]> git.saurik.com Git - apple/xnu.git/blob - bsd/kern/kern_event.c
3b16c4ca0e38d9bc788686bc006243ce529a3ba4
[apple/xnu.git] / bsd / kern / kern_event.c
1 /*
2 * Copyright (c) 2000-2014 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 *
28 */
29 /*-
30 * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org>
31 * All rights reserved.
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 *
42 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
43 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
44 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
45 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
46 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
47 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
48 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
49 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
50 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
51 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
52 * SUCH DAMAGE.
53 */
54 /*
55 * @(#)kern_event.c 1.0 (3/31/2000)
56 */
57 #include <stdint.h>
58
59 #include <sys/param.h>
60 #include <sys/systm.h>
61 #include <sys/filedesc.h>
62 #include <sys/kernel.h>
63 #include <sys/proc_internal.h>
64 #include <sys/kauth.h>
65 #include <sys/malloc.h>
66 #include <sys/unistd.h>
67 #include <sys/file_internal.h>
68 #include <sys/fcntl.h>
69 #include <sys/select.h>
70 #include <sys/queue.h>
71 #include <sys/event.h>
72 #include <sys/eventvar.h>
73 #include <sys/protosw.h>
74 #include <sys/socket.h>
75 #include <sys/socketvar.h>
76 #include <sys/stat.h>
77 #include <sys/sysctl.h>
78 #include <sys/uio.h>
79 #include <sys/sysproto.h>
80 #include <sys/user.h>
81 #include <sys/vnode_internal.h>
82 #include <string.h>
83 #include <sys/proc_info.h>
84 #include <sys/codesign.h>
85
86 #include <kern/locks.h>
87 #include <kern/clock.h>
88 #include <kern/thread_call.h>
89 #include <kern/sched_prim.h>
90 #include <kern/zalloc.h>
91 #include <kern/assert.h>
92
93 #include <libkern/libkern.h>
94 #include "net/net_str_id.h"
95
96 #include <mach/task.h>
97
98 #if VM_PRESSURE_EVENTS
99 #include <kern/vm_pressure.h>
100 #endif
101
102 #if CONFIG_MEMORYSTATUS
103 #include <sys/kern_memorystatus.h>
104 #endif
105
106 MALLOC_DEFINE(M_KQUEUE, "kqueue", "memory for kqueue system");
107
108 #define KQ_EVENT NULL
109
110 static inline void kqlock(struct kqueue *kq);
111 static inline void kqunlock(struct kqueue *kq);
112
113 static int kqlock2knoteuse(struct kqueue *kq, struct knote *kn);
114 static int kqlock2knoteusewait(struct kqueue *kq, struct knote *kn);
115 static int kqlock2knotedrop(struct kqueue *kq, struct knote *kn);
116 static int knoteuse2kqlock(struct kqueue *kq, struct knote *kn);
117
118 static void kqueue_wakeup(struct kqueue *kq, int closed);
119 static int kqueue_read(struct fileproc *fp, struct uio *uio,
120 int flags, vfs_context_t ctx);
121 static int kqueue_write(struct fileproc *fp, struct uio *uio,
122 int flags, vfs_context_t ctx);
123 static int kqueue_ioctl(struct fileproc *fp, u_long com, caddr_t data,
124 vfs_context_t ctx);
125 static int kqueue_select(struct fileproc *fp, int which, void *wql,
126 vfs_context_t ctx);
127 static int kqueue_close(struct fileglob *fg, vfs_context_t ctx);
128 static int kqueue_kqfilter(struct fileproc *fp, struct knote *kn,
129 vfs_context_t ctx);
130 static int kqueue_drain(struct fileproc *fp, vfs_context_t ctx);
131
132 static const struct fileops kqueueops = {
133 .fo_type = DTYPE_KQUEUE,
134 .fo_read = kqueue_read,
135 .fo_write = kqueue_write,
136 .fo_ioctl = kqueue_ioctl,
137 .fo_select = kqueue_select,
138 .fo_close = kqueue_close,
139 .fo_kqfilter = kqueue_kqfilter,
140 .fo_drain = kqueue_drain,
141 };
142
143 static int kevent_internal(struct proc *p, int iskev64, user_addr_t changelist,
144 int nchanges, user_addr_t eventlist, int nevents, int fd,
145 user_addr_t utimeout, unsigned int flags, int32_t *retval);
146 static int kevent_copyin(user_addr_t *addrp, struct kevent64_s *kevp,
147 struct proc *p, int iskev64);
148 static int kevent_copyout(struct kevent64_s *kevp, user_addr_t *addrp,
149 struct proc *p, int iskev64);
150 char * kevent_description(struct kevent64_s *kevp, char *s, size_t n);
151
152 static int kevent_callback(struct kqueue *kq, struct kevent64_s *kevp,
153 void *data);
154 static void kevent_continue(struct kqueue *kq, void *data, int error);
155 static void kqueue_scan_continue(void *contp, wait_result_t wait_result);
156 static int kqueue_process(struct kqueue *kq, kevent_callback_t callback,
157 void *data, int *countp, struct proc *p);
158 static int kqueue_begin_processing(struct kqueue *kq);
159 static void kqueue_end_processing(struct kqueue *kq);
160 static int knote_process(struct knote *kn, kevent_callback_t callback,
161 void *data, struct kqtailq *inprocessp, struct proc *p);
162 static void knote_put(struct knote *kn);
163 static int knote_fdpattach(struct knote *kn, struct filedesc *fdp,
164 struct proc *p);
165 static void knote_drop(struct knote *kn, struct proc *p);
166 static void knote_activate(struct knote *kn, int);
167 static void knote_deactivate(struct knote *kn);
168 static void knote_enqueue(struct knote *kn);
169 static void knote_dequeue(struct knote *kn);
170 static struct knote *knote_alloc(void);
171 static void knote_free(struct knote *kn);
172
173 static int filt_fileattach(struct knote *kn);
174 static struct filterops file_filtops = {
175 .f_isfd = 1,
176 .f_attach = filt_fileattach,
177 };
178
179 static void filt_kqdetach(struct knote *kn);
180 static int filt_kqueue(struct knote *kn, long hint);
181 static struct filterops kqread_filtops = {
182 .f_isfd = 1,
183 .f_detach = filt_kqdetach,
184 .f_event = filt_kqueue,
185 };
186
187 /* placeholder for not-yet-implemented filters */
188 static int filt_badattach(struct knote *kn);
189 static struct filterops bad_filtops = {
190 .f_attach = filt_badattach,
191 };
192
193 static int filt_procattach(struct knote *kn);
194 static void filt_procdetach(struct knote *kn);
195 static int filt_proc(struct knote *kn, long hint);
196 static struct filterops proc_filtops = {
197 .f_attach = filt_procattach,
198 .f_detach = filt_procdetach,
199 .f_event = filt_proc,
200 };
201
202 #if VM_PRESSURE_EVENTS
203 static int filt_vmattach(struct knote *kn);
204 static void filt_vmdetach(struct knote *kn);
205 static int filt_vm(struct knote *kn, long hint);
206 static struct filterops vm_filtops = {
207 .f_attach = filt_vmattach,
208 .f_detach = filt_vmdetach,
209 .f_event = filt_vm,
210 };
211 #endif /* VM_PRESSURE_EVENTS */
212
213 #if CONFIG_MEMORYSTATUS
214 extern struct filterops memorystatus_filtops;
215 #endif /* CONFIG_MEMORYSTATUS */
216
217 extern struct filterops fs_filtops;
218
219 extern struct filterops sig_filtops;
220
221 /* Timer filter */
222 static int filt_timerattach(struct knote *kn);
223 static void filt_timerdetach(struct knote *kn);
224 static int filt_timer(struct knote *kn, long hint);
225 static void filt_timertouch(struct knote *kn, struct kevent64_s *kev,
226 long type);
227 static struct filterops timer_filtops = {
228 .f_attach = filt_timerattach,
229 .f_detach = filt_timerdetach,
230 .f_event = filt_timer,
231 .f_touch = filt_timertouch,
232 };
233
234 /* Helpers */
235 static void filt_timerexpire(void *knx, void *param1);
236 static int filt_timervalidate(struct knote *kn);
237 static void filt_timerupdate(struct knote *kn);
238 static void filt_timercancel(struct knote *kn);
239
240 #define TIMER_RUNNING 0x1
241 #define TIMER_CANCELWAIT 0x2
242
243 static lck_mtx_t _filt_timerlock;
244 static void filt_timerlock(void);
245 static void filt_timerunlock(void);
246
247 static zone_t knote_zone;
248
249 #define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask))
250
251 #if 0
252 extern struct filterops aio_filtops;
253 #endif
254
255 /* Mach portset filter */
256 extern struct filterops machport_filtops;
257
258 /* User filter */
259 static int filt_userattach(struct knote *kn);
260 static void filt_userdetach(struct knote *kn);
261 static int filt_user(struct knote *kn, long hint);
262 static void filt_usertouch(struct knote *kn, struct kevent64_s *kev,
263 long type);
264 static struct filterops user_filtops = {
265 .f_attach = filt_userattach,
266 .f_detach = filt_userdetach,
267 .f_event = filt_user,
268 .f_touch = filt_usertouch,
269 };
270
271 /*
272 * Table for all system-defined filters.
273 */
274 static struct filterops *sysfilt_ops[] = {
275 &file_filtops, /* EVFILT_READ */
276 &file_filtops, /* EVFILT_WRITE */
277 #if 0
278 &aio_filtops, /* EVFILT_AIO */
279 #else
280 &bad_filtops, /* EVFILT_AIO */
281 #endif
282 &file_filtops, /* EVFILT_VNODE */
283 &proc_filtops, /* EVFILT_PROC */
284 &sig_filtops, /* EVFILT_SIGNAL */
285 &timer_filtops, /* EVFILT_TIMER */
286 &machport_filtops, /* EVFILT_MACHPORT */
287 &fs_filtops, /* EVFILT_FS */
288 &user_filtops, /* EVFILT_USER */
289 &bad_filtops, /* unused */
290 #if VM_PRESSURE_EVENTS
291 &vm_filtops, /* EVFILT_VM */
292 #else
293 &bad_filtops, /* EVFILT_VM */
294 #endif
295 &file_filtops, /* EVFILT_SOCK */
296 #if CONFIG_MEMORYSTATUS
297 &memorystatus_filtops, /* EVFILT_MEMORYSTATUS */
298 #else
299 &bad_filtops, /* EVFILT_MEMORYSTATUS */
300 #endif
301 };
302
303 /*
304 * kqueue/note lock attributes and implementations
305 *
306 * kqueues have locks, while knotes have use counts
307 * Most of the knote state is guarded by the object lock.
308 * the knote "inuse" count and status use the kqueue lock.
309 */
310 lck_grp_attr_t * kq_lck_grp_attr;
311 lck_grp_t * kq_lck_grp;
312 lck_attr_t * kq_lck_attr;
313
314 static inline void
315 kqlock(struct kqueue *kq)
316 {
317 lck_spin_lock(&kq->kq_lock);
318 }
319
320 static inline void
321 kqunlock(struct kqueue *kq)
322 {
323 lck_spin_unlock(&kq->kq_lock);
324 }
325
326 /*
327 * Convert a kq lock to a knote use referece.
328 *
329 * If the knote is being dropped, we can't get
330 * a use reference, so just return with it
331 * still locked.
332 * - kq locked at entry
333 * - unlock on exit if we get the use reference
334 */
335 static int
336 kqlock2knoteuse(struct kqueue *kq, struct knote *kn)
337 {
338 if (kn->kn_status & KN_DROPPING)
339 return (0);
340 kn->kn_inuse++;
341 kqunlock(kq);
342 return (1);
343 }
344
345 /*
346 * Convert a kq lock to a knote use referece,
347 * but wait for attach and drop events to complete.
348 *
349 * If the knote is being dropped, we can't get
350 * a use reference, so just return with it
351 * still locked.
352 * - kq locked at entry
353 * - kq always unlocked on exit
354 */
355 static int
356 kqlock2knoteusewait(struct kqueue *kq, struct knote *kn)
357 {
358 if ((kn->kn_status & (KN_DROPPING | KN_ATTACHING)) != 0) {
359 kn->kn_status |= KN_USEWAIT;
360 wait_queue_assert_wait((wait_queue_t)kq->kq_wqs,
361 &kn->kn_status, THREAD_UNINT, 0);
362 kqunlock(kq);
363 thread_block(THREAD_CONTINUE_NULL);
364 return (0);
365 }
366 kn->kn_inuse++;
367 kqunlock(kq);
368 return (1);
369 }
370
371 /*
372 * Convert from a knote use reference back to kq lock.
373 *
374 * Drop a use reference and wake any waiters if
375 * this is the last one.
376 *
377 * The exit return indicates if the knote is
378 * still alive - but the kqueue lock is taken
379 * unconditionally.
380 */
381 static int
382 knoteuse2kqlock(struct kqueue *kq, struct knote *kn)
383 {
384 kqlock(kq);
385 if (--kn->kn_inuse == 0) {
386 if ((kn->kn_status & KN_ATTACHING) != 0) {
387 kn->kn_status &= ~KN_ATTACHING;
388 }
389 if ((kn->kn_status & KN_USEWAIT) != 0) {
390 kn->kn_status &= ~KN_USEWAIT;
391 wait_queue_wakeup_all((wait_queue_t)kq->kq_wqs,
392 &kn->kn_status, THREAD_AWAKENED);
393 }
394 }
395 return ((kn->kn_status & KN_DROPPING) == 0);
396 }
397
398 /*
399 * Convert a kq lock to a knote drop reference.
400 *
401 * If the knote is in use, wait for the use count
402 * to subside. We first mark our intention to drop
403 * it - keeping other users from "piling on."
404 * If we are too late, we have to wait for the
405 * other drop to complete.
406 *
407 * - kq locked at entry
408 * - always unlocked on exit.
409 * - caller can't hold any locks that would prevent
410 * the other dropper from completing.
411 */
412 static int
413 kqlock2knotedrop(struct kqueue *kq, struct knote *kn)
414 {
415 int oktodrop;
416
417 oktodrop = ((kn->kn_status & (KN_DROPPING | KN_ATTACHING)) == 0);
418 kn->kn_status |= KN_DROPPING;
419 if (oktodrop) {
420 if (kn->kn_inuse == 0) {
421 kqunlock(kq);
422 return (oktodrop);
423 }
424 }
425 kn->kn_status |= KN_USEWAIT;
426 wait_queue_assert_wait((wait_queue_t)kq->kq_wqs, &kn->kn_status,
427 THREAD_UNINT, 0);
428 kqunlock(kq);
429 thread_block(THREAD_CONTINUE_NULL);
430 return (oktodrop);
431 }
432
433 /*
434 * Release a knote use count reference.
