2 * Copyright (c) 2009 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
31 #include <sys/kdebug.h>
39 #include <sys/sysctl.h>
43 #include <spawn_private.h>
44 #include <sys/spawn_internal.h>
45 #include <mach-o/dyld.h>
47 #include <mach/mach_time.h>
48 #include <mach/mach.h>
49 #include <mach/task.h>
50 #include <mach/semaphore.h>
52 #include <pthread/qos_private.h>
54 #include <sys/resource.h>
56 #include <stdatomic.h>
60 typedef enum wake_type
{ WAKE_BROADCAST_ONESEM
, WAKE_BROADCAST_PERTHREAD
, WAKE_CHAIN
, WAKE_HOP
} wake_type_t
;
61 typedef enum my_policy_type
{ MY_POLICY_REALTIME
, MY_POLICY_TIMESHARE
, MY_POLICY_FIXEDPRI
} my_policy_type_t
;
63 #define mach_assert_zero(error) do { if ((error) != 0) { fprintf(stderr, "[FAIL] error %d (%s) ", (error), mach_error_string(error)); assert(error == 0); } } while (0)
64 #define mach_assert_zero_t(tid, error) do { if ((error) != 0) { fprintf(stderr, "[FAIL] Thread %d error %d (%s) ", (tid), (error), mach_error_string(error)); assert(error == 0); } } while (0)
65 #define assert_zero_t(tid, error) do { if ((error) != 0) { fprintf(stderr, "[FAIL] Thread %d error %d ", (tid), (error)); assert(error == 0); } } while (0)
67 #define CONSTRAINT_NANOS (20000000ll) /* 20 ms */
68 #define COMPUTATION_NANOS (10000000ll) /* 10 ms */
69 #define TRACEWORTHY_NANOS (10000000ll) /* 10 ms */
72 #define debug_log(args ...) printf(args)
74 #define debug_log(args ...) do { } while(0)
78 static void* worker_thread(void *arg
);
80 static int thread_setup(uint32_t my_id
);
81 static my_policy_type_t
parse_thread_policy(const char *str
);
82 static void selfexec_with_apptype(int argc
, char *argv
[]);
83 static void parse_args(int argc
, char *argv
[]);
85 static __attribute__((aligned(128))) _Atomic
uint32_t g_done_threads
;
86 static __attribute__((aligned(128))) _Atomic boolean_t g_churn_stop
= FALSE
;
87 static __attribute__((aligned(128))) _Atomic
uint64_t g_churn_stopped_at
= 0;
89 /* Global variables (general) */
90 static uint32_t g_numcpus
;
91 static uint32_t g_nphysicalcpu
;
92 static uint32_t g_nlogicalcpu
;
93 static uint32_t g_numthreads
;
94 static wake_type_t g_waketype
;
95 static policy_t g_policy
;
96 static uint32_t g_iterations
;
97 static struct mach_timebase_info g_mti
;
98 static semaphore_t g_main_sem
;
99 static uint64_t *g_thread_endtimes_abs
;
100 static boolean_t g_verbose
= FALSE
;
101 static boolean_t g_do_affinity
= FALSE
;
102 static uint64_t g_starttime_abs
;
103 static uint32_t g_iteration_sleeptime_us
= 0;
104 static uint32_t g_priority
= 0;
105 static uint32_t g_churn_pri
= 0;
106 static uint32_t g_churn_count
= 0;
108 static pthread_t
* g_churn_threads
= NULL
;
110 /* Threshold for dropping a 'bad run' tracepoint */
111 static uint64_t g_traceworthy_latency_ns
= TRACEWORTHY_NANOS
;
113 /* Have we re-execed to set apptype? */
114 static boolean_t g_seen_apptype
= FALSE
;
116 /* usleep in betweeen iterations */
117 static boolean_t g_do_sleep
= TRUE
;
119 /* Every thread spins until all threads have checked in */
120 static boolean_t g_do_all_spin
= FALSE
;
122 /* Every thread backgrounds temporarily before parking */
123 static boolean_t g_drop_priority
= FALSE
;
125 /* Test whether realtime threads are scheduled on the separate CPUs */
126 static boolean_t g_test_rt
= FALSE
;
128 /* On SMT machines, test whether realtime threads are scheduled on the correct CPUs */
129 static boolean_t g_test_rt_smt
= FALSE
;
131 /* Test whether realtime threads are successfully avoiding CPU 0 on Intel */
132 static boolean_t g_test_rt_avoid0
= FALSE
;
134 /* One randomly chosen thread holds up the train for a certain duration. */
135 static boolean_t g_do_one_long_spin
= FALSE
;
136 static uint32_t g_one_long_spin_id
= 0;
137 static uint64_t g_one_long_spin_length_abs
