]> git.saurik.com Git - apple/xnu.git/blob - osfmk/i386/trap.c
3a99e32a7de3cc328f70cf115a0a67db5e88cf05
[apple/xnu.git] / osfmk / i386 / trap.c
1 /*
2 * Copyright (c) 2000-2012 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * @OSF_COPYRIGHT@
30 */
31 /*
32 * Mach Operating System
33 * Copyright (c) 1991,1990,1989,1988 Carnegie Mellon University
34 * All Rights Reserved.
35 *
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
41 *
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
45 *
46 * Carnegie Mellon requests users of this software to return to
47 *
48 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
49 * School of Computer Science
50 * Carnegie Mellon University
51 * Pittsburgh PA 15213-3890
52 *
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
55 */
56 /*
57 */
58
59 /*
60 * Hardware trap/fault handler.
61 */
62
63 #include <mach_kdp.h>
64 #include <mach_ldebug.h>
65
66 #include <types.h>
67 #include <i386/eflags.h>
68 #include <i386/trap.h>
69 #include <i386/pmap.h>
70 #include <i386/fpu.h>
71 #include <i386/misc_protos.h> /* panic_io_port_read() */
72 #include <i386/lapic.h>
73
74 #include <mach/exception.h>
75 #include <mach/kern_return.h>
76 #include <mach/vm_param.h>
77 #include <mach/i386/thread_status.h>
78
79 #include <vm/vm_kern.h>
80 #include <vm/vm_fault.h>
81
82 #include <kern/kern_types.h>
83 #include <kern/processor.h>
84 #include <kern/thread.h>
85 #include <kern/task.h>
86 #include <kern/sched.h>
87 #include <kern/sched_prim.h>
88 #include <kern/exception.h>
89 #include <kern/spl.h>
90 #include <kern/misc_protos.h>
91 #include <kern/debug.h>
92 #if CONFIG_TELEMETRY
93 #include <kern/telemetry.h>
94 #endif
95 #include <sys/kdebug.h>
96 #include <prng/random.h>
97
98 #include <string.h>
99
100 #include <i386/postcode.h>
101 #include <i386/mp_desc.h>
102 #include <i386/proc_reg.h>
103 #if CONFIG_MCA
104 #include <i386/machine_check.h>
105 #endif
106 #include <mach/i386/syscall_sw.h>
107
108 #include <libkern/OSDebug.h>
109 #include <i386/cpu_threads.h>
110 #include <machine/pal_routines.h>
111
112 extern void throttle_lowpri_io(int);
113 extern void kprint_state(x86_saved_state64_t *saved_state);
114
115 /*
116 * Forward declarations
117 */
118 static void user_page_fault_continue(kern_return_t kret);
119 static void panic_trap(x86_saved_state64_t *saved_state);
120 static void set_recovery_ip(x86_saved_state64_t *saved_state, vm_offset_t ip);
121
122 volatile perfCallback perfTrapHook = NULL; /* Pointer to CHUD trap hook routine */
123
124 #if CONFIG_DTRACE
125 /* See <rdar://problem/4613924> */
126 perfCallback tempDTraceTrapHook = NULL; /* Pointer to DTrace fbt trap hook routine */
127
128 extern boolean_t dtrace_tally_fault(user_addr_t);
129 #endif
130
131 extern boolean_t pmap_smep_enabled;
132 extern boolean_t pmap_smap_enabled;
133
134 void
135 thread_syscall_return(
136 kern_return_t ret)
137 {
138 thread_t thr_act = current_thread();
139 boolean_t is_mach;
140 int code;
141
142 pal_register_cache_state(thr_act, DIRTY);
143
144 if (thread_is_64bit(thr_act)) {
145 x86_saved_state64_t *regs;
146
147 regs = USER_REGS64(thr_act);
148
149 code = (int) (regs->rax & SYSCALL_NUMBER_MASK);
150 is_mach = (regs->rax & SYSCALL_CLASS_MASK)
151 == (SYSCALL_CLASS_MACH << SYSCALL_CLASS_SHIFT);
152 if (kdebug_enable && is_mach) {
153 /* Mach trap */
154 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
155 MACHDBG_CODE(DBG_MACH_EXCP_SC,code)|DBG_FUNC_END,
156 ret, 0, 0, 0, 0);
157 }
158 regs->rax = ret;
159 #if DEBUG
160 if (is_mach)
161 DEBUG_KPRINT_SYSCALL_MACH(
162 "thread_syscall_return: 64-bit mach ret=%u\n",
163 ret);
164 else
165 DEBUG_KPRINT_SYSCALL_UNIX(
166 "thread_syscall_return: 64-bit unix ret=%u\n",
167 ret);
168 #endif
169 } else {
170 x86_saved_state32_t *regs;
171
172 regs = USER_REGS32(thr_act);
173
174 code = ((int) regs->eax);
175 is_mach = (code < 0);
176 if (kdebug_enable && is_mach) {
177 /* Mach trap */
178 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
179 MACHDBG_CODE(DBG_MACH_EXCP_SC,-code)|DBG_FUNC_END,
180 ret, 0, 0, 0, 0);
181 }
182 regs->eax = ret;
183 #if DEBUG
184 if (is_mach)
185 DEBUG_KPRINT_SYSCALL_MACH(
186 "thread_syscall_return: 32-bit mach ret=%u\n",
187 ret);
188 else
189 DEBUG_KPRINT_SYSCALL_UNIX(
190 "thread_syscall_return: 32-bit unix ret=%u\n",
191 ret);
192 #endif
193 }
194 throttle_lowpri_io(1);
195
196 thread_exception_return();
197 /*NOTREACHED*/
198 }
199
200
201 static inline void
202 user_page_fault_continue(
203 kern_return_t kr)
204 {
205 thread_t thread = current_thread();
206 user_addr_t vaddr;
207
208 if (thread_is_64bit(thread)) {
209 x86_saved_state64_t *uregs;
210
211 uregs = USER_REGS64(thread);
212
213 vaddr = (user_addr_t)uregs->cr2;
214 } else {
215 x86_saved_state32_t *uregs;
216
217 uregs = USER_REGS32(thread);
218
219 vaddr = uregs->cr2;
220 }
221
222
223 /* PAL debug hook */
224 pal_dbg_page_fault( thread, vaddr, kr );
225
226 i386_exception(EXC_BAD_ACCESS, kr, vaddr);
227 /*NOTREACHED*/
228 }
229
230 /*
231 * Fault recovery in copyin/copyout routines.
