2 * Copyright (c) 2000-2019 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
29 * Copyright (c) 1982, 1986, 1988, 1990, 1993
30 * The Regents of the University of California. All rights reserved.
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions
35 * 1. Redistributions of source code must retain the above copyright
36 * notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in the
39 * documentation and/or other materials provided with the distribution.
40 * 3. All advertising materials mentioning features or use of this software
41 * must display the following acknowledgement:
42 * This product includes software developed by the University of
43 * California, Berkeley and its contributors.
44 * 4. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
63 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
64 * support for mandatory and extensible security protections. This notice
65 * is included in support of clause 2.2 (b) of the Apple Public License,
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/kernel.h>
74 #include <sys/malloc.h>
76 #include <sys/protosw.h>
77 #include <sys/socket.h>
78 #include <sys/socketvar.h>
79 #include <kern/locks.h>
80 #include <sys/sysctl.h>
81 #include <sys/mcache.h>
82 #include <sys/kdebug.h>
84 #include <machine/endian.h>
85 #include <pexpert/pexpert.h>
88 #include <libkern/OSAtomic.h>
89 #include <libkern/OSByteOrder.h>
92 #include <net/if_dl.h>
93 #include <net/if_types.h>
94 #include <net/route.h>
95 #include <net/ntstat.h>
96 #include <net/net_osdep.h>
98 #include <net/net_perf.h>
100 #include <netinet/in.h>
101 #include <netinet/in_systm.h>
102 #include <netinet/ip.h>
103 #include <netinet/in_pcb.h>
104 #include <netinet/in_var.h>
105 #include <netinet/ip_var.h>
106 #include <netinet/kpi_ipfilter_var.h>
107 #include <netinet/in_tclass.h>
108 #include <netinet/udp.h>
110 #include <netinet6/nd6.h>
113 #include <security/mac_framework.h>
114 #endif /* CONFIG_MACF_NET */
116 #define DBG_LAYER_BEG NETDBG_CODE(DBG_NETIP, 1)
117 #define DBG_LAYER_END NETDBG_CODE(DBG_NETIP, 3)
118 #define DBG_FNC_IP_OUTPUT NETDBG_CODE(DBG_NETIP, (1 << 8) | 1)
119 #define DBG_FNC_IPSEC4_OUTPUT NETDBG_CODE(DBG_NETIP, (2 << 8) | 1)
122 #include <netinet6/ipsec.h>
123 #include <netkey/key.h>
125 #include <netkey/key_debug.h>
127 #define KEYDEBUG(lev, arg)
132 #include <net/necp.h>
136 #include <netinet/ip_fw.h>
138 #include <netinet/ip_divert.h>
139 #endif /* IPDIVERT */
140 #endif /* IPFIREWALL */
143 #include <netinet/ip_dummynet.h>
147 #include <net/pfvar.h>
150 #if IPFIREWALL_FORWARD && IPFIREWALL_FORWARD_DEBUG
151 #define print_ip(a) \
152 printf("%ld.%ld.%ld.%ld", (ntohl(a.s_addr) >> 24) & 0xFF, \
153 (ntohl(a.s_addr) >> 16) & 0xFF, \
154 (ntohl(a.s_addr) >> 8) & 0xFF, \
155 (ntohl(a.s_addr)) & 0xFF);
156 #endif /* IPFIREWALL_FORWARD && IPFIREWALL_FORWARD_DEBUG */
160 static int sysctl_reset_ip_output_stats SYSCTL_HANDLER_ARGS
;
161 static int sysctl_ip_output_measure_bins SYSCTL_HANDLER_ARGS
;
162 static int sysctl_ip_output_getperf SYSCTL_HANDLER_ARGS
;
163 static void ip_out_cksum_stats(int, u_int32_t
);
164 static struct mbuf
*ip_insertoptions(struct mbuf
*, struct mbuf
*, int *);
165 static int ip_optcopy(struct ip
*, struct ip
*);
166 static int ip_pcbopts(int, struct mbuf
**, struct mbuf
*);
167 static void imo_trace(struct ip_moptions
*, int);
168 static void ip_mloopback(struct ifnet
*, struct ifnet
*, struct mbuf
*,
169 struct sockaddr_in
*, int);
170 static struct ifaddr
*in_selectsrcif(struct ip
*, struct route
*, unsigned int);
172 extern struct ip_linklocal_stat ip_linklocal_stat
;
174 /* temporary: for testing */
176 extern int ipsec_bypass
;
179 static int ip_maxchainsent
= 0;
180 SYSCTL_INT(_net_inet_ip
, OID_AUTO
, maxchainsent
,
181 CTLFLAG_RW
| CTLFLAG_LOCKED
, &ip_maxchainsent
, 0,
182 "use dlil_output_list");
184 static int forge_ce
= 0;
185 SYSCTL_INT(_net_inet_ip
, OID_AUTO
, forge_ce
,
186 CTLFLAG_RW
| CTLFLAG_LOCKED
, &forge_ce
, 0,
190 static int ip_select_srcif_debug
= 0;
191 SYSCTL_INT(_net_inet_ip
, OID_AUTO
, select_srcif_debug
,
192 CTLFLAG_RW
| CTLFLAG_LOCKED
, &ip_select_srcif_debug
, 0,
193 "log source interface selection debug info");
195 static int ip_output_measure
= 0;
196 SYSCTL_PROC(_net_inet_ip
, OID_AUTO
, output_perf
,
197 CTLTYPE_INT
| CTLFLAG_RW
| CTLFLAG_LOCKED
,
198 &ip_output_measure
, 0, sysctl_reset_ip_output_stats
, "I",
199 "Do time measurement");
201 static uint64_t ip_output_measure_bins
= 0;
202 SYSCTL_PROC(_net_inet_ip
, OID_AUTO
, output_perf_bins
,
203 CTLTYPE_QUAD
| CTLFLAG_RW
| CTLFLAG_LOCKED
, &ip_output_measure_bins
, 0,
204 sysctl_ip_output_measure_bins
, "I",
205 "bins for chaining performance data histogram");
207 static net_perf_t net_perf
;
208 SYSCTL_PROC(_net_inet_ip
, OID_AUTO
, output_perf_data
,
209 CTLTYPE_STRUCT
| CTLFLAG_RD
| CTLFLAG_LOCKED
,
210 0, 0, sysctl_ip_output_getperf
, "S,net_perf",
211 "IP output performance data (struct net_perf, net/net_perf.h)");
213 __private_extern__
int rfc6864
= 1;
214 SYSCTL_INT(_net_inet_ip
, OID_AUTO
, rfc6864
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
215 &rfc6864
, 0, "updated ip id field behavior");
217 #define IMO_TRACE_HIST_SIZE 32 /* size of trace history */
220 __private_extern__
unsigned int imo_trace_hist_size
= IMO_TRACE_HIST_SIZE
;
222 struct ip_moptions_dbg
{
223 struct ip_moptions imo
; /* ip_moptions */
224 u_int16_t imo_refhold_cnt
; /* # of IMO_ADDREF */
225 u_int16_t imo_refrele_cnt
; /* # of IMO_REMREF */
227 * Alloc and free callers.
232 * Circular lists of IMO_ADDREF and IMO_REMREF callers.
234 ctrace_t imo_refhold
[IMO_TRACE_HIST_SIZE
];
235 ctrace_t imo_refrele
[IMO_TRACE_HIST_SIZE
];
239 static unsigned int imo_debug
= 1; /* debugging (enabled) */
241 static unsigned int imo_debug
; /* debugging (disabled) */
243 static unsigned int imo_size
; /* size of zone element */
244 static struct zone
*imo_zone
; /* zone for ip_moptions */
246 #define IMO_ZONE_MAX 64 /* maximum elements in zone */
247 #define IMO_ZONE_NAME "ip_moptions" /* zone name */
250 * IP output. The packet in mbuf chain m contains a skeletal IP
251 * header (with len, off, ttl, proto, tos, src, dst).
252 * The mbuf chain containing the packet will be freed.
253 * The mbuf opt, if present, will not be freed.
256 ip_output(struct mbuf
*m0
, struct mbuf
*opt
, struct route
*ro
, int flags
,
257 struct ip_moptions
*imo
, struct ip_out_args
*ipoa
)
259 return ip_output_list(m0
, 0, opt
, ro
, flags
, imo
, ipoa
);
263 * IP output. The packet in mbuf chain m contains a skeletal IP
264 * header (with len, off, ttl, proto, tos, src, dst).
265 * The mbuf chain containing the packet will be freed.
266 * The mbuf opt, if present, will not be freed.
268 * Route ro MUST be non-NULL; if ro->ro_rt is valid, route lookup would be
269 * skipped and ro->ro_rt would be used. Otherwise the result of route
270 * lookup is stored in ro->ro_rt.
272 * In the IP forwarding case, the packet will arrive with options already
273 * inserted, so must have a NULL opt pointer.
276 ip_output_list(struct mbuf
*m0
, int packetchain
, struct mbuf
*opt
,
277 struct route
*ro
, int flags
, struct ip_moptions
*imo
,
278 struct ip_out_args
*ipoa
)
281 struct ifnet
*ifp
= NULL
; /* not refcnt'd */
282 struct mbuf
*m
= m0
, *prevnxt
= NULL
, **mppn
= &prevnxt
;
283 int hlen
= sizeof(struct ip
);
284 int len
= 0, error
= 0;
285 struct sockaddr_in
*dst
= NULL
;
286 struct in_ifaddr
*ia
= NULL
, *src_ia
= NULL
;
287 struct in_addr pkt_dst
;
288 struct ipf_pktopts
*ippo
= NULL
;
289 ipfilter_t inject_filter_ref
= NULL
;
290 struct mbuf
*packetlist
;
291 uint32_t sw_csum
, pktcnt
= 0, scnt
= 0, bytecnt
= 0;
292 uint32_t packets_processed
= 0;
293 unsigned int ifscope
= IFSCOPE_NONE
;
294 struct flowadv
*adv
= NULL
;
295 struct timeval start_tv
;
297 struct socket
*so
= NULL
;
298 struct secpolicy
*sp
= NULL
;
301 necp_kernel_policy_result necp_result
= 0;
302 necp_kernel_policy_result_parameter necp_result_parameter
;
303 necp_kernel_policy_id necp_matched_policy_id
= 0;
307 struct sockaddr_in
*next_hop_from_ipfwd_tag
= NULL
;
308 #endif /* IPFIREWALL */
309 #if IPFIREWALL || DUMMYNET
311 #endif /* IPFIREWALL || DUMMYNET */
313 struct ip_out_args saved_ipoa
;
314 struct sockaddr_in dst_buf
;
315 #endif /* DUMMYNET */
318 struct ipsec_output_state ipsec_state
;
321 struct route necp_route
;
323 #if IPFIREWALL || DUMMYNET
324 struct ip_fw_args args
;
325 #endif /* IPFIREWALL || DUMMYNET */
326 #if IPFIREWALL_FORWARD
327 struct route sro_fwd
;
328 #endif /* IPFIREWALL_FORWARD */
330 struct route saved_route
;
331 #endif /* DUMMYNET */
332 struct ipf_pktopts ipf_pktopts
;
334 #define ipsec_state ipobz.ipsec_state
335 #define necp_route ipobz.necp_route
336 #define args ipobz.args
337 #define sro_fwd ipobz.sro_fwd
338 #define saved_route ipobz.saved_route
339 #define ipf_pktopts ipobz.ipf_pktopts
342 boolean_t select_srcif
: 1; /* set once */
343 boolean_t srcbound
: 1; /* set once */
344 boolean_t nocell
: 1; /* set once */
345 boolean_t isbroadcast
: 1;
346 boolean_t didfilter
: 1;
347 boolean_t noexpensive
: 1; /* set once */
348 boolean_t noconstrained
: 1; /* set once */
349 boolean_t awdl_unrestricted
: 1; /* set once */
350 #if IPFIREWALL_FORWARD
351 boolean_t fwd_rewrite_src
: 1;
352 #endif /* IPFIREWALL_FORWARD */
355 } ipobf
= { .raw
= 0 };
357 int interface_mtu
= 0;
360 * Here we check for restrictions when sending frames.
361 * N.B.: IPv4 over internal co-processor interfaces is not allowed.
363 #define IP_CHECK_RESTRICTIONS(_ifp, _ipobf) \
364 (((_ipobf).nocell && IFNET_IS_CELLULAR(_ifp)) || \
365 ((_ipobf).noexpensive && IFNET_IS_EXPENSIVE(_ifp)) || \
366 ((_ipobf).noconstrained && IFNET_IS_CONSTRAINED(_ifp)) || \
367 (IFNET_IS_INTCOPROC(_ifp)) || \
368 (!(_ipobf).awdl_unrestricted && IFNET_IS_AWDL_RESTRICTED(_ifp)))
370 if (ip_output_measure
) {
371 net_perf_start_time(&net_perf
, &start_tv
);
373 KERNEL_DEBUG(DBG_FNC_IP_OUTPUT
| DBG_FUNC_START
, 0, 0, 0, 0, 0);
375 VERIFY(m0
->m_flags
& M_PKTHDR
);
378 /* zero out {ipsec_state, args, sro_fwd, saved_route, ipf_pktops} */
379 bzero(&ipobz
, sizeof(ipobz
));
382 #if IPFIREWALL || DUMMYNET
383 if (SLIST_EMPTY(&m0
->m_pkthdr
.tags
)) {
387 /* Grab info from mtags prepended to the chain */
389 if ((tag
= m_tag_locate(m0
, KERNEL_MODULE_TAG_ID
,
390 KERNEL_TAG_TYPE_DUMMYNET
, NULL
)) != NULL
) {
391 struct dn_pkt_tag
*dn_tag
;
393 dn_tag
= (struct dn_pkt_tag
*)(tag
+ 1);
394 args
.fwa_ipfw_rule
= dn_tag
->dn_ipfw_rule
;
395 args
.fwa_pf_rule
= dn_tag
->dn_pf_rule
;
397 saved_route
= dn_tag
->dn_ro
;
401 bcopy(&dn_tag
->dn_dst
, &dst_buf
, sizeof(dst_buf
));
403 ifp
= dn_tag
->dn_ifp
;
404 flags
= dn_tag
->dn_flags
;
405 if ((dn_tag
->dn_flags
& IP_OUTARGS
)) {
406 saved_ipoa
= dn_tag
->dn_ipoa
;
410 m_tag_delete(m0
, tag
);
412 #endif /* DUMMYNET */
415 if ((tag
= m_tag_locate(m0
, KERNEL_MODULE_TAG_ID
,
416 KERNEL_TAG_TYPE_DIVERT
, NULL
)) != NULL
) {
417 struct divert_tag
*div_tag
;
419 div_tag
= (struct divert_tag
*)(tag
+ 1);
420 args
.fwa_divert_rule
= div_tag
->cookie
;
422 m_tag_delete(m0
, tag
);
424 #endif /* IPDIVERT */
427 if ((tag
= m_tag_locate(m0
, KERNEL_MODULE_TAG_ID
,
428 KERNEL_TAG_TYPE_IPFORWARD
, NULL
)) != NULL
) {
429 struct ip_fwd_tag
*ipfwd_tag
;
431 ipfwd_tag
= (struct ip_fwd_tag
*)(tag
+ 1);
432 next_hop_from_ipfwd_tag
= ipfwd_tag
->next_hop
;
434 m_tag_delete(m0
, tag
);
436 #endif /* IPFIREWALL */
439 #endif /* IPFIREWALL || DUMMYNET */
442 m
->m_pkthdr
.pkt_flags
&= ~(PKTF_LOOP
| PKTF_IFAINFO
);
445 if (ipsec_bypass
== 0 && !(flags
& IP_NOIPSEC
)) {
446 /* If packet is bound to an interface, check bound policies */
447 if ((flags
& IP_OUTARGS
) && (ipoa
!= NULL
) &&
448 (ipoa
->ipoa_flags
& IPOAF_BOUND_IF
) &&
449 ipoa
->ipoa_boundif
!= IFSCOPE_NONE
) {
450 if (ipsec4_getpolicybyinterface(m
, IPSEC_DIR_OUTBOUND
,
451 &flags
, ipoa
, &sp
) != 0) {
460 if (flags
& IP_OUTARGS
) {
462 * In the forwarding case, only the ifscope value is used,
463 * as source interface selection doesn't take place.