435 */
436 static void
437 knote_put(struct knote *kn)
438 {
439 struct kqueue *kq = kn->kn_kq;
440
441 kqlock(kq);
442 if (--kn->kn_inuse == 0) {
443 if ((kn->kn_status & KN_USEWAIT) != 0) {
444 kn->kn_status &= ~KN_USEWAIT;
445 wait_queue_wakeup_all((wait_queue_t)kq->kq_wqs,
446 &kn->kn_status, THREAD_AWAKENED);
447 }
448 }
449 kqunlock(kq);
450 }
451
452 static int
453 filt_fileattach(struct knote *kn)
454 {
455 return (fo_kqfilter(kn->kn_fp, kn, vfs_context_current()));
456 }
457
458 #define f_flag f_fglob->fg_flag
459 #define f_msgcount f_fglob->fg_msgcount
460 #define f_cred f_fglob->fg_cred
461 #define f_ops f_fglob->fg_ops
462 #define f_offset f_fglob->fg_offset
463 #define f_data f_fglob->fg_data
464
465 static void
466 filt_kqdetach(struct knote *kn)
467 {
468 struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data;
469
470 kqlock(kq);
471 KNOTE_DETACH(&kq->kq_sel.si_note, kn);
472 kqunlock(kq);
473 }
474
475 /*ARGSUSED*/
476 static int
477 filt_kqueue(struct knote *kn, __unused long hint)
478 {
479 struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data;
480
481 kn->kn_data = kq->kq_count;
482 return (kn->kn_data > 0);
483 }
484
485 static int
486 filt_procattach(struct knote *kn)
487 {
488 struct proc *p;
489
490 assert(PID_MAX < NOTE_PDATAMASK);
491
492 if ((kn->kn_sfflags & (NOTE_TRACK | NOTE_TRACKERR | NOTE_CHILD)) != 0)
493 return (ENOTSUP);
494
495 p = proc_find(kn->kn_id);
496 if (p == NULL) {
497 return (ESRCH);
498 }
499
500 const int NoteExitStatusBits = NOTE_EXIT | NOTE_EXITSTATUS;
501
502 if ((kn->kn_sfflags & NoteExitStatusBits) == NoteExitStatusBits)
503 do {
504 pid_t selfpid = proc_selfpid();
505
506 if (p->p_ppid == selfpid)
507 break; /* parent => ok */
508
509 if ((p->p_lflag & P_LTRACED) != 0 &&
510 (p->p_oppid == selfpid))
511 break; /* parent-in-waiting => ok */
512
513 proc_rele(p);
514 return (EACCES);
515 } while (0);
516
517 proc_klist_lock();
518
519 kn->kn_flags |= EV_CLEAR; /* automatically set */
520 kn->kn_ptr.p_proc = p; /* store the proc handle */
521
522 KNOTE_ATTACH(&p->p_klist, kn);
523
524 proc_klist_unlock();
525
526 proc_rele(p);
527
528 return (0);
529 }
530
531 /*
532 * The knote may be attached to a different process, which may exit,
533 * leaving nothing for the knote to be attached to. In that case,
534 * the pointer to the process will have already been nulled out.
535 */
536 static void
537 filt_procdetach(struct knote *kn)
538 {
539 struct proc *p;
540
541 proc_klist_lock();
542
543 p = kn->kn_ptr.p_proc;
544 if (p != PROC_NULL) {
545 kn->kn_ptr.p_proc = PROC_NULL;
546 KNOTE_DETACH(&p->p_klist, kn);
547 }
548
549 proc_klist_unlock();
550 }
551
552 static int
553 filt_proc(struct knote *kn, long hint)
554 {
555 /*
556 * Note: a lot of bits in hint may be obtained from the knote
557 * To free some of those bits, see <rdar://problem/12592988> Freeing up
558 * bits in hint for filt_proc
559 */
560 /* hint is 0 when called from above */
561 if (hint != 0) {
562 u_int event;
563
564 /* ALWAYS CALLED WITH proc_klist_lock when (hint != 0) */
565
566 /*
567 * mask off extra data
568 */
569 event = (u_int)hint & NOTE_PCTRLMASK;
570
571 /*
572 * termination lifecycle events can happen while a debugger
573 * has reparented a process, in which case notifications
574 * should be quashed except to the tracing parent. When
575 * the debugger reaps the child (either via wait4(2) or
576 * process exit), the child will be reparented to the original
577 * parent and these knotes re-fired.
578 */
579 if (event & NOTE_EXIT) {
580 if ((kn->kn_ptr.p_proc->p_oppid != 0)
581 && (kn->kn_kq->kq_p->p_pid != kn->kn_ptr.p_proc->p_ppid)) {
582 /*
583 * This knote is not for the current ptrace(2) parent, ignore.
584 */
585 return 0;
586 }
587 }
588
589 /*
590 * if the user is interested in this event, record it.
591 */
592 if (kn->kn_sfflags & event)
593 kn->kn_fflags |= event;
594
595 #pragma clang diagnostic push
596 #pragma clang diagnostic ignored "-Wdeprecated-declarations"
597 if ((event == NOTE_REAP) || ((event == NOTE_EXIT) && !(kn->kn_sfflags & NOTE_REAP))) {
598 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
599 }
600 #pragma clang diagnostic pop
601
602
603 /*
604 * The kernel has a wrapper in place that returns the same data
605 * as is collected here, in kn_data. Any changes to how
606 * NOTE_EXITSTATUS and NOTE_EXIT_DETAIL are collected
607 * should also be reflected in the proc_pidnoteexit() wrapper.
608 */
609 if (event == NOTE_EXIT) {
610 kn->kn_data = 0;
611 if ((kn->kn_sfflags & NOTE_EXITSTATUS) != 0) {
612 kn->kn_fflags |= NOTE_EXITSTATUS;
613 kn->kn_data |= (hint & NOTE_PDATAMASK);
614 }
615 if ((kn->kn_sfflags & NOTE_EXIT_DETAIL) != 0) {
616 kn->kn_fflags |= NOTE_EXIT_DETAIL;
617 if ((kn->kn_ptr.p_proc->p_lflag &
618 P_LTERM_DECRYPTFAIL) != 0) {
619 kn->kn_data |= NOTE_EXIT_DECRYPTFAIL;
620 }
621 if ((kn->kn_ptr.p_proc->p_lflag &
622 P_LTERM_JETSAM) != 0) {
623 kn->kn_data |= NOTE_EXIT_MEMORY;
624 switch (kn->kn_ptr.p_proc->p_lflag &
625 P_JETSAM_MASK) {
626 case P_JETSAM_VMPAGESHORTAGE:
627 kn->kn_data |= NOTE_EXIT_MEMORY_VMPAGESHORTAGE;
628 break;
629 case P_JETSAM_VMTHRASHING:
630 kn->kn_data |= NOTE_EXIT_MEMORY_VMTHRASHING;
631 break;
632 case P_JETSAM_FCTHRASHING:
633 kn->kn_data |= NOTE_EXIT_MEMORY_FCTHRASHING;
634 break;
635 case P_JETSAM_VNODE:
636 kn->kn_data |= NOTE_EXIT_MEMORY_VNODE;
637 break;
638 case P_JETSAM_HIWAT:
639 kn->kn_data |= NOTE_EXIT_MEMORY_HIWAT;
640 break;
641 case P_JETSAM_PID:
642 kn->kn_data |= NOTE_EXIT_MEMORY_PID;
643 break;
644 case P_JETSAM_IDLEEXIT:
645 kn->kn_data |= NOTE_EXIT_MEMORY_IDLE;
646 break;
647 }
648 }
649 if ((kn->kn_ptr.p_proc->p_csflags &
650 CS_KILLED) != 0) {
651 kn->kn_data |= NOTE_EXIT_CSERROR;
652 }
653 }
654 }
655 }
656
657 /* atomic check, no locking need when called from above */
658 return (kn->kn_fflags != 0);
659 }
660
661 #if VM_PRESSURE_EVENTS
662 /*
663 * Virtual memory kevents
664 *
665 * author: Matt Jacobson [matthew_jacobson@apple.com]
666 */
667
668 static int
669 filt_vmattach(struct knote *kn)
670 {
671 /*
672 * The note will be cleared once the information has been flushed to
673 * the client. If there is still pressure, we will be re-alerted.
674 */
675 kn->kn_flags |= EV_CLEAR;
676 return (vm_knote_register(kn));
677 }
678
679 static void
680 filt_vmdetach(struct knote *kn)
681 {
682 vm_knote_unregister(kn);
683 }
684
685 static int
686 filt_vm(struct knote *kn, long hint)
687 {
688 /* hint == 0 means this is just an alive? check (always true) */
689 if (hint != 0) {
690 const pid_t pid = (pid_t)hint;
691 if ((kn->kn_sfflags & NOTE_VM_PRESSURE) &&
692 (kn->kn_kq->kq_p->p_pid == pid)) {
693 kn->kn_fflags |= NOTE_VM_PRESSURE;
694 }
695 }
696
697 return (kn->kn_fflags != 0);
698 }
699 #endif /* VM_PRESSURE_EVENTS */
700
701 /*
702 * filt_timervalidate - process data from user
703 *
704 * Converts to either interval or deadline format.
705 *
706 * The saved-data field in the knote contains the
707 * time value. The saved filter-flags indicates
708 * the unit of measurement.
709 *
710 * After validation, either the saved-data field
711 * contains the interval in absolute time, or ext[0]
712 * contains the expected deadline. If that deadline
713 * is in the past, ext[0] is 0.
714 *
715 * Returns EINVAL for unrecognized units of time.
716 *
717 * Timer filter lock is held.
718 *
719 */
720 static int
721 filt_timervalidate(struct knote *kn)
722 {
723 uint64_t multiplier;
724 uint64_t raw = 0;
725
726 switch (kn->kn_sfflags & (NOTE_SECONDS|NOTE_USECONDS|NOTE_NSECONDS)) {
727 case NOTE_SECONDS:
728 multiplier = NSEC_PER_SEC;
729 break;
730 case NOTE_USECONDS:
731 multiplier = NSEC_PER_USEC;
732 break;
733 case NOTE_NSECONDS:
734 multiplier = 1;
735 break;
736 case 0: /* milliseconds (default) */
737 multiplier = NSEC_PER_SEC / 1000;
738 break;
739 default:
740 return (EINVAL);
741 }
742
743 /* transform the slop delta(leeway) in kn_ext[1] if passed to same time scale */
744 if(kn->kn_sfflags & NOTE_LEEWAY){
745 nanoseconds_to_absolutetime((uint64_t)kn->kn_ext[1] * multiplier, &raw);
746 kn->kn_ext[1] = raw;
747 }
748
749 nanoseconds_to_absolutetime((uint64_t)kn->kn_sdata * multiplier, &raw);
750
751 kn->kn_ext[0] = 0;
752 kn->kn_sdata = 0;
753
754 if (kn->kn_sfflags & NOTE_ABSOLUTE) {
755 clock_sec_t seconds;
756 clock_nsec_t nanoseconds;
757 uint64_t now;
758
759 clock_get_calendar_nanotime(&seconds, &nanoseconds);
760 nanoseconds_to_absolutetime((uint64_t)seconds * NSEC_PER_SEC +
761 nanoseconds, &now);
762
763 if (raw < now) {
764 /* time has already passed */
765 kn->kn_ext[0] = 0;
766 } else {
767 raw -= now;
768 clock_absolutetime_interval_to_deadline(raw,
769 &kn->kn_ext[0]);
770 }
771 } else {
772 kn->kn_sdata = raw;
773 }
774
775 return (0);
776 }
777
778 /*
779 * filt_timerupdate - compute the next deadline
780 *
781 * Repeating timers store their interval in kn_sdata. Absolute
782 * timers have already calculated the deadline, stored in ext[0].
783 *
784 * On return, the next deadline (or zero if no deadline is needed)
785 * is stored in kn_ext[0].
786 *
787 * Timer filter lock is held.
788 */
789 static void
790 filt_timerupdate(struct knote *kn)
791 {
792 /* if there's no interval, deadline is just in kn_ext[0] */
793 if (kn->kn_sdata == 0)
794 return;
795
796 /* if timer hasn't fired before, fire in interval nsecs */
797 if (kn->kn_ext[0] == 0) {
798 clock_absolutetime_interval_to_deadline(kn->kn_sdata,
799 &kn->kn_ext[0]);
800 } else {
801 /*
802 * If timer has fired before, schedule the next pop
803 * relative to the last intended deadline.
804 *
805 * We could check for whether the deadline has expired,
806 * but the thread call layer can handle that.
807 */
808 kn->kn_ext[0] += kn->kn_sdata;
809 }
810 }
811
812 /*
813 * filt_timerexpire - the timer callout routine
814 *
815 * Just propagate the timer event into the knote
816 * filter routine (by going through the knote
817 * synchronization point). Pass a hint to
818 * indicate this is a real event, not just a
819 * query from above.
820 */
821 static void
822 filt_timerexpire(void *knx, __unused void *spare)
823 {
824 struct klist timer_list;
825 struct knote *kn = knx;
826
827 filt_timerlock();
828
829 kn->kn_hookid &= ~TIMER_RUNNING;
830
831 /* no "object" for timers, so fake a list */
832 SLIST_INIT(&timer_list);
833 SLIST_INSERT_HEAD(&timer_list, kn, kn_selnext);
834 KNOTE(&timer_list, 1);
835
836 /* if someone is waiting for timer to pop */
837 if (kn->kn_hookid & TIMER_CANCELWAIT) {
838 struct kqueue *kq = kn->kn_kq;
839 wait_queue_wakeup_all((wait_queue_t)kq->kq_wqs, &kn->kn_hook,
840 THREAD_AWAKENED);
841 }
842
843 filt_timerunlock();
844 }
845
846 /*
847 * Cancel a running timer (or wait for the pop).
848 * Timer filter lock is held.
849 */
850 static void
851 filt_timercancel(struct knote *kn)
852 {
853 struct kqueue *kq = kn->kn_kq;
854 thread_call_t callout = kn->kn_hook;
855 boolean_t cancelled;
856
857 if (kn->kn_hookid & TIMER_RUNNING) {
858 /* cancel the callout if we can */
859 cancelled = thread_call_cancel(callout);
860 if (cancelled) {
861 kn->kn_hookid &= ~TIMER_RUNNING;
862 } else {
863 /* we have to wait for the expire routine. */
864 kn->kn_hookid |= TIMER_CANCELWAIT;
865 wait_queue_assert_wait((wait_queue_t)kq->kq_wqs,
866 &kn->kn_hook, THREAD_UNINT, 0);
867 filt_timerunlock();
868 thread_block(THREAD_CONTINUE_NULL);
869 filt_timerlock();
870 assert((kn->kn_hookid & TIMER_RUNNING) == 0);
871 }
872 }
873 }
874
875 /*
876 * Allocate a thread call for the knote's lifetime, and kick off the timer.
877 */
878 static int
879 filt_timerattach(struct knote *kn)
880 {
881 thread_call_t callout;
882 int error;
883
884 callout = thread_call_allocate(filt_timerexpire, kn);
885 if (NULL == callout)
886 return (ENOMEM);
887
888 filt_timerlock();
889 error = filt_timervalidate(kn);
890 if (error != 0) {
891 filt_timerunlock();
892 return (error);
893 }
894
895 kn->kn_hook = (void*)callout;
896 kn->kn_hookid = 0;
897
898 /* absolute=EV_ONESHOT */
899 if (kn->kn_sfflags & NOTE_ABSOLUTE)
900 kn->kn_flags |= EV_ONESHOT;
901
902 filt_timerupdate(kn);
903 if (kn->kn_ext[0]) {
904 kn->kn_flags |= EV_CLEAR;
905 unsigned int timer_flags = 0;
906 if (kn->kn_sfflags & NOTE_CRITICAL)
907 timer_flags |= THREAD_CALL_DELAY_USER_CRITICAL;
908 else if (kn->kn_sfflags & NOTE_BACKGROUND)
909 timer_flags |= THREAD_CALL_DELAY_USER_BACKGROUND;
910 else
911 timer_flags |= THREAD_CALL_DELAY_USER_NORMAL;
912
913 if (kn->kn_sfflags & NOTE_LEEWAY)
914 timer_flags |= THREAD_CALL_DELAY_LEEWAY;
915
916 thread_call_enter_delayed_with_leeway(callout, NULL,
917 kn->kn_ext[0], kn->kn_ext[1], timer_flags);
918
919 kn->kn_hookid |= TIMER_RUNNING;
920 } else {
921 /* fake immediate */
922 kn->kn_data = 1;
923 }
924
925 filt_timerunlock();
926 return (0);
927 }
928
929 /*
930 * Shut down the timer if it's running, and free the callout.
