]> git.saurik.com Git - apple/xnu.git/blob - bsd/kern/kern_exec.c
3d2710538031d4d0903c33131eb019954f62193e
[apple/xnu.git] / bsd / kern / kern_exec.c
1 /*
2 * Copyright (c) 2000-2011 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */
29 /*
30 * Mach Operating System
31 * Copyright (c) 1987 Carnegie-Mellon University
32 * All rights reserved. The CMU software License Agreement specifies
33 * the terms and conditions for use and redistribution.
34 */
35
36 /*-
37 * Copyright (c) 1982, 1986, 1991, 1993
38 * The Regents of the University of California. All rights reserved.
39 * (c) UNIX System Laboratories, Inc.
40 * All or some portions of this file are derived from material licensed
41 * to the University of California by American Telephone and Telegraph
42 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
43 * the permission of UNIX System Laboratories, Inc.
44 *
45 * Redistribution and use in source and binary forms, with or without
46 * modification, are permitted provided that the following conditions
47 * are met:
48 * 1. Redistributions of source code must retain the above copyright
49 * notice, this list of conditions and the following disclaimer.
50 * 2. Redistributions in binary form must reproduce the above copyright
51 * notice, this list of conditions and the following disclaimer in the
52 * documentation and/or other materials provided with the distribution.
53 * 3. All advertising materials mentioning features or use of this software
54 * must display the following acknowledgement:
55 * This product includes software developed by the University of
56 * California, Berkeley and its contributors.
57 * 4. Neither the name of the University nor the names of its contributors
58 * may be used to endorse or promote products derived from this software
59 * without specific prior written permission.
60 *
61 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
62 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
63 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
64 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
65 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
66 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
67 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
68 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
69 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
70 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
71 * SUCH DAMAGE.
72 *
73 * from: @(#)kern_exec.c 8.1 (Berkeley) 6/10/93
74 */
75 /*
76 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
77 * support for mandatory and extensible security protections. This notice
78 * is included in support of clause 2.2 (b) of the Apple Public License,
79 * Version 2.0.
80 */
81 #include <machine/reg.h>
82 #include <machine/cpu_capabilities.h>
83
84 #include <sys/param.h>
85 #include <sys/systm.h>
86 #include <sys/filedesc.h>
87 #include <sys/kernel.h>
88 #include <sys/proc_internal.h>
89 #include <sys/kauth.h>
90 #include <sys/user.h>
91 #include <sys/socketvar.h>
92 #include <sys/malloc.h>
93 #include <sys/namei.h>
94 #include <sys/mount_internal.h>
95 #include <sys/vnode_internal.h>
96 #include <sys/file_internal.h>
97 #include <sys/stat.h>
98 #include <sys/uio_internal.h>
99 #include <sys/acct.h>
100 #include <sys/exec.h>
101 #include <sys/kdebug.h>
102 #include <sys/signal.h>
103 #include <sys/aio_kern.h>
104 #include <sys/sysproto.h>
105 #if SYSV_SHM
106 #include <sys/shm_internal.h> /* shmexec() */
107 #endif
108 #include <sys/ubc_internal.h> /* ubc_map() */
109 #include <sys/spawn.h>
110 #include <sys/spawn_internal.h>
111 #include <sys/process_policy.h>
112 #include <sys/codesign.h>
113 #include <crypto/sha1.h>
114
115 #include <libkern/libkern.h>
116
117 #include <security/audit/audit.h>
118
119 #include <ipc/ipc_types.h>
120
121 #include <mach/mach_types.h>
122 #include <mach/port.h>
123 #include <mach/task.h>
124 #include <mach/task_access.h>
125 #include <mach/thread_act.h>
126 #include <mach/vm_map.h>
127 #include <mach/mach_vm.h>
128 #include <mach/vm_param.h>
129
130 #include <kern/sched_prim.h> /* thread_wakeup() */
131 #include <kern/affinity.h>
132 #include <kern/assert.h>
133 #include <kern/task.h>
134 #include <kern/coalition.h>
135
136 #if CONFIG_MACF
137 #include <security/mac.h>
138 #include <security/mac_mach_internal.h>
139 #endif
140
141 #include <vm/vm_map.h>
142 #include <vm/vm_kern.h>
143 #include <vm/vm_protos.h>
144 #include <vm/vm_kern.h>
145 #include <vm/vm_fault.h>
146 #include <vm/vm_pageout.h>
147
148 #include <kdp/kdp_dyld.h>
149
150 #include <machine/pal_routines.h>
151
152 #include <pexpert/pexpert.h>
153
154 #if CONFIG_MEMORYSTATUS
155 #include <sys/kern_memorystatus.h>
156 #endif
157
158 #if CONFIG_DTRACE
159 /* Do not include dtrace.h, it redefines kmem_[alloc/free] */
160 extern void (*dtrace_fasttrap_exec_ptr)(proc_t);
161 extern void (*dtrace_proc_waitfor_exec_ptr)(proc_t);
162 extern void (*dtrace_helpers_cleanup)(proc_t);
163 extern void dtrace_lazy_dofs_destroy(proc_t);
164
165 /*
166 * Since dtrace_proc_waitfor_exec_ptr can be added/removed in dtrace_subr.c,
167 * we will store its value before actually calling it.
168 */
169 static void (*dtrace_proc_waitfor_hook)(proc_t) = NULL;
170
171 #include <sys/dtrace_ptss.h>
172 #endif
173
174 /* support for child creation in exec after vfork */
175 thread_t fork_create_child(task_t parent_task, coalition_t parent_coalition, proc_t child_proc, int inherit_memory, int is64bit);
176 void vfork_exit(proc_t p, int rv);
177 int setsigvec(proc_t, thread_t, int, struct __kern_sigaction *, boolean_t in_sigstart);
178 extern void proc_apply_task_networkbg_internal(proc_t, thread_t);
179
180 /*
181 * Mach things for which prototypes are unavailable from Mach headers
182 */
183 void ipc_task_reset(
184 task_t task);
185 void ipc_thread_reset(
186 thread_t thread);
187 kern_return_t ipc_object_copyin(
188 ipc_space_t space,
189 mach_port_name_t name,
190 mach_msg_type_name_t msgt_name,
191 ipc_object_t *objectp);
192 void ipc_port_release_send(ipc_port_t);
193
194 #if DEVELOPMENT || DEBUG
195 void task_importance_update_owner_info(task_t);
196 #endif
197
198 extern struct savearea *get_user_regs(thread_t);
199
200 __attribute__((noinline)) int __EXEC_WAITING_ON_TASKGATED_CODE_SIGNATURE_UPCALL__(mach_port_t task_access_port, int32_t new_pid);
201
202 #include <kern/thread.h>
203 #include <kern/task.h>
204 #include <kern/ast.h>
205 #include <kern/mach_loader.h>
206 #include <kern/mach_fat.h>
207 #include <mach-o/fat.h>
208 #include <mach-o/loader.h>
209 #include <machine/vmparam.h>
210 #include <sys/imgact.h>
211
212 #include <sys/sdt.h>
213
214
215 /*
216 * EAI_ITERLIMIT The maximum number of times to iterate an image
217 * activator in exec_activate_image() before treating
218 * it as malformed/corrupt.
219 */
220 #define EAI_ITERLIMIT 10
221
222 /*
223 * For #! interpreter parsing
224 */
225 #define IS_WHITESPACE(ch) ((ch == ' ') || (ch == '\t'))
226 #define IS_EOL(ch) ((ch == '#') || (ch == '\n'))
227
228 extern vm_map_t bsd_pageable_map;
229 extern const struct fileops vnops;
230
231 #define ROUND_PTR(type, addr) \
232 (type *)( ( (uintptr_t)(addr) + 16 - 1) \
233 & ~(16 - 1) )
234
235 struct image_params; /* Forward */
236 static int exec_activate_image(struct image_params *imgp);
237 static int exec_copyout_strings(struct image_params *imgp, user_addr_t *stackp);
238 static int load_return_to_errno(load_return_t lrtn);
239 static int execargs_alloc(struct image_params *imgp);
240 static int execargs_free(struct image_params *imgp);
241 static int exec_check_permissions(struct image_params *imgp);
242 static int exec_extract_strings(struct image_params *imgp);
243 static int exec_add_apple_strings(struct image_params *imgp);
244 static int exec_handle_sugid(struct image_params *imgp);
245 static int sugid_scripts = 0;
246 SYSCTL_INT (_kern, OID_AUTO, sugid_scripts, CTLFLAG_RW | CTLFLAG_LOCKED, &sugid_scripts, 0, "");
247 static kern_return_t create_unix_stack(vm_map_t map, load_result_t* load_result, proc_t p);
248 static int copyoutptr(user_addr_t ua, user_addr_t ptr, int ptr_size);
249 static void exec_resettextvp(proc_t, struct image_params *);
250 static int check_for_signature(proc_t, struct image_params *);
251 static void exec_prefault_data(proc_t, struct image_params *, load_result_t *);
252 static errno_t exec_handle_port_actions(struct image_params *imgp, short psa_flags, boolean_t * portwatch_present, ipc_port_t * portwatch_ports);
253 static errno_t exec_handle_spawnattr_policy(proc_t p, int psa_apptype, uint64_t psa_qos_clamp,
254 ipc_port_t * portwatch_ports, int portwatch_count);
255
256 /*
257 * exec_add_user_string
258 *
259 * Add the requested string to the string space area.
260 *
261 * Parameters; struct image_params * image parameter block
262 * user_addr_t string to add to strings area
263 * int segment from which string comes
264 * boolean_t TRUE if string contributes to NCARGS
265 *
266 * Returns: 0 Success
267 * !0 Failure errno from copyinstr()
268 *
269 * Implicit returns:
270 * (imgp->ip_strendp) updated location of next add, if any
271 * (imgp->ip_strspace) updated byte count of space remaining
272 * (imgp->ip_argspace) updated byte count of space in NCARGS
273 */
274 static int
275 exec_add_user_string(struct image_params *imgp, user_addr_t str, int seg, boolean_t is_ncargs)
276 {
277 int error = 0;
278
279 do {
280 size_t len = 0;
281 int space;
282
283 if (is_ncargs)
284 space = imgp->ip_argspace; /* by definition smaller than ip_strspace */
285 else
286 space = imgp->ip_strspace;
287
288 if (space <= 0) {
289 error = E2BIG;
290 break;
291 }
292
293 if (!UIO_SEG_IS_USER_SPACE(seg)) {
294 char *kstr = CAST_DOWN(char *,str); /* SAFE */
295 error = copystr(kstr, imgp->ip_strendp, space, &len);
296 } else {
297 error = copyinstr(str, imgp->ip_strendp, space, &len);
298 }
299
300 imgp->ip_strendp += len;
301 imgp->ip_strspace -= len;
302 if (is_ncargs)
303 imgp->ip_argspace -= len;
304
305 } while (error == ENAMETOOLONG);
306
307 return error;
308 }
309
310 /*
311 * exec_save_path
312 *
313 * To support new app package launching for Mac OS X, the dyld needs the
314 * first argument to execve() stored on the user stack.
315 *
316 * Save the executable path name at the bottom of the strings area and set
317 * the argument vector pointer to the location following that to indicate
318 * the start of the argument and environment tuples, setting the remaining
319 * string space count to the size of the string area minus the path length.
320 *
321 * Parameters; struct image_params * image parameter block
322 * char * path used to invoke program
323 * int segment from which path comes
324 *
325 * Returns: int 0 Success
326 * EFAULT Bad address
327 * copy[in]str:EFAULT Bad address
328 * copy[in]str:ENAMETOOLONG Filename too long
329 *
330 * Implicit returns:
331 * (imgp->ip_strings) saved path
332 * (imgp->ip_strspace) space remaining in ip_strings
333 * (imgp->ip_strendp) start of remaining copy area
334 * (imgp->ip_argspace) space remaining of NCARGS
335 * (imgp->ip_applec) Initial applev[0]
336 *
337 * Note: We have to do this before the initial namei() since in the
338 * path contains symbolic links, namei() will overwrite the
339 * original path buffer contents. If the last symbolic link
340 * resolved was a relative pathname, we would lose the original
341 * "path", which could be an absolute pathname. This might be
342 * unacceptable for dyld.
343 */
344 static int
345 exec_save_path(struct image_params *imgp, user_addr_t path, int seg)
346 {
347 int error;
348 size_t len;
349 char *kpath;
350
351 len = MIN(MAXPATHLEN, imgp->ip_strspace);
352
353 switch(seg) {
354 case UIO_USERSPACE32:
355 case UIO_USERSPACE64: /* Same for copyin()... */
356 error = copyinstr(path, imgp->ip_strings, len, &len);
357 break;
358 case UIO_SYSSPACE:
359 kpath = CAST_DOWN(char *,path); /* SAFE */
360 error = copystr(kpath, imgp->ip_strings, len, &len);
361 break;
362 default:
363 error = EFAULT;
364 break;
365 }
366
367 if (!error) {
368 imgp->ip_strendp += len;
369 imgp->ip_strspace -= len;
370 }
371
372 return(error);
373 }
374
375 /*
376 * exec_reset_save_path
377 *
378 * If we detect a shell script, we need to reset the string area
379 * state so that the interpreter can be saved onto the stack.
380
381 * Parameters; struct image_params * image parameter block
382 *
383 * Returns: int 0 Success
384 *
385 * Implicit returns:
386 * (imgp->ip_strings) saved path
387 * (imgp->ip_strspace) space remaining in ip_strings
388 * (imgp->ip_strendp) start of remaining copy area
389 * (imgp->ip_argspace) space remaining of NCARGS
390 *
391 */
392 static int
393 exec_reset_save_path(struct image_params *imgp)
394 {
395 imgp->ip_strendp = imgp->ip_strings;
396 imgp->ip_argspace = NCARGS;
397 imgp->ip_strspace = ( NCARGS + PAGE_SIZE );
398
399 return (0);
400 }
401
402 /*
403 * exec_shell_imgact
404 *
405 * Image activator for interpreter scripts. If the image begins with the
406 * characters "#!", then it is an interpreter script. Verify that we are
407 * not already executing in PowerPC mode, and that the length of the script
408 * line indicating the interpreter is not in excess of the maximum allowed
409 * size. If this is the case, then break out the arguments, if any, which
410 * are separated by white space, and copy them into the argument save area
411 * as if they were provided on the command line before all other arguments.
412 * The line ends when we encounter a comment character ('#') or newline.
413 *
414 * Parameters; struct image_params * image parameter block
415 *
416 * Returns: -1 not an interpreter (keep looking)
417 * -3 Success: interpreter: relookup
418 * >0 Failure: interpreter: error number
419 *
420 * A return value other than -1 indicates subsequent image activators should
421 * not be given the opportunity to attempt to activate the image.
422 */
423 static int
424 exec_shell_imgact(struct image_params *imgp)
425 {
426 char *vdata = imgp->ip_vdata;
427 char *ihp;
428 char *line_startp, *line_endp;
429 char *interp;
430 proc_t p;
431 struct fileproc *fp;
432 int fd;
433 int error;
434
435 /*
436 * Make sure it's a shell script. If we've already redirected
437 * from an interpreted file once, don't do it again.
438 *
439 * Note: We disallow PowerPC, since the expectation is that we
440 * may run a PowerPC interpreter, but not an interpret a PowerPC
441 * image. This is consistent with historical behaviour.
442 */
443 if (vdata[0] != '#' ||
444 vdata[1] != '!' ||
445 (imgp->ip_flags & IMGPF_INTERPRET) != 0) {
446 return (-1);
447 }
448
449 imgp->ip_flags |= IMGPF_INTERPRET;
450 imgp->ip_interp_sugid_fd = -1;
451 imgp->ip_interp_buffer[0] = '\0';
452
453 /* Check to see if SUGID scripts are permitted. If they aren't then
454 * clear the SUGID bits.
455 * imgp->ip_vattr is known to be valid.
456 */
457 if (sugid_scripts == 0) {
458 imgp->ip_origvattr->va_mode &= ~(VSUID | VSGID);
459 }
460
461 /* Try to find the first non-whitespace character */
462 for( ihp = &vdata[2]; ihp < &vdata[IMG_SHSIZE]; ihp++ ) {
463 if (IS_EOL(*ihp)) {
464 /* Did not find interpreter, "#!\n" */
465 return (ENOEXEC);
466 } else if (IS_WHITESPACE(*ihp)) {
467 /* Whitespace, like "#! /bin/sh\n", keep going. */
468 } else {
469 /* Found start of interpreter */
470 break;
471 }
472 }
473
474 if (ihp == &vdata[IMG_SHSIZE]) {
475 /* All whitespace, like "#! " */
476 return (ENOEXEC);
477 }
478
479 line_startp = ihp;
480
481 /* Try to find the end of the interpreter+args string */
482 for ( ; ihp < &vdata[IMG_SHSIZE]; ihp++ ) {
483 if (IS_EOL(*ihp)) {
484 /* Got it */
485 break;
486 } else {
487 /* Still part of interpreter or args */
488 }
489 }
490
491 if (ihp == &vdata[IMG_SHSIZE]) {
492 /* A long line, like "#! blah blah blah" without end */
493 return (ENOEXEC);
494 }
495
496 /* Backtrack until we find the last non-whitespace */
497 while (IS_EOL(*ihp) || IS_WHITESPACE(*ihp)) {
498 ihp--;
499 }
500
501 /* The character after the last non-whitespace is our logical end of line */
502 line_endp = ihp + 1;
503
504 /*
505 * Now we have pointers to the usable part of:
506 *
507 * "#! /usr/bin/int first second third \n"
508 * ^ line_startp ^ line_endp
509 */
510
511 /* copy the interpreter name */
512 interp = imgp->ip_interp_buffer;
513 for ( ihp = line_startp; (ihp < line_endp) && !IS_WHITESPACE(*ihp); ihp++)
514 *interp++ = *ihp;
515 *interp = '\0';
516
517 exec_reset_save_path(imgp);
518 exec_save_path(imgp, CAST_USER_ADDR_T(imgp->ip_interp_buffer),
519 UIO_SYSSPACE);
520
521 /* Copy the entire interpreter + args for later processing into argv[] */
522 interp = imgp->ip_interp_buffer;
523 for ( ihp = line_startp; (ihp < line_endp); ihp++)
524 *interp++ = *ihp;
525 *interp = '\0';
526
527 /*
528 * If we have a SUID oder SGID script, create a file descriptor
529 * from the vnode and pass /dev/fd/%d instead of the actual
530 * path name so that the script does not get opened twice
531 */
532 if (imgp->ip_origvattr->va_mode & (VSUID | VSGID)) {
533 p = vfs_context_proc(imgp->ip_vfs_context);
534 error = falloc(p, &fp, &fd, imgp->ip_vfs_context);
535 if (error)
536 return(error);
537
538 fp->f_fglob->fg_flag = FREAD;
539 fp->f_fglob->fg_ops = &vnops;
540 fp->f_fglob->fg_data = (caddr_t)imgp->ip_vp;
541
542 proc_fdlock(p);
543 procfdtbl_releasefd(p, fd, NULL);
544 fp_drop(p, fd, fp, 1);
545 proc_fdunlock(p);
546 vnode_ref(imgp->ip_vp);
547
548 imgp->ip_interp_sugid_fd = fd;
549 }
550
551 return (-3);
552 }
553
554
555
556 /*
557 * exec_fat_imgact
558 *
559 * Image activator for fat 1.0 binaries. If the binary is fat, then we
560 * need to select an image from it internally, and make that the image
561 * we are going to attempt to execute. At present, this consists of
562 * reloading the first page for the image with a first page from the
563 * offset location indicated by the fat header.
564 *
565 * Parameters; struct image_params * image parameter block
566 *
567 * Returns: -1 not a fat binary (keep looking)
568 * -2 Success: encapsulated binary: reread
569 * >0 Failure: error number
570 *
571 * Important: This image activator is byte order neutral.
572 *
573 * Note: A return value other than -1 indicates subsequent image
574 * activators should not be given the opportunity to attempt
575 * to activate the image.
576 *
577 * If we find an encapsulated binary, we make no assertions
578 * about its validity; instead, we leave that up to a rescan
579 * for an activator to claim it, and, if it is claimed by one,
580 * that activator is responsible for determining validity.
581 */
582 static int
583 exec_fat_imgact(struct image_params *imgp)
584 {
585 proc_t p = vfs_context_proc(imgp->ip_vfs_context);
586 kauth_cred_t cred = kauth_cred_proc_ref(p);
587 struct fat_header *fat_header = (struct fat_header *)imgp->ip_vdata;
588 struct _posix_spawnattr *psa = NULL;
589 struct fat_arch fat_arch;
590 int resid, error;
591 load_return_t lret;
592
593 /* Make sure it's a fat binary */
594 if ((fat_header->magic != FAT_MAGIC) &&
595 (fat_header->magic != FAT_CIGAM)) {
596 error = -1;
597 goto bad;
598 }
599
600 #if DEVELOPMENT || DEBUG
601 if (cpu_type() == CPU_TYPE_ARM64) {
602 uint32_t fat_nfat_arch = OSSwapBigToHostInt32(fat_header->nfat_arch);
603 struct fat_arch *archs;
604 int vfexec = (imgp->ip_flags & IMGPF_VFORK_EXEC);
605 int spawn = (imgp->ip_flags & IMGPF_SPAWN);
606
607 archs = (struct fat_arch *)(imgp->ip_vdata + sizeof(struct fat_header));
608
609 /* ip_vdata always has PAGE_SIZE of data */
610 if (PAGE_SIZE >= (sizeof(struct fat_header) + (fat_nfat_arch + 1) * sizeof(struct fat_arch))) {
611 if (fat_nfat_arch > 0
612 && OSSwapBigToHostInt32(archs[fat_nfat_arch].cputype) == CPU_TYPE_ARM64) {
613
614 /* rdar://problem/15001727 */
615 printf("Attempt to execute malformed binary %s\n", imgp->ip_strings);
616
617 proc_lock(p);
618 p->p_csflags |= CS_KILLED;
619 proc_unlock(p);
620
621 /*
622 * We can't stop the system call, so make sure the child never executes
623 * For vfork exec, the current implementation has not set up the thread in the
624 * child process, so we cannot signal it. Return an error code in that case.