465 if ((ipobf
.select_srcif
= (!(flags
& IP_FORWARDING
) &&
466 (ipoa
->ipoa_flags
& IPOAF_SELECT_SRCIF
)))) {
467 ipf_pktopts
.ippo_flags
|= IPPOF_SELECT_SRCIF
;
470 if ((ipoa
->ipoa_flags
& IPOAF_BOUND_IF
) &&
471 ipoa
->ipoa_boundif
!= IFSCOPE_NONE
) {
472 ifscope
= ipoa
->ipoa_boundif
;
473 ipf_pktopts
.ippo_flags
|=
474 (IPPOF_BOUND_IF
| (ifscope
<< IPPOF_SHIFT_IFSCOPE
));
477 /* double negation needed for bool bit field */
478 ipobf
.srcbound
= !!(ipoa
->ipoa_flags
& IPOAF_BOUND_SRCADDR
);
479 if (ipobf
.srcbound
) {
480 ipf_pktopts
.ippo_flags
|= IPPOF_BOUND_SRCADDR
;
483 ipobf
.select_srcif
= FALSE
;
484 ipobf
.srcbound
= FALSE
;
485 ifscope
= IFSCOPE_NONE
;
486 if (flags
& IP_OUTARGS
) {
487 ipoa
->ipoa_boundif
= IFSCOPE_NONE
;
488 ipoa
->ipoa_flags
&= ~(IPOAF_SELECT_SRCIF
|
489 IPOAF_BOUND_IF
| IPOAF_BOUND_SRCADDR
);
493 if (flags
& IP_OUTARGS
) {
494 if (ipoa
->ipoa_flags
& IPOAF_NO_CELLULAR
) {
496 ipf_pktopts
.ippo_flags
|= IPPOF_NO_IFT_CELLULAR
;
498 if (ipoa
->ipoa_flags
& IPOAF_NO_EXPENSIVE
) {
499 ipobf
.noexpensive
= TRUE
;
500 ipf_pktopts
.ippo_flags
|= IPPOF_NO_IFF_EXPENSIVE
;
502 if (ipoa
->ipoa_flags
& IPOAF_NO_CONSTRAINED
) {
503 ipobf
.noconstrained
= TRUE
;
504 ipf_pktopts
.ippo_flags
|= IPPOF_NO_IFF_CONSTRAINED
;
506 if (ipoa
->ipoa_flags
& IPOAF_AWDL_UNRESTRICTED
) {
507 ipobf
.awdl_unrestricted
= TRUE
;
509 adv
= &ipoa
->ipoa_flowadv
;
510 adv
->code
= FADV_SUCCESS
;
511 ipoa
->ipoa_retflags
= 0;
515 if (ipsec_bypass
== 0 && !(flags
& IP_NOIPSEC
)) {
516 so
= ipsec_getsocket(m
);
518 (void) ipsec_setsocket(m
, NULL
);
524 if (args
.fwa_ipfw_rule
!= NULL
|| args
.fwa_pf_rule
!= NULL
) {
525 /* dummynet already saw us */
526 ip
= mtod(m
, struct ip
*);
527 hlen
= IP_VHL_HL(ip
->ip_vhl
) << 2;
528 pkt_dst
= ip
->ip_dst
;
529 if (ro
->ro_rt
!= NULL
) {
530 RT_LOCK_SPIN(ro
->ro_rt
);
531 ia
= (struct in_ifaddr
*)ro
->ro_rt
->rt_ifa
;
533 /* Become a regular mutex */
534 RT_CONVERT_LOCK(ro
->ro_rt
);
535 IFA_ADDREF(&ia
->ia_ifa
);
537 RT_UNLOCK(ro
->ro_rt
);
541 if (args
.fwa_ipfw_rule
!= NULL
) {
544 #endif /* IPFIREWALL */
545 if (args
.fwa_pf_rule
!= NULL
) {
549 #endif /* DUMMYNET */
553 ipobf
.isbroadcast
= FALSE
;
554 ipobf
.didfilter
= FALSE
;
555 #if IPFIREWALL_FORWARD
556 ipobf
.fwd_rewrite_src
= FALSE
;
557 #endif /* IPFIREWALL_FORWARD */
559 VERIFY(m
->m_flags
& M_PKTHDR
);
561 * No need to proccess packet twice if we've already seen it.
563 if (!SLIST_EMPTY(&m
->m_pkthdr
.tags
)) {
564 inject_filter_ref
= ipf_get_inject_filter(m
);
566 inject_filter_ref
= NULL
;
570 m
= ip_insertoptions(m
, opt
, &len
);
572 /* Update the chain */
574 if (m0
== packetlist
) {
580 ip
= mtod(m
, struct ip
*);
586 * When dealing with a packet chain, we need to reset "next_hop"
587 * because "dst" may have been changed to the gateway address below
588 * for the previous packet of the chain. This could cause the route
589 * to be inavertandly changed to the route to the gateway address
590 * (instead of the route to the destination).
592 args
.fwa_next_hop
= next_hop_from_ipfwd_tag
;
593 pkt_dst
= args
.fwa_next_hop
? args
.fwa_next_hop
->sin_addr
: ip
->ip_dst
;
594 #else /* !IPFIREWALL */
595 pkt_dst
= ip
->ip_dst
;
596 #endif /* !IPFIREWALL */
599 * We must not send if the packet is destined to network zero.
600 * RFC1122 3.2.1.3 (a) and (b).
602 if (IN_ZERONET(ntohl(pkt_dst
.s_addr
))) {
603 error
= EHOSTUNREACH
;
610 if (!(flags
& (IP_FORWARDING
| IP_RAWOUTPUT
))) {
611 ip
->ip_vhl
= IP_MAKE_VHL(IPVERSION
, hlen
>> 2);
613 if (rfc6864
&& IP_OFF_IS_ATOMIC(ip
->ip_off
)) {
614 // Per RFC6864, value of ip_id is undefined for atomic ip packets
617 ip
->ip_id
= ip_randomid();
619 OSAddAtomic(1, &ipstat
.ips_localout
);
621 hlen
= IP_VHL_HL(ip
->ip_vhl
) << 2;
625 /* For debugging, we let the stack forge congestion */
627 ((ip
->ip_tos
& IPTOS_ECN_MASK
) == IPTOS_ECN_ECT1
||
628 (ip
->ip_tos
& IPTOS_ECN_MASK
) == IPTOS_ECN_ECT0
)) {
629 ip
->ip_tos
= (ip
->ip_tos
& ~IPTOS_ECN_MASK
) | IPTOS_ECN_CE
;
634 KERNEL_DEBUG(DBG_LAYER_BEG
, ip
->ip_dst
.s_addr
, ip
->ip_src
.s_addr
,
635 ip
->ip_p
, ip
->ip_off
, ip
->ip_len
);
637 dst
= SIN(&ro
->ro_dst
);
640 * If there is a cached route,
641 * check that it is to the same destination
642 * and is still up. If not, free it and try again.
643 * The address family should also be checked in case of sharing the
647 if (ro
->ro_rt
!= NULL
) {
648 if (ROUTE_UNUSABLE(ro
) && ip
->ip_src
.s_addr
!= INADDR_ANY
&&
649 !(flags
& (IP_ROUTETOIF
| IP_FORWARDING
))) {
650 src_ia
= ifa_foraddr(ip
->ip_src
.s_addr
);
651 if (src_ia
== NULL
) {
652 error
= EADDRNOTAVAIL
;
655 IFA_REMREF(&src_ia
->ia_ifa
);
659 * Test rt_flags without holding rt_lock for performance
660 * reasons; if the route is down it will hopefully be
661 * caught by the layer below (since it uses this route
662 * as a hint) or during the next transmit.
664 if (ROUTE_UNUSABLE(ro
) || dst
->sin_family
!= AF_INET
||
665 dst
->sin_addr
.s_addr
!= pkt_dst
.s_addr
) {
670 * If we're doing source interface selection, we may not
671 * want to use this route; only synch up the generation
674 if (!ipobf
.select_srcif
&& ro
->ro_rt
!= NULL
&&
675 RT_GENID_OUTOFSYNC(ro
->ro_rt
)) {
676 RT_GENID_SYNC(ro
->ro_rt
);
679 if (ro
->ro_rt
== NULL
) {
680 bzero(dst
, sizeof(*dst
));
681 dst
->sin_family
= AF_INET
;
682 dst
->sin_len
= sizeof(*dst
);
683 dst
->sin_addr
= pkt_dst
;
686 * If routing to interface only,
687 * short circuit routing lookup.
689 if (flags
& IP_ROUTETOIF
) {
691 IFA_REMREF(&ia
->ia_ifa
);
693 if ((ia
= ifatoia(ifa_ifwithdstaddr(sintosa(dst
)))) == NULL
) {
694 ia
= ifatoia(ifa_ifwithnet(sintosa(dst
)));
696 OSAddAtomic(1, &ipstat
.ips_noroute
);
698 /* XXX IPv6 APN fallback notification?? */
704 ipobf
.isbroadcast
= in_broadcast(dst
->sin_addr
, ifp
);
706 * For consistency with other cases below. Loopback
707 * multicast case is handled separately by ip_mloopback().
709 if ((ifp
->if_flags
& IFF_LOOPBACK
) &&
710 !IN_MULTICAST(ntohl(pkt_dst
.s_addr
))) {
711 m
->m_pkthdr
.rcvif
= ifp
;
712 ip_setsrcifaddr_info(m
, ifp
->if_index
, NULL
);
713 ip_setdstifaddr_info(m
, ifp
->if_index
, NULL
);
715 } else if (IN_MULTICAST(ntohl(pkt_dst
.s_addr
)) &&
716 imo
!= NULL
&& (ifp
= imo
->imo_multicast_ifp
) != NULL
) {
718 * Bypass the normal routing lookup for multicast
719 * packets if the interface is specified.
721 ipobf
.isbroadcast
= FALSE
;
723 IFA_REMREF(&ia
->ia_ifa
);
726 /* Macro takes reference on ia */
729 struct ifaddr
*ia0
= NULL
;
730 boolean_t cloneok
= FALSE
;
732 * Perform source interface selection; the source IP address
733 * must belong to one of the addresses of the interface used
734 * by the route. For performance reasons, do this only if
735 * there is no route, or if the routing table has changed,
736 * or if we haven't done source interface selection on this
737 * route (for this PCB instance) before.
739 if (ipobf
.select_srcif
&&
740 ip
->ip_src
.s_addr
!= INADDR_ANY
&& (ROUTE_UNUSABLE(ro
) ||
741 !(ro
->ro_flags
& ROF_SRCIF_SELECTED
))) {
742 /* Find the source interface */
743 ia0
= in_selectsrcif(ip
, ro
, ifscope
);
746 * If the source address belongs to a restricted
747 * interface and the caller forbids our using
748 * interfaces of such type, pretend that there is no
752 IP_CHECK_RESTRICTIONS(ia0
->ifa_ifp
, ipobf
)) {
755 error
= EHOSTUNREACH
;
756 if (flags
& IP_OUTARGS
) {
757 ipoa
->ipoa_retflags
|= IPOARF_IFDENIED
;
763 * If the source address is spoofed (in the case of
764 * IP_RAWOUTPUT on an unbounded socket), or if this
765 * is destined for local/loopback, just let it go out
766 * using the interface of the route. Otherwise,
767 * there's no interface having such an address,
770 if (ia0
== NULL
&& (!(flags
& IP_RAWOUTPUT
) ||
771 ipobf
.srcbound
) && ifscope
!= lo_ifp
->if_index
) {
772 error
= EADDRNOTAVAIL
;
777 * If the caller didn't explicitly specify the scope,
778 * pick it up from the source interface. If the cached
779 * route was wrong and was blown away as part of source
780 * interface selection, don't mask out RTF_PRCLONING
781 * since that route may have been allocated by the ULP,
782 * unless the IP header was created by the caller or
783 * the destination is IPv4 LLA. The check for the
784 * latter is needed because IPv4 LLAs are never scoped
785 * in the current implementation, and we don't want to
786 * replace the resolved IPv4 LLA route with one whose
787 * gateway points to that of the default gateway on
788 * the primary interface of the system.
791 if (ifscope
== IFSCOPE_NONE
) {
792 ifscope
= ia0
->ifa_ifp
->if_index
;
794 cloneok
= (!(flags
& IP_RAWOUTPUT
) &&
795 !(IN_LINKLOCAL(ntohl(ip
->ip_dst
.s_addr
))));
800 * If this is the case, we probably don't want to allocate
801 * a protocol-cloned route since we didn't get one from the
802 * ULP. This lets TCP do its thing, while not burdening
803 * forwarding or ICMP with the overhead of cloning a route.
804 * Of course, we still want to do any cloning requested by
805 * the link layer, as this is probably required in all cases
806 * for correct operation (as it is for ARP).
808 if (ro
->ro_rt
== NULL
) {
809 unsigned long ign
= RTF_PRCLONING
;
811 * We make an exception here: if the destination
812 * address is INADDR_BROADCAST, allocate a protocol-
813 * cloned host route so that we end up with a route
814 * marked with the RTF_BROADCAST flag. Otherwise,
815 * we would end up referring to the default route,
816 * instead of creating a cloned host route entry.
817 * That would introduce inconsistencies between ULPs
818 * that allocate a route and those that don't. The
819 * RTF_BROADCAST route is important since we'd want
820 * to send out undirected IP broadcast packets using
821 * link-level broadcast address. Another exception
822 * is for ULP-created routes that got blown away by
823 * source interface selection (see above).
825 * These exceptions will no longer be necessary when
826 * the RTF_PRCLONING scheme is no longer present.
828 if (cloneok
|| dst
->sin_addr
.s_addr
== INADDR_BROADCAST
) {
829 ign
&= ~RTF_PRCLONING
;
833 * Loosen the route lookup criteria if the ifscope
834 * corresponds to the loopback interface; this is
835 * needed to support Application Layer Gateways
836 * listening on loopback, in conjunction with packet
837 * filter redirection rules. The final source IP
838 * address will be rewritten by the packet filter
839 * prior to the RFC1122 loopback check below.
841 if (ifscope
== lo_ifp
->if_index
) {
842 rtalloc_ign(ro
, ign
);
844 rtalloc_scoped_ign(ro
, ign
, ifscope
);
848 * If the route points to a cellular/expensive interface
849 * and the caller forbids our using interfaces of such type,
850 * pretend that there is no route.
