0, 0, 0);
3275 if ((p
->p_listflag
& P_LIST_EXITED
) != 0) {
3277 * Process is on its way out.
3283 if (p
->p_memstat_state
& P_MEMSTAT_INTERNAL
) {
3288 if (!(p
->p_memstat_dirty
& P_DIRTY_TRACK
)) {
3289 /* Dirty tracking not enabled */
3294 if (!pcontrol
|| (pcontrol
& (PROC_DIRTY_LAUNCH_IN_PROGRESS
| PROC_DIRTY_DEFER
| PROC_DIRTY_DEFER_ALWAYS
)) == 0) {
3299 if (pcontrol
& PROC_DIRTY_LAUNCH_IN_PROGRESS
) {
3300 p
->p_memstat_dirty
&= ~P_DIRTY_LAUNCH_IN_PROGRESS
;
3303 /* This can be set and cleared exactly once. */
3304 if (pcontrol
& (PROC_DIRTY_DEFER
| PROC_DIRTY_DEFER_ALWAYS
)) {
3305 if (p
->p_memstat_dirty
& P_DIRTY_DEFER
) {
3306 p
->p_memstat_dirty
&= ~(P_DIRTY_DEFER
);
3309 if (p
->p_memstat_dirty
& P_DIRTY_DEFER_ALWAYS
) {
3310 p
->p_memstat_dirty
&= ~(P_DIRTY_DEFER_ALWAYS
);
3313 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
3314 memorystatus_update_idle_priority_locked(p
);
3315 memorystatus_reschedule_idle_demotion_locked();
3326 memorystatus_dirty_get(proc_t p
, boolean_t locked
)
3334 if (p
->p_memstat_dirty
& P_DIRTY_TRACK
) {
3335 ret
|= PROC_DIRTY_TRACKED
;
3336 if (p
->p_memstat_dirty
& P_DIRTY_ALLOW_IDLE_EXIT
) {
3337 ret
|= PROC_DIRTY_ALLOWS_IDLE_EXIT
;
3339 if (p
->p_memstat_dirty
& P_DIRTY
) {
3340 ret
|= PROC_DIRTY_IS_DIRTY
;
3342 if (p
->p_memstat_dirty
& P_DIRTY_LAUNCH_IN_PROGRESS
) {
3343 ret
|= PROC_DIRTY_LAUNCH_IS_IN_PROGRESS
;
3355 memorystatus_on_terminate(proc_t p
)
3361 p
->p_memstat_dirty
|= P_DIRTY_TERMINATED
;
3363 if (((p
->p_memstat_dirty
& (P_DIRTY_TRACK
| P_DIRTY_IS_DIRTY
)) == P_DIRTY_TRACK
) ||
3364 (p
->p_memstat_state
& P_MEMSTAT_SUSPENDED
)) {
3366 * Mark as terminated and issue SIGKILL if:-
3367 * - process is clean, or,
3368 * - if process is dirty but suspended. This case is likely
3369 * an extension because apps don't opt into dirty-tracking
3370 * and daemons aren't suspended.
3372 #if DEVELOPMENT || DEBUG
3373 if (p
->p_memstat_state
& P_MEMSTAT_SUSPENDED
) {
3374 os_log(OS_LOG_DEFAULT
, "memorystatus: sending suspended process %s (pid %d) SIGKILL",
3375 (*p
->p_name
? p
->p_name
: "unknown"), p
->p_pid
);
3377 #endif /* DEVELOPMENT || DEBUG */
3380 /* Dirty, terminated, or state tracking is unsupported; issue SIGTERM to allow cleanup */
3390 memorystatus_on_suspend(proc_t p
)
3394 memorystatus_get_task_page_counts(p
->task
, &pages
, NULL
, NULL
);
3398 memorystatus_suspended_count
++;
3400 p
->p_memstat_state
|= P_MEMSTAT_SUSPENDED
;
3404 extern uint64_t memorystatus_thaw_count_since_boot
;
3407 memorystatus_on_resume(proc_t p
)
3417 frozen
= (p
->p_memstat_state
& P_MEMSTAT_FROZEN
);
3420 * Now that we don't _thaw_ a process completely,
3421 * resuming it (and having some on-demand swapins)
3422 * shouldn't preclude it from being counted as frozen.
3424 * memorystatus_frozen_count--;
3426 * We preserve the P_MEMSTAT_FROZEN state since the process
3427 * could have state on disk AND so will deserve some protection
3428 * in the jetsam bands.
3430 if ((p
->p_memstat_state
& P_MEMSTAT_REFREEZE_ELIGIBLE
) == 0) {
3431 p
->p_memstat_state
|= P_MEMSTAT_REFREEZE_ELIGIBLE
;
3432 memorystatus_refreeze_eligible_count
++;
3434 p
->p_memstat_thaw_count
++;
3436 memorystatus_thaw_count
++;
3437 memorystatus_thaw_count_since_boot
++;
3440 memorystatus_suspended_count
--;
3446 * P_MEMSTAT_FROZEN will remain unchanged. This used to be:
3447 * p->p_memstat_state &= ~(P_MEMSTAT_SUSPENDED | P_MEMSTAT_FROZEN);
3449 p
->p_memstat_state
&= ~P_MEMSTAT_SUSPENDED
;
3455 memorystatus_freeze_entry_t data
= { pid
, FALSE
, 0 };
3456 memorystatus_send_note(kMemorystatusFreezeNote
, &data
, sizeof(data
));
3462 memorystatus_on_inactivity(proc_t p
)
3466 /* Wake the freeze thread */
3467 thread_wakeup((event_t
)&memorystatus_freeze_wakeup
);
3472 * The proc_list_lock is held by the caller.
3475 memorystatus_build_state(proc_t p
)
3477 uint32_t snapshot_state
= 0;
3480 if (p
->p_memstat_state
& P_MEMSTAT_SUSPENDED
) {
3481 snapshot_state
|= kMemorystatusSuspended
;
3483 if (p
->p_memstat_state
& P_MEMSTAT_FROZEN
) {
3484 snapshot_state
|= kMemorystatusFrozen
;
3486 if (p
->p_memstat_state
& P_MEMSTAT_REFREEZE_ELIGIBLE
) {
3487 snapshot_state
|= kMemorystatusWasThawed
;
3489 if (p
->p_memstat_state
& P_MEMSTAT_PRIORITY_ASSERTION
) {
3490 snapshot_state
|= kMemorystatusAssertion
;
3494 if (p
->p_memstat_dirty
& P_DIRTY_TRACK
) {
3495 snapshot_state
|= kMemorystatusTracked
;
3497 if ((p
->p_memstat_dirty
& P_DIRTY_IDLE_EXIT_ENABLED
) == P_DIRTY_IDLE_EXIT_ENABLED
) {
3498 snapshot_state
|= kMemorystatusSupportsIdleExit
;
3500 if (p
->p_memstat_dirty
& P_DIRTY_IS_DIRTY
) {
3501 snapshot_state
|= kMemorystatusDirty
;
3504 return snapshot_state
;
3508 kill_idle_exit_proc(void)
3510 proc_t p
, victim_p
= PROC_NULL
;
3511 uint64_t current_time
, footprint_of_killed_proc
;
3512 boolean_t killed
= FALSE
;
3514 os_reason_t jetsam_reason
= OS_REASON_NULL
;
3516 /* Pick next idle exit victim. */
3517 current_time
= mach_absolute_time();
3519 jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_MEMORY_IDLE_EXIT
);
3520 if (jetsam_reason
== OS_REASON_NULL
) {
3521 printf("kill_idle_exit_proc: failed to allocate jetsam reason\n");
3526 p
= memorystatus_get_first_proc_locked(&i
, FALSE
);
3528 /* No need to look beyond the idle band */
3529 if (p
->p_memstat_effectivepriority
!= JETSAM_PRIORITY_IDLE
) {
3533 if ((p
->p_memstat_dirty
& (P_DIRTY_ALLOW_IDLE_EXIT
| P_DIRTY_IS_DIRTY
| P_DIRTY_TERMINATED
)) == (P_DIRTY_ALLOW_IDLE_EXIT
)) {
3534 if (current_time
>= p
->p_memstat_idledeadline
) {
3535 p
->p_memstat_dirty
|= P_DIRTY_TERMINATED
;
3536 victim_p
= proc_ref_locked(p
);
3541 p
= memorystatus_get_next_proc_locked(&i
, p
, FALSE
);
3547 printf("memorystatus: killing_idle_process pid %d [%s] jetsam_reason->osr_code: %llu\n", victim_p
->p_pid
, (*victim_p
->p_name
? victim_p
->p_name
: "unknown"), jetsam_reason
->osr_code
);
3548 killed
= memorystatus_do_kill(victim_p
, kMemorystatusKilledIdleExit
, jetsam_reason
, &footprint_of_killed_proc
);
3549 proc_rele(victim_p
);
3551 os_reason_free(jetsam_reason
);
3558 memorystatus_thread_wake(void)
3561 int active_thr
= atomic_load(&active_jetsam_threads
);
3563 /* Wakeup all the jetsam threads */
3564 for (thr_id
= 0; thr_id
< active_thr
; thr_id
++) {
3565 thread_wakeup((event_t
)&jetsam_threads
[thr_id
].memorystatus_wakeup
);
3572 memorystatus_thread_pool_max()
3574 /* Increase the jetsam thread pool to max_jetsam_threads */
3575 int max_threads
= max_jetsam_threads
;
3576 printf("Expanding memorystatus pool to %d!\n", max_threads
);
3577 atomic_store(&active_jetsam_threads
, max_threads
);
3581 memorystatus_thread_pool_default()
3583 /* Restore the jetsam thread pool to a single thread */
3584 printf("Reverting memorystatus pool back to 1\n");
3585 atomic_store(&active_jetsam_threads
, 1);
3588 #endif /* CONFIG_JETSAM */
3590 extern void vm_pressure_response(void);
3593 memorystatus_thread_block(uint32_t interval_ms
, thread_continue_t continuation
)
3595 struct jetsam_thread_state
*jetsam_thread
= jetsam_current_thread();
3597 assert(jetsam_thread
!= NULL
);
3599 assert_wait_timeout(&jetsam_thread
->memorystatus_wakeup
, THREAD_UNINT
, interval_ms
, NSEC_PER_MSEC
);
3601 assert_wait(&jetsam_thread
->memorystatus_wakeup
, THREAD_UNINT
);
3604 return thread_block(continuation
);
3608 memorystatus_avail_pages_below_pressure(void)
3611 return memorystatus_available_pages
<= memorystatus_available_pages_pressure
;
3612 #else /* CONFIG_JETSAM */
3614 #endif /* CONFIG_JETSAM */
3618 memorystatus_avail_pages_below_critical(void)
3621 return memorystatus_available_pages
<= memorystatus_available_pages_critical
;
3622 #else /* CONFIG_JETSAM */
3624 #endif /* CONFIG_JETSAM */
3628 memorystatus_post_snapshot(int32_t priority
, uint32_t cause
)
3630 boolean_t is_idle_priority
;
3632 if (jetsam_aging_policy
== kJetsamAgingPolicyLegacy
) {
3633 is_idle_priority
= (priority
== JETSAM_PRIORITY_IDLE
);
3635 is_idle_priority
= (priority
== JETSAM_PRIORITY_IDLE
|| priority
== JETSAM_PRIORITY_IDLE_DEFERRED
);
3638 #pragma unused(cause)
3640 * Don't generate logs for steady-state idle-exit kills,
3641 * unless it is overridden for debug or by the device
3645 return !is_idle_priority
|| memorystatus_idle_snapshot
;
3647 #else /* CONFIG_JETSAM */
3649 * Don't generate logs for steady-state idle-exit kills,
3651 * - it is overridden for debug or by the device
3654 * - the kill causes are important i.e. not kMemorystatusKilledIdleExit
3657 boolean_t snapshot_eligible_kill_cause
= (is_reason_thrashing(cause
) || is_reason_zone_map_exhaustion(cause
));
3658 return !is_idle_priority
|| memorystatus_idle_snapshot
|| snapshot_eligible_kill_cause
;
3659 #endif /* CONFIG_JETSAM */
3663 memorystatus_action_needed(void)
3666 return is_reason_thrashing(kill_under_pressure_cause
) ||
3667 is_reason_zone_map_exhaustion(kill_under_pressure_cause
) ||
3668 memorystatus_available_pages
<= memorystatus_available_pages_pressure
;
3669 #else /* CONFIG_JETSAM */
3670 return is_reason_thrashing(kill_under_pressure_cause
) ||
3671 is_reason_zone_map_exhaustion(kill_under_pressure_cause
);
3672 #endif /* CONFIG_JETSAM */
3676 memorystatus_act_on_hiwat_processes(uint32_t *errors
, uint32_t *hwm_kill
, boolean_t
*post_snapshot
, __unused boolean_t
*is_critical
, uint64_t *memory_reclaimed
)
3678 boolean_t purged
= FALSE
, killed
= FALSE
;
3680 *memory_reclaimed
= 0;
3681 killed
= memorystatus_kill_hiwat_proc(errors
, &purged
, memory_reclaimed
);
3684 *hwm_kill
= *hwm_kill
+ 1;
3685 *post_snapshot
= TRUE
;
3688 if (purged
== FALSE
) {
3689 /* couldn't purge and couldn't kill */
3690 memorystatus_hwm_candidates
= FALSE
;
3695 /* No highwater processes to kill. Continue or stop for now? */
3696 if (!is_reason_thrashing(kill_under_pressure_cause
) &&
3697 !is_reason_zone_map_exhaustion(kill_under_pressure_cause
) &&
3698 (memorystatus_available_pages
> memorystatus_available_pages_critical
)) {
3700 * We are _not_ out of pressure but we are above the critical threshold and there's:
3701 * - no compressor thrashing
3702 * - enough zone memory
3703 * - no more HWM processes left.
3704 * For now, don't kill any other processes.
3707 if (*hwm_kill
== 0) {
3708 memorystatus_thread_wasted_wakeup
++;
3711 *is_critical
= FALSE
;
3715 #endif /* CONFIG_JETSAM */
3721 * kJetsamHighRelaunchCandidatesThreshold defines the percentage of candidates
3722 * in the idle & deferred bands that need to be bad candidates in order to trigger
3723 * aggressive jetsam.
3725 #define kJetsamHighRelaunchCandidatesThreshold (100)
3727 /* kJetsamMinCandidatesThreshold defines the minimum number of candidates in the
3728 * idle/deferred bands to trigger aggressive jetsam. This value basically decides
3729 * how much memory the system is ready to hold in the lower bands without triggering
3730 * aggressive jetsam. This number should ideally be tuned based on the memory config
3733 #define kJetsamMinCandidatesThreshold (5)
3736 memorystatus_aggressive_jetsam_needed_sysproc_aging(__unused
int jld_eval_aggressive_count
, __unused
int *jld_idle_kills
, __unused
int jld_idle_kill_candidates
, int *total_candidates
, int *elevated_bucket_count
)
3738 boolean_t aggressive_jetsam_needed
= false;
3741 * For the kJetsamAgingPolicySysProcsReclaimedFirst aging policy, we maintain the jetsam
3742 * relaunch behavior for all daemons. Also, daemons and apps are aged in deferred bands on
3743 * every dirty->clean transition. For this aging policy, the best way to determine if
3744 * aggressive jetsam is needed, is to see if the kill candidates are mostly bad candidates.
3745 * If yes, then we need to go to higher bands to reclaim memory.
3748 /* Get total candidate counts for idle and idle deferred bands */
3749 *total_candidates
= memstat_bucket
[JETSAM_PRIORITY_IDLE
].count
+ memstat_bucket
[system_procs_aging_band
].count
;
3750 /* Get counts of bad kill candidates in idle and idle deferred bands */
3751 int bad_candidates
= memstat_bucket
[JETSAM_PRIORITY_IDLE
].relaunch_high_count
+ memstat_bucket
[system_procs_aging_band
].relaunch_high_count
;
3753 *elevated_bucket_count
= memstat_bucket
[JETSAM_PRIORITY_ELEVATED_INACTIVE
].count
;
3757 /* Check if the number of bad candidates is greater than kJetsamHighRelaunchCandidatesThreshold % */
3758 aggressive_jetsam_needed
= (((bad_candidates
* 100) / *total_candidates
) >= kJetsamHighRelaunchCandidatesThreshold
);
3761 * Since the new aging policy bases the aggressive jetsam trigger on percentage of
3762 * bad candidates, it is prone to being overly aggressive. In order to mitigate that,
3763 * make sure the system is really under memory pressure before triggering aggressive
3766 if (memorystatus_available_pages
> memorystatus_sysproc_aging_aggr_pages
) {
3767 aggressive_jetsam_needed
= false;
3770 #if DEVELOPMENT || DEBUG
3771 printf("memorystatus: aggressive%d: [%s] Bad Candidate Threshold Check (total: %d, bad: %d, threshold: %d %%); Memory Pressure Check (available_pgs: %llu, threshold_pgs: %llu)\n",
3772 jld_eval_aggressive_count
, aggressive_jetsam_needed
? "PASSED" : "FAILED", *total_candidates
, bad_candidates
,
3773 kJetsamHighRelaunchCandidatesThreshold
, (uint64_t)MEMORYSTATUS_LOG_AVAILABLE_PAGES
, (uint64_t)memorystatus_sysproc_aging_aggr_pages
);
3774 #endif /* DEVELOPMENT || DEBUG */
3775 return aggressive_jetsam_needed
;
3779 * Gets memory back from various system caches.
3780 * Called before jetsamming in the foreground band in the hope that we'll
3784 memorystatus_approaching_fg_band(boolean_t
*corpse_list_purged
)
3786 assert(corpse_list_purged
!= NULL
);
3787 pmap_release_pages_fast();
3788 memorystatus_issue_fg_band_notify();
3789 if (total_corpses_count() > 0 && !*corpse_list_purged
) {
3790 task_purge_all_corpses();
3791 *corpse_list_purged
= TRUE
;
3796 memorystatus_aggressive_jetsam_needed_default(__unused
int jld_eval_aggressive_count
, int *jld_idle_kills
, int jld_idle_kill_candidates
, int *total_candidates
, int *elevated_bucket_count
)
3798 boolean_t aggressive_jetsam_needed
= false;
3799 /* Jetsam Loop Detection - locals */
3800 memstat_bucket_t
*bucket
;
3801 int jld_bucket_count
= 0;
3804 switch (jetsam_aging_policy
) {
3805 case kJetsamAgingPolicyLegacy
:
3806 bucket
= &memstat_bucket
[JETSAM_PRIORITY_IDLE
];
3807 jld_bucket_count
= bucket
->count
;
3808 bucket
= &memstat_bucket
[JETSAM_PRIORITY_AGING_BAND1
];
3809 jld_bucket_count
+= bucket
->count
;
3811 case kJetsamAgingPolicyAppsReclaimedFirst
:
3812 bucket
= &memstat_bucket
[JETSAM_PRIORITY_IDLE
];
3813 jld_bucket_count
= bucket
->count
;
3814 bucket
= &memstat_bucket
[system_procs_aging_band
];
3815 jld_bucket_count
+= bucket
->count
;
3816 bucket
= &memstat_bucket
[applications_aging_band
];
3817 jld_bucket_count
+= bucket
->count
;
3819 case kJetsamAgingPolicyNone
:
3821 bucket
= &memstat_bucket
[JETSAM_PRIORITY_IDLE
];
3822 jld_bucket_count
= bucket
->count
;
3826 bucket
= &memstat_bucket
[JETSAM_PRIORITY_ELEVATED_INACTIVE
];
3827 *elevated_bucket_count
= bucket
->count
;
3828 *total_candidates
= jld_bucket_count
;
3831 aggressive_jetsam_needed
= (*jld_idle_kills
> jld_idle_kill_candidates
);
3833 #if DEVELOPMENT || DEBUG
3834 if (aggressive_jetsam_needed
) {
3835 printf("memorystatus: aggressive%d: idle candidates: %d, idle kills: %d\n",
3836 jld_eval_aggressive_count
,
3837 jld_idle_kill_candidates
,
3840 #endif /* DEVELOPMENT || DEBUG */
3841 return aggressive_jetsam_needed
;
3845 memorystatus_act_aggressive(uint32_t cause
, os_reason_t jetsam_reason
, int *jld_idle_kills
, boolean_t
*corpse_list_purged
, boolean_t
*post_snapshot
, uint64_t *memory_reclaimed
)
3847 boolean_t aggressive_jetsam_needed
= false;
3849 uint32_t errors
= 0;
3850 uint64_t footprint_of_killed_proc
= 0;
3851 int elevated_bucket_count
= 0;
3852 int total_candidates
= 0;
3853 *memory_reclaimed
= 0;
3856 * The aggressive jetsam logic looks at the number of times it has been in the
3857 * aggressive loop to determine the max priority band it should kill upto. The
3858 * static variables below are used to track that property.
3860 * To reset those values, the implementation checks if it has been
3861 * memorystatus_jld_eval_period_msecs since the parameters were reset.
3863 static int jld_eval_aggressive_count
= 0;
3864 static int32_t jld_priority_band_max
= JETSAM_PRIORITY_UI_SUPPORT
;
3865 static uint64_t jld_timestamp_msecs
= 0;
3866 static int jld_idle_kill_candidates
= 0;
3868 if (memorystatus_jld_enabled
== FALSE
) {
3869 /* If aggressive jetsam is disabled, nothing to do here */
3873 /* Get current timestamp (msecs only) */
3874 struct timeval jld_now_tstamp
= {0, 0};
3875 uint64_t jld_now_msecs
= 0;
3876 microuptime(&jld_now_tstamp
);
3877 jld_now_msecs
= (jld_now_tstamp
.tv_sec
* 1000);
3880 * The aggressive jetsam logic looks at the number of candidates and their
3881 * properties to decide if aggressive jetsam should be engaged.
3883 if (jetsam_aging_policy
== kJetsamAgingPolicySysProcsReclaimedFirst
) {
3885 * For the kJetsamAgingPolicySysProcsReclaimedFirst aging policy, the logic looks at the number of
3886 * candidates in the idle and deferred band and how many out of them are marked as high relaunch
3889 aggressive_jetsam_needed
= memorystatus_aggressive_jetsam_needed_sysproc_aging(jld_eval_aggressive_count
,
3890 jld_idle_kills
, jld_idle_kill_candidates
, &total_candidates
, &elevated_bucket_count
);
3893 * The other aging policies look at number of candidate processes over a specific time window and
3894 * evaluate if the system is in a jetsam loop. If yes, aggressive jetsam is triggered.
3896 aggressive_jetsam_needed
= memorystatus_aggressive_jetsam_needed_default(jld_eval_aggressive_count
,
3897 jld_idle_kills
, jld_idle_kill_candidates
, &total_candidates
, &elevated_bucket_count
);
3901 * Check if its been really long since the aggressive jetsam evaluation
3902 * parameters have been refreshed. This logic also resets the jld_eval_aggressive_count
3903 * counter to make sure we reset the aggressive jetsam severity.
3905 boolean_t param_reval
= false;
3907 if ((total_candidates
== 0) ||
3908 (jld_now_msecs
> (jld_timestamp_msecs
+ memorystatus_jld_eval_period_msecs
))) {
3909 jld_timestamp_msecs
= jld_now_msecs
;
3910 jld_idle_kill_candidates
= total_candidates
;
3911 *jld_idle_kills
= 0;
3912 jld_eval_aggressive_count
= 0;
3913 jld_priority_band_max
= JETSAM_PRIORITY_UI_SUPPORT
;
3918 * If the parameters have been updated, re-evaluate the aggressive_jetsam_needed condition for
3919 * the non kJetsamAgingPolicySysProcsReclaimedFirst policy since its based on jld_idle_kill_candidates etc.