232 */
233 struct recovery {
234 uintptr_t fault_addr;
235 uintptr_t recover_addr;
236 };
237
238 extern struct recovery recover_table[];
239 extern struct recovery recover_table_end[];
240
241 const char * trap_type[] = {TRAP_NAMES};
242 unsigned TRAP_TYPES = sizeof(trap_type)/sizeof(trap_type[0]);
243
244 extern void PE_incoming_interrupt(int interrupt);
245
246 #if defined(__x86_64__) && DEBUG
247 void
248 kprint_state(x86_saved_state64_t *saved_state)
249 {
250 kprintf("current_cpu_datap() 0x%lx\n", (uintptr_t)current_cpu_datap());
251 kprintf("Current GS base MSR 0x%llx\n", rdmsr64(MSR_IA32_GS_BASE));
252 kprintf("Kernel GS base MSR 0x%llx\n", rdmsr64(MSR_IA32_KERNEL_GS_BASE));
253 kprintf("state at 0x%lx:\n", (uintptr_t) saved_state);
254
255 kprintf(" rdi 0x%llx\n", saved_state->rdi);
256 kprintf(" rsi 0x%llx\n", saved_state->rsi);
257 kprintf(" rdx 0x%llx\n", saved_state->rdx);
258 kprintf(" r10 0x%llx\n", saved_state->r10);
259 kprintf(" r8 0x%llx\n", saved_state->r8);
260 kprintf(" r9 0x%llx\n", saved_state->r9);
261
262 kprintf(" cr2 0x%llx\n", saved_state->cr2);
263 kprintf("real cr2 0x%lx\n", get_cr2());
264 kprintf(" r15 0x%llx\n", saved_state->r15);
265 kprintf(" r14 0x%llx\n", saved_state->r14);
266 kprintf(" r13 0x%llx\n", saved_state->r13);
267 kprintf(" r12 0x%llx\n", saved_state->r12);
268 kprintf(" r11 0x%llx\n", saved_state->r11);
269 kprintf(" rbp 0x%llx\n", saved_state->rbp);
270 kprintf(" rbx 0x%llx\n", saved_state->rbx);
271 kprintf(" rcx 0x%llx\n", saved_state->rcx);
272 kprintf(" rax 0x%llx\n", saved_state->rax);
273
274 kprintf(" gs 0x%x\n", saved_state->gs);
275 kprintf(" fs 0x%x\n", saved_state->fs);
276
277 kprintf(" isf.trapno 0x%x\n", saved_state->isf.trapno);
278 kprintf(" isf._pad 0x%x\n", saved_state->isf._pad);
279 kprintf(" isf.trapfn 0x%llx\n", saved_state->isf.trapfn);
280 kprintf(" isf.err 0x%llx\n", saved_state->isf.err);
281 kprintf(" isf.rip 0x%llx\n", saved_state->isf.rip);
282 kprintf(" isf.cs 0x%llx\n", saved_state->isf.cs);
283 kprintf(" isf.rflags 0x%llx\n", saved_state->isf.rflags);
284 kprintf(" isf.rsp 0x%llx\n", saved_state->isf.rsp);
285 kprintf(" isf.ss 0x%llx\n", saved_state->isf.ss);
286 }
287 #endif
288
289
290 /*
291 * Non-zero indicates latency assert is enabled and capped at valued
292 * absolute time units.
293 */
294
295 uint64_t interrupt_latency_cap = 0;
296 boolean_t ilat_assert = FALSE;
297
298 void
299 interrupt_latency_tracker_setup(void) {
300 uint32_t ilat_cap_us;
301 if (PE_parse_boot_argn("interrupt_latency_cap_us", &ilat_cap_us, sizeof(ilat_cap_us))) {
302 interrupt_latency_cap = ilat_cap_us * NSEC_PER_USEC;
303 nanoseconds_to_absolutetime(interrupt_latency_cap, &interrupt_latency_cap);
304 } else {
305 interrupt_latency_cap = LockTimeOut;
306 }
307 PE_parse_boot_argn("-interrupt_latency_assert_enable", &ilat_assert, sizeof(ilat_assert));
308 }
309
310 void interrupt_reset_latency_stats(void) {
311 uint32_t i;
312 for (i = 0; i < real_ncpus; i++) {
313 cpu_data_ptr[i]->cpu_max_observed_int_latency =
314 cpu_data_ptr[i]->cpu_max_observed_int_latency_vector = 0;
315 }
316 }
317
318 void interrupt_populate_latency_stats(char *buf, unsigned bufsize) {
319 uint32_t i, tcpu = ~0;
320 uint64_t cur_max = 0;
321
322 for (i = 0; i < real_ncpus; i++) {
323 if (cur_max < cpu_data_ptr[i]->cpu_max_observed_int_latency) {
324 cur_max = cpu_data_ptr[i]->cpu_max_observed_int_latency;
325 tcpu = i;
326 }
327 }
328
329 if (tcpu < real_ncpus)
330 snprintf(buf, bufsize, "0x%x 0x%x 0x%llx", tcpu, cpu_data_ptr[tcpu]->cpu_max_observed_int_latency_vector, cpu_data_ptr[tcpu]->cpu_max_observed_int_latency);
331 }
332
333 uint32_t interrupt_timer_coalescing_enabled = 1;
334 uint64_t interrupt_coalesced_timers;
335
336 /*
337 * Handle interrupts:
338 * - local APIC interrupts (IPIs, timers, etc) are handled by the kernel,
339 * - device interrupts go to the platform expert.