852 if (ro
->ro_rt
!= NULL
) {
853 RT_LOCK_SPIN(ro
->ro_rt
);
854 if (IP_CHECK_RESTRICTIONS(ro
->ro_rt
->rt_ifp
,
856 RT_UNLOCK(ro
->ro_rt
);
858 if (flags
& IP_OUTARGS
) {
859 ipoa
->ipoa_retflags
|=
863 RT_UNLOCK(ro
->ro_rt
);
868 if (ro
->ro_rt
== NULL
) {
869 OSAddAtomic(1, &ipstat
.ips_noroute
);
870 error
= EHOSTUNREACH
;
879 IFA_REMREF(&ia
->ia_ifa
);
881 RT_LOCK_SPIN(ro
->ro_rt
);
882 ia
= ifatoia(ro
->ro_rt
->rt_ifa
);
884 /* Become a regular mutex */
885 RT_CONVERT_LOCK(ro
->ro_rt
);
886 IFA_ADDREF(&ia
->ia_ifa
);
889 * Note: ia_ifp may not be the same as rt_ifp; the latter
890 * is what we use for determining outbound i/f, mtu, etc.
892 ifp
= ro
->ro_rt
->rt_ifp
;
894 if (ro
->ro_rt
->rt_flags
& RTF_GATEWAY
) {
895 dst
= SIN(ro
->ro_rt
->rt_gateway
);
897 if (ro
->ro_rt
->rt_flags
& RTF_HOST
) {
898 /* double negation needed for bool bit field */
900 !!(ro
->ro_rt
->rt_flags
& RTF_BROADCAST
);
902 /* Become a regular mutex */
903 RT_CONVERT_LOCK(ro
->ro_rt
);
904 ipobf
.isbroadcast
= in_broadcast(dst
->sin_addr
, ifp
);
907 * For consistency with IPv6, as well as to ensure that
908 * IP_RECVIF is set correctly for packets that are sent
909 * to one of the local addresses. ia (rt_ifa) would have
910 * been fixed up by rt_setif for local routes. This
911 * would make it appear as if the packet arrives on the
912 * interface which owns the local address. Loopback
913 * multicast case is handled separately by ip_mloopback().
915 if (ia
!= NULL
&& (ifp
->if_flags
& IFF_LOOPBACK
) &&
916 !IN_MULTICAST(ntohl(pkt_dst
.s_addr
))) {
919 m
->m_pkthdr
.rcvif
= ia
->ia_ifa
.ifa_ifp
;
922 srcidx
= ia0
->ifa_ifp
->if_index
;
923 } else if ((ro
->ro_flags
& ROF_SRCIF_SELECTED
) &&
924 ro
->ro_srcia
!= NULL
) {
925 srcidx
= ro
->ro_srcia
->ifa_ifp
->if_index
;
930 ip_setsrcifaddr_info(m
, srcidx
, NULL
);
931 ip_setdstifaddr_info(m
, 0, ia
);
933 RT_UNLOCK(ro
->ro_rt
);
940 if (IN_MULTICAST(ntohl(pkt_dst
.s_addr
))) {
941 struct ifnet
*srcifp
= NULL
;
942 struct in_multi
*inm
;
944 u_int8_t ttl
= IP_DEFAULT_MULTICAST_TTL
;
945 u_int8_t loop
= IP_DEFAULT_MULTICAST_LOOP
;
947 m
->m_flags
|= M_MCAST
;
949 * IP destination address is multicast. Make sure "dst"
950 * still points to the address in "ro". (It may have been
951 * changed to point to a gateway address, above.)
953 dst
= SIN(&ro
->ro_dst
);
955 * See if the caller provided any multicast options
959 vif
= imo
->imo_multicast_vif
;
960 ttl
= imo
->imo_multicast_ttl
;
961 loop
= imo
->imo_multicast_loop
;
962 if (!(flags
& IP_RAWOUTPUT
)) {
965 if (imo
->imo_multicast_ifp
!= NULL
) {
966 ifp
= imo
->imo_multicast_ifp
;
969 } else if (!(flags
& IP_RAWOUTPUT
)) {
974 * Confirm that the outgoing interface supports multicast.
976 if (imo
== NULL
|| vif
== -1) {
977 if (!(ifp
->if_flags
& IFF_MULTICAST
)) {
978 OSAddAtomic(1, &ipstat
.ips_noroute
);
984 * If source address not specified yet, use address
985 * of outgoing interface.
987 if (ip
->ip_src
.s_addr
== INADDR_ANY
) {
988 struct in_ifaddr
*ia1
;
989 lck_rw_lock_shared(in_ifaddr_rwlock
);
990 TAILQ_FOREACH(ia1
, &in_ifaddrhead
, ia_link
) {
991 IFA_LOCK_SPIN(&ia1
->ia_ifa
);
992 if (ia1
->ia_ifp
== ifp
) {
993 ip
->ip_src
= IA_SIN(ia1
)->sin_addr
;
995 IFA_UNLOCK(&ia1
->ia_ifa
);
998 IFA_UNLOCK(&ia1
->ia_ifa
);
1000 lck_rw_done(in_ifaddr_rwlock
);
1001 if (ip
->ip_src
.s_addr
== INADDR_ANY
) {
1002 error
= ENETUNREACH
;
1007 in_multihead_lock_shared();
1008 IN_LOOKUP_MULTI(&pkt_dst
, ifp
, inm
);
1009 in_multihead_lock_done();
1010 if (inm
!= NULL
&& (imo
== NULL
|| loop
)) {
1012 * If we belong to the destination multicast group
1013 * on the outgoing interface, and the caller did not
1014 * forbid loopback, loop back a copy.
1016 if (!TAILQ_EMPTY(&ipv4_filters
)
1018 && !necp_packet_should_skip_filters(m
)
1021 struct ipfilter
*filter
;
1022 int seen
= (inject_filter_ref
== NULL
);
1025 ipf_pktopts
.ippo_flags
|=
1027 ipf_pktopts
.ippo_mcast_ifnet
= ifp
;
1028 ipf_pktopts
.ippo_mcast_ttl
= ttl
;
1029 ipf_pktopts
.ippo_mcast_loop
= loop
;
1035 * 4135317 - always pass network byte
1038 #if BYTE_ORDER != BIG_ENDIAN
1042 TAILQ_FOREACH(filter
, &ipv4_filters
, ipf_link
) {
1044 if ((struct ipfilter
*)
1045 inject_filter_ref
== filter
) {
1048 } else if (filter
->ipf_filter
.
1049 ipf_output
!= NULL
) {
1051 result
= filter
->ipf_filter
.
1054 (mbuf_t
*)&m
, ippo
);
1055 if (result
== EJUSTRETURN
) {
1068 /* set back to host byte order */
1069 ip
= mtod(m
, struct ip
*);
1070 #if BYTE_ORDER != BIG_ENDIAN
1075 ipobf
.didfilter
= TRUE
;
1077 ip_mloopback(srcifp
, ifp
, m
, dst
, hlen
);
1083 * Multicasts with a time-to-live of zero may be looped-
1084 * back, above, but must not be transmitted on a network.
1085 * Also, multicasts addressed to the loopback interface
1086 * are not sent -- the above call to ip_mloopback() will
1087 * loop back a copy if this host actually belongs to the
1088 * destination group on the loopback interface.
1090 if (ip
->ip_ttl
== 0 || ifp
->if_flags
& IFF_LOOPBACK
) {
1098 * If source address not specified yet, use address
1099 * of outgoing interface.
1101 if (ip
->ip_src
.s_addr
== INADDR_ANY
) {
1102 IFA_LOCK_SPIN(&ia
->ia_ifa
);
1103 ip
->ip_src
= IA_SIN(ia
)->sin_addr
;
1104 IFA_UNLOCK(&ia
->ia_ifa
);
1105 #if IPFIREWALL_FORWARD
1107 * Keep note that we did this - if the firewall changes
1108 * the next-hop, our interface may change, changing the
1109 * default source IP. It's a shame so much effort happens
1112 ipobf
.fwd_rewrite_src
= TRUE
;
1113 #endif /* IPFIREWALL_FORWARD */
1117 * Look for broadcast address and
1118 * and verify user is allowed to send
1121 if (ipobf
.isbroadcast
) {
1122 if (!(ifp
->if_flags
& IFF_BROADCAST
)) {
1123 error
= EADDRNOTAVAIL
;
1126 if (!(flags
& IP_ALLOWBROADCAST
)) {
1130 /* don't allow broadcast messages to be fragmented */
1131 if ((u_short
)ip
->ip_len
> ifp
->if_mtu
) {
1135 m
->m_flags
|= M_BCAST
;
1137 m
->m_flags
&= ~M_BCAST
;
1142 /* Invoke outbound packet filter */
1143 if (PF_IS_ENABLED
) {
1146 m0
= m
; /* Save for later */
1149 args
.fwa_next_hop
= dst
;
1153 args
.fwa_oflags
= flags
;
1154 if (flags
& IP_OUTARGS
) {
1155 args
.fwa_ipoa
= ipoa
;
1157 rc
= pf_af_hook(ifp
, mppn
, &m
, AF_INET
, FALSE
, &args
);
1158 #else /* DUMMYNET */
1159 rc
= pf_af_hook(ifp
, mppn
, &m
, AF_INET
, FALSE
, NULL
);
1160 #endif /* DUMMYNET */
1161 if (rc
!= 0 || m
== NULL
) {
1162 /* Move to the next packet */
1165 /* Skip ahead if first packet in list got dropped */
1166 if (packetlist
== m0
) {
1172 /* Next packet in the chain */
1174 } else if (packetlist
!= NULL
) {
1175 /* No more packet; send down the chain */
1178 /* Nothing left; we're done */
1182 ip
= mtod(m
, struct ip
*);
1183 pkt_dst
= ip
->ip_dst
;
1184 hlen
= IP_VHL_HL(ip
->ip_vhl
) << 2;
1188 * Force IP TTL to 255 following draft-ietf-zeroconf-ipv4-linklocal.txt
1190 if (IN_LINKLOCAL(ntohl(ip
->ip_src
.s_addr
)) ||
1191 IN_LINKLOCAL(ntohl(ip
->ip_dst
.s_addr
))) {
1192 ip_linklocal_stat
.iplls_out_total
++;
1193 if (ip
->ip_ttl
!= MAXTTL
) {
1194 ip_linklocal_stat
.iplls_out_badttl
++;
1195 ip
->ip_ttl
= MAXTTL
;
1199 if (!ipobf
.didfilter
&&
1200 !TAILQ_EMPTY(&ipv4_filters
)
1202 && !necp_packet_should_skip_filters(m
)
1205 struct ipfilter
*filter
;
1206 int seen
= (inject_filter_ref
== NULL
);
1207 ipf_pktopts
.ippo_flags
&= ~IPPOF_MCAST_OPTS
;
1210 * Check that a TSO frame isn't passed to a filter.
1211 * This could happen if a filter is inserted while
1212 * TCP is sending the TSO packet.
1214 if (m
->m_pkthdr
.csum_flags
& CSUM_TSO_IPV4
) {
1221 /* 4135317 - always pass network byte order to filter */
1222 #if BYTE_ORDER != BIG_ENDIAN
1226 TAILQ_FOREACH(filter
, &ipv4_filters
, ipf_link
) {
1228 if ((struct ipfilter
*)inject_filter_ref
==
1232 } else if (filter
->ipf_filter
.ipf_output
) {
1234 result
= filter
->ipf_filter
.
1235 ipf_output(filter
->ipf_filter
.cookie
,
1236 (mbuf_t
*)&m
, ippo
);
1237 if (result
== EJUSTRETURN
) {
1247 /* set back to host byte order */
1248 ip
= mtod(m
, struct ip
*);
1249 #if BYTE_ORDER != BIG_ENDIAN
1257 /* Process Network Extension Policy. Will Pass, Drop, or Rebind packet. */
1258 necp_matched_policy_id
= necp_ip_output_find_policy_match(m
,
1259 flags
, (flags
& IP_OUTARGS
) ? ipoa
: NULL
, ro
? ro
->ro_rt
: NULL
, &necp_result
, &necp_result_parameter
);
1260 if (necp_matched_policy_id
) {
1261 necp_mark_packet_from_ip(m
, necp_matched_policy_id
);
1262 switch (necp_result
) {
1263 case NECP_KERNEL_POLICY_RESULT_PASS
:
1264 /* Check if the interface is allowed */
1265 if (!necp_packet_is_allowed_over_interface(m
, ifp
)) {
1266 error
= EHOSTUNREACH
;
1267 OSAddAtomic(1, &ipstat
.ips_necp_policy_drop
);
1271 case NECP_KERNEL_POLICY_RESULT_DROP
:
1272 case NECP_KERNEL_POLICY_RESULT_SOCKET_DIVERT
:
1273 /* Flow divert packets should be blocked at the IP layer */
1274 error
= EHOSTUNREACH
;
1275 OSAddAtomic(1, &ipstat
.ips_necp_policy_drop
);
1277 case NECP_KERNEL_POLICY_RESULT_IP_TUNNEL
: {
1278 /* Verify that the packet is being routed to the tunnel */
1279 struct ifnet
*policy_ifp
= necp_get_ifnet_from_result_parameter(&necp_result_parameter
);
1280 if (policy_ifp
== ifp
) {
1281 /* Check if the interface is allowed */
1282 if (!necp_packet_is_allowed_over_interface(m
, ifp
)) {
1283 error
= EHOSTUNREACH
;
1284 OSAddAtomic(1, &ipstat
.ips_necp_policy_drop
);
1289 if (necp_packet_can_rebind_to_ifnet(m
, policy_ifp
, &necp_route
, AF_INET
)) {
1290 /* Check if the interface is allowed */
1291 if (!necp_packet_is_allowed_over_interface(m
, policy_ifp
)) {
1292 error
= EHOSTUNREACH
;
1293 OSAddAtomic(1, &ipstat
.ips_necp_policy_drop
);
1297 /* Set ifp to the tunnel interface, since it is compatible with the packet */
1302 error
= ENETUNREACH
;
1303 OSAddAtomic(1, &ipstat
.ips_necp_policy_drop
);
1312 /* Catch-all to check if the interface is allowed */
1313 if (!necp_packet_is_allowed_over_interface(m
, ifp
)) {
1314 error
= EHOSTUNREACH
;
1315 OSAddAtomic(1, &ipstat
.ips_necp_policy_drop
);
1321 if (ipsec_bypass
!= 0 || (flags
& IP_NOIPSEC
)) {
1325 KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT
| DBG_FUNC_START
, 0, 0, 0, 0, 0);
1328 /* get SP for this packet */
1330 sp
= ipsec4_getpolicybysock(m
, IPSEC_DIR_OUTBOUND
,
1333 sp
= ipsec4_getpolicybyaddr(m
, IPSEC_DIR_OUTBOUND
,
1337 IPSEC_STAT_INCREMENT(ipsecstat
.out_inval
);
1338 KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT
| DBG_FUNC_END
,
1347 switch (sp
->policy
) {
1348 case IPSEC_POLICY_DISCARD
:
1349 case IPSEC_POLICY_GENERATE
:
1351 * This packet is just discarded.