625 */
626 if (!vfexec && !spawn) {
627 psignal(p, SIGKILL);
628 error = 0;
629 } else {
630 error = EBADEXEC;
631 }
632 goto bad;
633 }
634 }
635 }
636 #endif
637
638 /* If posix_spawn binprefs exist, respect those prefs. */
639 psa = (struct _posix_spawnattr *) imgp->ip_px_sa;
640 if (psa != NULL && psa->psa_binprefs[0] != 0) {
641 struct fat_arch *arches = (struct fat_arch *) (fat_header + 1);
642 int nfat_arch = 0, pr = 0, f = 0;
643
644 nfat_arch = OSSwapBigToHostInt32(fat_header->nfat_arch);
645 /* Check each preference listed against all arches in header */
646 for (pr = 0; pr < NBINPREFS; pr++) {
647 cpu_type_t pref = psa->psa_binprefs[pr];
648 if (pref == 0) {
649 /* No suitable arch in the pref list */
650 error = EBADARCH;
651 goto bad;
652 }
653
654 if (pref == CPU_TYPE_ANY) {
655 /* Fall through to regular grading */
656 break;
657 }
658
659 for (f = 0; f < nfat_arch; f++) {
660 cpu_type_t archtype = OSSwapBigToHostInt32(
661 arches[f].cputype);
662 cpu_type_t archsubtype = OSSwapBigToHostInt32(
663 arches[f].cpusubtype) & ~CPU_SUBTYPE_MASK;
664 if (pref == archtype &&
665 grade_binary(archtype, archsubtype)) {
666 /* We have a winner! */
667 fat_arch.cputype = archtype;
668 fat_arch.cpusubtype = archsubtype;
669 fat_arch.offset = OSSwapBigToHostInt32(
670 arches[f].offset);
671 fat_arch.size = OSSwapBigToHostInt32(
672 arches[f].size);
673 fat_arch.align = OSSwapBigToHostInt32(
674 arches[f].align);
675 goto use_arch;
676 }
677 }
678 }
679 }
680
681 /* Look up our preferred architecture in the fat file. */
682 lret = fatfile_getarch_affinity(imgp->ip_vp,
683 (vm_offset_t)fat_header,
684 &fat_arch,
685 (p->p_flag & P_AFFINITY));
686 if (lret != LOAD_SUCCESS) {
687 error = load_return_to_errno(lret);
688 goto bad;
689 }
690
691 use_arch:
692 /* Read the Mach-O header out of fat_arch */
693 error = vn_rdwr(UIO_READ, imgp->ip_vp, imgp->ip_vdata,
694 PAGE_SIZE, fat_arch.offset,
695 UIO_SYSSPACE, (IO_UNIT|IO_NODELOCKED),
696 cred, &resid, p);
697 if (error) {
698 goto bad;
699 }
700
701 /* Did we read a complete header? */
702 if (resid) {
703 error = EBADEXEC;
704 goto bad;
705 }
706
707 /* Success. Indicate we have identified an encapsulated binary */
708 error = -2;
709 imgp->ip_arch_offset = (user_size_t)fat_arch.offset;
710 imgp->ip_arch_size = (user_size_t)fat_arch.size;
711
712 bad:
713 kauth_cred_unref(&cred);
714 return (error);
715 }
716
717 /*
718 * exec_mach_imgact
719 *
720 * Image activator for mach-o 1.0 binaries.
721 *
722 * Parameters; struct image_params * image parameter block
723 *
724 * Returns: -1 not a fat binary (keep looking)
725 * -2 Success: encapsulated binary: reread
726 * >0 Failure: error number
727 * EBADARCH Mach-o binary, but with an unrecognized
728 * architecture
729 * ENOMEM No memory for child process after -
730 * can only happen after vfork()
731 *
732 * Important: This image activator is NOT byte order neutral.
733 *
734 * Note: A return value other than -1 indicates subsequent image
735 * activators should not be given the opportunity to attempt
736 * to activate the image.
737 *
738 * TODO: More gracefully handle failures after vfork
739 */
740 static int
741 exec_mach_imgact(struct image_params *imgp)
742 {
743 struct mach_header *mach_header = (struct mach_header *)imgp->ip_vdata;
744 proc_t p = vfs_context_proc(imgp->ip_vfs_context);
745 int error = 0;
746 task_t task;
747 task_t new_task = NULL; /* protected by vfexec */
748 thread_t thread;
749 struct uthread *uthread;
750 vm_map_t old_map = VM_MAP_NULL;
751 vm_map_t map;
752 load_return_t lret;
753 load_result_t load_result;
754 struct _posix_spawnattr *psa = NULL;
755 int spawn = (imgp->ip_flags & IMGPF_SPAWN);
756 int vfexec = (imgp->ip_flags & IMGPF_VFORK_EXEC);
757
758 /*
759 * make sure it's a Mach-O 1.0 or Mach-O 2.0 binary; the difference
760 * is a reserved field on the end, so for the most part, we can
761 * treat them as if they were identical. Reverse-endian Mach-O
762 * binaries are recognized but not compatible.
763 */
764 if ((mach_header->magic == MH_CIGAM) ||
765 (mach_header->magic == MH_CIGAM_64)) {
766 error = EBADARCH;
767 goto bad;
768 }
769
770 if ((mach_header->magic != MH_MAGIC) &&
771 (mach_header->magic != MH_MAGIC_64)) {
772 error = -1;
773 goto bad;
774 }
775
776 switch (mach_header->filetype) {
777 case MH_DYLIB:
778 case MH_BUNDLE:
779 error = -1;
780 goto bad;
781 }
782
783 if (!imgp->ip_origcputype) {
784 imgp->ip_origcputype = mach_header->cputype;
785 imgp->ip_origcpusubtype = mach_header->cpusubtype;
786 }
787
788 task = current_task();
789 thread = current_thread();
790 uthread = get_bsdthread_info(thread);
791
792 if ((mach_header->cputype & CPU_ARCH_ABI64) == CPU_ARCH_ABI64)
793 imgp->ip_flags |= IMGPF_IS_64BIT;
794
795 /* If posix_spawn binprefs exist, respect those prefs. */
796 psa = (struct _posix_spawnattr *) imgp->ip_px_sa;
797 if (psa != NULL && psa->psa_binprefs[0] != 0) {
798 int pr = 0;
799 for (pr = 0; pr < NBINPREFS; pr++) {
800 cpu_type_t pref = psa->psa_binprefs[pr];
801 if (pref == 0) {
802 /* No suitable arch in the pref list */
803 error = EBADARCH;
804 goto bad;
805 }
806
807 if (pref == CPU_TYPE_ANY) {
808 /* Jump to regular grading */
809 goto grade;
810 }
811
812 if (pref == imgp->ip_origcputype) {
813 /* We have a match! */
814 goto grade;
815 }
816 }
817 error = EBADARCH;
818 goto bad;
819 }
820 grade:
821 if (!grade_binary(imgp->ip_origcputype, imgp->ip_origcpusubtype & ~CPU_SUBTYPE_MASK)) {
822 error = EBADARCH;
823 goto bad;
824 }
825
826 /* Copy in arguments/environment from the old process */
827 error = exec_extract_strings(imgp);
828 if (error)
829 goto bad;
830
831 error = exec_add_apple_strings(imgp);
832 if (error)
833 goto bad;
834
835 AUDIT_ARG(argv, imgp->ip_startargv, imgp->ip_argc,
836 imgp->ip_endargv - imgp->ip_startargv);
837 AUDIT_ARG(envv, imgp->ip_endargv, imgp->ip_envc,
838 imgp->ip_endenvv - imgp->ip_endargv);
839
840 /*
841 * We are being called to activate an image subsequent to a vfork()
842 * operation; in this case, we know that our task, thread, and
843 * uthread are actually those of our parent, and our proc, which we
844 * obtained indirectly from the image_params vfs_context_t, is the
845 * new child process.
846 */
847 if (vfexec || spawn) {
848 if (vfexec) {
849 imgp->ip_new_thread = fork_create_child(task, COALITION_NULL, p, FALSE, (imgp->ip_flags & IMGPF_IS_64BIT));
850 if (imgp->ip_new_thread == NULL) {
851 error = ENOMEM;
852 goto bad;
853 }
854 }
855
856 /* reset local idea of thread, uthread, task */
857 thread = imgp->ip_new_thread;
858 uthread = get_bsdthread_info(thread);
859 task = new_task = get_threadtask(thread);
860 map = get_task_map(task);
861 } else {
862 map = VM_MAP_NULL;
863 }
864
865 /*
866 * We set these flags here; this is OK, since if we fail after
867 * this point, we have already destroyed the parent process anyway.
868 */
869 task_set_dyld_info(task, MACH_VM_MIN_ADDRESS, 0);
870 if (imgp->ip_flags & IMGPF_IS_64BIT) {
871 task_set_64bit(task, TRUE);
872 OSBitOrAtomic(P_LP64, &p->p_flag);
873 } else {
874 task_set_64bit(task, FALSE);
875 OSBitAndAtomic(~((uint32_t)P_LP64), &p->p_flag);
876 }
877
878 /*
879 * Load the Mach-O file.
880 *
881 * NOTE: An error after this point indicates we have potentially
882 * destroyed or overwritten some process state while attempting an
883 * execve() following a vfork(), which is an unrecoverable condition.
884 * We send the new process an immediate SIGKILL to avoid it executing
885 * any instructions in the mutated address space. For true spawns,
886 * this is not the case, and "too late" is still not too late to
887 * return an error code to the parent process.
888 */
889
890 /*
891 * Actually load the image file we previously decided to load.
892 */
893 lret = load_machfile(imgp, mach_header, thread, map, &load_result);
894
895 if (lret != LOAD_SUCCESS) {
896 error = load_return_to_errno(lret);
897 goto badtoolate;
898 }
899
900 proc_lock(p);
901 p->p_cputype = imgp->ip_origcputype;
902 p->p_cpusubtype = imgp->ip_origcpusubtype;
903 proc_unlock(p);
904
905 vm_map_set_user_wire_limit(get_task_map(task), p->p_rlimit[RLIMIT_MEMLOCK].rlim_cur);
906
907 /*
908 * Set code-signing flags if this binary is signed, or if parent has
909 * requested them on exec.
910 */
911 if (load_result.csflags & CS_VALID) {
912 imgp->ip_csflags |= load_result.csflags &
913 (CS_VALID|
914 CS_HARD|CS_KILL|CS_ENFORCEMENT|CS_REQUIRE_LV|CS_DYLD_PLATFORM|
915 CS_EXEC_SET_HARD|CS_EXEC_SET_KILL|CS_EXEC_SET_ENFORCEMENT);
916 } else {
917 imgp->ip_csflags &= ~CS_VALID;
918 }
919
920 if (p->p_csflags & CS_EXEC_SET_HARD)
921 imgp->ip_csflags |= CS_HARD;
922 if (p->p_csflags & CS_EXEC_SET_KILL)
923 imgp->ip_csflags |= CS_KILL;
924 if (p->p_csflags & CS_EXEC_SET_ENFORCEMENT)
925 imgp->ip_csflags |= CS_ENFORCEMENT;
926 if (p->p_csflags & CS_EXEC_SET_INSTALLER)
927 imgp->ip_csflags |= CS_INSTALLER;
928
929
930 /*
931 * Set up the system reserved areas in the new address space.
932 */
933 vm_map_exec(get_task_map(task),
934 task,
935 (void *) p->p_fd->fd_rdir,
936 cpu_type());
937
938 /*
939 * Close file descriptors which specify close-on-exec.
940 */
941 fdexec(p, psa != NULL ? psa->psa_flags : 0);
942
943 /*
944 * deal with set[ug]id.
945 */
946 error = exec_handle_sugid(imgp);
947 if (error) {
948 goto badtoolate;
949 }
950
951 /*
952 * deal with voucher on exec-calling thread.
953 */
954 if (imgp->ip_new_thread == NULL)
955 thread_set_mach_voucher(current_thread(), IPC_VOUCHER_NULL);
956
957 /* Make sure we won't interrupt ourself signalling a partial process */
958 if (!vfexec && !spawn && (p->p_lflag & P_LTRACED))
959 psignal(p, SIGTRAP);
960
961 if (load_result.unixproc &&
962 create_unix_stack(get_task_map(task),
963 &load_result,
964 p) != KERN_SUCCESS) {
965 error = load_return_to_errno(LOAD_NOSPACE);
966 goto badtoolate;
967 }
968
969 if (vfexec || spawn) {
970 old_map = vm_map_switch(get_task_map(task));
971 }
972
973 if (load_result.unixproc) {
974 user_addr_t ap;
975
976 /*
977 * Copy the strings area out into the new process address
978 * space.
979 */
980 ap = p->user_stack;
981 error = exec_copyout_strings(imgp, &ap);
982 if (error) {
983 if (vfexec || spawn)
984 vm_map_switch(old_map);
985 goto badtoolate;
986 }
987 /* Set the stack */
988 thread_setuserstack(thread, ap);
989 }
990
991 if (load_result.dynlinker) {
992 uint64_t ap;
993 int new_ptr_size = (imgp->ip_flags & IMGPF_IS_64BIT) ? 8 : 4;
994
995 /* Adjust the stack */
996 ap = thread_adjuserstack(thread, -new_ptr_size);
997 error = copyoutptr(load_result.mach_header, ap, new_ptr_size);
998
999 if (error) {
1000 if (vfexec || spawn)
1001 vm_map_switch(old_map);
1002 goto badtoolate;
1003 }
1004 task_set_dyld_info(task, load_result.all_image_info_addr,
1005 load_result.all_image_info_size);
1006 }
1007
1008 /* Avoid immediate VM faults back into kernel */
1009 exec_prefault_data(p, imgp, &load_result);
1010
1011 if (vfexec || spawn) {
1012 vm_map_switch(old_map);
1013 }
1014 /* Set the entry point */
1015 thread_setentrypoint(thread, load_result.entry_point);
1016
1017 /* Stop profiling */
1018 stopprofclock(p);
1019
1020 /*
1021 * Reset signal state.
1022 */
1023 execsigs(p, thread);
1024
1025 /*
1026 * need to cancel async IO requests that can be cancelled and wait for those
1027 * already active. MAY BLOCK!
1028 */
1029 _aio_exec( p );
1030
1031 #if SYSV_SHM
1032 /* FIXME: Till vmspace inherit is fixed: */
1033 if (!vfexec && p->vm_shm)
1034 shmexec(p);
1035 #endif
1036 #if SYSV_SEM
1037 /* Clean up the semaphores */
1038 semexit(p);
1039 #endif
1040
1041 /*
1042 * Remember file name for accounting.
1043 */
1044 p->p_acflag &= ~AFORK;
1045 /* If the translated name isn't NULL, then we want to use
1046 * that translated name as the name we show as the "real" name.
1047 * Otherwise, use the name passed into exec.
1048 */
1049 if (0 != imgp->ip_p_comm[0]) {
1050 bcopy((caddr_t)imgp->ip_p_comm, (caddr_t)p->p_comm,
1051 sizeof(p->p_comm));
1052 } else {
1053 if (imgp->ip_ndp->ni_cnd.cn_namelen > MAXCOMLEN)
1054 imgp->ip_ndp->ni_cnd.cn_namelen = MAXCOMLEN;
1055 bcopy((caddr_t)imgp->ip_ndp->ni_cnd.cn_nameptr, (caddr_t)p->p_comm,
1056 (unsigned)imgp->ip_ndp->ni_cnd.cn_namelen);
1057 p->p_comm[imgp->ip_ndp->ni_cnd.cn_namelen] = '\0';
1058 }
1059
1060 pal_dbg_set_task_name( p->task );
1061
1062 #if DEVELOPMENT || DEBUG
1063 /*
1064 * Update the pid an proc name for importance base if any
1065 */
1066 task_importance_update_owner_info(p->task);
1067 #endif
1068
1069 memcpy(&p->p_uuid[0], &load_result.uuid[0], sizeof(p->p_uuid));
1070
1071 // <rdar://6598155> dtrace code cleanup needed
1072 #if CONFIG_DTRACE
1073 /*
1074 * Invalidate any predicate evaluation already cached for this thread by DTrace.
1075 * That's because we've just stored to p_comm and DTrace refers to that when it
1076 * evaluates the "execname" special variable. uid and gid may have changed as well.
1077 */
1078 dtrace_set_thread_predcache(current_thread(), 0);
1079
1080 /*
1081 * Free any outstanding lazy dof entries. It is imperative we
1082 * always call dtrace_lazy_dofs_destroy, rather than null check
1083 * and call if !NULL. If we NULL test, during lazy dof faulting
1084 * we can race with the faulting code and proceed from here to
1085 * beyond the helpers cleanup. The lazy dof faulting will then
1086 * install new helpers which no longer belong to this process!
1087 */
1088 dtrace_lazy_dofs_destroy(p);
1089
1090
1091 /*
1092 * Clean up any DTrace helpers for the process.
1093 */
1094 if (p->p_dtrace_helpers != NULL && dtrace_helpers_cleanup) {
1095 (*dtrace_helpers_cleanup)(p);
1096 }
1097
1098 /*
1099 * Cleanup the DTrace provider associated with this process.
1100 */
1101 proc_lock(p);
1102 if (p->p_dtrace_probes && dtrace_fasttrap_exec_ptr) {
1103 (*dtrace_fasttrap_exec_ptr)(p);
1104 }
1105 proc_unlock(p);
1106 #endif
1107
1108 if (kdebug_enable) {
1109 long dbg_arg1, dbg_arg2, dbg_arg3, dbg_arg4;
1110
1111 /*
1112 * Collect the pathname for tracing
1113 */
1114 kdbg_trace_string(p, &dbg_arg1, &dbg_arg2, &dbg_arg3, &dbg_arg4);
1115
1116 if (vfexec || spawn) {
1117 KERNEL_DEBUG_CONSTANT1((TRACEDBG_CODE(DBG_TRACE_DATA, 2)) | DBG_FUNC_NONE,
1118 p->p_pid ,0,0,0, (uintptr_t)thread_tid(thread));
1119 KERNEL_DEBUG_CONSTANT1((TRACEDBG_CODE(DBG_TRACE_STRING, 2)) | DBG_FUNC_NONE,
1120 dbg_arg1, dbg_arg2, dbg_arg3, dbg_arg4, (uintptr_t)thread_tid(thread));
1121 } else {
1122 KERNEL_DEBUG_CONSTANT((TRACEDBG_CODE(DBG_TRACE_DATA, 2)) | DBG_FUNC_NONE,
1123 p->p_pid ,0,0,0,0);
1124 KERNEL_DEBUG_CONSTANT((TRACEDBG_CODE(DBG_TRACE_STRING, 2)) | DBG_FUNC_NONE,
1125 dbg_arg1, dbg_arg2, dbg_arg3, dbg_arg4, 0);
1126 }
1127 }
1128
1129 /*
1130 * Ensure the 'translated' and 'affinity' flags are cleared, since we
1131 * no longer run PowerPC binaries.
1132 */
1133 OSBitAndAtomic(~((uint32_t)(P_TRANSLATED | P_AFFINITY)), &p->p_flag);
1134
1135 /*
1136 * If posix_spawned with the START_SUSPENDED flag, stop the
1137 * process before it runs.
1138 */
1139 if (imgp->ip_px_sa != NULL) {
1140 psa = (struct _posix_spawnattr *) imgp->ip_px_sa;
1141 if (psa->psa_flags & POSIX_SPAWN_START_SUSPENDED) {
1142 proc_lock(p);
1143 p->p_stat = SSTOP;
1144 proc_unlock(p);
1145 (void) task_suspend(p->task);
1146 }
1147 }
1148
1149 /*
1150 * mark as execed, wakeup the process that vforked (if any) and tell
1151 * it that it now has its own resources back
1152 */
1153 OSBitOrAtomic(P_EXEC, &p->p_flag);
1154 proc_resetregister(p);
1155 if (p->p_pptr && (p->p_lflag & P_LPPWAIT)) {
1156 proc_lock(p);
1157 p->p_lflag &= ~P_LPPWAIT;
1158 proc_unlock(p);
1159 wakeup((caddr_t)p->p_pptr);
1160 }
1161
1162 /*
1163 * Pay for our earlier safety; deliver the delayed signals from
1164 * the incomplete vfexec process now that it's complete.
1165 */
1166 if (vfexec && (p->p_lflag & P_LTRACED)) {
1167 psignal_vfork(p, new_task, thread, SIGTRAP);
1168 }
1169
1170 goto done;
1171
1172 badtoolate:
1173 /* Don't allow child process to execute any instructions */
1174 if (!spawn) {
1175 if (vfexec) {
1176 psignal_vfork(p, new_task, thread, SIGKILL);
1177 } else {
1178 psignal(p, SIGKILL);
1179 }
1180
1181 /* We can't stop this system call at this point, so just pretend we succeeded */
1182 error = 0;
1183 }
1184
1185 done:
1186 if (!spawn) {
1187 /* notify only if it has not failed due to FP Key error */
1188 if ((p->p_lflag & P_LTERM_DECRYPTFAIL) == 0)
1189 proc_knote(p, NOTE_EXEC);
1190 }
1191
1192 /* Drop extra references for cases where we don't expect the caller to clean up */
1193 if (vfexec || (spawn && error == 0)) {
1194 task_deallocate(new_task);
1195 thread_deallocate(thread);
1196 }
1197
1198 bad:
1199 return(error);
1200 }
1201
1202
1203
1204
1205 /*
1206 * Our image activator table; this is the table of the image types we are
1207 * capable of loading. We list them in order of preference to ensure the
1208 * fastest image load speed.