= 0;
138 static uint64_t g_one_long_spin_length_ns
= 0;
140 /* Each thread spins for a certain duration after waking up before blocking again. */
141 static boolean_t g_do_each_spin
= FALSE
;
142 static uint64_t g_each_spin_duration_abs
= 0;
143 static uint64_t g_each_spin_duration_ns
= 0;
145 /* Global variables (broadcast) */
146 static semaphore_t g_broadcastsem
;
147 static semaphore_t g_leadersem
;
148 static semaphore_t g_readysem
;
149 static semaphore_t g_donesem
;
151 /* Global variables (chain) */
152 static semaphore_t
*g_semarr
;
155 __attribute__((aligned(128))) uint32_t current
;
159 static histogram_t
*g_cpu_histogram
;
160 static _Atomic
uint64_t *g_cpu_map
;
163 abs_to_nanos(uint64_t abstime
)
165 return (uint64_t)(abstime
* (((double)g_mti
.numer
) / ((double)g_mti
.denom
)));
169 nanos_to_abs(uint64_t ns
)
171 return (uint64_t)(ns
* (((double)g_mti
.denom
) / ((double)g_mti
.numer
)));
177 #if defined(__arm__) || defined(__arm64__)
178 asm volatile ("yield");
179 #elif defined(__x86_64__) || defined(__i386__)
180 asm volatile ("pause");
182 #error Unrecognized architecture
187 churn_thread(__unused
void *arg
)
189 uint64_t spin_count
= 0;
192 * As a safety measure to avoid wedging, we will bail on the spin if
193 * it's been more than 1s after the most recent run start
196 while (g_churn_stop
== FALSE
&&
197 mach_absolute_time() < (g_starttime_abs
+ NSEC_PER_SEC
)) {
202 /* This is totally racy, but only here to detect if anyone stops early */
203 atomic_fetch_add_explicit(&g_churn_stopped_at
, spin_count
, memory_order_relaxed
);
209 create_churn_threads()
211 if (g_churn_count
== 0) {
212 g_churn_count
= g_numcpus
- 1;
217 struct sched_param param
= { .sched_priority
= (int)g_churn_pri
};
220 /* Array for churn threads */
221 g_churn_threads
= (pthread_t
*) valloc(sizeof(pthread_t
) * g_churn_count
);
222 assert(g_churn_threads
);
224 if ((err
= pthread_attr_init(&attr
))) {
225 errc(EX_OSERR
, err
, "pthread_attr_init");
228 if ((err
= pthread_attr_setschedparam(&attr
, ¶m
))) {
229 errc(EX_OSERR
, err
, "pthread_attr_setschedparam");
232 if ((err
= pthread_attr_setschedpolicy(&attr
, SCHED_RR
))) {
233 errc(EX_OSERR
, err
, "pthread_attr_setschedpolicy");
236 for (uint32_t i
= 0; i
< g_churn_count
; i
++) {
237 pthread_t new_thread
;
239 if ((err
= pthread_create(&new_thread
, &attr
, churn_thread
, NULL
))) {
240 errc(EX_OSERR
, err
, "pthread_create");
242 g_churn_threads
[i
] = new_thread
;
245 if ((err
= pthread_attr_destroy(&attr
))) {
246 errc(EX_OSERR
, err
, "pthread_attr_destroy");
251 join_churn_threads(void)
253 if (atomic_load_explicit(&g_churn_stopped_at
, memory_order_seq_cst
) != 0) {
254 printf("Warning: Some of the churn threads may have stopped early: %lld\n",
258 atomic_store_explicit(&g_churn_stop
, TRUE
, memory_order_seq_cst
);
260 /* Rejoin churn threads */
261 for (uint32_t i
= 0; i
< g_churn_count
; i
++) {
262 errno_t err
= pthread_join(g_churn_threads
[i
], NULL
);
264 errc(EX_OSERR
, err
, "pthread_join %d", i
);
270 * Figure out what thread policy to use
272 static my_policy_type_t
273 parse_thread_policy(const char *str
)
275 if (strcmp(str
, "timeshare") == 0) {
276 return MY_POLICY_TIMESHARE
;
277 } else if (strcmp(str
, "realtime") == 0) {
278 return MY_POLICY_REALTIME
;
279 } else if (strcmp(str
, "fixed") == 0) {
280 return MY_POLICY_FIXEDPRI
;
282 errx(EX_USAGE
, "Invalid thread policy \"%s\"", str
);
287 * Figure out what wakeup pattern to use
290 parse_wakeup_pattern(const char *str
)
292 if (strcmp(str
, "chain") == 0) {
294 } else if (strcmp(str
, "hop") == 0) {
296 } else if (strcmp(str
, "broadcast-single-sem") == 0) {
297 return WAKE_BROADCAST_ONESEM
;
298 } else if (strcmp(str
, "broadcast-per-thread") == 0) {
299 return WAKE_BROADCAST_PERTHREAD
;
