2 * Copyright (c) 2000-2007 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
28 /* Copyright (c) 1995, 1997 Apple Computer, Inc. All Rights Reserved */
30 * Copyright (c) 1982, 1986, 1989, 1991, 1993
31 * The Regents of the University of California. All rights reserved.
32 * (c) UNIX System Laboratories, Inc.
33 * All or some portions of this file are derived from material licensed
34 * to the University of California by American Telephone and Telegraph
35 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
36 * the permission of UNIX System Laboratories, Inc.
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. All advertising materials mentioning features or use of this software
47 * must display the following acknowledgement:
48 * This product includes software developed by the University of
49 * California, Berkeley and its contributors.
50 * 4. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 * @(#)kern_fork.c 8.8 (Berkeley) 2/14/95
69 * NOTICE: This file was modified by McAfee Research in 2004 to introduce
70 * support for mandatory and extensible security protections. This notice
71 * is included in support of clause 2.2 (b) of the Apple Public License,
75 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
76 * support for mandatory and extensible security protections. This notice
77 * is included in support of clause 2.2 (b) of the Apple Public License,
81 #include <kern/assert.h>
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/filedesc.h>
85 #include <sys/kernel.h>
86 #include <sys/malloc.h>
87 #include <sys/proc_internal.h>
88 #include <sys/kauth.h>
90 #include <sys/resourcevar.h>
91 #include <sys/vnode_internal.h>
92 #include <sys/file_internal.h>
94 #include <sys/codesign.h>
95 #include <sys/sysproto.h>
97 /* Do not include dtrace.h, it redefines kmem_[alloc/free] */
98 extern void dtrace_fasttrap_fork(proc_t
, proc_t
);
99 extern void (*dtrace_helpers_fork
)(proc_t
, proc_t
);
100 extern void dtrace_lazy_dofs_duplicate(proc_t
, proc_t
);
102 #include <sys/dtrace_ptss.h>
105 #include <security/audit/audit.h>
107 #include <mach/mach_types.h>
108 #include <kern/kern_types.h>
109 #include <kern/kalloc.h>
110 #include <kern/mach_param.h>
111 #include <kern/task.h>
112 #include <kern/thread_call.h>
113 #include <kern/zalloc.h>
115 #include <machine/spl.h>
118 #include <security/mac.h>
119 #include <security/mac_mach_internal.h>
122 #include <vm/vm_map.h>
123 #include <vm/vm_protos.h>
124 #include <vm/vm_shared_region.h>
126 #include <sys/shm_internal.h> /* for shmfork() */
127 #include <mach/task.h> /* for thread_create() */
128 #include <mach/thread_act.h> /* for thread_resume() */
132 #if CONFIG_MEMORYSTATUS
133 #include <sys/kern_memorystatus.h>
136 /* XXX routines which should have Mach prototypes, but don't */
137 void thread_set_parent(thread_t parent
, int pid
);
138 extern void act_thread_catt(void *ctx
);
139 void thread_set_child(thread_t child
, int pid
);
140 void *act_thread_csave(void);
143 thread_t
cloneproc(task_t
, proc_t
, int);
144 proc_t
forkproc(proc_t
);
145 void forkproc_free(proc_t
);
146 thread_t
fork_create_child(task_t parent_task
, proc_t child
, int inherit_memory
, int is64bit
);
147 void proc_vfork_begin(proc_t parent_proc
);
148 void proc_vfork_end(proc_t parent_proc
);
150 #define DOFORK 0x1 /* fork() system call */
151 #define DOVFORK 0x2 /* vfork() system call */
156 * Description: start a vfork on a process
158 * Parameters: parent_proc process (re)entering vfork state
162 * Notes: Although this function increments a count, a count in
163 * excess of 1 is not currently supported. According to the
164 * POSIX standard, calling anything other than execve() or
165 * _exit() following a vfork(), including calling vfork()
166 * itself again, will result in undefined behaviour
169 proc_vfork_begin(proc_t parent_proc
)
171 proc_lock(parent_proc
);
172 parent_proc
->p_lflag
|= P_LVFORK
;
173 parent_proc
->p_vforkcnt
++;
174 proc_unlock(parent_proc
);
180 * Description: stop a vfork on a process
182 * Parameters: parent_proc process leaving vfork state
186 * Notes: Decrements the count; currently, reentrancy of vfork()
187 * is unsupported on the current process
190 proc_vfork_end(proc_t parent_proc
)
192 proc_lock(parent_proc
);
193 parent_proc
->p_vforkcnt
--;
194 if (parent_proc
->p_vforkcnt
< 0)
195 panic("vfork cnt is -ve");
196 if (parent_proc
->p_vforkcnt
== 0)
197 parent_proc
->p_lflag
&= ~P_LVFORK
;
198 proc_unlock(parent_proc
);
205 * Description: vfork system call
207 * Parameters: void [no arguments]
209 * Retval: 0 (to child process)
210 * !0 pid of child (to parent process)
211 * -1 error (see "Returns:")
213 * Returns: EAGAIN Administrative limit reached
214 * EINVAL vfork() called during vfork()
215 * ENOMEM Failed to allocate new process
217 * Note: After a successful call to this function, the parent process
218 * has its task, thread, and uthread lent to the child process,
219 * and control is returned to the caller; if this function is
220 * invoked as a system call, the return is to user space, and
221 * is effectively running on the child process.