1209 *
1210 * XXX hardcoded, for now; should use linker sets
1211 */
1212 struct execsw {
1213 int (*ex_imgact)(struct image_params *);
1214 const char *ex_name;
1215 } execsw[] = {
1216 { exec_mach_imgact, "Mach-o Binary" },
1217 { exec_fat_imgact, "Fat Binary" },
1218 { exec_shell_imgact, "Interpreter Script" },
1219 { NULL, NULL}
1220 };
1221
1222
1223 /*
1224 * exec_activate_image
1225 *
1226 * Description: Iterate through the available image activators, and activate
1227 * the image associated with the imgp structure. We start with
1228 * the
1229 *
1230 * Parameters: struct image_params * Image parameter block
1231 *
1232 * Returns: 0 Success
1233 * EBADEXEC The executable is corrupt/unknown
1234 * execargs_alloc:EINVAL Invalid argument
1235 * execargs_alloc:EACCES Permission denied
1236 * execargs_alloc:EINTR Interrupted function
1237 * execargs_alloc:ENOMEM Not enough space
1238 * exec_save_path:EFAULT Bad address
1239 * exec_save_path:ENAMETOOLONG Filename too long
1240 * exec_check_permissions:EACCES Permission denied
1241 * exec_check_permissions:ENOEXEC Executable file format error
1242 * exec_check_permissions:ETXTBSY Text file busy [misuse of error code]
1243 * exec_check_permissions:???
1244 * namei:???
1245 * vn_rdwr:??? [anything vn_rdwr can return]
1246 * <ex_imgact>:??? [anything an imgact can return]
1247 */
1248 static int
1249 exec_activate_image(struct image_params *imgp)
1250 {
1251 struct nameidata *ndp = NULL;
1252 int error;
1253 int resid;
1254 int once = 1; /* save SGUID-ness for interpreted files */
1255 int i;
1256 int iterlimit = EAI_ITERLIMIT;
1257 proc_t p = vfs_context_proc(imgp->ip_vfs_context);
1258
1259 error = execargs_alloc(imgp);
1260 if (error)
1261 goto bad_notrans;
1262
1263 error = exec_save_path(imgp, imgp->ip_user_fname, imgp->ip_seg);
1264 if (error) {
1265 goto bad_notrans;
1266 }
1267
1268 /* Use imgp->ip_strings, which contains the copyin-ed exec path */
1269 DTRACE_PROC1(exec, uintptr_t, imgp->ip_strings);
1270
1271 MALLOC(ndp, struct nameidata *, sizeof(*ndp), M_TEMP, M_WAITOK | M_ZERO);
1272 if (ndp == NULL) {
1273 error = ENOMEM;
1274 goto bad_notrans;
1275 }
1276
1277 NDINIT(ndp, LOOKUP, OP_LOOKUP, FOLLOW | LOCKLEAF | AUDITVNPATH1,
1278 UIO_SYSSPACE, CAST_USER_ADDR_T(imgp->ip_strings), imgp->ip_vfs_context);
1279
1280 again:
1281 error = namei(ndp);
1282 if (error)
1283 goto bad_notrans;
1284 imgp->ip_ndp = ndp; /* successful namei(); call nameidone() later */
1285 imgp->ip_vp = ndp->ni_vp; /* if set, need to vnode_put() at some point */
1286
1287 /*
1288 * Before we start the transition from binary A to binary B, make
1289 * sure another thread hasn't started exiting the process. We grab
1290 * the proc lock to check p_lflag initially, and the transition
1291 * mechanism ensures that the value doesn't change after we release
1292 * the lock.
1293 */
1294 proc_lock(p);
1295 if (p->p_lflag & P_LEXIT) {
1296 proc_unlock(p);
1297 goto bad_notrans;
1298 }
1299 error = proc_transstart(p, 1, 0);
1300 proc_unlock(p);
1301 if (error)
1302 goto bad_notrans;
1303
1304 error = exec_check_permissions(imgp);
1305 if (error)
1306 goto bad;
1307
1308 /* Copy; avoid invocation of an interpreter overwriting the original */
1309 if (once) {
1310 once = 0;
1311 *imgp->ip_origvattr = *imgp->ip_vattr;
1312 }
1313
1314 error = vn_rdwr(UIO_READ, imgp->ip_vp, imgp->ip_vdata, PAGE_SIZE, 0,
1315 UIO_SYSSPACE, IO_NODELOCKED,
1316 vfs_context_ucred(imgp->ip_vfs_context),
1317 &resid, vfs_context_proc(imgp->ip_vfs_context));
1318 if (error)
1319 goto bad;
1320
1321 encapsulated_binary:
1322 /* Limit the number of iterations we will attempt on each binary */
1323 if (--iterlimit == 0) {
1324 error = EBADEXEC;
1325 goto bad;
1326 }
1327 error = -1;
1328 for(i = 0; error == -1 && execsw[i].ex_imgact != NULL; i++) {
1329
1330 error = (*execsw[i].ex_imgact)(imgp);
1331
1332 switch (error) {
1333 /* case -1: not claimed: continue */
1334 case -2: /* Encapsulated binary */
1335 goto encapsulated_binary;
1336
1337 case -3: /* Interpreter */
1338 #if CONFIG_MACF
1339 /*
1340 * Copy the script label for later use. Note that
1341 * the label can be different when the script is
1342 * actually read by the interpreter.
1343 */
1344 if (imgp->ip_scriptlabelp)
1345 mac_vnode_label_free(imgp->ip_scriptlabelp);
1346 imgp->ip_scriptlabelp = mac_vnode_label_alloc();
1347 if (imgp->ip_scriptlabelp == NULL) {
1348 error = ENOMEM;
1349 break;
1350 }
1351 mac_vnode_label_copy(imgp->ip_vp->v_label,
1352 imgp->ip_scriptlabelp);
1353
1354 /*
1355 * Take a ref of the script vnode for later use.
1356 */
1357 if (imgp->ip_scriptvp)
1358 vnode_put(imgp->ip_scriptvp);
1359 if (vnode_getwithref(imgp->ip_vp) == 0)
1360 imgp->ip_scriptvp = imgp->ip_vp;
1361 #endif
1362
1363 nameidone(ndp);
1364
1365 vnode_put(imgp->ip_vp);
1366 imgp->ip_vp = NULL; /* already put */
1367 imgp->ip_ndp = NULL; /* already nameidone */
1368
1369 /* Use imgp->ip_strings, which exec_shell_imgact reset to the interpreter */
1370 NDINIT(ndp, LOOKUP, OP_LOOKUP, FOLLOW | LOCKLEAF,
1371 UIO_SYSSPACE, CAST_USER_ADDR_T(imgp->ip_strings), imgp->ip_vfs_context);
1372
1373 proc_transend(p, 0);
1374 goto again;
1375
1376 default:
1377 break;
1378 }
1379 }
1380
1381 /*
1382 * Call out to allow 3rd party notification of exec.
1383 * Ignore result of kauth_authorize_fileop call.
1384 */
1385 if (error == 0 && kauth_authorize_fileop_has_listeners()) {
1386 kauth_authorize_fileop(vfs_context_ucred(imgp->ip_vfs_context),
1387 KAUTH_FILEOP_EXEC,
1388 (uintptr_t)ndp->ni_vp, 0);
1389 }
1390
1391 bad:
1392 proc_transend(p, 0);
1393
1394 bad_notrans:
1395 if (imgp->ip_strings)
1396 execargs_free(imgp);
1397 if (imgp->ip_ndp)
1398 nameidone(imgp->ip_ndp);
1399 if (ndp)
1400 FREE(ndp, M_TEMP);
1401
1402 return (error);
1403 }
1404
1405
1406 /*
1407 * exec_handle_spawnattr_policy
1408 *
1409 * Description: Decode and apply the posix_spawn apptype, qos clamp, and watchport ports to the task.
1410 *
1411 * Parameters: proc_t p process to apply attributes to
1412 * int psa_apptype posix spawn attribute apptype
1413 *
1414 * Returns: 0 Success
1415 */
1416 static errno_t
1417 exec_handle_spawnattr_policy(proc_t p, int psa_apptype, uint64_t psa_qos_clamp,
1418 ipc_port_t * portwatch_ports, int portwatch_count)
1419 {
1420 int apptype = TASK_APPTYPE_NONE;
1421 int qos_clamp = THREAD_QOS_UNSPECIFIED;
1422
1423 if ((psa_apptype & POSIX_SPAWN_PROC_TYPE_MASK) != 0) {
1424 int proctype = psa_apptype & POSIX_SPAWN_PROC_TYPE_MASK;
1425
1426 switch(proctype) {
1427 case POSIX_SPAWN_PROC_TYPE_DAEMON_INTERACTIVE:
1428 apptype = TASK_APPTYPE_DAEMON_INTERACTIVE;
1429 break;
1430 case POSIX_SPAWN_PROC_TYPE_DAEMON_STANDARD:
1431 apptype = TASK_APPTYPE_DAEMON_STANDARD;
1432 break;
1433 case POSIX_SPAWN_PROC_TYPE_DAEMON_ADAPTIVE:
1434 apptype = TASK_APPTYPE_DAEMON_ADAPTIVE;
1435 break;
1436 case POSIX_SPAWN_PROC_TYPE_DAEMON_BACKGROUND:
1437 apptype = TASK_APPTYPE_DAEMON_BACKGROUND;
1438 break;
1439 case POSIX_SPAWN_PROC_TYPE_APP_DEFAULT:
1440 apptype = TASK_APPTYPE_APP_DEFAULT;
1441 break;
1442 case POSIX_SPAWN_PROC_TYPE_APP_TAL:
1443 apptype = TASK_APPTYPE_APP_TAL;
1444 break;
1445 default:
1446 apptype = TASK_APPTYPE_NONE;
1447 /* TODO: Should an invalid value here fail the spawn? */
1448 break;
1449 }
1450 }
1451
1452 if (psa_qos_clamp != POSIX_SPAWN_PROC_CLAMP_NONE) {
1453 switch (psa_qos_clamp) {
1454 case POSIX_SPAWN_PROC_CLAMP_UTILITY:
1455 qos_clamp = THREAD_QOS_UTILITY;
1456 break;
1457 case POSIX_SPAWN_PROC_CLAMP_BACKGROUND:
1458 qos_clamp = THREAD_QOS_BACKGROUND;
1459 break;
1460 case POSIX_SPAWN_PROC_CLAMP_MAINTENANCE:
1461 qos_clamp = THREAD_QOS_MAINTENANCE;
1462 break;
1463 default:
1464 qos_clamp = THREAD_QOS_UNSPECIFIED;
1465 /* TODO: Should an invalid value here fail the spawn? */
1466 break;
1467 }
1468 }
1469
1470 if (psa_apptype != TASK_APPTYPE_NONE || qos_clamp != THREAD_QOS_UNSPECIFIED) {
1471 proc_set_task_spawnpolicy(p->task, apptype, qos_clamp,
1472 portwatch_ports, portwatch_count);
1473 }
1474
1475 return (0);
1476 }
1477
1478
1479 /*
1480 * exec_handle_port_actions
1481 *
1482 * Description: Go through the _posix_port_actions_t contents,
1483 * calling task_set_special_port, task_set_exception_ports
1484 * and/or audit_session_spawnjoin for the current task.
1485 *
1486 * Parameters: struct image_params * Image parameter block
1487 * short psa_flags posix spawn attribute flags
1488 *
1489 * Returns: 0 Success
1490 * EINVAL Failure
1491 * ENOTSUP Illegal posix_spawn attr flag was set
1492 */
1493 static errno_t
1494 exec_handle_port_actions(struct image_params *imgp, short psa_flags, boolean_t * portwatch_present, ipc_port_t * portwatch_ports)
1495 {
1496 _posix_spawn_port_actions_t pacts = imgp->ip_px_spa;
1497 proc_t p = vfs_context_proc(imgp->ip_vfs_context);
1498 _ps_port_action_t *act = NULL;
1499 task_t task = p->task;
1500 ipc_port_t port = NULL;
1501 errno_t ret = 0;
1502 int i;
1503
1504 *portwatch_present = FALSE;
1505
1506 for (i = 0; i < pacts->pspa_count; i++) {
1507 act = &pacts->pspa_actions[i];
1508
1509 if (ipc_object_copyin(get_task_ipcspace(current_task()),
1510 act->new_port, MACH_MSG_TYPE_COPY_SEND,
1511 (ipc_object_t *) &port) != KERN_SUCCESS) {
1512 ret = EINVAL;
1513 goto done;
1514 }
1515
1516 switch (act->port_type) {
1517 case PSPA_SPECIAL:
1518 /* Only allowed when not under vfork */
1519 if (!(psa_flags & POSIX_SPAWN_SETEXEC))
1520 ret = ENOTSUP;
1521 else if (task_set_special_port(task,
1522 act->which, port) != KERN_SUCCESS)
1523 ret = EINVAL;
1524 break;
1525
1526 case PSPA_EXCEPTION:
1527 /* Only allowed when not under vfork */
1528 if (!(psa_flags & POSIX_SPAWN_SETEXEC))
1529 ret = ENOTSUP;
1530 else if (task_set_exception_ports(task,
1531 act->mask, port, act->behavior,
1532 act->flavor) != KERN_SUCCESS)
1533 ret = EINVAL;
1534 break;
1535 #if CONFIG_AUDIT
1536 case PSPA_AU_SESSION:
1537 ret = audit_session_spawnjoin(p, port);
1538 break;
1539 #endif
1540 case PSPA_IMP_WATCHPORTS:
1541 if (portwatch_ports != NULL) {
1542 *portwatch_present = TRUE;
1543 /* hold on to this till end of spawn */
1544 portwatch_ports[i] = port;
1545 ret = 0;
1546 } else
1547 ipc_port_release_send(port);
1548 break;
1549 default:
1550 ret = EINVAL;
1551 break;
1552 }
1553
1554 /* action failed, so release port resources */
1555
1556 if (ret) {
1557 ipc_port_release_send(port);
1558 break;
1559 }
1560 }
1561
1562 done:
1563 if (0 != ret)
1564 DTRACE_PROC1(spawn__port__failure, mach_port_name_t, act->new_port);
1565 return (ret);
1566 }
1567
1568 /*
1569 * exec_handle_file_actions
1570 *
1571 * Description: Go through the _posix_file_actions_t contents applying the
1572 * open, close, and dup2 operations to the open file table for
1573 * the current process.
1574 *
1575 * Parameters: struct image_params * Image parameter block
1576 *
1577 * Returns: 0 Success
1578 * ???
1579 *
1580 * Note: Actions are applied in the order specified, with the credential
1581 * of the parent process. This is done to permit the parent
1582 * process to utilize POSIX_SPAWN_RESETIDS to drop privilege in
1583 * the child following operations the child may in fact not be
1584 * normally permitted to perform.
1585 */
1586 static int
1587 exec_handle_file_actions(struct image_params *imgp, short psa_flags)
1588 {
1589 int error = 0;
1590 int action;
1591 proc_t p = vfs_context_proc(imgp->ip_vfs_context);
1592 _posix_spawn_file_actions_t px_sfap = imgp->ip_px_sfa;
1593 int ival[2]; /* dummy retval for system calls) */
1594
1595 for (action = 0; action < px_sfap->psfa_act_count; action++) {
1596 _psfa_action_t *psfa = &px_sfap->psfa_act_acts[ action];
1597
1598 switch(psfa->psfaa_type) {
1599 case PSFA_OPEN: {
1600 /*
1601 * Open is different, in that it requires the use of
1602 * a path argument, which is normally copied in from
1603 * user space; because of this, we have to support an
1604 * open from kernel space that passes an address space
1605 * context of UIO_SYSSPACE, and casts the address
1606 * argument to a user_addr_t.
1607 */
1608 char *bufp = NULL;
1609 struct vnode_attr *vap;
1610 struct nameidata *ndp;
1611 int mode = psfa->psfaa_openargs.psfao_mode;
1612 struct dup2_args dup2a;
1613 struct close_nocancel_args ca;
1614 int origfd;
1615
1616 MALLOC(bufp, char *, sizeof(*vap) + sizeof(*ndp), M_TEMP, M_WAITOK | M_ZERO);
1617 if (bufp == NULL) {
1618 error = ENOMEM;
1619 break;
1620 }
1621
1622 vap = (struct vnode_attr *) bufp;
1623 ndp = (struct nameidata *) (bufp + sizeof(*vap));
1624
1625 VATTR_INIT(vap);
1626 /* Mask off all but regular access permissions */
1627 mode = ((mode &~ p->p_fd->fd_cmask) & ALLPERMS) & ~S_ISTXT;
1628 VATTR_SET(vap, va_mode, mode & ACCESSPERMS);
1629
1630 NDINIT(ndp, LOOKUP, OP_OPEN, FOLLOW | AUDITVNPATH1, UIO_SYSSPACE,
1631 CAST_USER_ADDR_T(psfa->psfaa_openargs.psfao_path),
1632 imgp->ip_vfs_context);
1633
1634 error = open1(imgp->ip_vfs_context,
1635 ndp,
1636 psfa->psfaa_openargs.psfao_oflag,
1637 vap,
1638 fileproc_alloc_init, NULL,
1639 ival);
1640
1641 FREE(bufp, M_TEMP);
1642
1643 /*
1644 * If there's an error, or we get the right fd by
1645 * accident, then drop out here. This is easier than
1646 * reworking all the open code to preallocate fd
1647 * slots, and internally taking one as an argument.
1648 */
1649 if (error || ival[0] == psfa->psfaa_filedes)
1650 break;
1651
1652 origfd = ival[0];
1653 /*
1654 * If we didn't fall out from an error, we ended up
1655 * with the wrong fd; so now we've got to try to dup2
1656 * it to the right one.
1657 */
1658 dup2a.from = origfd;
1659 dup2a.to = psfa->psfaa_filedes;
1660
1661 /*
1662 * The dup2() system call implementation sets
1663 * ival to newfd in the success case, but we
1664 * can ignore that, since if we didn't get the
1665 * fd we wanted, the error will stop us.
1666 */
1667 error = dup2(p, &dup2a, ival);
1668 if (error)
1669 break;
1670
1671 /*
1672 * Finally, close the original fd.
1673 */
1674 ca.fd = origfd;
1675
1676 error = close_nocancel(p, &ca, ival);
1677 }
1678 break;
1679
1680 case PSFA_DUP2: {
1681 struct dup2_args dup2a;
1682
1683 dup2a.from = psfa->psfaa_filedes;
1684 dup2a.to = psfa->psfaa_openargs.psfao_oflag;
1685
1686 /*
1687 * The dup2() system call implementation sets
1688 * ival to newfd in the success case, but we
1689 * can ignore that, since if we didn't get the
1690 * fd we wanted, the error will stop us.
1691 */
1692 error = dup2(p, &dup2a, ival);
1693 }
1694 break;
1695
1696 case PSFA_CLOSE: {
1697 struct close_nocancel_args ca;
1698
1699 ca.fd = psfa->psfaa_filedes;
1700
1701 error = close_nocancel(p, &ca, ival);
1702 }
1703 break;
1704
1705 case PSFA_INHERIT: {
1706 struct fcntl_nocancel_args fcntla;
1707
1708 /*
1709 * Check to see if the descriptor exists, and
1710 * ensure it's -not- marked as close-on-exec.
1711 *
1712 * Attempting to "inherit" a guarded fd will
1713 * result in a error.
1714 */
1715 fcntla.fd = psfa->psfaa_filedes;
1716 fcntla.cmd = F_GETFD;
1717 if ((error = fcntl_nocancel(p, &fcntla, ival)) != 0)
1718 break;
1719
1720 if ((ival[0] & FD_CLOEXEC) == FD_CLOEXEC) {
1721 fcntla.fd = psfa->psfaa_filedes;
1722 fcntla.cmd = F_SETFD;
1723 fcntla.arg = ival[0] & ~FD_CLOEXEC;
1724 error = fcntl_nocancel(p, &fcntla, ival);
1725 }
1726
1727 }
1728 break;
1729
1730 default:
1731 error = EINVAL;
1732 break;
1733 }
1734
1735 /* All file actions failures are considered fatal, per POSIX */
1736
1737 if (error) {
1738 if (PSFA_OPEN == psfa->psfaa_type) {
1739 DTRACE_PROC1(spawn__open__failure, uintptr_t,
1740 psfa->psfaa_openargs.psfao_path);
1741 } else {
1742 DTRACE_PROC1(spawn__fd__failure, int, psfa->psfaa_filedes);
1743 }
1744 break;
1745 }
1746 }
1747
1748 if (error != 0 || (psa_flags & POSIX_SPAWN_CLOEXEC_DEFAULT) == 0)
1749 return (error);
1750
1751 /*
1752 * If POSIX_SPAWN_CLOEXEC_DEFAULT is set, behave (during
1753 * this spawn only) as if "close on exec" is the default
1754 * disposition of all pre-existing file descriptors. In this case,
1755 * the list of file descriptors mentioned in the file actions
1756 * are the only ones that can be inherited, so mark them now.
1757 *
1758 * The actual closing part comes later, in fdexec().