3921 if ((param_reval
== true) && (jetsam_aging_policy
!= kJetsamAgingPolicySysProcsReclaimedFirst
)) {
3922 aggressive_jetsam_needed
= (*jld_idle_kills
> jld_idle_kill_candidates
);
3926 * It is also possible that the system is down to a very small number of processes in the candidate
3927 * bands. In that case, the decisions made by the memorystatus_aggressive_jetsam_needed_* routines
3928 * would not be useful. In that case, do not trigger aggressive jetsam.
3930 if (total_candidates
< kJetsamMinCandidatesThreshold
) {
3931 #if DEVELOPMENT || DEBUG
3932 printf("memorystatus: aggressive: [FAILED] Low Candidate Count (current: %d, threshold: %d)\n", total_candidates
, kJetsamMinCandidatesThreshold
);
3933 #endif /* DEVELOPMENT || DEBUG */
3934 aggressive_jetsam_needed
= false;
3937 if (aggressive_jetsam_needed
== false) {
3938 /* Either the aging policy or the candidate count decided that aggressive jetsam is not needed. Nothing more to do here. */
3942 /* Looks like aggressive jetsam is needed */
3943 jld_eval_aggressive_count
++;
3945 if (jld_eval_aggressive_count
== memorystatus_jld_eval_aggressive_count
) {
3946 memorystatus_approaching_fg_band(corpse_list_purged
);
3947 } else if (jld_eval_aggressive_count
> memorystatus_jld_eval_aggressive_count
) {
3949 * Bump up the jetsam priority limit (eg: the bucket index)
3950 * Enforce bucket index sanity.
3952 if ((memorystatus_jld_eval_aggressive_priority_band_max
< 0) ||
3953 (memorystatus_jld_eval_aggressive_priority_band_max
>= MEMSTAT_BUCKET_COUNT
)) {
3955 * Do nothing. Stick with the default level.
3958 jld_priority_band_max
= memorystatus_jld_eval_aggressive_priority_band_max
;
3962 /* Visit elevated processes first */
3963 while (elevated_bucket_count
) {
3964 elevated_bucket_count
--;
3967 * memorystatus_kill_elevated_process() drops a reference,
3968 * so take another one so we can continue to use this exit reason
3969 * even after it returns.
3972 os_reason_ref(jetsam_reason
);
3973 killed
= memorystatus_kill_elevated_process(
3976 JETSAM_PRIORITY_ELEVATED_INACTIVE
,
3977 jld_eval_aggressive_count
,
3978 &errors
, &footprint_of_killed_proc
);
3980 *post_snapshot
= TRUE
;
3981 *memory_reclaimed
+= footprint_of_killed_proc
;
3982 if (memorystatus_avail_pages_below_pressure()) {
3984 * Still under pressure.
3985 * Find another pinned processes.
3993 * No pinned processes left to kill.
3994 * Abandon elevated band.
4001 * memorystatus_kill_processes_aggressive() allocates its own
4002 * jetsam_reason so the kMemorystatusKilledProcThrashing cause
4003 * is consistent throughout the aggressive march.
4005 killed
= memorystatus_kill_processes_aggressive(
4006 kMemorystatusKilledProcThrashing
,
4007 jld_eval_aggressive_count
,
4008 jld_priority_band_max
,
4009 &errors
, &footprint_of_killed_proc
);
4012 /* Always generate logs after aggressive kill */
4013 *post_snapshot
= TRUE
;
4014 *memory_reclaimed
+= footprint_of_killed_proc
;
4015 *jld_idle_kills
= 0;
4024 memorystatus_thread(void *param __unused
, wait_result_t wr __unused
)
4026 boolean_t post_snapshot
= FALSE
;
4027 uint32_t errors
= 0;
4028 uint32_t hwm_kill
= 0;
4029 boolean_t sort_flag
= TRUE
;
4030 boolean_t corpse_list_purged
= FALSE
;
4031 int jld_idle_kills
= 0;
4032 struct jetsam_thread_state
*jetsam_thread
= jetsam_current_thread();
4033 uint64_t total_memory_reclaimed
= 0;
4035 assert(jetsam_thread
!= NULL
);
4036 if (jetsam_thread
->inited
== FALSE
) {
4038 * It's the first time the thread has run, so just mark the thread as privileged and block.
4039 * This avoids a spurious pass with unset variables, as set out in <rdar://problem/9609402>.
4043 thread_wire(host_priv_self(), current_thread(), TRUE
);
4044 snprintf(name
, 32, "VM_memorystatus_%d", jetsam_thread
->index
+ 1);
4046 /* Limit all but one thread to the lower jetsam bands, as that's where most of the victims are. */
4047 if (jetsam_thread
->index
== 0) {
4048 if (vm_pageout_state
.vm_restricted_to_single_processor
== TRUE
) {
4049 thread_vm_bind_group_add();
4051 jetsam_thread
->limit_to_low_bands
= FALSE
;
4053 jetsam_thread
->limit_to_low_bands
= TRUE
;
4055 #if CONFIG_THREAD_GROUPS
4056 thread_group_vm_add();
4058 thread_set_thread_name(current_thread(), name
);
4059 jetsam_thread
->inited
= TRUE
;
4060 memorystatus_thread_block(0, memorystatus_thread
);
4063 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_SCAN
) | DBG_FUNC_START
,
4064 MEMORYSTATUS_LOG_AVAILABLE_PAGES
, memorystatus_jld_enabled
, memorystatus_jld_eval_period_msecs
, memorystatus_jld_eval_aggressive_count
, 0);
4067 * Jetsam aware version.
4069 * The VM pressure notification thread is working it's way through clients in parallel.
4071 * So, while the pressure notification thread is targeting processes in order of
4072 * increasing jetsam priority, we can hopefully reduce / stop it's work by killing
4073 * any processes that have exceeded their highwater mark.
4075 * If we run out of HWM processes and our available pages drops below the critical threshold, then,
4076 * we target the least recently used process in order of increasing jetsam priority (exception: the FG band).
4078 while (memorystatus_action_needed()) {
4082 uint64_t memory_reclaimed
= 0;
4083 uint64_t jetsam_reason_code
= JETSAM_REASON_INVALID
;
4084 os_reason_t jetsam_reason
= OS_REASON_NULL
;
4086 cause
= kill_under_pressure_cause
;
4088 case kMemorystatusKilledFCThrashing
:
4089 jetsam_reason_code
= JETSAM_REASON_MEMORY_FCTHRASHING
;
4091 case kMemorystatusKilledVMCompressorThrashing
:
4092 jetsam_reason_code
= JETSAM_REASON_MEMORY_VMCOMPRESSOR_THRASHING
;
4094 case kMemorystatusKilledVMCompressorSpaceShortage
:
4095 jetsam_reason_code
= JETSAM_REASON_MEMORY_VMCOMPRESSOR_SPACE_SHORTAGE
;
4097 case kMemorystatusKilledZoneMapExhaustion
:
4098 jetsam_reason_code
= JETSAM_REASON_ZONE_MAP_EXHAUSTION
;
4100 case kMemorystatusKilledVMPageShortage
:
4103 jetsam_reason_code
= JETSAM_REASON_MEMORY_VMPAGESHORTAGE
;
4104 cause
= kMemorystatusKilledVMPageShortage
;
4109 boolean_t is_critical
= TRUE
;
4110 if (memorystatus_act_on_hiwat_processes(&errors
, &hwm_kill
, &post_snapshot
, &is_critical
, &memory_reclaimed
)) {
4111 total_memory_reclaimed
+= memory_reclaimed
;
4112 if (is_critical
== FALSE
) {
4114 * For now, don't kill any other processes.
4122 jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, jetsam_reason_code
);
4123 if (jetsam_reason
== OS_REASON_NULL
) {
4124 printf("memorystatus_thread: failed to allocate jetsam reason\n");
4127 /* Only unlimited jetsam threads should act aggressive */
4128 if (!jetsam_thread
->limit_to_low_bands
&&
4129 memorystatus_act_aggressive(cause
, jetsam_reason
, &jld_idle_kills
, &corpse_list_purged
, &post_snapshot
, &memory_reclaimed
)) {
4130 total_memory_reclaimed
+= memory_reclaimed
;
4135 * memorystatus_kill_top_process() drops a reference,
4136 * so take another one so we can continue to use this exit reason
4137 * even after it returns
4139 os_reason_ref(jetsam_reason
);
4142 killed
= memorystatus_kill_top_process(TRUE
, sort_flag
, cause
, jetsam_reason
, &priority
, &errors
, &memory_reclaimed
);
4146 total_memory_reclaimed
+= memory_reclaimed
;
4147 if (memorystatus_post_snapshot(priority
, cause
) == TRUE
) {
4148 post_snapshot
= TRUE
;
4151 /* Jetsam Loop Detection */
4152 if (memorystatus_jld_enabled
== TRUE
) {
4153 if ((priority
== JETSAM_PRIORITY_IDLE
) || (priority
== system_procs_aging_band
) || (priority
== applications_aging_band
)) {
4157 * We've reached into bands beyond idle deferred.
4158 * We make no attempt to monitor them
4164 * If we have jetsammed a process in or above JETSAM_PRIORITY_UI_SUPPORT
4165 * then we attempt to relieve pressure by purging corpse memory and notifying
4166 * anybody wanting to know this.
4168 if (priority
>= JETSAM_PRIORITY_UI_SUPPORT
) {
4169 memorystatus_approaching_fg_band(&corpse_list_purged
);
4174 if (memorystatus_avail_pages_below_critical()) {
4176 * Still under pressure and unable to kill a process - purge corpse memory
4177 * and get everything back from the pmap.
4179 pmap_release_pages_fast();
4180 if (total_corpses_count() > 0) {
4181 task_purge_all_corpses();
4182 corpse_list_purged
= TRUE
;
4185 if (!jetsam_thread
->limit_to_low_bands
&& memorystatus_avail_pages_below_critical()) {
4187 * Still under pressure and unable to kill a process - panic
4189 panic("memorystatus_jetsam_thread: no victim! available pages:%llu\n", (uint64_t)MEMORYSTATUS_LOG_AVAILABLE_PAGES
);
4196 * We do not want to over-kill when thrashing has been detected.
4197 * To avoid that, we reset the flag here and notify the
4200 if (is_reason_thrashing(kill_under_pressure_cause
)) {
4201 kill_under_pressure_cause
= 0;
4203 vm_thrashing_jetsam_done();
4204 #endif /* CONFIG_JETSAM */
4205 } else if (is_reason_zone_map_exhaustion(kill_under_pressure_cause
)) {
4206 kill_under_pressure_cause
= 0;
4209 os_reason_free(jetsam_reason
);
4212 kill_under_pressure_cause
= 0;
4215 memorystatus_clear_errors();
4218 if (post_snapshot
) {
4220 size_t snapshot_size
= sizeof(memorystatus_jetsam_snapshot_t
) +
4221 sizeof(memorystatus_jetsam_snapshot_entry_t
) * (memorystatus_jetsam_snapshot_count
);
4222 uint64_t timestamp_now
= mach_absolute_time();
4223 memorystatus_jetsam_snapshot
->notification_time
= timestamp_now
;
4224 memorystatus_jetsam_snapshot
->js_gencount
++;
4225 if (memorystatus_jetsam_snapshot_count
> 0 && (memorystatus_jetsam_snapshot_last_timestamp
== 0 ||
4226 timestamp_now
> memorystatus_jetsam_snapshot_last_timestamp
+ memorystatus_jetsam_snapshot_timeout
)) {
4228 int ret
= memorystatus_send_note(kMemorystatusSnapshotNote
, &snapshot_size
, sizeof(snapshot_size
));
4231 memorystatus_jetsam_snapshot_last_timestamp
= timestamp_now
;
4239 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_SCAN
) | DBG_FUNC_END
,
4240 MEMORYSTATUS_LOG_AVAILABLE_PAGES
, total_memory_reclaimed
, 0, 0, 0);
4242 memorystatus_thread_block(0, memorystatus_thread
);
4247 * when an idle-exitable proc was killed
4249 * when there are no more idle-exitable procs found
4250 * when the attempt to kill an idle-exitable proc failed
4253 memorystatus_idle_exit_from_VM(void)
4256 * This routine should no longer be needed since we are
4257 * now using jetsam bands on all platforms and so will deal
4258 * with IDLE processes within the memorystatus thread itself.
4260 * But we still use it because we observed that macos systems
4261 * started heavy compression/swapping with a bunch of
4262 * idle-exitable processes alive and doing nothing. We decided
4263 * to rather kill those processes than start swapping earlier.
4266 return kill_idle_exit_proc();
4270 * Callback invoked when allowable physical memory footprint exceeded
4271 * (dirty pages + IOKit mappings)
4273 * This is invoked for both advisory, non-fatal per-task high watermarks,
4274 * as well as the fatal task memory limits.
4277 memorystatus_on_ledger_footprint_exceeded(boolean_t warning
, boolean_t memlimit_is_active
, boolean_t memlimit_is_fatal
)
4279 os_reason_t jetsam_reason
= OS_REASON_NULL
;
4281 proc_t p
= current_proc();
4283 #if VM_PRESSURE_EVENTS
4284 if (warning
== TRUE
) {
4286 * This is a warning path which implies that the current process is close, but has
4287 * not yet exceeded its per-process memory limit.
4289 if (memorystatus_warn_process(p
, memlimit_is_active
, memlimit_is_fatal
, FALSE
/* not exceeded */) != TRUE
) {
4290 /* Print warning, since it's possible that task has not registered for pressure notifications */
4291 os_log(OS_LOG_DEFAULT
, "memorystatus_on_ledger_footprint_exceeded: failed to warn the current task (%d exiting, or no handler registered?).\n", p
->p_pid
);
4295 #endif /* VM_PRESSURE_EVENTS */
4297 if (memlimit_is_fatal
) {
4299 * If this process has no high watermark or has a fatal task limit, then we have been invoked because the task
4300 * has violated either the system-wide per-task memory limit OR its own task limit.
4302 jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_MEMORY_PERPROCESSLIMIT
);
4303 if (jetsam_reason
== NULL
) {
4304 printf("task_exceeded footprint: failed to allocate jetsam reason\n");
4305 } else if (corpse_for_fatal_memkill
!= 0 && proc_send_synchronous_EXC_RESOURCE(p
) == FALSE
) {
4306 /* Set OS_REASON_FLAG_GENERATE_CRASH_REPORT to generate corpse */
4307 jetsam_reason
->osr_flags
|= OS_REASON_FLAG_GENERATE_CRASH_REPORT
;
4310 if (memorystatus_kill_process_sync(p
->p_pid
, kMemorystatusKilledPerProcessLimit
, jetsam_reason
) != TRUE
) {
4311 printf("task_exceeded_footprint: failed to kill the current task (exiting?).\n");
4315 * HWM offender exists. Done without locks or synchronization.
4316 * See comment near its declaration for more details.
4318 memorystatus_hwm_candidates
= TRUE
;
4320 #if VM_PRESSURE_EVENTS
4322 * The current process is not in the warning path.
4323 * This path implies the current process has exceeded a non-fatal (soft) memory limit.
4324 * Failure to send note is ignored here.
4326 (void)memorystatus_warn_process(p
, memlimit_is_active
, memlimit_is_fatal
, TRUE
/* exceeded */);
4328 #endif /* VM_PRESSURE_EVENTS */
4333 memorystatus_log_exception(const int max_footprint_mb
, boolean_t memlimit_is_active
, boolean_t memlimit_is_fatal
)
4335 proc_t p
= current_proc();
4338 * The limit violation is logged here, but only once per process per limit.
4339 * Soft memory limit is a non-fatal high-water-mark
4340 * Hard memory limit is a fatal custom-task-limit or system-wide per-task memory limit.
4343 os_log_with_startup_serial(OS_LOG_DEFAULT
, "EXC_RESOURCE -> %s[%d] exceeded mem limit: %s%s %d MB (%s)\n",
4344 ((p
&& *p
->p_name
) ? p
->p_name
: "unknown"), (p
? p
->p_pid
: -1), (memlimit_is_active
? "Active" : "Inactive"),
4345 (memlimit_is_fatal
? "Hard" : "Soft"), max_footprint_mb
,
4346 (memlimit_is_fatal
? "fatal" : "non-fatal"));
4354 * Evaluates process state to determine which limit
4355 * should be applied (active vs. inactive limit).
4357 * Processes that have the 'elevated inactive jetsam band' attribute
4358 * are first evaluated based on their current priority band.
4359 * presently elevated ==> active
4361 * Processes that opt into dirty tracking are evaluated
4362 * based on clean vs dirty state.
4364 * clean ==> inactive
4366 * Process that do not opt into dirty tracking are
4367 * evalulated based on priority level.
4368 * Foreground or above ==> active
4369 * Below Foreground ==> inactive
4371 * Return: TRUE if active
4376 proc_jetsam_state_is_active_locked(proc_t p
)
4378 if ((p
->p_memstat_state
& P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
) &&
4379 (p
->p_memstat_effectivepriority
== JETSAM_PRIORITY_ELEVATED_INACTIVE
)) {
4381 * process has the 'elevated inactive jetsam band' attribute
4382 * and process is present in the elevated band
4383 * implies active state
4386 } else if (p
->p_memstat_dirty
& P_DIRTY_TRACK
) {
4388 * process has opted into dirty tracking
4389 * active state is based on dirty vs. clean
4391 if (p
->p_memstat_dirty
& P_DIRTY_IS_DIRTY
) {
4394 * implies active state
4400 * implies inactive state
4404 } else if (p
->p_memstat_effectivepriority
>= JETSAM_PRIORITY_FOREGROUND
) {
4406 * process is Foreground or higher
4407 * implies active state
4412 * process found below Foreground
4413 * implies inactive state
4420 memorystatus_kill_process_sync(pid_t victim_pid
, uint32_t cause
, os_reason_t jetsam_reason
)
4424 uint32_t errors
= 0;
4425 uint64_t memory_reclaimed
= 0;
4427 if (victim_pid
== -1) {
4428 /* No pid, so kill first process */
4429 res
= memorystatus_kill_top_process(TRUE
, TRUE
, cause
, jetsam_reason
, NULL
, &errors
, &memory_reclaimed
);
4431 res
= memorystatus_kill_specific_process(victim_pid
, cause
, jetsam_reason
);
4435 memorystatus_clear_errors();
4439 /* Fire off snapshot notification */
4441 size_t snapshot_size
= sizeof(memorystatus_jetsam_snapshot_t
) +
4442 sizeof(memorystatus_jetsam_snapshot_entry_t
) * memorystatus_jetsam_snapshot_count
;
4443 uint64_t timestamp_now
= mach_absolute_time();
4444 memorystatus_jetsam_snapshot
->notification_time
= timestamp_now
;
4445 if (memorystatus_jetsam_snapshot_count
> 0 && (memorystatus_jetsam_snapshot_last_timestamp
== 0 ||
4446 timestamp_now
> memorystatus_jetsam_snapshot_last_timestamp
+ memorystatus_jetsam_snapshot_timeout
)) {
4448 int ret
= memorystatus_send_note(kMemorystatusSnapshotNote
, &snapshot_size
, sizeof(snapshot_size
));
4451 memorystatus_jetsam_snapshot_last_timestamp
= timestamp_now
;
4463 * Jetsam a specific process.
4466 memorystatus_kill_specific_process(pid_t victim_pid
, uint32_t cause
, os_reason_t jetsam_reason
)
4470 uint64_t killtime
= 0;
4471 uint64_t footprint_of_killed_proc
;
4473 clock_usec_t tv_usec
;
4476 /* TODO - add a victim queue and push this into the main jetsam thread */
4478 p
= proc_find(victim_pid
);
4480 os_reason_free(jetsam_reason
);
4486 if (memorystatus_jetsam_snapshot_count
== 0) {
4487 memorystatus_init_jetsam_snapshot_locked(NULL
, 0);
4490 killtime
= mach_absolute_time();
4491 absolutetime_to_microtime(killtime
, &tv_sec
, &tv_usec
);
4492 tv_msec
= tv_usec
/ 1000;
4494 memorystatus_update_jetsam_snapshot_entry_locked(p
, cause
, killtime
);
4498 killed
= memorystatus_do_kill(p
, cause
, jetsam_reason
, &footprint_of_killed_proc
);
4500 os_log_with_startup_serial(OS_LOG_DEFAULT
, "%lu.%03d memorystatus: killing_specific_process pid %d [%s] (%s %d) %lluKB - memorystatus_available_pages: %llu\n",
4501 (unsigned long)tv_sec
, tv_msec
, victim_pid
, ((p
&& *p
->p_name
) ? p
->p_name
: "unknown"),
4502 memorystatus_kill_cause_name
[cause
], (p
? p
->p_memstat_effectivepriority
: -1),
4503 footprint_of_killed_proc
>> 10, (uint64_t)MEMORYSTATUS_LOG_AVAILABLE_PAGES
);
4512 * Toggle the P_MEMSTAT_TERMINATED state.
4513 * Takes the proc_list_lock.
4516 proc_memstat_terminated(proc_t p
, boolean_t set
)
4518 #if DEVELOPMENT || DEBUG
4522 p
->p_memstat_state
|= P_MEMSTAT_TERMINATED
;
4524 p
->p_memstat_state
&= ~P_MEMSTAT_TERMINATED
;
4529 #pragma unused(p, set)
4533 #endif /* DEVELOPMENT || DEBUG */
4540 * This is invoked when cpulimits have been exceeded while in fatal mode.
4541 * The jetsam_flags do not apply as those are for memory related kills.
4542 * We call this routine so that the offending process is killed with
4543 * a non-zero exit status.
4546 jetsam_on_ledger_cpulimit_exceeded(void)
4549 int jetsam_flags
= 0; /* make it obvious */
4550 proc_t p
= current_proc();
4551 os_reason_t jetsam_reason
= OS_REASON_NULL
;
4553 printf("task_exceeded_cpulimit: killing pid %d [%s]\n",
4554 p
->p_pid
, (*p
->p_name
? p
->p_name
: "(unknown)"));
4556 jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_CPULIMIT
);
4557 if (jetsam_reason
== OS_REASON_NULL
) {
4558 printf("task_exceeded_cpulimit: unable to allocate memory for jetsam reason\n");
4561 retval
= jetsam_do_kill(p
, jetsam_flags
, jetsam_reason
);
4564 printf("task_exceeded_cpulimit: failed to kill current task (exiting?).\n");
4568 #endif /* CONFIG_JETSAM */
4571 memorystatus_get_task_memory_region_count(task_t task
, uint64_t *count
)
4576 *count
= get_task_memory_region_count(task
);
4580 #define MEMORYSTATUS_VM_MAP_FORK_ALLOWED 0x100000000
4581 #define MEMORYSTATUS_VM_MAP_FORK_NOT_ALLOWED 0x200000000
4583 #if DEVELOPMENT || DEBUG
4586 * Sysctl only used to test memorystatus_allowed_vm_map_fork() path.
4587 * set a new pidwatch value
4589 * get the current pidwatch value
4591 * The pidwatch_val starts out with a PID to watch for in the map_fork path.