301 errx(EX_USAGE
, "Invalid wakeup pattern \"%s\"", str
);
309 thread_setup(uint32_t my_id
)
313 thread_time_constraint_policy_data_t pol
;
316 int policy
= SCHED_OTHER
;
317 if (g_policy
== MY_POLICY_FIXEDPRI
) {
321 struct sched_param param
= {.sched_priority
= (int)g_priority
};
322 if ((ret
= pthread_setschedparam(pthread_self(), policy
, ¶m
))) {
323 errc(EX_OSERR
, ret
, "pthread_setschedparam: %d", my_id
);
328 case MY_POLICY_TIMESHARE
:
330 case MY_POLICY_REALTIME
:
331 /* Hard-coded realtime parameters (similar to what Digi uses) */
333 pol
.constraint
= (uint32_t) nanos_to_abs(CONSTRAINT_NANOS
);
334 pol
.computation
= (uint32_t) nanos_to_abs(COMPUTATION_NANOS
);
335 pol
.preemptible
= 0; /* Ignored by OS */
337 kr
= thread_policy_set(mach_thread_self(), THREAD_TIME_CONSTRAINT_POLICY
,
338 (thread_policy_t
) &pol
, THREAD_TIME_CONSTRAINT_POLICY_COUNT
);
339 mach_assert_zero_t(my_id
, kr
);
341 case MY_POLICY_FIXEDPRI
:
342 ret
= pthread_set_fixedpriority_self();
344 errc(EX_OSERR
, ret
, "pthread_set_fixedpriority_self");
348 errx(EX_USAGE
, "invalid policy type %d", g_policy
);
352 thread_affinity_policy_data_t affinity
;
354 affinity
.affinity_tag
= my_id
% 2;
356 kr
= thread_policy_set(mach_thread_self(), THREAD_AFFINITY_POLICY
,
357 (thread_policy_t
)&affinity
, THREAD_AFFINITY_POLICY_COUNT
);
358 mach_assert_zero_t(my_id
, kr
);
365 * Wait for a wakeup, potentially wake up another of the "0-N" threads,
366 * and notify the main thread when done.
369 worker_thread(void *arg
)
371 uint32_t my_id
= (uint32_t)(uintptr_t)arg
;
374 volatile double x
= 0.0;
375 volatile double y
= 0.0;
377 /* Set policy and so forth */
380 for (uint32_t i
= 0; i
< g_iterations
; i
++) {
383 * Leader thread either wakes everyone up or starts the chain going.
386 /* Give the worker threads undisturbed time to finish before waiting on them */
388 usleep(g_iteration_sleeptime_us
);
391 debug_log("%d Leader thread wait for ready\n", i
);
394 * Wait for everyone else to declare ready
395 * Is there a better way to do this that won't interfere with the rest of the chain?
396 * TODO: Invent 'semaphore wait for N signals'
399 for (uint32_t j
= 0; j
< g_numthreads
- 1; j
++) {
400 kr
= semaphore_wait(g_readysem
);
401 mach_assert_zero_t(my_id
, kr
);
404 debug_log("%d Leader thread wait\n", i
);
407 for (int cpuid
= 0; cpuid
< g_numcpus
; cpuid
++) {
408 if (g_cpu_histogram
[cpuid
].current
== 1) {
409 atomic_fetch_or_explicit(&g_cpu_map
[i
- 1], (1UL << cpuid
), memory_order_relaxed
);
410 g_cpu_histogram
[cpuid
].current
= 0;
415 /* Signal main thread and wait for start of iteration */
417 kr
= semaphore_wait_signal(g_leadersem
, g_main_sem
);
418 mach_assert_zero_t(my_id
, kr
);
420 g_thread_endtimes_abs
[my_id
] = mach_absolute_time();
422 debug_log("%d Leader thread go\n", i
);
424 assert_zero_t(my_id
, atomic_load_explicit(&g_done_threads
, memory_order_relaxed
));
426 switch (g_waketype
) {
427 case WAKE_BROADCAST_ONESEM
:
428 kr
= semaphore_signal_all(g_broadcastsem
);
429 mach_assert_zero_t(my_id
, kr
);
431 case WAKE_BROADCAST_PERTHREAD
:
432 for (uint32_t j
= 1; j
< g_numthreads
; j
++) {
433 kr
= semaphore_signal(g_semarr
[j
]);
434 mach_assert_zero_t(my_id
, kr
);
438 kr
= semaphore_signal(g_semarr
[my_id
+ 1]);
439 mach_assert_zero_t(my_id
, kr
);
442 kr
= semaphore_wait_signal(g_donesem
, g_semarr
[my_id
+ 1]);
443 mach_assert_zero_t(my_id
, kr
);
448 * Everyone else waits to be woken up,
449 * records when she wakes up, and possibly
452 switch (g_waketype
) {
453 case WAKE_BROADCAST_ONESEM
:
454 kr
= semaphore_wait_signal(g_broadcastsem
, g_readysem
);
455 mach_assert_zero_t(my_id
, kr
);
457 g_thread_endtimes_abs
[my_id
] = mach_absolute_time();
460 case WAKE_BROADCAST_PERTHREAD
:
461 kr
= semaphore_wait_signal(g_semarr