340 */
341 void
342 interrupt(x86_saved_state_t *state)
343 {
344 uint64_t rip;
345 uint64_t rsp;
346 int interrupt_num;
347 boolean_t user_mode = FALSE;
348 int ipl;
349 int cnum = cpu_number();
350 cpu_data_t *cdp = cpu_data_ptr[cnum];
351 int itype = 0;
352
353 if (is_saved_state64(state) == TRUE) {
354 x86_saved_state64_t *state64;
355
356 state64 = saved_state64(state);
357 rip = state64->isf.rip;
358 rsp = state64->isf.rsp;
359 interrupt_num = state64->isf.trapno;
360 #ifdef __x86_64__
361 if(state64->isf.cs & 0x03)
362 #endif
363 user_mode = TRUE;
364 } else {
365 x86_saved_state32_t *state32;
366
367 state32 = saved_state32(state);
368 if (state32->cs & 0x03)
369 user_mode = TRUE;
370 rip = state32->eip;
371 rsp = state32->uesp;
372 interrupt_num = state32->trapno;
373 }
374
375 if (cpu_data_ptr[cnum]->lcpu.package->num_idle == topoParms.nLThreadsPerPackage)
376 cpu_data_ptr[cnum]->cpu_hwIntpexits[interrupt_num]++;
377
378 if (interrupt_num == (LAPIC_DEFAULT_INTERRUPT_BASE + LAPIC_INTERPROCESSOR_INTERRUPT))
379 itype = 1;
380 else if (interrupt_num == (LAPIC_DEFAULT_INTERRUPT_BASE + LAPIC_TIMER_INTERRUPT))
381 itype = 2;
382 else
383 itype = 3;
384
385 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
386 MACHDBG_CODE(DBG_MACH_EXCP_INTR, 0) | DBG_FUNC_START,
387 interrupt_num,
388 (user_mode ? rip : VM_KERNEL_UNSLIDE(rip)),
389 user_mode, itype, 0);
390
391 SCHED_STATS_INTERRUPT(current_processor());
392
393 #if CONFIG_TELEMETRY
394 if (telemetry_needs_record
395 && (current_task() != kernel_task)
396 #if CONFIG_SCHED_IDLE_IN_PLACE
397 && ((current_thread()->state & TH_IDLE) == 0) /* idle-in-place should be treated like the idle thread */
398 #endif
399 ) {
400 telemetry_mark_curthread(user_mode);
401 }
402 #endif
403
404 ipl = get_preemption_level();
405
406 /*
407 * Handle local APIC interrupts
408 * else call platform expert for devices.
409 */
410 if (!lapic_interrupt(interrupt_num, state)) {
411 PE_incoming_interrupt(interrupt_num);
412 }
413
414 if (__improbable(get_preemption_level() != ipl)) {
415 panic("Preemption level altered by interrupt vector 0x%x: initial 0x%x, final: 0x%x\n", interrupt_num, ipl, get_preemption_level());
416 }
417
418
419 if (__improbable(cdp->cpu_nested_istack)) {
420 cdp->cpu_nested_istack_events++;
421 }
422 else {
423 uint64_t ctime = mach_absolute_time();
424 uint64_t int_latency = ctime - cdp->cpu_int_event_time;
425 uint64_t esdeadline, ehdeadline;
426 /* Attempt to process deferred timers in the context of
427 * this interrupt, unless interrupt time has already exceeded
428 * TCOAL_ILAT_THRESHOLD.
429 */
430 #define TCOAL_ILAT_THRESHOLD (30000ULL)
431
432 if ((int_latency < TCOAL_ILAT_THRESHOLD) &&
433 interrupt_timer_coalescing_enabled) {
434 esdeadline = cdp->rtclock_timer.queue.earliest_soft_deadline;
435 ehdeadline = cdp->rtclock_timer.deadline;
436 if ((ctime >= esdeadline) && (ctime < ehdeadline)) {
437 interrupt_coalesced_timers++;
438 TCOAL_DEBUG(0x88880000 | DBG_FUNC_START, ctime, esdeadline, ehdeadline, interrupt_coalesced_timers, 0);
439 rtclock_intr(state);
440 TCOAL_DEBUG(0x88880000 | DBG_FUNC_END, ctime, esdeadline, interrupt_coalesced_timers, 0, 0);
441 } else {
442 TCOAL_DEBUG(0x77770000, ctime, cdp->rtclock_timer.queue.earliest_soft_deadline, cdp->rtclock_timer.deadline, interrupt_coalesced_timers, 0);
443 }
444 }
445
446 if (__improbable(ilat_assert && (int_latency > interrupt_latency_cap) && !machine_timeout_suspended())) {
447 panic("Interrupt vector 0x%x exceeded interrupt latency threshold, 0x%llx absolute time delta, prior signals: 0x%x, current signals: 0x%x", interrupt_num, int_latency, cdp->cpu_prior_signals, cdp->cpu_signals);
448 }
449
450 if (__improbable(int_latency > cdp->cpu_max_observed_int_latency)) {
451 cdp->cpu_max_observed_int_latency = int_latency;
452 cdp->cpu_max_observed_int_latency_vector = interrupt_num;
453 }
454 }
455
456 /*
457 * Having serviced the interrupt first, look at the interrupted stack depth.
458 */
459 if (!user_mode) {
460 uint64_t depth = cdp->cpu_kernel_stack
461 + sizeof(struct x86_kernel_state)
462 + sizeof(struct i386_exception_link *)
463 - rsp;
464 if (__improbable(depth > kernel_stack_depth_max)) {
465 kernel_stack_depth_max = (vm_offset_t)depth;
466 KERNEL_DEBUG_CONSTANT(
467 MACHDBG_CODE(DBG_MACH_SCHED, MACH_STACK_DEPTH),
468 (long) depth, (long) VM_KERNEL_UNSLIDE(rip), 0, 0, 0);
469 }
470 }
471
472 if (cnum == master_cpu)
473 ml_entropy_collect();
474
475 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
476 MACHDBG_CODE(DBG_MACH_EXCP_INTR, 0) | DBG_FUNC_END,
477 interrupt_num, 0, 0, 0, 0);
478
479 }
480
481 static inline void
482 reset_dr7(void)
483 {
484 long dr7 = 0x400; /* magic dr7 reset value; 32 bit on i386, 64 bit on x86_64 */
485 __asm__ volatile("mov %0,%%dr7" : : "r" (dr7));
486 }
487 #if MACH_KDP
488 unsigned kdp_has_active_watchpoints = 0;
489 #define NO_WATCHPOINTS (!kdp_has_active_watchpoints)
490 #else
491 #define NO_WATCHPOINTS 1
492 #endif
493 /*
494 * Trap from kernel mode. Only page-fault errors are recoverable,
495 * and then only in special circumstances. All other errors are
496 * fatal. Return value indicates if trap was handled.