4593 * - OR'd with MEMORYSTATUS_VM_MAP_FORK_ALLOWED if we allow the map_fork.
4594 * - OR'd with MEMORYSTATUS_VM_MAP_FORK_NOT_ALLOWED if we disallow the map_fork.
4595 * - set to -1ull if the map_fork() is aborted for other reasons.
4598 uint64_t memorystatus_vm_map_fork_pidwatch_val
= 0;
4600 static int sysctl_memorystatus_vm_map_fork_pidwatch SYSCTL_HANDLER_ARGS
{
4601 #pragma unused(oidp, arg1, arg2)
4603 uint64_t new_value
= 0;
4604 uint64_t old_value
= 0;
4608 * The pid is held in the low 32 bits.
4609 * The 'allowed' flags are in the upper 32 bits.
4611 old_value
= memorystatus_vm_map_fork_pidwatch_val
;
4613 error
= sysctl_io_number(req
, old_value
, sizeof(old_value
), &new_value
, NULL
);
4615 if (error
|| !req
->newptr
) {
4617 * No new value passed in.
4623 * A new pid was passed in via req->newptr.
4624 * Ignore any attempt to set the higher order bits.
4626 memorystatus_vm_map_fork_pidwatch_val
= new_value
& 0xFFFFFFFF;
4627 printf("memorystatus: pidwatch old_value = 0x%llx, new_value = 0x%llx \n", old_value
, new_value
);
4632 SYSCTL_PROC(_kern
, OID_AUTO
, memorystatus_vm_map_fork_pidwatch
, CTLTYPE_QUAD
| CTLFLAG_RW
| CTLFLAG_LOCKED
| CTLFLAG_MASKED
,
4633 0, 0, sysctl_memorystatus_vm_map_fork_pidwatch
, "Q", "get/set pid watched for in vm_map_fork");
4637 * Record if a watched process fails to qualify for a vm_map_fork().
4640 memorystatus_abort_vm_map_fork(task_t task
)
4642 if (memorystatus_vm_map_fork_pidwatch_val
!= 0) {
4643 proc_t p
= get_bsdtask_info(task
);
4644 if (p
!= NULL
&& memorystatus_vm_map_fork_pidwatch_val
== (uint64_t)p
->p_pid
) {
4645 memorystatus_vm_map_fork_pidwatch_val
= -1ull;
4651 set_vm_map_fork_pidwatch(task_t task
, uint64_t x
)
4653 if (memorystatus_vm_map_fork_pidwatch_val
!= 0) {
4654 proc_t p
= get_bsdtask_info(task
);
4655 if (p
&& (memorystatus_vm_map_fork_pidwatch_val
== (uint64_t)p
->p_pid
)) {
4656 memorystatus_vm_map_fork_pidwatch_val
|= x
;
4661 #else /* DEVELOPMENT || DEBUG */
4665 set_vm_map_fork_pidwatch(task_t task
, uint64_t x
)
4667 #pragma unused(task)
4671 #endif /* DEVELOPMENT || DEBUG */
4674 * Called during EXC_RESOURCE handling when a process exceeds a soft
4675 * memory limit. This is the corpse fork path and here we decide if
4676 * vm_map_fork will be allowed when creating the corpse.
4677 * The task being considered is suspended.
4679 * By default, a vm_map_fork is allowed to proceed.
4681 * A few simple policy assumptions:
4682 * If the device has a zero system-wide task limit,
4683 * then the vm_map_fork is allowed. macOS always has a zero
4684 * system wide task limit (unless overriden by a boot-arg).
4686 * And if a process's memory footprint calculates less
4687 * than or equal to quarter of the system-wide task limit,
4688 * then the vm_map_fork is allowed. This calculation
4689 * is based on the assumption that a process can
4690 * munch memory up to the system-wide task limit.
4692 extern boolean_t corpse_threshold_system_limit
;
4694 memorystatus_allowed_vm_map_fork(task_t task
)
4696 boolean_t is_allowed
= TRUE
; /* default */
4698 uint64_t footprint_in_bytes
;
4699 uint64_t max_allowed_bytes
;
4701 if (max_task_footprint_mb
== 0) {
4702 set_vm_map_fork_pidwatch(task
, MEMORYSTATUS_VM_MAP_FORK_ALLOWED
);
4706 footprint_in_bytes
= get_task_phys_footprint(task
);
4709 * Maximum is 1/4 of the system-wide task limit by default.
4711 max_allowed_bytes
= ((uint64_t)max_task_footprint_mb
* 1024 * 1024) >> 2;
4713 #if DEBUG || DEVELOPMENT
4714 if (corpse_threshold_system_limit
) {
4715 max_allowed_bytes
= (uint64_t)max_task_footprint_mb
* (1UL << 20);
4717 #endif /* DEBUG || DEVELOPMENT */
4719 if (footprint_in_bytes
> max_allowed_bytes
) {
4720 printf("memorystatus disallowed vm_map_fork %lld %lld\n", footprint_in_bytes
, max_allowed_bytes
);
4721 set_vm_map_fork_pidwatch(task
, MEMORYSTATUS_VM_MAP_FORK_NOT_ALLOWED
);
4725 set_vm_map_fork_pidwatch(task
, MEMORYSTATUS_VM_MAP_FORK_ALLOWED
);
4730 memorystatus_get_task_page_counts(task_t task
, uint32_t *footprint
, uint32_t *max_footprint_lifetime
, uint32_t *purgeable_pages
)
4737 pages
= (get_task_phys_footprint(task
) / PAGE_SIZE_64
);
4738 assert(((uint32_t)pages
) == pages
);
4739 *footprint
= (uint32_t)pages
;
4741 if (max_footprint_lifetime
) {
4742 pages
= (get_task_phys_footprint_lifetime_max(task
) / PAGE_SIZE_64
);
4743 assert(((uint32_t)pages
) == pages
);
4744 *max_footprint_lifetime
= (uint32_t)pages
;
4746 if (purgeable_pages
) {
4747 pages
= (get_task_purgeable_size(task
) / PAGE_SIZE_64
);
4748 assert(((uint32_t)pages
) == pages
);
4749 *purgeable_pages
= (uint32_t)pages
;
4754 memorystatus_get_task_phys_footprint_page_counts(task_t task
,
4755 uint64_t *internal_pages
, uint64_t *internal_compressed_pages
,
4756 uint64_t *purgeable_nonvolatile_pages
, uint64_t *purgeable_nonvolatile_compressed_pages
,
4757 uint64_t *alternate_accounting_pages
, uint64_t *alternate_accounting_compressed_pages
,
4758 uint64_t *iokit_mapped_pages
, uint64_t *page_table_pages
, uint64_t *frozen_to_swap_pages
)
4762 if (internal_pages
) {
4763 *internal_pages
= (get_task_internal(task
) / PAGE_SIZE_64
);
4766 if (internal_compressed_pages
) {
4767 *internal_compressed_pages
= (get_task_internal_compressed(task
) / PAGE_SIZE_64
);
4770 if (purgeable_nonvolatile_pages
) {
4771 *purgeable_nonvolatile_pages
= (get_task_purgeable_nonvolatile(task
) / PAGE_SIZE_64
);
4774 if (purgeable_nonvolatile_compressed_pages
) {
4775 *purgeable_nonvolatile_compressed_pages
= (get_task_purgeable_nonvolatile_compressed(task
) / PAGE_SIZE_64
);
4778 if (alternate_accounting_pages
) {
4779 *alternate_accounting_pages
= (get_task_alternate_accounting(task
) / PAGE_SIZE_64
);
4782 if (alternate_accounting_compressed_pages
) {
4783 *alternate_accounting_compressed_pages
= (get_task_alternate_accounting_compressed(task
) / PAGE_SIZE_64
);
4786 if (iokit_mapped_pages
) {
4787 *iokit_mapped_pages
= (get_task_iokit_mapped(task
) / PAGE_SIZE_64
);
4790 if (page_table_pages
) {
4791 *page_table_pages
= (get_task_page_table(task
) / PAGE_SIZE_64
);
4795 if (frozen_to_swap_pages
) {
4796 *frozen_to_swap_pages
= (get_task_frozen_to_swap(task
) / PAGE_SIZE_64
);
4798 #else /* CONFIG_FREEZE */
4799 #pragma unused(frozen_to_swap_pages)
4800 #endif /* CONFIG_FREEZE */
4805 * Copies the source entry into the destination snapshot.
4806 * Returns true on success. Fails if the destination snapshot is full.
4807 * Caller must hold the proc list lock.
4810 memorystatus_jetsam_snapshot_copy_entry_locked(memorystatus_jetsam_snapshot_t
*dst_snapshot
, unsigned int dst_snapshot_size
, const memorystatus_jetsam_snapshot_entry_t
*src_entry
)
4812 LCK_MTX_ASSERT(proc_list_mlock
, LCK_MTX_ASSERT_OWNED
);
4813 assert(dst_snapshot
);
4815 if (dst_snapshot
->entry_count
== dst_snapshot_size
) {
4816 /* Destination snapshot is full. Can not be updated until it is consumed. */
4819 if (dst_snapshot
->entry_count
== 0) {
4820 memorystatus_init_jetsam_snapshot_header(dst_snapshot
);
4822 memorystatus_jetsam_snapshot_entry_t
*dst_entry
= &dst_snapshot
->entries
[dst_snapshot
->entry_count
++];
4823 memcpy(dst_entry
, src_entry
, sizeof(memorystatus_jetsam_snapshot_entry_t
));
4826 #endif /* CONFIG_FREEZE */
4829 memorystatus_init_jetsam_snapshot_entry_with_kill_locked(memorystatus_jetsam_snapshot_t
*snapshot
, proc_t p
, uint32_t kill_cause
, uint64_t killtime
, memorystatus_jetsam_snapshot_entry_t
**entry
)
4831 LCK_MTX_ASSERT(proc_list_mlock
, LCK_MTX_ASSERT_OWNED
);
4832 memorystatus_jetsam_snapshot_entry_t
*snapshot_list
= snapshot
->entries
;
4833 size_t i
= snapshot
->entry_count
;
4835 if (memorystatus_init_jetsam_snapshot_entry_locked(p
, &snapshot_list
[i
], (snapshot
->js_gencount
)) == TRUE
) {
4836 *entry
= &snapshot_list
[i
];
4837 (*entry
)->killed
= kill_cause
;
4838 (*entry
)->jse_killtime
= killtime
;
4840 snapshot
->entry_count
= i
+ 1;
4847 * This routine only acts on the global jetsam event snapshot.
4848 * Updating the process's entry can race when the memorystatus_thread
4849 * has chosen to kill a process that is racing to exit on another core.
4852 memorystatus_update_jetsam_snapshot_entry_locked(proc_t p
, uint32_t kill_cause
, uint64_t killtime
)
4854 memorystatus_jetsam_snapshot_entry_t
*entry
= NULL
;
4855 memorystatus_jetsam_snapshot_t
*snapshot
= NULL
;
4856 memorystatus_jetsam_snapshot_entry_t
*snapshot_list
= NULL
;
4860 bool copied_to_freezer_snapshot
= false;
4861 #endif /* CONFIG_FREEZE */
4863 LCK_MTX_ASSERT(proc_list_mlock
, LCK_MTX_ASSERT_OWNED
);
4865 if (memorystatus_jetsam_snapshot_count
== 0) {
4867 * No active snapshot.
4874 * Sanity check as this routine should only be called
4875 * from a jetsam kill path.
4877 assert(kill_cause
!= 0 && killtime
!= 0);
4879 snapshot
= memorystatus_jetsam_snapshot
;
4880 snapshot_list
= memorystatus_jetsam_snapshot
->entries
;
4882 for (i
= 0; i
< memorystatus_jetsam_snapshot_count
; i
++) {
4883 if (snapshot_list
[i
].pid
== p
->p_pid
) {
4884 entry
= &snapshot_list
[i
];
4886 if (entry
->killed
|| entry
->jse_killtime
) {
4888 * We apparently raced on the exit path
4889 * for this process, as it's snapshot entry
4890 * has already recorded a kill.
4892 assert(entry
->killed
&& entry
->jse_killtime
);
4897 * Update the entry we just found in the snapshot.
4900 entry
->killed
= kill_cause
;
4901 entry
->jse_killtime
= killtime
;
4902 entry
->jse_gencount
= snapshot
->js_gencount
;
4903 entry
->jse_idle_delta
= p
->p_memstat_idle_delta
;
4905 entry
->jse_thaw_count
= p
->p_memstat_thaw_count
;
4906 #else /* CONFIG_FREEZE */
4907 entry
->jse_thaw_count
= 0;
4908 #endif /* CONFIG_FREEZE */
4911 * If a process has moved between bands since snapshot was
4912 * initialized, then likely these fields changed too.
4914 if (entry
->priority
!= p
->p_memstat_effectivepriority
) {
4915 strlcpy(entry
->name
, p
->p_name
, sizeof(entry
->name
));
4916 entry
->priority
= p
->p_memstat_effectivepriority
;
4917 entry
->state
= memorystatus_build_state(p
);
4918 entry
->user_data
= p
->p_memstat_userdata
;
4919 entry
->fds
= p
->p_fd
->fd_nfiles
;
4923 * Always update the page counts on a kill.
4927 uint32_t max_pages_lifetime
= 0;
4928 uint32_t purgeable_pages
= 0;
4930 memorystatus_get_task_page_counts(p
->task
, &pages
, &max_pages_lifetime
, &purgeable_pages
);
4931 entry
->pages
= (uint64_t)pages
;
4932 entry
->max_pages_lifetime
= (uint64_t)max_pages_lifetime
;
4933 entry
->purgeable_pages
= (uint64_t)purgeable_pages
;
4935 uint64_t internal_pages
= 0;
4936 uint64_t internal_compressed_pages
= 0;
4937 uint64_t purgeable_nonvolatile_pages
= 0;
4938 uint64_t purgeable_nonvolatile_compressed_pages
= 0;
4939 uint64_t alternate_accounting_pages
= 0;
4940 uint64_t alternate_accounting_compressed_pages
= 0;
4941 uint64_t iokit_mapped_pages
= 0;
4942 uint64_t page_table_pages
= 0;
4943 uint64_t frozen_to_swap_pages
= 0;
4945 memorystatus_get_task_phys_footprint_page_counts(p
->task
, &internal_pages
, &internal_compressed_pages
,
4946 &purgeable_nonvolatile_pages
, &purgeable_nonvolatile_compressed_pages
,
4947 &alternate_accounting_pages
, &alternate_accounting_compressed_pages
,
4948 &iokit_mapped_pages
, &page_table_pages
, &frozen_to_swap_pages
);
4950 entry
->jse_internal_pages
= internal_pages
;
4951 entry
->jse_internal_compressed_pages
= internal_compressed_pages
;
4952 entry
->jse_purgeable_nonvolatile_pages
= purgeable_nonvolatile_pages
;
4953 entry
->jse_purgeable_nonvolatile_compressed_pages
= purgeable_nonvolatile_compressed_pages
;
4954 entry
->jse_alternate_accounting_pages
= alternate_accounting_pages
;
4955 entry
->jse_alternate_accounting_compressed_pages
= alternate_accounting_compressed_pages
;
4956 entry
->jse_iokit_mapped_pages
= iokit_mapped_pages
;
4957 entry
->jse_page_table_pages
= page_table_pages
;
4958 entry
->jse_frozen_to_swap_pages
= frozen_to_swap_pages
;
4960 uint64_t region_count
= 0;
4961 memorystatus_get_task_memory_region_count(p
->task
, ®ion_count
);
4962 entry
->jse_memory_region_count
= region_count
;
4968 if (entry
== NULL
) {
4970 * The entry was not found in the snapshot, so the process must have
4971 * launched after the snapshot was initialized.
4972 * Let's try to append the new entry.
4974 if (memorystatus_jetsam_snapshot_count
< memorystatus_jetsam_snapshot_max
) {
4976 * A populated snapshot buffer exists
4977 * and there is room to init a new entry.
4979 assert(memorystatus_jetsam_snapshot_count
== snapshot
->entry_count
);
4981 if (memorystatus_init_jetsam_snapshot_entry_with_kill_locked(snapshot
, p
, kill_cause
, killtime
, &entry
)) {
4982 memorystatus_jetsam_snapshot_count
++;
4984 if (memorystatus_jetsam_snapshot_count
>= memorystatus_jetsam_snapshot_max
) {
4986 * We just used the last slot in the snapshot buffer.
4987 * We only want to log it once... so we do it here
4988 * when we notice we've hit the max.
4990 printf("memorystatus: WARNING snapshot buffer is full, count %d\n",
4991 memorystatus_jetsam_snapshot_count
);
5000 if (memorystatus_jetsam_use_freezer_snapshot
&& isApp(p
)) {
5001 /* This is an app kill. Record it in the freezer snapshot so dasd can incorporate this in its recommendations. */
5002 copied_to_freezer_snapshot
= memorystatus_jetsam_snapshot_copy_entry_locked(memorystatus_jetsam_snapshot_freezer
, memorystatus_jetsam_snapshot_freezer_max
, entry
);
5003 if (copied_to_freezer_snapshot
&& memorystatus_jetsam_snapshot_freezer
->entry_count
== memorystatus_jetsam_snapshot_freezer_max
) {
5005 * We just used the last slot in the freezer snapshot buffer.
5006 * We only want to log it once... so we do it here
5007 * when we notice we've hit the max.
5009 os_log_error(OS_LOG_DEFAULT
, "memorystatus: WARNING freezer snapshot buffer is full, count %zu",
5010 memorystatus_jetsam_snapshot_freezer
->entry_count
);
5013 #endif /* CONFIG_FREEZE */
5016 * If we reach here, the snapshot buffer could not be updated.
5017 * Most likely, the buffer is full, in which case we would have
5018 * logged a warning in the previous call.
5020 * For now, we will stop appending snapshot entries.
5021 * When the buffer is consumed, the snapshot state will reset.
5024 MEMORYSTATUS_DEBUG(4, "memorystatus_update_jetsam_snapshot_entry_locked: failed to update pid %d, priority %d, count %d\n",
5025 p
->p_pid
, p
->p_memstat_effectivepriority
, memorystatus_jetsam_snapshot_count
);
5028 /* We still attempt to record this in the freezer snapshot */
5029 if (memorystatus_jetsam_use_freezer_snapshot
&& isApp(p
)) {
5030 snapshot
= memorystatus_jetsam_snapshot_freezer
;
5031 if (snapshot
->entry_count
< memorystatus_jetsam_snapshot_freezer_max
) {
5032 copied_to_freezer_snapshot
= memorystatus_init_jetsam_snapshot_entry_with_kill_locked(snapshot
, p
, kill_cause
, killtime
, &entry
);
5033 if (copied_to_freezer_snapshot
&& memorystatus_jetsam_snapshot_freezer
->entry_count
== memorystatus_jetsam_snapshot_freezer_max
) {
5035 * We just used the last slot in the freezer snapshot buffer.
5036 * We only want to log it once... so we do it here
5037 * when we notice we've hit the max.
5039 os_log_error(OS_LOG_DEFAULT
, "memorystatus: WARNING freezer snapshot buffer is full, count %zu",
5040 memorystatus_jetsam_snapshot_freezer
->entry_count
);
5044 #endif /* CONFIG_FREEZE */
5052 memorystatus_pages_update(unsigned int pages_avail
)
5054 memorystatus_available_pages
= pages_avail
;
5056 #if VM_PRESSURE_EVENTS
5058 * Since memorystatus_available_pages changes, we should
5059 * re-evaluate the pressure levels on the system and
5060 * check if we need to wake the pressure thread.
5061 * We also update memorystatus_level in that routine.
5063 vm_pressure_response();
5065 if (memorystatus_available_pages
<= memorystatus_available_pages_pressure
) {
5066 if (memorystatus_hwm_candidates
|| (memorystatus_available_pages
<= memorystatus_available_pages_critical
)) {
5067 memorystatus_thread_wake();
5072 * We can't grab the freezer_mutex here even though that synchronization would be correct to inspect
5073 * the # of frozen processes and wakeup the freezer thread. Reason being that we come here into this
5074 * code with (possibly) the page-queue locks held and preemption disabled. So trying to grab a mutex here
5075 * will result in the "mutex with preemption disabled" panic.
5078 if (memorystatus_freeze_thread_should_run() == TRUE
) {
5080 * The freezer thread is usually woken up by some user-space call i.e. pid_hibernate(any process).
5081 * That trigger isn't invoked often enough and so we are enabling this explicit wakeup here.