1759 */
1760 proc_fdlock(p);
1761 for (action = 0; action < px_sfap->psfa_act_count; action++) {
1762 _psfa_action_t *psfa = &px_sfap->psfa_act_acts[action];
1763 int fd = psfa->psfaa_filedes;
1764
1765 switch (psfa->psfaa_type) {
1766 case PSFA_DUP2:
1767 fd = psfa->psfaa_openargs.psfao_oflag;
1768 /*FALLTHROUGH*/
1769 case PSFA_OPEN:
1770 case PSFA_INHERIT:
1771 *fdflags(p, fd) |= UF_INHERIT;
1772 break;
1773
1774 case PSFA_CLOSE:
1775 break;
1776 }
1777 }
1778 proc_fdunlock(p);
1779
1780 return (0);
1781 }
1782
1783 #if CONFIG_MACF
1784 /*
1785 * exec_spawnattr_getmacpolicyinfo
1786 */
1787 void *
1788 exec_spawnattr_getmacpolicyinfo(const void *macextensions, const char *policyname, size_t *lenp)
1789 {
1790 const struct _posix_spawn_mac_policy_extensions *psmx = macextensions;
1791 int i;
1792
1793 if (psmx == NULL)
1794 return NULL;
1795
1796 for (i = 0; i < psmx->psmx_count; i++) {
1797 const _ps_mac_policy_extension_t *extension = &psmx->psmx_extensions[i];
1798 if (strncmp(extension->policyname, policyname, sizeof(extension->policyname)) == 0) {
1799 if (lenp != NULL)
1800 *lenp = extension->datalen;
1801 return extension->datap;
1802 }
1803 }
1804
1805 if (lenp != NULL)
1806 *lenp = 0;
1807 return NULL;
1808 }
1809
1810 static int
1811 spawn_copyin_macpolicyinfo(const struct user__posix_spawn_args_desc *px_args, _posix_spawn_mac_policy_extensions_t *psmxp)
1812 {
1813 _posix_spawn_mac_policy_extensions_t psmx = NULL;
1814 int error = 0;
1815 int copycnt = 0;
1816 int i = 0;
1817
1818 *psmxp = NULL;
1819
1820 if (px_args->mac_extensions_size < PS_MAC_EXTENSIONS_SIZE(1) ||
1821 px_args->mac_extensions_size > PAGE_SIZE) {
1822 error = EINVAL;
1823 goto bad;
1824 }
1825
1826 MALLOC(psmx, _posix_spawn_mac_policy_extensions_t, px_args->mac_extensions_size, M_TEMP, M_WAITOK);
1827 if ((error = copyin(px_args->mac_extensions, psmx, px_args->mac_extensions_size)) != 0)
1828 goto bad;
1829
1830 if (PS_MAC_EXTENSIONS_SIZE(psmx->psmx_count) > px_args->mac_extensions_size) {
1831 error = EINVAL;
1832 goto bad;
1833 }
1834
1835 for (i = 0; i < psmx->psmx_count; i++) {
1836 _ps_mac_policy_extension_t *extension = &psmx->psmx_extensions[i];
1837 if (extension->datalen == 0 || extension->datalen > PAGE_SIZE) {
1838 error = EINVAL;
1839 goto bad;
1840 }
1841 }
1842
1843 for (copycnt = 0; copycnt < psmx->psmx_count; copycnt++) {
1844 _ps_mac_policy_extension_t *extension = &psmx->psmx_extensions[copycnt];
1845 void *data = NULL;
1846
1847 MALLOC(data, void *, extension->datalen, M_TEMP, M_WAITOK);
1848 if ((error = copyin(extension->data, data, extension->datalen)) != 0) {
1849 FREE(data, M_TEMP);
1850 goto bad;
1851 }
1852 extension->datap = data;
1853 }
1854
1855 *psmxp = psmx;
1856 return 0;
1857
1858 bad:
1859 if (psmx != NULL) {
1860 for (i = 0; i < copycnt; i++)
1861 FREE(psmx->psmx_extensions[i].datap, M_TEMP);
1862 FREE(psmx, M_TEMP);
1863 }
1864 return error;
1865 }
1866
1867 static void
1868 spawn_free_macpolicyinfo(_posix_spawn_mac_policy_extensions_t psmx)
1869 {
1870 int i;
1871
1872 if (psmx == NULL)
1873 return;
1874 for (i = 0; i < psmx->psmx_count; i++)
1875 FREE(psmx->psmx_extensions[i].datap, M_TEMP);
1876 FREE(psmx, M_TEMP);
1877 }
1878 #endif /* CONFIG_MACF */
1879
1880 /*
1881 * posix_spawn
1882 *
1883 * Parameters: uap->pid Pointer to pid return area
1884 * uap->fname File name to exec
1885 * uap->argp Argument list
1886 * uap->envp Environment list
1887 *
1888 * Returns: 0 Success
1889 * EINVAL Invalid argument
1890 * ENOTSUP Not supported
1891 * ENOEXEC Executable file format error
1892 * exec_activate_image:EINVAL Invalid argument
1893 * exec_activate_image:EACCES Permission denied
1894 * exec_activate_image:EINTR Interrupted function
1895 * exec_activate_image:ENOMEM Not enough space
1896 * exec_activate_image:EFAULT Bad address
1897 * exec_activate_image:ENAMETOOLONG Filename too long
1898 * exec_activate_image:ENOEXEC Executable file format error
1899 * exec_activate_image:ETXTBSY Text file busy [misuse of error code]
1900 * exec_activate_image:EBADEXEC The executable is corrupt/unknown
1901 * exec_activate_image:???
1902 * mac_execve_enter:???
1903 *
1904 * TODO: Expect to need __mac_posix_spawn() at some point...
1905 * Handle posix_spawnattr_t
1906 * Handle posix_spawn_file_actions_t
1907 */
1908 int
1909 posix_spawn(proc_t ap, struct posix_spawn_args *uap, int32_t *retval)
1910 {
1911 proc_t p = ap; /* quiet bogus GCC vfork() warning */
1912 user_addr_t pid = uap->pid;
1913 int ival[2]; /* dummy retval for setpgid() */
1914 char *bufp = NULL;
1915 struct image_params *imgp;
1916 struct vnode_attr *vap;
1917 struct vnode_attr *origvap;
1918 struct uthread *uthread = 0; /* compiler complains if not set to 0*/
1919 int error, sig;
1920 char alt_p_comm[sizeof(p->p_comm)] = {0}; /* for PowerPC */
1921 int is_64 = IS_64BIT_PROCESS(p);
1922 struct vfs_context context;
1923 struct user__posix_spawn_args_desc px_args;
1924 struct _posix_spawnattr px_sa;
1925 _posix_spawn_file_actions_t px_sfap = NULL;
1926 _posix_spawn_port_actions_t px_spap = NULL;
1927 struct __kern_sigaction vec;
1928 boolean_t spawn_no_exec = FALSE;
1929 boolean_t proc_transit_set = TRUE;
1930 boolean_t exec_done = FALSE;
1931 int portwatch_count = 0;
1932 ipc_port_t * portwatch_ports = NULL;
1933 vm_size_t px_sa_offset = offsetof(struct _posix_spawnattr, psa_ports);
1934
1935 /*
1936 * Allocate a big chunk for locals instead of using stack since these
1937 * structures are pretty big.
1938 */
1939 MALLOC(bufp, char *, (sizeof(*imgp) + sizeof(*vap) + sizeof(*origvap)), M_TEMP, M_WAITOK | M_ZERO);
1940 imgp = (struct image_params *) bufp;
1941 if (bufp == NULL) {
1942 error = ENOMEM;
1943 goto bad;
1944 }
1945 vap = (struct vnode_attr *) (bufp + sizeof(*imgp));
1946 origvap = (struct vnode_attr *) (bufp + sizeof(*imgp) + sizeof(*vap));
1947
1948 /* Initialize the common data in the image_params structure */
1949 imgp->ip_user_fname = uap->path;
1950 imgp->ip_user_argv = uap->argv;
1951 imgp->ip_user_envv = uap->envp;
1952 imgp->ip_vattr = vap;
1953 imgp->ip_origvattr = origvap;
1954 imgp->ip_vfs_context = &context;
1955 imgp->ip_flags = (is_64 ? IMGPF_WAS_64BIT : IMGPF_NONE);
1956 imgp->ip_p_comm = alt_p_comm; /* for PowerPC */
1957 imgp->ip_seg = (is_64 ? UIO_USERSPACE64 : UIO_USERSPACE32);
1958 imgp->ip_mac_return = 0;
1959
1960 if (uap->adesc != USER_ADDR_NULL) {
1961 if(is_64) {
1962 error = copyin(uap->adesc, &px_args, sizeof(px_args));
1963 } else {
1964 struct user32__posix_spawn_args_desc px_args32;
1965
1966 error = copyin(uap->adesc, &px_args32, sizeof(px_args32));
1967
1968 /*
1969 * Convert arguments descriptor from external 32 bit
1970 * representation to internal 64 bit representation
1971 */
1972 px_args.attr_size = px_args32.attr_size;
1973 px_args.attrp = CAST_USER_ADDR_T(px_args32.attrp);
1974 px_args.file_actions_size = px_args32.file_actions_size;
1975 px_args.file_actions = CAST_USER_ADDR_T(px_args32.file_actions);
1976 px_args.port_actions_size = px_args32.port_actions_size;
1977 px_args.port_actions = CAST_USER_ADDR_T(px_args32.port_actions);
1978 px_args.mac_extensions_size = px_args32.mac_extensions_size;
1979 px_args.mac_extensions = CAST_USER_ADDR_T(px_args32.mac_extensions);
1980 }
1981 if (error)
1982 goto bad;
1983
1984 if (px_args.attr_size != 0) {
1985 /*
1986 * We are not copying the port_actions pointer,
1987 * because we already have it from px_args.
1988 * This is a bit fragile: <rdar://problem/16427422>
1989 */
1990
1991 if ((error = copyin(px_args.attrp, &px_sa, px_sa_offset) != 0))
1992 goto bad;
1993
1994 bzero( (void *)( (unsigned long) &px_sa + px_sa_offset), sizeof(px_sa) - px_sa_offset );
1995
1996 imgp->ip_px_sa = &px_sa;
1997 }
1998 if (px_args.file_actions_size != 0) {
1999 /* Limit file_actions to allowed number of open files */
2000 int maxfa = (p->p_limit ? p->p_rlimit[RLIMIT_NOFILE].rlim_cur : NOFILE);
2001 if (px_args.file_actions_size < PSF_ACTIONS_SIZE(1) ||
2002 px_args.file_actions_size > PSF_ACTIONS_SIZE(maxfa)) {
2003 error = EINVAL;
2004 goto bad;
2005 }
2006 MALLOC(px_sfap, _posix_spawn_file_actions_t, px_args.file_actions_size, M_TEMP, M_WAITOK);
2007 if (px_sfap == NULL) {
2008 error = ENOMEM;
2009 goto bad;
2010 }
2011 imgp->ip_px_sfa = px_sfap;
2012
2013 if ((error = copyin(px_args.file_actions, px_sfap,
2014 px_args.file_actions_size)) != 0)
2015 goto bad;
2016
2017 /* Verify that the action count matches the struct size */
2018 if (PSF_ACTIONS_SIZE(px_sfap->psfa_act_count) != px_args.file_actions_size) {
2019 error = EINVAL;
2020 goto bad;
2021 }
2022 }
2023 if (px_args.port_actions_size != 0) {
2024 /* Limit port_actions to one page of data */
2025 if (px_args.port_actions_size < PS_PORT_ACTIONS_SIZE(1) ||
2026 px_args.port_actions_size > PAGE_SIZE) {
2027 error = EINVAL;
2028 goto bad;
2029 }
2030
2031 MALLOC(px_spap, _posix_spawn_port_actions_t,
2032 px_args.port_actions_size, M_TEMP, M_WAITOK);
2033 if (px_spap == NULL) {
2034 error = ENOMEM;
2035 goto bad;
2036 }
2037 imgp->ip_px_spa = px_spap;
2038
2039 if ((error = copyin(px_args.port_actions, px_spap,
2040 px_args.port_actions_size)) != 0)
2041 goto bad;
2042
2043 /* Verify that the action count matches the struct size */
2044 if (PS_PORT_ACTIONS_SIZE(px_spap->pspa_count) != px_args.port_actions_size) {
2045 error = EINVAL;
2046 goto bad;
2047 }
2048 }
2049 #if CONFIG_MACF
2050 if (px_args.mac_extensions_size != 0) {
2051 if ((error = spawn_copyin_macpolicyinfo(&px_args, (_posix_spawn_mac_policy_extensions_t *)&imgp->ip_px_smpx)) != 0)
2052 goto bad;
2053 }
2054 #endif /* CONFIG_MACF */
2055 }
2056
2057 /* set uthread to parent */
2058 uthread = get_bsdthread_info(current_thread());
2059
2060 /*
2061 * <rdar://6640530>; this does not result in a behaviour change
2062 * relative to Leopard, so there should not be any existing code
2063 * which depends on it.
2064 */
2065 if (uthread->uu_flag & UT_VFORK) {
2066 error = EINVAL;
2067 goto bad;
2068 }
2069
2070 /*
2071 * If we don't have the extension flag that turns "posix_spawn()"
2072 * into "execve() with options", then we will be creating a new
2073 * process which does not inherit memory from the parent process,
2074 * which is one of the most expensive things about using fork()
2075 * and execve().
2076 */
2077 if (imgp->ip_px_sa == NULL || !(px_sa.psa_flags & POSIX_SPAWN_SETEXEC)){
2078
2079 /*
2080 * Set the new task's coalition, if it is requested.
2081 * TODO: privilege check - 15365900
2082 */
2083 coalition_t coal = COALITION_NULL;
2084 #if CONFIG_COALITIONS
2085 if (imgp->ip_px_sa) {
2086 uint64_t cid = px_sa.psa_coalitionid;
2087 if (cid != 0) {
2088 #if COALITION_DEBUG
2089 printf("%s: searching for coalition ID %llu\n", __func__, cid);
2090 #endif
2091 coal = coalition_find_and_activate_by_id(cid);
2092 if (coal == COALITION_NULL) {
2093 #if COALITION_DEBUG
2094 printf("%s: could not find coalition ID %llu (perhaps it has been terminated or reaped)\n", __func__, cid);
2095 #endif
2096 error = ESRCH;
2097 goto bad;
2098 }
2099 }
2100 }
2101 #endif /* CONFIG_COALITIONS */
2102
2103 error = fork1(p, &imgp->ip_new_thread, PROC_CREATE_SPAWN, coal);
2104
2105 if (error != 0) {
2106 if (coal != COALITION_NULL) {
2107 #if CONFIG_COALITIONS
2108 coalition_remove_active(coal);
2109 coalition_release(coal);
2110 #endif /* CONFIG_COALITIONS */
2111 }
2112 goto bad;
2113 }
2114 imgp->ip_flags |= IMGPF_SPAWN; /* spawn w/o exec */
2115 spawn_no_exec = TRUE; /* used in later tests */
2116
2117 if (coal != COALITION_NULL) {
2118 #if CONFIG_COALITIONS
2119 coalition_remove_active(coal);
2120 coalition_release(coal);
2121 #endif /* CONFIG_COALITIONS */
2122 }
2123 }
2124
2125 if (spawn_no_exec) {
2126 p = (proc_t)get_bsdthreadtask_info(imgp->ip_new_thread);
2127
2128 /*
2129 * We had to wait until this point before firing the
2130 * proc:::create probe, otherwise p would not point to the
2131 * child process.
2132 */
2133 DTRACE_PROC1(create, proc_t, p);
2134 }
2135 assert(p != NULL);
2136
2137 /* By default, the thread everyone plays with is the parent */
2138 context.vc_thread = current_thread();
2139 context.vc_ucred = p->p_ucred; /* XXX must NOT be kauth_cred_get() */
2140
2141 /*
2142 * However, if we're not in the setexec case, redirect the context
2143 * to the newly created process instead
2144 */
2145 if (spawn_no_exec)
2146 context.vc_thread = imgp->ip_new_thread;
2147
2148 /*
2149 * Post fdcopy(), pre exec_handle_sugid() - this is where we want
2150 * to handle the file_actions. Since vfork() also ends up setting
2151 * us into the parent process group, and saved off the signal flags,
2152 * this is also where we want to handle the spawn flags.
2153 */
2154
2155 /* Has spawn file actions? */
2156 if (imgp->ip_px_sfa != NULL) {
2157 /*
2158 * The POSIX_SPAWN_CLOEXEC_DEFAULT flag
2159 * is handled in exec_handle_file_actions().
2160 */
2161 if ((error = exec_handle_file_actions(imgp,
2162 imgp->ip_px_sa != NULL ? px_sa.psa_flags : 0)) != 0)
2163 goto bad;
2164 }
2165
2166 /* Has spawn port actions? */
2167 if (imgp->ip_px_spa != NULL) {
2168 boolean_t is_adaptive = FALSE;
2169 boolean_t portwatch_present = FALSE;
2170
2171 /* Will this process become adaptive? The apptype isn't ready yet, so we can't look there. */
2172 if (imgp->ip_px_sa != NULL && px_sa.psa_apptype == POSIX_SPAWN_PROC_TYPE_DAEMON_ADAPTIVE)
2173 is_adaptive = TRUE;
2174
2175 /*
2176 * portwatch only:
2177 * Allocate a place to store the ports we want to bind to the new task
2178 * We can't bind them until after the apptype is set.
2179 */
2180 if (px_spap->pspa_count != 0 && is_adaptive) {
2181 portwatch_count = px_spap->pspa_count;
2182 MALLOC(portwatch_ports, ipc_port_t *, (sizeof(ipc_port_t) * portwatch_count), M_TEMP, M_WAITOK | M_ZERO);
2183 } else {
2184 portwatch_ports = NULL;
2185 }
2186
2187 if ((error = exec_handle_port_actions(imgp,
2188 imgp->ip_px_sa != NULL ? px_sa.psa_flags : 0, &portwatch_present, portwatch_ports)) != 0)
2189 goto bad;
2190
2191 if (portwatch_present == FALSE && portwatch_ports != NULL) {
2192 FREE(portwatch_ports, M_TEMP);
2193 portwatch_ports = NULL;
2194 portwatch_count = 0;
2195 }
2196 }
2197
2198 /* Has spawn attr? */
2199 if (imgp->ip_px_sa != NULL) {
2200 /*
2201 * Set the process group ID of the child process; this has
2202 * to happen before the image activation.
2203 */
2204 if (px_sa.psa_flags & POSIX_SPAWN_SETPGROUP) {
2205 struct setpgid_args spga;
2206 spga.pid = p->p_pid;
2207 spga.pgid = px_sa.psa_pgroup;
2208 /*
2209 * Effectively, call setpgid() system call; works
2210 * because there are no pointer arguments.
2211 */
2212 if((error = setpgid(p, &spga, ival)) != 0)
2213 goto bad;
2214 }
2215
2216 /*
2217 * Reset UID/GID to parent's RUID/RGID; This works only
2218 * because the operation occurs *after* the vfork() and
2219 * before the call to exec_handle_sugid() by the image
2220 * activator called from exec_activate_image(). POSIX
2221 * requires that any setuid/setgid bits on the process
2222 * image will take precedence over the spawn attributes
2223 * (re)setting them.
2224 *
2225 * The use of p_ucred is safe, since we are acting on the
2226 * new process, and it has no threads other than the one
2227 * we are creating for it.
2228 */
2229 if (px_sa.psa_flags & POSIX_SPAWN_RESETIDS) {
2230 kauth_cred_t my_cred = p->p_ucred;
2231 kauth_cred_t my_new_cred = kauth_cred_setuidgid(my_cred, kauth_cred_getruid(my_cred), kauth_cred_getrgid(my_cred));
2232 if (my_new_cred != my_cred) {
2233 p->p_ucred = my_new_cred;
2234 /* update cred on proc */
2235 PROC_UPDATE_CREDS_ONPROC(p);
2236 }
2237 }
2238
2239 /*
2240 * Disable ASLR for the spawned process.
2241 */
2242 /*
2243 * But only do so if we are not embedded; embedded allows for a
2244 * boot-arg (-disable_aslr) to deal with this (which itself is
2245 * only honored on DEVELOPMENT or DEBUG builds of xnu).
2246 */
2247 if (px_sa.psa_flags & _POSIX_SPAWN_DISABLE_ASLR)
2248 OSBitOrAtomic(P_DISABLE_ASLR, &p->p_flag);
2249
2250 /*
2251 * Forcibly disallow execution from data pages for the spawned process
2252 * even if it would otherwise be permitted by the architecture default.
2253 */
2254 if (px_sa.psa_flags & _POSIX_SPAWN_ALLOW_DATA_EXEC)
2255 imgp->ip_flags |= IMGPF_ALLOW_DATA_EXEC;
2256 }
2257
2258 /*
2259 * Disable ASLR during image activation. This occurs either if the
2260 * _POSIX_SPAWN_DISABLE_ASLR attribute was found above or if
2261 * P_DISABLE_ASLR was inherited from the parent process.
2262 */
2263 if (p->p_flag & P_DISABLE_ASLR)
2264 imgp->ip_flags |= IMGPF_DISABLE_ASLR;
2265
2266 /*
2267 * Clear transition flag so we won't hang if exec_activate_image() causes
2268 * an automount (and launchd does a proc sysctl to service it).
2269 *
2270 * <rdar://problem/6848672>, <rdar://problem/5959568>.
2271 */
2272 if (spawn_no_exec) {
2273 proc_transend(p, 0);
2274 proc_transit_set = 0;
2275 }
2276
2277 #if MAC_SPAWN /* XXX */
2278 if (uap->mac_p != USER_ADDR_NULL) {
2279 error = mac_execve_enter(uap->mac_p, imgp);
2280 if (error)
2281 goto bad;
2282 }
2283 #endif
2284
2285 /*
2286 * Activate the image
2287 */
2288 error = exec_activate_image(imgp);
2289
2290 if (error == 0) {
2291 /* process completed the exec */
2292 exec_done = TRUE;
2293 } else if (error == -1) {
2294 /* Image not claimed by any activator? */
2295 error = ENOEXEC;
2296 }
2297
2298 /*
2299 * If we have a spawn attr, and it contains signal related flags,
2300 * the we need to process them in the "context" of the new child
2301 * process, so we have to process it following image activation,
2302 * prior to making the thread runnable in user space. This is
2303 * necessitated by some signal information being per-thread rather
2304 * than per-process, and we don't have the new allocation in hand
2305 * until after the image is activated.