1353 IPSEC_STAT_INCREMENT(ipsecstat
.out_polvio
);
1354 KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT
| DBG_FUNC_END
,
1358 case IPSEC_POLICY_BYPASS
:
1359 case IPSEC_POLICY_NONE
:
1360 /* no need to do IPsec. */
1361 KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT
| DBG_FUNC_END
,
1365 case IPSEC_POLICY_IPSEC
:
1366 if (sp
->req
== NULL
) {
1367 /* acquire a policy */
1368 error
= key_spdacquire(sp
);
1369 KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT
| DBG_FUNC_END
,
1374 /* Verify the redirect to ipsec interface */
1375 if (sp
->ipsec_if
== ifp
) {
1382 case IPSEC_POLICY_ENTRUST
:
1384 printf("ip_output: Invalid policy found. %d\n", sp
->policy
);
1388 if (flags
& IP_ROUTETOIF
) {
1389 bzero(&ipsec_state
.ro
, sizeof(ipsec_state
.ro
));
1391 route_copyout((struct route
*)&ipsec_state
.ro
, ro
, sizeof(struct route
));
1393 ipsec_state
.dst
= SA(dst
);
1399 * delayed checksums are not currently compatible with IPsec
1401 if (m
->m_pkthdr
.csum_flags
& CSUM_DELAY_DATA
) {
1402 in_delayed_cksum(m
);
1405 #if BYTE_ORDER != BIG_ENDIAN
1410 DTRACE_IP6(send
, struct mbuf
*, m
, struct inpcb
*, NULL
,
1411 struct ip
*, ip
, struct ifnet
*, ifp
,
1412 struct ip
*, ip
, struct ip6_hdr
*, NULL
);
1414 error
= ipsec4_output(&ipsec_state
, sp
, flags
);
1415 if (ipsec_state
.tunneled
== 6) {
1421 m0
= m
= ipsec_state
.m
;
1425 * If we're about to use the route in ipsec_state
1426 * and this came from dummynet, cleaup now.
1428 if (ro
== &saved_route
&&
1429 (!(flags
& IP_ROUTETOIF
) || ipsec_state
.tunneled
)) {
1432 #endif /* DUMMYNET */
1434 if (flags
& IP_ROUTETOIF
) {
1436 * if we have tunnel mode SA, we may need to ignore
1439 if (ipsec_state
.tunneled
) {
1440 flags
&= ~IP_ROUTETOIF
;
1441 ro
= (struct route
*)&ipsec_state
.ro
;
1444 ro
= (struct route
*)&ipsec_state
.ro
;
1446 dst
= SIN(ipsec_state
.dst
);
1448 /* mbuf is already reclaimed in ipsec4_output. */
1458 printf("ip4_output (ipsec): error code %d\n", error
);
1461 /* don't show these error codes to the user */
1465 KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT
| DBG_FUNC_END
,
1471 /* be sure to update variables that are affected by ipsec4_output() */
1472 ip
= mtod(m
, struct ip
*);
1475 hlen
= IP_VHL_HL(ip
->ip_vhl
) << 2;
1476 #else /* !_IP_VHL */
1477 hlen
= ip
->ip_hl
<< 2;
1478 #endif /* !_IP_VHL */
1479 /* Check that there wasn't a route change and src is still valid */
1480 if (ROUTE_UNUSABLE(ro
)) {
1482 VERIFY(src_ia
== NULL
);
1483 if (ip
->ip_src
.s_addr
!= INADDR_ANY
&&
1484 !(flags
& (IP_ROUTETOIF
| IP_FORWARDING
)) &&
1485 (src_ia
= ifa_foraddr(ip
->ip_src
.s_addr
)) == NULL
) {
1486 error
= EADDRNOTAVAIL
;
1487 KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT
| DBG_FUNC_END
,
1491 if (src_ia
!= NULL
) {
1492 IFA_REMREF(&src_ia
->ia_ifa
);
1497 if (ro
->ro_rt
== NULL
) {
1498 if (!(flags
& IP_ROUTETOIF
)) {
1499 printf("%s: can't update route after "
1500 "IPsec processing\n", __func__
);
1501 error
= EHOSTUNREACH
; /* XXX */
1502 KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT
| DBG_FUNC_END
,
1508 IFA_REMREF(&ia
->ia_ifa
);
1510 RT_LOCK_SPIN(ro
->ro_rt
);
1511 ia
= ifatoia(ro
->ro_rt
->rt_ifa
);
1513 /* Become a regular mutex */
1514 RT_CONVERT_LOCK(ro
->ro_rt
);
1515 IFA_ADDREF(&ia
->ia_ifa
);
1517 ifp
= ro
->ro_rt
->rt_ifp
;
1518 RT_UNLOCK(ro
->ro_rt
);
1521 /* make it flipped, again. */
1522 #if BYTE_ORDER != BIG_ENDIAN
1526 KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT
| DBG_FUNC_END
,
1527 7, 0xff, 0xff, 0xff, 0xff);
1529 /* Pass to filters again */
1530 if (!TAILQ_EMPTY(&ipv4_filters
)
1532 && !necp_packet_should_skip_filters(m
)
1535 struct ipfilter
*filter
;
1537 ipf_pktopts
.ippo_flags
&= ~IPPOF_MCAST_OPTS
;
1540 * Check that a TSO frame isn't passed to a filter.
1541 * This could happen if a filter is inserted while
1542 * TCP is sending the TSO packet.
1544 if (m
->m_pkthdr
.csum_flags
& CSUM_TSO_IPV4
) {
1551 /* 4135317 - always pass network byte order to filter */
1552 #if BYTE_ORDER != BIG_ENDIAN
1556 TAILQ_FOREACH(filter
, &ipv4_filters
, ipf_link
) {
1557 if (filter
->ipf_filter
.ipf_output
) {
1559 result
= filter
->ipf_filter
.
1560 ipf_output(filter
->ipf_filter
.cookie
,
1561 (mbuf_t
*)&m
, ippo
);
1562 if (result
== EJUSTRETURN
) {
1572 /* set back to host byte order */
1573 ip
= mtod(m
, struct ip
*);
1574 #if BYTE_ORDER != BIG_ENDIAN
1585 * Check with the firewall...
1586 * but not if we are already being fwd'd from a firewall.
1588 if (fw_enable
&& IPFW_LOADED
&& !args
.fwa_next_hop
) {
1589 struct sockaddr_in
*old
= dst
;
1592 args
.fwa_next_hop
= dst
;
1594 ipfwoff
= ip_fw_chk_ptr(&args
);
1596 dst
= args
.fwa_next_hop
;
1599 * On return we must do the following:
1600 * IP_FW_PORT_DENY_FLAG -> drop the pkt (XXX new)
1601 * 1<=off<= 0xffff -> DIVERT
1602 * (off & IP_FW_PORT_DYNT_FLAG) -> send to a DUMMYNET pipe
1603 * (off & IP_FW_PORT_TEE_FLAG) -> TEE the packet
1604 * dst != old -> IPFIREWALL_FORWARD
1605 * off==0, dst==old -> accept
1606 * If some of the above modules is not compiled in, then
1607 * we should't have to check the corresponding condition
1608 * (because the ipfw control socket should not accept
1609 * unsupported rules), but better play safe and drop
1610 * packets in case of doubt.
1613 if ((ipfwoff
& IP_FW_PORT_DENY_FLAG
) || m
== NULL
) {
1620 ip
= mtod(m
, struct ip
*);
1622 if (ipfwoff
== 0 && dst
== old
) { /* common case */
1626 if (DUMMYNET_LOADED
&& (ipfwoff
& IP_FW_PORT_DYNT_FLAG
) != 0) {
1628 * pass the pkt to dummynet. Need to include
1629 * pipe number, m, ifp, ro, dst because these are
1630 * not recomputed in the next pass.
1631 * All other parameters have been already used and
1632 * so they are not needed anymore.
1633 * XXX note: if the ifp or ro entry are deleted
1634 * while a pkt is in dummynet, we are in trouble!
1638 args
.fwa_oflags
= flags
;
1639 if (flags
& IP_OUTARGS
) {
1640 args
.fwa_ipoa
= ipoa
;
1643 error
= ip_dn_io_ptr(m
, ipfwoff
& 0xffff, DN_TO_IP_OUT
,
1644 &args
, DN_CLIENT_IPFW
);
1647 #endif /* DUMMYNET */
1649 if (ipfwoff
!= 0 && (ipfwoff
& IP_FW_PORT_DYNT_FLAG
) == 0) {
1650 struct mbuf
*clone
= NULL
;
1652 /* Clone packet if we're doing a 'tee' */
1653 if ((ipfwoff
& IP_FW_PORT_TEE_FLAG
) != 0) {
1654 clone
= m_dup(m
, M_DONTWAIT
);
1658 * delayed checksums are not currently compatible
1659 * with divert sockets.
1661 if (m
->m_pkthdr
.csum_flags
& CSUM_DELAY_DATA
) {
1662 in_delayed_cksum(m
);
1665 /* Restore packet header fields to original values */
1667 #if BYTE_ORDER != BIG_ENDIAN
1672 /* Deliver packet to divert input routine */
1673 divert_packet(m
, 0, ipfwoff
& 0xffff,
1674 args
.fwa_divert_rule
);
1676 /* If 'tee', continue with original packet */
1677 if (clone
!= NULL
) {
1679 ip
= mtod(m
, struct ip
*);
1684 #endif /* IPDIVERT */
1685 #if IPFIREWALL_FORWARD
1687 * Here we check dst to make sure it's directly reachable on
1688 * the interface we previously thought it was.
1689 * If it isn't (which may be likely in some situations) we have
1690 * to re-route it (ie, find a route for the next-hop and the
1691 * associated interface) and set them here. This is nested
1692 * forwarding which in most cases is undesirable, except where
1693 * such control is nigh impossible. So we do it here.
1696 if (ipfwoff
== 0 && old
!= dst
) {
1697 struct in_ifaddr
*ia_fw
;
1698 struct route
*ro_fwd
= &sro_fwd
;
1700 #if IPFIREWALL_FORWARD_DEBUG
1701 printf("IPFIREWALL_FORWARD: New dst ip: ");
1702 print_ip(dst
->sin_addr
);
1704 #endif /* IPFIREWALL_FORWARD_DEBUG */
1706 * We need to figure out if we have been forwarded
1707 * to a local socket. If so then we should somehow
1708 * "loop back" to ip_input, and get directed to the
1709 * PCB as if we had received this packet. This is
1710 * because it may be dificult to identify the packets
1711 * you want to forward until they are being output
1712 * and have selected an interface. (e.g. locally
1713 * initiated packets) If we used the loopback inteface,
1714 * we would not be able to control what happens
1715 * as the packet runs through ip_input() as
1716 * it is done through a ISR.
1718 lck_rw_lock_shared(in_ifaddr_rwlock
);
1719 TAILQ_FOREACH(ia_fw
, &in_ifaddrhead
, ia_link
) {
1721 * If the addr to forward to is one
1722 * of ours, we pretend to
1723 * be the destination for this packet.
1725 IFA_LOCK_SPIN(&ia_fw
->ia_ifa
);
1726 if (IA_SIN(ia_fw
)->sin_addr
.s_addr
==
1727 dst
->sin_addr
.s_addr
) {
1728 IFA_UNLOCK(&ia_fw
->ia_ifa
);
1731 IFA_UNLOCK(&ia_fw
->ia_ifa
);
1733 lck_rw_done(in_ifaddr_rwlock
);
1735 /* tell ip_input "dont filter" */
1736 struct m_tag
*fwd_tag
;
1737 struct ip_fwd_tag
*ipfwd_tag
;
1739 fwd_tag
= m_tag_create(KERNEL_MODULE_TAG_ID
,
1740 KERNEL_TAG_TYPE_IPFORWARD
,
1741 sizeof(*ipfwd_tag
), M_NOWAIT
, m
);
1742 if (fwd_tag
== NULL
) {
1747 ipfwd_tag
= (struct ip_fwd_tag
*)(fwd_tag
+ 1);
1748 ipfwd_tag
->next_hop
= args
.fwa_next_hop
;
1750 m_tag_prepend(m
, fwd_tag
);
1752 if (m
->m_pkthdr
.rcvif
== NULL
) {
1753 m
->m_pkthdr
.rcvif
= lo_ifp
;
1756 #if BYTE_ORDER != BIG_ENDIAN
1760 mbuf_outbound_finalize(m
, PF_INET
, 0);
1763 * we need to call dlil_output to run filters
1764 * and resync to avoid recursion loops.
1767 dlil_output(lo_ifp
, PF_INET
, m
, NULL
,
1770 printf("%s: no loopback ifp for "
1771 "forwarding!!!\n", __func__
);
1776 * Some of the logic for this was nicked from above.
1778 * This rewrites the cached route in a local PCB.
1779 * Is this what we want to do?
1781 ROUTE_RELEASE(ro_fwd
);
1782 bcopy(dst
, &ro_fwd
->ro_dst
, sizeof(*dst
));
1784 rtalloc_ign(ro_fwd
, RTF_PRCLONING
, false);
1786 if (ro_fwd
->ro_rt
== NULL
) {
1787 OSAddAtomic(1, &ipstat
.ips_noroute
);
1788 error
= EHOSTUNREACH
;
1792 RT_LOCK_SPIN(ro_fwd
->ro_rt
);
1793 ia_fw
= ifatoia(ro_fwd
->ro_rt
->rt_ifa
);
1794 if (ia_fw
!= NULL
) {
1795 /* Become a regular mutex */
1796 RT_CONVERT_LOCK(ro_fwd
->ro_rt
);
1797 IFA_ADDREF(&ia_fw
->ia_ifa
);
1799 ifp
= ro_fwd
->ro_rt
->rt_ifp
;
1800 ro_fwd
->ro_rt
->rt_use
++;
1801 if (ro_fwd
->ro_rt
->rt_flags
& RTF_GATEWAY
) {
1802 dst
= SIN(ro_fwd
->ro_rt
->rt_gateway
);
1804 if (ro_fwd
->ro_rt
->rt_flags
& RTF_HOST
) {
1805 /* double negation needed for bool bit field */
1807 !!(ro_fwd
->ro_rt
->rt_flags
& RTF_BROADCAST
);
1809 /* Become a regular mutex */
1810 RT_CONVERT_LOCK(ro_fwd
->ro_rt
);
1812 in_broadcast(dst
->sin_addr
, ifp
);
1814 RT_UNLOCK(ro_fwd
->ro_rt
);
1816 ro
->ro_rt
= ro_fwd
->ro_rt
;
1817 ro_fwd
->ro_rt
= NULL
;
1818 dst
= SIN(&ro_fwd
->ro_dst
);
1821 * If we added a default src ip earlier,
1822 * which would have been gotten from the-then
1823 * interface, do it again, from the new one.