497 */
498
499 void
500 kernel_trap(
501 x86_saved_state_t *state,
502 uintptr_t *lo_spp)
503 {
504 x86_saved_state64_t *saved_state;
505 int code;
506 user_addr_t vaddr;
507 int type;
508 vm_map_t map = 0; /* protected by T_PAGE_FAULT */
509 kern_return_t result = KERN_FAILURE;
510 thread_t thread;
511 ast_t *myast;
512 boolean_t intr;
513 vm_prot_t prot;
514 struct recovery *rp;
515 vm_offset_t kern_ip;
516 #if NCOPY_WINDOWS > 0
517 int fault_in_copy_window = -1;
518 #endif
519 int is_user = 0;
520
521 thread = current_thread();
522
523 if (__improbable(is_saved_state32(state)))
524 panic("kernel_trap(%p) with 32-bit state", state);
525 saved_state = saved_state64(state);
526
527 /* Record cpu where state was captured */
528 saved_state->isf.cpu = cpu_number();
529
530 vaddr = (user_addr_t)saved_state->cr2;
531 type = saved_state->isf.trapno;
532 code = (int)(saved_state->isf.err & 0xffff);
533 intr = (saved_state->isf.rflags & EFL_IF) != 0; /* state of ints at trap */
534 kern_ip = (vm_offset_t)saved_state->isf.rip;
535
536 myast = ast_pending();
537
538 perfASTCallback astfn = perfASTHook;
539 if (__improbable(astfn != NULL)) {
540 if (*myast & AST_CHUD_ALL)
541 astfn(AST_CHUD_ALL, myast);
542 } else
543 *myast &= ~AST_CHUD_ALL;
544
545
546 #if CONFIG_DTRACE
547 /*
548 * Is there a DTrace hook?
549 */
550 if (__improbable(tempDTraceTrapHook != NULL)) {
551 if (tempDTraceTrapHook(type, state, lo_spp, 0) == KERN_SUCCESS) {
552 /*
553 * If it succeeds, we are done...
554 */
555 return;
556 }
557 }
558 #endif /* CONFIG_DTRACE */
559
560 /*
561 * we come here with interrupts off as we don't want to recurse
562 * on preemption below. but we do want to re-enable interrupts
563 * as soon we possibly can to hold latency down
564 */
565 if (__improbable(T_PREEMPT == type)) {
566 ast_taken(AST_PREEMPTION, FALSE);
567
568 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
569 (MACHDBG_CODE(DBG_MACH_EXCP_KTRAP_x86, type)) | DBG_FUNC_NONE,
570 0, 0, 0, VM_KERNEL_UNSLIDE(kern_ip), 0);
571 return;
572 }
573
574 if (T_PAGE_FAULT == type) {
575 /*
576 * assume we're faulting in the kernel map
577 */
578 map = kernel_map;
579
580 if (__probable(thread != THREAD_NULL && thread->map != kernel_map)) {
581 #if NCOPY_WINDOWS > 0
582 vm_offset_t copy_window_base;
583 vm_offset_t kvaddr;
584 int window_index;
585
586 kvaddr = (vm_offset_t)vaddr;
587 /*
588 * must determine if fault occurred in
589 * the copy window while pre-emption is
590 * disabled for this processor so that
591 * we only need to look at the window
592 * associated with this processor
593 */
594 copy_window_base = current_cpu_datap()->cpu_copywindow_base;
595
596 if (kvaddr >= copy_window_base && kvaddr < (copy_window_base + (NBPDE * NCOPY_WINDOWS)) ) {
597
598 window_index = (int)((kvaddr - copy_window_base) / NBPDE);
599
600 if (thread->machine.copy_window[window_index].user_base != (user_addr_t)-1) {
601
602 kvaddr -= (copy_window_base + (NBPDE * window_index));
603 vaddr = thread->machine.copy_window[window_index].user_base + kvaddr;
604
605 map = thread->map;
606 fault_in_copy_window = window_index;
607 }
608 is_user = -1;
609 }
610 #else
611 if (__probable(vaddr < VM_MAX_USER_PAGE_ADDRESS)) {
612 /* fault occurred in userspace */
613 map = thread->map;
614 is_user = -1;
615
616 /* Intercept a potential Supervisor Mode Execute
617 * Protection fault. These criteria identify
618 * both NX faults and SMEP faults, but both
619 * are fatal. We avoid checking PTEs (racy).
620 * (The VM could just redrive a SMEP fault, hence
621 * the intercept).
622 */
623 if (__improbable((code == (T_PF_PROT | T_PF_EXECUTE)) && (pmap_smep_enabled) && (saved_state->isf.rip == vaddr))) {
624 goto debugger_entry;
625 }
626
627 /*
628 * Additionally check for SMAP faults...
629 * which are characterized by page-present and
630 * the AC bit unset (i.e. not from copyin/out path).
631 */
632 if (__improbable(code & T_PF_PROT &&
633 pmap_smap_enabled &&
634 (saved_state->isf.rflags & EFL_AC) == 0)) {
635 goto debugger_entry;
636 }
637
638 /*
639 * If we're not sharing cr3 with the user
640 * and we faulted in copyio,
641 * then switch cr3 here and dismiss the fault.