2306 */
2307 if (!error && imgp->ip_px_sa != NULL) {
2308 thread_t child_thread = current_thread();
2309 uthread_t child_uthread = uthread;
2310
2311 /*
2312 * If we created a new child thread, then the thread and
2313 * uthread are different than the current ones; otherwise,
2314 * we leave them, since we are in the exec case instead.
2315 */
2316 if (spawn_no_exec) {
2317 child_thread = imgp->ip_new_thread;
2318 child_uthread = get_bsdthread_info(child_thread);
2319 }
2320
2321 /*
2322 * Mask a list of signals, instead of them being unmasked, if
2323 * they were unmasked in the parent; note that some signals
2324 * are not maskable.
2325 */
2326 if (px_sa.psa_flags & POSIX_SPAWN_SETSIGMASK)
2327 child_uthread->uu_sigmask = (px_sa.psa_sigmask & ~sigcantmask);
2328 /*
2329 * Default a list of signals instead of ignoring them, if
2330 * they were ignored in the parent. Note that we pass
2331 * spawn_no_exec to setsigvec() to indicate that we called
2332 * fork1() and therefore do not need to call proc_signalstart()
2333 * internally.
2334 */
2335 if (px_sa.psa_flags & POSIX_SPAWN_SETSIGDEF) {
2336 vec.sa_handler = SIG_DFL;
2337 vec.sa_tramp = 0;
2338 vec.sa_mask = 0;
2339 vec.sa_flags = 0;
2340 for (sig = 0; sig < NSIG; sig++)
2341 if (px_sa.psa_sigdefault & (1 << sig)) {
2342 error = setsigvec(p, child_thread, sig + 1, &vec, spawn_no_exec);
2343 }
2344 }
2345
2346 /*
2347 * Activate the CPU usage monitor, if requested. This is done via a task-wide, per-thread CPU
2348 * usage limit, which will generate a resource exceeded exception if any one thread exceeds the
2349 * limit.
2350 *
2351 * Userland gives us interval in seconds, and the kernel SPI expects nanoseconds.
2352 */
2353 if (px_sa.psa_cpumonitor_percent != 0) {
2354 /*
2355 * Always treat a CPU monitor activation coming from spawn as entitled. Requiring
2356 * an entitlement to configure the monitor a certain way seems silly, since
2357 * whomever is turning it on could just as easily choose not to do so.
2358 *
2359 * XXX - Ignore the parameters that we get from userland. The spawnattr method of
2360 * activating the monitor always gets the system default parameters. Once we have
2361 * an explicit spawn SPI for configuring the defaults, we can revert this to
2362 * respect the params passed in from userland.
2363 */
2364 error = proc_set_task_ruse_cpu(p->task,
2365 TASK_POLICY_RESOURCE_ATTRIBUTE_NOTIFY_EXC,
2366 PROC_POLICY_CPUMON_DEFAULTS, 0,
2367 0, TRUE);
2368 }
2369 }
2370
2371 bad:
2372
2373 if (error == 0) {
2374 /* reset delay idle sleep status if set */
2375 if ((p->p_flag & P_DELAYIDLESLEEP) == P_DELAYIDLESLEEP)
2376 OSBitAndAtomic(~((uint32_t)P_DELAYIDLESLEEP), &p->p_flag);
2377 /* upon successful spawn, re/set the proc control state */
2378 if (imgp->ip_px_sa != NULL) {
2379 switch (px_sa.psa_pcontrol) {
2380 case POSIX_SPAWN_PCONTROL_THROTTLE:
2381 p->p_pcaction = P_PCTHROTTLE;
2382 break;
2383 case POSIX_SPAWN_PCONTROL_SUSPEND:
2384 p->p_pcaction = P_PCSUSP;
2385 break;
2386 case POSIX_SPAWN_PCONTROL_KILL:
2387 p->p_pcaction = P_PCKILL;
2388 break;
2389 case POSIX_SPAWN_PCONTROL_NONE:
2390 default:
2391 p->p_pcaction = 0;
2392 break;
2393 };
2394 }
2395 exec_resettextvp(p, imgp);
2396
2397 #if CONFIG_MEMORYSTATUS && CONFIG_JETSAM
2398 /* Has jetsam attributes? */
2399 if (imgp->ip_px_sa != NULL && (px_sa.psa_jetsam_flags & POSIX_SPAWN_JETSAM_SET)) {
2400 memorystatus_update(p, px_sa.psa_priority, 0, (px_sa.psa_jetsam_flags & POSIX_SPAWN_JETSAM_USE_EFFECTIVE_PRIORITY),
2401 TRUE, px_sa.psa_high_water_mark, (px_sa.psa_jetsam_flags & POSIX_SPAWN_JETSAM_HIWATER_BACKGROUND),
2402 (px_sa.psa_jetsam_flags & POSIX_SPAWN_JETSAM_MEMLIMIT_FATAL));
2403 }
2404 #endif
2405 }
2406
2407 /*
2408 * If we successfully called fork1(), we always need to do this;
2409 * we identify this case by noting the IMGPF_SPAWN flag. This is
2410 * because we come back from that call with signals blocked in the
2411 * child, and we have to unblock them, but we want to wait until
2412 * after we've performed any spawn actions. This has to happen
2413 * before check_for_signature(), which uses psignal.
2414 */
2415 if (spawn_no_exec) {
2416 if (proc_transit_set)
2417 proc_transend(p, 0);
2418
2419 /*
2420 * Drop the signal lock on the child which was taken on our
2421 * behalf by forkproc()/cloneproc() to prevent signals being
2422 * received by the child in a partially constructed state.
2423 */
2424 proc_signalend(p, 0);
2425
2426 /* flag the 'fork' has occurred */
2427 proc_knote(p->p_pptr, NOTE_FORK | p->p_pid);
2428 /* then flag exec has occurred */
2429 /* notify only if it has not failed due to FP Key error */
2430 if ((p->p_lflag & P_LTERM_DECRYPTFAIL) == 0)
2431 proc_knote(p, NOTE_EXEC);
2432 } else {
2433 /* reset the importance attribute from our previous life */
2434 task_importance_reset(p->task);
2435
2436 /* reset atm context from task */
2437 task_atm_reset(p->task);
2438 }
2439
2440 /*
2441 * Apply the spawnattr policy, apptype (which primes the task for importance donation),
2442 * and bind any portwatch ports to the new task.
2443 * This must be done after the exec so that the child's thread is ready,
2444 * and after the in transit state has been released, because priority is
2445 * dropped here so we need to be prepared for a potentially long preemption interval
2446 *
2447 * TODO: Consider splitting this up into separate phases
2448 */
2449 if (error == 0 && imgp->ip_px_sa != NULL) {
2450 struct _posix_spawnattr *psa = (struct _posix_spawnattr *) imgp->ip_px_sa;
2451
2452 exec_handle_spawnattr_policy(p, psa->psa_apptype, psa->psa_qos_clamp,
2453 portwatch_ports, portwatch_count);
2454 }
2455
2456 /* Apply the main thread qos */
2457 if (error == 0) {
2458 thread_t main_thread = (imgp->ip_new_thread != NULL) ? imgp->ip_new_thread : current_thread();
2459
2460 task_set_main_thread_qos(p->task, main_thread);
2461 }
2462
2463 /*
2464 * Release any ports we kept around for binding to the new task
2465 * We need to release the rights even if the posix_spawn has failed.
2466 */
2467 if (portwatch_ports != NULL) {
2468 for (int i = 0; i < portwatch_count; i++) {
2469 ipc_port_t port = NULL;
2470 if ((port = portwatch_ports[i]) != NULL) {
2471 ipc_port_release_send(port);
2472 }
2473 }
2474 FREE(portwatch_ports, M_TEMP);
2475 portwatch_ports = NULL;
2476 portwatch_count = 0;
2477 }
2478
2479 /*
2480 * We have to delay operations which might throw a signal until after
2481 * the signals have been unblocked; however, we want that to happen
2482 * after exec_resettextvp() so that the textvp is correct when they
2483 * fire.
2484 */
2485 if (error == 0) {
2486 error = check_for_signature(p, imgp);
2487
2488 /*
2489 * Pay for our earlier safety; deliver the delayed signals from
2490 * the incomplete spawn process now that it's complete.
2491 */
2492 if (imgp != NULL && spawn_no_exec && (p->p_lflag & P_LTRACED)) {
2493 psignal_vfork(p, p->task, imgp->ip_new_thread, SIGTRAP);
2494 }
2495 }
2496
2497
2498 if (imgp != NULL) {
2499 if (imgp->ip_vp)
2500 vnode_put(imgp->ip_vp);
2501 if (imgp->ip_scriptvp)
2502 vnode_put(imgp->ip_scriptvp);
2503 if (imgp->ip_strings)
2504 execargs_free(imgp);
2505 if (imgp->ip_px_sfa != NULL)
2506 FREE(imgp->ip_px_sfa, M_TEMP);
2507 if (imgp->ip_px_spa != NULL)
2508 FREE(imgp->ip_px_spa, M_TEMP);
2509
2510 #if CONFIG_MACF
2511 if (imgp->ip_px_smpx != NULL)
2512 spawn_free_macpolicyinfo(imgp->ip_px_smpx);
2513 if (imgp->ip_execlabelp)
2514 mac_cred_label_free(imgp->ip_execlabelp);
2515 if (imgp->ip_scriptlabelp)
2516 mac_vnode_label_free(imgp->ip_scriptlabelp);
2517 #endif
2518 }
2519
2520 #if CONFIG_DTRACE
2521 if (spawn_no_exec) {
2522 /*
2523 * In the original DTrace reference implementation,
2524 * posix_spawn() was a libc routine that just
2525 * did vfork(2) then exec(2). Thus the proc::: probes
2526 * are very fork/exec oriented. The details of this
2527 * in-kernel implementation of posix_spawn() is different
2528 * (while producing the same process-observable effects)
2529 * particularly w.r.t. errors, and which thread/process
2530 * is constructing what on behalf of whom.
2531 */
2532 if (error) {
2533 DTRACE_PROC1(spawn__failure, int, error);
2534 } else {
2535 DTRACE_PROC(spawn__success);
2536 /*
2537 * Some DTrace scripts, e.g. newproc.d in
2538 * /usr/bin, rely on the the 'exec-success'
2539 * probe being fired in the child after the
2540 * new process image has been constructed
2541 * in order to determine the associated pid.
2542 *
2543 * So, even though the parent built the image
2544 * here, for compatibility, mark the new thread
2545 * so 'exec-success' fires on it as it leaves
2546 * the kernel.
2547 */
2548 dtrace_thread_didexec(imgp->ip_new_thread);
2549 }
2550 } else {
2551 if (error) {
2552 DTRACE_PROC1(exec__failure, int, error);
2553 } else {
2554 DTRACE_PROC(exec__success);
2555 }
2556 }
2557
2558 if ((dtrace_proc_waitfor_hook = dtrace_proc_waitfor_exec_ptr) != NULL)
2559 (*dtrace_proc_waitfor_hook)(p);
2560 #endif
2561
2562 /* Return to both the parent and the child? */
2563 if (imgp != NULL && spawn_no_exec) {
2564 /*
2565 * If the parent wants the pid, copy it out
2566 */
2567 if (pid != USER_ADDR_NULL)
2568 (void)suword(pid, p->p_pid);
2569 retval[0] = error;
2570
2571 /*
2572 * If we had an error, perform an internal reap ; this is
2573 * entirely safe, as we have a real process backing us.
2574 */
2575 if (error) {
2576 proc_list_lock();
2577 p->p_listflag |= P_LIST_DEADPARENT;
2578 proc_list_unlock();
2579 proc_lock(p);
2580 /* make sure no one else has killed it off... */
2581 if (p->p_stat != SZOMB && p->exit_thread == NULL) {
2582 p->exit_thread = current_thread();
2583 proc_unlock(p);
2584 exit1(p, 1, (int *)NULL);
2585 if (exec_done == FALSE) {
2586 task_deallocate(get_threadtask(imgp->ip_new_thread));
2587 thread_deallocate(imgp->ip_new_thread);
2588 }
2589 } else {
2590 /* someone is doing it for us; just skip it */
2591 proc_unlock(p);
2592 }
2593 } else {
2594
2595 /*
2596 * Return to the child
2597 *
2598 * Note: the image activator earlier dropped the
2599 * task/thread references to the newly spawned
2600 * process; this is OK, since we still have suspended
2601 * queue references on them, so we should be fine
2602 * with the delayed resume of the thread here.
2603 */
2604 (void)thread_resume(imgp->ip_new_thread);
2605 }
2606 }
2607 if (bufp != NULL) {
2608 FREE(bufp, M_TEMP);
2609 }
2610
2611 return(error);
2612 }
2613
2614
2615 /*
2616 * execve
2617 *
2618 * Parameters: uap->fname File name to exec
2619 * uap->argp Argument list
2620 * uap->envp Environment list
2621 *
2622 * Returns: 0 Success
2623 * __mac_execve:EINVAL Invalid argument
2624 * __mac_execve:ENOTSUP Invalid argument
2625 * __mac_execve:EACCES Permission denied
2626 * __mac_execve:EINTR Interrupted function
2627 * __mac_execve:ENOMEM Not enough space
2628 * __mac_execve:EFAULT Bad address
2629 * __mac_execve:ENAMETOOLONG Filename too long
2630 * __mac_execve:ENOEXEC Executable file format error
2631 * __mac_execve:ETXTBSY Text file busy [misuse of error code]
2632 * __mac_execve:???
2633 *
2634 * TODO: Dynamic linker header address on stack is copied via suword()
2635 */
2636 /* ARGSUSED */
2637 int
2638 execve(proc_t p, struct execve_args *uap, int32_t *retval)
2639 {
2640 struct __mac_execve_args muap;
2641 int err;
2642
2643 memoryshot(VM_EXECVE, DBG_FUNC_NONE);
2644
2645 muap.fname = uap->fname;
2646 muap.argp = uap->argp;
2647 muap.envp = uap->envp;
2648 muap.mac_p = USER_ADDR_NULL;
2649 err = __mac_execve(p, &muap, retval);
2650
2651 return(err);
2652 }
2653
2654 /*
2655 * __mac_execve
2656 *
2657 * Parameters: uap->fname File name to exec
2658 * uap->argp Argument list
2659 * uap->envp Environment list
2660 * uap->mac_p MAC label supplied by caller
2661 *
2662 * Returns: 0 Success
2663 * EINVAL Invalid argument
2664 * ENOTSUP Not supported
2665 * ENOEXEC Executable file format error
2666 * exec_activate_image:EINVAL Invalid argument
2667 * exec_activate_image:EACCES Permission denied
2668 * exec_activate_image:EINTR Interrupted function
2669 * exec_activate_image:ENOMEM Not enough space
2670 * exec_activate_image:EFAULT Bad address
2671 * exec_activate_image:ENAMETOOLONG Filename too long
2672 * exec_activate_image:ENOEXEC Executable file format error
2673 * exec_activate_image:ETXTBSY Text file busy [misuse of error code]
2674 * exec_activate_image:EBADEXEC The executable is corrupt/unknown
2675 * exec_activate_image:???
2676 * mac_execve_enter:???
2677 *
2678 * TODO: Dynamic linker header address on stack is copied via suword()
2679 */
2680 int
2681 __mac_execve(proc_t p, struct __mac_execve_args *uap, int32_t *retval)
2682 {
2683 char *bufp = NULL;
2684 struct image_params *imgp;
2685 struct vnode_attr *vap;
2686 struct vnode_attr *origvap;
2687 int error;
2688 char alt_p_comm[sizeof(p->p_comm)] = {0}; /* for PowerPC */
2689 int is_64 = IS_64BIT_PROCESS(p);
2690 struct vfs_context context;
2691 struct uthread *uthread;
2692
2693 context.vc_thread = current_thread();
2694 context.vc_ucred = kauth_cred_proc_ref(p); /* XXX must NOT be kauth_cred_get() */
2695
2696 /* Allocate a big chunk for locals instead of using stack since these
2697 * structures a pretty big.
2698 */
2699 MALLOC(bufp, char *, (sizeof(*imgp) + sizeof(*vap) + sizeof(*origvap)), M_TEMP, M_WAITOK | M_ZERO);
2700 imgp = (struct image_params *) bufp;
2701 if (bufp == NULL) {
2702 error = ENOMEM;
2703 goto exit_with_error;
2704 }
2705 vap = (struct vnode_attr *) (bufp + sizeof(*imgp));
2706 origvap = (struct vnode_attr *) (bufp + sizeof(*imgp) + sizeof(*vap));
2707
2708 /* Initialize the common data in the image_params structure */
2709 imgp->ip_user_fname = uap->fname;
2710 imgp->ip_user_argv = uap->argp;
2711 imgp->ip_user_envv = uap->envp;
2712 imgp->ip_vattr = vap;
2713 imgp->ip_origvattr = origvap;
2714 imgp->ip_vfs_context = &context;
2715 imgp->ip_flags = (is_64 ? IMGPF_WAS_64BIT : IMGPF_NONE) | ((p->p_flag & P_DISABLE_ASLR) ? IMGPF_DISABLE_ASLR : IMGPF_NONE);
2716 imgp->ip_p_comm = alt_p_comm; /* for PowerPC */
2717 imgp->ip_seg = (is_64 ? UIO_USERSPACE64 : UIO_USERSPACE32);
2718 imgp->ip_mac_return = 0;
2719
2720 uthread = get_bsdthread_info(current_thread());
2721 if (uthread->uu_flag & UT_VFORK) {
2722 imgp->ip_flags |= IMGPF_VFORK_EXEC;
2723 }
2724
2725 #if CONFIG_MACF
2726 if (uap->mac_p != USER_ADDR_NULL) {
2727 error = mac_execve_enter(uap->mac_p, imgp);
2728 if (error) {
2729 kauth_cred_unref(&context.vc_ucred);
2730 goto exit_with_error;
2731 }
2732 }
2733 #endif
2734
2735 error = exec_activate_image(imgp);
2736
2737 kauth_cred_unref(&context.vc_ucred);
2738
2739 /* Image not claimed by any activator? */
2740 if (error == -1)
2741 error = ENOEXEC;
2742
2743 if (error == 0) {
2744 exec_resettextvp(p, imgp);
2745 error = check_for_signature(p, imgp);
2746 }
2747 if (imgp->ip_vp != NULLVP)
2748 vnode_put(imgp->ip_vp);
2749 if (imgp->ip_scriptvp != NULLVP)
2750 vnode_put(imgp->ip_scriptvp);
2751 if (imgp->ip_strings)
2752 execargs_free(imgp);
2753 #if CONFIG_MACF
2754 if (imgp->ip_execlabelp)
2755 mac_cred_label_free(imgp->ip_execlabelp);
2756 if (imgp->ip_scriptlabelp)
2757 mac_vnode_label_free(imgp->ip_scriptlabelp);
2758 #endif
2759 if (!error) {
2760 /* Sever any extant thread affinity */
2761 thread_affinity_exec(current_thread());
2762
2763 thread_t main_thread = (imgp->ip_new_thread != NULL) ? imgp->ip_new_thread : current_thread();
2764
2765 task_set_main_thread_qos(p->task, main_thread);
2766
2767 /* reset task importance */
2768 task_importance_reset(p->task);
2769
2770 /* reset atm context from task */
2771 task_atm_reset(p->task);
2772
2773 DTRACE_PROC(exec__success);
2774
2775 #if CONFIG_DTRACE
2776 if ((dtrace_proc_waitfor_hook = dtrace_proc_waitfor_exec_ptr) != NULL)
2777 (*dtrace_proc_waitfor_hook)(p);
2778 #endif
2779
2780 if (imgp->ip_flags & IMGPF_VFORK_EXEC) {
2781 vfork_return(p, retval, p->p_pid);
2782 (void)thread_resume(imgp->ip_new_thread);
2783 }
2784 } else {
2785 DTRACE_PROC1(exec__failure, int, error);
2786 }
2787
2788 exit_with_error:
2789 if (bufp != NULL) {
2790 FREE(bufp, M_TEMP);
2791 }
2792
2793 return(error);
2794 }
2795
2796
2797 /*
2798 * copyinptr
2799 *
2800 * Description: Copy a pointer in from user space to a user_addr_t in kernel
2801 * space, based on 32/64 bitness of the user space
2802 *
2803 * Parameters: froma User space address
2804 * toptr Address of kernel space user_addr_t
2805 * ptr_size 4/8, based on 'froma' address space
2806 *
2807 * Returns: 0 Success
2808 * EFAULT Bad 'froma'
2809 *
2810 * Implicit returns:
2811 * *ptr_size Modified
2812 */
2813 static int
2814 copyinptr(user_addr_t froma, user_addr_t *toptr, int ptr_size)
2815 {
2816 int error;
2817
2818 if (ptr_size == 4) {
2819 /* 64 bit value containing 32 bit address */
2820 unsigned int i;
2821
2822 error = copyin(froma, &i, 4);
2823 *toptr = CAST_USER_ADDR_T(i); /* SAFE */
2824 } else {
2825 error = copyin(froma, toptr, 8);
2826 }
2827 return (error);
2828 }
2829
2830
2831 /*
2832 * copyoutptr
2833 *
2834 * Description: Copy a pointer out from a user_addr_t in kernel space to
2835 * user space, based on 32/64 bitness of the user space
2836 *
2837 * Parameters: ua User space address to copy to
2838 * ptr Address of kernel space user_addr_t
2839 * ptr_size 4/8, based on 'ua' address space
2840 *
2841 * Returns: 0 Success
2842 * EFAULT Bad 'ua'
2843 *
2844 */
2845 static int
2846 copyoutptr(user_addr_t ua, user_addr_t ptr, int ptr_size)
2847 {
2848 int error;
2849
2850 if (ptr_size == 4) {
2851 /* 64 bit value containing 32 bit address */
2852 unsigned int i = CAST_DOWN_EXPLICIT(unsigned int,ua); /* SAFE */
2853
2854 error = copyout(&i, ptr, 4);
2855 } else {
2856 error = copyout(&ua, ptr, 8);
2857 }
2858 return (error);
2859 }
2860
2861
2862 /*
2863 * exec_copyout_strings
2864 *
2865 * Copy out the strings segment to user space. The strings segment is put
2866 * on a preinitialized stack frame.