[my_id
], g_readysem
);
462 mach_assert_zero_t(my_id
, kr
);
464 g_thread_endtimes_abs
[my_id
] = mach_absolute_time();
468 kr
= semaphore_wait_signal(g_semarr
[my_id
], g_readysem
);
469 mach_assert_zero_t(my_id
, kr
);
471 /* Signal the next thread *after* recording wake time */
473 g_thread_endtimes_abs
[my_id
] = mach_absolute_time();
475 if (my_id
< (g_numthreads
- 1)) {
476 kr
= semaphore_signal(g_semarr
[my_id
+ 1]);
477 mach_assert_zero_t(my_id
, kr
);
483 kr
= semaphore_wait_signal(g_semarr
[my_id
], g_readysem
);
484 mach_assert_zero_t(my_id
, kr
);
486 /* Signal the next thread *after* recording wake time */
488 g_thread_endtimes_abs
[my_id
] = mach_absolute_time();
490 if (my_id
< (g_numthreads
- 1)) {
491 kr
= semaphore_wait_signal(g_donesem
, g_semarr
[my_id
+ 1]);
492 mach_assert_zero_t(my_id
, kr
);
494 kr
= semaphore_signal_all(g_donesem
);
495 mach_assert_zero_t(my_id
, kr
);
502 unsigned int cpuid
= _os_cpu_number();
503 assert(cpuid
< g_numcpus
);
504 debug_log("Thread %p woke up on CPU %d for iteration %d.\n", pthread_self(), cpuid
, i
);
505 g_cpu_histogram
[cpuid
].current
= 1;
506 g_cpu_histogram
[cpuid
].accum
++;
508 if (g_do_one_long_spin
&& g_one_long_spin_id
== my_id
) {
509 /* One randomly chosen thread holds up the train for a while. */
511 uint64_t endspin
= g_starttime_abs
+ g_one_long_spin_length_abs
;
512 while (mach_absolute_time() < endspin
) {
518 if (g_do_each_spin
) {
519 /* Each thread spins for a certain duration after waking up before blocking again. */
521 uint64_t endspin
= mach_absolute_time() + g_each_spin_duration_abs
;
522 while (mach_absolute_time() < endspin
) {
528 uint32_t done_threads
;
529 done_threads
= atomic_fetch_add_explicit(&g_done_threads
, 1, memory_order_relaxed
) + 1;
531 debug_log("Thread %p new value is %d, iteration %d\n", pthread_self(), done_threads
, i
);
533 if (g_drop_priority
) {
534 /* Drop priority to BG momentarily */
535 errno_t ret
= setpriority(PRIO_DARWIN_THREAD
, 0, PRIO_DARWIN_BG
);
537 errc(EX_OSERR
, ret
, "setpriority PRIO_DARWIN_BG");
542 /* Everyone spins until the last thread checks in. */
544 while (atomic_load_explicit(&g_done_threads
, memory_order_relaxed
) < g_numthreads
) {
550 if (g_drop_priority
) {
551 /* Restore normal priority */
552 errno_t ret
= setpriority(PRIO_DARWIN_THREAD
, 0, 0);
554 errc(EX_OSERR
, ret
, "setpriority 0");
558 debug_log("Thread %p done spinning, iteration %d\n", pthread_self(), i
);
562 /* Give the worker threads undisturbed time to finish before waiting on them */
564 usleep(g_iteration_sleeptime_us
);
567 /* Wait for the worker threads to finish */
568 for (uint32_t i
= 0; i
< g_numthreads
- 1; i
++) {
569 kr
= semaphore_wait(g_readysem
);
570 mach_assert_zero_t(my_id
, kr
);
573 /* Tell everyone and the main thread that the last iteration is done */
574 debug_log("%d Leader thread done\n", g_iterations
- 1);
576 for (int cpuid
= 0; cpuid
< g_numcpus
; cpuid
++) {
577 if (g_cpu_histogram
[cpuid
].current
== 1) {
578 atomic_fetch_or_explicit(&g_cpu_map
[g_iterations
- 1], (1UL << cpuid
), memory_order_relaxed
);
579 g_cpu_histogram
[cpuid
].current
= 0;
583 kr
= semaphore_signal_all(g_main_sem
);
584 mach_assert_zero_t(my_id
, kr
);
586 /* Hold up thread teardown so it doesn't affect the last iteration */
587 kr
= semaphore_wait_signal(g_main_sem
, g_readysem
);
588 mach_assert_zero_t(my_id
, kr
);
595 * Given an array of uint64_t values, compute average, max, min, and standard deviation
598 compute_stats(uint64_t *values
, uint64_t count
, float *averagep
, uint64_t *maxp
, uint64_t *minp
, float *stddevp
)
603 uint64_t _min
= UINT64_MAX
;
607 for (i
= 0; i
< count
; i
++) {
609 _max
= values
[i
] > _max
? values
[i
] : _max
;
610 _min
= values
[i
] < _min
? values
[i
] : _min
;
613 _avg