5083 if (VM_CONFIG_FREEZER_SWAP_IS_ACTIVE
) {
5084 thread_wakeup((event_t
)&memorystatus_freeze_wakeup
);
5087 #endif /* CONFIG_FREEZE */
5089 #else /* VM_PRESSURE_EVENTS */
5091 boolean_t critical
, delta
;
5093 if (!memorystatus_delta
) {
5097 critical
= (pages_avail
< memorystatus_available_pages_critical
) ? TRUE
: FALSE
;
5098 delta
= ((pages_avail
>= (memorystatus_available_pages
+ memorystatus_delta
))
5099 || (memorystatus_available_pages
>= (pages_avail
+ memorystatus_delta
))) ? TRUE
: FALSE
;
5101 if (critical
|| delta
) {
5102 unsigned int total_pages
;
5104 total_pages
= (unsigned int) atop_64(max_mem
);
5105 #if CONFIG_SECLUDED_MEMORY
5106 total_pages
-= vm_page_secluded_count
;
5107 #endif /* CONFIG_SECLUDED_MEMORY */
5108 memorystatus_level
= memorystatus_available_pages
* 100 / total_pages
;
5109 memorystatus_thread_wake();
5111 #endif /* VM_PRESSURE_EVENTS */
5113 #endif /* CONFIG_JETSAM */
5116 memorystatus_init_jetsam_snapshot_entry_locked(proc_t p
, memorystatus_jetsam_snapshot_entry_t
*entry
, uint64_t gencount
)
5119 clock_usec_t tv_usec
;
5121 uint32_t max_pages_lifetime
= 0;
5122 uint32_t purgeable_pages
= 0;
5123 uint64_t internal_pages
= 0;
5124 uint64_t internal_compressed_pages
= 0;
5125 uint64_t purgeable_nonvolatile_pages
= 0;
5126 uint64_t purgeable_nonvolatile_compressed_pages
= 0;
5127 uint64_t alternate_accounting_pages
= 0;
5128 uint64_t alternate_accounting_compressed_pages
= 0;
5129 uint64_t iokit_mapped_pages
= 0;
5130 uint64_t page_table_pages
= 0;
5131 uint64_t frozen_to_swap_pages
= 0;
5132 uint64_t region_count
= 0;
5133 uint64_t cids
[COALITION_NUM_TYPES
];
5135 memset(entry
, 0, sizeof(memorystatus_jetsam_snapshot_entry_t
));
5137 entry
->pid
= p
->p_pid
;
5138 strlcpy(&entry
->name
[0], p
->p_name
, sizeof(entry
->name
));
5139 entry
->priority
= p
->p_memstat_effectivepriority
;
5141 memorystatus_get_task_page_counts(p
->task
, &pages
, &max_pages_lifetime
, &purgeable_pages
);
5142 entry
->pages
= (uint64_t)pages
;
5143 entry
->max_pages_lifetime
= (uint64_t)max_pages_lifetime
;
5144 entry
->purgeable_pages
= (uint64_t)purgeable_pages
;
5146 memorystatus_get_task_phys_footprint_page_counts(p
->task
, &internal_pages
, &internal_compressed_pages
,
5147 &purgeable_nonvolatile_pages
, &purgeable_nonvolatile_compressed_pages
,
5148 &alternate_accounting_pages
, &alternate_accounting_compressed_pages
,
5149 &iokit_mapped_pages
, &page_table_pages
, &frozen_to_swap_pages
);
5151 entry
->jse_internal_pages
= internal_pages
;
5152 entry
->jse_internal_compressed_pages
= internal_compressed_pages
;
5153 entry
->jse_purgeable_nonvolatile_pages
= purgeable_nonvolatile_pages
;
5154 entry
->jse_purgeable_nonvolatile_compressed_pages
= purgeable_nonvolatile_compressed_pages
;
5155 entry
->jse_alternate_accounting_pages
= alternate_accounting_pages
;
5156 entry
->jse_alternate_accounting_compressed_pages
= alternate_accounting_compressed_pages
;
5157 entry
->jse_iokit_mapped_pages
= iokit_mapped_pages
;
5158 entry
->jse_page_table_pages
= page_table_pages
;
5159 entry
->jse_frozen_to_swap_pages
= frozen_to_swap_pages
;
5161 memorystatus_get_task_memory_region_count(p
->task
, ®ion_count
);
5162 entry
->jse_memory_region_count
= region_count
;
5164 entry
->state
= memorystatus_build_state(p
);
5165 entry
->user_data
= p
->p_memstat_userdata
;
5166 memcpy(&entry
->uuid
[0], &p
->p_uuid
[0], sizeof(p
->p_uuid
));
5167 entry
->fds
= p
->p_fd
->fd_nfiles
;
5169 absolutetime_to_microtime(get_task_cpu_time(p
->task
), &tv_sec
, &tv_usec
);
5170 entry
->cpu_time
.tv_sec
= (int64_t)tv_sec
;
5171 entry
->cpu_time
.tv_usec
= (int64_t)tv_usec
;
5173 assert(p
->p_stats
!= NULL
);
5174 entry
->jse_starttime
= p
->p_stats
->ps_start
; /* abstime process started */
5175 entry
->jse_killtime
= 0; /* abstime jetsam chose to kill process */
5176 entry
->killed
= 0; /* the jetsam kill cause */
5177 entry
->jse_gencount
= gencount
; /* indicates a pass through jetsam thread, when process was targeted to be killed */
5179 entry
->jse_idle_delta
= p
->p_memstat_idle_delta
; /* Most recent timespan spent in idle-band */
5182 entry
->jse_thaw_count
= p
->p_memstat_thaw_count
;
5183 #else /* CONFIG_FREEZE */
5184 entry
->jse_thaw_count
= 0;
5185 #endif /* CONFIG_FREEZE */
5187 proc_coalitionids(p
, cids
);
5188 entry
->jse_coalition_jetsam_id
= cids
[COALITION_TYPE_JETSAM
];
5194 memorystatus_init_snapshot_vmstats(memorystatus_jetsam_snapshot_t
*snapshot
)
5196 kern_return_t kr
= KERN_SUCCESS
;
5197 mach_msg_type_number_t count
= HOST_VM_INFO64_COUNT
;
5198 vm_statistics64_data_t vm_stat
;
5200 if ((kr
= host_statistics64(host_self(), HOST_VM_INFO64
, (host_info64_t
)&vm_stat
, &count
)) != KERN_SUCCESS
) {
5201 printf("memorystatus_init_jetsam_snapshot_stats: host_statistics64 failed with %d\n", kr
);
5202 memset(&snapshot
->stats
, 0, sizeof(snapshot
->stats
));
5204 snapshot
->stats
.free_pages
= vm_stat
.free_count
;
5205 snapshot
->stats
.active_pages
= vm_stat
.active_count
;
5206 snapshot
->stats
.inactive_pages
= vm_stat
.inactive_count
;
5207 snapshot
->stats
.throttled_pages
= vm_stat
.throttled_count
;
5208 snapshot
->stats
.purgeable_pages
= vm_stat
.purgeable_count
;
5209 snapshot
->stats
.wired_pages
= vm_stat
.wire_count
;
5211 snapshot
->stats
.speculative_pages
= vm_stat
.speculative_count
;
5212 snapshot
->stats
.filebacked_pages
= vm_stat
.external_page_count
;
5213 snapshot
->stats
.anonymous_pages
= vm_stat
.internal_page_count
;
5214 snapshot
->stats
.compressions
= vm_stat
.compressions
;
5215 snapshot
->stats
.decompressions
= vm_stat
.decompressions
;
5216 snapshot
->stats
.compressor_pages
= vm_stat
.compressor_page_count
;
5217 snapshot
->stats
.total_uncompressed_pages_in_compressor
= vm_stat
.total_uncompressed_pages_in_compressor
;
5220 get_zone_map_size(&snapshot
->stats
.zone_map_size
, &snapshot
->stats
.zone_map_capacity
);
5222 bzero(snapshot
->stats
.largest_zone_name
, sizeof(snapshot
->stats
.largest_zone_name
));
5223 get_largest_zone_info(snapshot
->stats
.largest_zone_name
, sizeof(snapshot
->stats
.largest_zone_name
),
5224 &snapshot
->stats
.largest_zone_size
);
5228 * Collect vm statistics at boot.
5229 * Called only once (see kern_exec.c)
5230 * Data can be consumed at any time.
5233 memorystatus_init_at_boot_snapshot()
5235 memorystatus_init_snapshot_vmstats(&memorystatus_at_boot_snapshot
);
5236 memorystatus_at_boot_snapshot
.entry_count
= 0;
5237 memorystatus_at_boot_snapshot
.notification_time
= 0; /* updated when consumed */
5238 memorystatus_at_boot_snapshot
.snapshot_time
= mach_absolute_time();
5242 memorystatus_init_jetsam_snapshot_header(memorystatus_jetsam_snapshot_t
*snapshot
)
5244 memorystatus_init_snapshot_vmstats(snapshot
);
5245 snapshot
->snapshot_time
= mach_absolute_time();
5246 snapshot
->notification_time
= 0;
5247 snapshot
->js_gencount
= 0;
5251 memorystatus_init_jetsam_snapshot_locked(memorystatus_jetsam_snapshot_t
*od_snapshot
, uint32_t ods_list_count
)
5254 unsigned int b
= 0, i
= 0;
5256 memorystatus_jetsam_snapshot_t
*snapshot
= NULL
;
5257 memorystatus_jetsam_snapshot_entry_t
*snapshot_list
= NULL
;
5258 unsigned int snapshot_max
= 0;
5260 LCK_MTX_ASSERT(proc_list_mlock
, LCK_MTX_ASSERT_OWNED
);
5264 * This is an on_demand snapshot
5266 snapshot
= od_snapshot
;
5267 snapshot_list
= od_snapshot
->entries
;
5268 snapshot_max
= ods_list_count
;
5271 * This is a jetsam event snapshot
5273 snapshot
= memorystatus_jetsam_snapshot
;
5274 snapshot_list
= memorystatus_jetsam_snapshot
->entries
;
5275 snapshot_max
= memorystatus_jetsam_snapshot_max
;
5278 memorystatus_init_jetsam_snapshot_header(snapshot
);
5280 next_p
= memorystatus_get_first_proc_locked(&b
, TRUE
);
5283 next_p
= memorystatus_get_next_proc_locked(&b
, p
, TRUE
);
5285 if (FALSE
== memorystatus_init_jetsam_snapshot_entry_locked(p
, &snapshot_list
[i
], snapshot
->js_gencount
)) {
5289 MEMORYSTATUS_DEBUG(0, "jetsam snapshot pid %d, uuid = %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5291 p
->p_uuid
[0], p
->p_uuid
[1], p
->p_uuid
[2], p
->p_uuid
[3], p
->p_uuid
[4], p
->p_uuid
[5], p
->p_uuid
[6], p
->p_uuid
[7],
5292 p
->p_uuid
[8], p
->p_uuid
[9], p
->p_uuid
[10], p
->p_uuid
[11], p
->p_uuid
[12], p
->p_uuid
[13], p
->p_uuid
[14], p
->p_uuid
[15]);
5294 if (++i
== snapshot_max
) {
5299 snapshot
->entry_count
= i
;
5302 /* update the system buffer count */
5303 memorystatus_jetsam_snapshot_count
= i
;
5307 #if DEVELOPMENT || DEBUG
5311 memorystatus_cmd_set_panic_bits(user_addr_t buffer
, size_t buffer_size
)
5314 memorystatus_jetsam_panic_options_t debug
;
5316 if (buffer_size
!= sizeof(memorystatus_jetsam_panic_options_t
)) {
5320 ret
= copyin(buffer
, &debug
, buffer_size
);
5325 /* Panic bits match kMemorystatusKilled* enum */
5326 memorystatus_jetsam_panic_debug
= (memorystatus_jetsam_panic_debug
& ~debug
.mask
) | (debug
.data
& debug
.mask
);
5328 /* Copyout new value */
5329 debug
.data
= memorystatus_jetsam_panic_debug
;
5330 ret
= copyout(&debug
, buffer
, sizeof(memorystatus_jetsam_panic_options_t
));
5334 #endif /* CONFIG_JETSAM */
5337 * Verify that the given bucket has been sorted correctly.
5339 * Walks through the bucket and verifies that all pids in the
5340 * expected_order buffer are in that bucket and in the same
5343 * The proc_list_lock must be held by the caller.
5346 memorystatus_verify_sort_order(unsigned int bucket_index
, pid_t
*expected_order
, size_t num_pids
)
5348 LCK_MTX_ASSERT(proc_list_mlock
, LCK_MTX_ASSERT_OWNED
);
5355 * NB: We allow other procs to be mixed in within the expected ones.
5356 * We just need the expected procs to be in the right order relative to each other.
5358 p
= memorystatus_get_first_proc_locked(&bucket_index
, FALSE
);
5360 if (p
->p_pid
== expected_order
[i
]) {
5363 if (i
== num_pids
) {
5366 p
= memorystatus_get_next_proc_locked(&bucket_index
, p
, FALSE
);
5368 if (i
!= num_pids
) {
5370 size_t len
= sizeof(buffer
);
5371 size_t buffer_idx
= 0;
5372 os_log_error(OS_LOG_DEFAULT
, "memorystatus_verify_sort_order: Processes in bucket %d were not sorted properly\n", bucket_index
);
5373 for (i
= 0; i
< num_pids
; i
++) {
5374 int num_written
= snprintf(buffer
+ buffer_idx
, len
- buffer_idx
, "%d,", expected_order
[i
]);
5375 if (num_written
<= 0) {
5378 if (buffer_idx
+ (unsigned int) num_written
>= len
) {
5381 buffer_idx
+= num_written
;
5383 os_log_error(OS_LOG_DEFAULT
, "memorystatus_verify_sort_order: Expected order [%s]", buffer
);
5384 memset(buffer
, 0, len
);
5386 p
= memorystatus_get_first_proc_locked(&bucket_index
, FALSE
);
5388 os_log_error(OS_LOG_DEFAULT
, "memorystatus_verify_sort_order: Actual order:");
5391 if (buffer_idx
== 0) {
5392 num_written
= snprintf(buffer
+ buffer_idx
, len
- buffer_idx
, "%zu: %d,", i
, p
->p_pid
);
5394 num_written
= snprintf(buffer
+ buffer_idx
, len
- buffer_idx
, "%d,", p
->p_pid
);
5396 if (num_written
<= 0) {
5399 buffer_idx
+= (unsigned int) num_written
;
5400 assert(buffer_idx
<= len
);
5402 os_log_error(OS_LOG_DEFAULT
, "memorystatus_verify_sort_order: %s", buffer
);
5405 p
= memorystatus_get_next_proc_locked(&bucket_index
, p
, FALSE
);
5408 if (buffer_idx
!= 0) {
5409 os_log_error(OS_LOG_DEFAULT
, "memorystatus_verify_sort_order: %s", buffer
);
5417 * Triggers a sort_order on a specified jetsam priority band.
5418 * This is for testing only, used to force a path through the sort
5422 memorystatus_cmd_test_jetsam_sort(int priority
,
5424 user_addr_t expected_order_user
,
5425 size_t expected_order_user_len
)
5428 unsigned int bucket_index
= 0;
5429 static size_t kMaxPids
= 8;
5430 pid_t expected_order
[kMaxPids
];
5431 size_t copy_size
= sizeof(expected_order
);
5434 if (expected_order_user_len
< copy_size
) {
5435 copy_size
= expected_order_user_len
;
5437 num_pids
= copy_size
/ sizeof(pid_t
);
5439 error
= copyin(expected_order_user
, expected_order
, copy_size
);
5444 if (priority
== -1) {
5445 /* Use as shorthand for default priority */
5446 bucket_index
= JETSAM_PRIORITY_DEFAULT
;
5448 bucket_index
= (unsigned int)priority
;
5452 * Acquire lock before sorting so we can check the sort order
5453 * while still holding the lock.
5457 memorystatus_sort_bucket_locked(bucket_index
, sort_order
);
5459 if (expected_order_user
!= CAST_USER_ADDR_T(NULL
) && expected_order_user_len
> 0) {
5460 error
= memorystatus_verify_sort_order(bucket_index
, expected_order
, num_pids
);
5468 #endif /* DEVELOPMENT || DEBUG */
5471 * Prepare the process to be killed (set state, update snapshot) and kill it.
5473 static uint64_t memorystatus_purge_before_jetsam_success
= 0;
5476 memorystatus_kill_proc(proc_t p
, uint32_t cause
, os_reason_t jetsam_reason
, boolean_t
*killed
, uint64_t *footprint_of_killed_proc
)
5479 uint32_t aPid_ep
= 0;
5481 uint64_t killtime
= 0;
5483 clock_usec_t tv_usec
;
5485 boolean_t retval
= FALSE
;
5488 aPid_ep
= p
->p_memstat_effectivepriority
;
5490 if (cause
!= kMemorystatusKilledVnodes
&& cause
!= kMemorystatusKilledZoneMapExhaustion
) {
5492 * Genuine memory pressure and not other (vnode/zone) resource exhaustion.
5494 boolean_t success
= FALSE
;
5495 uint64_t num_pages_purged
;
5496 uint64_t num_pages_reclaimed
= 0;
5497 uint64_t num_pages_unsecluded
= 0;
5499 networking_memstatus_callout(p
, cause
);
5500 num_pages_purged
= vm_purgeable_purge_task_owned(p
->task
);
5501 num_pages_reclaimed
+= num_pages_purged
;
5502 #if CONFIG_SECLUDED_MEMORY
5503 if (cause
== kMemorystatusKilledVMPageShortage
&&
5504 vm_page_secluded_count
> 0 &&
5505 task_can_use_secluded_mem(p
->task
, FALSE
)) {
5507 * We're about to kill a process that has access
5508 * to the secluded pool. Drain that pool into the
5509 * free or active queues to make these pages re-appear
5510 * as "available", which might make us no longer need
5511 * to kill that process.
5512 * Since the secluded pool does not get refilled while
5513 * a process has access to it, it should remain
5516 num_pages_unsecluded
= vm_page_secluded_drain();
5517 num_pages_reclaimed
+= num_pages_unsecluded
;
5519 #endif /* CONFIG_SECLUDED_MEMORY */
5521 if (num_pages_reclaimed
) {
5523 * We actually reclaimed something and so let's
5524 * check if we need to continue with the kill.
5526 if (cause
== kMemorystatusKilledHiwat
) {
5527 uint64_t footprint_in_bytes
= get_task_phys_footprint(p
->task
);
5528 uint64_t memlimit_in_bytes
= (((uint64_t)p
->p_memstat_memlimit
) * 1024ULL * 1024ULL); /* convert MB to bytes */
5529 success
= (footprint_in_bytes
<= memlimit_in_bytes
);
5531 success
= (memorystatus_avail_pages_below_pressure() == FALSE
);
5532 #if CONFIG_SECLUDED_MEMORY
5533 if (!success
&& num_pages_unsecluded
) {
5535 * We just drained the secluded pool
5536 * because we're about to kill a
5537 * process that has access to it.
5538 * This is an important process and
5539 * we'd rather not kill it unless
5540 * absolutely necessary, so declare
5541 * success even if draining the pool
5542 * did not quite get us out of the
5543 * "pressure" level but still got
5544 * us out of the "critical" level.
5546 success
= (memorystatus_avail_pages_below_critical() == FALSE
);
5548 #endif /* CONFIG_SECLUDED_MEMORY */
5552 memorystatus_purge_before_jetsam_success
++;
5554 os_log_with_startup_serial(OS_LOG_DEFAULT
, "memorystatus: reclaimed %llu pages (%llu purged, %llu unsecluded) from pid %d [%s] and avoided %s\n",
5555 num_pages_reclaimed
, num_pages_purged
, num_pages_unsecluded
, aPid
, ((p
&& *p
->p_name
) ? p
->p_name
: "unknown"), memorystatus_kill_cause_name
[cause
]);
5564 #if CONFIG_JETSAM && (DEVELOPMENT || DEBUG)
5565 MEMORYSTATUS_DEBUG(1, "jetsam: killing pid %d [%s] - %lld Mb > 1 (%d Mb)\n",
5566 aPid
, (*p
->p_name
? p
->p_name
: "unknown"),
5567 (footprint_in_bytes
/ (1024ULL * 1024ULL)), /* converted bytes to MB */
5568 p
->p_memstat_memlimit
);
5569 #endif /* CONFIG_JETSAM && (DEVELOPMENT || DEBUG) */
5571 killtime
= mach_absolute_time();
5572 absolutetime_to_microtime(killtime
, &tv_sec
, &tv_usec
);
5573 tv_msec
= tv_usec
/ 1000;
5576 memorystatus_update_jetsam_snapshot_entry_locked(p
, cause
, killtime
);
5579 char kill_reason_string
[128];
5581 if (cause
== kMemorystatusKilledHiwat
) {
5582 strlcpy(kill_reason_string
, "killing_highwater_process", 128);
5584 if (aPid_ep
== JETSAM_PRIORITY_IDLE
) {
5585 strlcpy(kill_reason_string
, "killing_idle_process", 128);
5587 strlcpy(kill_reason_string
, "killing_top_process", 128);
5592 * memorystatus_do_kill drops a reference, so take another one so we can
5593 * continue to use this exit reason even after memorystatus_do_kill()
5596 os_reason_ref(jetsam_reason
);
5598 retval
= memorystatus_do_kill(p
, cause
, jetsam_reason
, footprint_of_killed_proc
);
5601 os_log_with_startup_serial(OS_LOG_DEFAULT
, "%lu.%03d memorystatus: %s pid %d [%s] (%s %d) %lluKB - memorystatus_available_pages: %llu",
5602 (unsigned long)tv_sec
, tv_msec
, kill_reason_string
,
5603 aPid
, ((p
&& *p
->p_name
) ? p
->p_name
: "unknown"),
5604 memorystatus_kill_cause_name
[cause
], aPid_ep
,
5605 (*footprint_of_killed_proc
) >> 10, (uint64_t)MEMORYSTATUS_LOG_AVAILABLE_PAGES
);
5611 * Jetsam the first process in the queue.
5614 memorystatus_kill_top_process(boolean_t any
, boolean_t sort_flag
, uint32_t cause
, os_reason_t jetsam_reason
,
5615 int32_t *priority
, uint32_t *errors
, uint64_t *memory_reclaimed
)
5618 proc_t p
= PROC_NULL
, next_p
= PROC_NULL
;
5619 boolean_t new_snapshot
= FALSE
, force_new_snapshot
= FALSE
, killed
= FALSE
, freed_mem
= FALSE
;
5622 int32_t local_max_kill_prio
= JETSAM_PRIORITY_IDLE
;
5623 uint64_t footprint_of_killed_proc
= 0;
5625 #ifndef CONFIG_FREEZE
5629 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_JETSAM
) | DBG_FUNC_START
,
5630 MEMORYSTATUS_LOG_AVAILABLE_PAGES
, 0, 0, 0, 0);
5634 if (sort_flag
== TRUE
) {
5635 (void)memorystatus_sort_bucket(JETSAM_PRIORITY_FOREGROUND
, JETSAM_SORT_DEFAULT
);
5638 local_max_kill_prio
= max_kill_priority
;
5640 force_new_snapshot
= FALSE
;
5642 #else /* CONFIG_JETSAM */
5644 if (sort_flag
== TRUE
) {
5645 (void)memorystatus_sort_bucket(JETSAM_PRIORITY_IDLE
, JETSAM_SORT_DEFAULT
);
5649 * On macos, we currently only have 2 reasons to be here:
5651 * kMemorystatusKilledZoneMapExhaustion
5653 * kMemorystatusKilledVMCompressorSpaceShortage
5655 * If we are here because of kMemorystatusKilledZoneMapExhaustion, we will consider
5656 * any and all processes as eligible kill candidates since we need to avoid a panic.
5658 * Since this function can be called async. it is harder to toggle the max_kill_priority
5659 * value before and after a call. And so we use this local variable to set the upper band
5660 * on the eligible kill bands.
5662 if (cause
== kMemorystatusKilledZoneMapExhaustion
) {
5663 local_max_kill_prio
= JETSAM_PRIORITY_MAX
;
5665 local_max_kill_prio
= max_kill_priority
;
5669 * And, because we are here under extreme circumstances, we force a snapshot even for
5672 force_new_snapshot
= TRUE
;
5674 #endif /* CONFIG_JETSAM */
5676 if (cause
!= kMemorystatusKilledZoneMapExhaustion
&&
5677 jetsam_current_thread() != NULL
&&
5678 jetsam_current_thread()->limit_to_low_bands
&&
5679 local_max_kill_prio
> JETSAM_PRIORITY_BACKGROUND
) {
5680 local_max_kill_prio
= JETSAM_PRIORITY_BACKGROUND
;
5685 next_p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
5686 while (next_p
&& (next_p
->p_memstat_effectivepriority
<= local_max_kill_prio
)) {
5688 next_p
= memorystatus_get_next_proc_locked(&i
, p
, TRUE
);
5692 aPid_ep
= p
->p_memstat_effectivepriority
;
5694 if (p
->p_memstat_state
& (P_MEMSTAT_ERROR
| P_MEMSTAT_TERMINATED
)) {
5695 continue; /* with lock held */
5698 if (cause
== kMemorystatusKilledVnodes
) {
5700 * If the system runs out of vnodes, we systematically jetsam
5701 * processes in hopes of stumbling onto a vnode gain that helps
5702 * the system recover. The process that happens to trigger
5703 * this path has no known relationship to the vnode shortage.
5704 * Deadlock avoidance: attempt to safeguard the caller.
5707 if (p
== current_proc()) {
5708 /* do not jetsam the current process */
5715 boolean_t reclaim_proc
= !(p
->p_memstat_state
& P_MEMSTAT_LOCKED
);
5716 if (any
|| reclaim_proc
) {
5727 if (proc_ref_locked(p
) == p
) {
5729 * Mark as terminated so that if exit1() indicates success, but the process (for example)
5730 * is blocked in task_exception_notify(), it'll be skipped if encountered again - see
5731 * <rdar://problem/13553476>. This is cheaper than examining P_LEXIT, which requires the
5732 * acquisition of the proc lock.