931 */
932 static void
933 filt_timerdetach(struct knote *kn)
934 {
935 thread_call_t callout;
936
937 filt_timerlock();
938
939 callout = (thread_call_t)kn->kn_hook;
940 filt_timercancel(kn);
941
942 filt_timerunlock();
943
944 thread_call_free(callout);
945 }
946
947
948
949 static int
950 filt_timer(struct knote *kn, long hint)
951 {
952 int result;
953
954 if (hint) {
955 /* real timer pop -- timer lock held by filt_timerexpire */
956 kn->kn_data++;
957
958 if (((kn->kn_hookid & TIMER_CANCELWAIT) == 0) &&
959 ((kn->kn_flags & EV_ONESHOT) == 0)) {
960
961 /* evaluate next time to fire */
962 filt_timerupdate(kn);
963
964 if (kn->kn_ext[0]) {
965 unsigned int timer_flags = 0;
966
967 /* keep the callout and re-arm */
968 if (kn->kn_sfflags & NOTE_CRITICAL)
969 timer_flags |= THREAD_CALL_DELAY_USER_CRITICAL;
970 else if (kn->kn_sfflags & NOTE_BACKGROUND)
971 timer_flags |= THREAD_CALL_DELAY_USER_BACKGROUND;
972 else
973 timer_flags |= THREAD_CALL_DELAY_USER_NORMAL;
974
975 if (kn->kn_sfflags & NOTE_LEEWAY)
976 timer_flags |= THREAD_CALL_DELAY_LEEWAY;
977
978 thread_call_enter_delayed_with_leeway(kn->kn_hook, NULL,
979 kn->kn_ext[0], kn->kn_ext[1], timer_flags);
980
981 kn->kn_hookid |= TIMER_RUNNING;
982 }
983 }
984
985 return (1);
986 }
987
988 /* user-query */
989 filt_timerlock();
990
991 result = (kn->kn_data != 0);
992
993 filt_timerunlock();
994
995 return (result);
996 }
997
998
999 /*
1000 * filt_timertouch - update knote with new user input
1001 *
1002 * Cancel and restart the timer based on new user data. When
1003 * the user picks up a knote, clear the count of how many timer
1004 * pops have gone off (in kn_data).
1005 */
1006 static void
1007 filt_timertouch(struct knote *kn, struct kevent64_s *kev, long type)
1008 {
1009 int error;
1010 filt_timerlock();
1011
1012 switch (type) {
1013 case EVENT_REGISTER:
1014 /* cancel current call */
1015 filt_timercancel(kn);
1016
1017 /* recalculate deadline */
1018 kn->kn_sdata = kev->data;
1019 kn->kn_sfflags = kev->fflags;
1020 kn->kn_ext[0] = kev->ext[0];
1021 kn->kn_ext[1] = kev->ext[1];
1022
1023 error = filt_timervalidate(kn);
1024 if (error) {
1025 /* no way to report error, so mark it in the knote */
1026 kn->kn_flags |= EV_ERROR;
1027 kn->kn_data = error;
1028 break;
1029 }
1030
1031 /* start timer if necessary */
1032 filt_timerupdate(kn);
1033
1034 if (kn->kn_ext[0]) {
1035 unsigned int timer_flags = 0;
1036 if (kn->kn_sfflags & NOTE_CRITICAL)
1037 timer_flags |= THREAD_CALL_DELAY_USER_CRITICAL;
1038 else if (kn->kn_sfflags & NOTE_BACKGROUND)
1039 timer_flags |= THREAD_CALL_DELAY_USER_BACKGROUND;
1040 else
1041 timer_flags |= THREAD_CALL_DELAY_USER_NORMAL;
1042
1043 if (kn->kn_sfflags & NOTE_LEEWAY)
1044 timer_flags |= THREAD_CALL_DELAY_LEEWAY;
1045
1046 thread_call_enter_delayed_with_leeway(kn->kn_hook, NULL,
1047 kn->kn_ext[0], kn->kn_ext[1], timer_flags);
1048
1049 kn->kn_hookid |= TIMER_RUNNING;
1050 } else {
1051 /* pretend the timer has fired */
1052 kn->kn_data = 1;
1053 }
1054
1055 break;
1056
1057 case EVENT_PROCESS:
1058 /* reset the timer pop count in kn_data */
1059 *kev = kn->kn_kevent;
1060 kev->ext[0] = 0;
1061 kn->kn_data = 0;
1062 if (kn->kn_flags & EV_CLEAR)
1063 kn->kn_fflags = 0;
1064 break;
1065 default:
1066 panic("%s: - invalid type (%ld)", __func__, type);
1067 break;
1068 }
1069
1070 filt_timerunlock();
1071 }
1072
1073 static void
1074 filt_timerlock(void)
1075 {
1076 lck_mtx_lock(&_filt_timerlock);
1077 }
1078
1079 static void
1080 filt_timerunlock(void)
1081 {
1082 lck_mtx_unlock(&_filt_timerlock);
1083 }
1084
1085 static int
1086 filt_userattach(struct knote *kn)
1087 {
1088 /* EVFILT_USER knotes are not attached to anything in the kernel */
1089 kn->kn_hook = NULL;
1090 if (kn->kn_fflags & NOTE_TRIGGER) {
1091 kn->kn_hookid = 1;
1092 } else {
1093 kn->kn_hookid = 0;
1094 }
1095 return (0);
1096 }
1097
1098 static void
1099 filt_userdetach(__unused struct knote *kn)
1100 {
1101 /* EVFILT_USER knotes are not attached to anything in the kernel */
1102 }
1103
1104 static int
1105 filt_user(struct knote *kn, __unused long hint)
1106 {
1107 return (kn->kn_hookid);
1108 }
1109
1110 static void
1111 filt_usertouch(struct knote *kn, struct kevent64_s *kev, long type)
1112 {
1113 uint32_t ffctrl;
1114 switch (type) {
1115 case EVENT_REGISTER:
1116 if (kev->fflags & NOTE_TRIGGER) {
1117 kn->kn_hookid = 1;
1118 }
1119
1120 ffctrl = kev->fflags & NOTE_FFCTRLMASK;
1121 kev->fflags &= NOTE_FFLAGSMASK;
1122 switch (ffctrl) {
1123 case NOTE_FFNOP:
1124 break;
1125 case NOTE_FFAND:
1126 OSBitAndAtomic(kev->fflags, &kn->kn_sfflags);
1127 break;
1128 case NOTE_FFOR:
1129 OSBitOrAtomic(kev->fflags, &kn->kn_sfflags);
1130 break;
1131 case NOTE_FFCOPY:
1132 kn->kn_sfflags = kev->fflags;
1133 break;
1134 }
1135 kn->kn_sdata = kev->data;
1136 break;
1137 case EVENT_PROCESS:
1138 *kev = kn->kn_kevent;
1139 kev->fflags = (volatile UInt32)kn->kn_sfflags;
1140 kev->data = kn->kn_sdata;
1141 if (kn->kn_flags & EV_CLEAR) {
1142 kn->kn_hookid = 0;
1143 kn->kn_data = 0;
1144 kn->kn_fflags = 0;
1145 }
1146 break;
1147 default:
1148 panic("%s: - invalid type (%ld)", __func__, type);
1149 break;
1150 }
1151 }
1152
1153 /*
1154 * JMM - placeholder for not-yet-implemented filters
1155 */
1156 static int
1157 filt_badattach(__unused struct knote *kn)
1158 {
1159 return (ENOTSUP);
1160 }
1161
1162 struct kqueue *
1163 kqueue_alloc(struct proc *p)
1164 {
1165 struct filedesc *fdp = p->p_fd;
1166 struct kqueue *kq;
1167
1168 MALLOC_ZONE(kq, struct kqueue *, sizeof (struct kqueue), M_KQUEUE,
1169 M_WAITOK);
1170 if (kq != NULL) {
1171 wait_queue_set_t wqs;
1172
1173 wqs = wait_queue_set_alloc(SYNC_POLICY_FIFO |
1174 SYNC_POLICY_PREPOST);
1175 if (wqs != NULL) {
1176 bzero(kq, sizeof (struct kqueue));
1177 lck_spin_init(&kq->kq_lock, kq_lck_grp, kq_lck_attr);
1178 TAILQ_INIT(&kq->kq_head);
1179 kq->kq_wqs = wqs;
1180 kq->kq_p = p;
1181 } else {
1182 FREE_ZONE(kq, sizeof (struct kqueue), M_KQUEUE);
1183 }
1184 }
1185
1186 if (fdp->fd_knlistsize < 0) {
1187 proc_fdlock(p);
1188 if (fdp->fd_knlistsize < 0)
1189 fdp->fd_knlistsize = 0; /* this process has had a kq */
1190 proc_fdunlock(p);
1191 }
1192
1193 return (kq);
1194 }
1195
1196 /*
1197 * kqueue_dealloc - detach all knotes from a kqueue and free it
1198 *
1199 * We walk each list looking for knotes referencing this
1200 * this kqueue. If we find one, we try to drop it. But
1201 * if we fail to get a drop reference, that will wait
1202 * until it is dropped. So, we can just restart again
1203 * safe in the assumption that the list will eventually
1204 * not contain any more references to this kqueue (either
1205 * we dropped them all, or someone else did).
1206 *
1207 * Assumes no new events are being added to the kqueue.
1208 * Nothing locked on entry or exit.
1209 */
1210 void
1211 kqueue_dealloc(struct kqueue *kq)
1212 {
1213 struct proc *p = kq->kq_p;
1214 struct filedesc *fdp = p->p_fd;
1215 struct knote *kn;
1216 int i;
1217
1218 proc_fdlock(p);
1219 for (i = 0; i < fdp->fd_knlistsize; i++) {
1220 kn = SLIST_FIRST(&fdp->fd_knlist[i]);
1221 while (kn != NULL) {
1222 if (kq == kn->kn_kq) {
1223 kqlock(kq);
1224 proc_fdunlock(p);
1225 /* drop it ourselves or wait */
1226 if (kqlock2knotedrop(kq, kn)) {
1227 kn->kn_fop->f_detach(kn);
1228 knote_drop(kn, p);
1229 }
1230 proc_fdlock(p);
1231 /* start over at beginning of list */
1232 kn = SLIST_FIRST(&fdp->fd_knlist[i]);
1233 continue;
1234 }
1235 kn = SLIST_NEXT(kn, kn_link);
1236 }
1237 }
1238 if (fdp->fd_knhashmask != 0) {
1239 for (i = 0; i < (int)fdp->fd_knhashmask + 1; i++) {
1240 kn = SLIST_FIRST(&fdp->fd_knhash[i]);
1241 while (kn != NULL) {
1242 if (kq == kn->kn_kq) {
1243 kqlock(kq);
1244 proc_fdunlock(p);
1245 /* drop it ourselves or wait */
1246 if (kqlock2knotedrop(kq, kn)) {
1247 kn->kn_fop->f_detach(kn);
1248 knote_drop(kn, p);
1249 }
1250 proc_fdlock(p);
1251 /* start over at beginning of list */
1252 kn = SLIST_FIRST(&fdp->fd_knhash[i]);
1253 continue;
1254 }
1255 kn = SLIST_NEXT(kn, kn_link);
1256 }
1257 }
1258 }
1259 proc_fdunlock(p);
1260
1261 /*
1262 * before freeing the wait queue set for this kqueue,
1263 * make sure it is unlinked from all its containing (select) sets.
1264 */
1265 wait_queue_unlink_all((wait_queue_t)kq->kq_wqs);
1266 wait_queue_set_free(kq->kq_wqs);
1267 lck_spin_destroy(&kq->kq_lock, kq_lck_grp);
1268 FREE_ZONE(kq, sizeof (struct kqueue), M_KQUEUE);
1269 }
1270
1271 int
1272 kqueue_body(struct proc *p, fp_allocfn_t fp_zalloc, void *cra, int32_t *retval)
1273 {
1274 struct kqueue *kq;
1275 struct fileproc *fp;
1276 int fd, error;
1277
1278 error = falloc_withalloc(p,
1279 &fp, &fd, vfs_context_current(), fp_zalloc, cra);
1280 if (error) {
1281 return (error);
1282 }
1283
1284 kq = kqueue_alloc(p);
1285 if (kq == NULL) {
1286 fp_free(p, fd, fp);
1287 return (ENOMEM);
1288 }
1289
1290 fp->f_flag = FREAD | FWRITE;
1291 fp->f_ops = &kqueueops;
1292 fp->f_data = kq;
1293
1294 proc_fdlock(p);
1295 *fdflags(p, fd) |= UF_EXCLOSE;
1296 procfdtbl_releasefd(p, fd, NULL);
1297 fp_drop(p, fd, fp, 1);
1298 proc_fdunlock(p);
1299
1300 *retval = fd;
1301 return (error);
1302 }
1303
1304 int
1305 kqueue(struct proc *p, __unused struct kqueue_args *uap, int32_t *retval)
1306 {
1307 return (kqueue_body(p, fileproc_alloc_init, NULL, retval));
1308 }
1309
1310 static int
1311 kevent_copyin(user_addr_t *addrp, struct kevent64_s *kevp, struct proc *p,
1312 int iskev64)
1313 {
1314 int advance;
1315 int error;
1316
1317 if (iskev64) {
1318 advance = sizeof (struct kevent64_s);
1319 error = copyin(*addrp, (caddr_t)kevp, advance);
1320 } else if (IS_64BIT_PROCESS(p)) {
1321 struct user64_kevent kev64;
1322 bzero(kevp, sizeof (struct kevent64_s));
1323
1324 advance = sizeof (kev64);
1325 error = copyin(*addrp, (caddr_t)&kev64, advance);
1326 if (error)
1327 return (error);
1328 kevp->ident = kev64.ident;
1329 kevp->filter = kev64.filter;
1330 kevp->flags = kev64.flags;
1331 kevp->fflags = kev64.fflags;
1332 kevp->data = kev64.data;
1333 kevp->udata = kev64.udata;
1334 } else {
1335 struct user32_kevent kev32;
1336 bzero(kevp, sizeof (struct kevent64_s));
1337
1338 advance = sizeof (kev32);
1339 error = copyin(*addrp, (caddr_t)&kev32, advance);
1340 if (error)
1341 return (error);
1342 kevp->ident = (uintptr_t)kev32.ident;
1343 kevp->filter = kev32.filter;
1344 kevp->flags = kev32.flags;
1345 kevp->fflags = kev32.fflags;
1346 kevp->data = (intptr_t)kev32.data;
1347 kevp->udata = CAST_USER_ADDR_T(kev32.udata);
1348 }
1349 if (!error)
1350 *addrp += advance;
1351 return (error);
1352 }
1353
1354 static int
1355 kevent_copyout(struct kevent64_s *kevp, user_addr_t *addrp, struct proc *p,
1356 int iskev64)
1357 {
1358 int advance;
1359 int error;
1360
1361 if (iskev64) {
1362 advance = sizeof (struct kevent64_s);
1363 error = copyout((caddr_t)kevp, *addrp, advance);
1364 } else if (IS_64BIT_PROCESS(p)) {
1365 struct user64_kevent kev64;
1366
1367 /*
1368 * deal with the special case of a user-supplied
1369 * value of (uintptr_t)-1.
1370 */
1371 kev64.ident = (kevp->ident == (uintptr_t)-1) ?