1825 if (ia_fw
!= NULL
) {
1826 if (ipobf
.fwd_rewrite_src
) {
1827 IFA_LOCK_SPIN(&ia_fw
->ia_ifa
);
1828 ip
->ip_src
= IA_SIN(ia_fw
)->sin_addr
;
1829 IFA_UNLOCK(&ia_fw
->ia_ifa
);
1831 IFA_REMREF(&ia_fw
->ia_ifa
);
1835 #endif /* IPFIREWALL_FORWARD */
1837 * if we get here, none of the above matches, and
1838 * we have to drop the pkt
1841 error
= EACCES
; /* not sure this is the right error msg */
1846 #endif /* IPFIREWALL */
1848 /* 127/8 must not appear on wire - RFC1122 */
1849 if (!(ifp
->if_flags
& IFF_LOOPBACK
) &&
1850 ((ntohl(ip
->ip_src
.s_addr
) >> IN_CLASSA_NSHIFT
) == IN_LOOPBACKNET
||
1851 (ntohl(ip
->ip_dst
.s_addr
) >> IN_CLASSA_NSHIFT
) == IN_LOOPBACKNET
)) {
1852 OSAddAtomic(1, &ipstat
.ips_badaddr
);
1853 error
= EADDRNOTAVAIL
;
1858 u_int8_t dscp
= ip
->ip_tos
>> IPTOS_DSCP_SHIFT
;
1860 error
= set_packet_qos(m
, ifp
,
1861 ipoa
->ipoa_flags
& IPOAF_QOSMARKING_ALLOWED
? TRUE
: FALSE
,
1862 ipoa
->ipoa_sotc
, ipoa
->ipoa_netsvctype
, &dscp
);
1864 ip
->ip_tos
&= IPTOS_ECN_MASK
;
1865 ip
->ip_tos
|= dscp
<< IPTOS_DSCP_SHIFT
;
1867 printf("%s if_dscp_for_mbuf() error %d\n", __func__
, error
);
1872 ip_output_checksum(ifp
, m
, (IP_VHL_HL(ip
->ip_vhl
) << 2),
1873 ip
->ip_len
, &sw_csum
);
1875 interface_mtu
= ifp
->if_mtu
;
1877 if (INTF_ADJUST_MTU_FOR_CLAT46(ifp
)) {
1878 interface_mtu
= IN6_LINKMTU(ifp
);
1879 /* Further adjust the size for CLAT46 expansion */
1880 interface_mtu
-= CLAT46_HDR_EXPANSION_OVERHD
;
1884 * If small enough for interface, or the interface will take
1885 * care of the fragmentation for us, can just send directly.
1887 if ((u_short
)ip
->ip_len
<= interface_mtu
|| TSO_IPV4_OK(ifp
, m
) ||
1888 (!(ip
->ip_off
& IP_DF
) && (ifp
->if_hwassist
& CSUM_FRAGMENT
))) {
1889 #if BYTE_ORDER != BIG_ENDIAN
1895 if (sw_csum
& CSUM_DELAY_IP
) {
1896 ip
->ip_sum
= ip_cksum_hdr_out(m
, hlen
);
1897 sw_csum
&= ~CSUM_DELAY_IP
;
1898 m
->m_pkthdr
.csum_flags
&= ~CSUM_DELAY_IP
;
1902 /* clean ipsec history once it goes out of the node */
1903 if (ipsec_bypass
== 0 && !(flags
& IP_NOIPSEC
)) {
1907 if ((m
->m_pkthdr
.csum_flags
& CSUM_TSO_IPV4
) &&
1908 (m
->m_pkthdr
.tso_segsz
> 0)) {
1909 scnt
+= m
->m_pkthdr
.len
/ m
->m_pkthdr
.tso_segsz
;
1914 if (packetchain
== 0) {
1915 if (ro
->ro_rt
!= NULL
&& nstat_collect
) {
1916 nstat_route_tx(ro
->ro_rt
, scnt
,
1917 m
->m_pkthdr
.len
, 0);
1920 error
= dlil_output(ifp
, PF_INET
, m
, ro
->ro_rt
,
1922 if (dlil_verbose
&& error
) {
1923 printf("dlil_output error on interface %s: %d\n",
1924 ifp
->if_xname
, error
);
1930 * packet chaining allows us to reuse the
1931 * route for all packets
1933 bytecnt
+= m
->m_pkthdr
.len
;
1934 mppn
= &m
->m_nextpkt
;
1940 if (pktcnt
> ip_maxchainsent
) {
1941 ip_maxchainsent
= pktcnt
;
1943 if (ro
->ro_rt
!= NULL
&& nstat_collect
) {
1944 nstat_route_tx(ro
->ro_rt
, scnt
,
1948 error
= dlil_output(ifp
, PF_INET
, packetlist
,
1949 ro
->ro_rt
, SA(dst
), 0, adv
);
1950 if (dlil_verbose
&& error
) {
1951 printf("dlil_output error on interface %s: %d\n",
1952 ifp
->if_xname
, error
);
1965 VERIFY(interface_mtu
!= 0);
1967 * Too large for interface; fragment if possible.
1968 * Must be able to put at least 8 bytes per fragment.
1969 * Balk when DF bit is set or the interface didn't support TSO.
1971 if ((ip
->ip_off
& IP_DF
) || pktcnt
> 0 ||
1972 (m
->m_pkthdr
.csum_flags
& CSUM_TSO_IPV4
)) {
1975 * This case can happen if the user changed the MTU
1976 * of an interface after enabling IP on it. Because
1977 * most netifs don't keep track of routes pointing to
1978 * them, there is no way for one to update all its
1979 * routes when the MTU is changed.
1982 RT_LOCK_SPIN(ro
->ro_rt
);
1983 if ((ro
->ro_rt
->rt_flags
& (RTF_UP
| RTF_HOST
)) &&
1984 !(ro
->ro_rt
->rt_rmx
.rmx_locks
& RTV_MTU
) &&
1985 (ro
->ro_rt
->rt_rmx
.rmx_mtu
> interface_mtu
)) {
1986 ro
->ro_rt
->rt_rmx
.rmx_mtu
= interface_mtu
;
1988 RT_UNLOCK(ro
->ro_rt
);
1993 OSAddAtomic(1, &ipstat
.ips_cantfrag
);
1998 * XXX Only TCP seems to be passing a list of packets here.
1999 * The following issue is limited to UDP datagrams with 0 checksum.
2000 * For now limit it to the case when single packet is passed down.
2002 if (packetchain
== 0 && IS_INTF_CLAT46(ifp
)) {
2004 * If it is a UDP packet that has checksum set to 0
2005 * and is also not being offloaded, compute a full checksum
2006 * and update the UDP checksum.
2008 if (ip
->ip_p
== IPPROTO_UDP
&&
2009 !(m
->m_pkthdr
.csum_flags
& (CSUM_UDP
| CSUM_PARTIAL
))) {
2010 struct udphdr
*uh
= NULL
;
2012 if (m
->m_len
< hlen
+ sizeof(struct udphdr
)) {
2013 m
= m_pullup(m
, hlen
+ sizeof(struct udphdr
));
2020 ip
= mtod(m
, struct ip
*);
2023 * Get UDP header and if checksum is 0, then compute the full
2026 uh
= (struct udphdr
*)(void *)((caddr_t
)ip
+ hlen
);
2027 if (uh
->uh_sum
== 0) {
2028 uh
->uh_sum
= inet_cksum(m
, IPPROTO_UDP
, hlen
,
2030 if (uh
->uh_sum
== 0) {
2031 uh
->uh_sum
= 0xffff;
2037 error
= ip_fragment(m
, ifp
, interface_mtu
, sw_csum
);
2043 KERNEL_DEBUG(DBG_LAYER_END
, ip
->ip_dst
.s_addr
,
2044 ip
->ip_src
.s_addr
, ip
->ip_p
, ip
->ip_off
, ip
->ip_len
);
2046 for (m
= m0
; m
; m
= m0
) {
2050 /* clean ipsec history once it goes out of the node */
2051 if (ipsec_bypass
== 0 && !(flags
& IP_NOIPSEC
)) {
2056 if ((packetchain
!= 0) && (pktcnt
> 0)) {
2057 panic("%s: mix of packet in packetlist is "
2058 "wrong=%p", __func__
, packetlist
);
2061 if (ro
->ro_rt
!= NULL
&& nstat_collect
) {
2062 nstat_route_tx(ro
->ro_rt
, 1,
2063 m
->m_pkthdr
.len
, 0);
2065 error
= dlil_output(ifp
, PF_INET
, m
, ro
->ro_rt
,
2067 if (dlil_verbose
&& error
) {
2068 printf("dlil_output error on interface %s: %d\n",
2069 ifp
->if_xname
, error
);
2077 OSAddAtomic(1, &ipstat
.ips_fragmented
);
2082 IFA_REMREF(&ia
->ia_ifa
);
2086 ROUTE_RELEASE(&ipsec_state
.ro
);
2088 KEYDEBUG(KEYDEBUG_IPSEC_STAMP
,
2089 printf("DP ip_output call free SP:%x\n", sp
));
2090 key_freesp(sp
, KEY_SADB_UNLOCKED
);
2094 ROUTE_RELEASE(&necp_route
);
2097 ROUTE_RELEASE(&saved_route
);
2098 #endif /* DUMMYNET */
2099 #if IPFIREWALL_FORWARD
2100 ROUTE_RELEASE(&sro_fwd
);
2101 #endif /* IPFIREWALL_FORWARD */
2103 KERNEL_DEBUG(DBG_FNC_IP_OUTPUT
| DBG_FUNC_END
, error
, 0, 0, 0, 0);
2104 if (ip_output_measure
) {
2105 net_perf_measure_time(&net_perf
, &start_tv
, packets_processed
);
2106 net_perf_histogram(&net_perf
, packets_processed
);
2121 #undef IP_CHECK_RESTRICTIONS
2125 ip_fragment(struct mbuf
*m
, struct ifnet
*ifp
, unsigned long mtu
, int sw_csum
)
2127 struct ip
*ip
, *mhip
;
2128 int len
, hlen
, mhlen
, firstlen
, off
, error
= 0;
2129 struct mbuf
**mnext
= &m
->m_nextpkt
, *m0
;
2132 ip
= mtod(m
, struct ip
*);
2134 hlen
= IP_VHL_HL(ip
->ip_vhl
) << 2;
2135 #else /* !_IP_VHL */
2136 hlen
= ip
->ip_hl
<< 2;
2137 #endif /* !_IP_VHL */
2141 * We need to adjust the fragment sizes to account
2142 * for IPv6 fragment header if it needs to be translated
2143 * from IPv4 to IPv6.
2145 if (IS_INTF_CLAT46(ifp
)) {
2146 mtu
-= sizeof(struct ip6_frag
);
2150 firstlen
= len
= (mtu
- hlen
) & ~7;
2157 * if the interface will not calculate checksums on
2158 * fragmented packets, then do it here.
2160 if ((m
->m_pkthdr
.csum_flags
& CSUM_DELAY_DATA
) &&
2161 !(ifp
->if_hwassist
& CSUM_IP_FRAGS
)) {
2162 in_delayed_cksum(m
);
2166 * Loop through length of segment after first fragment,
2167 * make new header and copy data of each part and link onto chain.
2170 mhlen
= sizeof(struct ip
);
2171 for (off
= hlen
+ len
; off
< (u_short
)ip
->ip_len
; off
+= len
) {
2172 MGETHDR(m
, M_DONTWAIT
, MT_HEADER
); /* MAC-OK */
2175 OSAddAtomic(1, &ipstat
.ips_odropped
);
2178 m
->m_flags
|= (m0
->m_flags
& M_MCAST
) | M_FRAG
;
2179 m
->m_data
+= max_linkhdr
;
2180 mhip
= mtod(m
, struct ip
*);
2182 if (hlen
> sizeof(struct ip
)) {
2183 mhlen
= ip_optcopy(ip
, mhip
) + sizeof(struct ip
);
2184 mhip
->ip_vhl
= IP_MAKE_VHL(IPVERSION
, mhlen
>> 2);
2187 mhip
->ip_off
= ((off
- hlen
) >> 3) + (ip
->ip_off
& ~IP_MF
);
2188 if (ip
->ip_off
& IP_MF
) {
2189 mhip
->ip_off
|= IP_MF
;
2191 if (off
+ len
>= (u_short
)ip
->ip_len
) {
2192 len
= (u_short
)ip
->ip_len
- off
;
2194 mhip
->ip_off
|= IP_MF
;
2196 mhip
->ip_len
= htons((u_short
)(len
+ mhlen
));
2197 m
->m_next
= m_copy(m0
, off
, len
);
2198 if (m
->m_next
== NULL
) {
2200 error
= ENOBUFS
; /* ??? */
2201 OSAddAtomic(1, &ipstat
.ips_odropped
);
2204 m
->m_pkthdr
.len
= mhlen
+ len
;
2205 m
->m_pkthdr
.rcvif
= NULL
;
2206 m
->m_pkthdr
.csum_flags
= m0
->m_pkthdr
.csum_flags
;
2208 M_COPY_CLASSIFIER(m
, m0
);
2209 M_COPY_PFTAG(m
, m0
);
2212 mac_netinet_fragment(m0
, m
);
2213 #endif /* CONFIG_MACF_NET */
2215 #if BYTE_ORDER != BIG_ENDIAN
2216 HTONS(mhip
->ip_off
);
2220 if (sw_csum
& CSUM_DELAY_IP
) {
2221 mhip
->ip_sum
= ip_cksum_hdr_out(m
, mhlen
);
2222 m
->m_pkthdr
.csum_flags
&= ~CSUM_DELAY_IP
;
2225 mnext
= &m
->m_nextpkt
;
2228 OSAddAtomic(nfrags
, &ipstat
.ips_ofragments
);
2230 /* set first/last markers for fragment chain */
2231 m
->m_flags
|= M_LASTFRAG
;
2232 m0
->m_flags
|= M_FIRSTFRAG
| M_FRAG
;
2233 m0
->m_pkthdr
.csum_data
= nfrags
;
2236 * Update first fragment by trimming what's been copied out
2237 * and updating header, then send each fragment (in order).
2240 m_adj(m
, hlen
+ firstlen
- (u_short
)ip
->ip_len
);
2241 m
->m_pkthdr
.len
= hlen
+ firstlen
;
2242 ip
->ip_len
= htons((u_short
)m
->m_pkthdr
.len
);
2243 ip
->ip_off
|= IP_MF
;
2245 #if BYTE_ORDER != BIG_ENDIAN
2250 if (sw_csum
& CSUM_DELAY_IP
) {
2251 ip
->ip_sum
= ip_cksum_hdr_out(m
, hlen
);
2252 m
->m_pkthdr
.csum_flags
&= ~CSUM_DELAY_IP
;
2263 ip_out_cksum_stats(int proto
, u_int32_t len
)
2267 tcp_out_cksum_stats(len
);
2270 udp_out_cksum_stats(len
);
2273 /* keep only TCP or UDP stats for now */
2279 * Process a delayed payload checksum calculation (outbound path.)
2281 * hoff is the number of bytes beyond the mbuf data pointer which
2282 * points to the IP header.
2284 * Returns a bitmask representing all the work done in software.
2287 in_finalize_cksum(struct mbuf
*m
, uint32_t hoff
, uint32_t csum_flags
)
2289 unsigned char buf
[15 << 2] __attribute__((aligned(8)));
2291 uint32_t offset
, _hlen
, mlen
, hlen
, len
, sw_csum
;
2292 uint16_t csum
, ip_len
;
2294 _CASSERT(sizeof(csum
) == sizeof(uint16_t));
2295 VERIFY(m
->m_flags
& M_PKTHDR
);
2297 sw_csum
= (csum_flags
& m
->m_pkthdr
.csum_flags
);
2299 if ((sw_csum
&= (CSUM_DELAY_IP
| CSUM_DELAY_DATA
)) == 0) {
2303 mlen
= m
->m_pkthdr
.len
; /* total mbuf len */
2305 /* sanity check (need at least simple IP header) */
2306 if (mlen
< (hoff
+ sizeof(*ip
))) {
2307 panic("%s: mbuf %p pkt len (%u) < hoff+ip_hdr "
2308 "(%u+%u)\n", __func__
, m
, mlen
, hoff
,
2309 (uint32_t)sizeof(*ip
));
2314 * In case the IP header is not contiguous, or not 32-bit aligned,
2315 * or if we're computing the IP header checksum, copy it to a local
2316 * buffer. Copy only the simple IP header here (IP options case
2317 * is handled below.)