5734 p
->p_memstat_state
|= P_MEMSTAT_TERMINATED
;
5737 * We need to restart the search again because
5738 * proc_ref_locked _can_ drop the proc_list lock
5739 * and we could have lost our stored next_p via
5740 * an exit() on another core.
5743 next_p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
5748 * Capture a snapshot if none exists and:
5749 * - we are forcing a new snapshot creation, either because:
5750 * - on a particular platform we need these snapshots every time, OR
5751 * - a boot-arg/embedded device tree property has been set.
5752 * - priority was not requested (this is something other than an ambient kill)
5753 * - the priority was requested *and* the targeted process is not at idle priority
5755 if ((memorystatus_jetsam_snapshot_count
== 0) &&
5756 (force_new_snapshot
|| memorystatus_idle_snapshot
|| ((!priority
) || (priority
&& (aPid_ep
!= JETSAM_PRIORITY_IDLE
))))) {
5757 memorystatus_init_jetsam_snapshot_locked(NULL
, 0);
5758 new_snapshot
= TRUE
;
5763 freed_mem
= memorystatus_kill_proc(p
, cause
, jetsam_reason
, &killed
, &footprint_of_killed_proc
); /* purged and/or killed 'p' */
5767 *memory_reclaimed
= footprint_of_killed_proc
;
5769 *priority
= aPid_ep
;
5774 p
->p_memstat_state
&= ~P_MEMSTAT_TERMINATED
;
5782 * Failure - first unwind the state,
5783 * then fall through to restart the search.
5786 proc_rele_locked(p
);
5787 p
->p_memstat_state
&= ~P_MEMSTAT_TERMINATED
;
5788 p
->p_memstat_state
|= P_MEMSTAT_ERROR
;
5792 next_p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
5799 os_reason_free(jetsam_reason
);
5802 *memory_reclaimed
= 0;
5804 /* Clear snapshot if freshly captured and no target was found */
5807 memorystatus_jetsam_snapshot
->entry_count
= memorystatus_jetsam_snapshot_count
= 0;
5812 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_JETSAM
) | DBG_FUNC_END
,
5813 MEMORYSTATUS_LOG_AVAILABLE_PAGES
, killed
? aPid
: 0, killed
, *memory_reclaimed
, 0);
5819 * Jetsam aggressively
5822 memorystatus_kill_processes_aggressive(uint32_t cause
, int aggr_count
,
5823 int32_t priority_max
, uint32_t *errors
, uint64_t *memory_reclaimed
)
5826 proc_t p
= PROC_NULL
, next_p
= PROC_NULL
;
5827 boolean_t new_snapshot
= FALSE
, killed
= FALSE
;
5830 int32_t aPid_ep
= 0;
5831 unsigned int memorystatus_level_snapshot
= 0;
5832 uint64_t killtime
= 0;
5834 clock_usec_t tv_usec
;
5836 os_reason_t jetsam_reason
= OS_REASON_NULL
;
5837 uint64_t footprint_of_killed_proc
= 0;
5839 *memory_reclaimed
= 0;
5841 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_JETSAM
) | DBG_FUNC_START
,
5842 MEMORYSTATUS_LOG_AVAILABLE_PAGES
, priority_max
, 0, 0, 0);
5844 if (priority_max
>= JETSAM_PRIORITY_FOREGROUND
) {
5846 * Check if aggressive jetsam has been asked to kill upto or beyond the
5847 * JETSAM_PRIORITY_FOREGROUND bucket. If yes, sort the FG band based on
5848 * coalition footprint.
5850 memorystatus_sort_bucket(JETSAM_PRIORITY_FOREGROUND
, JETSAM_SORT_DEFAULT
);
5853 jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, cause
);
5854 if (jetsam_reason
== OS_REASON_NULL
) {
5855 printf("memorystatus_kill_processes_aggressive: failed to allocate exit reason\n");
5860 next_p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
5862 if (((next_p
->p_listflag
& P_LIST_EXITED
) != 0) ||
5863 ((unsigned int)(next_p
->p_memstat_effectivepriority
) != i
)) {
5865 * We have raced with next_p running on another core.
5866 * It may be exiting or it may have moved to a different
5867 * jetsam priority band. This means we have lost our
5868 * place in line while traversing the jetsam list. We
5869 * attempt to recover by rewinding to the beginning of the band
5870 * we were already traversing. By doing this, we do not guarantee
5871 * that no process escapes this aggressive march, but we can make
5872 * skipping an entire range of processes less likely. (PR-21069019)
5875 MEMORYSTATUS_DEBUG(1, "memorystatus: aggressive%d: rewinding band %d, %s(%d) moved or exiting.\n",
5876 aggr_count
, i
, (*next_p
->p_name
? next_p
->p_name
: "unknown"), next_p
->p_pid
);
5878 next_p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
5883 next_p
= memorystatus_get_next_proc_locked(&i
, p
, TRUE
);
5885 if (p
->p_memstat_effectivepriority
> priority_max
) {
5887 * Bail out of this killing spree if we have
5888 * reached beyond the priority_max jetsam band.
5889 * That is, we kill up to and through the
5890 * priority_max jetsam band.
5897 aPid_ep
= p
->p_memstat_effectivepriority
;
5899 if (p
->p_memstat_state
& (P_MEMSTAT_ERROR
| P_MEMSTAT_TERMINATED
)) {
5904 * Capture a snapshot if none exists.
5906 if (memorystatus_jetsam_snapshot_count
== 0) {
5907 memorystatus_init_jetsam_snapshot_locked(NULL
, 0);
5908 new_snapshot
= TRUE
;
5912 * Mark as terminated so that if exit1() indicates success, but the process (for example)
5913 * is blocked in task_exception_notify(), it'll be skipped if encountered again - see
5914 * <rdar://problem/13553476>. This is cheaper than examining P_LEXIT, which requires the
5915 * acquisition of the proc lock.
5917 p
->p_memstat_state
|= P_MEMSTAT_TERMINATED
;
5919 killtime
= mach_absolute_time();
5920 absolutetime_to_microtime(killtime
, &tv_sec
, &tv_usec
);
5921 tv_msec
= tv_usec
/ 1000;
5923 /* Shift queue, update stats */
5924 memorystatus_update_jetsam_snapshot_entry_locked(p
, cause
, killtime
);
5927 * In order to kill the target process, we will drop the proc_list_lock.
5928 * To guaranteee that p and next_p don't disappear out from under the lock,
5929 * we must take a ref on both.
5930 * If we cannot get a reference, then it's likely we've raced with
5931 * that process exiting on another core.
5933 if (proc_ref_locked(p
) == p
) {
5935 while (next_p
&& (proc_ref_locked(next_p
) != next_p
)) {
5939 * We must have raced with next_p exiting on another core.
5940 * Recover by getting the next eligible process in the band.
5943 MEMORYSTATUS_DEBUG(1, "memorystatus: aggressive%d: skipping %d [%s] (exiting?)\n",
5944 aggr_count
, next_p
->p_pid
, (*next_p
->p_name
? next_p
->p_name
: "(unknown)"));
5947 next_p
= memorystatus_get_next_proc_locked(&i
, temp_p
, TRUE
);
5952 printf("%lu.%03d memorystatus: %s%d pid %d [%s] (%s %d) - memorystatus_available_pages: %llu\n",
5953 (unsigned long)tv_sec
, tv_msec
,
5954 ((aPid_ep
== JETSAM_PRIORITY_IDLE
) ? "killing_idle_process_aggressive" : "killing_top_process_aggressive"),
5955 aggr_count
, aPid
, (*p
->p_name
? p
->p_name
: "unknown"),
5956 memorystatus_kill_cause_name
[cause
], aPid_ep
, (uint64_t)MEMORYSTATUS_LOG_AVAILABLE_PAGES
);
5958 memorystatus_level_snapshot
= memorystatus_level
;
5961 * memorystatus_do_kill() drops a reference, so take another one so we can
5962 * continue to use this exit reason even after memorystatus_do_kill()
5965 os_reason_ref(jetsam_reason
);
5966 killed
= memorystatus_do_kill(p
, cause
, jetsam_reason
, &footprint_of_killed_proc
);
5970 *memory_reclaimed
+= footprint_of_killed_proc
;
5977 * Continue the killing spree.
5981 proc_rele_locked(next_p
);
5984 if (aPid_ep
== JETSAM_PRIORITY_FOREGROUND
&& memorystatus_aggressive_jetsam_lenient
== TRUE
) {
5985 if (memorystatus_level
> memorystatus_level_snapshot
&& ((memorystatus_level
- memorystatus_level_snapshot
) >= AGGRESSIVE_JETSAM_LENIENT_MODE_THRESHOLD
)) {
5986 #if DEVELOPMENT || DEBUG
5987 printf("Disabling Lenient mode after one-time deployment.\n");
5988 #endif /* DEVELOPMENT || DEBUG */
5989 memorystatus_aggressive_jetsam_lenient
= FALSE
;
5998 * Failure - first unwind the state,
5999 * then fall through to restart the search.
6002 proc_rele_locked(p
);
6004 proc_rele_locked(next_p
);
6006 p
->p_memstat_state
&= ~P_MEMSTAT_TERMINATED
;
6007 p
->p_memstat_state
|= P_MEMSTAT_ERROR
;
6013 * Failure - restart the search at the beginning of
6014 * the band we were already traversing.
6016 * We might have raced with "p" exiting on another core, resulting in no
6017 * ref on "p". Or, we may have failed to kill "p".
6019 * Either way, we fall thru to here, leaving the proc in the
6020 * P_MEMSTAT_TERMINATED or P_MEMSTAT_ERROR state.
6022 * And, we hold the the proc_list_lock at this point.
6025 next_p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
6031 os_reason_free(jetsam_reason
);
6033 /* Clear snapshot if freshly captured and no target was found */
6034 if (new_snapshot
&& (kill_count
== 0)) {
6036 memorystatus_jetsam_snapshot
->entry_count
= memorystatus_jetsam_snapshot_count
= 0;
6040 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_JETSAM
) | DBG_FUNC_END
,
6041 MEMORYSTATUS_LOG_AVAILABLE_PAGES
, 0, kill_count
, *memory_reclaimed
, 0);
6043 if (kill_count
> 0) {
6051 memorystatus_kill_hiwat_proc(uint32_t *errors
, boolean_t
*purged
, uint64_t *memory_reclaimed
)
6054 proc_t p
= PROC_NULL
, next_p
= PROC_NULL
;
6055 boolean_t new_snapshot
= FALSE
, killed
= FALSE
, freed_mem
= FALSE
;
6058 os_reason_t jetsam_reason
= OS_REASON_NULL
;
6059 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_JETSAM_HIWAT
) | DBG_FUNC_START
,
6060 MEMORYSTATUS_LOG_AVAILABLE_PAGES
, 0, 0, 0, 0);
6062 jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_MEMORY_HIGHWATER
);
6063 if (jetsam_reason
== OS_REASON_NULL
) {
6064 printf("memorystatus_kill_hiwat_proc: failed to allocate exit reason\n");
6069 next_p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
6071 uint64_t footprint_in_bytes
= 0;
6072 uint64_t memlimit_in_bytes
= 0;
6076 next_p
= memorystatus_get_next_proc_locked(&i
, p
, TRUE
);
6079 aPid_ep
= p
->p_memstat_effectivepriority
;
6081 if (p
->p_memstat_state
& (P_MEMSTAT_ERROR
| P_MEMSTAT_TERMINATED
)) {
6085 /* skip if no limit set */
6086 if (p
->p_memstat_memlimit
<= 0) {
6090 footprint_in_bytes
= get_task_phys_footprint(p
->task
);
6091 memlimit_in_bytes
= (((uint64_t)p
->p_memstat_memlimit
) * 1024ULL * 1024ULL); /* convert MB to bytes */
6092 skip
= (footprint_in_bytes
<= memlimit_in_bytes
);
6096 if (p
->p_memstat_state
& P_MEMSTAT_LOCKED
) {
6107 if (memorystatus_jetsam_snapshot_count
== 0) {
6108 memorystatus_init_jetsam_snapshot_locked(NULL
, 0);
6109 new_snapshot
= TRUE
;
6112 if (proc_ref_locked(p
) == p
) {
6114 * Mark as terminated so that if exit1() indicates success, but the process (for example)
6115 * is blocked in task_exception_notify(), it'll be skipped if encountered again - see
6116 * <rdar://problem/13553476>. This is cheaper than examining P_LEXIT, which requires the
6117 * acquisition of the proc lock.
6119 p
->p_memstat_state
|= P_MEMSTAT_TERMINATED
;
6124 * We need to restart the search again because
6125 * proc_ref_locked _can_ drop the proc_list lock
6126 * and we could have lost our stored next_p via
6127 * an exit() on another core.
6130 next_p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
6134 footprint_in_bytes
= 0;
6135 freed_mem
= memorystatus_kill_proc(p
, kMemorystatusKilledHiwat
, jetsam_reason
, &killed
, &footprint_in_bytes
); /* purged and/or killed 'p' */
6139 if (killed
== FALSE
) {
6140 /* purged 'p'..don't reset HWM candidate count */
6144 p
->p_memstat_state
&= ~P_MEMSTAT_TERMINATED
;
6147 *memory_reclaimed
= footprint_in_bytes
;
6153 * Failure - first unwind the state,
6154 * then fall through to restart the search.
6157 proc_rele_locked(p
);
6158 p
->p_memstat_state
&= ~P_MEMSTAT_TERMINATED
;
6159 p
->p_memstat_state
|= P_MEMSTAT_ERROR
;
6163 next_p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
6170 os_reason_free(jetsam_reason
);
6173 *memory_reclaimed
= 0;
6175 /* Clear snapshot if freshly captured and no target was found */
6178 memorystatus_jetsam_snapshot
->entry_count
= memorystatus_jetsam_snapshot_count
= 0;
6183 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_JETSAM_HIWAT
) | DBG_FUNC_END
,
6184 MEMORYSTATUS_LOG_AVAILABLE_PAGES
, killed
? aPid
: 0, killed
, *memory_reclaimed
, 0);
6190 * Jetsam a process pinned in the elevated band.
6192 * Return: true -- a pinned process was jetsammed
6193 * false -- no pinned process was jetsammed
6196 memorystatus_kill_elevated_process(uint32_t cause
, os_reason_t jetsam_reason
, unsigned int band
, int aggr_count
, uint32_t *errors
, uint64_t *memory_reclaimed
)
6199 proc_t p
= PROC_NULL
, next_p
= PROC_NULL
;
6200 boolean_t new_snapshot
= FALSE
, killed
= FALSE
;
6203 uint64_t killtime
= 0;
6205 clock_usec_t tv_usec
;
6207 uint64_t footprint_of_killed_proc
= 0;
6210 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_JETSAM
) | DBG_FUNC_START
,
6211 MEMORYSTATUS_LOG_AVAILABLE_PAGES
, 0, 0, 0, 0);
6214 boolean_t consider_frozen_only
= FALSE
;
6216 if (band
== (unsigned int) memorystatus_freeze_jetsam_band
) {
6217 consider_frozen_only
= TRUE
;
6219 #endif /* CONFIG_FREEZE */
6223 next_p
= memorystatus_get_first_proc_locked(&band
, FALSE
);
6226 next_p
= memorystatus_get_next_proc_locked(&band
, p
, FALSE
);
6229 aPid_ep
= p
->p_memstat_effectivepriority
;
6232 * Only pick a process pinned in this elevated band
6234 if (!(p
->p_memstat_state
& P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
)) {
6238 if (p
->p_memstat_state
& (P_MEMSTAT_ERROR
| P_MEMSTAT_TERMINATED
)) {
6243 if (consider_frozen_only
&& !(p
->p_memstat_state
& P_MEMSTAT_FROZEN
)) {
6247 if (p
->p_memstat_state
& P_MEMSTAT_LOCKED
) {
6250 #endif /* CONFIG_FREEZE */
6252 #if DEVELOPMENT || DEBUG
6253 MEMORYSTATUS_DEBUG(1, "jetsam: elevated%d process pid %d [%s] - memorystatus_available_pages: %d\n",
6255 aPid
, (*p
->p_name
? p
->p_name
: "unknown"),
6256 MEMORYSTATUS_LOG_AVAILABLE_PAGES
);
6257 #endif /* DEVELOPMENT || DEBUG */
6259 if (memorystatus_jetsam_snapshot_count
== 0) {
6260 memorystatus_init_jetsam_snapshot_locked(NULL
, 0);
6261 new_snapshot
= TRUE
;
6264 p
->p_memstat_state
|= P_MEMSTAT_TERMINATED
;
6266 killtime
= mach_absolute_time();
6267 absolutetime_to_microtime(killtime
, &tv_sec
, &tv_usec
);
6268 tv_msec
= tv_usec
/ 1000;
6270 memorystatus_update_jetsam_snapshot_entry_locked(p
, cause
, killtime
);
6272 if (proc_ref_locked(p
) == p
) {
6276 * memorystatus_do_kill drops a reference, so take another one so we can
6277 * continue to use this exit reason even after memorystatus_do_kill()
6280 os_reason_ref(jetsam_reason
);
6281 killed
= memorystatus_do_kill(p
, cause
, jetsam_reason
, &footprint_of_killed_proc
);
6283 os_log_with_startup_serial(OS_LOG_DEFAULT
, "%lu.%03d memorystatus: killing_top_process_elevated%d pid %d [%s] (%s %d) %lluKB - memorystatus_available_pages: %llu\n",
6284 (unsigned long)tv_sec
, tv_msec
,
6286 aPid
, ((p
&& *p
->p_name
) ? p
->p_name
: "unknown"),
6287 memorystatus_kill_cause_name
[cause
], aPid_ep
,
6288 footprint_of_killed_proc
>> 10, (uint64_t)MEMORYSTATUS_LOG_AVAILABLE_PAGES
);
6292 *memory_reclaimed
= footprint_of_killed_proc
;
6299 * Failure - first unwind the state,
6300 * then fall through to restart the search.
6303 proc_rele_locked(p
);
6304 p
->p_memstat_state
&= ~P_MEMSTAT_TERMINATED
;
6305 p
->p_memstat_state
|= P_MEMSTAT_ERROR
;
6310 * Failure - restart the search.
6312 * We might have raced with "p" exiting on another core, resulting in no
6313 * ref on "p". Or, we may have failed to kill "p".
6315 * Either way, we fall thru to here, leaving the proc in the
6316 * P_MEMSTAT_TERMINATED state or P_MEMSTAT_ERROR state.
6318 * And, we hold the the proc_list_lock at this point.
6321 next_p
= memorystatus_get_first_proc_locked(&band
, FALSE
);
6327 os_reason_free(jetsam_reason
);
6329 if (kill_count
== 0) {
6330 *memory_reclaimed
= 0;
6332 /* Clear snapshot if freshly captured and no target was found */
6335 memorystatus_jetsam_snapshot
->entry_count
= memorystatus_jetsam_snapshot_count
= 0;
6340 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_JETSAM
) | DBG_FUNC_END
,
6341 MEMORYSTATUS_LOG_AVAILABLE_PAGES
, killed
? aPid
: 0, kill_count
, *memory_reclaimed
, 0);
6347 memorystatus_kill_process_async(pid_t victim_pid
, uint32_t cause
)
6350 * TODO: allow a general async path
6352 * NOTE: If a new async kill cause is added, make sure to update memorystatus_thread() to
6353 * add the appropriate exit reason code mapping.
6355 if ((victim_pid
!= -1) ||
6356 (cause
!= kMemorystatusKilledVMPageShortage
&&
6357 cause
!= kMemorystatusKilledVMCompressorThrashing
&&
6358 cause
!= kMemorystatusKilledVMCompressorSpaceShortage
&&
6359 cause
!= kMemorystatusKilledFCThrashing
&&
6360 cause
!= kMemorystatusKilledZoneMapExhaustion
)) {
6364 kill_under_pressure_cause
= cause
;
6365 memorystatus_thread_wake();
6370 memorystatus_kill_on_VM_compressor_space_shortage(boolean_t async
)
6373 return memorystatus_kill_process_async(-1, kMemorystatusKilledVMCompressorSpaceShortage
);
6375 os_reason_t jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_MEMORY_VMCOMPRESSOR_SPACE_SHORTAGE
);
6376 if (jetsam_reason
== OS_REASON_NULL
) {
6377 printf("memorystatus_kill_on_VM_compressor_space_shortage -- sync: failed to allocate jetsam reason\n");
6380 return memorystatus_kill_process_sync(-1, kMemorystatusKilledVMCompressorSpaceShortage
, jetsam_reason
);
6386 memorystatus_kill_on_VM_compressor_thrashing(boolean_t async
)
6389 return memorystatus_kill_process_async(-1, kMemorystatusKilledVMCompressorThrashing
);
6391 os_reason_t jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_MEMORY_VMCOMPRESSOR_THRASHING
);
6392 if (jetsam_reason
== OS_REASON_NULL
) {
6393 printf("memorystatus_kill_on_VM_compressor_thrashing -- sync: failed to allocate jetsam reason\n");
6396 return memorystatus_kill_process_sync(-1, kMemorystatusKilledVMCompressorThrashing
, jetsam_reason
);
6401 memorystatus_kill_on_VM_page_shortage(boolean_t async
)
6404 return memorystatus_kill_process_async(-1, kMemorystatusKilledVMPageShortage
);
6406 os_reason_t jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_MEMORY_VMPAGESHORTAGE
);
6407 if (jetsam_reason
== OS_REASON_NULL
) {
6408 printf("memorystatus_kill_on_VM_page_shortage -- sync: failed to allocate jetsam reason\n");
6411 return memorystatus_kill_process_sync(-1, kMemorystatusKilledVMPageShortage
, jetsam_reason
);
6416 memorystatus_kill_on_FC_thrashing(boolean_t async
)
6419 return memorystatus_kill_process_async(-1, kMemorystatusKilledFCThrashing
);
6421 os_reason_t jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_MEMORY_FCTHRASHING
);
6422 if (jetsam_reason
== OS_REASON_NULL
) {
6423 printf("memorystatus_kill_on_FC_thrashing -- sync: failed to allocate jetsam reason\n");
6426 return memorystatus_kill_process_sync(-1, kMemorystatusKilledFCThrashing
, jetsam_reason
);
6431 memorystatus_kill_on_vnode_limit(void)
6433 os_reason_t jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_VNODE
);
6434 if (jetsam_reason
== OS_REASON_NULL
) {
6435 printf("memorystatus_kill_on_vnode_limit: failed to allocate jetsam reason\n");
6438 return memorystatus_kill_process_sync(-1, kMemorystatusKilledVnodes
, jetsam_reason
);
6441 #endif /* CONFIG_JETSAM */
6444 memorystatus_kill_on_zone_map_exhaustion(pid_t pid
)
6446 boolean_t res
= FALSE
;
6448 res
= memorystatus_kill_process_async(-1, kMemorystatusKilledZoneMapExhaustion
);
6450 os_reason_t jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_ZONE_MAP_EXHAUSTION
);
6451 if (jetsam_reason
== OS_REASON_NULL
) {
6452 printf("memorystatus_kill_on_zone_map_exhaustion: failed to allocate jetsam reason\n");
6455 res
= memorystatus_kill_process_sync(pid
, kMemorystatusKilledZoneMapExhaustion
, jetsam_reason
);
6461 memorystatus_on_pageout_scan_end(void)
6466 /* Return both allocated and actual size, since there's a race between allocation and list compilation */
6468 memorystatus_get_priority_list(memorystatus_priority_entry_t
**list_ptr
, size_t *buffer_size
, size_t *list_size
, boolean_t size_only
)
6470 uint32_t list_count
, i
= 0;
6471 memorystatus_priority_entry_t
*list_entry
;
6474 list_count
= memorystatus_list_count
;
6475 *list_size
= sizeof(memorystatus_priority_entry_t
) * list_count
;
6477 /* Just a size check? */
6482 /* Otherwise, validate the size of the buffer */
6483 if (*buffer_size
< *list_size
) {
6487 *list_ptr
= kheap_alloc(KHEAP_TEMP
, *list_size
, Z_WAITOK
| Z_ZERO
);
6492 *buffer_size
= *list_size
;
6495 list_entry
= *list_ptr
;
6499 p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
6500 while (p
&& (*list_size
< *buffer_size
)) {
6501 list_entry
->pid
= p
->p_pid
;
6502 list_entry
->priority
= p
->p_memstat_effectivepriority
;
6503 list_entry
->user_data
= p
->p_memstat_userdata
;
6505 if (p
->p_memstat_memlimit
<= 0) {
6506 task_get_phys_footprint_limit(p
->task
, &list_entry
->limit
);
6508 list_entry
->limit
= p
->p_memstat_memlimit
;
6511 list_entry
->state
= memorystatus_build_state(p
);
6514 *list_size
+= sizeof(memorystatus_priority_entry_t
);
6516 p
= memorystatus_get_next_proc_locked(&i
, p
, TRUE
);
6521 MEMORYSTATUS_DEBUG(1, "memorystatus_get_priority_list: returning %lu for size\n", (unsigned long)*list_size
);
6527 memorystatus_get_priority_pid(pid_t pid
, user_addr_t buffer
, size_t buffer_size
)
6530 memorystatus_priority_entry_t mp_entry
;
6533 /* Validate inputs */
6534 if ((pid
== 0) || (buffer
== USER_ADDR_NULL
) || (buffer_size
!= sizeof(memorystatus_priority_entry_t
))) {
6538 proc_t p
= proc_find(pid
);
6543 memset(&mp_entry
, 0, sizeof(memorystatus_priority_entry_t
));
6545 mp_entry
.pid
= p
->p_pid
;
6546 mp_entry
.priority
= p
->p_memstat_effectivepriority
;
6547 mp_entry
.user_data
= p
->p_memstat_userdata
;
6548 if (p
->p_memstat_memlimit
<= 0) {
6549 ret
= task_get_phys_footprint_limit(p
->task
, &mp_entry
.limit
);
6550 if (ret
!= KERN_SUCCESS
) {
6555 mp_entry
.limit
= p
->p_memstat_memlimit
;
6557 mp_entry
.state
= memorystatus_build_state(p
);
6561 error
= copyout(&mp_entry
, buffer
, buffer_size
);
6567 memorystatus_cmd_get_priority_list(pid_t pid
, user_addr_t buffer
, size_t buffer_size
, int32_t *retval
)
6570 boolean_t size_only
;
6574 * When a non-zero pid is provided, the 'list' has only one entry.