642 */
643 if (no_shared_cr3 &&
644 (thread->machine.specFlags&CopyIOActive) &&
645 map->pmap->pm_cr3 != get_cr3_base()) {
646 pmap_assert(current_cpu_datap()->cpu_pmap_pcid_enabled == FALSE);
647 set_cr3_raw(map->pmap->pm_cr3);
648 return;
649 }
650
651 }
652 #endif
653 }
654 }
655 user_addr_t kd_vaddr = is_user ? vaddr : VM_KERNEL_UNSLIDE(vaddr);
656 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
657 (MACHDBG_CODE(DBG_MACH_EXCP_KTRAP_x86, type)) | DBG_FUNC_NONE,
658 (unsigned)(kd_vaddr >> 32), (unsigned)kd_vaddr, is_user,
659 VM_KERNEL_UNSLIDE(kern_ip), 0);
660
661
662 (void) ml_set_interrupts_enabled(intr);
663
664 switch (type) {
665
666 case T_NO_FPU:
667 fpnoextflt();
668 return;
669
670 case T_FPU_FAULT:
671 fpextovrflt();
672 return;
673
674 case T_FLOATING_POINT_ERROR:
675 fpexterrflt();
676 return;
677
678 case T_SSE_FLOAT_ERROR:
679 fpSSEexterrflt();
680 return;
681 case T_DEBUG:
682 if ((saved_state->isf.rflags & EFL_TF) == 0 && NO_WATCHPOINTS)
683 {
684 /* We've somehow encountered a debug
685 * register match that does not belong
686 * to the kernel debugger.
687 * This isn't supposed to happen.
688 */
689 reset_dr7();
690 return;
691 }
692 goto debugger_entry;
693 #ifdef __x86_64__
694 case T_INT3:
695 goto debugger_entry;
696 #endif
697 case T_PAGE_FAULT:
698
699 #if CONFIG_DTRACE
700 if (thread != THREAD_NULL && thread->options & TH_OPT_DTRACE) { /* Executing under dtrace_probe? */
701 if (dtrace_tally_fault(vaddr)) { /* Should a fault under dtrace be ignored? */
702 /*
703 * DTrace has "anticipated" the possibility of this fault, and has
704 * established the suitable recovery state. Drop down now into the
705 * recovery handling code in "case T_GENERAL_PROTECTION:".
706 */
707 goto FALL_THROUGH;
708 }
709 }
710 #endif /* CONFIG_DTRACE */
711
712 prot = VM_PROT_READ;
713
714 if (code & T_PF_WRITE)
715 prot |= VM_PROT_WRITE;
716 if (code & T_PF_EXECUTE)
717 prot |= VM_PROT_EXECUTE;
718
719 result = vm_fault(map,
720 vm_map_trunc_page(vaddr,
721 PAGE_MASK),
722 prot,
723 FALSE,
724 THREAD_UNINT, NULL, 0);
725
726 if (result == KERN_SUCCESS) {
727 #if NCOPY_WINDOWS > 0
728 if (fault_in_copy_window != -1) {
729 ml_set_interrupts_enabled(FALSE);
730 copy_window_fault(thread, map,
731 fault_in_copy_window);
732 (void) ml_set_interrupts_enabled(intr);
733 }
734 #endif /* NCOPY_WINDOWS > 0 */
735 return;
736 }
737 /*
738 * fall through
739 */
740 #if CONFIG_DTRACE
741 FALL_THROUGH:
742 #endif /* CONFIG_DTRACE */
743
744 case T_GENERAL_PROTECTION:
745 /*
746 * If there is a failure recovery address
747 * for this fault, go there.
748 */
749 for (rp = recover_table; rp < recover_table_end; rp++) {
750 if (kern_ip == rp->fault_addr) {
751 set_recovery_ip(saved_state, rp->recover_addr);
752 return;
753 }
754 }
755
756 /*
757 * Check thread recovery address also.
758 */
759 if (thread != THREAD_NULL && thread->recover) {
760 set_recovery_ip(saved_state, thread->recover);
761 thread->recover = 0;
762 return;
763 }
764 /*
765 * Unanticipated page-fault errors in kernel
766 * should not happen.
767 *
768 * fall through...
769 */
770 default:
771 /*
772 * Exception 15 is reserved but some chips may generate it
773 * spuriously. Seen at startup on AMD Athlon-64.
774 */
775 if (type == 15) {
776 kprintf("kernel_trap() ignoring spurious trap 15\n");
777 return;
778 }
779 debugger_entry:
780 /* Ensure that the i386_kernel_state at the base of the
781 * current thread's stack (if any) is synchronized with the
782 * context at the moment of the trap, to facilitate
783 * access through the debugger.
784 */
785 sync_iss_to_iks(state);
786 #if MACH_KDP
787 if (current_debugger != KDB_CUR_DB) {
788 if (kdp_i386_trap(type, saved_state, result, (vm_offset_t)vaddr))
789 return;
790 }
791 #endif
792 }
793 pal_cli();
794 panic_trap(saved_state);
795 /*
796 * NO RETURN
797 */
798 }
799
800
801 static void
802 set_recovery_ip(x86_saved_state64_t *saved_state, vm_offset_t ip)
803 {
804 saved_state->isf.rip = ip;
805 }
806
807
808
809
810 static void
811 panic_trap(x86_saved_state64_t *regs)
812 {
813 const char *trapname = "Unknown";
814 pal_cr_t cr0, cr2, cr3, cr4;
815 boolean_t potential_smep_fault = FALSE, potential_kernel_NX_fault = FALSE;
816 boolean_t potential_smap_fault = FALSE;
817
818 pal_get_control_registers( &cr0, &cr2, &cr3, &cr4 );
819 assert(ml_get_interrupts_enabled() == FALSE);
820 current_cpu_datap()->cpu_fatal_trap_state = regs;
821 /*
822 * Issue an I/O port read if one has been requested - this is an
823 * event logic analyzers can use as a trigger point.