2319 if ((sw_csum
& CSUM_DELAY_IP
) || (hoff
+ sizeof(*ip
)) > m
->m_len
||
2320 !IP_HDR_ALIGNED_P(mtod(m
, caddr_t
) + hoff
)) {
2321 m_copydata(m
, hoff
, sizeof(*ip
), (caddr_t
)buf
);
2322 ip
= (struct ip
*)(void *)buf
;
2323 _hlen
= sizeof(*ip
);
2325 ip
= (struct ip
*)(void *)(m
->m_data
+ hoff
);
2329 hlen
= IP_VHL_HL(ip
->ip_vhl
) << 2; /* IP header len */
2332 if (mlen
< (hoff
+ hlen
)) {
2333 panic("%s: mbuf %p pkt too short (%d) for IP header (%u), "
2334 "hoff %u", __func__
, m
, mlen
, hlen
, hoff
);
2339 * We could be in the context of an IP or interface filter; in the
2340 * former case, ip_len would be in host (correct) order while for
2341 * the latter it would be in network order. Because of this, we
2342 * attempt to interpret the length field by comparing it against
2343 * the actual packet length. If the comparison fails, byte swap
2344 * the length and check again. If it still fails, use the actual
2345 * packet length. This also covers the trailing bytes case.
2347 ip_len
= ip
->ip_len
;
2348 if (ip_len
!= (mlen
- hoff
)) {
2349 ip_len
= OSSwapInt16(ip_len
);
2350 if (ip_len
!= (mlen
- hoff
)) {
2351 printf("%s: mbuf 0x%llx proto %d IP len %d (%x) "
2352 "[swapped %d (%x)] doesn't match actual packet "
2353 "length; %d is used instead\n", __func__
,
2354 (uint64_t)VM_KERNEL_ADDRPERM(m
), ip
->ip_p
,
2355 ip
->ip_len
, ip
->ip_len
, ip_len
, ip_len
,
2357 ip_len
= mlen
- hoff
;
2361 len
= ip_len
- hlen
; /* csum span */
2363 if (sw_csum
& CSUM_DELAY_DATA
) {
2367 * offset is added to the lower 16-bit value of csum_data,
2368 * which is expected to contain the ULP offset; therefore
2369 * CSUM_PARTIAL offset adjustment must be undone.
2371 if ((m
->m_pkthdr
.csum_flags
& (CSUM_PARTIAL
| CSUM_DATA_VALID
)) ==
2372 (CSUM_PARTIAL
| CSUM_DATA_VALID
)) {
2374 * Get back the original ULP offset (this will
2375 * undo the CSUM_PARTIAL logic in ip_output.)
2377 m
->m_pkthdr
.csum_data
= (m
->m_pkthdr
.csum_tx_stuff
-
2378 m
->m_pkthdr
.csum_tx_start
);
2381 ulpoff
= (m
->m_pkthdr
.csum_data
& 0xffff); /* ULP csum offset */
2382 offset
= hoff
+ hlen
; /* ULP header */
2384 if (mlen
< (ulpoff
+ sizeof(csum
))) {
2385 panic("%s: mbuf %p pkt len (%u) proto %d invalid ULP "
2386 "cksum offset (%u) cksum flags 0x%x\n", __func__
,
2387 m
, mlen
, ip
->ip_p
, ulpoff
, m
->m_pkthdr
.csum_flags
);
2391 csum
= inet_cksum(m
, 0, offset
, len
);
2394 ip_out_cksum_stats(ip
->ip_p
, len
);
2396 /* RFC1122 4.1.3.4 */
2398 (m
->m_pkthdr
.csum_flags
& (CSUM_UDP
| CSUM_ZERO_INVERT
))) {
2402 /* Insert the checksum in the ULP csum field */
2404 if (offset
+ sizeof(csum
) > m
->m_len
) {
2405 m_copyback(m
, offset
, sizeof(csum
), &csum
);
2406 } else if (IP_HDR_ALIGNED_P(mtod(m
, char *) + hoff
)) {
2407 *(uint16_t *)(void *)(mtod(m
, char *) + offset
) = csum
;
2409 bcopy(&csum
, (mtod(m
, char *) + offset
), sizeof(csum
));
2411 m
->m_pkthdr
.csum_flags
&= ~(CSUM_DELAY_DATA
| CSUM_DATA_VALID
|
2412 CSUM_PARTIAL
| CSUM_ZERO_INVERT
);
2415 if (sw_csum
& CSUM_DELAY_IP
) {
2416 /* IP header must be in the local buffer */
2417 VERIFY(_hlen
== sizeof(*ip
));
2418 if (_hlen
!= hlen
) {
2419 VERIFY(hlen
<= sizeof(buf
));
2420 m_copydata(m
, hoff
, hlen
, (caddr_t
)buf
);
2421 ip
= (struct ip
*)(void *)buf
;
2426 * Compute the IP header checksum as if the IP length
2427 * is the length which we believe is "correct"; see
2428 * how ip_len gets calculated above. Note that this
2429 * is done on the local copy and not on the real one.
2431 ip
->ip_len
= htons(ip_len
);
2433 csum
= in_cksum_hdr_opt(ip
);
2436 ipstat
.ips_snd_swcsum
++;
2437 ipstat
.ips_snd_swcsum_bytes
+= hlen
;
2440 * Insert only the checksum in the existing IP header
2441 * csum field; all other fields are left unchanged.
2443 offset
= hoff
+ offsetof(struct ip
, ip_sum
);
2444 if (offset
+ sizeof(csum
) > m
->m_len
) {
2445 m_copyback(m
, offset
, sizeof(csum
), &csum
);
2446 } else if (IP_HDR_ALIGNED_P(mtod(m
, char *) + hoff
)) {
2447 *(uint16_t *)(void *)(mtod(m
, char *) + offset
) = csum
;
2449 bcopy(&csum
, (mtod(m
, char *) + offset
), sizeof(csum
));
2451 m
->m_pkthdr
.csum_flags
&= ~CSUM_DELAY_IP
;
2459 * Insert IP options into preformed packet.
2460 * Adjust IP destination as required for IP source routing,
2461 * as indicated by a non-zero in_addr at the start of the options.
2463 * XXX This routine assumes that the packet has no options in place.
2465 static struct mbuf
*
2466 ip_insertoptions(struct mbuf
*m
, struct mbuf
*opt
, int *phlen
)
2468 struct ipoption
*p
= mtod(opt
, struct ipoption
*);
2470 struct ip
*ip
= mtod(m
, struct ip
*);
2473 optlen
= opt
->m_len
- sizeof(p
->ipopt_dst
);
2474 if (optlen
+ (u_short
)ip
->ip_len
> IP_MAXPACKET
) {
2475 return m
; /* XXX should fail */
2477 if (p
->ipopt_dst
.s_addr
) {
2478 ip
->ip_dst
= p
->ipopt_dst
;
2480 if (m
->m_flags
& M_EXT
|| m
->m_data
- optlen
< m
->m_pktdat
) {
2481 MGETHDR(n
, M_DONTWAIT
, MT_HEADER
); /* MAC-OK */
2485 n
->m_pkthdr
.rcvif
= 0;
2487 mac_mbuf_label_copy(m
, n
);
2488 #endif /* CONFIG_MACF_NET */
2489 n
->m_pkthdr
.len
= m
->m_pkthdr
.len
+ optlen
;
2490 m
->m_len
-= sizeof(struct ip
);
2491 m
->m_data
+= sizeof(struct ip
);
2494 m
->m_len
= optlen
+ sizeof(struct ip
);
2495 m
->m_data
+= max_linkhdr
;
2496 (void) memcpy(mtod(m
, void *), ip
, sizeof(struct ip
));
2498 m
->m_data
-= optlen
;
2500 m
->m_pkthdr
.len
+= optlen
;
2501 ovbcopy((caddr_t
)ip
, mtod(m
, caddr_t
), sizeof(struct ip
));
2503 ip
= mtod(m
, struct ip
*);
2504 bcopy(p
->ipopt_list
, ip
+ 1, optlen
);
2505 *phlen
= sizeof(struct ip
) + optlen
;
2506 ip
->ip_vhl
= IP_MAKE_VHL(IPVERSION
, *phlen
>> 2);
2507 ip
->ip_len
+= optlen
;
2512 * Copy options from ip to jp,
2513 * omitting those not copied during fragmentation.
2516 ip_optcopy(struct ip
*ip
, struct ip
*jp
)
2519 int opt
, optlen
, cnt
;
2521 cp
= (u_char
*)(ip
+ 1);
2522 dp
= (u_char
*)(jp
+ 1);
2523 cnt
= (IP_VHL_HL(ip
->ip_vhl
) << 2) - sizeof(struct ip
);
2524 for (; cnt
> 0; cnt
-= optlen
, cp
+= optlen
) {
2526 if (opt
== IPOPT_EOL
) {
2529 if (opt
== IPOPT_NOP
) {
2530 /* Preserve for IP mcast tunnel's LSRR alignment. */
2536 if (cnt
< IPOPT_OLEN
+ sizeof(*cp
)) {
2537 panic("malformed IPv4 option passed to ip_optcopy");
2541 optlen
= cp
[IPOPT_OLEN
];
2543 if (optlen
< IPOPT_OLEN
+ sizeof(*cp
) || optlen
> cnt
) {
2544 panic("malformed IPv4 option passed to ip_optcopy");
2548 /* bogus lengths should have been caught by ip_dooptions */
2552 if (IPOPT_COPIED(opt
)) {
2553 bcopy(cp
, dp
, optlen
);
2557 for (optlen
= dp
- (u_char
*)(jp
+ 1); optlen
& 0x3; optlen
++) {
2564 * IP socket option processing.
2567 ip_ctloutput(struct socket
*so
, struct sockopt
*sopt
)
2569 struct inpcb
*inp
= sotoinpcb(so
);
2571 lck_mtx_t
*mutex_held
= NULL
;
2574 if (sopt
->sopt_level
!= IPPROTO_IP
) {
2578 switch (sopt
->sopt_dir
) {
2580 mutex_held
= socket_getlock(so
, PR_F_WILLUNLOCK
);
2582 * Wait if we are in the middle of ip_output
2583 * as we unlocked the socket there and don't
2584 * want to overwrite the IP options
2586 if (inp
->inp_sndinprog_cnt
> 0) {
2587 inp
->inp_sndingprog_waiters
++;
2589 while (inp
->inp_sndinprog_cnt
> 0) {
2590 msleep(&inp
->inp_sndinprog_cnt
, mutex_held
,
2591 PSOCK
| PCATCH
, "inp_sndinprog_cnt", NULL
);
2593 inp
->inp_sndingprog_waiters
--;
2595 switch (sopt
->sopt_name
) {
2602 if (sopt
->sopt_valsize
> MLEN
) {
2606 MGET(m
, sopt
->sopt_p
!= kernproc
? M_WAIT
: M_DONTWAIT
,
2612 m
->m_len
= sopt
->sopt_valsize
;
2613 error
= sooptcopyin(sopt
, mtod(m
, char *),
2614 m
->m_len
, m
->m_len
);
2620 return ip_pcbopts(sopt
->sopt_name
,
2621 &inp
->inp_options
, m
);
2627 case IP_RECVRETOPTS
:
2628 case IP_RECVDSTADDR
:
2631 case IP_RECVPKTINFO
:
2633 error
= sooptcopyin(sopt
, &optval
, sizeof(optval
),
2639 switch (sopt
->sopt_name
) {
2641 inp
->inp_ip_tos
= optval
;
2645 inp
->inp_ip_ttl
= optval
;
2647 #define OPTSET(bit) \
2649 inp->inp_flags |= bit; \
2651 inp->inp_flags &= ~bit;
2654 OPTSET(INP_RECVOPTS
);
2657 case IP_RECVRETOPTS
:
2658 OPTSET(INP_RECVRETOPTS
);
2661 case IP_RECVDSTADDR
:
2662 OPTSET(INP_RECVDSTADDR
);
2670 OPTSET(INP_RECVTTL
);
2673 case IP_RECVPKTINFO
:
2674 OPTSET(INP_PKTINFO
);
2678 OPTSET(INP_RECVTOS
);
2684 * Multicast socket options are processed by the in_mcast
2687 case IP_MULTICAST_IF
:
2688 case IP_MULTICAST_IFINDEX
:
2689 case IP_MULTICAST_VIF
:
2690 case IP_MULTICAST_TTL
:
2691 case IP_MULTICAST_LOOP
:
2692 case IP_ADD_MEMBERSHIP
:
2693 case IP_DROP_MEMBERSHIP
:
2694 case IP_ADD_SOURCE_MEMBERSHIP
:
2695 case IP_DROP_SOURCE_MEMBERSHIP
:
2696 case IP_BLOCK_SOURCE
:
2697 case IP_UNBLOCK_SOURCE
:
2699 case MCAST_JOIN_GROUP
:
2700 case MCAST_LEAVE_GROUP
:
2701 case MCAST_JOIN_SOURCE_GROUP
:
2702 case MCAST_LEAVE_SOURCE_GROUP
:
2703 case MCAST_BLOCK_SOURCE
:
2704 case MCAST_UNBLOCK_SOURCE
:
2705 error
= inp_setmoptions(inp
, sopt
);
2709 error
= sooptcopyin(sopt
, &optval
, sizeof(optval
),
2716 case IP_PORTRANGE_DEFAULT
:
2717 inp
->inp_flags
&= ~(INP_LOWPORT
);
2718 inp
->inp_flags
&= ~(INP_HIGHPORT
);
2721 case IP_PORTRANGE_HIGH
:
2722 inp
->inp_flags
&= ~(INP_LOWPORT
);
2723 inp
->inp_flags
|= INP_HIGHPORT
;
2726 case IP_PORTRANGE_LOW
:
2727 inp
->inp_flags
&= ~(INP_HIGHPORT
);
2728 inp
->inp_flags
|= INP_LOWPORT
;
2738 case IP_IPSEC_POLICY
: {
2745 if ((error
= soopt_getm(sopt
, &m
)) != 0) { /* XXX */
2748 if ((error
= soopt_mcopyin(sopt
, m
)) != 0) { /* XXX */
2751 priv
= (proc_suser(sopt
->sopt_p
) == 0);
2753 req
= mtod(m
, caddr_t
);
2756 optname
= sopt
->sopt_name
;
2757 error
= ipsec4_set_policy(inp
, optname
, req
, len
, priv
);
2764 case IP_TRAFFIC_MGT_BACKGROUND
: {
2765 unsigned background
= 0;
2767 error
= sooptcopyin(sopt
, &background
,
2768 sizeof(background
), sizeof(background
));
2774 socket_set_traffic_mgt_flags_locked(so
,
2775 TRAFFIC_MGT_SO_BACKGROUND
);
2777 socket_clear_traffic_mgt_flags_locked(so
,
2778 TRAFFIC_MGT_SO_BACKGROUND
);
2783 #endif /* TRAFFIC_MGT */
2786 * On a multihomed system, scoped routing can be used to
2787 * restrict the source interface used for sending packets.