1372 (uint64_t)-1LL : (uint64_t)kevp->ident;
1373
1374 kev64.filter = kevp->filter;
1375 kev64.flags = kevp->flags;
1376 kev64.fflags = kevp->fflags;
1377 kev64.data = (int64_t) kevp->data;
1378 kev64.udata = kevp->udata;
1379 advance = sizeof (kev64);
1380 error = copyout((caddr_t)&kev64, *addrp, advance);
1381 } else {
1382 struct user32_kevent kev32;
1383
1384 kev32.ident = (uint32_t)kevp->ident;
1385 kev32.filter = kevp->filter;
1386 kev32.flags = kevp->flags;
1387 kev32.fflags = kevp->fflags;
1388 kev32.data = (int32_t)kevp->data;
1389 kev32.udata = kevp->udata;
1390 advance = sizeof (kev32);
1391 error = copyout((caddr_t)&kev32, *addrp, advance);
1392 }
1393 if (!error)
1394 *addrp += advance;
1395 return (error);
1396 }
1397
1398 /*
1399 * kevent_continue - continue a kevent syscall after blocking
1400 *
1401 * assume we inherit a use count on the kq fileglob.
1402 */
1403
1404 static void
1405 kevent_continue(__unused struct kqueue *kq, void *data, int error)
1406 {
1407 struct _kevent *cont_args;
1408 struct fileproc *fp;
1409 int32_t *retval;
1410 int noutputs;
1411 int fd;
1412 struct proc *p = current_proc();
1413
1414 cont_args = (struct _kevent *)data;
1415 noutputs = cont_args->eventout;
1416 retval = cont_args->retval;
1417 fd = cont_args->fd;
1418 fp = cont_args->fp;
1419
1420 fp_drop(p, fd, fp, 0);
1421
1422 /* don't restart after signals... */
1423 if (error == ERESTART)
1424 error = EINTR;
1425 else if (error == EWOULDBLOCK)
1426 error = 0;
1427 if (error == 0)
1428 *retval = noutputs;
1429 unix_syscall_return(error);
1430 }
1431
1432 /*
1433 * kevent - [syscall] register and wait for kernel events
1434 *
1435 */
1436 int
1437 kevent(struct proc *p, struct kevent_args *uap, int32_t *retval)
1438 {
1439 return (kevent_internal(p,
1440 0,
1441 uap->changelist,
1442 uap->nchanges,
1443 uap->eventlist,
1444 uap->nevents,
1445 uap->fd,
1446 uap->timeout,
1447 0, /* no flags from old kevent() call */
1448 retval));
1449 }
1450
1451 int
1452 kevent64(struct proc *p, struct kevent64_args *uap, int32_t *retval)
1453 {
1454 return (kevent_internal(p,
1455 1,
1456 uap->changelist,
1457 uap->nchanges,
1458 uap->eventlist,
1459 uap->nevents,
1460 uap->fd,
1461 uap->timeout,
1462 uap->flags,
1463 retval));
1464 }
1465
1466 static int
1467 kevent_internal(struct proc *p, int iskev64, user_addr_t changelist,
1468 int nchanges, user_addr_t ueventlist, int nevents, int fd,
1469 user_addr_t utimeout, __unused unsigned int flags,
1470 int32_t *retval)
1471 {
1472 struct _kevent *cont_args;
1473 uthread_t ut;
1474 struct kqueue *kq;
1475 struct fileproc *fp;
1476 struct kevent64_s kev;
1477 int error, noutputs;
1478 struct timeval atv;
1479
1480 /* convert timeout to absolute - if we have one */
1481 if (utimeout != USER_ADDR_NULL) {
1482 struct timeval rtv;
1483 if (IS_64BIT_PROCESS(p)) {
1484 struct user64_timespec ts;
1485 error = copyin(utimeout, &ts, sizeof(ts));
1486 if ((ts.tv_sec & 0xFFFFFFFF00000000ull) != 0)
1487 error = EINVAL;
1488 else
1489 TIMESPEC_TO_TIMEVAL(&rtv, &ts);
1490 } else {
1491 struct user32_timespec ts;
1492 error = copyin(utimeout, &ts, sizeof(ts));
1493 TIMESPEC_TO_TIMEVAL(&rtv, &ts);
1494 }
1495 if (error)
1496 return (error);
1497 if (itimerfix(&rtv))
1498 return (EINVAL);
1499 getmicrouptime(&atv);
1500 timevaladd(&atv, &rtv);
1501 } else {
1502 atv.tv_sec = 0;
1503 atv.tv_usec = 0;
1504 }
1505
1506 /* get a usecount for the kq itself */
1507 if ((error = fp_getfkq(p, fd, &fp, &kq)) != 0)
1508 return (error);
1509
1510 /* each kq should only be used for events of one type */
1511 kqlock(kq);
1512 if (kq->kq_state & (KQ_KEV32 | KQ_KEV64)) {
1513 if (((iskev64 && (kq->kq_state & KQ_KEV32)) ||
1514 (!iskev64 && (kq->kq_state & KQ_KEV64)))) {
1515 error = EINVAL;
1516 kqunlock(kq);
1517 goto errorout;
1518 }
1519 } else {
1520 kq->kq_state |= (iskev64 ? KQ_KEV64 : KQ_KEV32);
1521 }
1522 kqunlock(kq);
1523
1524 /* register all the change requests the user provided... */
1525 noutputs = 0;
1526 while (nchanges > 0 && error == 0) {
1527 error = kevent_copyin(&changelist, &kev, p, iskev64);
1528 if (error)
1529 break;
1530
1531 kev.flags &= ~EV_SYSFLAGS;
1532 error = kevent_register(kq, &kev, p);
1533 if ((error || (kev.flags & EV_RECEIPT)) && nevents > 0) {
1534 kev.flags = EV_ERROR;
1535 kev.data = error;
1536 error = kevent_copyout(&kev, &ueventlist, p, iskev64);
1537 if (error == 0) {
1538 nevents--;
1539 noutputs++;
1540 }
1541 }
1542 nchanges--;
1543 }
1544
1545 /* store the continuation/completion data in the uthread */
1546 ut = (uthread_t)get_bsdthread_info(current_thread());
1547 cont_args = &ut->uu_kevent.ss_kevent;
1548 cont_args->fp = fp;
1549 cont_args->fd = fd;
1550 cont_args->retval = retval;
1551 cont_args->eventlist = ueventlist;
1552 cont_args->eventcount = nevents;
1553 cont_args->eventout = noutputs;
1554 cont_args->eventsize = iskev64;
1555
1556 if (nevents > 0 && noutputs == 0 && error == 0)
1557 error = kqueue_scan(kq, kevent_callback,
1558 kevent_continue, cont_args,
1559 &atv, p);
1560 kevent_continue(kq, cont_args, error);
1561
1562 errorout:
1563 fp_drop(p, fd, fp, 0);
1564 return (error);
1565 }
1566
1567
1568 /*
1569 * kevent_callback - callback for each individual event
1570 *
1571 * called with nothing locked
1572 * caller holds a reference on the kqueue
1573 */
1574 static int
1575 kevent_callback(__unused struct kqueue *kq, struct kevent64_s *kevp,
1576 void *data)
1577 {
1578 struct _kevent *cont_args;
1579 int error;
1580 int iskev64;
1581
1582 cont_args = (struct _kevent *)data;
1583 assert(cont_args->eventout < cont_args->eventcount);
1584
1585 iskev64 = cont_args->eventsize;
1586
1587 /*
1588 * Copy out the appropriate amount of event data for this user.
1589 */
1590 error = kevent_copyout(kevp, &cont_args->eventlist, current_proc(),
1591 iskev64);
1592
1593 /*
1594 * If there isn't space for additional events, return
1595 * a harmless error to stop the processing here
1596 */
1597 if (error == 0 && ++cont_args->eventout == cont_args->eventcount)
1598 error = EWOULDBLOCK;
1599 return (error);
1600 }
1601
1602 /*
1603 * kevent_description - format a description of a kevent for diagnostic output
1604 *
1605 * called with a 128-byte string buffer
1606 */
1607
1608 char *
1609 kevent_description(struct kevent64_s *kevp, char *s, size_t n)
1610 {
1611 snprintf(s, n,
1612 "kevent="
1613 "{.ident=%#llx, .filter=%d, .flags=%#x, .fflags=%#x, .data=%#llx, .udata=%#llx, .ext[0]=%#llx, .ext[1]=%#llx}",
1614 kevp->ident,
1615 kevp->filter,
1616 kevp->flags,
1617 kevp->fflags,
1618 kevp->data,
1619 kevp->udata,
1620 kevp->ext[0],
1621 kevp->ext[1]);
1622
1623 return (s);
1624 }
1625
1626 /*
1627 * kevent_register - add a new event to a kqueue
1628 *
1629 * Creates a mapping between the event source and
1630 * the kqueue via a knote data structure.
1631 *
1632 * Because many/most the event sources are file
1633 * descriptor related, the knote is linked off
1634 * the filedescriptor table for quick access.
1635 *
1636 * called with nothing locked
1637 * caller holds a reference on the kqueue
1638 */
1639
1640 int
1641 kevent_register(struct kqueue *kq, struct kevent64_s *kev,
1642 __unused struct proc *ctxp)
1643 {
1644 struct proc *p = kq->kq_p;
1645 struct filedesc *fdp = p->p_fd;
1646 struct filterops *fops;
1647 struct fileproc *fp = NULL;
1648 struct knote *kn = NULL;
1649 int error = 0;
1650
1651 if (kev->filter < 0) {
1652 if (kev->filter + EVFILT_SYSCOUNT < 0)
1653 return (EINVAL);
1654 fops = sysfilt_ops[~kev->filter]; /* to 0-base index */
1655 } else {
1656 /*
1657 * XXX
1658 * filter attach routine is responsible for insuring that
1659 * the identifier can be attached to it.
1660 */
1661 printf("unknown filter: %d\n", kev->filter);
1662 return (EINVAL);
1663 }
1664
1665 restart:
1666 /* this iocount needs to be dropped if it is not registered */
1667 proc_fdlock(p);
1668 if (fops->f_isfd && (error = fp_lookup(p, kev->ident, &fp, 1)) != 0) {
1669 proc_fdunlock(p);
1670 return (error);
1671 }
1672
1673 if (fops->f_isfd) {
1674 /* fd-based knotes are linked off the fd table */
1675 if (kev->ident < (u_int)fdp->fd_knlistsize) {
1676 SLIST_FOREACH(kn, &fdp->fd_knlist[kev->ident], kn_link)
1677 if (kq == kn->kn_kq &&
1678 kev->filter == kn->kn_filter)
1679 break;
1680 }
1681 } else {
1682 /* hash non-fd knotes here too */
1683 if (fdp->fd_knhashmask != 0) {
1684 struct klist *list;
1685
1686 list = &fdp->fd_knhash[
1687 KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)];
1688 SLIST_FOREACH(kn, list, kn_link)
1689 if (kev->ident == kn->kn_id &&
1690 kq == kn->kn_kq &&
1691 kev->filter == kn->kn_filter)
1692 break;
1693 }
1694 }
1695
1696 /*
1697 * kn now contains the matching knote, or NULL if no match
1698 */
1699 if (kn == NULL) {
1700 if ((kev->flags & (EV_ADD|EV_DELETE)) == EV_ADD) {
1701 kn = knote_alloc();
1702 if (kn == NULL) {
1703 proc_fdunlock(p);
1704 error = ENOMEM;
1705 goto done;
1706 }
1707 kn->kn_fp = fp;
1708 kn->kn_kq = kq;
1709 kn->kn_tq = &kq->kq_head;
1710 kn->kn_fop = fops;
1711 kn->kn_sfflags = kev->fflags;
1712 kn->kn_sdata = kev->data;
1713 kev->fflags = 0;
1714 kev->data = 0;
1715 kn->kn_kevent = *kev;
1716 kn->kn_inuse = 1; /* for f_attach() */
1717 kn->kn_status = KN_ATTACHING;
1718
1719 /* before anyone can find it */
1720 if (kev->flags & EV_DISABLE)
1721 kn->kn_status |= KN_DISABLED;
1722
1723 error = knote_fdpattach(kn, fdp, p);
1724 proc_fdunlock(p);
1725
1726 if (error) {
1727 knote_free(kn);
1728 goto done;
1729 }
1730
1731 /*
1732 * apply reference count to knote structure, and
1733 * do not release it at the end of this routine.
1734 */
1735 fp = NULL;
1736
1737 error = fops->f_attach(kn);
1738
1739 kqlock(kq);
1740
1741 if (error != 0) {
1742 /*
1743 * Failed to attach correctly, so drop.
1744 * All other possible users/droppers
1745 * have deferred to us.
1746 */
1747 kn->kn_status |= KN_DROPPING;
1748 kqunlock(kq);
1749 knote_drop(kn, p);
1750 goto done;
1751 } else if (kn->kn_status & KN_DROPPING) {
1752 /*
1753 * Attach succeeded, but someone else
1754 * deferred their drop - now we have
1755 * to do it for them (after detaching).
1756 */
1757 kqunlock(kq);
1758 kn->kn_fop->f_detach(kn);
1759 knote_drop(kn, p);
1760 goto done;
1761 }
1762 kn->kn_status &= ~KN_ATTACHING;
1763 kqunlock(kq);
1764 } else {
1765 proc_fdunlock(p);
1766 error = ENOENT;
1767 goto done;
1768 }
1769 } else {
1770 /* existing knote - get kqueue lock */
1771 kqlock(kq);
1772 proc_fdunlock(p);
1773
1774 if (kev->flags & EV_DELETE) {
1775 knote_dequeue(kn);
1776 kn->kn_status |= KN_DISABLED;
1777 if (kqlock2knotedrop(kq, kn)) {
1778 kn->kn_fop->f_detach(kn);
1779 knote_drop(kn, p);
1780 }
1781 goto done;
1782 }
1783
1784 /* update status flags for existing knote */
1785 if (kev->flags & EV_DISABLE) {
1786 knote_dequeue(kn);
1787 kn->kn_status |= KN_DISABLED;
1788 } else if (kev->flags & EV_ENABLE) {
1789 kn->kn_status &= ~KN_DISABLED;
1790 if (kn->kn_status & KN_ACTIVE)
1791 knote_enqueue(kn);
1792 }
1793
1794 /*
1795 * The user may change some filter values after the
1796 * initial EV_ADD, but doing so will not reset any
1797 * filter which have already been triggered.
1798 */
1799 kn->kn_kevent.udata = kev->udata;
1800 if (fops->f_isfd || fops->f_touch == NULL) {
1801 kn->kn_sfflags = kev->fflags;
1802 kn->kn_sdata = kev->data;
1803 }
1804
1805 /*
1806 * If somebody is in the middle of dropping this
1807 * knote - go find/insert a new one. But we have
1808 * wait for this one to go away first. Attaches
1809 * running in parallel may also drop/modify the
1810 * knote. Wait for those to complete as well and
1811 * then start over if we encounter one.
1812 */
1813 if (!kqlock2knoteusewait(kq, kn)) {
1814 /* kqueue, proc_fdlock both unlocked */
1815 goto restart;
1816 }
1817
1818 /*
1819 * Call touch routine to notify filter of changes
1820 * in filter values.
1821 */
1822 if (!fops->f_isfd && fops->f_touch != NULL)
1823 fops->f_touch(kn, kev, EVENT_REGISTER);
1824 }
1825 /* still have use ref on knote */
1826
1827 /*
1828 * If the knote is not marked to always stay enqueued,
1829 * invoke the filter routine to see if it should be
1830 * enqueued now.