824 */
825 panic_io_port_read();
826
827 kprintf("panic trap number 0x%x, rip 0x%016llx\n",
828 regs->isf.trapno, regs->isf.rip);
829 kprintf("cr0 0x%016llx cr2 0x%016llx cr3 0x%016llx cr4 0x%016llx\n",
830 cr0, cr2, cr3, cr4);
831
832 if (regs->isf.trapno < TRAP_TYPES)
833 trapname = trap_type[regs->isf.trapno];
834
835 if ((regs->isf.trapno == T_PAGE_FAULT) && (regs->isf.err == (T_PF_PROT | T_PF_EXECUTE)) && (regs->isf.rip == regs->cr2)) {
836 if (pmap_smep_enabled && (regs->isf.rip < VM_MAX_USER_PAGE_ADDRESS)) {
837 potential_smep_fault = TRUE;
838 } else if (regs->isf.rip >= VM_MIN_KERNEL_AND_KEXT_ADDRESS) {
839 potential_kernel_NX_fault = TRUE;
840 }
841 } else if (pmap_smap_enabled &&
842 regs->isf.trapno == T_PAGE_FAULT &&
843 regs->isf.err & T_PF_PROT &&
844 regs->cr2 < VM_MAX_USER_PAGE_ADDRESS &&
845 regs->isf.rip >= VM_MIN_KERNEL_AND_KEXT_ADDRESS) {
846 potential_smap_fault = TRUE;
847 }
848
849 #undef panic
850 panic("Kernel trap at 0x%016llx, type %d=%s, registers:\n"
851 "CR0: 0x%016llx, CR2: 0x%016llx, CR3: 0x%016llx, CR4: 0x%016llx\n"
852 "RAX: 0x%016llx, RBX: 0x%016llx, RCX: 0x%016llx, RDX: 0x%016llx\n"
853 "RSP: 0x%016llx, RBP: 0x%016llx, RSI: 0x%016llx, RDI: 0x%016llx\n"
854 "R8: 0x%016llx, R9: 0x%016llx, R10: 0x%016llx, R11: 0x%016llx\n"
855 "R12: 0x%016llx, R13: 0x%016llx, R14: 0x%016llx, R15: 0x%016llx\n"
856 "RFL: 0x%016llx, RIP: 0x%016llx, CS: 0x%016llx, SS: 0x%016llx\n"
857 "Fault CR2: 0x%016llx, Error code: 0x%016llx, Fault CPU: 0x%x%s%s%s%s\n",
858 regs->isf.rip, regs->isf.trapno, trapname,
859 cr0, cr2, cr3, cr4,
860 regs->rax, regs->rbx, regs->rcx, regs->rdx,
861 regs->isf.rsp, regs->rbp, regs->rsi, regs->rdi,
862 regs->r8, regs->r9, regs->r10, regs->r11,
863 regs->r12, regs->r13, regs->r14, regs->r15,
864 regs->isf.rflags, regs->isf.rip, regs->isf.cs & 0xFFFF,
865 regs->isf.ss & 0xFFFF,regs->cr2, regs->isf.err, regs->isf.cpu,
866 virtualized ? " VMM" : "",
867 potential_kernel_NX_fault ? " Kernel NX fault" : "",
868 potential_smep_fault ? " SMEP/User NX fault" : "",
869 potential_smap_fault ? " SMAP fault" : "");
870 /*
871 * This next statement is not executed,
872 * but it's needed to stop the compiler using tail call optimization
873 * for the panic call - which confuses the subsequent backtrace.
874 */
875 cr0 = 0;
876 }
877
878 #if CONFIG_DTRACE
879 extern kern_return_t dtrace_user_probe(x86_saved_state_t *);
880 #endif
881
882 /*
883 * Trap from user mode.
884 */
885 void
886 user_trap(
887 x86_saved_state_t *saved_state)
888 {
889 int exc;
890 int err;
891 mach_exception_code_t code;
892 mach_exception_subcode_t subcode;
893 int type;
894 user_addr_t vaddr;
895 vm_prot_t prot;
896 thread_t thread = current_thread();
897 ast_t *myast;
898 kern_return_t kret;
899 user_addr_t rip;
900 unsigned long dr6 = 0; /* 32 bit for i386, 64 bit for x86_64 */
901
902 assert((is_saved_state32(saved_state) && !thread_is_64bit(thread)) ||
903 (is_saved_state64(saved_state) && thread_is_64bit(thread)));
904
905 if (is_saved_state64(saved_state)) {
906 x86_saved_state64_t *regs;
907
908 regs = saved_state64(saved_state);
909
910 /* Record cpu where state was captured */
911 regs->isf.cpu = cpu_number();
912
913 type = regs->isf.trapno;
914 err = (int)regs->isf.err & 0xffff;
915 vaddr = (user_addr_t)regs->cr2;
916 rip = (user_addr_t)regs->isf.rip;
917 } else {
918 x86_saved_state32_t *regs;
919
920 regs = saved_state32(saved_state);
921
922 /* Record cpu where state was captured */
923 regs->cpu = cpu_number();
924
925 type = regs->trapno;
926 err = regs->err & 0xffff;
927 vaddr = (user_addr_t)regs->cr2;
928 rip = (user_addr_t)regs->eip;
929 }
930
931 if ((type == T_DEBUG) && thread->machine.ids) {
932 unsigned long clear = 0;
933 /* Stash and clear this processor's DR6 value, in the event
934 * this was a debug register match
935 */
936 __asm__ volatile ("mov %%db6, %0" : "=r" (dr6));
937 __asm__ volatile ("mov %0, %%db6" : : "r" (clear));
938 }
939
940 pal_sti();
941
942 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
943 (MACHDBG_CODE(DBG_MACH_EXCP_UTRAP_x86, type)) | DBG_FUNC_NONE,
944 (unsigned)(vaddr>>32), (unsigned)vaddr,
945 (unsigned)(rip>>32), (unsigned)rip, 0);
946
947 code = 0;
948 subcode = 0;
949 exc = 0;
950
951 #if DEBUG_TRACE
952 kprintf("user_trap(0x%08x) type=%d vaddr=0x%016llx\n",
953 saved_state, type, vaddr);
954 #endif
955
956 perfASTCallback astfn = perfASTHook;
957 if (__improbable(astfn != NULL)) {
958 myast = ast_pending();
959 if (*myast & AST_CHUD_ALL) {
960 astfn(AST_CHUD_ALL, myast);
961 }
962 }
963
964 /* Is there a hook? */
965 perfCallback fn = perfTrapHook;
966 if (__improbable(fn != NULL)) {
967 if (fn(type, saved_state, 0, 0) == KERN_SUCCESS)
968 return; /* If it succeeds, we are done... */
969 }
970
971 #if CONFIG_DTRACE
972 /*
973 * DTrace does not consume all user traps, only INT_3's for now.