= ((float)_sum
) / ((float)count
);
616 for (i
= 0; i
< count
; i
++) {
617 _dev
+= powf((((float)values
[i
]) - _avg
), 2);
630 main(int argc
, char **argv
)
636 uint64_t *worst_latencies_ns
;
637 uint64_t *worst_latencies_from_first_ns
;
641 bool test_fail
= false;
643 for (int i
= 0; i
< argc
; i
++) {
644 if (strcmp(argv
[i
], "--switched_apptype") == 0) {
645 g_seen_apptype
= TRUE
;
649 if (!g_seen_apptype
) {
650 selfexec_with_apptype(argc
, argv
);
653 parse_args(argc
, argv
);
655 srand((unsigned int)time(NULL
));
657 mach_timebase_info(&g_mti
);
659 size_t ncpu_size
= sizeof(g_numcpus
);
660 ret
= sysctlbyname("hw.ncpu", &g_numcpus
, &ncpu_size
, NULL
, 0);
662 err(EX_OSERR
, "Failed sysctlbyname(hw.ncpu)");
664 assert(g_numcpus
<= 64); /* g_cpu_map needs to be extended for > 64 cpus */
666 size_t physicalcpu_size
= sizeof(g_nphysicalcpu
);
667 ret
= sysctlbyname("hw.physicalcpu", &g_nphysicalcpu
, &physicalcpu_size
, NULL
, 0);
669 err(EX_OSERR
, "Failed sysctlbyname(hw.physicalcpu)");
672 size_t logicalcpu_size
= sizeof(g_nlogicalcpu
);
673 ret
= sysctlbyname("hw.logicalcpu", &g_nlogicalcpu
, &logicalcpu_size
, NULL
, 0);
675 err(EX_OSERR
, "Failed sysctlbyname(hw.logicalcpu)");
679 if (g_numthreads
== 0) {
680 g_numthreads
= g_numcpus
;
682 g_policy
= MY_POLICY_REALTIME
;
683 g_do_all_spin
= TRUE
;
684 } else if (g_test_rt_smt
) {
685 if (g_nlogicalcpu
!= 2 * g_nphysicalcpu
) {
687 printf("Attempt to run --test-rt-smt on a non-SMT device\n");
691 if (g_numthreads
== 0) {
692 g_numthreads
= g_nphysicalcpu
;
694 g_policy
= MY_POLICY_REALTIME
;
695 g_do_all_spin
= TRUE
;
696 } else if (g_test_rt_avoid0
) {
697 #if defined(__x86_64__) || defined(__i386__)
698 if (g_numthreads
== 0) {
699 g_numthreads
= g_nphysicalcpu
- 1;
701 if (g_numthreads
== 0) {
702 printf("Attempt to run --test-rt-avoid0 on a uniprocessor\n");
705 g_policy
= MY_POLICY_REALTIME
;
706 g_do_all_spin
= TRUE
;
708 printf("Attempt to run --test-rt-avoid0 on a non-Intel device\n");
711 } else if (g_numthreads
== 0) {
712 g_numthreads
= g_numcpus
;
715 if (g_do_each_spin
) {
716 g_each_spin_duration_abs
= nanos_to_abs(g_each_spin_duration_ns
);
719 /* Configure the long-spin thread to take up half of its computation */
720 if (g_do_one_long_spin
) {
721 g_one_long_spin_length_ns
= COMPUTATION_NANOS
/ 2;
722 g_one_long_spin_length_abs
= nanos_to_abs(g_one_long_spin_length_ns
);
725 /* Estimate the amount of time the cleanup phase needs to back off */
726 g_iteration_sleeptime_us
= g_numthreads
* 20;
728 uint32_t threads_per_core
= (g_numthreads
/ g_numcpus
) + 1;
729 if (g_do_each_spin
) {
730 g_iteration_sleeptime_us
+= threads_per_core
* (g_each_spin_duration_ns
/ NSEC_PER_USEC
);
732 if (g_do_one_long_spin
) {
733 g_iteration_sleeptime_us
+= g_one_long_spin_length_ns
/ NSEC_PER_USEC
;
736 /* Arrays for threads and their wakeup times */
737 threads
= (pthread_t
*) valloc(sizeof(pthread_t
) * g_numthreads
);
740 size_t endtimes_size
= sizeof(uint64_t) * g_numthreads
;
742 g_thread_endtimes_abs
= (uint64_t*) valloc(endtimes_size
);
743 assert(g_thread_endtimes_abs
);
745 /* Ensure the allocation is pre-faulted */
746 ret
= memset_s(g_thread_endtimes_abs
, endtimes_size
, 0, endtimes_size
);
748 errc(EX_OSERR
, ret
, "memset_s endtimes");
751 size_t latencies_size
= sizeof(uint64_t) * g_iterations
;
753 worst_latencies_ns
= (uint64_t*) valloc(latencies_size
);
754 assert(worst_latencies_ns
);
756 /* Ensure the allocation is pre-faulted */
757 ret
= memset_s(worst_latencies_ns
, latencies_size
, 0, latencies_size
);
759 errc(EX_OSERR
, ret
, "memset_s latencies");
762 worst_latencies_from_first_ns
= (uint64_t*) valloc(latencies_size
);
763 assert(worst_latencies_from_first_ns
);
765 /* Ensure the allocation is pre-faulted */
766 ret