2788 * The socket option IP_BOUND_IF binds a particular AF_INET
2789 * socket to an interface such that data sent on the socket
2790 * is restricted to that interface. This is unlike the
2791 * SO_DONTROUTE option where the routing table is bypassed;
2792 * therefore it allows for a greater flexibility and control
2793 * over the system behavior, and does not place any restriction
2794 * on the destination address type (e.g. unicast, multicast,
2795 * or broadcast if applicable) or whether or not the host is
2796 * directly reachable. Note that in the multicast transmit
2797 * case, IP_MULTICAST_{IF,IFINDEX} takes precedence over
2798 * IP_BOUND_IF, since the former practically bypasses the
2799 * routing table; in this case, IP_BOUND_IF sets the default
2800 * interface used for sending multicast packets in the absence
2801 * of an explicit multicast transmit interface.
2804 /* This option is settable only for IPv4 */
2805 if (!(inp
->inp_vflag
& INP_IPV4
)) {
2810 error
= sooptcopyin(sopt
, &optval
, sizeof(optval
),
2817 error
= inp_bindif(inp
, optval
, NULL
);
2820 case IP_NO_IFT_CELLULAR
:
2821 /* This option is settable only for IPv4 */
2822 if (!(inp
->inp_vflag
& INP_IPV4
)) {
2827 error
= sooptcopyin(sopt
, &optval
, sizeof(optval
),
2834 /* once set, it cannot be unset */
2835 if (!optval
&& INP_NO_CELLULAR(inp
)) {
2840 error
= so_set_restrictions(so
,
2841 SO_RESTRICT_DENY_CELLULAR
);
2845 /* This option is not settable */
2850 error
= ENOPROTOOPT
;
2856 switch (sopt
->sopt_name
) {
2859 if (inp
->inp_options
) {
2860 error
= sooptcopyout(sopt
,
2861 mtod(inp
->inp_options
, char *),
2862 inp
->inp_options
->m_len
);
2864 sopt
->sopt_valsize
= 0;
2871 case IP_RECVRETOPTS
:
2872 case IP_RECVDSTADDR
:
2876 case IP_RECVPKTINFO
:
2878 switch (sopt
->sopt_name
) {
2880 optval
= inp
->inp_ip_tos
;
2884 optval
= inp
->inp_ip_ttl
;
2887 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0)
2890 optval
= OPTBIT(INP_RECVOPTS
);
2893 case IP_RECVRETOPTS
:
2894 optval
= OPTBIT(INP_RECVRETOPTS
);
2897 case IP_RECVDSTADDR
:
2898 optval
= OPTBIT(INP_RECVDSTADDR
);
2902 optval
= OPTBIT(INP_RECVIF
);
2906 optval
= OPTBIT(INP_RECVTTL
);
2910 if (inp
->inp_flags
& INP_HIGHPORT
) {
2911 optval
= IP_PORTRANGE_HIGH
;
2912 } else if (inp
->inp_flags
& INP_LOWPORT
) {
2913 optval
= IP_PORTRANGE_LOW
;
2919 case IP_RECVPKTINFO
:
2920 optval
= OPTBIT(INP_PKTINFO
);
2924 optval
= OPTBIT(INP_RECVTOS
);
2927 error
= sooptcopyout(sopt
, &optval
, sizeof(optval
));
2930 case IP_MULTICAST_IF
:
2931 case IP_MULTICAST_IFINDEX
:
2932 case IP_MULTICAST_VIF
:
2933 case IP_MULTICAST_TTL
:
2934 case IP_MULTICAST_LOOP
:
2936 error
= inp_getmoptions(inp
, sopt
);
2940 case IP_IPSEC_POLICY
: {
2941 error
= 0; /* This option is no longer supported */
2947 case IP_TRAFFIC_MGT_BACKGROUND
: {
2948 unsigned background
= (so
->so_flags1
&
2949 SOF1_TRAFFIC_MGT_SO_BACKGROUND
) ? 1 : 0;
2950 return sooptcopyout(sopt
, &background
,
2951 sizeof(background
));
2953 #endif /* TRAFFIC_MGT */
2956 if (inp
->inp_flags
& INP_BOUND_IF
) {
2957 optval
= inp
->inp_boundifp
->if_index
;
2959 error
= sooptcopyout(sopt
, &optval
, sizeof(optval
));
2962 case IP_NO_IFT_CELLULAR
:
2963 optval
= INP_NO_CELLULAR(inp
) ? 1 : 0;
2964 error
= sooptcopyout(sopt
, &optval
, sizeof(optval
));
2968 optval
= (inp
->inp_last_outifp
!= NULL
) ?
2969 inp
->inp_last_outifp
->if_index
: 0;
2970 error
= sooptcopyout(sopt
, &optval
, sizeof(optval
));
2974 error
= ENOPROTOOPT
;
2983 * Set up IP options in pcb for insertion in output packets.
2984 * Store in mbuf with pointer in pcbopt, adding pseudo-option
2985 * with destination address if source routed.
2988 ip_pcbopts(int optname
, struct mbuf
**pcbopt
, struct mbuf
*m
)
2990 #pragma unused(optname)
2995 /* turn off any old options */
2997 (void) m_free(*pcbopt
);
3000 if (m
== (struct mbuf
*)0 || m
->m_len
== 0) {
3002 * Only turning off any previous options.
3010 if (m
->m_len
% sizeof(int32_t)) {
3015 * IP first-hop destination address will be stored before
3016 * actual options; move other options back
3017 * and clear it when none present.
3019 if (m
->m_data
+ m
->m_len
+ sizeof(struct in_addr
) >= &m
->m_dat
[MLEN
]) {
3023 m
->m_len
+= sizeof(struct in_addr
);
3024 cp
= mtod(m
, u_char
*) + sizeof(struct in_addr
);
3025 ovbcopy(mtod(m
, caddr_t
), (caddr_t
)cp
, (unsigned)cnt
);
3026 bzero(mtod(m
, caddr_t
), sizeof(struct in_addr
));
3028 for (; cnt
> 0; cnt
-= optlen
, cp
+= optlen
) {
3029 opt
= cp
[IPOPT_OPTVAL
];
3030 if (opt
== IPOPT_EOL
) {
3033 if (opt
== IPOPT_NOP
) {
3036 if (cnt
< IPOPT_OLEN
+ sizeof(*cp
)) {
3039 optlen
= cp
[IPOPT_OLEN
];
3040 if (optlen
< IPOPT_OLEN
+ sizeof(*cp
) || optlen
> cnt
) {
3051 * user process specifies route as:
3053 * D must be our final destination (but we can't
3054 * check that since we may not have connected yet).
3055 * A is first hop destination, which doesn't appear in
3056 * actual IP option, but is stored before the options.
3058 if (optlen
< IPOPT_MINOFF
- 1 + sizeof(struct in_addr
)) {
3061 m
->m_len
-= sizeof(struct in_addr
);
3062 cnt
-= sizeof(struct in_addr
);
3063 optlen
-= sizeof(struct in_addr
);
3064 cp
[IPOPT_OLEN
] = optlen
;
3066 * Move first hop before start of options.
3068 bcopy((caddr_t
)&cp
[IPOPT_OFFSET
+ 1], mtod(m
, caddr_t
),
3069 sizeof(struct in_addr
));
3071 * Then copy rest of options back
3072 * to close up the deleted entry.
3074 ovbcopy((caddr_t
)(&cp
[IPOPT_OFFSET
+ 1] +
3075 sizeof(struct in_addr
)),
3076 (caddr_t
)&cp
[IPOPT_OFFSET
+ 1],
3077 (unsigned)cnt
- (IPOPT_MINOFF
- 1));
3081 if (m
->m_len
> MAX_IPOPTLEN
+ sizeof(struct in_addr
)) {
3093 ip_moptions_init(void)
3095 PE_parse_boot_argn("ifa_debug", &imo_debug
, sizeof(imo_debug
));
3097 imo_size
= (imo_debug
== 0) ? sizeof(struct ip_moptions
) :
3098 sizeof(struct ip_moptions_dbg
);
3100 imo_zone
= zinit(imo_size
, IMO_ZONE_MAX
* imo_size
, 0,
3102 if (imo_zone
== NULL
) {
3103 panic("%s: failed allocating %s", __func__
, IMO_ZONE_NAME
);
3106 zone_change(imo_zone
, Z_EXPAND
, TRUE
);
3110 imo_addref(struct ip_moptions
*imo
, int locked
)
3115 IMO_LOCK_ASSERT_HELD(imo
);
3118 if (++imo
->imo_refcnt
== 0) {
3119 panic("%s: imo %p wraparound refcnt\n", __func__
, imo
);
3121 } else if (imo
->imo_trace
!= NULL
) {
3122 (*imo
->imo_trace
)(imo
, TRUE
);
3131 imo_remref(struct ip_moptions
*imo
)
3136 if (imo
->imo_refcnt
== 0) {
3137 panic("%s: imo %p negative refcnt", __func__
, imo
);
3139 } else if (imo
->imo_trace
!= NULL
) {
3140 (*imo
->imo_trace
)(imo
, FALSE
);
3144 if (imo
->imo_refcnt
> 0) {
3149 for (i
= 0; i
< imo
->imo_num_memberships
; ++i
) {
3150 struct in_mfilter
*imf
;
3152 imf
= imo
->imo_mfilters
? &imo
->imo_mfilters
[i
] : NULL
;
3157 (void) in_leavegroup(imo
->imo_membership
[i
], imf
);
3163 INM_REMREF(imo
->imo_membership
[i
]);
3164 imo
->imo_membership
[i
] = NULL
;
3166 imo
->imo_num_memberships
= 0;
3167 if (imo
->imo_mfilters
!= NULL
) {
3168 FREE(imo
->imo_mfilters
, M_INMFILTER
);
3169 imo
->imo_mfilters
= NULL
;
3171 if (imo
->imo_membership
!= NULL
) {
3172 FREE(imo
->imo_membership
, M_IPMOPTS
);
3173 imo
->imo_membership
= NULL
;
3177 lck_mtx_destroy(&imo
->imo_lock
, ifa_mtx_grp
);
3179 if (!(imo
->imo_debug
& IFD_ALLOC
)) {
3180 panic("%s: imo %p cannot be freed", __func__
, imo
);
3183 zfree(imo_zone
, imo
);
3187 imo_trace(struct ip_moptions
*imo
, int refhold
)
3189 struct ip_moptions_dbg
*imo_dbg
= (struct ip_moptions_dbg
*)imo
;
3194 if (!(imo
->imo_debug
& IFD_DEBUG
)) {
3195 panic("%s: imo %p has no debug structure", __func__
, imo
);
3199 cnt
= &imo_dbg
->imo_refhold_cnt
;
3200 tr
= imo_dbg
->imo_refhold
;
3202 cnt
= &imo_dbg
->imo_refrele_cnt
;
3203 tr
= imo_dbg
->imo_refrele
;
3206 idx
= atomic_add_16_ov(cnt
, 1) % IMO_TRACE_HIST_SIZE
;
3207 ctrace_record(&tr
[idx
]);
3210 struct ip_moptions
*
3211 ip_allocmoptions(int how
)
3213 struct ip_moptions
*imo
;
3215 imo
= (how
== M_WAITOK
) ? zalloc(imo_zone
) : zalloc_noblock(imo_zone
);
3217 bzero(imo
, imo_size
);
3218 lck_mtx_init(&imo
->imo_lock
, ifa_mtx_grp
, ifa_mtx_attr
);
3219 imo
->imo_debug
|= IFD_ALLOC
;
3220 if (imo_debug
!= 0) {
3221 imo
->imo_debug
|= IFD_DEBUG
;
3222 imo
->imo_trace
= imo_trace
;
3231 * Routine called from ip_output() to loop back a copy of an IP multicast
3232 * packet to the input queue of a specified interface. Note that this
3233 * calls the output routine of the loopback "driver", but with an interface
3234 * pointer that might NOT be a loopback interface -- evil, but easier than
3235 * replicating that code here.
3238 ip_mloopback(struct ifnet
*srcifp
, struct ifnet
*origifp
, struct mbuf
*m
,
3239 struct sockaddr_in
*dst
, int hlen
)
3244 if (lo_ifp
== NULL
) {
3249 * Copy the packet header as it's needed for the checksum
3250 * Make sure to deep-copy IP header portion in case the data
3251 * is in an mbuf cluster, so that we can safely override the IP
3252 * header portion later.
3254 copym
= m_copym_mode(m
, 0, M_COPYALL
, M_DONTWAIT
, M_COPYM_COPY_HDR
);
3255 if (copym
!= NULL
&& ((copym
->m_flags
& M_EXT
) || copym
->m_len
< hlen
)) {
3256 copym
= m_pullup(copym
, hlen
);
3259 if (copym
== NULL
) {
3264 * We don't bother to fragment if the IP length is greater
3265 * than the interface's MTU. Can this possibly matter?
3267 ip
= mtod(copym
, struct ip
*);
3268 #if BYTE_ORDER != BIG_ENDIAN
3273 ip
->ip_sum
= ip_cksum_hdr_out(copym
, hlen
);
3276 * Mark checksum as valid unless receive checksum offload is
3277 * disabled; if so, compute checksum in software. If the
3278 * interface itself is lo0, this will be overridden by if_loop.
3281 copym
->m_pkthdr
.csum_flags
&= ~(CSUM_PARTIAL
| CSUM_ZERO_INVERT
);
3282 copym
->m_pkthdr
.csum_flags
|=
3283 CSUM_DATA_VALID
| CSUM_PSEUDO_HDR
;
3284 copym
->m_pkthdr
.csum_data
= 0xffff;
3285 } else if (copym
->m_pkthdr
.csum_flags
& CSUM_DELAY_DATA
) {
3286 #if BYTE_ORDER != BIG_ENDIAN
3289 in_delayed_cksum(copym
);
3290 #if BYTE_ORDER != BIG_ENDIAN
3296 * Stuff the 'real' ifp into the pkthdr, to be used in matching
3297 * in ip_input(); we need the loopback ifp/dl_tag passed as args
3298 * to make the loopback driver compliant with the data link
3301 copym
->m_pkthdr
.rcvif
= origifp
;
3304 * Also record the source interface (which owns the source address).
3305 * This is basically a stripped down version of ifa_foraddr().
3307 if (srcifp
== NULL
) {
3308 struct in_ifaddr
*ia
;
3310 lck_rw_lock_shared(in_ifaddr_rwlock
);
3311 TAILQ_FOREACH(ia
, INADDR_HASH(ip
->ip_src
.s_addr
), ia_hash
) {
3312 IFA_LOCK_SPIN(&ia
->ia_ifa
);
3313 if (IA_SIN(ia
)->sin_addr
.s_addr
== ip
->ip_src
.s_addr
) {
3314 srcifp
= ia
->ia_ifp
;
3315 IFA_UNLOCK(&ia
->ia_ifa
);
3318 IFA_UNLOCK(&ia
->ia_ifa
);
3320 lck_rw_done(in_ifaddr_rwlock
);
3322 if (srcifp
!= NULL
) {
3323 ip_setsrcifaddr_info(copym
, srcifp
->if_index
, NULL
);
3325 ip_setdstifaddr_info(copym
, origifp
->if_index
, NULL
);
3327 dlil_output(lo_ifp
, PF_INET
, copym
, NULL
, SA(dst
), 0, NULL
);
3331 * Given a source IP address (and route, if available), determine the best
3332 * interface to send the packet from. Checking for (and updating) the
3333 * ROF_SRCIF_SELECTED flag in the pcb-supplied route placeholder is done
3334 * without any locks based on the assumption that ip_output() is single-
3335 * threaded per-pcb, i.e. for any given pcb there can only be one thread
3336 * performing output at the IP layer.
3338 * This routine is analogous to in6_selectroute() for IPv6.