6577 size_only
= ((buffer
== USER_ADDR_NULL
) ? TRUE
: FALSE
);
6580 list_size
= sizeof(memorystatus_priority_entry_t
) * 1;
6582 error
= memorystatus_get_priority_pid(pid
, buffer
, buffer_size
);
6585 memorystatus_priority_entry_t
*list
= NULL
;
6586 error
= memorystatus_get_priority_list(&list
, &buffer_size
, &list_size
, size_only
);
6590 error
= copyout(list
, buffer
, list_size
);
6595 kheap_free(KHEAP_TEMP
, list
, buffer_size
);
6600 assert(list_size
<= INT32_MAX
);
6601 *retval
= (int32_t) list_size
;
6608 memorystatus_clear_errors(void)
6613 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_CLEAR_ERRORS
) | DBG_FUNC_START
, 0, 0, 0, 0, 0);
6617 p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
6619 if (p
->p_memstat_state
& P_MEMSTAT_ERROR
) {
6620 p
->p_memstat_state
&= ~P_MEMSTAT_ERROR
;
6622 p
= memorystatus_get_next_proc_locked(&i
, p
, TRUE
);
6627 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_CLEAR_ERRORS
) | DBG_FUNC_END
, 0, 0, 0, 0, 0);
6632 memorystatus_update_levels_locked(boolean_t critical_only
)
6634 memorystatus_available_pages_critical
= memorystatus_available_pages_critical_base
;
6637 * If there's an entry in the first bucket, we have idle processes.
6640 memstat_bucket_t
*first_bucket
= &memstat_bucket
[JETSAM_PRIORITY_IDLE
];
6641 if (first_bucket
->count
) {
6642 memorystatus_available_pages_critical
+= memorystatus_available_pages_critical_idle_offset
;
6644 if (memorystatus_available_pages_critical
> memorystatus_available_pages_pressure
) {
6646 * The critical threshold must never exceed the pressure threshold
6648 memorystatus_available_pages_critical
= memorystatus_available_pages_pressure
;
6652 if (memorystatus_jetsam_policy
& kPolicyMoreFree
) {
6653 memorystatus_available_pages_critical
+= memorystatus_policy_more_free_offset_pages
;
6656 if (critical_only
) {
6660 #if VM_PRESSURE_EVENTS
6661 memorystatus_available_pages_pressure
= (int32_t)(pressure_threshold_percentage
* (atop_64(max_mem
) / 100));
6666 memorystatus_fast_jetsam_override(boolean_t enable_override
)
6668 /* If fast jetsam is not enabled, simply return */
6669 if (!fast_jetsam_enabled
) {
6673 if (enable_override
) {
6674 if ((memorystatus_jetsam_policy
& kPolicyMoreFree
) == kPolicyMoreFree
) {
6678 memorystatus_jetsam_policy
|= kPolicyMoreFree
;
6679 memorystatus_thread_pool_max();
6680 memorystatus_update_levels_locked(TRUE
);
6683 if ((memorystatus_jetsam_policy
& kPolicyMoreFree
) == 0) {
6687 memorystatus_jetsam_policy
&= ~kPolicyMoreFree
;
6688 memorystatus_thread_pool_default();
6689 memorystatus_update_levels_locked(TRUE
);
6696 sysctl_kern_memorystatus_policy_more_free SYSCTL_HANDLER_ARGS
6698 #pragma unused(arg1, arg2, oidp)
6699 int error
= 0, more_free
= 0;
6702 * TODO: Enable this privilege check?
6704 * error = priv_check_cred(kauth_cred_get(), PRIV_VM_JETSAM, 0);
6709 error
= sysctl_handle_int(oidp
, &more_free
, 0, req
);
6710 if (error
|| !req
->newptr
) {
6715 memorystatus_fast_jetsam_override(true);
6717 memorystatus_fast_jetsam_override(false);
6722 SYSCTL_PROC(_kern
, OID_AUTO
, memorystatus_policy_more_free
, CTLTYPE_INT
| CTLFLAG_WR
| CTLFLAG_LOCKED
| CTLFLAG_MASKED
,
6723 0, 0, &sysctl_kern_memorystatus_policy_more_free
, "I", "");
6725 #endif /* CONFIG_JETSAM */
6728 * Get the at_boot snapshot
6731 memorystatus_get_at_boot_snapshot(memorystatus_jetsam_snapshot_t
**snapshot
, size_t *snapshot_size
, boolean_t size_only
)
6733 size_t input_size
= *snapshot_size
;
6736 * The at_boot snapshot has no entry list.
6738 *snapshot_size
= sizeof(memorystatus_jetsam_snapshot_t
);
6745 * Validate the size of the snapshot buffer
6747 if (input_size
< *snapshot_size
) {
6752 * Update the notification_time only
6754 memorystatus_at_boot_snapshot
.notification_time
= mach_absolute_time();
6755 *snapshot
= &memorystatus_at_boot_snapshot
;
6757 MEMORYSTATUS_DEBUG(7, "memorystatus_get_at_boot_snapshot: returned inputsize (%ld), snapshot_size(%ld), listcount(%d)\n",
6758 (long)input_size
, (long)*snapshot_size
, 0);
6763 * Get the previous fully populated snapshot
6766 memorystatus_get_jetsam_snapshot_copy(memorystatus_jetsam_snapshot_t
**snapshot
, size_t *snapshot_size
, boolean_t size_only
)
6768 size_t input_size
= *snapshot_size
;
6770 if (memorystatus_jetsam_snapshot_copy_count
> 0) {
6771 *snapshot_size
= sizeof(memorystatus_jetsam_snapshot_t
) + (sizeof(memorystatus_jetsam_snapshot_entry_t
) * (memorystatus_jetsam_snapshot_copy_count
));
6780 if (input_size
< *snapshot_size
) {
6784 *snapshot
= memorystatus_jetsam_snapshot_copy
;
6786 MEMORYSTATUS_DEBUG(7, "memorystatus_get_jetsam_snapshot_copy: returned inputsize (%ld), snapshot_size(%ld), listcount(%ld)\n",
6787 (long)input_size
, (long)*snapshot_size
, (long)memorystatus_jetsam_snapshot_copy_count
);
6794 memorystatus_get_jetsam_snapshot_freezer(memorystatus_jetsam_snapshot_t
**snapshot
, size_t *snapshot_size
, boolean_t size_only
)
6796 size_t input_size
= *snapshot_size
;
6798 if (memorystatus_jetsam_snapshot_freezer
->entry_count
> 0) {
6799 *snapshot_size
= sizeof(memorystatus_jetsam_snapshot_t
) + (sizeof(memorystatus_jetsam_snapshot_entry_t
) * (memorystatus_jetsam_snapshot_freezer
->entry_count
));
6803 assert(*snapshot_size
<= memorystatus_jetsam_snapshot_freezer_size
);
6809 if (input_size
< *snapshot_size
) {
6813 *snapshot
= memorystatus_jetsam_snapshot_freezer
;
6815 MEMORYSTATUS_DEBUG(7, "memorystatus_get_jetsam_snapshot_freezer: returned inputsize (%ld), snapshot_size(%ld), listcount(%ld)\n",
6816 (long)input_size
, (long)*snapshot_size
, (long)memorystatus_jetsam_snapshot_freezer
->entry_count
);
6820 #endif /* CONFIG_FREEZE */
6823 memorystatus_get_on_demand_snapshot(memorystatus_jetsam_snapshot_t
**snapshot
, size_t *snapshot_size
, boolean_t size_only
)
6825 size_t input_size
= *snapshot_size
;
6826 uint32_t ods_list_count
= memorystatus_list_count
;
6827 memorystatus_jetsam_snapshot_t
*ods
= NULL
; /* The on_demand snapshot buffer */
6829 *snapshot_size
= sizeof(memorystatus_jetsam_snapshot_t
) + (sizeof(memorystatus_jetsam_snapshot_entry_t
) * (ods_list_count
));
6836 * Validate the size of the snapshot buffer.
6837 * This is inherently racey. May want to revisit
6838 * this error condition and trim the output when
6841 if (input_size
< *snapshot_size
) {
6846 * Allocate and initialize a snapshot buffer.
6848 ods
= kalloc(*snapshot_size
);
6853 memset(ods
, 0, *snapshot_size
);
6856 memorystatus_init_jetsam_snapshot_locked(ods
, ods_list_count
);
6860 * Return the kernel allocated, on_demand buffer.
6861 * The caller of this routine will copy the data out
6862 * to user space and then free the kernel allocated
6867 MEMORYSTATUS_DEBUG(7, "memorystatus_get_on_demand_snapshot: returned inputsize (%ld), snapshot_size(%ld), listcount(%ld)\n",
6868 (long)input_size
, (long)*snapshot_size
, (long)ods_list_count
);
6874 memorystatus_get_jetsam_snapshot(memorystatus_jetsam_snapshot_t
**snapshot
, size_t *snapshot_size
, boolean_t size_only
)
6876 size_t input_size
= *snapshot_size
;
6878 if (memorystatus_jetsam_snapshot_count
> 0) {
6879 *snapshot_size
= sizeof(memorystatus_jetsam_snapshot_t
) + (sizeof(memorystatus_jetsam_snapshot_entry_t
) * (memorystatus_jetsam_snapshot_count
));
6888 if (input_size
< *snapshot_size
) {
6892 *snapshot
= memorystatus_jetsam_snapshot
;
6894 MEMORYSTATUS_DEBUG(7, "memorystatus_get_jetsam_snapshot: returned inputsize (%ld), snapshot_size(%ld), listcount(%ld)\n",
6895 (long)input_size
, (long)*snapshot_size
, (long)memorystatus_jetsam_snapshot_count
);
6902 memorystatus_cmd_get_jetsam_snapshot(int32_t flags
, user_addr_t buffer
, size_t buffer_size
, int32_t *retval
)
6905 boolean_t size_only
;
6906 boolean_t is_default_snapshot
= FALSE
;
6907 boolean_t is_on_demand_snapshot
= FALSE
;
6908 boolean_t is_at_boot_snapshot
= FALSE
;
6910 bool is_freezer_snapshot
= false;
6911 #endif /* CONFIG_FREEZE */
6912 memorystatus_jetsam_snapshot_t
*snapshot
;
6914 size_only
= ((buffer
== USER_ADDR_NULL
) ? TRUE
: FALSE
);
6918 is_default_snapshot
= TRUE
;
6919 error
= memorystatus_get_jetsam_snapshot(&snapshot
, &buffer_size
, size_only
);
6921 if (flags
& ~(MEMORYSTATUS_SNAPSHOT_ON_DEMAND
| MEMORYSTATUS_SNAPSHOT_AT_BOOT
| MEMORYSTATUS_SNAPSHOT_COPY
| MEMORYSTATUS_FLAGS_SNAPSHOT_FREEZER
)) {
6923 * Unsupported bit set in flag.
6928 if (flags
& (flags
- 0x1)) {
6930 * Can't have multiple flags set at the same time.
6935 if (flags
& MEMORYSTATUS_SNAPSHOT_ON_DEMAND
) {
6936 is_on_demand_snapshot
= TRUE
;
6938 * When not requesting the size only, the following call will allocate
6939 * an on_demand snapshot buffer, which is freed below.
6941 error
= memorystatus_get_on_demand_snapshot(&snapshot
, &buffer_size
, size_only
);
6942 } else if (flags
& MEMORYSTATUS_SNAPSHOT_AT_BOOT
) {
6943 is_at_boot_snapshot
= TRUE
;
6944 error
= memorystatus_get_at_boot_snapshot(&snapshot
, &buffer_size
, size_only
);
6945 } else if (flags
& MEMORYSTATUS_SNAPSHOT_COPY
) {
6946 error
= memorystatus_get_jetsam_snapshot_copy(&snapshot
, &buffer_size
, size_only
);
6948 } else if (flags
& MEMORYSTATUS_FLAGS_SNAPSHOT_FREEZER
) {
6949 is_freezer_snapshot
= true;
6950 error
= memorystatus_get_jetsam_snapshot_freezer(&snapshot
, &buffer_size
, size_only
);
6951 #endif /* CONFIG_FREEZE */
6954 * Invalid flag setting.
6965 * Copy the data out to user space and clear the snapshot buffer.
6966 * If working with the jetsam snapshot,
6967 * clearing the buffer means, reset the count.
6968 * If working with an on_demand snapshot
6969 * clearing the buffer means, free it.
6970 * If working with the at_boot snapshot
6971 * there is nothing to clear or update.
6972 * If working with a copy of the snapshot
6973 * there is nothing to clear or update.
6974 * If working with the freezer snapshot
6975 * clearing the buffer means, reset the count.
6978 if ((error
= copyout(snapshot
, buffer
, buffer_size
)) == 0) {
6980 if (is_default_snapshot
|| is_freezer_snapshot
) {
6982 if (is_default_snapshot
) {
6983 #endif /* CONFIG_FREEZE */
6985 * The jetsam snapshot is never freed, its count is simply reset.
6986 * However, we make a copy for any parties that might be interested
6987 * in the previous fully populated snapshot.
6990 #if DEVELOPMENT || DEBUG
6991 if (memorystatus_snapshot_owner
!= 0 && memorystatus_snapshot_owner
!= current_proc()->p_pid
) {
6992 /* Snapshot is currently owned by someone else. Don't consume it. */
6996 #endif /* (DEVELOPMENT || DEBUG)*/
6997 if (is_default_snapshot
) {
6998 memcpy(memorystatus_jetsam_snapshot_copy
, memorystatus_jetsam_snapshot
, memorystatus_jetsam_snapshot_size
);
6999 memorystatus_jetsam_snapshot_copy_count
= memorystatus_jetsam_snapshot_count
;
7000 snapshot
->entry_count
= memorystatus_jetsam_snapshot_count
= 0;
7001 memorystatus_jetsam_snapshot_last_timestamp
= 0;
7004 else if (is_freezer_snapshot
) {
7005 memorystatus_jetsam_snapshot_freezer
->entry_count
= 0;
7007 #endif /* CONFIG_FREEZE */
7012 if (is_on_demand_snapshot
) {
7014 * The on_demand snapshot is always freed,
7015 * even if the copyout failed.
7018 kfree(snapshot
, buffer_size
);
7025 assert(buffer_size
<= INT32_MAX
);
7026 *retval
= (int32_t) buffer_size
;
7031 #if DEVELOPMENT || DEBUG
7033 memorystatus_cmd_set_jetsam_snapshot_ownership(int32_t flags
)
7036 proc_t caller
= current_proc();
7037 assert(caller
!= kernproc
);
7039 if (flags
& MEMORYSTATUS_FLAGS_SNAPSHOT_TAKE_OWNERSHIP
) {
7040 if (memorystatus_snapshot_owner
== 0) {
7041 memorystatus_snapshot_owner
= caller
->p_pid
;
7043 } else if (memorystatus_snapshot_owner
== caller
->p_pid
) {
7046 /* We don't allow ownership to be taken from another proc. */
7049 } else if (flags
& MEMORYSTATUS_FLAGS_SNAPSHOT_DROP_OWNERSHIP
) {
7050 if (memorystatus_snapshot_owner
== caller
->p_pid
) {
7051 memorystatus_snapshot_owner
= 0;
7053 } else if (memorystatus_snapshot_owner
!= 0) {
7054 /* We don't allow ownership to be taken from another proc. */
7062 #endif /* DEVELOPMENT || DEBUG */
7065 * Routine: memorystatus_cmd_grp_set_priorities
7066 * Purpose: Update priorities for a group of processes.
7069 * Move each process out of its effective priority
7070 * band and into a new priority band.
7071 * Maintains relative order from lowest to highest priority.
7072 * In single band, maintains relative order from head to tail.
7074 * eg: before [effectivepriority | pid]
7076 * [17 | p55, p67, p19 ]
7081 * after [ new band | pid]
7082 * [ xxx | p71, p82, p25, p103, p10, p55, p67, p19, p101]
7084 * Returns: 0 on success, else non-zero.
7086 * Caveat: We know there is a race window regarding recycled pids.
7087 * A process could be killed before the kernel can act on it here.
7088 * If a pid cannot be found in any of the jetsam priority bands,
7089 * then we simply ignore it. No harm.
7090 * But, if the pid has been recycled then it could be an issue.
7091 * In that scenario, we might move an unsuspecting process to the new
7092 * priority band. It's not clear how the kernel can safeguard
7093 * against this, but it would be an extremely rare case anyway.
7094 * The caller of this api might avoid such race conditions by
7095 * ensuring that the processes passed in the pid list are suspended.
7100 memorystatus_cmd_grp_set_priorities(user_addr_t buffer
, size_t buffer_size
)
7103 * We only handle setting priority
7108 memorystatus_properties_entry_v1_t
*entries
= NULL
;
7109 size_t entry_count
= 0;
7111 /* This will be the ordered proc list */
7112 typedef struct memorystatus_internal_properties
{
7115 } memorystatus_internal_properties_t
;
7117 memorystatus_internal_properties_t
*table
= NULL
;
7118 size_t table_size
= 0;
7119 uint32_t table_count
= 0;
7122 uint32_t bucket_index
= 0;
7123 boolean_t head_insert
;
7124 int32_t new_priority
;
7129 if ((buffer
== USER_ADDR_NULL
) || (buffer_size
== 0)) {
7134 entry_count
= (buffer_size
/ sizeof(memorystatus_properties_entry_v1_t
));
7135 if (entry_count
== 0) {
7136 /* buffer size was not large enough for a single entry */
7141 if ((entries
= kheap_alloc(KHEAP_TEMP
, buffer_size
, Z_WAITOK
)) == NULL
) {
7146 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_GRP_SET_PROP
) | DBG_FUNC_START
, MEMORYSTATUS_FLAGS_GRP_SET_PRIORITY
, entry_count
, 0, 0, 0);
7148 if ((error
= copyin(buffer
, entries
, buffer_size
)) != 0) {
7152 /* Verify sanity of input priorities */
7153 if (entries
[0].version
== MEMORYSTATUS_MPE_VERSION_1
) {
7154 if ((buffer_size
% MEMORYSTATUS_MPE_VERSION_1_SIZE
) != 0) {
7163 for (i
= 0; i
< entry_count
; i
++) {
7164 if (entries
[i
].priority
== -1) {
7165 /* Use as shorthand for default priority */
7166 entries
[i
].priority
= JETSAM_PRIORITY_DEFAULT
;
7167 } else if ((entries
[i
].priority
== system_procs_aging_band
) || (entries
[i
].priority
== applications_aging_band
)) {
7168 /* Both the aging bands are reserved for internal use;
7169 * if requested, adjust to JETSAM_PRIORITY_IDLE. */
7170 entries
[i
].priority
= JETSAM_PRIORITY_IDLE
;
7171 } else if (entries
[i
].priority
== JETSAM_PRIORITY_IDLE_HEAD
) {
7172 /* JETSAM_PRIORITY_IDLE_HEAD inserts at the head of the idle
7174 /* Deal with this later */
7175 } else if ((entries
[i
].priority
< 0) || (entries
[i
].priority
>= MEMSTAT_BUCKET_COUNT
)) {
7182 table_size
= sizeof(memorystatus_internal_properties_t
) * entry_count
;
7183 if ((table
= kheap_alloc(KHEAP_TEMP
, table_size
, Z_WAITOK
| Z_ZERO
)) == NULL
) {
7190 * For each jetsam bucket entry, spin through the input property list.
7191 * When a matching pid is found, populate an adjacent table with the
7192 * appropriate proc pointer and new property values.
7193 * This traversal automatically preserves order from lowest
7194 * to highest priority.
7201 /* Create the ordered table */
7202 p
= memorystatus_get_first_proc_locked(&bucket_index
, TRUE
);
7203 while (p
&& (table_count
< entry_count
)) {
7204 for (i
= 0; i
< entry_count
; i
++) {
7205 if (p
->p_pid
== entries
[i
].pid
) {
7206 /* Build the table data */
7207 table
[table_count
].proc
= p
;
7208 table
[table_count
].priority
= entries
[i
].priority
;
7213 p
= memorystatus_get_next_proc_locked(&bucket_index
, p
, TRUE
);
7216 /* We now have ordered list of procs ready to move */
7217 for (i
= 0; i
< table_count
; i
++) {
7221 /* Allow head inserts -- but relative order is now */
7222 if (table
[i
].priority
== JETSAM_PRIORITY_IDLE_HEAD
) {
7223 new_priority
= JETSAM_PRIORITY_IDLE
;
7226 new_priority
= table
[i
].priority
;
7227 head_insert
= false;
7231 if (p
->p_memstat_state
& P_MEMSTAT_INTERNAL
) {
7236 * Take appropriate steps if moving proc out of
7237 * either of the aging bands.