2867 *
2868 * Parameters: struct image_params * the image parameter block
2869 * int * a pointer to the stack offset variable
2870 *
2871 * Returns: 0 Success
2872 * !0 Faiure: errno
2873 *
2874 * Implicit returns:
2875 * (*stackp) The stack offset, modified
2876 *
2877 * Note: The strings segment layout is backward, from the beginning
2878 * of the top of the stack to consume the minimal amount of
2879 * space possible; the returned stack pointer points to the
2880 * end of the area consumed (stacks grow downward).
2881 *
2882 * argc is an int; arg[i] are pointers; env[i] are pointers;
2883 * the 0's are (void *)NULL's
2884 *
2885 * The stack frame layout is:
2886 *
2887 * +-------------+ <- p->user_stack
2888 * | 16b |
2889 * +-------------+
2890 * | STRING AREA |
2891 * | : |
2892 * | : |
2893 * | : |
2894 * +- -- -- -- --+
2895 * | PATH AREA |
2896 * +-------------+
2897 * | 0 |
2898 * +-------------+
2899 * | applev[n] |
2900 * +-------------+
2901 * :
2902 * :
2903 * +-------------+
2904 * | applev[1] |
2905 * +-------------+
2906 * | exec_path / |
2907 * | applev[0] |
2908 * +-------------+
2909 * | 0 |
2910 * +-------------+
2911 * | env[n] |
2912 * +-------------+
2913 * :
2914 * :
2915 * +-------------+
2916 * | env[0] |
2917 * +-------------+
2918 * | 0 |
2919 * +-------------+
2920 * | arg[argc-1] |
2921 * +-------------+
2922 * :
2923 * :
2924 * +-------------+
2925 * | arg[0] |
2926 * +-------------+
2927 * | argc |
2928 * sp-> +-------------+
2929 *
2930 * Although technically a part of the STRING AREA, we treat the PATH AREA as
2931 * a separate entity. This allows us to align the beginning of the PATH AREA
2932 * to a pointer boundary so that the exec_path, env[i], and argv[i] pointers
2933 * which preceed it on the stack are properly aligned.
2934 */
2935
2936 static int
2937 exec_copyout_strings(struct image_params *imgp, user_addr_t *stackp)
2938 {
2939 proc_t p = vfs_context_proc(imgp->ip_vfs_context);
2940 int ptr_size = (imgp->ip_flags & IMGPF_IS_64BIT) ? 8 : 4;
2941 int ptr_area_size;
2942 void *ptr_buffer_start, *ptr_buffer;
2943 int string_size;
2944
2945 user_addr_t string_area; /* *argv[], *env[] */
2946 user_addr_t ptr_area; /* argv[], env[], applev[] */
2947 user_addr_t argc_area; /* argc */
2948 user_addr_t stack;
2949 int error;
2950
2951 unsigned i;
2952 struct copyout_desc {
2953 char *start_string;
2954 int count;
2955 #if CONFIG_DTRACE
2956 user_addr_t *dtrace_cookie;
2957 #endif
2958 boolean_t null_term;
2959 } descriptors[] = {
2960 {
2961 .start_string = imgp->ip_startargv,
2962 .count = imgp->ip_argc,
2963 #if CONFIG_DTRACE
2964 .dtrace_cookie = &p->p_dtrace_argv,
2965 #endif
2966 .null_term = TRUE
2967 },
2968 {
2969 .start_string = imgp->ip_endargv,
2970 .count = imgp->ip_envc,
2971 #if CONFIG_DTRACE
2972 .dtrace_cookie = &p->p_dtrace_envp,
2973 #endif
2974 .null_term = TRUE
2975 },
2976 {
2977 .start_string = imgp->ip_strings,
2978 .count = 1,
2979 #if CONFIG_DTRACE
2980 .dtrace_cookie = NULL,
2981 #endif
2982 .null_term = FALSE
2983 },
2984 {
2985 .start_string = imgp->ip_endenvv,
2986 .count = imgp->ip_applec - 1, /* exec_path handled above */
2987 #if CONFIG_DTRACE
2988 .dtrace_cookie = NULL,
2989 #endif
2990 .null_term = TRUE
2991 }
2992 };
2993
2994 stack = *stackp;
2995
2996 /*
2997 * All previous contributors to the string area
2998 * should have aligned their sub-area
2999 */
3000 if (imgp->ip_strspace % ptr_size != 0) {
3001 error = EINVAL;
3002 goto bad;
3003 }
3004
3005 /* Grow the stack down for the strings we've been building up */
3006 string_size = imgp->ip_strendp - imgp->ip_strings;
3007 stack -= string_size;
3008 string_area = stack;
3009
3010 /*
3011 * Need room for one pointer for each string, plus
3012 * one for the NULLs terminating the argv, envv, and apple areas.
3013 */
3014 ptr_area_size = (imgp->ip_argc + imgp->ip_envc + imgp->ip_applec + 3) *
3015 ptr_size;
3016 stack -= ptr_area_size;
3017 ptr_area = stack;
3018
3019 /* We'll construct all the pointer arrays in our string buffer,
3020 * which we already know is aligned properly, and ip_argspace
3021 * was used to verify we have enough space.
3022 */
3023 ptr_buffer_start = ptr_buffer = (void *)imgp->ip_strendp;
3024
3025 /*
3026 * Need room for pointer-aligned argc slot.
3027 */
3028 stack -= ptr_size;
3029 argc_area = stack;
3030
3031 /*
3032 * Record the size of the arguments area so that sysctl_procargs()
3033 * can return the argument area without having to parse the arguments.
3034 */
3035 proc_lock(p);
3036 p->p_argc = imgp->ip_argc;
3037 p->p_argslen = (int)(*stackp - string_area);
3038 proc_unlock(p);
3039
3040 /* Return the initial stack address: the location of argc */
3041 *stackp = stack;
3042
3043 /*
3044 * Copy out the entire strings area.
3045 */
3046 error = copyout(imgp->ip_strings, string_area,
3047 string_size);
3048 if (error)
3049 goto bad;
3050
3051 for (i = 0; i < sizeof(descriptors)/sizeof(descriptors[0]); i++) {
3052 char *cur_string = descriptors[i].start_string;
3053 int j;
3054
3055 #if CONFIG_DTRACE
3056 if (descriptors[i].dtrace_cookie) {
3057 proc_lock(p);
3058 *descriptors[i].dtrace_cookie = ptr_area + ((uintptr_t)ptr_buffer - (uintptr_t)ptr_buffer_start); /* dtrace convenience */
3059 proc_unlock(p);
3060 }
3061 #endif /* CONFIG_DTRACE */
3062
3063 /*
3064 * For each segment (argv, envv, applev), copy as many pointers as requested
3065 * to our pointer buffer.
3066 */
3067 for (j = 0; j < descriptors[i].count; j++) {
3068 user_addr_t cur_address = string_area + (cur_string - imgp->ip_strings);
3069
3070 /* Copy out the pointer to the current string. Alignment has been verified */
3071 if (ptr_size == 8) {
3072 *(uint64_t *)ptr_buffer = (uint64_t)cur_address;
3073 } else {
3074 *(uint32_t *)ptr_buffer = (uint32_t)cur_address;
3075 }
3076
3077 ptr_buffer = (void *)((uintptr_t)ptr_buffer + ptr_size);
3078 cur_string += strlen(cur_string) + 1; /* Only a NUL between strings in the same area */
3079 }
3080
3081 if (descriptors[i].null_term) {
3082 if (ptr_size == 8) {
3083 *(uint64_t *)ptr_buffer = 0ULL;
3084 } else {
3085 *(uint32_t *)ptr_buffer = 0;
3086 }
3087
3088 ptr_buffer = (void *)((uintptr_t)ptr_buffer + ptr_size);
3089 }
3090 }
3091
3092 /*
3093 * Copy out all our pointer arrays in bulk.
3094 */
3095 error = copyout(ptr_buffer_start, ptr_area,
3096 ptr_area_size);
3097 if (error)
3098 goto bad;
3099
3100 /* argc (int32, stored in a ptr_size area) */
3101 error = copyoutptr((user_addr_t)imgp->ip_argc, argc_area, ptr_size);
3102 if (error)
3103 goto bad;
3104
3105 bad:
3106 return(error);
3107 }
3108
3109
3110 /*
3111 * exec_extract_strings
3112 *
3113 * Copy arguments and environment from user space into work area; we may
3114 * have already copied some early arguments into the work area, and if
3115 * so, any arguments opied in are appended to those already there.
3116 * This function is the primary manipulator of ip_argspace, since
3117 * these are the arguments the client of execve(2) knows about. After
3118 * each argv[]/envv[] string is copied, we charge the string length
3119 * and argv[]/envv[] pointer slot to ip_argspace, so that we can
3120 * full preflight the arg list size.
3121 *
3122 * Parameters: struct image_params * the image parameter block
3123 *
3124 * Returns: 0 Success
3125 * !0 Failure: errno
3126 *
3127 * Implicit returns;
3128 * (imgp->ip_argc) Count of arguments, updated
3129 * (imgp->ip_envc) Count of environment strings, updated
3130 * (imgp->ip_argspace) Count of remaining of NCARGS
3131 * (imgp->ip_interp_buffer) Interpreter and args (mutated in place)
3132 *
3133 *
3134 * Note: The argument and environment vectors are user space pointers
3135 * to arrays of user space pointers.
3136 */
3137 static int
3138 exec_extract_strings(struct image_params *imgp)
3139 {
3140 int error = 0;
3141 int ptr_size = (imgp->ip_flags & IMGPF_WAS_64BIT) ? 8 : 4;
3142 int new_ptr_size = (imgp->ip_flags & IMGPF_IS_64BIT) ? 8 : 4;
3143 user_addr_t argv = imgp->ip_user_argv;
3144 user_addr_t envv = imgp->ip_user_envv;
3145
3146 /*
3147 * Adjust space reserved for the path name by however much padding it
3148 * needs. Doing this here since we didn't know if this would be a 32-
3149 * or 64-bit process back in exec_save_path.
3150 */
3151 while (imgp->ip_strspace % new_ptr_size != 0) {
3152 *imgp->ip_strendp++ = '\0';
3153 imgp->ip_strspace--;
3154 /* imgp->ip_argspace--; not counted towards exec args total */
3155 }
3156
3157 /*
3158 * From now on, we start attributing string space to ip_argspace
3159 */
3160 imgp->ip_startargv = imgp->ip_strendp;
3161 imgp->ip_argc = 0;
3162
3163 if((imgp->ip_flags & IMGPF_INTERPRET) != 0) {
3164 user_addr_t arg;
3165 char *argstart, *ch;
3166
3167 /* First, the arguments in the "#!" string are tokenized and extracted. */
3168 argstart = imgp->ip_interp_buffer;
3169 while (argstart) {
3170 ch = argstart;
3171 while (*ch && !IS_WHITESPACE(*ch)) {
3172 ch++;
3173 }
3174
3175 if (*ch == '\0') {
3176 /* last argument, no need to NUL-terminate */
3177 error = exec_add_user_string(imgp, CAST_USER_ADDR_T(argstart), UIO_SYSSPACE, TRUE);
3178 argstart = NULL;
3179 } else {
3180 /* NUL-terminate */
3181 *ch = '\0';
3182 error = exec_add_user_string(imgp, CAST_USER_ADDR_T(argstart), UIO_SYSSPACE, TRUE);
3183
3184 /*
3185 * Find the next string. We know spaces at the end of the string have already
3186 * been stripped.
3187 */
3188 argstart = ch + 1;
3189 while (IS_WHITESPACE(*argstart)) {
3190 argstart++;
3191 }
3192 }
3193
3194 /* Error-check, regardless of whether this is the last interpreter arg or not */
3195 if (error)
3196 goto bad;
3197 if (imgp->ip_argspace < new_ptr_size) {
3198 error = E2BIG;
3199 goto bad;
3200 }
3201 imgp->ip_argspace -= new_ptr_size; /* to hold argv[] entry */
3202 imgp->ip_argc++;
3203 }
3204
3205 if (argv != 0LL) {
3206 /*
3207 * If we are running an interpreter, replace the av[0] that was
3208 * passed to execve() with the path name that was
3209 * passed to execve() for interpreters which do not use the PATH
3210 * to locate their script arguments.
3211 */
3212 error = copyinptr(argv, &arg, ptr_size);
3213 if (error)
3214 goto bad;
3215 if (arg != 0LL) {
3216 argv += ptr_size; /* consume without using */
3217 }
3218 }
3219
3220 if (imgp->ip_interp_sugid_fd != -1) {
3221 char temp[19]; /* "/dev/fd/" + 10 digits + NUL */
3222 snprintf(temp, sizeof(temp), "/dev/fd/%d", imgp->ip_interp_sugid_fd);
3223 error = exec_add_user_string(imgp, CAST_USER_ADDR_T(temp), UIO_SYSSPACE, TRUE);
3224 } else {
3225 error = exec_add_user_string(imgp, imgp->ip_user_fname, imgp->ip_seg, TRUE);
3226 }
3227
3228 if (error)
3229 goto bad;
3230 if (imgp->ip_argspace < new_ptr_size) {
3231 error = E2BIG;
3232 goto bad;
3233 }
3234 imgp->ip_argspace -= new_ptr_size; /* to hold argv[] entry */
3235 imgp->ip_argc++;
3236 }
3237
3238 while (argv != 0LL) {
3239 user_addr_t arg;
3240
3241 error = copyinptr(argv, &arg, ptr_size);
3242 if (error)
3243 goto bad;
3244
3245 if (arg == 0LL) {
3246 break;
3247 }
3248
3249 argv += ptr_size;
3250
3251 /*
3252 * av[n...] = arg[n]
3253 */
3254 error = exec_add_user_string(imgp, arg, imgp->ip_seg, TRUE);
3255 if (error)
3256 goto bad;
3257 if (imgp->ip_argspace < new_ptr_size) {
3258 error = E2BIG;
3259 goto bad;
3260 }
3261 imgp->ip_argspace -= new_ptr_size; /* to hold argv[] entry */
3262 imgp->ip_argc++;
3263 }
3264
3265 /* Save space for argv[] NULL terminator */
3266 if (imgp->ip_argspace < new_ptr_size) {
3267 error = E2BIG;
3268 goto bad;
3269 }
3270 imgp->ip_argspace -= new_ptr_size;
3271
3272 /* Note where the args ends and env begins. */
3273 imgp->ip_endargv = imgp->ip_strendp;
3274 imgp->ip_envc = 0;
3275
3276 /* Now, get the environment */
3277 while (envv != 0LL) {
3278 user_addr_t env;
3279
3280 error = copyinptr(envv, &env, ptr_size);
3281 if (error)
3282 goto bad;
3283
3284 envv += ptr_size;
3285 if (env == 0LL) {
3286 break;
3287 }
3288 /*
3289 * av[n...] = env[n]
3290 */
3291 error = exec_add_user_string(imgp, env, imgp->ip_seg, TRUE);
3292 if (error)
3293 goto bad;
3294 if (imgp->ip_argspace < new_ptr_size) {
3295 error = E2BIG;
3296 goto bad;
3297 }
3298 imgp->ip_argspace -= new_ptr_size; /* to hold envv[] entry */
3299 imgp->ip_envc++;
3300 }
3301
3302 /* Save space for envv[] NULL terminator */
3303 if (imgp->ip_argspace < new_ptr_size) {
3304 error = E2BIG;
3305 goto bad;
3306 }
3307 imgp->ip_argspace -= new_ptr_size;
3308
3309 /* Align the tail of the combined argv+envv area */
3310 while (imgp->ip_strspace % new_ptr_size != 0) {
3311 if (imgp->ip_argspace < 1) {
3312 error = E2BIG;
3313 goto bad;
3314 }
3315 *imgp->ip_strendp++ = '\0';
3316 imgp->ip_strspace--;
3317 imgp->ip_argspace--;
3318 }
3319
3320 /* Note where the envv ends and applev begins. */
3321 imgp->ip_endenvv = imgp->ip_strendp;
3322
3323 /*
3324 * From now on, we are no longer charging argument
3325 * space to ip_argspace.
3326 */
3327
3328 bad:
3329 return error;
3330 }
3331
3332 static char *
3333 random_hex_str(char *str, int len, boolean_t embedNUL)
3334 {
3335 uint64_t low, high, value;
3336 int idx;
3337 char digit;
3338
3339 /* A 64-bit value will only take 16 characters, plus '0x' and NULL. */
3340 if (len > 19)
3341 len = 19;
3342
3343 /* We need enough room for at least 1 digit */
3344 if (len < 4)
3345 return (NULL);
3346
3347 low = random();
3348 high = random();
3349 value = high << 32 | low;
3350
3351 if (embedNUL) {
3352 /*
3353 * Zero a byte to protect against C string vulnerabilities
3354 * e.g. for userland __stack_chk_guard.
3355 */
3356 value &= ~(0xffull << 8);
3357 }
3358
3359 str[0] = '0';
3360 str[1] = 'x';
3361 for (idx = 2; idx < len - 1; idx++) {
3362 digit = value & 0xf;
3363 value = value >> 4;
3364 if (digit < 10)
3365 str[idx] = '0' + digit;
3366 else
3367 str[idx] = 'a' + (digit - 10);
3368 }
3369 str[idx] = '\0';
3370 return (str);
3371 }
3372
3373 /*
3374 * Libc has an 8-element array set up for stack guard values. It only fills
3375 * in one of those entries, and both gcc and llvm seem to use only a single
3376 * 8-byte guard. Until somebody needs more than an 8-byte guard value, don't
3377 * do the work to construct them.
3378 */
3379 #define GUARD_VALUES 1
3380 #define GUARD_KEY "stack_guard="
3381
3382 /*
3383 * System malloc needs some entropy when it is initialized.
3384 */
3385 #define ENTROPY_VALUES 2
3386 #define ENTROPY_KEY "malloc_entropy="
3387
3388 /*
3389 * System malloc engages nanozone for UIAPP.
3390 */
3391 #define NANO_ENGAGE_KEY "MallocNanoZone=1"
3392
3393 #define PFZ_KEY "pfz="
3394 extern user32_addr_t commpage_text32_location;
3395 extern user64_addr_t commpage_text64_location;
3396 /*
3397 * Build up the contents of the apple[] string vector
3398 */
3399 static int
3400 exec_add_apple_strings(struct image_params *imgp)
3401 {
3402 int i, error;
3403 int new_ptr_size=4;
3404 char guard[19];
3405 char guard_vec[strlen(GUARD_KEY) + 19 * GUARD_VALUES + 1];
3406
3407 char entropy[19];
3408 char entropy_vec[strlen(ENTROPY_KEY) + 19 * ENTROPY_VALUES + 1];
3409
3410 char pfz_string[strlen(PFZ_KEY) + 16 + 4 +1];
3411
3412 if( imgp->ip_flags & IMGPF_IS_64BIT) {
3413 new_ptr_size = 8;
3414 snprintf(pfz_string, sizeof(pfz_string),PFZ_KEY "0x%llx",commpage_text64_location);
3415 } else {
3416 snprintf(pfz_string, sizeof(pfz_string),PFZ_KEY "0x%x",commpage_text32_location);
3417 }
3418
3419 /* exec_save_path stored the first string */
3420 imgp->ip_applec = 1;
3421
3422 /* adding the pfz string */
3423 error = exec_add_user_string(imgp, CAST_USER_ADDR_T(pfz_string),UIO_SYSSPACE,FALSE);
3424 if(error)
3425 goto bad;
3426 imgp->ip_applec++;
3427
3428 /* adding the NANO_ENGAGE_KEY key */
3429 if (imgp->ip_px_sa) {
3430 int proc_flags = (((struct _posix_spawnattr *) imgp->ip_px_sa)->psa_flags);
3431
3432 if ((proc_flags & _POSIX_SPAWN_NANO_ALLOCATOR) == _POSIX_SPAWN_NANO_ALLOCATOR) {
3433 char uiapp_string[strlen(NANO_ENGAGE_KEY) + 1];
3434
3435 snprintf(uiapp_string, sizeof(uiapp_string), NANO_ENGAGE_KEY);
3436 error = exec_add_user_string(imgp, CAST_USER_ADDR_T(uiapp_string),UIO_SYSSPACE,FALSE);
3437 if (error)
3438 goto bad;
3439 imgp->ip_applec++;
3440 }
3441 }
3442
3443 /*
3444 * Supply libc with a collection of random values to use when
3445 * implementing -fstack-protector.