3340 static struct ifaddr
*
3341 in_selectsrcif(struct ip
*ip
, struct route
*ro
, unsigned int ifscope
)
3343 struct ifaddr
*ifa
= NULL
;
3344 struct in_addr src
= ip
->ip_src
;
3345 struct in_addr dst
= ip
->ip_dst
;
3346 struct ifnet
*rt_ifp
;
3347 char s_src
[MAX_IPv4_STR_LEN
], s_dst
[MAX_IPv4_STR_LEN
];
3349 VERIFY(src
.s_addr
!= INADDR_ANY
);
3351 if (ip_select_srcif_debug
) {
3352 (void) inet_ntop(AF_INET
, &src
.s_addr
, s_src
, sizeof(s_src
));
3353 (void) inet_ntop(AF_INET
, &dst
.s_addr
, s_dst
, sizeof(s_dst
));
3356 if (ro
->ro_rt
!= NULL
) {
3360 rt_ifp
= (ro
->ro_rt
!= NULL
) ? ro
->ro_rt
->rt_ifp
: NULL
;
3363 * Given the source IP address, find a suitable source interface
3364 * to use for transmission; if the caller has specified a scope,
3365 * optimize the search by looking at the addresses only for that
3366 * interface. This is still suboptimal, however, as we need to
3367 * traverse the per-interface list.
3369 if (ifscope
!= IFSCOPE_NONE
|| ro
->ro_rt
!= NULL
) {
3370 unsigned int scope
= ifscope
;
3373 * If no scope is specified and the route is stale (pointing
3374 * to a defunct interface) use the current primary interface;
3375 * this happens when switching between interfaces configured
3376 * with the same IP address. Otherwise pick up the scope
3377 * information from the route; the ULP may have looked up a
3378 * correct route and we just need to verify it here and mark
3379 * it with the ROF_SRCIF_SELECTED flag below.
3381 if (scope
== IFSCOPE_NONE
) {
3382 scope
= rt_ifp
->if_index
;
3383 if (scope
!= get_primary_ifscope(AF_INET
) &&
3384 ROUTE_UNUSABLE(ro
)) {
3385 scope
= get_primary_ifscope(AF_INET
);
3389 ifa
= (struct ifaddr
*)ifa_foraddr_scoped(src
.s_addr
, scope
);
3391 if (ifa
== NULL
&& ip
->ip_p
!= IPPROTO_UDP
&&
3392 ip
->ip_p
!= IPPROTO_TCP
&& ipforwarding
) {
3394 * If forwarding is enabled, and if the packet isn't
3395 * TCP or UDP, check if the source address belongs
3396 * to one of our own interfaces; if so, demote the
3397 * interface scope and do a route lookup right below.
3399 ifa
= (struct ifaddr
*)ifa_foraddr(src
.s_addr
);
3403 ifscope
= IFSCOPE_NONE
;
3407 if (ip_select_srcif_debug
&& ifa
!= NULL
) {
3408 if (ro
->ro_rt
!= NULL
) {
3409 printf("%s->%s ifscope %d->%d ifa_if %s "
3410 "ro_if %s\n", s_src
, s_dst
, ifscope
,
3411 scope
, if_name(ifa
->ifa_ifp
),
3414 printf("%s->%s ifscope %d->%d ifa_if %s\n",
3415 s_src
, s_dst
, ifscope
, scope
,
3416 if_name(ifa
->ifa_ifp
));
3422 * Slow path; search for an interface having the corresponding source
3423 * IP address if the scope was not specified by the caller, and:
3425 * 1) There currently isn't any route, or,
3426 * 2) The interface used by the route does not own that source
3427 * IP address; in this case, the route will get blown away
3428 * and we'll do a more specific scoped search using the newly
3431 if (ifa
== NULL
&& ifscope
== IFSCOPE_NONE
) {
3432 ifa
= (struct ifaddr
*)ifa_foraddr(src
.s_addr
);
3435 * If we have the IP address, but not the route, we don't
3436 * really know whether or not it belongs to the correct
3437 * interface (it could be shared across multiple interfaces.)
3438 * The only way to find out is to do a route lookup.
3440 if (ifa
!= NULL
&& ro
->ro_rt
== NULL
) {
3442 struct sockaddr_in sin
;
3443 struct ifaddr
*oifa
= NULL
;
3445 bzero(&sin
, sizeof(sin
));
3446 sin
.sin_family
= AF_INET
;
3447 sin
.sin_len
= sizeof(sin
);
3450 lck_mtx_lock(rnh_lock
);
3451 if ((rt
= rt_lookup(TRUE
, SA(&sin
), NULL
,
3452 rt_tables
[AF_INET
], IFSCOPE_NONE
)) != NULL
) {
3455 * If the route uses a different interface,
3456 * use that one instead. The IP address of
3457 * the ifaddr that we pick up here is not
3460 if (ifa
->ifa_ifp
!= rt
->rt_ifp
) {
3470 lck_mtx_unlock(rnh_lock
);
3473 struct ifaddr
*iifa
;
3476 * See if the interface pointed to by the
3477 * route is configured with the source IP
3478 * address of the packet.
3480 iifa
= (struct ifaddr
*)ifa_foraddr_scoped(
3481 src
.s_addr
, ifa
->ifa_ifp
->if_index
);
3485 * Found it; drop the original one
3486 * as well as the route interface
3487 * address, and use this instead.
3492 } else if (!ipforwarding
||
3493 (rt
->rt_flags
& RTF_GATEWAY
)) {
3495 * This interface doesn't have that
3496 * source IP address; drop the route
3497 * interface address and just use the
3498 * original one, and let the caller
3499 * do a scoped route lookup.
3505 * Forwarding is enabled and the source
3506 * address belongs to one of our own
3507 * interfaces which isn't the outgoing
3508 * interface, and we have a route, and
3509 * the destination is on a network that
3510 * is directly attached (onlink); drop
3511 * the original one and use the route
3512 * interface address instead.
3517 } else if (ifa
!= NULL
&& ro
->ro_rt
!= NULL
&&
3518 !(ro
->ro_rt
->rt_flags
& RTF_GATEWAY
) &&
3519 ifa
->ifa_ifp
!= ro
->ro_rt
->rt_ifp
&& ipforwarding
) {
3521 * Forwarding is enabled and the source address belongs
3522 * to one of our own interfaces which isn't the same
3523 * as the interface used by the known route; drop the
3524 * original one and use the route interface address.
3527 ifa
= ro
->ro_rt
->rt_ifa
;
3531 if (ip_select_srcif_debug
&& ifa
!= NULL
) {
3532 printf("%s->%s ifscope %d ifa_if %s\n",
3533 s_src
, s_dst
, ifscope
, if_name(ifa
->ifa_ifp
));
3537 if (ro
->ro_rt
!= NULL
) {
3538 RT_LOCK_ASSERT_HELD(ro
->ro_rt
);
3541 * If there is a non-loopback route with the wrong interface, or if
3542 * there is no interface configured with such an address, blow it
3543 * away. Except for local/loopback, we look for one with a matching
3544 * interface scope/index.
3546 if (ro
->ro_rt
!= NULL
&&
3547 (ifa
== NULL
|| (ifa
->ifa_ifp
!= rt_ifp
&& rt_ifp
!= lo_ifp
) ||
3548 !(ro
->ro_rt
->rt_flags
& RTF_UP
))) {
3549 if (ip_select_srcif_debug
) {
3551 printf("%s->%s ifscope %d ro_if %s != "
3552 "ifa_if %s (cached route cleared)\n",
3553 s_src
, s_dst
, ifscope
, if_name(rt_ifp
),
3554 if_name(ifa
->ifa_ifp
));
3556 printf("%s->%s ifscope %d ro_if %s "
3557 "(no ifa_if found)\n",
3558 s_src
, s_dst
, ifscope
, if_name(rt_ifp
));
3562 RT_UNLOCK(ro
->ro_rt
);
3566 * If the destination is IPv4 LLA and the route's interface
3567 * doesn't match the source interface, then the source IP
3568 * address is wrong; it most likely belongs to the primary
3569 * interface associated with the IPv4 LL subnet. Drop the
3570 * packet rather than letting it go out and return an error
3571 * to the ULP. This actually applies not only to IPv4 LL
3572 * but other shared subnets; for now we explicitly test only
3573 * for the former case and save the latter for future.
3575 if (IN_LINKLOCAL(ntohl(dst
.s_addr
)) &&
3576 !IN_LINKLOCAL(ntohl(src
.s_addr
)) && ifa
!= NULL
) {
3582 if (ip_select_srcif_debug
&& ifa
== NULL
) {
3583 printf("%s->%s ifscope %d (neither ro_if/ifa_if found)\n",
3584 s_src
, s_dst
, ifscope
);
3588 * If there is a route, mark it accordingly. If there isn't one,
3589 * we'll get here again during the next transmit (possibly with a
3590 * route) and the flag will get set at that point. For IPv4 LLA
3591 * destination, mark it only if the route has been fully resolved;
3592 * otherwise we want to come back here again when the route points
3593 * to the interface over which the ARP reply arrives on.
3595 if (ro
->ro_rt
!= NULL
&& (!IN_LINKLOCAL(ntohl(dst
.s_addr
)) ||
3596 (ro
->ro_rt
->rt_gateway
->sa_family
== AF_LINK
&&
3597 SDL(ro
->ro_rt
->rt_gateway
)->sdl_alen
!= 0))) {
3599 IFA_ADDREF(ifa
); /* for route */
3601 if (ro
->ro_srcia
!= NULL
) {
3602 IFA_REMREF(ro
->ro_srcia
);
3605 ro
->ro_flags
|= ROF_SRCIF_SELECTED
;
3606 RT_GENID_SYNC(ro
->ro_rt
);
3609 if (ro
->ro_rt
!= NULL
) {
3610 RT_UNLOCK(ro
->ro_rt
);
3617 * @brief Given outgoing interface it determines what checksum needs
3618 * to be computed in software and what needs to be offloaded to the
3621 * @param ifp Pointer to the outgoing interface
3622 * @param m Pointer to the packet
3623 * @param hlen IP header length
3624 * @param ip_len Total packet size i.e. headers + data payload
3625 * @param sw_csum Pointer to a software checksum flag set
3630 ip_output_checksum(struct ifnet
*ifp
, struct mbuf
*m
, int hlen
, int ip_len
,
3633 int tso
= TSO_IPV4_OK(ifp
, m
);
3634 uint32_t hwcap
= ifp
->if_hwassist
;
3636 m
->m_pkthdr
.csum_flags
|= CSUM_IP
;
3639 /* do all in software; hardware checksum offload is disabled */
3640 *sw_csum
= (CSUM_DELAY_DATA
| CSUM_DELAY_IP
) &
3641 m
->m_pkthdr
.csum_flags
;
3643 /* do in software what the hardware cannot */
3644 *sw_csum
= m
->m_pkthdr
.csum_flags
&
3645 ~IF_HWASSIST_CSUM_FLAGS(hwcap
);
3648 if (hlen
!= sizeof(struct ip
)) {
3649 *sw_csum
|= ((CSUM_DELAY_DATA
| CSUM_DELAY_IP
) &
3650 m
->m_pkthdr
.csum_flags
);
3651 } else if (!(*sw_csum
& CSUM_DELAY_DATA
) && (hwcap
& CSUM_PARTIAL
)) {
3652 int interface_mtu
= ifp
->if_mtu
;
3654 if (INTF_ADJUST_MTU_FOR_CLAT46(ifp
)) {
3655 interface_mtu
= IN6_LINKMTU(ifp
);
3656 /* Further adjust the size for CLAT46 expansion */
3657 interface_mtu
-= CLAT46_HDR_EXPANSION_OVERHD
;
3661 * Partial checksum offload, if non-IP fragment, and TCP only
3662 * (no UDP support, as the hardware may not be able to convert
3663 * +0 to -0 (0xffff) per RFC1122 4.1.3.4. unless the interface
3664 * supports "invert zero" capability.)
3666 if (hwcksum_tx
&& !tso
&&
3667 ((m
->m_pkthdr
.csum_flags
& CSUM_TCP
) ||
3668 ((hwcap
& CSUM_ZERO_INVERT
) &&
3669 (m
->m_pkthdr
.csum_flags
& CSUM_ZERO_INVERT
))) &&
3670 ip_len
<= interface_mtu
) {
3671 uint16_t start
= sizeof(struct ip
);
3672 uint16_t ulpoff
= m
->m_pkthdr
.csum_data
& 0xffff;
3673 m
->m_pkthdr
.csum_flags
|=
3674 (CSUM_DATA_VALID
| CSUM_PARTIAL
);
3675 m
->m_pkthdr
.csum_tx_stuff
= (ulpoff
+ start
);
3676 m
->m_pkthdr
.csum_tx_start
= start
;
3677 /* do IP hdr chksum in software */
3678 *sw_csum
= CSUM_DELAY_IP
;
3680 *sw_csum
|= (CSUM_DELAY_DATA
& m
->m_pkthdr
.csum_flags
);
3684 if (*sw_csum
& CSUM_DELAY_DATA
) {
3685 in_delayed_cksum(m
);
3686 *sw_csum
&= ~CSUM_DELAY_DATA
;
3691 * Drop off bits that aren't supported by hardware;
3692 * also make sure to preserve non-checksum related bits.
3694 m
->m_pkthdr
.csum_flags
=
3695 ((m
->m_pkthdr
.csum_flags
&
3696 (IF_HWASSIST_CSUM_FLAGS(hwcap
) | CSUM_DATA_VALID
)) |
3697 (m
->m_pkthdr
.csum_flags
& ~IF_HWASSIST_CSUM_MASK
));
3699 /* drop all bits; hardware checksum offload is disabled */
3700 m
->m_pkthdr
.csum_flags
= 0;
3705 * GRE protocol output for PPP/PPTP
3708 ip_gre_output(struct mbuf
*m
)
3713 bzero(&ro
, sizeof(ro
));
3715 error
= ip_output(m
, NULL
, &ro
, 0, NULL
, NULL
);
3723 sysctl_reset_ip_output_stats SYSCTL_HANDLER_ARGS
3725 #pragma unused(arg1, arg2)
3728 i
= ip_output_measure
;
3729 error
= sysctl_handle_int(oidp
, &i
, 0, req
);
3730 if (error
|| req
->newptr
== USER_ADDR_NULL
) {
3734 if (i
< 0 || i
> 1) {
3738 if (ip_output_measure
!= i
&& i
== 1) {
3739 net_perf_initialize(&net_perf
, ip_output_measure_bins
);
3741 ip_output_measure
= i
;
3747 sysctl_ip_output_measure_bins SYSCTL_HANDLER_ARGS
3749 #pragma unused(arg1, arg2)
3753 i
= ip_output_measure_bins
;
3754 error
= sysctl_handle_quad(oidp
, &i
, 0, req
);
3755 if (error
|| req
->newptr
== USER_ADDR_NULL
) {
3759 if (!net_perf_validate_bins(i
)) {
3763 ip_output_measure_bins
= i
;
3769 sysctl_ip_output_getperf SYSCTL_HANDLER_ARGS
3771 #pragma unused(oidp, arg1, arg2)
3772 if (req
->oldptr
== USER_ADDR_NULL
) {
3773 req
->oldlen
= (size_t)sizeof(struct ipstat
);
3776 return SYSCTL_OUT(req
, &net_perf
, MIN(sizeof(net_perf
), req
->oldlen
));