1831 */
1832 if ((kn->kn_status & KN_STAYQUEUED) == 0 && kn->kn_fop->f_event(kn, 0)) {
1833 if (knoteuse2kqlock(kq, kn))
1834 knote_activate(kn, 1);
1835 kqunlock(kq);
1836 } else {
1837 knote_put(kn);
1838 }
1839
1840 done:
1841 if (fp != NULL)
1842 fp_drop(p, kev->ident, fp, 0);
1843 return (error);
1844 }
1845
1846
1847 /*
1848 * knote_process - process a triggered event
1849 *
1850 * Validate that it is really still a triggered event
1851 * by calling the filter routines (if necessary). Hold
1852 * a use reference on the knote to avoid it being detached.
1853 * If it is still considered triggered, invoke the callback
1854 * routine provided and move it to the provided inprocess
1855 * queue.
1856 *
1857 * caller holds a reference on the kqueue.
1858 * kqueue locked on entry and exit - but may be dropped
1859 */
1860 static int
1861 knote_process(struct knote *kn,
1862 kevent_callback_t callback,
1863 void *data,
1864 struct kqtailq *inprocessp,
1865 struct proc *p)
1866 {
1867 struct kqueue *kq = kn->kn_kq;
1868 struct kevent64_s kev;
1869 int touch;
1870 int result;
1871 int error;
1872
1873 /*
1874 * Determine the kevent state we want to return.
1875 *
1876 * Some event states need to be revalidated before returning
1877 * them, others we take the snapshot at the time the event
1878 * was enqueued.
1879 *
1880 * Events with non-NULL f_touch operations must be touched.
1881 * Triggered events must fill in kev for the callback.
1882 *
1883 * Convert our lock to a use-count and call the event's
1884 * filter routine(s) to update.
1885 */
1886 if ((kn->kn_status & KN_DISABLED) != 0) {
1887 result = 0;
1888 touch = 0;
1889 } else {
1890 int revalidate;
1891
1892 result = 1;
1893 revalidate = ((kn->kn_status & KN_STAYQUEUED) != 0 ||
1894 (kn->kn_flags & EV_ONESHOT) == 0);
1895 touch = (!kn->kn_fop->f_isfd && kn->kn_fop->f_touch != NULL);
1896
1897 if (revalidate || touch) {
1898 if (revalidate)
1899 knote_deactivate(kn);
1900
1901 /* call the filter/touch routines with just a ref */
1902 if (kqlock2knoteuse(kq, kn)) {
1903 /* if we have to revalidate, call the filter */
1904 if (revalidate) {
1905 result = kn->kn_fop->f_event(kn, 0);
1906 }
1907
1908 /*
1909 * capture the kevent data - using touch if
1910 * specified
1911 */
1912 if (result && touch) {
1913 kn->kn_fop->f_touch(kn, &kev,
1914 EVENT_PROCESS);
1915 }
1916
1917 /*
1918 * convert back to a kqlock - bail if the knote
1919 * went away
1920 */
1921 if (!knoteuse2kqlock(kq, kn)) {
1922 return (EJUSTRETURN);
1923 } else if (result) {
1924 /*
1925 * if revalidated as alive, make sure
1926 * it's active
1927 */
1928 if (!(kn->kn_status & KN_ACTIVE)) {
1929 knote_activate(kn, 0);
1930 }
1931
1932 /*
1933 * capture all events that occurred
1934 * during filter
1935 */
1936 if (!touch) {
1937 kev = kn->kn_kevent;
1938 }
1939
1940 } else if ((kn->kn_status & KN_STAYQUEUED) == 0) {
1941 /*
1942 * was already dequeued, so just bail on
1943 * this one
1944 */
1945 return (EJUSTRETURN);
1946 }
1947 } else {
1948 return (EJUSTRETURN);
1949 }
1950 } else {
1951 kev = kn->kn_kevent;
1952 }
1953 }
1954
1955 /* move knote onto inprocess queue */
1956 assert(kn->kn_tq == &kq->kq_head);
1957 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1958 kn->kn_tq = inprocessp;
1959 TAILQ_INSERT_TAIL(inprocessp, kn, kn_tqe);
1960
1961 /*
1962 * Determine how to dispatch the knote for future event handling.
1963 * not-fired: just return (do not callout).
1964 * One-shot: deactivate it.
1965 * Clear: deactivate and clear the state.
1966 * Dispatch: don't clear state, just deactivate it and mark it disabled.
1967 * All others: just leave where they are.
1968 */
1969
1970 if (result == 0) {
1971 return (EJUSTRETURN);
1972 } else if ((kn->kn_flags & EV_ONESHOT) != 0) {
1973 knote_deactivate(kn);
1974 if (kqlock2knotedrop(kq, kn)) {
1975 kn->kn_fop->f_detach(kn);
1976 knote_drop(kn, p);
1977 }
1978 } else if ((kn->kn_flags & (EV_CLEAR | EV_DISPATCH)) != 0) {
1979 if ((kn->kn_flags & EV_DISPATCH) != 0) {
1980 /* deactivate and disable all dispatch knotes */
1981 knote_deactivate(kn);
1982 kn->kn_status |= KN_DISABLED;
1983 } else if (!touch || kn->kn_fflags == 0) {
1984 /* only deactivate if nothing since the touch */
1985 knote_deactivate(kn);
1986 }
1987 if (!touch && (kn->kn_flags & EV_CLEAR) != 0) {
1988 /* manually clear non-touch knotes */
1989 kn->kn_data = 0;
1990 kn->kn_fflags = 0;
1991 }
1992 kqunlock(kq);
1993 } else {
1994 /*
1995 * leave on inprocess queue. We'll
1996 * move all the remaining ones back
1997 * the kq queue and wakeup any
1998 * waiters when we are done.
1999 */
2000 kqunlock(kq);
2001 }
2002
2003 /* callback to handle each event as we find it */
2004 error = (callback)(kq, &kev, data);
2005
2006 kqlock(kq);
2007 return (error);
2008 }
2009
2010 /*
2011 * Return 0 to indicate that processing should proceed,
2012 * -1 if there is nothing to process.
2013 *
2014 * Called with kqueue locked and returns the same way,
2015 * but may drop lock temporarily.
2016 */
2017 static int
2018 kqueue_begin_processing(struct kqueue *kq)
2019 {
2020 for (;;) {
2021 if (kq->kq_count == 0) {
2022 return (-1);
2023 }
2024
2025 /* if someone else is processing the queue, wait */
2026 if (kq->kq_nprocess != 0) {
2027 wait_queue_assert_wait((wait_queue_t)kq->kq_wqs,
2028 &kq->kq_nprocess, THREAD_UNINT, 0);
2029 kq->kq_state |= KQ_PROCWAIT;
2030 kqunlock(kq);
2031 thread_block(THREAD_CONTINUE_NULL);
2032 kqlock(kq);
2033 } else {
2034 kq->kq_nprocess = 1;
2035 return (0);
2036 }
2037 }
2038 }
2039
2040 /*
2041 * Called with kqueue lock held.
2042 */
2043 static void
2044 kqueue_end_processing(struct kqueue *kq)
2045 {
2046 kq->kq_nprocess = 0;
2047 if (kq->kq_state & KQ_PROCWAIT) {
2048 kq->kq_state &= ~KQ_PROCWAIT;
2049 wait_queue_wakeup_all((wait_queue_t)kq->kq_wqs,
2050 &kq->kq_nprocess, THREAD_AWAKENED);
2051 }
2052 }
2053
2054 /*
2055 * kqueue_process - process the triggered events in a kqueue
2056 *
2057 * Walk the queued knotes and validate that they are
2058 * really still triggered events by calling the filter
2059 * routines (if necessary). Hold a use reference on
2060 * the knote to avoid it being detached. For each event
2061 * that is still considered triggered, invoke the
2062 * callback routine provided.
2063 *
2064 * caller holds a reference on the kqueue.
2065 * kqueue locked on entry and exit - but may be dropped
2066 * kqueue list locked (held for duration of call)
2067 */
2068
2069 static int
2070 kqueue_process(struct kqueue *kq,
2071 kevent_callback_t callback,
2072 void *data,
2073 int *countp,
2074 struct proc *p)
2075 {
2076 struct kqtailq inprocess;
2077 struct knote *kn;
2078 int nevents;
2079 int error;
2080
2081 TAILQ_INIT(&inprocess);
2082
2083 if (kqueue_begin_processing(kq) == -1) {
2084 *countp = 0;
2085 /* Nothing to process */
2086 return (0);
2087 }
2088
2089 /*
2090 * Clear any pre-posted status from previous runs, so we
2091 * only detect events that occur during this run.
2092 */
2093 wait_queue_sub_clearrefs(kq->kq_wqs);
2094
2095 /*
2096 * loop through the enqueued knotes, processing each one and
2097 * revalidating those that need it. As they are processed,
2098 * they get moved to the inprocess queue (so the loop can end).
2099 */
2100 error = 0;
2101 nevents = 0;
2102
2103 while (error == 0 &&
2104 (kn = TAILQ_FIRST(&kq->kq_head)) != NULL) {
2105 error = knote_process(kn, callback, data, &inprocess, p);
2106 if (error == EJUSTRETURN)
2107 error = 0;
2108 else
2109 nevents++;
2110 }
2111
2112 /*
2113 * With the kqueue still locked, move any knotes
2114 * remaining on the inprocess queue back to the
2115 * kq's queue and wake up any waiters.
2116 */
2117 while ((kn = TAILQ_FIRST(&inprocess)) != NULL) {
2118 assert(kn->kn_tq == &inprocess);
2119 TAILQ_REMOVE(&inprocess, kn, kn_tqe);
2120 kn->kn_tq = &kq->kq_head;
2121 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
2122 }
2123
2124 kqueue_end_processing(kq);
2125
2126 *countp = nevents;
2127 return (error);
2128 }
2129
2130
2131 static void
2132 kqueue_scan_continue(void *data, wait_result_t wait_result)
2133 {
2134 thread_t self = current_thread();
2135 uthread_t ut = (uthread_t)get_bsdthread_info(self);
2136 struct _kqueue_scan * cont_args = &ut->uu_kevent.ss_kqueue_scan;
2137 struct kqueue *kq = (struct kqueue *)data;
2138 int error;
2139 int count;
2140
2141 /* convert the (previous) wait_result to a proper error */
2142 switch (wait_result) {
2143 case THREAD_AWAKENED:
2144 kqlock(kq);
2145 error = kqueue_process(kq, cont_args->call, cont_args, &count,
2146 current_proc());
2147 if (error == 0 && count == 0) {
2148 wait_queue_assert_wait((wait_queue_t)kq->kq_wqs,
2149 KQ_EVENT, THREAD_ABORTSAFE, cont_args->deadline);
2150 kq->kq_state |= KQ_SLEEP;
2151 kqunlock(kq);
2152 thread_block_parameter(kqueue_scan_continue, kq);
2153 /* NOTREACHED */
2154 }
2155 kqunlock(kq);
2156 break;
2157 case THREAD_TIMED_OUT:
2158 error = EWOULDBLOCK;
2159 break;
2160 case THREAD_INTERRUPTED:
2161 error = EINTR;
2162 break;
2163 default:
2164 panic("%s: - invalid wait_result (%d)", __func__,
2165 wait_result);
2166 error = 0;
2167 }
2168
2169 /* call the continuation with the results */
2170 assert(cont_args->cont != NULL);
2171 (cont_args->cont)(kq, cont_args->data, error);
2172 }
2173
2174
2175 /*
2176 * kqueue_scan - scan and wait for events in a kqueue
2177 *
2178 * Process the triggered events in a kqueue.
2179 *
2180 * If there are no events triggered arrange to
2181 * wait for them. If the caller provided a
2182 * continuation routine, then kevent_scan will
2183 * also.
2184 *
2185 * The callback routine must be valid.
2186 * The caller must hold a use-count reference on the kq.
2187 */
2188
2189 int
2190 kqueue_scan(struct kqueue *kq,
2191 kevent_callback_t callback,
2192 kqueue_continue_t continuation,
2193 void *data,
2194 struct timeval *atvp,
2195 struct proc *p)
2196 {
2197 thread_continue_t cont = THREAD_CONTINUE_NULL;
2198 uint64_t deadline;
2199 int error;
2200 int first;
2201
2202 assert(callback != NULL);
2203
2204 first = 1;
2205 for (;;) {
2206 wait_result_t wait_result;
2207 int count;
2208
2209 /*
2210 * Make a pass through the kq to find events already
2211 * triggered.
2212 */
2213 kqlock(kq);
2214 error = kqueue_process(kq, callback, data, &count, p);
2215 if (error || count)
2216 break; /* lock still held */
2217
2218 /* looks like we have to consider blocking */
2219 if (first) {
2220 first = 0;
2221 /* convert the timeout to a deadline once */
2222 if (atvp->tv_sec || atvp->tv_usec) {
2223 uint64_t now;
2224
2225 clock_get_uptime(&now);
2226 nanoseconds_to_absolutetime((uint64_t)atvp->tv_sec * NSEC_PER_SEC +
2227 atvp->tv_usec * (long)NSEC_PER_USEC,
2228 &deadline);
2229 if (now >= deadline) {
2230 /* non-blocking call */
2231 error = EWOULDBLOCK;
2232 break; /* lock still held */
2233 }
2234 deadline -= now;
2235 clock_absolutetime_interval_to_deadline(deadline, &deadline);
2236 } else {
2237 deadline = 0; /* block forever */
2238 }
2239
2240 if (continuation) {
2241 uthread_t ut = (uthread_t)get_bsdthread_info(current_thread());
2242 struct _kqueue_scan *cont_args = &ut->uu_kevent.ss_kqueue_scan;
2243
2244 cont_args->call = callback;
2245 cont_args->cont = continuation;
2246 cont_args->deadline = deadline;
2247 cont_args->data = data;
2248 cont = kqueue_scan_continue;
2249 }
2250 }
2251
2252 /* go ahead and wait */
2253 wait_queue_assert_wait_with_leeway((wait_queue_t)kq->kq_wqs,
2254 KQ_EVENT, THREAD_ABORTSAFE, TIMEOUT_URGENCY_USER_NORMAL,
2255 deadline, 0);
2256 kq->kq_state |= KQ_SLEEP;
2257 kqunlock(kq);
2258 wait_result = thread_block_parameter(cont, kq);
2259 /* NOTREACHED if (continuation != NULL) */
2260
2261 switch (wait_result) {
2262 case THREAD_AWAKENED:
2263 continue;
2264 case THREAD_TIMED_OUT:
2265 return (EWOULDBLOCK);
2266 case THREAD_INTERRUPTED:
2267 return (EINTR);
2268 default:
2269 panic("%s: - bad wait_result (%d)", __func__,
2270 wait_result);
2271 error = 0;
2272 }
2273 }
2274 kqunlock(kq);
2275 return (error);
2276 }
2277
2278
2279 /*
2280 * XXX
2281 * This could be expanded to call kqueue_scan, if desired.