974 * Avoid needlessly calling tempDTraceTrapHook here, and let the
975 * INT_3 case handle them.
976 */
977 #endif
978
979 DEBUG_KPRINT_SYSCALL_MASK(1,
980 "user_trap: type=0x%x(%s) err=0x%x cr2=%p rip=%p\n",
981 type, trap_type[type], err, (void *)(long) vaddr, (void *)(long) rip);
982
983 switch (type) {
984
985 case T_DIVIDE_ERROR:
986 exc = EXC_ARITHMETIC;
987 code = EXC_I386_DIV;
988 break;
989
990 case T_DEBUG:
991 {
992 pcb_t pcb;
993 /*
994 * Update the PCB with this processor's DR6 value
995 * in the event this was a debug register match.
996 */
997 pcb = THREAD_TO_PCB(thread);
998 if (pcb->ids) {
999 /*
1000 * We can get and set the status register
1001 * in 32-bit mode even on a 64-bit thread
1002 * because the high order bits are not
1003 * used on x86_64
1004 */
1005 if (thread_is_64bit(thread)) {
1006 x86_debug_state64_t *ids = pcb->ids;
1007 ids->dr6 = dr6;
1008 } else { /* 32 bit thread */
1009 x86_debug_state32_t *ids = pcb->ids;
1010 ids->dr6 = (uint32_t) dr6;
1011 }
1012 }
1013 exc = EXC_BREAKPOINT;
1014 code = EXC_I386_SGL;
1015 break;
1016 }
1017 case T_INT3:
1018 #if CONFIG_DTRACE
1019 if (dtrace_user_probe(saved_state) == KERN_SUCCESS)
1020 return; /* If it succeeds, we are done... */
1021 #endif
1022 exc = EXC_BREAKPOINT;
1023 code = EXC_I386_BPT;
1024 break;
1025
1026 case T_OVERFLOW:
1027 exc = EXC_ARITHMETIC;
1028 code = EXC_I386_INTO;
1029 break;
1030
1031 case T_OUT_OF_BOUNDS:
1032 exc = EXC_SOFTWARE;
1033 code = EXC_I386_BOUND;
1034 break;
1035
1036 case T_INVALID_OPCODE:
1037 exc = EXC_BAD_INSTRUCTION;
1038 code = EXC_I386_INVOP;
1039 break;
1040
1041 case T_NO_FPU:
1042 fpnoextflt();
1043 return;
1044
1045 case T_FPU_FAULT:
1046 fpextovrflt(); /* Propagates exception directly, doesn't return */
1047 return;
1048
1049 case T_INVALID_TSS: /* invalid TSS == iret with NT flag set */
1050 exc = EXC_BAD_INSTRUCTION;
1051 code = EXC_I386_INVTSSFLT;
1052 subcode = err;
1053 break;
1054
1055 case T_SEGMENT_NOT_PRESENT:
1056 exc = EXC_BAD_INSTRUCTION;
1057 code = EXC_I386_SEGNPFLT;
1058 subcode = err;
1059 break;
1060
1061 case T_STACK_FAULT:
1062 exc = EXC_BAD_INSTRUCTION;
1063 code = EXC_I386_STKFLT;
1064 subcode = err;
1065 break;
1066
1067 case T_GENERAL_PROTECTION:
1068 /*
1069 * There's a wide range of circumstances which generate this
1070 * class of exception. From user-space, many involve bad
1071 * addresses (such as a non-canonical 64-bit address).
1072 * So we map this to EXC_BAD_ACCESS (and thereby SIGSEGV).
1073 * The trouble is cr2 doesn't contain the faulting address;
1074 * we'd need to decode the faulting instruction to really
1075 * determine this. We'll leave that to debuggers.
1076 * However, attempted execution of privileged instructions
1077 * (e.g. cli) also generate GP faults and so we map these to
1078 * to EXC_BAD_ACCESS (and thence SIGSEGV) also - rather than
1079 * EXC_BAD_INSTRUCTION which is more accurate. We just can't
1080 * win!
1081 */
1082 exc = EXC_BAD_ACCESS;
1083 code = EXC_I386_GPFLT;
1084 subcode = err;
1085 break;
1086
1087 case T_PAGE_FAULT:
1088 {
1089 prot = VM_PROT_READ;
1090
1091 if (err & T_PF_WRITE)
1092 prot |= VM_PROT_WRITE;
1093 if (__improbable(err & T_PF_EXECUTE))
1094 prot |= VM_PROT_EXECUTE;
1095 kret = vm_fault(thread->map,
1096 vm_map_trunc_page(vaddr,
1097 PAGE_MASK),
1098 prot, FALSE,
1099 THREAD_ABORTSAFE, NULL, 0);
1100
1101 if (__probable((kret == KERN_SUCCESS) || (kret == KERN_ABORTED))) {
1102 thread_exception_return();
1103 /*NOTREACHED*/
1104 }
1105
1106 user_page_fault_continue(kret);
1107 } /* NOTREACHED */
1108 break;
1109
1110 case T_SSE_FLOAT_ERROR:
1111 fpSSEexterrflt(); /* Propagates exception directly, doesn't return */
1112 return;
1113
1114
1115 case T_FLOATING_POINT_ERROR:
1116 fpexterrflt(); /* Propagates exception directly, doesn't return */
1117 return;
1118
1119 case T_DTRACE_RET:
1120 #if CONFIG_DTRACE
1121 if (dtrace_user_probe(saved_state) == KERN_SUCCESS)
1122 return; /* If it succeeds, we are done... */
1123 #endif
1124 /*
1125 * If we get an INT 0x7f when we do not expect to,
1126 * treat it as an illegal instruction
1127 */
1128 exc = EXC_BAD_INSTRUCTION;
1129 code = EXC_I386_INVOP;
1130 break;
1131
1132 default:
1133 panic("Unexpected user trap, type %d", type);
1134 return;
1135 }
1136 /* Note: Codepaths that directly return from user_trap() have pending
1137 * ASTs processed in locore
1138 */
1139 i386_exception(exc, code, subcode);
1140 /* NOTREACHED */
1141 }
1142
1143
1144 /*
1145 * Handle AST traps for i386.