7239 if ((p
->p_memstat_effectivepriority
== system_procs_aging_band
) || (p
->p_memstat_effectivepriority
== applications_aging_band
)) {
7240 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
7243 memorystatus_update_priority_locked(p
, new_priority
, head_insert
, false);
7249 * if (table_count != entry_count)
7250 * then some pids were not found in a jetsam band.
7251 * harmless but interesting...
7254 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_GRP_SET_PROP
) | DBG_FUNC_END
, MEMORYSTATUS_FLAGS_GRP_SET_PRIORITY
, entry_count
, table_count
, 0, 0);
7257 kheap_free(KHEAP_TEMP
, entries
, buffer_size
);
7260 kheap_free(KHEAP_TEMP
, table
, table_size
);
7266 memorystatus_internal_probabilities_t
*memorystatus_global_probabilities_table
= NULL
;
7267 size_t memorystatus_global_probabilities_size
= 0;
7270 memorystatus_cmd_grp_set_probabilities(user_addr_t buffer
, size_t buffer_size
)
7273 memorystatus_properties_entry_v1_t
*entries
= NULL
;
7274 size_t entry_count
= 0, i
= 0;
7275 memorystatus_internal_probabilities_t
*tmp_table_new
= NULL
, *tmp_table_old
= NULL
;
7276 size_t tmp_table_new_size
= 0, tmp_table_old_size
= 0;
7279 if ((buffer
== USER_ADDR_NULL
) || (buffer_size
== 0)) {
7284 entry_count
= (buffer_size
/ sizeof(memorystatus_properties_entry_v1_t
));
7286 if ((entries
= kheap_alloc(KHEAP_TEMP
, buffer_size
, Z_WAITOK
)) == NULL
) {
7291 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_GRP_SET_PROP
) | DBG_FUNC_START
, MEMORYSTATUS_FLAGS_GRP_SET_PROBABILITY
, entry_count
, 0, 0, 0);
7293 if ((error
= copyin(buffer
, entries
, buffer_size
)) != 0) {
7297 if (entries
[0].version
== MEMORYSTATUS_MPE_VERSION_1
) {
7298 if ((buffer_size
% MEMORYSTATUS_MPE_VERSION_1_SIZE
) != 0) {
7307 /* Verify sanity of input priorities */
7308 for (i
= 0; i
< entry_count
; i
++) {
7310 * 0 - low probability of use.
7311 * 1 - high probability of use.
7313 * Keeping this field an int (& not a bool) to allow
7314 * us to experiment with different values/approaches
7317 if (entries
[i
].use_probability
> 1) {
7323 tmp_table_new_size
= sizeof(memorystatus_internal_probabilities_t
) * entry_count
;
7325 if ((tmp_table_new
= kalloc_flags(tmp_table_new_size
, Z_WAITOK
| Z_ZERO
)) == NULL
) {
7332 if (memorystatus_global_probabilities_table
) {
7333 tmp_table_old
= memorystatus_global_probabilities_table
;
7334 tmp_table_old_size
= memorystatus_global_probabilities_size
;
7337 memorystatus_global_probabilities_table
= tmp_table_new
;
7338 memorystatus_global_probabilities_size
= tmp_table_new_size
;
7339 tmp_table_new
= NULL
;
7341 for (i
= 0; i
< entry_count
; i
++) {
7342 /* Build the table data */
7343 strlcpy(memorystatus_global_probabilities_table
[i
].proc_name
, entries
[i
].proc_name
, MAXCOMLEN
+ 1);
7344 memorystatus_global_probabilities_table
[i
].use_probability
= entries
[i
].use_probability
;
7350 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_GRP_SET_PROP
) | DBG_FUNC_END
, MEMORYSTATUS_FLAGS_GRP_SET_PROBABILITY
, entry_count
, tmp_table_new_size
, 0, 0);
7353 kheap_free(KHEAP_TEMP
, entries
, buffer_size
);
7357 if (tmp_table_old
) {
7358 kfree(tmp_table_old
, tmp_table_old_size
);
7359 tmp_table_old
= NULL
;
7366 memorystatus_cmd_grp_set_properties(int32_t flags
, user_addr_t buffer
, size_t buffer_size
, __unused
int32_t *retval
)
7370 if ((flags
& MEMORYSTATUS_FLAGS_GRP_SET_PRIORITY
) == MEMORYSTATUS_FLAGS_GRP_SET_PRIORITY
) {
7371 error
= memorystatus_cmd_grp_set_priorities(buffer
, buffer_size
);
7372 } else if ((flags
& MEMORYSTATUS_FLAGS_GRP_SET_PROBABILITY
) == MEMORYSTATUS_FLAGS_GRP_SET_PROBABILITY
) {
7373 error
= memorystatus_cmd_grp_set_probabilities(buffer
, buffer_size
);
7382 * This routine is used to update a process's jetsam priority position and stored user_data.
7383 * It is not used for the setting of memory limits, which is why the last 6 args to the
7384 * memorystatus_update() call are 0 or FALSE.
7386 * Flags passed into this call are used to distinguish the motivation behind a jetsam priority
7387 * transition. By default, the kernel updates the process's original requested priority when
7388 * no flag is passed. But when the MEMORYSTATUS_SET_PRIORITY_ASSERTION flag is used, the kernel
7389 * updates the process's assertion driven priority.
7391 * The assertion flag was introduced for use by the device's assertion mediator (eg: runningboardd).
7392 * When an assertion is controlling a process's jetsam priority, it may conflict with that process's
7393 * dirty/clean (active/inactive) jetsam state. The kernel attempts to resolve a priority transition
7394 * conflict by reviewing the process state and then choosing the maximum jetsam band at play,
7395 * eg: requested priority versus assertion priority.
7399 memorystatus_cmd_set_priority_properties(pid_t pid
, uint32_t flags
, user_addr_t buffer
, size_t buffer_size
, __unused
int32_t *retval
)
7402 boolean_t is_assertion
= FALSE
; /* priority is driven by an assertion */
7403 memorystatus_priority_properties_t mpp_entry
;
7405 /* Validate inputs */
7406 if ((pid
== 0) || (buffer
== USER_ADDR_NULL
) || (buffer_size
!= sizeof(memorystatus_priority_properties_t
))) {
7410 /* Validate flags */
7413 * Default. This path updates requestedpriority.
7416 if (flags
& ~(MEMORYSTATUS_SET_PRIORITY_ASSERTION
)) {
7418 * Unsupported bit set in flag.
7421 } else if (flags
& MEMORYSTATUS_SET_PRIORITY_ASSERTION
) {
7422 is_assertion
= TRUE
;
7426 error
= copyin(buffer
, &mpp_entry
, buffer_size
);
7436 if (p
->p_memstat_state
& P_MEMSTAT_INTERNAL
) {
7442 os_log(OS_LOG_DEFAULT
, "memorystatus: set assertion priority(%d) target %s:%d\n",
7443 mpp_entry
.priority
, (*p
->p_name
? p
->p_name
: "unknown"), p
->p_pid
);
7446 error
= memorystatus_update(p
, mpp_entry
.priority
, mpp_entry
.user_data
, is_assertion
, FALSE
, FALSE
, 0, 0, FALSE
, FALSE
);
7454 memorystatus_cmd_set_memlimit_properties(pid_t pid
, user_addr_t buffer
, size_t buffer_size
, __unused
int32_t *retval
)
7457 memorystatus_memlimit_properties_t mmp_entry
;
7459 /* Validate inputs */
7460 if ((pid
== 0) || (buffer
== USER_ADDR_NULL
) || (buffer_size
!= sizeof(memorystatus_memlimit_properties_t
))) {
7464 error
= copyin(buffer
, &mmp_entry
, buffer_size
);
7467 error
= memorystatus_set_memlimit_properties(pid
, &mmp_entry
);
7474 memorystatus_get_memlimit_properties_internal(proc_t p
, memorystatus_memlimit_properties_t
* p_entry
)
7476 memset(p_entry
, 0, sizeof(memorystatus_memlimit_properties_t
));
7478 if (p
->p_memstat_memlimit_active
> 0) {
7479 p_entry
->memlimit_active
= p
->p_memstat_memlimit_active
;
7481 task_convert_phys_footprint_limit(-1, &p_entry
->memlimit_active
);
7484 if (p
->p_memstat_state
& P_MEMSTAT_MEMLIMIT_ACTIVE_FATAL
) {
7485 p_entry
->memlimit_active_attr
|= MEMORYSTATUS_MEMLIMIT_ATTR_FATAL
;
7489 * Get the inactive limit and attributes
7491 if (p
->p_memstat_memlimit_inactive
<= 0) {
7492 task_convert_phys_footprint_limit(-1, &p_entry
->memlimit_inactive
);
7494 p_entry
->memlimit_inactive
= p
->p_memstat_memlimit_inactive
;
7496 if (p
->p_memstat_state
& P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL
) {
7497 p_entry
->memlimit_inactive_attr
|= MEMORYSTATUS_MEMLIMIT_ATTR_FATAL
;
7502 * When getting the memlimit settings, we can't simply call task_get_phys_footprint_limit().
7503 * That gets the proc's cached memlimit and there is no guarantee that the active/inactive
7504 * limits will be the same in the no-limit case. Instead we convert limits <= 0 using
7505 * task_convert_phys_footprint_limit(). It computes the same limit value that would be written
7506 * to the task's ledgers via task_set_phys_footprint_limit().
7509 memorystatus_cmd_get_memlimit_properties(pid_t pid
, user_addr_t buffer
, size_t buffer_size
, __unused
int32_t *retval
)
7511 memorystatus_memlimit_properties2_t mmp_entry
;
7513 /* Validate inputs */
7514 if ((pid
== 0) || (buffer
== USER_ADDR_NULL
) ||
7515 ((buffer_size
!= sizeof(memorystatus_memlimit_properties_t
)) &&
7516 (buffer_size
!= sizeof(memorystatus_memlimit_properties2_t
)))) {
7520 memset(&mmp_entry
, 0, sizeof(memorystatus_memlimit_properties2_t
));
7522 proc_t p
= proc_find(pid
);
7528 * Get the active limit and attributes.
7529 * No locks taken since we hold a reference to the proc.
7532 memorystatus_get_memlimit_properties_internal(p
, &mmp_entry
.v1
);
7535 #if DEVELOPMENT || DEBUG
7537 * Get the limit increased via SPI
7539 mmp_entry
.memlimit_increase
= roundToNearestMB(p
->p_memlimit_increase
);
7540 mmp_entry
.memlimit_increase_bytes
= p
->p_memlimit_increase
;
7541 #endif /* DEVELOPMENT || DEBUG */
7542 #endif /* CONFIG_JETSAM */
7546 int error
= copyout(&mmp_entry
, buffer
, buffer_size
);
7553 * SPI for kbd - pr24956468
7554 * This is a very simple snapshot that calculates how much a
7555 * process's phys_footprint exceeds a specific memory limit.
7556 * Only the inactive memory limit is supported for now.
7557 * The delta is returned as bytes in excess or zero.
7560 memorystatus_cmd_get_memlimit_excess_np(pid_t pid
, uint32_t flags
, user_addr_t buffer
, size_t buffer_size
, __unused
int32_t *retval
)
7563 uint64_t footprint_in_bytes
= 0;
7564 uint64_t delta_in_bytes
= 0;
7565 int32_t memlimit_mb
= 0;
7566 uint64_t memlimit_bytes
= 0;
7568 /* Validate inputs */
7569 if ((pid
== 0) || (buffer
== USER_ADDR_NULL
) || (buffer_size
!= sizeof(uint64_t)) || (flags
!= 0)) {
7573 proc_t p
= proc_find(pid
);
7579 * Get the inactive limit.
7580 * No locks taken since we hold a reference to the proc.
7583 if (p
->p_memstat_memlimit_inactive
<= 0) {
7584 task_convert_phys_footprint_limit(-1, &memlimit_mb
);
7586 memlimit_mb
= p
->p_memstat_memlimit_inactive
;
7589 footprint_in_bytes
= get_task_phys_footprint(p
->task
);
7593 memlimit_bytes
= memlimit_mb
* 1024 * 1024; /* MB to bytes */
7596 * Computed delta always returns >= 0 bytes
7598 if (footprint_in_bytes
> memlimit_bytes
) {
7599 delta_in_bytes
= footprint_in_bytes
- memlimit_bytes
;
7602 error
= copyout(&delta_in_bytes
, buffer
, sizeof(delta_in_bytes
));
7609 memorystatus_cmd_get_pressure_status(int32_t *retval
)
7613 /* Need privilege for check */
7614 error
= priv_check_cred(kauth_cred_get(), PRIV_VM_PRESSURE
, 0);
7619 /* Inherently racy, so it's not worth taking a lock here */
7620 *retval
= (kVMPressureNormal
!= memorystatus_vm_pressure_level
) ? 1 : 0;
7626 memorystatus_get_pressure_status_kdp()
7628 return (kVMPressureNormal
!= memorystatus_vm_pressure_level
) ? 1 : 0;
7632 * Every process, including a P_MEMSTAT_INTERNAL process (currently only pid 1), is allowed to set a HWM.
7634 * This call is inflexible -- it does not distinguish between active/inactive, fatal/non-fatal
7635 * So, with 2-level HWM preserving previous behavior will map as follows.
7636 * - treat the limit passed in as both an active and inactive limit.
7637 * - treat the is_fatal_limit flag as though it applies to both active and inactive limits.
7639 * When invoked via MEMORYSTATUS_CMD_SET_JETSAM_HIGH_WATER_MARK
7640 * - the is_fatal_limit is FALSE, meaning the active and inactive limits are non-fatal/soft
7641 * - so mapping is (active/non-fatal, inactive/non-fatal)
7643 * When invoked via MEMORYSTATUS_CMD_SET_JETSAM_TASK_LIMIT
7644 * - the is_fatal_limit is TRUE, meaning the process's active and inactive limits are fatal/hard
7645 * - so mapping is (active/fatal, inactive/fatal)
7650 memorystatus_cmd_set_jetsam_memory_limit(pid_t pid
, int32_t high_water_mark
, __unused
int32_t *retval
, boolean_t is_fatal_limit
)
7653 memorystatus_memlimit_properties_t entry
;
7655 entry
.memlimit_active
= high_water_mark
;
7656 entry
.memlimit_active_attr
= 0;
7657 entry
.memlimit_inactive
= high_water_mark
;
7658 entry
.memlimit_inactive_attr
= 0;
7660 if (is_fatal_limit
== TRUE
) {
7661 entry
.memlimit_active_attr
|= MEMORYSTATUS_MEMLIMIT_ATTR_FATAL
;
7662 entry
.memlimit_inactive_attr
|= MEMORYSTATUS_MEMLIMIT_ATTR_FATAL
;
7665 error
= memorystatus_set_memlimit_properties(pid
, &entry
);
7668 #endif /* CONFIG_JETSAM */
7671 memorystatus_set_memlimit_properties_internal(proc_t p
, memorystatus_memlimit_properties_t
*p_entry
)
7675 LCK_MTX_ASSERT(proc_list_mlock
, LCK_MTX_ASSERT_OWNED
);
7678 * Store the active limit variants in the proc.
7680 SET_ACTIVE_LIMITS_LOCKED(p
, p_entry
->memlimit_active
, p_entry
->memlimit_active_attr
);
7683 * Store the inactive limit variants in the proc.
7685 SET_INACTIVE_LIMITS_LOCKED(p
, p_entry
->memlimit_inactive
, p_entry
->memlimit_inactive_attr
);
7688 * Enforce appropriate limit variant by updating the cached values
7689 * and writing the ledger.
7690 * Limit choice is based on process active/inactive state.
7693 if (memorystatus_highwater_enabled
) {
7695 boolean_t use_active
;
7697 if (proc_jetsam_state_is_active_locked(p
) == TRUE
) {
7698 CACHE_ACTIVE_LIMITS_LOCKED(p
, is_fatal
);
7701 CACHE_INACTIVE_LIMITS_LOCKED(p
, is_fatal
);
7705 /* Enforce the limit by writing to the ledgers */
7706 error
= (task_set_phys_footprint_limit_internal(p
->task
, ((p
->p_memstat_memlimit
> 0) ? p
->p_memstat_memlimit
: -1), NULL
, use_active
, is_fatal
) == 0) ? 0 : EINVAL
;
7708 MEMORYSTATUS_DEBUG(3, "memorystatus_set_memlimit_properties: new limit on pid %d (%dMB %s) current priority (%d) dirty_state?=0x%x %s\n",
7709 p
->p_pid
, (p
->p_memstat_memlimit
> 0 ? p
->p_memstat_memlimit
: -1),
7710 (p
->p_memstat_state
& P_MEMSTAT_FATAL_MEMLIMIT
? "F " : "NF"), p
->p_memstat_effectivepriority
, p
->p_memstat_dirty
,
7711 (p
->p_memstat_dirty
? ((p
->p_memstat_dirty
& P_DIRTY
) ? "isdirty" : "isclean") : ""));
7712 DTRACE_MEMORYSTATUS2(memorystatus_set_memlimit
, proc_t
, p
, int32_t, (p
->p_memstat_memlimit
> 0 ? p
->p_memstat_memlimit
: -1));
7719 memorystatus_set_memlimit_properties(pid_t pid
, memorystatus_memlimit_properties_t
*entry
)
7721 memorystatus_memlimit_properties_t set_entry
;
7723 proc_t p
= proc_find(pid
);
7729 * Check for valid attribute flags.
7731 const uint32_t valid_attrs
= MEMORYSTATUS_MEMLIMIT_ATTR_FATAL
;
7732 if ((entry
->memlimit_active_attr
& (~valid_attrs
)) != 0) {
7736 if ((entry
->memlimit_inactive_attr
& (~valid_attrs
)) != 0) {
7742 * Setup the active memlimit properties
7744 set_entry
.memlimit_active
= entry
->memlimit_active
;
7745 set_entry
.memlimit_active_attr
= entry
->memlimit_active_attr
& MEMORYSTATUS_MEMLIMIT_ATTR_FATAL
;
7748 * Setup the inactive memlimit properties
7750 set_entry
.memlimit_inactive
= entry
->memlimit_inactive
;
7751 set_entry
.memlimit_inactive_attr
= entry
->memlimit_inactive_attr
& MEMORYSTATUS_MEMLIMIT_ATTR_FATAL
;
7754 * Setting a limit of <= 0 implies that the process has no
7755 * high-water-mark and has no per-task-limit. That means
7756 * the system_wide task limit is in place, which by the way,
7760 if (set_entry
.memlimit_active
<= 0) {
7762 * Enforce the fatal system_wide task limit while process is active.
7764 set_entry
.memlimit_active
= -1;
7765 set_entry
.memlimit_active_attr
= MEMORYSTATUS_MEMLIMIT_ATTR_FATAL
;
7768 #if DEVELOPMENT || DEBUG
7770 /* add the current increase to it, for roots */
7771 set_entry
.memlimit_active
+= roundToNearestMB(p
->p_memlimit_increase
);
7773 #endif /* DEVELOPMENT || DEBUG */
7774 #endif /* CONFIG_JETSAM */
7776 if (set_entry
.memlimit_inactive
<= 0) {
7778 * Enforce the fatal system_wide task limit while process is inactive.
7780 set_entry
.memlimit_inactive
= -1;
7781 set_entry
.memlimit_inactive_attr
= MEMORYSTATUS_MEMLIMIT_ATTR_FATAL
;
7784 #if DEVELOPMENT || DEBUG
7786 /* add the current increase to it, for roots */
7787 set_entry
.memlimit_inactive
+= roundToNearestMB(p
->p_memlimit_increase
);
7789 #endif /* DEVELOPMENT || DEBUG */
7790 #endif /* CONFIG_JETSAM */
7794 int error
= memorystatus_set_memlimit_properties_internal(p
, &set_entry
);
7803 * Returns the jetsam priority (effective or requested) of the process
7804 * associated with this task.
7807 proc_get_memstat_priority(proc_t p
, boolean_t effective_priority
)
7810 if (effective_priority
) {
7811 return p
->p_memstat_effectivepriority
;
7813 return p
->p_memstat_requestedpriority
;
7820 memorystatus_get_process_is_managed(pid_t pid
, int *is_managed
)
7824 /* Validate inputs */
7835 *is_managed
= ((p
->p_memstat_state
& P_MEMSTAT_MANAGED
) ? 1 : 0);
7836 proc_rele_locked(p
);
7843 memorystatus_set_process_is_managed(pid_t pid
, boolean_t set_managed
)
7847 /* Validate inputs */
7858 if (set_managed
== TRUE
) {
7859 p
->p_memstat_state
|= P_MEMSTAT_MANAGED
;
7861 * The P_MEMSTAT_MANAGED bit is set by assertiond for Apps.
7862 * Also opt them in to being frozen (they might have started
7863 * off with the P_MEMSTAT_FREEZE_DISABLED bit set.)
7865 p
->p_memstat_state
&= ~P_MEMSTAT_FREEZE_DISABLED
;
7867 p
->p_memstat_state
&= ~P_MEMSTAT_MANAGED
;
7869 proc_rele_locked(p
);
7876 memorystatus_control(struct proc
*p __unused
, struct memorystatus_control_args
*args
, int *ret
)
7879 boolean_t skip_auth_check
= FALSE
;
7880 os_reason_t jetsam_reason
= OS_REASON_NULL
;
7884 #pragma unused(jetsam_reason)
7887 /* We don't need entitlements if we're setting/ querying the freeze preference for a process. Skip the check below. */
7888 if (args
->command
== MEMORYSTATUS_CMD_SET_PROCESS_IS_FREEZABLE
|| args
->command
== MEMORYSTATUS_CMD_GET_PROCESS_IS_FREEZABLE
) {
7889 skip_auth_check
= TRUE
;
7892 /* Need to be root or have entitlement. */
7893 if (!kauth_cred_issuser(kauth_cred_get()) && !IOTaskHasEntitlement(current_task(), MEMORYSTATUS_ENTITLEMENT
) && !skip_auth_check
) {
7900 * Do not enforce it for snapshots.