2282 */
2283 /*ARGSUSED*/
2284 static int
2285 kqueue_read(__unused struct fileproc *fp,
2286 __unused struct uio *uio,
2287 __unused int flags,
2288 __unused vfs_context_t ctx)
2289 {
2290 return (ENXIO);
2291 }
2292
2293 /*ARGSUSED*/
2294 static int
2295 kqueue_write(__unused struct fileproc *fp,
2296 __unused struct uio *uio,
2297 __unused int flags,
2298 __unused vfs_context_t ctx)
2299 {
2300 return (ENXIO);
2301 }
2302
2303 /*ARGSUSED*/
2304 static int
2305 kqueue_ioctl(__unused struct fileproc *fp,
2306 __unused u_long com,
2307 __unused caddr_t data,
2308 __unused vfs_context_t ctx)
2309 {
2310 return (ENOTTY);
2311 }
2312
2313 /*ARGSUSED*/
2314 static int
2315 kqueue_select(struct fileproc *fp, int which, void *wql,
2316 __unused vfs_context_t ctx)
2317 {
2318 struct kqueue *kq = (struct kqueue *)fp->f_data;
2319 struct knote *kn;
2320 struct kqtailq inprocessq;
2321 int retnum = 0;
2322
2323 if (which != FREAD)
2324 return (0);
2325
2326 TAILQ_INIT(&inprocessq);
2327
2328 kqlock(kq);
2329 /*
2330 * If this is the first pass, link the wait queue associated with the
2331 * the kqueue onto the wait queue set for the select(). Normally we
2332 * use selrecord() for this, but it uses the wait queue within the
2333 * selinfo structure and we need to use the main one for the kqueue to
2334 * catch events from KN_STAYQUEUED sources. So we do the linkage manually.
2335 * (The select() call will unlink them when it ends).
2336 */
2337 if (wql != NULL) {
2338 thread_t cur_act = current_thread();
2339 struct uthread * ut = get_bsdthread_info(cur_act);
2340
2341 kq->kq_state |= KQ_SEL;
2342 wait_queue_link_noalloc((wait_queue_t)kq->kq_wqs, ut->uu_wqset,
2343 (wait_queue_link_t)wql);
2344 }
2345
2346 if (kqueue_begin_processing(kq) == -1) {
2347 kqunlock(kq);
2348 return (0);
2349 }
2350
2351 if (kq->kq_count != 0) {
2352 /*
2353 * there is something queued - but it might be a
2354 * KN_STAYQUEUED knote, which may or may not have
2355 * any events pending. So, we have to walk the
2356 * list of knotes to see, and peek at the stay-
2357 * queued ones to be really sure.
2358 */
2359 while ((kn = (struct knote *)TAILQ_FIRST(&kq->kq_head)) != NULL) {
2360 if ((kn->kn_status & KN_STAYQUEUED) == 0) {
2361 retnum = 1;
2362 goto out;
2363 }
2364
2365 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
2366 TAILQ_INSERT_TAIL(&inprocessq, kn, kn_tqe);
2367
2368 if (kqlock2knoteuse(kq, kn)) {
2369 unsigned peek;
2370
2371 peek = kn->kn_fop->f_peek(kn);
2372 if (knoteuse2kqlock(kq, kn)) {
2373 if (peek > 0) {
2374 retnum = 1;
2375 goto out;
2376 }
2377 } else {
2378 retnum = 0;
2379 }
2380 }
2381 }
2382 }
2383
2384 out:
2385 /* Return knotes to active queue */
2386 while ((kn = TAILQ_FIRST(&inprocessq)) != NULL) {
2387 TAILQ_REMOVE(&inprocessq, kn, kn_tqe);
2388 kn->kn_tq = &kq->kq_head;
2389 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
2390 }
2391
2392 kqueue_end_processing(kq);
2393 kqunlock(kq);
2394 return (retnum);
2395 }
2396
2397 /*
2398 * kqueue_close -
2399 */
2400 /*ARGSUSED*/
2401 static int
2402 kqueue_close(struct fileglob *fg, __unused vfs_context_t ctx)
2403 {
2404 struct kqueue *kq = (struct kqueue *)fg->fg_data;
2405
2406 kqueue_dealloc(kq);
2407 fg->fg_data = NULL;
2408 return (0);
2409 }
2410
2411 /*ARGSUSED*/
2412 /*
2413 * The callers has taken a use-count reference on this kqueue and will donate it
2414 * to the kqueue we are being added to. This keeps the kqueue from closing until
2415 * that relationship is torn down.
2416 */
2417 static int
2418 kqueue_kqfilter(__unused struct fileproc *fp, struct knote *kn, __unused vfs_context_t ctx)
2419 {
2420 struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data;
2421 struct kqueue *parentkq = kn->kn_kq;
2422
2423 if (parentkq == kq ||
2424 kn->kn_filter != EVFILT_READ)
2425 return (1);
2426
2427 /*
2428 * We have to avoid creating a cycle when nesting kqueues
2429 * inside another. Rather than trying to walk the whole
2430 * potential DAG of nested kqueues, we just use a simple
2431 * ceiling protocol. When a kqueue is inserted into another,
2432 * we check that the (future) parent is not already nested
2433 * into another kqueue at a lower level than the potenial
2434 * child (because it could indicate a cycle). If that test
2435 * passes, we just mark the nesting levels accordingly.
2436 */
2437
2438 kqlock(parentkq);
2439 if (parentkq->kq_level > 0 &&
2440 parentkq->kq_level < kq->kq_level)
2441 {
2442 kqunlock(parentkq);
2443 return (1);
2444 } else {
2445 /* set parent level appropriately */
2446 if (parentkq->kq_level == 0)
2447 parentkq->kq_level = 2;
2448 if (parentkq->kq_level < kq->kq_level + 1)
2449 parentkq->kq_level = kq->kq_level + 1;
2450 kqunlock(parentkq);
2451
2452 kn->kn_fop = &kqread_filtops;
2453 kqlock(kq);
2454 KNOTE_ATTACH(&kq->kq_sel.si_note, kn);
2455 /* indicate nesting in child, if needed */
2456 if (kq->kq_level == 0)
2457 kq->kq_level = 1;
2458 kqunlock(kq);
2459 return (0);
2460 }
2461 }
2462
2463 /*
2464 * kqueue_drain - called when kq is closed
2465 */
2466 /*ARGSUSED*/
2467 static int
2468 kqueue_drain(struct fileproc *fp, __unused vfs_context_t ctx)
2469 {
2470 struct kqueue *kq = (struct kqueue *)fp->f_fglob->fg_data;
2471 kqlock(kq);
2472 kqueue_wakeup(kq, 1);
2473 kqunlock(kq);
2474 return (0);
2475 }
2476
2477 /*ARGSUSED*/
2478 int
2479 kqueue_stat(struct kqueue *kq, void *ub, int isstat64, proc_t p)
2480 {
2481 kqlock(kq);
2482 if (isstat64 != 0) {
2483 struct stat64 *sb64 = (struct stat64 *)ub;
2484
2485 bzero((void *)sb64, sizeof(*sb64));
2486 sb64->st_size = kq->kq_count;
2487 if (kq->kq_state & KQ_KEV64)
2488 sb64->st_blksize = sizeof(struct kevent64_s);
2489 else
2490 sb64->st_blksize = IS_64BIT_PROCESS(p) ? sizeof(struct user64_kevent) : sizeof(struct user32_kevent);
2491 sb64->st_mode = S_IFIFO;
2492 } else {
2493 struct stat *sb = (struct stat *)ub;
2494
2495 bzero((void *)sb, sizeof(*sb));
2496 sb->st_size = kq->kq_count;
2497 if (kq->kq_state & KQ_KEV64)
2498 sb->st_blksize = sizeof(struct kevent64_s);
2499 else
2500 sb->st_blksize = IS_64BIT_PROCESS(p) ? sizeof(struct user64_kevent) : sizeof(struct user32_kevent);
2501 sb->st_mode = S_IFIFO;
2502 }
2503 kqunlock(kq);
2504 return (0);
2505 }
2506
2507 /*
2508 * Called with the kqueue locked
2509 */
2510 static void
2511 kqueue_wakeup(struct kqueue *kq, int closed)
2512 {
2513 if ((kq->kq_state & (KQ_SLEEP | KQ_SEL)) != 0 || kq->kq_nprocess > 0) {
2514 kq->kq_state &= ~(KQ_SLEEP | KQ_SEL);
2515 wait_queue_wakeup_all((wait_queue_t)kq->kq_wqs, KQ_EVENT,
2516 (closed) ? THREAD_INTERRUPTED : THREAD_AWAKENED);
2517 }
2518 }
2519
2520 void
2521 klist_init(struct klist *list)
2522 {
2523 SLIST_INIT(list);
2524 }
2525
2526
2527 /*
2528 * Query/Post each knote in the object's list
2529 *
2530 * The object lock protects the list. It is assumed
2531 * that the filter/event routine for the object can
2532 * determine that the object is already locked (via
2533 * the hint) and not deadlock itself.
2534 *
2535 * The object lock should also hold off pending
2536 * detach/drop operations. But we'll prevent it here
2537 * too - just in case.
2538 */
2539 void
2540 knote(struct klist *list, long hint)
2541 {
2542 struct knote *kn;
2543
2544 SLIST_FOREACH(kn, list, kn_selnext) {
2545 struct kqueue *kq = kn->kn_kq;
2546
2547 kqlock(kq);
2548 if (kqlock2knoteuse(kq, kn)) {
2549 int result;
2550
2551 /* call the event with only a use count */
2552 result = kn->kn_fop->f_event(kn, hint);
2553
2554 /* if its not going away and triggered */
2555 if (knoteuse2kqlock(kq, kn) && result)
2556 knote_activate(kn, 1);
2557 /* lock held again */
2558 }
2559 kqunlock(kq);
2560 }
2561 }
2562
2563 /*
2564 * attach a knote to the specified list. Return true if this is the first entry.
2565 * The list is protected by whatever lock the object it is associated with uses.
2566 */
2567 int
2568 knote_attach(struct klist *list, struct knote *kn)
2569 {
2570 int ret = SLIST_EMPTY(list);
2571 SLIST_INSERT_HEAD(list, kn, kn_selnext);
2572 return (ret);
2573 }
2574
2575 /*
2576 * detach a knote from the specified list. Return true if that was the last entry.
2577 * The list is protected by whatever lock the object it is associated with uses.
2578 */
2579 int
2580 knote_detach(struct klist *list, struct knote *kn)
2581 {
2582 SLIST_REMOVE(list, kn, knote, kn_selnext);
2583 return (SLIST_EMPTY(list));
2584 }
2585
2586 /*
2587 * For a given knote, link a provided wait queue directly with the kqueue.
2588 * Wakeups will happen via recursive wait queue support. But nothing will move
2589 * the knote to the active list at wakeup (nothing calls knote()). Instead,
2590 * we permanently enqueue them here.
2591 *
2592 * kqueue and knote references are held by caller.
2593 *
2594 * caller provides the wait queue link structure.
2595 */
2596 int
2597 knote_link_wait_queue(struct knote *kn, struct wait_queue *wq, wait_queue_link_t wql)
2598 {
2599 struct kqueue *kq = kn->kn_kq;
2600 kern_return_t kr;
2601
2602 kr = wait_queue_link_noalloc(wq, kq->kq_wqs, wql);
2603 if (kr == KERN_SUCCESS) {
2604 knote_markstayqueued(kn);
2605 return (0);
2606 } else {
2607 return (EINVAL);
2608 }
2609 }
2610
2611 /*
2612 * Unlink the provided wait queue from the kqueue associated with a knote.
2613 * Also remove it from the magic list of directly attached knotes.
2614 *
2615 * Note that the unlink may have already happened from the other side, so
2616 * ignore any failures to unlink and just remove it from the kqueue list.
2617 *
2618 * On success, caller is responsible for the link structure
2619 */
2620 int
2621 knote_unlink_wait_queue(struct knote *kn, struct wait_queue *wq, wait_queue_link_t *wqlp)
2622 {
2623 struct kqueue *kq = kn->kn_kq;
2624 kern_return_t kr;
2625
2626 kr = wait_queue_unlink_nofree(wq, kq->kq_wqs, wqlp);
2627 kqlock(kq);
2628 kn->kn_status &= ~KN_STAYQUEUED;
2629 knote_dequeue(kn);
2630 kqunlock(kq);
2631 return ((kr != KERN_SUCCESS) ? EINVAL : 0);
2632 }
2633
2634 /*
2635 * remove all knotes referencing a specified fd
2636 *
2637 * Essentially an inlined knote_remove & knote_drop
2638 * when we know for sure that the thing is a file
2639 *
2640 * Entered with the proc_fd lock already held.
2641 * It returns the same way, but may drop it temporarily.
2642 */
2643 void
2644 knote_fdclose(struct proc *p, int fd)
2645 {
2646 struct filedesc *fdp = p->p_fd;
2647 struct klist *list;
2648 struct knote *kn;
2649
2650 list = &fdp->fd_knlist[fd];
2651 while ((kn = SLIST_FIRST(list)) != NULL) {
2652 struct kqueue *kq = kn->kn_kq;
2653
2654 if (kq->kq_p != p)
2655 panic("%s: proc mismatch (kq->kq_p=%p != p=%p)",
2656 __func__, kq->kq_p, p);
2657
2658 kqlock(kq);
2659 proc_fdunlock(p);
2660
2661 /*
2662 * Convert the lock to a drop ref.
2663 * If we get it, go ahead and drop it.
2664 * Otherwise, we waited for it to
2665 * be dropped by the other guy, so
2666 * it is safe to move on in the list.
2667 */
2668 if (kqlock2knotedrop(kq, kn)) {
2669 kn->kn_fop->f_detach(kn);
2670 knote_drop(kn, p);
2671 }
2672
2673 proc_fdlock(p);
2674
2675 /* the fd tables may have changed - start over */
2676 list = &fdp->fd_knlist[fd];
2677 }
2678 }
2679
2680 /* proc_fdlock held on entry (and exit) */
2681 static int
2682 knote_fdpattach(struct knote *kn, struct filedesc *fdp, struct proc *p)
2683 {
2684 struct klist *list = NULL;
2685
2686 if (! kn->kn_fop->f_isfd) {
2687 if (fdp->fd_knhashmask == 0)
2688 fdp->fd_knhash = hashinit(CONFIG_KN_HASHSIZE, M_KQUEUE,
2689 &fdp->fd_knhashmask);
2690 list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
2691 } else {
2692 if ((u_int)fdp->fd_knlistsize <= kn->kn_id) {
2693 u_int size = 0;
2694
2695 if (kn->kn_id >= (uint64_t)p->p_rlimit[RLIMIT_NOFILE].rlim_cur
2696 || kn->kn_id >= (uint64_t)maxfiles)
2697 return (EINVAL);
2698
2699 /* have to grow the fd_knlist */
2700 size = fdp->fd_knlistsize;
2701 while (size <= kn->kn_id)
2702 size += KQEXTENT;
2703
2704 if (size >= (UINT_MAX/sizeof(struct klist *)))
2705 return (EINVAL);
2706
2707 MALLOC(list, struct klist *,
2708 size * sizeof(struct klist *), M_KQUEUE, M_WAITOK);
2709 if (list == NULL)
2710 return (ENOMEM);
2711
2712 bcopy((caddr_t)fdp->fd_knlist, (caddr_t)list,
2713 fdp->fd_knlistsize * sizeof(struct klist *));
2714 bzero((caddr_t)list +
2715 fdp->fd_knlistsize * sizeof(struct klist *),
2716 (size - fdp->fd_knlistsize) * sizeof(struct klist *));
2717 FREE(fdp->fd_knlist, M_KQUEUE);
2718 fdp->fd_knlist = list;
2719 fdp->fd_knlistsize = size;
2720 }
2721 list = &fdp->fd_knlist[kn->kn_id];
2722 }
2723 SLIST_INSERT_HEAD(list, kn, kn_link);
2724 return (0);
2725 }
2726
2727
2728
2729 /*
2730 * should be called at spl == 0, since we don't want to hold spl
2731 * while calling fdrop and free.