1146 */
1147
1148 extern void log_thread_action (thread_t, char *);
1149
1150 void
1151 i386_astintr(int preemption)
1152 {
1153 ast_t mask = AST_ALL;
1154 spl_t s;
1155
1156 if (preemption)
1157 mask = AST_PREEMPTION;
1158
1159 s = splsched();
1160
1161 ast_taken(mask, s);
1162
1163 splx(s);
1164 }
1165
1166 /*
1167 * Handle exceptions for i386.
1168 *
1169 * If we are an AT bus machine, we must turn off the AST for a
1170 * delayed floating-point exception.
1171 *
1172 * If we are providing floating-point emulation, we may have
1173 * to retrieve the real register values from the floating point
1174 * emulator.
1175 */
1176 void
1177 i386_exception(
1178 int exc,
1179 mach_exception_code_t code,
1180 mach_exception_subcode_t subcode)
1181 {
1182 mach_exception_data_type_t codes[EXCEPTION_CODE_MAX];
1183
1184 DEBUG_KPRINT_SYSCALL_MACH("i386_exception: exc=%d code=0x%llx subcode=0x%llx\n",
1185 exc, code, subcode);
1186 codes[0] = code; /* new exception interface */
1187 codes[1] = subcode;
1188 exception_triage(exc, codes, 2);
1189 /*NOTREACHED*/
1190 }
1191
1192
1193 /* Synchronize a thread's x86_kernel_state (if any) with the given
1194 * x86_saved_state_t obtained from the trap/IPI handler; called in
1195 * kernel_trap() prior to entering the debugger, and when receiving
1196 * an "MP_KDP" IPI. Called with null saved_state if an incoming IPI
1197 * was detected from the kernel while spinning with interrupts masked.
1198 */
1199
1200 void
1201 sync_iss_to_iks(x86_saved_state_t *saved_state)
1202 {
1203 struct x86_kernel_state *iks;
1204 vm_offset_t kstack;
1205 boolean_t record_active_regs = FALSE;
1206
1207 /* The PAL may have a special way to sync registers */
1208 if (saved_state && saved_state->flavor == THREAD_STATE_NONE)
1209 pal_get_kern_regs( saved_state );
1210
1211 if ((kstack = current_thread()->kernel_stack) != 0) {
1212 x86_saved_state64_t *regs = saved_state64(saved_state);
1213
1214 iks = STACK_IKS(kstack);
1215
1216 /* Did we take the trap/interrupt in kernel mode? */
1217 if (saved_state == NULL || /* NULL => polling in kernel */
1218 regs == USER_REGS64(current_thread()))
1219 record_active_regs = TRUE;
1220 else {
1221 iks->k_rbx = regs->rbx;
1222 iks->k_rsp = regs->isf.rsp;
1223 iks->k_rbp = regs->rbp;
1224 iks->k_r12 = regs->r12;
1225 iks->k_r13 = regs->r13;
1226 iks->k_r14 = regs->r14;
1227 iks->k_r15 = regs->r15;
1228 iks->k_rip = regs->isf.rip;
1229 }
1230 }
1231
1232 if (record_active_regs == TRUE) {
1233 /* Show the trap handler path */
1234 __asm__ volatile("movq %%rbx, %0" : "=m" (iks->k_rbx));
1235 __asm__ volatile("movq %%rsp, %0" : "=m" (iks->k_rsp));
1236 __asm__ volatile("movq %%rbp, %0" : "=m" (iks->k_rbp));
1237 __asm__ volatile("movq %%r12, %0" : "=m" (iks->k_r12));
1238 __asm__ volatile("movq %%r13, %0" : "=m" (iks->k_r13));
1239 __asm__ volatile("movq %%r14, %0" : "=m" (iks->k_r14));
1240 __asm__ volatile("movq %%r15, %0" : "=m" (iks->k_r15));
1241 /* "Current" instruction pointer */
1242 __asm__ volatile("leaq 1f(%%rip), %%rax; mov %%rax, %0\n1:"
1243 : "=m" (iks->k_rip)
1244 :
1245 : "rax");
1246 }
1247 }
1248
1249 /*
1250 * This is used by the NMI interrupt handler (from mp.c) to
1251 * uncondtionally sync the trap handler context to the IKS
1252 * irrespective of whether the NMI was fielded in kernel
1253 * or user space.
1254 */
1255 void
1256 sync_iss_to_iks_unconditionally(__unused x86_saved_state_t *saved_state) {
1257 struct x86_kernel_state *iks;
1258 vm_offset_t kstack;
1259
1260 if ((kstack = current_thread()->kernel_stack) != 0) {
1261 iks = STACK_IKS(kstack);
1262 /* Display the trap handler path */
1263 __asm__ volatile("movq %%rbx, %0" : "=m" (iks->k_rbx));
1264 __asm__ volatile("movq %%rsp, %0" : "=m" (iks->k_rsp));
1265 __asm__ volatile("movq %%rbp, %0" : "=m" (iks->k_rbp));
1266 __asm__ volatile("movq %%r12, %0" : "=m" (iks->k_r12));
1267 __asm__ volatile("movq %%r13, %0" : "=m" (iks->k_r13));
1268 __asm__ volatile("movq %%r14, %0" : "=m" (iks->k_r14));
1269 __asm__ volatile("movq %%r15, %0" : "=m" (iks->k_r15));
1270 /* "Current" instruction pointer */
1271 __asm__ volatile("leaq 1f(%%rip), %%rax; mov %%rax, %0\n1:" : "=m" (iks->k_rip)::"rax");
1272 }
1273 }