3446 *
3447 * (The first random string always contains an embedded NUL so that
3448 * __stack_chk_guard also protects against C string vulnerabilities)
3449 */
3450 (void)strlcpy(guard_vec, GUARD_KEY, sizeof (guard_vec));
3451 for (i = 0; i < GUARD_VALUES; i++) {
3452 random_hex_str(guard, sizeof (guard), i == 0);
3453 if (i)
3454 (void)strlcat(guard_vec, ",", sizeof (guard_vec));
3455 (void)strlcat(guard_vec, guard, sizeof (guard_vec));
3456 }
3457
3458 error = exec_add_user_string(imgp, CAST_USER_ADDR_T(guard_vec), UIO_SYSSPACE, FALSE);
3459 if (error)
3460 goto bad;
3461 imgp->ip_applec++;
3462
3463 /*
3464 * Supply libc with entropy for system malloc.
3465 */
3466 (void)strlcpy(entropy_vec, ENTROPY_KEY, sizeof(entropy_vec));
3467 for (i = 0; i < ENTROPY_VALUES; i++) {
3468 random_hex_str(entropy, sizeof (entropy), FALSE);
3469 if (i)
3470 (void)strlcat(entropy_vec, ",", sizeof (entropy_vec));
3471 (void)strlcat(entropy_vec, entropy, sizeof (entropy_vec));
3472 }
3473
3474 error = exec_add_user_string(imgp, CAST_USER_ADDR_T(entropy_vec), UIO_SYSSPACE, FALSE);
3475 if (error)
3476 goto bad;
3477 imgp->ip_applec++;
3478
3479 /* Align the tail of the combined applev area */
3480 while (imgp->ip_strspace % new_ptr_size != 0) {
3481 *imgp->ip_strendp++ = '\0';
3482 imgp->ip_strspace--;
3483 }
3484
3485 bad:
3486 return error;
3487 }
3488
3489 #define unix_stack_size(p) (p->p_rlimit[RLIMIT_STACK].rlim_cur)
3490
3491 /*
3492 * exec_check_permissions
3493 *
3494 * Description: Verify that the file that is being attempted to be executed
3495 * is in fact allowed to be executed based on it POSIX file
3496 * permissions and other access control criteria
3497 *
3498 * Parameters: struct image_params * the image parameter block
3499 *
3500 * Returns: 0 Success
3501 * EACCES Permission denied
3502 * ENOEXEC Executable file format error
3503 * ETXTBSY Text file busy [misuse of error code]
3504 * vnode_getattr:???
3505 * vnode_authorize:???
3506 */
3507 static int
3508 exec_check_permissions(struct image_params *imgp)
3509 {
3510 struct vnode *vp = imgp->ip_vp;
3511 struct vnode_attr *vap = imgp->ip_vattr;
3512 proc_t p = vfs_context_proc(imgp->ip_vfs_context);
3513 int error;
3514 kauth_action_t action;
3515
3516 /* Only allow execution of regular files */
3517 if (!vnode_isreg(vp))
3518 return (EACCES);
3519
3520 /* Get the file attributes that we will be using here and elsewhere */
3521 VATTR_INIT(vap);
3522 VATTR_WANTED(vap, va_uid);
3523 VATTR_WANTED(vap, va_gid);
3524 VATTR_WANTED(vap, va_mode);
3525 VATTR_WANTED(vap, va_fsid);
3526 VATTR_WANTED(vap, va_fileid);
3527 VATTR_WANTED(vap, va_data_size);
3528 if ((error = vnode_getattr(vp, vap, imgp->ip_vfs_context)) != 0)
3529 return (error);
3530
3531 /*
3532 * Ensure that at least one execute bit is on - otherwise root
3533 * will always succeed, and we don't want to happen unless the
3534 * file really is executable.
3535 */
3536 if (!vfs_authopaque(vnode_mount(vp)) && ((vap->va_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) == 0))
3537 return (EACCES);
3538
3539 /* Disallow zero length files */
3540 if (vap->va_data_size == 0)
3541 return (ENOEXEC);
3542
3543 imgp->ip_arch_offset = (user_size_t)0;
3544 imgp->ip_arch_size = vap->va_data_size;
3545
3546 /* Disable setuid-ness for traced programs or if MNT_NOSUID */
3547 if ((vp->v_mount->mnt_flag & MNT_NOSUID) || (p->p_lflag & P_LTRACED))
3548 vap->va_mode &= ~(VSUID | VSGID);
3549
3550 /*
3551 * Disable _POSIX_SPAWN_ALLOW_DATA_EXEC and _POSIX_SPAWN_DISABLE_ASLR
3552 * flags for setuid/setgid binaries.
3553 */
3554 if (vap->va_mode & (VSUID | VSGID))
3555 imgp->ip_flags &= ~(IMGPF_ALLOW_DATA_EXEC | IMGPF_DISABLE_ASLR);
3556
3557 #if CONFIG_MACF
3558 error = mac_vnode_check_exec(imgp->ip_vfs_context, vp, imgp);
3559 if (error)
3560 return (error);
3561 #endif
3562
3563 /* Check for execute permission */
3564 action = KAUTH_VNODE_EXECUTE;
3565 /* Traced images must also be readable */
3566 if (p->p_lflag & P_LTRACED)
3567 action |= KAUTH_VNODE_READ_DATA;
3568 if ((error = vnode_authorize(vp, NULL, action, imgp->ip_vfs_context)) != 0)
3569 return (error);
3570
3571 #if 0
3572 /* Don't let it run if anyone had it open for writing */
3573 vnode_lock(vp);
3574 if (vp->v_writecount) {
3575 panic("going to return ETXTBSY %x", vp);
3576 vnode_unlock(vp);
3577 return (ETXTBSY);
3578 }
3579 vnode_unlock(vp);
3580 #endif
3581
3582
3583 /* XXX May want to indicate to underlying FS that vnode is open */
3584
3585 return (error);
3586 }
3587
3588
3589 /*
3590 * exec_handle_sugid
3591 *
3592 * Initially clear the P_SUGID in the process flags; if an SUGID process is
3593 * exec'ing a non-SUGID image, then this is the point of no return.
3594 *
3595 * If the image being activated is SUGID, then replace the credential with a
3596 * copy, disable tracing (unless the tracing process is root), reset the
3597 * mach task port to revoke it, set the P_SUGID bit,
3598 *
3599 * If the saved user and group ID will be changing, then make sure it happens
3600 * to a new credential, rather than a shared one.
3601 *
3602 * Set the security token (this is probably obsolete, given that the token
3603 * should not technically be separate from the credential itself).
3604 *
3605 * Parameters: struct image_params * the image parameter block
3606 *
3607 * Returns: void No failure indication
3608 *
3609 * Implicit returns:
3610 * <process credential> Potentially modified/replaced
3611 * <task port> Potentially revoked
3612 * <process flags> P_SUGID bit potentially modified
3613 * <security token> Potentially modified
3614 */
3615 static int
3616 exec_handle_sugid(struct image_params *imgp)
3617 {
3618 kauth_cred_t cred = vfs_context_ucred(imgp->ip_vfs_context);
3619 proc_t p = vfs_context_proc(imgp->ip_vfs_context);
3620 int i;
3621 int leave_sugid_clear = 0;
3622 int mac_reset_ipc = 0;
3623 int error = 0;
3624 #if CONFIG_MACF
3625 int mac_transition, disjoint_cred = 0;
3626 int label_update_return = 0;
3627
3628 /*
3629 * Determine whether a call to update the MAC label will result in the
3630 * credential changing.
3631 *
3632 * Note: MAC policies which do not actually end up modifying
3633 * the label subsequently are strongly encouraged to
3634 * return 0 for this check, since a non-zero answer will
3635 * slow down the exec fast path for normal binaries.
3636 */
3637 mac_transition = mac_cred_check_label_update_execve(
3638 imgp->ip_vfs_context,
3639 imgp->ip_vp,
3640 imgp->ip_arch_offset,
3641 imgp->ip_scriptvp,
3642 imgp->ip_scriptlabelp,
3643 imgp->ip_execlabelp,
3644 p,
3645 imgp->ip_px_smpx);
3646 #endif
3647
3648 OSBitAndAtomic(~((uint32_t)P_SUGID), &p->p_flag);
3649
3650 /*
3651 * Order of the following is important; group checks must go last,
3652 * as we use the success of the 'ismember' check combined with the
3653 * failure of the explicit match to indicate that we will be setting
3654 * the egid of the process even though the new process did not
3655 * require VSUID/VSGID bits in order for it to set the new group as
3656 * its egid.
3657 *
3658 * Note: Technically, by this we are implying a call to
3659 * setegid() in the new process, rather than implying
3660 * it used its VSGID bit to set the effective group,
3661 * even though there is no code in that process to make
3662 * such a call.
3663 */
3664 if (((imgp->ip_origvattr->va_mode & VSUID) != 0 &&
3665 kauth_cred_getuid(cred) != imgp->ip_origvattr->va_uid) ||
3666 ((imgp->ip_origvattr->va_mode & VSGID) != 0 &&
3667 ((kauth_cred_ismember_gid(cred, imgp->ip_origvattr->va_gid, &leave_sugid_clear) || !leave_sugid_clear) ||
3668 (kauth_cred_getgid(cred) != imgp->ip_origvattr->va_gid)))) {
3669
3670 #if CONFIG_MACF
3671 /* label for MAC transition and neither VSUID nor VSGID */
3672 handle_mac_transition:
3673 #endif
3674
3675 /*
3676 * Replace the credential with a copy of itself if euid or
3677 * egid change.
3678 *
3679 * Note: setuid binaries will automatically opt out of
3680 * group resolver participation as a side effect
3681 * of this operation. This is an intentional
3682 * part of the security model, which requires a
3683 * participating credential be established by
3684 * escalating privilege, setting up all other
3685 * aspects of the credential including whether
3686 * or not to participate in external group
3687 * membership resolution, then dropping their
3688 * effective privilege to that of the desired
3689 * final credential state.
3690 */
3691 if (imgp->ip_origvattr->va_mode & VSUID) {
3692 p->p_ucred = kauth_cred_setresuid(p->p_ucred, KAUTH_UID_NONE, imgp->ip_origvattr->va_uid, imgp->ip_origvattr->va_uid, KAUTH_UID_NONE);
3693 /* update cred on proc */
3694 PROC_UPDATE_CREDS_ONPROC(p);
3695 }
3696 if (imgp->ip_origvattr->va_mode & VSGID) {
3697 p->p_ucred = kauth_cred_setresgid(p->p_ucred, KAUTH_GID_NONE, imgp->ip_origvattr->va_gid, imgp->ip_origvattr->va_gid);
3698 /* update cred on proc */
3699 PROC_UPDATE_CREDS_ONPROC(p);
3700 }
3701
3702 #if CONFIG_MACF
3703 /*
3704 * If a policy has indicated that it will transition the label,
3705 * before making the call into the MAC policies, get a new
3706 * duplicate credential, so they can modify it without
3707 * modifying any others sharing it.
3708 */
3709 if (mac_transition) {
3710 kauth_proc_label_update_execve(p,
3711 imgp->ip_vfs_context,
3712 imgp->ip_vp,
3713 imgp->ip_arch_offset,
3714 imgp->ip_scriptvp,
3715 imgp->ip_scriptlabelp,
3716 imgp->ip_execlabelp,
3717 &imgp->ip_csflags,
3718 imgp->ip_px_smpx,
3719 &disjoint_cred, /* will be non zero if disjoint */
3720 &label_update_return);
3721
3722 if (disjoint_cred) {
3723 /*
3724 * If updating the MAC label resulted in a
3725 * disjoint credential, flag that we need to
3726 * set the P_SUGID bit. This protects
3727 * against debuggers being attached by an
3728 * insufficiently privileged process onto the
3729 * result of a transition to a more privileged
3730 * credential.
3731 */
3732 leave_sugid_clear = 0;
3733 }
3734
3735 imgp->ip_mac_return = label_update_return;
3736 }
3737
3738 mac_reset_ipc = mac_proc_check_inherit_ipc_ports(p, p->p_textvp, p->p_textoff, imgp->ip_vp, imgp->ip_arch_offset, imgp->ip_scriptvp);
3739
3740 #endif /* CONFIG_MACF */
3741
3742 /*
3743 * If 'leave_sugid_clear' is non-zero, then we passed the
3744 * VSUID and MACF checks, and successfully determined that
3745 * the previous cred was a member of the VSGID group, but
3746 * that it was not the default at the time of the execve,
3747 * and that the post-labelling credential was not disjoint.
3748 * So we don't set the P_SUGID or reset mach ports and fds
3749 * on the basis of simply running this code.
3750 */
3751 if (mac_reset_ipc || !leave_sugid_clear) {
3752 /*
3753 * Have mach reset the task and thread ports.
3754 * We don't want anyone who had the ports before
3755 * a setuid exec to be able to access/control the
3756 * task/thread after.
3757 */
3758 ipc_task_reset(p->task);
3759 ipc_thread_reset((imgp->ip_new_thread != NULL) ?
3760 imgp->ip_new_thread : current_thread());
3761 }
3762
3763 if (!leave_sugid_clear) {
3764 /*
3765 * Flag the process as setuid.
3766 */
3767 OSBitOrAtomic(P_SUGID, &p->p_flag);
3768
3769 /*
3770 * Radar 2261856; setuid security hole fix
3771 * XXX For setuid processes, attempt to ensure that
3772 * stdin, stdout, and stderr are already allocated.
3773 * We do not want userland to accidentally allocate
3774 * descriptors in this range which has implied meaning
3775 * to libc.
3776 */
3777 for (i = 0; i < 3; i++) {
3778
3779 if (p->p_fd->fd_ofiles[i] != NULL)
3780 continue;
3781
3782 /*
3783 * Do the kernel equivalent of
3784 *
3785 * if i == 0
3786 * (void) open("/dev/null", O_RDONLY);
3787 * else
3788 * (void) open("/dev/null", O_WRONLY);
3789 */
3790
3791 struct fileproc *fp;
3792 int indx;
3793 int flag;
3794 struct nameidata *ndp = NULL;
3795
3796 if (i == 0)
3797 flag = FREAD;
3798 else
3799 flag = FWRITE;
3800
3801 if ((error = falloc(p,
3802 &fp, &indx, imgp->ip_vfs_context)) != 0)
3803 continue;
3804
3805 MALLOC(ndp, struct nameidata *, sizeof(*ndp), M_TEMP, M_WAITOK | M_ZERO);
3806 if (ndp == NULL) {
3807 error = ENOMEM;
3808 break;
3809 }
3810
3811 NDINIT(ndp, LOOKUP, OP_OPEN, FOLLOW, UIO_SYSSPACE,
3812 CAST_USER_ADDR_T("/dev/null"),
3813 imgp->ip_vfs_context);
3814
3815 if ((error = vn_open(ndp, flag, 0)) != 0) {
3816 fp_free(p, indx, fp);
3817 break;
3818 }
3819
3820 struct fileglob *fg = fp->f_fglob;
3821
3822 fg->fg_flag = flag;
3823 fg->fg_ops = &vnops;
3824 fg->fg_data = ndp->ni_vp;
3825
3826 vnode_put(ndp->ni_vp);
3827
3828 proc_fdlock(p);
3829 procfdtbl_releasefd(p, indx, NULL);
3830 fp_drop(p, indx, fp, 1);
3831 proc_fdunlock(p);
3832
3833 FREE(ndp, M_TEMP);
3834 }
3835 }
3836 }
3837 #if CONFIG_MACF
3838 else {
3839 /*
3840 * We are here because we were told that the MAC label will
3841 * be transitioned, and the binary is not VSUID or VSGID; to
3842 * deal with this case, we could either duplicate a lot of
3843 * code, or we can indicate we want to default the P_SUGID
3844 * bit clear and jump back up.
3845 */
3846 if (mac_transition) {
3847 leave_sugid_clear = 1;
3848 goto handle_mac_transition;
3849 }
3850 }
3851
3852 #endif /* CONFIG_MACF */
3853
3854 /*
3855 * Implement the semantic where the effective user and group become
3856 * the saved user and group in exec'ed programs.
3857 */
3858 p->p_ucred = kauth_cred_setsvuidgid(p->p_ucred, kauth_cred_getuid(p->p_ucred), kauth_cred_getgid(p->p_ucred));
3859 /* update cred on proc */
3860 PROC_UPDATE_CREDS_ONPROC(p);
3861
3862 /* Update the process' identity version and set the security token */
3863 p->p_idversion++;
3864 set_security_token(p);
3865
3866 return(error);
3867 }
3868
3869
3870 /*
3871 * create_unix_stack
3872 *
3873 * Description: Set the user stack address for the process to the provided
3874 * address. If a custom stack was not set as a result of the
3875 * load process (i.e. as specified by the image file for the
3876 * executable), then allocate the stack in the provided map and
3877 * set up appropriate guard pages for enforcing administrative
3878 * limits on stack growth, if they end up being needed.
3879 *
3880 * Parameters: p Process to set stack on
3881 * load_result Information from mach-o load commands
3882 * map Address map in which to allocate the new stack
3883 *
3884 * Returns: KERN_SUCCESS Stack successfully created
3885 * !KERN_SUCCESS Mach failure code
3886 */
3887 static kern_return_t
3888 create_unix_stack(vm_map_t map, load_result_t* load_result,
3889 proc_t p)
3890 {
3891 mach_vm_size_t size, prot_size;
3892 mach_vm_offset_t addr, prot_addr;
3893 kern_return_t kr;
3894
3895 mach_vm_address_t user_stack = load_result->user_stack;
3896
3897 proc_lock(p);
3898 p->user_stack = user_stack;
3899 proc_unlock(p);
3900
3901 if (!load_result->prog_allocated_stack) {
3902 /*
3903 * Allocate enough space for the maximum stack size we
3904 * will ever authorize and an extra page to act as
3905 * a guard page for stack overflows. For default stacks,
3906 * vm_initial_limit_stack takes care of the extra guard page.
3907 * Otherwise we must allocate it ourselves.
3908 */
3909
3910 size = mach_vm_round_page(load_result->user_stack_size);
3911 if (load_result->prog_stack_size)
3912 size += PAGE_SIZE;
3913 addr = mach_vm_trunc_page(load_result->user_stack - size);
3914 kr = mach_vm_allocate(map, &addr, size,
3915 VM_MAKE_TAG(VM_MEMORY_STACK) |
3916 VM_FLAGS_FIXED);
3917 if (kr != KERN_SUCCESS) {
3918 /* If can't allocate at default location, try anywhere */
3919 addr = 0;
3920 kr = mach_vm_allocate(map, &addr, size,
3921 VM_MAKE_TAG(VM_MEMORY_STACK) |
3922 VM_FLAGS_ANYWHERE);
3923 if (kr != KERN_SUCCESS)
3924 return kr;
3925
3926 user_stack = addr + size;
3927 load_result->user_stack = user_stack;
3928
3929 proc_lock(p);
3930 p->user_stack = user_stack;
3931 proc_unlock(p);
3932 }
3933
3934 /*
3935 * And prevent access to what's above the current stack
3936 * size limit for this process.
3937 */
3938 prot_addr = addr;
3939 if (load_result->prog_stack_size)
3940 prot_size = PAGE_SIZE;
3941 else
3942 prot_size = mach_vm_trunc_page(size - unix_stack_size(p));
3943 kr = mach_vm_protect(map,
3944 prot_addr,
3945 prot_size,
3946 FALSE,
3947 VM_PROT_NONE);
3948 if (kr != KERN_SUCCESS) {
3949 (void) mach_vm_deallocate(map, addr, size);
3950 return kr;
3951 }
3952 }
3953
3954 return KERN_SUCCESS;
3955 }
3956
3957 #include <sys/reboot.h>
3958
3959 static const char * init_programs[] = {
3960 #if DEVELOPMENT || DEBUG
3961 "/usr/local/sbin/launchd.development",
3962 #endif
3963 "/sbin/launchd",
3964 };
3965
3966 /*
3967 * load_init_program
3968 *
3969 * Description: Load the "init" program; in most cases, this will be "launchd"
3970 *
3971 * Parameters: p Process to call execve() to create
3972 * the "init" program
3973 *
3974 * Returns: (void)
3975 *
3976 * Notes: The process that is passed in is the first manufactured
3977 * process on the system, and gets here via bsd_ast() firing
3978 * for the first time. This is done to ensure that bsd_init()
3979 * has run to completion.
3980 */
3981 void
3982 load_init_program(proc_t p)
3983 {
3984 vm_offset_t init_addr, addr;
3985 int argc;
3986 uint32_t argv[3];
3987 unsigned int i;
3988 int error;
3989 int retval[2];
3990 const char *init_program_name;
3991 struct execve_args init_exec_args;
3992
3993 init_addr = VM_MIN_ADDRESS;
3994 (void) vm_allocate(current_map(), &init_addr, PAGE_SIZE, VM_FLAGS_ANYWHERE);
3995 if (init_addr == 0)
3996 init_addr++;
3997
3998 for (i = 0; i < sizeof(init_programs)/sizeof(init_programs[0]); i++) {
3999
4000 init_program_name = init_programs[i];
4001 addr = init_addr;
4002 argc = 0;
4003
4004 /*
4005 * Copy out program name.
4006 */
4007 (void) copyout(init_program_name, CAST_USER_ADDR_T(addr), strlen(init_program_name)+1);
4008
4009 argv[argc++] = (uint32_t)addr;
4010 addr += strlen(init_program_name)+1;
4011 addr = (vm_offset_t)ROUND_PTR(char, addr);
4012
4013 /*
4014 * Put out first (and only) argument, similarly.
4015 * Assumes everything fits in a page as allocated above.
4016 */
4017 if (boothowto & RB_SINGLE) {
4018 const char *init_args = "-s";
4019
4020 copyout(init_args, CAST_USER_ADDR_T(addr), strlen(init_args)+1);
4021
4022 argv[argc++] = (uint32_t)addr;
4023 addr += strlen(init_args)+1;
4024 addr = (vm_offset_t)ROUND_PTR(char, addr);
4025 }
4026
4027 /*
4028 * Null-end the argument list
4029 */
4030 argv[argc] = 0;
4031
4032 /*
4033 * Copy out the argument list.