2732 */
2733 static void
2734 knote_drop(struct knote *kn, __unused struct proc *ctxp)
2735 {
2736 struct kqueue *kq = kn->kn_kq;
2737 struct proc *p = kq->kq_p;
2738 struct filedesc *fdp = p->p_fd;
2739 struct klist *list;
2740 int needswakeup;
2741
2742 proc_fdlock(p);
2743 if (kn->kn_fop->f_isfd)
2744 list = &fdp->fd_knlist[kn->kn_id];
2745 else
2746 list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
2747
2748 SLIST_REMOVE(list, kn, knote, kn_link);
2749 kqlock(kq);
2750 knote_dequeue(kn);
2751 needswakeup = (kn->kn_status & KN_USEWAIT);
2752 kqunlock(kq);
2753 proc_fdunlock(p);
2754
2755 if (needswakeup)
2756 wait_queue_wakeup_all((wait_queue_t)kq->kq_wqs, &kn->kn_status,
2757 THREAD_AWAKENED);
2758
2759 if (kn->kn_fop->f_isfd)
2760 fp_drop(p, kn->kn_id, kn->kn_fp, 0);
2761
2762 knote_free(kn);
2763 }
2764
2765 /* called with kqueue lock held */
2766 static void
2767 knote_activate(struct knote *kn, int propagate)
2768 {
2769 struct kqueue *kq = kn->kn_kq;
2770
2771 kn->kn_status |= KN_ACTIVE;
2772 knote_enqueue(kn);
2773 kqueue_wakeup(kq, 0);
2774
2775 /* this is a real event: wake up the parent kq, too */
2776 if (propagate)
2777 KNOTE(&kq->kq_sel.si_note, 0);
2778 }
2779
2780 /* called with kqueue lock held */
2781 static void
2782 knote_deactivate(struct knote *kn)
2783 {
2784 kn->kn_status &= ~KN_ACTIVE;
2785 knote_dequeue(kn);
2786 }
2787
2788 /* called with kqueue lock held */
2789 static void
2790 knote_enqueue(struct knote *kn)
2791 {
2792 if ((kn->kn_status & (KN_QUEUED | KN_STAYQUEUED)) == KN_STAYQUEUED ||
2793 (kn->kn_status & (KN_QUEUED | KN_STAYQUEUED | KN_DISABLED)) == 0) {
2794 struct kqtailq *tq = kn->kn_tq;
2795 struct kqueue *kq = kn->kn_kq;
2796
2797 TAILQ_INSERT_TAIL(tq, kn, kn_tqe);
2798 kn->kn_status |= KN_QUEUED;
2799 kq->kq_count++;
2800 }
2801 }
2802
2803 /* called with kqueue lock held */
2804 static void
2805 knote_dequeue(struct knote *kn)
2806 {
2807 struct kqueue *kq = kn->kn_kq;
2808
2809 if ((kn->kn_status & (KN_QUEUED | KN_STAYQUEUED)) == KN_QUEUED) {
2810 struct kqtailq *tq = kn->kn_tq;
2811
2812 TAILQ_REMOVE(tq, kn, kn_tqe);
2813 kn->kn_tq = &kq->kq_head;
2814 kn->kn_status &= ~KN_QUEUED;
2815 kq->kq_count--;
2816 }
2817 }
2818
2819 void
2820 knote_init(void)
2821 {
2822 knote_zone = zinit(sizeof(struct knote), 8192*sizeof(struct knote),
2823 8192, "knote zone");
2824
2825 /* allocate kq lock group attribute and group */
2826 kq_lck_grp_attr = lck_grp_attr_alloc_init();
2827
2828 kq_lck_grp = lck_grp_alloc_init("kqueue", kq_lck_grp_attr);
2829
2830 /* Allocate kq lock attribute */
2831 kq_lck_attr = lck_attr_alloc_init();
2832
2833 /* Initialize the timer filter lock */
2834 lck_mtx_init(&_filt_timerlock, kq_lck_grp, kq_lck_attr);
2835
2836 #if VM_PRESSURE_EVENTS
2837 /* Initialize the vm pressure list lock */
2838 vm_pressure_init(kq_lck_grp, kq_lck_attr);
2839 #endif
2840
2841 #if CONFIG_MEMORYSTATUS
2842 /* Initialize the memorystatus list lock */
2843 memorystatus_kevent_init(kq_lck_grp, kq_lck_attr);
2844 #endif
2845 }
2846 SYSINIT(knote, SI_SUB_PSEUDO, SI_ORDER_ANY, knote_init, NULL)
2847
2848 static struct knote *
2849 knote_alloc(void)
2850 {
2851 return ((struct knote *)zalloc(knote_zone));
2852 }
2853
2854 static void
2855 knote_free(struct knote *kn)
2856 {
2857 zfree(knote_zone, kn);
2858 }
2859
2860 #if SOCKETS
2861 #include <sys/param.h>
2862 #include <sys/socket.h>
2863 #include <sys/protosw.h>
2864 #include <sys/domain.h>
2865 #include <sys/mbuf.h>
2866 #include <sys/kern_event.h>
2867 #include <sys/malloc.h>
2868 #include <sys/sys_domain.h>
2869 #include <sys/syslog.h>
2870
2871 #ifndef ROUNDUP64
2872 #define ROUNDUP64(x) P2ROUNDUP((x), sizeof (u_int64_t))
2873 #endif
2874
2875 #ifndef ADVANCE64
2876 #define ADVANCE64(p, n) (void*)((char *)(p) + ROUNDUP64(n))
2877 #endif
2878
2879 static lck_grp_attr_t *kev_lck_grp_attr;
2880 static lck_attr_t *kev_lck_attr;
2881 static lck_grp_t *kev_lck_grp;
2882 static decl_lck_rw_data(,kev_lck_data);
2883 static lck_rw_t *kev_rwlock = &kev_lck_data;
2884
2885 static int kev_attach(struct socket *so, int proto, struct proc *p);
2886 static int kev_detach(struct socket *so);
2887 static int kev_control(struct socket *so, u_long cmd, caddr_t data,
2888 struct ifnet *ifp, struct proc *p);
2889 static lck_mtx_t * event_getlock(struct socket *, int);
2890 static int event_lock(struct socket *, int, void *);
2891 static int event_unlock(struct socket *, int, void *);
2892
2893 static int event_sofreelastref(struct socket *);
2894 static void kev_delete(struct kern_event_pcb *);
2895
2896 static struct pr_usrreqs event_usrreqs = {
2897 .pru_attach = kev_attach,
2898 .pru_control = kev_control,
2899 .pru_detach = kev_detach,
2900 .pru_soreceive = soreceive,
2901 };
2902
2903 static struct protosw eventsw[] = {
2904 {
2905 .pr_type = SOCK_RAW,
2906 .pr_protocol = SYSPROTO_EVENT,
2907 .pr_flags = PR_ATOMIC,
2908 .pr_usrreqs = &event_usrreqs,
2909 .pr_lock = event_lock,
2910 .pr_unlock = event_unlock,
2911 .pr_getlock = event_getlock,
2912 }
2913 };
2914
2915 __private_extern__ int kevt_getstat SYSCTL_HANDLER_ARGS;
2916 __private_extern__ int kevt_pcblist SYSCTL_HANDLER_ARGS;
2917
2918 SYSCTL_NODE(_net_systm, OID_AUTO, kevt,
2919 CTLFLAG_RW|CTLFLAG_LOCKED, 0, "Kernel event family");
2920
2921 struct kevtstat kevtstat;
2922 SYSCTL_PROC(_net_systm_kevt, OID_AUTO, stats,
2923 CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0,
2924 kevt_getstat, "S,kevtstat", "");
2925
2926 SYSCTL_PROC(_net_systm_kevt, OID_AUTO, pcblist,
2927 CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0,
2928 kevt_pcblist, "S,xkevtpcb", "");
2929
2930 static lck_mtx_t *
2931 event_getlock(struct socket *so, int locktype)
2932 {
2933 #pragma unused(locktype)
2934 struct kern_event_pcb *ev_pcb = (struct kern_event_pcb *)so->so_pcb;
2935
2936 if (so->so_pcb != NULL) {
2937 if (so->so_usecount < 0)
2938 panic("%s: so=%p usecount=%d lrh= %s\n", __func__,
2939 so, so->so_usecount, solockhistory_nr(so));
2940 /* NOTREACHED */
2941 } else {
2942 panic("%s: so=%p NULL NO so_pcb %s\n", __func__,
2943 so, solockhistory_nr(so));
2944 /* NOTREACHED */
2945 }
2946 return (&ev_pcb->evp_mtx);
2947 }
2948
2949 static int
2950 event_lock(struct socket *so, int refcount, void *lr)
2951 {
2952 void *lr_saved;
2953
2954 if (lr == NULL)
2955 lr_saved = __builtin_return_address(0);
2956 else
2957 lr_saved = lr;
2958
2959 if (so->so_pcb != NULL) {
2960 lck_mtx_lock(&((struct kern_event_pcb *)so->so_pcb)->evp_mtx);
2961 } else {
2962 panic("%s: so=%p NO PCB! lr=%p lrh= %s\n", __func__,
2963 so, lr_saved, solockhistory_nr(so));
2964 /* NOTREACHED */
2965 }
2966
2967 if (so->so_usecount < 0) {
2968 panic("%s: so=%p so_pcb=%p lr=%p ref=%d lrh= %s\n", __func__,
2969 so, so->so_pcb, lr_saved, so->so_usecount,
2970 solockhistory_nr(so));
2971 /* NOTREACHED */
2972 }
2973
2974 if (refcount)
2975 so->so_usecount++;
2976
2977 so->lock_lr[so->next_lock_lr] = lr_saved;
2978 so->next_lock_lr = (so->next_lock_lr+1) % SO_LCKDBG_MAX;
2979 return (0);
2980 }
2981
2982 static int
2983 event_unlock(struct socket *so, int refcount, void *lr)
2984 {
2985 void *lr_saved;
2986 lck_mtx_t *mutex_held;
2987
2988 if (lr == NULL)
2989 lr_saved = __builtin_return_address(0);
2990 else
2991 lr_saved = lr;
2992
2993 if (refcount)
2994 so->so_usecount--;
2995
2996 if (so->so_usecount < 0) {
2997 panic("%s: so=%p usecount=%d lrh= %s\n", __func__,
2998 so, so->so_usecount, solockhistory_nr(so));
2999 /* NOTREACHED */
3000 }
3001 if (so->so_pcb == NULL) {
3002 panic("%s: so=%p NO PCB usecount=%d lr=%p lrh= %s\n", __func__,
3003 so, so->so_usecount, (void *)lr_saved,
3004 solockhistory_nr(so));
3005 /* NOTREACHED */
3006 }
3007 mutex_held = (&((struct kern_event_pcb *)so->so_pcb)->evp_mtx);
3008
3009 lck_mtx_assert(mutex_held, LCK_MTX_ASSERT_OWNED);
3010 so->unlock_lr[so->next_unlock_lr] = lr_saved;
3011 so->next_unlock_lr = (so->next_unlock_lr+1) % SO_LCKDBG_MAX;
3012
3013 if (so->so_usecount == 0) {
3014 VERIFY(so->so_flags & SOF_PCBCLEARING);
3015 event_sofreelastref(so);
3016 } else {
3017 lck_mtx_unlock(mutex_held);
3018 }
3019
3020 return (0);
3021 }
3022
3023 static int
3024 event_sofreelastref(struct socket *so)
3025 {
3026 struct kern_event_pcb *ev_pcb = (struct kern_event_pcb *)so->so_pcb;
3027
3028 lck_mtx_assert(&(ev_pcb->evp_mtx), LCK_MTX_ASSERT_OWNED);
3029
3030 so->so_pcb = NULL;
3031
3032 /*
3033 * Disable upcall in the event another thread is in kev_post_msg()
3034 * appending record to the receive socket buffer, since sbwakeup()
3035 * may release the socket lock otherwise.
3036 */
3037 so->so_rcv.sb_flags &= ~SB_UPCALL;
3038 so->so_snd.sb_flags &= ~SB_UPCALL;
3039 so->so_event = sonullevent;
3040 lck_mtx_unlock(&(ev_pcb->evp_mtx));
3041
3042 lck_mtx_assert(&(ev_pcb->evp_mtx), LCK_MTX_ASSERT_NOTOWNED);
3043 lck_rw_lock_exclusive(kev_rwlock);
3044 LIST_REMOVE(ev_pcb, evp_link);
3045 kevtstat.kes_pcbcount--;
3046 kevtstat.kes_gencnt++;
3047 lck_rw_done(kev_rwlock);
3048 kev_delete(ev_pcb);
3049
3050 sofreelastref(so, 1);
3051 return (0);
3052 }
3053
3054 static int event_proto_count = (sizeof (eventsw) / sizeof (struct protosw));
3055
3056 static
3057 struct kern_event_head kern_event_head;
3058
3059 static u_int32_t static_event_id = 0;
3060
3061 #define EVPCB_ZONE_MAX 65536
3062 #define EVPCB_ZONE_NAME "kerneventpcb"
3063 static struct zone *ev_pcb_zone;
3064
3065 /*
3066 * Install the protosw's for the NKE manager. Invoked at extension load time
3067 */
3068 void
3069 kern_event_init(struct domain *dp)
3070 {
3071 struct protosw *pr;
3072 int i;
3073
3074 VERIFY(!(dp->dom_flags & DOM_INITIALIZED));
3075 VERIFY(dp == systemdomain);
3076
3077 kev_lck_grp_attr = lck_grp_attr_alloc_init();
3078 if (kev_lck_grp_attr == NULL) {
3079 panic("%s: lck_grp_attr_alloc_init failed\n", __func__);
3080 /* NOTREACHED */
3081 }
3082
3083 kev_lck_grp = lck_grp_alloc_init("Kernel Event Protocol",
3084 kev_lck_grp_attr);
3085 if (kev_lck_grp == NULL) {
3086 panic("%s: lck_grp_alloc_init failed\n", __func__);
3087 /* NOTREACHED */
3088 }
3089
3090 kev_lck_attr = lck_attr_alloc_init();
3091 if (kev_lck_attr == NULL) {
3092 panic("%s: lck_attr_alloc_init failed\n", __func__);
3093 /* NOTREACHED */
3094 }
3095
3096 lck_rw_init(kev_rwlock, kev_lck_grp, kev_lck_attr);
3097 if (kev_rwlock == NULL) {
3098 panic("%s: lck_mtx_alloc_init failed\n", __func__);
3099 /* NOTREACHED */
3100 }
3101
3102 for (i = 0, pr = &eventsw[0]; i < event_proto_count; i++, pr++)
3103 net_add_proto(pr, dp, 1);
3104
3105 ev_pcb_zone = zinit(sizeof(struct kern_event_pcb),
3106 EVPCB_ZONE_MAX * sizeof(struct kern_event_pcb), 0, EVPCB_ZONE_NAME);
3107 if (ev_pcb_zone == NULL) {
3108 panic("%s: failed allocating ev_pcb_zone", __func__);
3109 /* NOTREACHED */
3110 }
3111 zone_change(ev_pcb_zone, Z_EXPAND, TRUE);
3112 zone_change(ev_pcb_zone, Z_CALLERACCT, TRUE);
3113 }
3114
3115 static int
3116 kev_attach(struct socket *so, __unused int proto, __unused struct proc *p)
3117 {
3118 int error = 0;
3119 struct kern_event_pcb *ev_pcb;
3120
3121 error = soreserve(so, KEV_SNDSPACE, KEV_RECVSPACE);
3122 if (error != 0)
3123 return (error);
3124
3125 if ((ev_pcb = (struct kern_event_pcb *)zalloc(ev_pcb_zone)) == NULL) {
3126 return (ENOBUFS);
3127 }
3128 bzero(ev_pcb, sizeof(struct kern_event_pcb));
3129 lck_mtx_init(&ev_pcb->evp_mtx, kev_lck_grp, kev_lck_attr);
3130
3131 ev_pcb->evp_socket = so;
3132 ev_pcb->evp_vendor_code_filter = 0xffffffff;
3133
3134 so->so_pcb = (caddr_t) ev_pcb;
3135 lck_rw_lock_exclusive(kev_rwlock);
3136 LIST_INSERT_HEAD(&kern_event_head, ev_pcb, evp_link);
3137 kevtstat.kes_pcbcount++;
3138 kevtstat.kes_gencnt++;
3139 lck_rw_done(kev_rwlock);
3140
3141 return (error);
3142 }
3143
3144 static void
3145 kev_delete(struct kern_event_pcb *ev_pcb)
3146 {
3147 VERIFY(ev_pcb != NULL);
3148 lck_mtx_destroy(&ev_pcb->evp_mtx, kev_lck_grp);
3149 zfree(ev_pcb_zone, ev_pcb);
3150 }
3151
3152 static int
3153 kev_detach(struct socket *so)
3154 {
3155 struct kern_event_pcb *ev_pcb = (struct kern_event_pcb *) so->so_pcb;
3156
3157 if (ev_pcb != NULL) {
3158 soisdisconnected(so);
3159 so->so_flags |= SOF_PCBCLEARING;
3160 }
3161
3162 return (0);
3163 }
3164
3165 /*
3166 * For now, kev_vendor_code and mbuf_tags use the same
3167 * mechanism.