= memset_s(worst_latencies_from_first_ns
, latencies_size
, 0, latencies_size
);
768 errc(EX_OSERR
, ret
, "memset_s latencies_from_first");
771 size_t histogram_size
= sizeof(histogram_t
) * g_numcpus
;
772 g_cpu_histogram
= (histogram_t
*)valloc(histogram_size
);
773 assert(g_cpu_histogram
);
774 /* Ensure the allocation is pre-faulted */
775 ret
= memset_s(g_cpu_histogram
, histogram_size
, 0, histogram_size
);
777 errc(EX_OSERR
, ret
, "memset_s g_cpu_histogram");
780 size_t map_size
= sizeof(uint64_t) * g_iterations
;
781 g_cpu_map
= (_Atomic
uint64_t *)valloc(map_size
);
783 /* Ensure the allocation is pre-faulted */
784 ret
= memset_s(g_cpu_map
, map_size
, 0, map_size
);
786 errc(EX_OSERR
, ret
, "memset_s g_cpu_map");
789 kr
= semaphore_create(mach_task_self(), &g_main_sem
, SYNC_POLICY_FIFO
, 0);
790 mach_assert_zero(kr
);
792 /* Either one big semaphore or one per thread */
793 if (g_waketype
== WAKE_CHAIN
||
794 g_waketype
== WAKE_BROADCAST_PERTHREAD
||
795 g_waketype
== WAKE_HOP
) {
796 g_semarr
= valloc(sizeof(semaphore_t
) * g_numthreads
);
799 for (uint32_t i
= 0; i
< g_numthreads
; i
++) {
800 kr
= semaphore_create(mach_task_self(), &g_semarr
[i
], SYNC_POLICY_FIFO
, 0);
801 mach_assert_zero(kr
);
804 g_leadersem
= g_semarr
[0];
806 kr
= semaphore_create(mach_task_self(), &g_broadcastsem
, SYNC_POLICY_FIFO
, 0);
807 mach_assert_zero(kr
);
808 kr
= semaphore_create(mach_task_self(), &g_leadersem
, SYNC_POLICY_FIFO
, 0);
809 mach_assert_zero(kr
);
812 if (g_waketype
== WAKE_HOP
) {
813 kr
= semaphore_create(mach_task_self(), &g_donesem
, SYNC_POLICY_FIFO
, 0);
814 mach_assert_zero(kr
);
817 kr
= semaphore_create(mach_task_self(), &g_readysem
, SYNC_POLICY_FIFO
, 0);
818 mach_assert_zero(kr
);
820 atomic_store_explicit(&g_done_threads
, 0, memory_order_relaxed
);
822 /* Create the threads */
823 for (uint32_t i
= 0; i
< g_numthreads
; i
++) {
824 ret
= pthread_create(&threads
[i
], NULL
, worker_thread
, (void*)(uintptr_t)i
);
826 errc(EX_OSERR
, ret
, "pthread_create %d", i
);
830 ret
= setpriority(PRIO_DARWIN_ROLE
, 0, PRIO_DARWIN_ROLE_UI_FOCAL
);
832 errc(EX_OSERR
, ret
, "setpriority");
837 g_starttime_abs
= mach_absolute_time();
840 create_churn_threads();
843 /* Let everyone get settled */
844 kr
= semaphore_wait(g_main_sem
);
845 mach_assert_zero(kr
);
847 /* Give the system a bit more time to settle */
849 usleep(g_iteration_sleeptime_us
);
853 for (uint32_t i
= 0; i
< g_iterations
; i
++) {
855 uint64_t worst_abs
= 0, best_abs
= UINT64_MAX
;
857 if (g_do_one_long_spin
) {
858 g_one_long_spin_id
= (uint32_t)rand() % g_numthreads
;
861 debug_log("%d Main thread reset\n", i
);
863 atomic_store_explicit(&g_done_threads
, 0, memory_order_seq_cst
);
865 g_starttime_abs
= mach_absolute_time();
867 /* Fire them off and wait for worker threads to finish */
868 kr
= semaphore_wait_signal(g_main_sem
, g_leadersem
);
869 mach_assert_zero(kr
);
871 debug_log("%d Main thread return\n", i
);
873 assert(atomic_load_explicit(&g_done_threads
, memory_order_relaxed
) == g_numthreads
);
876 * We report the worst latencies relative to start time
877 * and relative to the lead worker thread.
879 for (j
= 0; j
< g_numthreads
; j
++) {
880 uint64_t latency_abs
;
882 latency_abs
= g_thread_endtimes_abs
[j
] - g_starttime_abs
;
883 worst_abs
= worst_abs
< latency_abs
? latency_abs
: worst_abs
;
886 worst_latencies_ns
[i
] = abs_to_nanos(worst_abs
);
889 for (j
= 1; j
< g_numthreads
; j
++) {
890 uint64_t latency_abs
;
892 latency_abs
= g_thread_endtimes_abs
[j
] - g_thread_endtimes_abs
[0];
893 worst_abs
= worst_abs
< latency_abs
? latency_abs
: worst_abs
;
894 best_abs
= best_abs
> latency_abs
? latency_abs
: best_abs
;
897 worst_latencies_from_first_ns
[i
] = abs_to_nanos(worst_abs
);
900 * In the event of a bad run, cut a trace point.