4034 */
4035 (void) copyout(argv, CAST_USER_ADDR_T(addr), sizeof(argv));
4036
4037 /*
4038 * Set up argument block for fake call to execve.
4039 */
4040 init_exec_args.fname = CAST_USER_ADDR_T(argv[0]);
4041 init_exec_args.argp = CAST_USER_ADDR_T((char **)addr);
4042 init_exec_args.envp = CAST_USER_ADDR_T(0);
4043
4044 /*
4045 * So that init task is set with uid,gid 0 token
4046 */
4047 set_security_token(p);
4048
4049 error = execve(p, &init_exec_args, retval);
4050 if (!error)
4051 return;
4052 }
4053
4054 panic("Process 1 exec of %s failed, errno %d", init_program_name, error);
4055 }
4056
4057 /*
4058 * load_return_to_errno
4059 *
4060 * Description: Convert a load_return_t (Mach error) to an errno (BSD error)
4061 *
4062 * Parameters: lrtn Mach error number
4063 *
4064 * Returns: (int) BSD error number
4065 * 0 Success
4066 * EBADARCH Bad architecture
4067 * EBADMACHO Bad Mach object file
4068 * ESHLIBVERS Bad shared library version
4069 * ENOMEM Out of memory/resource shortage
4070 * EACCES Access denied
4071 * ENOENT Entry not found (usually "file does
4072 * does not exist")
4073 * EIO An I/O error occurred
4074 * EBADEXEC The executable is corrupt/unknown
4075 */
4076 static int
4077 load_return_to_errno(load_return_t lrtn)
4078 {
4079 switch (lrtn) {
4080 case LOAD_SUCCESS:
4081 return 0;
4082 case LOAD_BADARCH:
4083 return EBADARCH;
4084 case LOAD_BADMACHO:
4085 return EBADMACHO;
4086 case LOAD_SHLIB:
4087 return ESHLIBVERS;
4088 case LOAD_NOSPACE:
4089 case LOAD_RESOURCE:
4090 return ENOMEM;
4091 case LOAD_PROTECT:
4092 return EACCES;
4093 case LOAD_ENOENT:
4094 return ENOENT;
4095 case LOAD_IOERROR:
4096 return EIO;
4097 case LOAD_FAILURE:
4098 case LOAD_DECRYPTFAIL:
4099 default:
4100 return EBADEXEC;
4101 }
4102 }
4103
4104 #include <mach/mach_types.h>
4105 #include <mach/vm_prot.h>
4106 #include <mach/semaphore.h>
4107 #include <mach/sync_policy.h>
4108 #include <kern/clock.h>
4109 #include <mach/kern_return.h>
4110
4111 /*
4112 * execargs_alloc
4113 *
4114 * Description: Allocate the block of memory used by the execve arguments.
4115 * At the same time, we allocate a page so that we can read in
4116 * the first page of the image.
4117 *
4118 * Parameters: struct image_params * the image parameter block
4119 *
4120 * Returns: 0 Success
4121 * EINVAL Invalid argument
4122 * EACCES Permission denied
4123 * EINTR Interrupted function
4124 * ENOMEM Not enough space
4125 *
4126 * Notes: This is a temporary allocation into the kernel address space
4127 * to enable us to copy arguments in from user space. This is
4128 * necessitated by not mapping the process calling execve() into
4129 * the kernel address space during the execve() system call.
4130 *
4131 * We assemble the argument and environment, etc., into this
4132 * region before copying it as a single block into the child
4133 * process address space (at the top or bottom of the stack,
4134 * depending on which way the stack grows; see the function
4135 * exec_copyout_strings() for details).
4136 *
4137 * This ends up with a second (possibly unnecessary) copy compared
4138 * with assembing the data directly into the child address space,
4139 * instead, but since we cannot be guaranteed that the parent has
4140 * not modified its environment, we can't really know that it's
4141 * really a block there as well.
4142 */
4143
4144
4145 static int execargs_waiters = 0;
4146 lck_mtx_t *execargs_cache_lock;
4147
4148 static void
4149 execargs_lock_lock(void) {
4150 lck_mtx_lock_spin(execargs_cache_lock);
4151 }
4152
4153 static void
4154 execargs_lock_unlock(void) {
4155 lck_mtx_unlock(execargs_cache_lock);
4156 }
4157
4158 static wait_result_t
4159 execargs_lock_sleep(void) {
4160 return(lck_mtx_sleep(execargs_cache_lock, LCK_SLEEP_DEFAULT, &execargs_free_count, THREAD_INTERRUPTIBLE));
4161 }
4162
4163 static kern_return_t
4164 execargs_purgeable_allocate(char **execarg_address) {
4165 kern_return_t kr = vm_allocate(bsd_pageable_map, (vm_offset_t *)execarg_address, BSD_PAGEABLE_SIZE_PER_EXEC, VM_FLAGS_ANYWHERE | VM_FLAGS_PURGABLE);
4166 assert(kr == KERN_SUCCESS);
4167 return kr;
4168 }
4169
4170 static kern_return_t
4171 execargs_purgeable_reference(void *execarg_address) {
4172 int state = VM_PURGABLE_NONVOLATILE;
4173 kern_return_t kr = vm_purgable_control(bsd_pageable_map, (vm_offset_t) execarg_address, VM_PURGABLE_SET_STATE, &state);
4174
4175 assert(kr == KERN_SUCCESS);
4176 return kr;
4177 }
4178
4179 static kern_return_t
4180 execargs_purgeable_volatilize(void *execarg_address) {
4181 int state = VM_PURGABLE_VOLATILE | VM_PURGABLE_ORDERING_OBSOLETE;
4182 kern_return_t kr;
4183 kr = vm_purgable_control(bsd_pageable_map, (vm_offset_t) execarg_address, VM_PURGABLE_SET_STATE, &state);
4184
4185 assert(kr == KERN_SUCCESS);
4186
4187 return kr;
4188 }
4189
4190 static void
4191 execargs_wakeup_waiters(void) {
4192 thread_wakeup(&execargs_free_count);
4193 }
4194
4195 static int
4196 execargs_alloc(struct image_params *imgp)
4197 {
4198 kern_return_t kret;
4199 wait_result_t res;
4200 int i, cache_index = -1;
4201
4202 execargs_lock_lock();
4203
4204 while (execargs_free_count == 0) {
4205 execargs_waiters++;
4206 res = execargs_lock_sleep();
4207 execargs_waiters--;
4208 if (res != THREAD_AWAKENED) {
4209 execargs_lock_unlock();
4210 return (EINTR);
4211 }
4212 }
4213
4214 execargs_free_count--;
4215
4216 for (i = 0; i < execargs_cache_size; i++) {
4217 vm_offset_t element = execargs_cache[i];
4218 if (element) {
4219 cache_index = i;
4220 imgp->ip_strings = (char *)(execargs_cache[i]);
4221 execargs_cache[i] = 0;
4222 break;
4223 }
4224 }
4225
4226 assert(execargs_free_count >= 0);
4227
4228 execargs_lock_unlock();
4229
4230 if (cache_index == -1) {
4231 kret = execargs_purgeable_allocate(&imgp->ip_strings);
4232 }
4233 else
4234 kret = execargs_purgeable_reference(imgp->ip_strings);
4235
4236 assert(kret == KERN_SUCCESS);
4237 if (kret != KERN_SUCCESS) {
4238 return (ENOMEM);
4239 }
4240
4241 /* last page used to read in file headers */
4242 imgp->ip_vdata = imgp->ip_strings + ( NCARGS + PAGE_SIZE );
4243 imgp->ip_strendp = imgp->ip_strings;
4244 imgp->ip_argspace = NCARGS;
4245 imgp->ip_strspace = ( NCARGS + PAGE_SIZE );
4246
4247 return (0);
4248 }
4249
4250 /*
4251 * execargs_free
4252 *
4253 * Description: Free the block of memory used by the execve arguments and the
4254 * first page of the executable by a previous call to the function
4255 * execargs_alloc().
4256 *
4257 * Parameters: struct image_params * the image parameter block
4258 *
4259 * Returns: 0 Success
4260 * EINVAL Invalid argument
4261 * EINTR Oeration interrupted
4262 */
4263 static int
4264 execargs_free(struct image_params *imgp)
4265 {
4266 kern_return_t kret;
4267 int i;
4268 boolean_t needs_wakeup = FALSE;
4269
4270 kret = execargs_purgeable_volatilize(imgp->ip_strings);
4271
4272 execargs_lock_lock();
4273 execargs_free_count++;
4274
4275 for (i = 0; i < execargs_cache_size; i++) {
4276 vm_offset_t element = execargs_cache[i];
4277 if (element == 0) {
4278 execargs_cache[i] = (vm_offset_t) imgp->ip_strings;
4279 imgp->ip_strings = NULL;
4280 break;
4281 }
4282 }
4283
4284 assert(imgp->ip_strings == NULL);
4285
4286 if (execargs_waiters > 0)
4287 needs_wakeup = TRUE;
4288
4289 execargs_lock_unlock();
4290
4291 if (needs_wakeup == TRUE)
4292 execargs_wakeup_waiters();
4293
4294 return ((kret == KERN_SUCCESS ? 0 : EINVAL));
4295 }
4296
4297 static void
4298 exec_resettextvp(proc_t p, struct image_params *imgp)
4299 {
4300 vnode_t vp;
4301 off_t offset;
4302 vnode_t tvp = p->p_textvp;
4303 int ret;
4304
4305 vp = imgp->ip_vp;
4306 offset = imgp->ip_arch_offset;
4307
4308 if (vp == NULLVP)
4309 panic("exec_resettextvp: expected valid vp");
4310
4311 ret = vnode_ref(vp);
4312 proc_lock(p);
4313 if (ret == 0) {
4314 p->p_textvp = vp;
4315 p->p_textoff = offset;
4316 } else {
4317 p->p_textvp = NULLVP; /* this is paranoia */
4318 p->p_textoff = 0;
4319 }
4320 proc_unlock(p);
4321
4322 if ( tvp != NULLVP) {
4323 if (vnode_getwithref(tvp) == 0) {
4324 vnode_rele(tvp);
4325 vnode_put(tvp);
4326 }
4327 }
4328
4329 }
4330
4331 /*
4332 * If the process is not signed or if it contains entitlements, we
4333 * need to communicate through the task_access_port to taskgated.
4334 *
4335 * taskgated will provide a detached code signature if present, and
4336 * will enforce any restrictions on entitlements.
4337 */
4338
4339 static boolean_t
4340 taskgated_required(proc_t p, boolean_t *require_success)
4341 {
4342 size_t length;
4343 void *blob;
4344 int error;
4345
4346 if ((p->p_csflags & CS_VALID) == 0) {
4347 *require_success = FALSE;
4348 return TRUE;
4349 }
4350
4351 error = cs_entitlements_blob_get(p, &blob, &length);
4352 if (error == 0 && blob != NULL) {
4353 /*
4354 * fatal on the desktop when entitlements are present,
4355 * unless we started in single-user mode
4356 */
4357 if ((boothowto & RB_SINGLE) == 0)
4358 *require_success = TRUE;
4359 /*
4360 * Allow initproc to run without causing taskgated to launch
4361 */
4362 if (p == initproc) {
4363 *require_success = FALSE;
4364 return FALSE;
4365 }
4366
4367 return TRUE;
4368 }
4369
4370 *require_success = FALSE;
4371 return 0;
4372 }
4373
4374 /*
4375 * __EXEC_WAITING_ON_TASKGATED_CODE_SIGNATURE_UPCALL__
4376 *
4377 * Description: Waits for the userspace daemon to respond to the request
4378 * we made. Function declared non inline to be visible in
4379 * stackshots and spindumps as well as debugging.
4380 */
4381 __attribute__((noinline)) int
4382 __EXEC_WAITING_ON_TASKGATED_CODE_SIGNATURE_UPCALL__(mach_port_t task_access_port, int32_t new_pid)
4383 {
4384 return find_code_signature(task_access_port, new_pid);
4385 }
4386
4387 static int
4388 check_for_signature(proc_t p, struct image_params *imgp)
4389 {
4390 mach_port_t port = NULL;
4391 kern_return_t kr = KERN_FAILURE;
4392 int error = EACCES;
4393 boolean_t unexpected_failure = FALSE;
4394 unsigned char hash[SHA1_RESULTLEN];
4395 boolean_t require_success = FALSE;
4396 int spawn = (imgp->ip_flags & IMGPF_SPAWN);
4397 int vfexec = (imgp->ip_flags & IMGPF_VFORK_EXEC);
4398
4399 /*
4400 * Override inherited code signing flags with the
4401 * ones for the process that is being successfully
4402 * loaded
4403 */
4404 proc_lock(p);
4405 p->p_csflags = imgp->ip_csflags;
4406 proc_unlock(p);
4407
4408 /* Set the switch_protect flag on the map */
4409 if(p->p_csflags & (CS_HARD|CS_KILL)) {
4410 vm_map_switch_protect(get_task_map(p->task), TRUE);
4411 }
4412
4413 /*
4414 * image activation may be failed due to policy
4415 * which is unexpected but security framework does not
4416 * approve of exec, kill and return immediately.
4417 */
4418 if (imgp->ip_mac_return != 0) {
4419 error = imgp->ip_mac_return;
4420 unexpected_failure = TRUE;
4421 goto done;
4422 }
4423
4424 /* check if callout to taskgated is needed */
4425 if (!taskgated_required(p, &require_success)) {
4426 error = 0;
4427 goto done;
4428 }
4429
4430 kr = task_get_task_access_port(p->task, &port);
4431 if (KERN_SUCCESS != kr || !IPC_PORT_VALID(port)) {
4432 error = 0;
4433 if (require_success)
4434 error = EACCES;
4435 goto done;
4436 }
4437
4438 /*
4439 * taskgated returns KERN_SUCCESS if it has completed its work
4440 * and the exec should continue, KERN_FAILURE if the exec should
4441 * fail, or it may error out with different error code in an
4442 * event of mig failure (e.g. process was signalled during the
4443 * rpc call, taskgated died, mig server died etc.).
4444 */
4445
4446 kr = __EXEC_WAITING_ON_TASKGATED_CODE_SIGNATURE_UPCALL__(port, p->p_pid);
4447 switch (kr) {
4448 case KERN_SUCCESS:
4449 error = 0;
4450 break;
4451 case KERN_FAILURE:
4452 error = EACCES;
4453 goto done;
4454 default:
4455 error = EACCES;
4456 unexpected_failure = TRUE;
4457 goto done;
4458 }
4459
4460 /* Only do this if exec_resettextvp() did not fail */
4461 if (p->p_textvp != NULLVP) {
4462 /*
4463 * If there's a new code directory, mark this process
4464 * as signed.
4465 */
4466 if (0 == ubc_cs_getcdhash(p->p_textvp, p->p_textoff, hash)) {
4467 proc_lock(p);
4468 p->p_csflags |= CS_VALID;
4469 proc_unlock(p);
4470 }
4471 }
4472
4473 done:
4474 if (0 != error) {
4475 if (!unexpected_failure)
4476 p->p_csflags |= CS_KILLED;
4477 /* make very sure execution fails */
4478 if (vfexec || spawn) {
4479 psignal_vfork(p, p->task, imgp->ip_new_thread, SIGKILL);
4480 error = 0;
4481 } else {
4482 psignal(p, SIGKILL);
4483 }
4484 }
4485 return error;
4486 }
4487
4488 /*
4489 * Typically as soon as we start executing this process, the
4490 * first instruction will trigger a VM fault to bring the text
4491 * pages (as executable) into the address space, followed soon
4492 * thereafter by dyld data structures (for dynamic executable).
4493 * To optimize this, as well as improve support for hardware
4494 * debuggers that can only access resident pages present
4495 * in the process' page tables, we prefault some pages if
4496 * possible. Errors are non-fatal.
4497 */
4498 static void exec_prefault_data(proc_t p __unused, struct image_params *imgp, load_result_t *load_result)
4499 {
4500 int ret;
4501 size_t expected_all_image_infos_size;
4502
4503 /*
4504 * Prefault executable or dyld entry point.
4505 */
4506 vm_fault(current_map(),
4507 vm_map_trunc_page(load_result->entry_point,
4508 vm_map_page_mask(current_map())),
4509 VM_PROT_READ | VM_PROT_EXECUTE,
4510 FALSE,
4511 THREAD_UNINT, NULL, 0);
4512
4513 if (imgp->ip_flags & IMGPF_IS_64BIT) {
4514 expected_all_image_infos_size = sizeof(struct user64_dyld_all_image_infos);
4515 } else {
4516 expected_all_image_infos_size = sizeof(struct user32_dyld_all_image_infos);
4517 }
4518
4519 /* Decode dyld anchor structure from <mach-o/dyld_images.h> */
4520 if (load_result->dynlinker &&
4521 load_result->all_image_info_addr &&
4522 load_result->all_image_info_size >= expected_all_image_infos_size) {
4523 union {
4524 struct user64_dyld_all_image_infos infos64;
4525 struct user32_dyld_all_image_infos infos32;
4526 } all_image_infos;
4527
4528 /*
4529 * Pre-fault to avoid copyin() going through the trap handler
4530 * and recovery path.
4531 */
4532 vm_fault(current_map(),
4533 vm_map_trunc_page(load_result->all_image_info_addr,
4534 vm_map_page_mask(current_map())),
4535 VM_PROT_READ | VM_PROT_WRITE,
4536 FALSE,
4537 THREAD_UNINT, NULL, 0);
4538 if ((load_result->all_image_info_addr & PAGE_MASK) + expected_all_image_infos_size > PAGE_SIZE) {
4539 /* all_image_infos straddles a page */
4540 vm_fault(current_map(),
4541 vm_map_trunc_page(load_result->all_image_info_addr + expected_all_image_infos_size - 1,
4542 vm_map_page_mask(current_map())),
4543 VM_PROT_READ | VM_PROT_WRITE,
4544 FALSE,
4545 THREAD_UNINT, NULL, 0);
4546 }
4547
4548 ret = copyin(load_result->all_image_info_addr,
4549 &all_image_infos,
4550 expected_all_image_infos_size);
4551 if (ret == 0 && all_image_infos.infos32.version >= 9) {
4552
4553 user_addr_t notification_address;
4554 user_addr_t dyld_image_address;
4555 user_addr_t dyld_version_address;
4556 user_addr_t dyld_all_image_infos_address;
4557 user_addr_t dyld_slide_amount;
4558
4559 if (imgp->ip_flags & IMGPF_IS_64BIT) {
4560 notification_address = all_image_infos.infos64.notification;
4561 dyld_image_address = all_image_infos.infos64.dyldImageLoadAddress;
4562 dyld_version_address = all_image_infos.infos64.dyldVersion;
4563 dyld_all_image_infos_address = all_image_infos.infos64.dyldAllImageInfosAddress;
4564 } else {
4565 notification_address = all_image_infos.infos32.notification;
4566 dyld_image_address = all_image_infos.infos32.dyldImageLoadAddress;
4567 dyld_version_address = all_image_infos.infos32.dyldVersion;
4568 dyld_all_image_infos_address = all_image_infos.infos32.dyldAllImageInfosAddress;
4569 }
4570
4571 /*
4572 * dyld statically sets up the all_image_infos in its Mach-O
4573 * binary at static link time, with pointers relative to its default
4574 * load address. Since ASLR might slide dyld before its first
4575 * instruction is executed, "dyld_slide_amount" tells us how far
4576 * dyld was loaded compared to its default expected load address.
4577 * All other pointers into dyld's image should be adjusted by this
4578 * amount. At some point later, dyld will fix up pointers to take
4579 * into account the slide, at which point the all_image_infos_address
4580 * field in the structure will match the runtime load address, and
4581 * "dyld_slide_amount" will be 0, if we were to consult it again.
4582 */
4583
4584 dyld_slide_amount = load_result->all_image_info_addr - dyld_all_image_infos_address;
4585
4586 #if 0
4587 kprintf("exec_prefault: 0x%016llx 0x%08x 0x%016llx 0x%016llx 0x%016llx 0x%016llx\n",
4588 (uint64_t)load_result->all_image_info_addr,
4589 all_image_infos.infos32.version,
4590 (uint64_t)notification_address,
4591 (uint64_t)dyld_image_address,
4592 (uint64_t)dyld_version_address,
4593 (uint64_t)dyld_all_image_infos_address);
4594 #endif
4595
4596 vm_fault(current_map(),
4597 vm_map_trunc_page(notification_address + dyld_slide_amount,
4598 vm_map_page_mask(current_map())),
4599 VM_PROT_READ | VM_PROT_EXECUTE,
4600 FALSE,
4601 THREAD_UNINT, NULL, 0);
4602 vm_fault(current_map(),
4603 vm_map_trunc_page(dyld_image_address + dyld_slide_amount,
4604 vm_map_page_mask(current_map())),
4605 VM_PROT_READ | VM_PROT_EXECUTE,
4606 FALSE,
4607 THREAD_UNINT, NULL, 0);
4608 vm_fault(current_map(),
4609 vm_map_trunc_page(dyld_version_address + dyld_slide_amount,
4610 vm_map_page_mask(current_map())),
4611 VM_PROT_READ,
4612 FALSE,
4613 THREAD_UNINT, NULL, 0);
4614 vm_fault(current_map(),
4615 vm_map_trunc_page(dyld_all_image_infos_address + dyld_slide_amount,
4616 vm_map_page_mask(current_map())),
4617 VM_PROT_READ | VM_PROT_WRITE,
4618 FALSE,
4619 THREAD_UNINT, NULL, 0);
4620 }
4621 }
4622 }