3168 */
3169 errno_t kev_vendor_code_find(
3170 const char *string,
3171 u_int32_t *out_vendor_code)
3172 {
3173 if (strlen(string) >= KEV_VENDOR_CODE_MAX_STR_LEN) {
3174 return (EINVAL);
3175 }
3176 return (net_str_id_find_internal(string, out_vendor_code,
3177 NSI_VENDOR_CODE, 1));
3178 }
3179
3180 errno_t
3181 kev_msg_post(struct kev_msg *event_msg)
3182 {
3183 mbuf_tag_id_t min_vendor, max_vendor;
3184
3185 net_str_id_first_last(&min_vendor, &max_vendor, NSI_VENDOR_CODE);
3186
3187 if (event_msg == NULL)
3188 return (EINVAL);
3189
3190 /*
3191 * Limit third parties to posting events for registered vendor codes
3192 * only
3193 */
3194 if (event_msg->vendor_code < min_vendor ||
3195 event_msg->vendor_code > max_vendor) {
3196 OSIncrementAtomic64((SInt64 *)&kevtstat.kes_badvendor);
3197 return (EINVAL);
3198 }
3199 return (kev_post_msg(event_msg));
3200 }
3201
3202 int
3203 kev_post_msg(struct kev_msg *event_msg)
3204 {
3205 struct mbuf *m, *m2;
3206 struct kern_event_pcb *ev_pcb;
3207 struct kern_event_msg *ev;
3208 char *tmp;
3209 u_int32_t total_size;
3210 int i;
3211
3212 /* Verify the message is small enough to fit in one mbuf w/o cluster */
3213 total_size = KEV_MSG_HEADER_SIZE;
3214
3215 for (i = 0; i < 5; i++) {
3216 if (event_msg->dv[i].data_length == 0)
3217 break;
3218 total_size += event_msg->dv[i].data_length;
3219 }
3220
3221 if (total_size > MLEN) {
3222 OSIncrementAtomic64((SInt64 *)&kevtstat.kes_toobig);
3223 return (EMSGSIZE);
3224 }
3225
3226 m = m_get(M_DONTWAIT, MT_DATA);
3227 if (m == 0) {
3228 OSIncrementAtomic64((SInt64 *)&kevtstat.kes_nomem);
3229 return (ENOMEM);
3230 }
3231 ev = mtod(m, struct kern_event_msg *);
3232 total_size = KEV_MSG_HEADER_SIZE;
3233
3234 tmp = (char *) &ev->event_data[0];
3235 for (i = 0; i < 5; i++) {
3236 if (event_msg->dv[i].data_length == 0)
3237 break;
3238
3239 total_size += event_msg->dv[i].data_length;
3240 bcopy(event_msg->dv[i].data_ptr, tmp,
3241 event_msg->dv[i].data_length);
3242 tmp += event_msg->dv[i].data_length;
3243 }
3244
3245 ev->id = ++static_event_id;
3246 ev->total_size = total_size;
3247 ev->vendor_code = event_msg->vendor_code;
3248 ev->kev_class = event_msg->kev_class;
3249 ev->kev_subclass = event_msg->kev_subclass;
3250 ev->event_code = event_msg->event_code;
3251
3252 m->m_len = total_size;
3253 lck_rw_lock_shared(kev_rwlock);
3254 for (ev_pcb = LIST_FIRST(&kern_event_head);
3255 ev_pcb;
3256 ev_pcb = LIST_NEXT(ev_pcb, evp_link)) {
3257 lck_mtx_lock(&ev_pcb->evp_mtx);
3258 if (ev_pcb->evp_socket->so_pcb == NULL) {
3259 lck_mtx_unlock(&ev_pcb->evp_mtx);
3260 continue;
3261 }
3262 if (ev_pcb->evp_vendor_code_filter != KEV_ANY_VENDOR) {
3263 if (ev_pcb->evp_vendor_code_filter != ev->vendor_code) {
3264 lck_mtx_unlock(&ev_pcb->evp_mtx);
3265 continue;
3266 }
3267
3268 if (ev_pcb->evp_class_filter != KEV_ANY_CLASS) {
3269 if (ev_pcb->evp_class_filter != ev->kev_class) {
3270 lck_mtx_unlock(&ev_pcb->evp_mtx);
3271 continue;
3272 }
3273
3274 if ((ev_pcb->evp_subclass_filter !=
3275 KEV_ANY_SUBCLASS) &&
3276 (ev_pcb->evp_subclass_filter !=
3277 ev->kev_subclass)) {
3278 lck_mtx_unlock(&ev_pcb->evp_mtx);
3279 continue;
3280 }
3281 }
3282 }
3283
3284 m2 = m_copym(m, 0, m->m_len, M_NOWAIT);
3285 if (m2 == 0) {
3286 OSIncrementAtomic64((SInt64 *)&kevtstat.kes_nomem);
3287 m_free(m);
3288 lck_mtx_unlock(&ev_pcb->evp_mtx);
3289 lck_rw_done(kev_rwlock);
3290 return (ENOMEM);
3291 }
3292 if (sbappendrecord(&ev_pcb->evp_socket->so_rcv, m2)) {
3293 /*
3294 * We use "m" for the socket stats as it would be
3295 * unsafe to use "m2"
3296 */
3297 so_inc_recv_data_stat(ev_pcb->evp_socket,
3298 1, m->m_len, SO_TC_BE);
3299
3300 sorwakeup(ev_pcb->evp_socket);
3301 OSIncrementAtomic64((SInt64 *)&kevtstat.kes_posted);
3302 } else {
3303 OSIncrementAtomic64((SInt64 *)&kevtstat.kes_fullsock);
3304 }
3305 lck_mtx_unlock(&ev_pcb->evp_mtx);
3306 }
3307 m_free(m);
3308 lck_rw_done(kev_rwlock);
3309
3310 return (0);
3311 }
3312
3313 static int
3314 kev_control(struct socket *so,
3315 u_long cmd,
3316 caddr_t data,
3317 __unused struct ifnet *ifp,
3318 __unused struct proc *p)
3319 {
3320 struct kev_request *kev_req = (struct kev_request *) data;
3321 struct kern_event_pcb *ev_pcb;
3322 struct kev_vendor_code *kev_vendor;
3323 u_int32_t *id_value = (u_int32_t *) data;
3324
3325 switch (cmd) {
3326 case SIOCGKEVID:
3327 *id_value = static_event_id;
3328 break;
3329 case SIOCSKEVFILT:
3330 ev_pcb = (struct kern_event_pcb *) so->so_pcb;
3331 ev_pcb->evp_vendor_code_filter = kev_req->vendor_code;
3332 ev_pcb->evp_class_filter = kev_req->kev_class;
3333 ev_pcb->evp_subclass_filter = kev_req->kev_subclass;
3334 break;
3335 case SIOCGKEVFILT:
3336 ev_pcb = (struct kern_event_pcb *) so->so_pcb;
3337 kev_req->vendor_code = ev_pcb->evp_vendor_code_filter;
3338 kev_req->kev_class = ev_pcb->evp_class_filter;
3339 kev_req->kev_subclass = ev_pcb->evp_subclass_filter;
3340 break;
3341 case SIOCGKEVVENDOR:
3342 kev_vendor = (struct kev_vendor_code *)data;
3343 /* Make sure string is NULL terminated */
3344 kev_vendor->vendor_string[KEV_VENDOR_CODE_MAX_STR_LEN-1] = 0;
3345 return (net_str_id_find_internal(kev_vendor->vendor_string,
3346 &kev_vendor->vendor_code, NSI_VENDOR_CODE, 0));
3347 default:
3348 return (ENOTSUP);
3349 }
3350
3351 return (0);
3352 }
3353
3354 int
3355 kevt_getstat SYSCTL_HANDLER_ARGS
3356 {
3357 #pragma unused(oidp, arg1, arg2)
3358 int error = 0;
3359
3360 lck_rw_lock_shared(kev_rwlock);
3361
3362 if (req->newptr != USER_ADDR_NULL) {
3363 error = EPERM;
3364 goto done;
3365 }
3366 if (req->oldptr == USER_ADDR_NULL) {
3367 req->oldidx = sizeof(struct kevtstat);
3368 goto done;
3369 }
3370
3371 error = SYSCTL_OUT(req, &kevtstat,
3372 MIN(sizeof(struct kevtstat), req->oldlen));
3373 done:
3374 lck_rw_done(kev_rwlock);
3375
3376 return (error);
3377 }
3378
3379 __private_extern__ int
3380 kevt_pcblist SYSCTL_HANDLER_ARGS
3381 {
3382 #pragma unused(oidp, arg1, arg2)
3383 int error = 0;
3384 int n, i;
3385 struct xsystmgen xsg;
3386 void *buf = NULL;
3387 size_t item_size = ROUNDUP64(sizeof (struct xkevtpcb)) +
3388 ROUNDUP64(sizeof (struct xsocket_n)) +
3389 2 * ROUNDUP64(sizeof (struct xsockbuf_n)) +
3390 ROUNDUP64(sizeof (struct xsockstat_n));
3391 struct kern_event_pcb *ev_pcb;
3392
3393 buf = _MALLOC(item_size, M_TEMP, M_WAITOK | M_ZERO);
3394 if (buf == NULL)
3395 return (ENOMEM);
3396
3397 lck_rw_lock_shared(kev_rwlock);
3398
3399 n = kevtstat.kes_pcbcount;
3400
3401 if (req->oldptr == USER_ADDR_NULL) {
3402 req->oldidx = (n + n/8) * item_size;
3403 goto done;
3404 }
3405 if (req->newptr != USER_ADDR_NULL) {
3406 error = EPERM;
3407 goto done;
3408 }
3409 bzero(&xsg, sizeof (xsg));
3410 xsg.xg_len = sizeof (xsg);
3411 xsg.xg_count = n;
3412 xsg.xg_gen = kevtstat.kes_gencnt;
3413 xsg.xg_sogen = so_gencnt;
3414 error = SYSCTL_OUT(req, &xsg, sizeof (xsg));
3415 if (error) {
3416 goto done;
3417 }
3418 /*
3419 * We are done if there is no pcb
3420 */
3421 if (n == 0) {
3422 goto done;
3423 }
3424
3425 i = 0;
3426 for (i = 0, ev_pcb = LIST_FIRST(&kern_event_head);
3427 i < n && ev_pcb != NULL;
3428 i++, ev_pcb = LIST_NEXT(ev_pcb, evp_link)) {
3429 struct xkevtpcb *xk = (struct xkevtpcb *)buf;
3430 struct xsocket_n *xso = (struct xsocket_n *)
3431 ADVANCE64(xk, sizeof (*xk));
3432 struct xsockbuf_n *xsbrcv = (struct xsockbuf_n *)
3433 ADVANCE64(xso, sizeof (*xso));
3434 struct xsockbuf_n *xsbsnd = (struct xsockbuf_n *)
3435 ADVANCE64(xsbrcv, sizeof (*xsbrcv));
3436 struct xsockstat_n *xsostats = (struct xsockstat_n *)
3437 ADVANCE64(xsbsnd, sizeof (*xsbsnd));
3438
3439 bzero(buf, item_size);
3440
3441 lck_mtx_lock(&ev_pcb->evp_mtx);
3442
3443 xk->kep_len = sizeof(struct xkevtpcb);
3444 xk->kep_kind = XSO_EVT;
3445 xk->kep_evtpcb = (uint64_t)VM_KERNEL_ADDRPERM(ev_pcb);
3446 xk->kep_vendor_code_filter = ev_pcb->evp_vendor_code_filter;
3447 xk->kep_class_filter = ev_pcb->evp_class_filter;
3448 xk->kep_subclass_filter = ev_pcb->evp_subclass_filter;
3449
3450 sotoxsocket_n(ev_pcb->evp_socket, xso);
3451 sbtoxsockbuf_n(ev_pcb->evp_socket ?
3452 &ev_pcb->evp_socket->so_rcv : NULL, xsbrcv);
3453 sbtoxsockbuf_n(ev_pcb->evp_socket ?
3454 &ev_pcb->evp_socket->so_snd : NULL, xsbsnd);
3455 sbtoxsockstat_n(ev_pcb->evp_socket, xsostats);
3456
3457 lck_mtx_unlock(&ev_pcb->evp_mtx);
3458
3459 error = SYSCTL_OUT(req, buf, item_size);
3460 }
3461
3462 if (error == 0) {
3463 /*
3464 * Give the user an updated idea of our state.
3465 * If the generation differs from what we told
3466 * her before, she knows that something happened
3467 * while we were processing this request, and it
3468 * might be necessary to retry.
3469 */
3470 bzero(&xsg, sizeof (xsg));
3471 xsg.xg_len = sizeof (xsg);
3472 xsg.xg_count = n;
3473 xsg.xg_gen = kevtstat.kes_gencnt;
3474 xsg.xg_sogen = so_gencnt;
3475 error = SYSCTL_OUT(req, &xsg, sizeof (xsg));
3476 if (error) {
3477 goto done;
3478 }
3479 }
3480
3481 done:
3482 lck_rw_done(kev_rwlock);
3483
3484 return (error);
3485 }
3486
3487 #endif /* SOCKETS */
3488
3489
3490 int
3491 fill_kqueueinfo(struct kqueue *kq, struct kqueue_info * kinfo)
3492 {
3493 struct vinfo_stat * st;
3494
3495 st = &kinfo->kq_stat;
3496
3497 st->vst_size = kq->kq_count;
3498 if (kq->kq_state & KQ_KEV64)
3499 st->vst_blksize = sizeof(struct kevent64_s);
3500 else
3501 st->vst_blksize = sizeof(struct kevent);
3502 st->vst_mode = S_IFIFO;
3503 if (kq->kq_state & KQ_SEL)
3504 kinfo->kq_state |= PROC_KQUEUE_SELECT;
3505 if (kq->kq_state & KQ_SLEEP)
3506 kinfo->kq_state |= PROC_KQUEUE_SLEEP;
3507
3508 return (0);
3509 }
3510
3511
3512 void
3513 knote_markstayqueued(struct knote *kn)
3514 {
3515 kqlock(kn->kn_kq);
3516 kn->kn_status |= KN_STAYQUEUED;
3517 knote_enqueue(kn);
3518 kqunlock(kn->kn_kq);
3519 }