7902 if (args
->command
!= MEMORYSTATUS_CMD_GET_JETSAM_SNAPSHOT
) {
7903 if (args
->buffersize
> MEMORYSTATUS_BUFFERSIZE_MAX
) {
7909 switch (args
->command
) {
7910 case MEMORYSTATUS_CMD_GET_PRIORITY_LIST
:
7911 error
= memorystatus_cmd_get_priority_list(args
->pid
, args
->buffer
, args
->buffersize
, ret
);
7913 case MEMORYSTATUS_CMD_SET_PRIORITY_PROPERTIES
:
7914 error
= memorystatus_cmd_set_priority_properties(args
->pid
, args
->flags
, args
->buffer
, args
->buffersize
, ret
);
7916 case MEMORYSTATUS_CMD_SET_MEMLIMIT_PROPERTIES
:
7917 error
= memorystatus_cmd_set_memlimit_properties(args
->pid
, args
->buffer
, args
->buffersize
, ret
);
7919 case MEMORYSTATUS_CMD_GET_MEMLIMIT_PROPERTIES
:
7920 error
= memorystatus_cmd_get_memlimit_properties(args
->pid
, args
->buffer
, args
->buffersize
, ret
);
7922 case MEMORYSTATUS_CMD_GET_MEMLIMIT_EXCESS
:
7923 error
= memorystatus_cmd_get_memlimit_excess_np(args
->pid
, args
->flags
, args
->buffer
, args
->buffersize
, ret
);
7925 case MEMORYSTATUS_CMD_GRP_SET_PROPERTIES
:
7926 error
= memorystatus_cmd_grp_set_properties((int32_t)args
->flags
, args
->buffer
, args
->buffersize
, ret
);
7928 case MEMORYSTATUS_CMD_GET_JETSAM_SNAPSHOT
:
7929 error
= memorystatus_cmd_get_jetsam_snapshot((int32_t)args
->flags
, args
->buffer
, args
->buffersize
, ret
);
7931 #if DEVELOPMENT || DEBUG
7932 case MEMORYSTATUS_CMD_SET_JETSAM_SNAPSHOT_OWNERSHIP
:
7933 error
= memorystatus_cmd_set_jetsam_snapshot_ownership((int32_t) args
->flags
);
7936 case MEMORYSTATUS_CMD_GET_PRESSURE_STATUS
:
7937 error
= memorystatus_cmd_get_pressure_status(ret
);
7940 case MEMORYSTATUS_CMD_SET_JETSAM_HIGH_WATER_MARK
:
7942 * This call does not distinguish between active and inactive limits.
7943 * Default behavior in 2-level HWM world is to set both.
7944 * Non-fatal limit is also assumed for both.
7946 error
= memorystatus_cmd_set_jetsam_memory_limit(args
->pid
, (int32_t)args
->flags
, ret
, FALSE
);
7948 case MEMORYSTATUS_CMD_SET_JETSAM_TASK_LIMIT
:
7950 * This call does not distinguish between active and inactive limits.
7951 * Default behavior in 2-level HWM world is to set both.
7952 * Fatal limit is also assumed for both.
7954 error
= memorystatus_cmd_set_jetsam_memory_limit(args
->pid
, (int32_t)args
->flags
, ret
, TRUE
);
7956 #endif /* CONFIG_JETSAM */
7958 #if DEVELOPMENT || DEBUG
7959 case MEMORYSTATUS_CMD_TEST_JETSAM
:
7960 jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_GENERIC
);
7961 if (jetsam_reason
== OS_REASON_NULL
) {
7962 printf("memorystatus_control: failed to allocate jetsam reason\n");
7965 error
= memorystatus_kill_process_sync(args
->pid
, kMemorystatusKilled
, jetsam_reason
) ? 0 : EINVAL
;
7967 case MEMORYSTATUS_CMD_TEST_JETSAM_SORT
:
7968 error
= memorystatus_cmd_test_jetsam_sort(args
->pid
, (int32_t)args
->flags
, args
->buffer
, args
->buffersize
);
7971 case MEMORYSTATUS_CMD_SET_JETSAM_PANIC_BITS
:
7972 error
= memorystatus_cmd_set_panic_bits(args
->buffer
, args
->buffersize
);
7974 #endif /* CONFIG_JETSAM */
7975 #else /* DEVELOPMENT || DEBUG */
7976 #pragma unused(jetsam_reason)
7977 #endif /* DEVELOPMENT || DEBUG */
7978 case MEMORYSTATUS_CMD_AGGRESSIVE_JETSAM_LENIENT_MODE_ENABLE
:
7979 if (memorystatus_aggressive_jetsam_lenient_allowed
== FALSE
) {
7980 #if DEVELOPMENT || DEBUG
7981 printf("Enabling Lenient Mode\n");
7982 #endif /* DEVELOPMENT || DEBUG */
7984 memorystatus_aggressive_jetsam_lenient_allowed
= TRUE
;
7985 memorystatus_aggressive_jetsam_lenient
= TRUE
;
7989 case MEMORYSTATUS_CMD_AGGRESSIVE_JETSAM_LENIENT_MODE_DISABLE
:
7990 #if DEVELOPMENT || DEBUG
7991 printf("Disabling Lenient mode\n");
7992 #endif /* DEVELOPMENT || DEBUG */
7993 memorystatus_aggressive_jetsam_lenient_allowed
= FALSE
;
7994 memorystatus_aggressive_jetsam_lenient
= FALSE
;
7997 case MEMORYSTATUS_CMD_GET_AGGRESSIVE_JETSAM_LENIENT_MODE
:
7998 *ret
= (memorystatus_aggressive_jetsam_lenient
? 1 : 0);
8001 case MEMORYSTATUS_CMD_PRIVILEGED_LISTENER_ENABLE
:
8002 case MEMORYSTATUS_CMD_PRIVILEGED_LISTENER_DISABLE
:
8003 error
= memorystatus_low_mem_privileged_listener(args
->command
);
8006 case MEMORYSTATUS_CMD_ELEVATED_INACTIVEJETSAMPRIORITY_ENABLE
:
8007 case MEMORYSTATUS_CMD_ELEVATED_INACTIVEJETSAMPRIORITY_DISABLE
:
8008 error
= memorystatus_update_inactive_jetsam_priority_band(args
->pid
, args
->command
, JETSAM_PRIORITY_ELEVATED_INACTIVE
, args
->flags
? TRUE
: FALSE
);
8010 case MEMORYSTATUS_CMD_SET_PROCESS_IS_MANAGED
:
8011 error
= memorystatus_set_process_is_managed(args
->pid
, args
->flags
);
8014 case MEMORYSTATUS_CMD_GET_PROCESS_IS_MANAGED
:
8015 error
= memorystatus_get_process_is_managed(args
->pid
, ret
);
8019 case MEMORYSTATUS_CMD_SET_PROCESS_IS_FREEZABLE
:
8020 error
= memorystatus_set_process_is_freezable(args
->pid
, args
->flags
? TRUE
: FALSE
);
8023 case MEMORYSTATUS_CMD_GET_PROCESS_IS_FREEZABLE
:
8024 error
= memorystatus_get_process_is_freezable(args
->pid
, ret
);
8027 case MEMORYSTATUS_CMD_FREEZER_CONTROL
:
8028 error
= memorystatus_freezer_control(args
->flags
, args
->buffer
, args
->buffersize
, ret
);
8030 #endif /* CONFIG_FREEZE */
8033 #if DEVELOPMENT || DEBUG
8034 case MEMORYSTATUS_CMD_INCREASE_JETSAM_TASK_LIMIT
:
8035 error
= memorystatus_cmd_increase_jetsam_task_limit(args
->pid
, args
->flags
);
8037 #endif /* DEVELOPMENT || DEBUG */
8038 #endif /* CONFIG_JETSAM */
8048 /* Coalition support */
8050 /* sorting info for a particular priority bucket */
8051 typedef struct memstat_sort_info
{
8052 coalition_t msi_coal
;
8053 uint64_t msi_page_count
;
8056 } memstat_sort_info_t
;
8059 * qsort from smallest page count to largest page count
8061 * return < 0 for a < b
8066 memstat_asc_cmp(const void *a
, const void *b
)
8068 const memstat_sort_info_t
*msA
= (const memstat_sort_info_t
*)a
;
8069 const memstat_sort_info_t
*msB
= (const memstat_sort_info_t
*)b
;
8071 return (int)((uint64_t)msA
->msi_page_count
- (uint64_t)msB
->msi_page_count
);
8075 * Return the number of pids rearranged during this sort.
8078 memorystatus_sort_by_largest_coalition_locked(unsigned int bucket_index
, int coal_sort_order
)
8080 #define MAX_SORT_PIDS 80
8081 #define MAX_COAL_LEADERS 10
8083 unsigned int b
= bucket_index
;
8087 coalition_t coal
= COALITION_NULL
;
8089 int total_pids_moved
= 0;
8093 * The system is typically under memory pressure when in this
8094 * path, hence, we want to avoid dynamic memory allocation.
8096 memstat_sort_info_t leaders
[MAX_COAL_LEADERS
];
8097 pid_t pid_list
[MAX_SORT_PIDS
];
8099 if (bucket_index
>= MEMSTAT_BUCKET_COUNT
) {
8104 * Clear the array that holds coalition leader information
8106 for (i
= 0; i
< MAX_COAL_LEADERS
; i
++) {
8107 leaders
[i
].msi_coal
= COALITION_NULL
;
8108 leaders
[i
].msi_page_count
= 0; /* will hold total coalition page count */
8109 leaders
[i
].msi_pid
= 0; /* will hold coalition leader pid */
8110 leaders
[i
].msi_ntasks
= 0; /* will hold the number of tasks in a coalition */
8113 p
= memorystatus_get_first_proc_locked(&b
, FALSE
);
8115 coal
= task_get_coalition(p
->task
, COALITION_TYPE_JETSAM
);
8116 if (coalition_is_leader(p
->task
, coal
)) {
8117 if (nleaders
< MAX_COAL_LEADERS
) {
8118 int coal_ntasks
= 0;
8119 uint64_t coal_page_count
= coalition_get_page_count(coal
, &coal_ntasks
);
8120 leaders
[nleaders
].msi_coal
= coal
;
8121 leaders
[nleaders
].msi_page_count
= coal_page_count
;
8122 leaders
[nleaders
].msi_pid
= p
->p_pid
; /* the coalition leader */
8123 leaders
[nleaders
].msi_ntasks
= coal_ntasks
;
8127 * We've hit MAX_COAL_LEADERS meaning we can handle no more coalitions.
8128 * Abandoned coalitions will linger at the tail of the priority band
8129 * when this sort session ends.
8130 * TODO: should this be an assert?
8132 printf("%s: WARNING: more than %d leaders in priority band [%d]\n",
8133 __FUNCTION__
, MAX_COAL_LEADERS
, bucket_index
);
8137 p
= memorystatus_get_next_proc_locked(&b
, p
, FALSE
);
8140 if (nleaders
== 0) {
8141 /* Nothing to sort */
8146 * Sort the coalition leader array, from smallest coalition page count
8147 * to largest coalition page count. When inserted in the priority bucket,
8148 * smallest coalition is handled first, resulting in the last to be jetsammed.
8151 qsort(leaders
, nleaders
, sizeof(memstat_sort_info_t
), memstat_asc_cmp
);
8155 for (i
= 0; i
< nleaders
; i
++) {
8156 printf("%s: coal_leader[%d of %d] pid[%d] pages[%llu] ntasks[%d]\n",
8157 __FUNCTION__
, i
, nleaders
, leaders
[i
].msi_pid
, leaders
[i
].msi_page_count
,
8158 leaders
[i
].msi_ntasks
);
8163 * During coalition sorting, processes in a priority band are rearranged
8164 * by being re-inserted at the head of the queue. So, when handling a
8165 * list, the first process that gets moved to the head of the queue,
8166 * ultimately gets pushed toward the queue tail, and hence, jetsams last.
8168 * So, for example, the coalition leader is expected to jetsam last,
8169 * after its coalition members. Therefore, the coalition leader is
8170 * inserted at the head of the queue first.
8172 * After processing a coalition, the jetsam order is as follows:
8173 * undefs(jetsam first), extensions, xpc services, leader(jetsam last)
8177 * Coalition members are rearranged in the priority bucket here,
8178 * based on their coalition role.
8180 total_pids_moved
= 0;
8181 for (i
= 0; i
< nleaders
; i
++) {
8182 /* a bit of bookkeeping */
8185 /* Coalition leaders are jetsammed last, so move into place first */
8186 pid_list
[0] = leaders
[i
].msi_pid
;
8187 pids_moved
+= memorystatus_move_list_locked(bucket_index
, pid_list
, 1);
8189 /* xpc services should jetsam after extensions */
8190 ntasks
= coalition_get_pid_list(leaders
[i
].msi_coal
, COALITION_ROLEMASK_XPC
,
8191 coal_sort_order
, pid_list
, MAX_SORT_PIDS
);
8194 pids_moved
+= memorystatus_move_list_locked(bucket_index
, pid_list
,
8195 (ntasks
<= MAX_SORT_PIDS
? ntasks
: MAX_SORT_PIDS
));
8198 /* extensions should jetsam after unmarked processes */
8199 ntasks
= coalition_get_pid_list(leaders
[i
].msi_coal
, COALITION_ROLEMASK_EXT
,
8200 coal_sort_order
, pid_list
, MAX_SORT_PIDS
);
8203 pids_moved
+= memorystatus_move_list_locked(bucket_index
, pid_list
,
8204 (ntasks
<= MAX_SORT_PIDS
? ntasks
: MAX_SORT_PIDS
));
8207 /* undefined coalition members should be the first to jetsam */
8208 ntasks
= coalition_get_pid_list(leaders
[i
].msi_coal
, COALITION_ROLEMASK_UNDEF
,
8209 coal_sort_order
, pid_list
, MAX_SORT_PIDS
);
8212 pids_moved
+= memorystatus_move_list_locked(bucket_index
, pid_list
,
8213 (ntasks
<= MAX_SORT_PIDS
? ntasks
: MAX_SORT_PIDS
));
8217 if (pids_moved
== leaders
[i
].msi_ntasks
) {
8219 * All the pids in the coalition were found in this band.
8221 printf("%s: pids_moved[%d] equal total coalition ntasks[%d] \n", __FUNCTION__
,
8222 pids_moved
, leaders
[i
].msi_ntasks
);
8223 } else if (pids_moved
> leaders
[i
].msi_ntasks
) {
8225 * Apparently new coalition members showed up during the sort?
8227 printf("%s: pids_moved[%d] were greater than expected coalition ntasks[%d] \n", __FUNCTION__
,
8228 pids_moved
, leaders
[i
].msi_ntasks
);
8231 * Apparently not all the pids in the coalition were found in this band?
8233 printf("%s: pids_moved[%d] were less than expected coalition ntasks[%d] \n", __FUNCTION__
,
8234 pids_moved
, leaders
[i
].msi_ntasks
);
8238 total_pids_moved
+= pids_moved
;
8241 return total_pids_moved
;
8246 * Traverse a list of pids, searching for each within the priority band provided.
8247 * If pid is found, move it to the front of the priority band.
8248 * Never searches outside the priority band provided.
8251 * bucket_index - jetsam priority band.
8252 * pid_list - pointer to a list of pids.
8253 * list_sz - number of pids in the list.
8255 * Pid list ordering is important in that,
8256 * pid_list[n] is expected to jetsam ahead of pid_list[n+1].
8257 * The sort_order is set by the coalition default.
8260 * the number of pids found and hence moved within the priority band.
8263 memorystatus_move_list_locked(unsigned int bucket_index
, pid_t
*pid_list
, int list_sz
)
8265 memstat_bucket_t
*current_bucket
;
8269 if ((pid_list
== NULL
) || (list_sz
<= 0)) {
8273 if (bucket_index
>= MEMSTAT_BUCKET_COUNT
) {
8277 current_bucket
= &memstat_bucket
[bucket_index
];
8278 for (i
= 0; i
< list_sz
; i
++) {
8279 unsigned int b
= bucket_index
;
8281 proc_t aProc
= NULL
;
8285 list_index
= ((list_sz
- 1) - i
);
8286 aPid
= pid_list
[list_index
];
8288 /* never search beyond bucket_index provided */
8289 p
= memorystatus_get_first_proc_locked(&b
, FALSE
);
8291 if (p
->p_pid
== aPid
) {
8295 p
= memorystatus_get_next_proc_locked(&b
, p
, FALSE
);
8298 if (aProc
== NULL
) {
8299 /* pid not found in this band, just skip it */
8302 TAILQ_REMOVE(¤t_bucket
->list
, aProc
, p_memstat_list
);
8303 TAILQ_INSERT_HEAD(¤t_bucket
->list
, aProc
, p_memstat_list
);
8311 memorystatus_get_proccnt_upto_priority(int32_t max_bucket_index
)
8313 int32_t i
= JETSAM_PRIORITY_IDLE
;
8316 if (max_bucket_index
>= MEMSTAT_BUCKET_COUNT
) {
8320 while (i
<= max_bucket_index
) {
8321 count
+= memstat_bucket
[i
++].count
;
8328 memorystatus_update_priority_for_appnap(proc_t p
, boolean_t is_appnap
)
8331 if (!p
|| (!isApp(p
)) || (p
->p_memstat_state
& (P_MEMSTAT_INTERNAL
| P_MEMSTAT_MANAGED
))) {
8333 * Ineligible processes OR system processes e.g. launchd.
8335 * We also skip processes that have the P_MEMSTAT_MANAGED bit set, i.e.
8336 * they're managed by assertiond. These are iOS apps that have been ported
8337 * to macOS. assertiond might be in the process of modifying the app's
8338 * priority / memory limit - so it might have the proc_list lock, and then try
8339 * to take the task lock. Meanwhile we've entered this function with the task lock
8340 * held, and we need the proc_list lock below. So we'll deadlock with assertiond.
8342 * It should be fine to read the P_MEMSTAT_MANAGED bit without the proc_list
8343 * lock here, since assertiond only sets this bit on process launch.
8350 * We would like to use memorystatus_update() here to move the processes
8351 * within the bands. Unfortunately memorystatus_update() calls
8352 * memorystatus_update_priority_locked() which uses any band transitions
8353 * as an indication to modify ledgers. For that it needs the task lock
8354 * and since we came into this function with the task lock held, we'll deadlock.
8356 * Unfortunately we can't completely disable ledger updates because we still
8357 * need the ledger updates for a subset of processes i.e. daemons.
8358 * When all processes on all platforms support memory limits, we can simply call
8359 * memorystatus_update().
8361 * It also has some logic to deal with 'aging' which, currently, is only applicable
8362 * on CONFIG_JETSAM configs. So, till every platform has CONFIG_JETSAM we'll need
8363 * to do this explicit band transition.
8366 memstat_bucket_t
*current_bucket
, *new_bucket
;
8367 int32_t priority
= 0;
8371 if (((p
->p_listflag
& P_LIST_EXITED
) != 0) ||
8372 (p
->p_memstat_state
& (P_MEMSTAT_ERROR
| P_MEMSTAT_TERMINATED
))) {
8374 * If the process is on its way out OR
8375 * jetsam has alread tried and failed to kill this process,
8376 * let's skip the whole jetsam band transition.
8383 current_bucket
= &memstat_bucket
[p
->p_memstat_effectivepriority
];
8384 new_bucket
= &memstat_bucket
[JETSAM_PRIORITY_IDLE
];
8385 priority
= JETSAM_PRIORITY_IDLE
;
8387 if (p
->p_memstat_effectivepriority
!= JETSAM_PRIORITY_IDLE
) {
8389 * It is possible that someone pulled this process
8390 * out of the IDLE band without updating its app-nap
8397 current_bucket
= &memstat_bucket
[JETSAM_PRIORITY_IDLE
];
8398 new_bucket
= &memstat_bucket
[p
->p_memstat_requestedpriority
];
8399 priority
= p
->p_memstat_requestedpriority
;
8402 TAILQ_REMOVE(¤t_bucket
->list
, p
, p_memstat_list
);
8403 current_bucket
->count
--;
8404 if (p
->p_memstat_relaunch_flags
& (P_MEMSTAT_RELAUNCH_HIGH
)) {
8405 current_bucket
->relaunch_high_count
--;
8407 TAILQ_INSERT_TAIL(&new_bucket
->list
, p
, p_memstat_list
);
8408 new_bucket
->count
++;
8409 if (p
->p_memstat_relaunch_flags
& (P_MEMSTAT_RELAUNCH_HIGH
)) {
8410 new_bucket
->relaunch_high_count
++;
8413 * Record idle start or idle delta.
8415 if (p
->p_memstat_effectivepriority
== priority
) {
8417 * This process is not transitioning between
8418 * jetsam priority buckets. Do nothing.
8420 } else if (p
->p_memstat_effectivepriority
== JETSAM_PRIORITY_IDLE
) {
8423 * Transitioning out of the idle priority bucket.
8424 * Record idle delta.
8426 assert(p
->p_memstat_idle_start
!= 0);
8427 now
= mach_absolute_time();
8428 if (now
> p
->p_memstat_idle_start
) {
8429 p
->p_memstat_idle_delta
= now
- p
->p_memstat_idle_start
;
8431 } else if (priority
== JETSAM_PRIORITY_IDLE
) {
8433 * Transitioning into the idle priority bucket.
8434 * Record idle start.
8436 p
->p_memstat_idle_start
= mach_absolute_time();
8439 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_CHANGE_PRIORITY
), p
->p_pid
, priority
, p
->p_memstat_effectivepriority
, 0, 0);
8441 p
->p_memstat_effectivepriority
= priority
;
8447 #else /* !CONFIG_JETSAM */
8449 #pragma unused(is_appnap)
8451 #endif /* !CONFIG_JETSAM */
8455 memorystatus_available_memory_internal(struct proc
*p
)
8457 #ifdef XNU_TARGET_OS_OSX
8458 if (p
->p_memstat_memlimit
<= 0) {
8461 #endif /* XNU_TARGET_OS_OSX */
8462 const uint64_t footprint_in_bytes
= get_task_phys_footprint(p
->task
);
8463 int32_t memlimit_mb
;
8464 int64_t memlimit_bytes
;
8467 if (isApp(p
) == FALSE
) {
8471 if (p
->p_memstat_memlimit
> 0) {
8472 memlimit_mb
= p
->p_memstat_memlimit
;
8473 } else if (task_convert_phys_footprint_limit(-1, &memlimit_mb
) != KERN_SUCCESS
) {
8477 if (memlimit_mb
<= 0) {
8478 memlimit_bytes
= INT_MAX
& ~((1 << 20) - 1);
8480 memlimit_bytes
= ((int64_t) memlimit_mb
) << 20;
8483 rc
= memlimit_bytes
- footprint_in_bytes
;
8485 return (rc
>= 0) ? rc
: 0;
8489 memorystatus_available_memory(struct proc
*p
, __unused
struct memorystatus_available_memory_args
*args
, uint64_t *ret
)
8491 *ret
= memorystatus_available_memory_internal(p
);
8497 #if DEVELOPMENT || DEBUG
8499 memorystatus_cmd_increase_jetsam_task_limit(pid_t pid
, uint32_t byte_increase
)
8501 memorystatus_memlimit_properties_t mmp_entry
;
8503 /* Validate inputs */
8504 if ((pid
== 0) || (byte_increase
== 0)) {
8508 proc_t p
= proc_find(pid
);
8514 const uint32_t current_memlimit_increase
= roundToNearestMB(p
->p_memlimit_increase
);
8516 const int32_t page_aligned_increase
= (int32_t) MIN(round_page(p
->p_memlimit_increase
+ byte_increase
), INT32_MAX
);
8520 memorystatus_get_memlimit_properties_internal(p
, &mmp_entry
);
8522 if (mmp_entry
.memlimit_active
> 0) {
8523 mmp_entry
.memlimit_active
-= current_memlimit_increase
;
8524 mmp_entry
.memlimit_active
+= roundToNearestMB(page_aligned_increase
);
8527 if (mmp_entry
.memlimit_inactive
> 0) {
8528 mmp_entry
.memlimit_inactive
-= current_memlimit_increase
;
8529 mmp_entry
.memlimit_inactive
+= roundToNearestMB(page_aligned_increase
);
8533 * Store the updated delta limit in the proc.
8535 p
->p_memlimit_increase
= page_aligned_increase
;
8537 int error
= memorystatus_set_memlimit_properties_internal(p
, &mmp_entry
);
8544 #endif /* DEVELOPMENT */
8545 #endif /* CONFIG_JETSAM */