902 if (worst_latencies_from_first_ns
[i
] > g_traceworthy_latency_ns
) {
903 /* Ariadne's ad-hoc test signpost */
904 kdebug_trace(ARIADNEDBG_CODE(0, 0), worst_latencies_from_first_ns
[i
], g_traceworthy_latency_ns
, 0, 0);
907 printf("Worst on this round was %.2f us.\n", ((float)worst_latencies_from_first_ns
[i
]) / 1000.0);
911 /* Give the system a bit more time to settle */
913 usleep(g_iteration_sleeptime_us
);
918 for (uint32_t i
= 0; i
< g_numthreads
; i
++) {
919 ret
= pthread_join(threads
[i
], NULL
);
921 errc(EX_OSERR
, ret
, "pthread_join %d", i
);
926 join_churn_threads();
929 compute_stats(worst_latencies_ns
, g_iterations
, &avg
, &max
, &min
, &stddev
);
930 printf("Results (from a stop):\n");
931 printf("Max:\t\t%.2f us\n", ((float)max
) / 1000.0);
932 printf("Min:\t\t%.2f us\n", ((float)min
) / 1000.0);
933 printf("Avg:\t\t%.2f us\n", avg
/ 1000.0);
934 printf("Stddev:\t\t%.2f us\n", stddev
/ 1000.0);
938 compute_stats(worst_latencies_from_first_ns
, g_iterations
, &avg
, &max
, &min
, &stddev
);
939 printf("Results (relative to first thread):\n");
940 printf("Max:\t\t%.2f us\n", ((float)max
) / 1000.0);
941 printf("Min:\t\t%.2f us\n", ((float)min
) / 1000.0);
942 printf("Avg:\t\t%.2f us\n", avg
/ 1000.0);
943 printf("Stddev:\t\t%.2f us\n", stddev
/ 1000.0);
946 for (uint32_t i
= 0; i
< g_iterations
; i
++) {
947 printf("Iteration %d: %f us\n", i
, worst_latencies_ns
[i
] / 1000.0);
951 if (g_test_rt
|| g_test_rt_smt
|| g_test_rt_avoid0
) {
954 for (uint32_t i
= 0; i
< g_numcpus
; i
++) {
955 printf("%d\t%d\n", i
, g_cpu_histogram
[i
].accum
);
958 #define PRIMARY 0x5555555555555555ULL
959 #define SECONDARY 0xaaaaaaaaaaaaaaaaULL
963 for (uint32_t i
= 0; i
< g_iterations
; i
++) {
964 bool secondary
= false;
966 uint64_t map
= g_cpu_map
[i
];
968 /* Test for one or more threads running on secondary cores unexpectedly (WARNING) */
969 secondary
= (map
& SECONDARY
);
970 /* Test for threads running on both primary and secondary cpus of the same core (FAIL) */
971 fail
= ((map
& PRIMARY
) & ((map
& SECONDARY
) >> 1));
972 } else if (g_test_rt
) {
973 fail
= __builtin_popcountll(map
) != g_numthreads
;
974 } else if (g_test_rt_avoid0
) {
975 fail
= ((map
& 0x1) == 0x1);
977 if (secondary
|| fail
) {
978 printf("Iteration %d: 0x%llx%s%s\n", i
, map
,
979 secondary
? " SECONDARY" : "",
980 fail
? " FAIL" : "");
986 if (test_fail
&& (g_iterations
>= 100) && (fail_count
<= g_iterations
/ 100)) {
987 printf("99%% or better success rate\n");
993 free(g_thread_endtimes_abs
);
994 free(worst_latencies_ns
);
995 free(worst_latencies_from_first_ns
);
996 free(g_cpu_histogram
);
1003 * WARNING: This is SPI specifically intended for use by launchd to start UI
1004 * apps. We use it here for a test tool only to opt into QoS using the same
1005 * policies. Do not use this outside xnu or libxpc/launchd.
1008 selfexec_with_apptype(int argc
, char *argv
[])
1011 posix_spawnattr_t attr
;
1012 extern char **environ
;
1013 char *new_argv
[argc
+ 1 + 1 /* NULL */];
1015 char prog
[PATH_MAX
];
1016 uint32_t prog_size
= PATH_MAX
;
1018 ret
= _NSGetExecutablePath(prog
, &prog_size
);
1020 err(EX_OSERR
, "_NSGetExecutablePath");
1023 for (i
= 0; i
< argc
; i
++) {
1024 new_argv
[i
] = argv
[i
];
1027 new_argv
[i
] = "--switched_apptype";
1028 new_argv
[i
+ 1] = NULL
;
1030 ret
= posix_spawnattr_init(&attr
);
1032 errc(EX_OSERR
, ret
, "posix_spawnattr_init");
1035 ret
= posix_spawnattr_setflags(&attr
, POSIX_SPAWN_SETEXEC
);
1037 errc(EX_OSERR
, ret
, "posix_spawnattr_setflags");
1040 ret
= posix_spawnattr_setprocesstype_np(&attr
, POSIX_SPAWN_PROC_TYPE_APP_DEFAULT
);
1042 errc(EX_OSERR
, ret
, "posix_spawnattr_setprocesstype_np");
1045 ret
= posix_spawn(NULL
, prog
, NULL
, &attr
, new_argv
, environ
);
1047 errc(EX_OSERR
, ret
, "posix_spawn");
1052 * Admittedly not very attractive.
1054 static void __attribute__((noreturn
))
1057 errx(EX_USAGE
, "Usage: %s <threads> <chain | hop | broadcast-single-sem | broadcast-per-thread> "
1058 "<realtime | timeshare | fixed> <iterations>\n\t\t"
1059 "[--trace <traceworthy latency in ns>] "
1060 "[--verbose] [--spin-one] [--spin-all] [--spin-time <nanos>] [--affinity]\n\t\t"
1061 "[--no-sleep] [--drop-priority] [--churn-pri <pri>] [--churn-count <n>]",
1065 static struct option
* g_longopts
;
1066 static int option_index
;
1072 /* char* optarg is a magic global */
1074 uint32_t arg_val
= (uint32_t)strtoull(optarg
, &cp
, 10);
1076 if (cp
== optarg
|| *cp
) {
1077 errx(EX_USAGE
, "arg --%s requires a decimal number, found \"%s\"",
1078 g_longopts
[option_index
].name
, optarg
);
1085 parse_args(int argc
, char *argv
[])
1096 static struct option longopts
[] = {
1097 /* BEGIN IGNORE CODESTYLE */
1098 { "spin-time", required_argument
, NULL
, OPT_SPIN_TIME
},
1099 { "trace", required_argument
, NULL
, OPT_TRACE
},
1100 { "priority", required_argument
, NULL
, OPT_PRIORITY
},
1101 { "churn-pri", required_argument
, NULL
, OPT_CHURN_PRI
},
1102 { "churn-count", required_argument
, NULL
, OPT_CHURN_COUNT
},
1103 { "switched_apptype", no_argument
, (int*)&g_seen_apptype
, TRUE
},
1104 { "spin-one", no_argument
, (int*)&g_do_one_long_spin
, TRUE
},
1105 { "spin-all", no_argument
, (int*)&g_do_all_spin
, TRUE
},
1106 { "affinity", no_argument
, (int*)&g_do_affinity
, TRUE
},
1107 { "no-sleep", no_argument
, (int*)&g_do_sleep
, FALSE
},
1108 { "drop-priority", no_argument
, (int*)&g_drop_priority
, TRUE
},
1109 { "test-rt", no_argument
, (int*)&g_test_rt
, TRUE
},
1110 { "test-rt-smt", no_argument
, (int*)&g_test_rt_smt
, TRUE
},
1111 { "test-rt-avoid0", no_argument
, (int*)&g_test_rt_avoid0
, TRUE
},
1112 { "verbose", no_argument
, (int*)&g_verbose
, TRUE
},
1113 { "help", no_argument
, NULL
, 'h' },
1114 { NULL
, 0, NULL
, 0 }
1115 /* END IGNORE CODESTYLE */
1118 g_longopts
= longopts
;
1121 while ((ch
= getopt_long(argc
, argv
, "h", longopts
, &option_index
)) != -1) {
1124 /* getopt_long set a variable */
1127 g_do_each_spin
= TRUE
;
1128 g_each_spin_duration_ns
= read_dec_arg();
1131 g_traceworthy_latency_ns
= read_dec_arg();
1134 g_priority
= read_dec_arg();
1137 g_churn_pri
= read_dec_arg();
1139 case OPT_CHURN_COUNT
:
1140 g_churn_count
= read_dec_arg();
1151 * getopt_long reorders all the options to the beginning of the argv array.
1152 * Jump past them to the non-option arguments.
1159 warnx("Too many non-option arguments passed");
1164 warnx("Missing required <threads> <waketype> <policy> <iterations> arguments");
1170 /* How many threads? */
1171 g_numthreads
= (uint32_t)strtoull(argv
[0], &cp
, 10);
1173 if (cp
== argv
[0] || *cp
) {
1174 errx(EX_USAGE
, "numthreads requires a decimal number, found \"%s\"", argv
[0]);
1177 /* What wakeup pattern? */
1178 g_waketype
= parse_wakeup_pattern(argv
[1]);
1181 g_policy
= parse_thread_policy(argv
[2]);
1184 g_iterations
= (uint32_t)strtoull(argv
[3], &cp
, 10);
1186 if (cp
== argv
[3] || *cp
) {
1187 errx(EX_USAGE
, "numthreads requires a decimal number, found \"%s\"", argv
[3]);
1190 if (g_iterations
< 1) {
1191 errx(EX_USAGE
, "Must have at least one iteration");
1194 if (g_numthreads
== 1 && g_waketype
== WAKE_CHAIN
) {
1195 errx(EX_USAGE
, "chain mode requires more than one thread");
1198 if (g_numthreads
== 1 && g_waketype
== WAKE_HOP
) {
1199 errx(EX_USAGE
, "hop mode requires more than one thread");