223 * Subsequent calls that operate on process state are permitted,
224 * though discouraged, and will operate on the child process; any
225 * operations on the task, thread, or uthread will result in
226 * changes in the parent state, and, if inheritable, the child
227 * state, when a task, thread, and uthread are realized for the
228 * child process at execve() time, will also be effected. Given
229 * this, it's recemmended that people use the posix_spawn() call
232 * BLOCK DIAGRAM OF VFORK
236 * ,----------------. ,-------------.
238 * | parent_thread | ------> | parent_task |
240 * `----------------' `-------------'
241 * uthread | ^ bsd_info | ^
242 * v | vc_thread v | task
243 * ,----------------. ,-------------.
245 * | parent_uthread | <.list. | parent_proc | <-- current_proc()
247 * `----------------' `-------------'
254 * ,----------------. ,-------------.
256 * ,----> | parent_thread | ------> | parent_task |
258 * | `----------------' `-------------'
259 * | uthread | ^ bsd_info | ^
260 * | v | vc_thread v | task
261 * | ,----------------. ,-------------.
263 * | | parent_uthread | <.list. | parent_proc |
265 * | `----------------' `-------------'
268 * | ,----------------.
270 * p_vforkact | child_proc | <-- current_proc()
275 vfork(proc_t parent_proc
, __unused
struct vfork_args
*uap
, int32_t *retval
)
277 thread_t child_thread
;
280 if ((err
= fork1(parent_proc
, &child_thread
, PROC_CREATE_VFORK
)) != 0) {
284 * kludge: rely on uu_proc being set in the vfork case,
285 * rather than returning the actual thread. We can remove
286 * this when we remove the uu_proc/current_proc() kludge.
288 proc_t child_proc
= current_proc();
290 retval
[0] = child_proc
->p_pid
;
291 retval
[1] = 1; /* flag child return for user space */
294 * Drop the signal lock on the child which was taken on our
295 * behalf by forkproc()/cloneproc() to prevent signals being
296 * received by the child in a partially constructed state.
298 proc_signalend(child_proc
, 0);
299 proc_transend(child_proc
, 0);
301 /* flag the fork has occurred */
302 proc_knote(parent_proc
, NOTE_FORK
| child_proc
->p_pid
);
303 DTRACE_PROC1(create
, proc_t
, child_proc
);
313 * Description: common code used by all new process creation other than the
314 * bootstrap of the initial process on the system
316 * Parameters: parent_proc parent process of the process being
317 * child_threadp pointer to location to receive the
318 * Mach thread_t of the child process
320 * kind kind of creation being requested
322 * Notes: Permissable values for 'kind':
324 * PROC_CREATE_FORK Create a complete process which will
325 * return actively running in both the
326 * parent and the child; the child copies
327 * the parent address space.
328 * PROC_CREATE_SPAWN Create a complete process which will
329 * return actively running in the parent
330 * only after returning actively running
331 * in the child; the child address space
332 * is newly created by an image activator,
333 * after which the child is run.
334 * PROC_CREATE_VFORK Creates a partial process which will
335 * borrow the parent task, thread, and
336 * uthread to return running in the child;
337 * the child address space and other parts
338 * are lazily created at execve() time, or
339 * the child is terminated, and the parent
340 * does not actively run until that
343 * At first it may seem strange that we return the child thread
344 * address rather than process structure, since the process is
345 * the only part guaranteed to be "new"; however, since we do
346 * not actualy adjust other references between Mach and BSD (see
347 * the block diagram above the implementation of vfork()), this
348 * is the only method which guarantees us the ability to get
349 * back to the other information.
352 fork1(proc_t parent_proc
, thread_t
*child_threadp
, int kind
)
354 thread_t parent_thread
= (thread_t
)current_thread();
355 uthread_t parent_uthread
= (uthread_t
)get_bsdthread_info(parent_thread
);
356 proc_t child_proc
= NULL
; /* set in switch, but compiler... */
357 thread_t child_thread
= NULL
;
364 * Although process entries are dynamically created, we still keep
365 * a global limit on the maximum number we will create. Don't allow
366 * a nonprivileged user to use the last process; don't let root
367 * exceed the limit. The variable nprocs is the current number of
368 * processes, maxproc is the limit.
370 uid
= kauth_getruid();
372 if ((nprocs
>= maxproc
- 1 && uid
!= 0) || nprocs
>= maxproc
) {
380 * Increment the count of procs running with this uid. Don't allow
381 * a nonprivileged user to exceed their current limit, which is
382 * always less than what an rlim_t can hold.
383 * (locking protection is provided by list lock held in chgproccnt)
385 count
= chgproccnt(uid
, 1);
387 (rlim_t
)count
> parent_proc
->p_rlimit
[RLIMIT_NPROC
].rlim_cur
) {
394 * Determine if MAC policies applied to the process will allow
395 * it to fork. This is an advisory-only check.
397 err
= mac_proc_check_fork(parent_proc
);
404 case PROC_CREATE_VFORK
:
406 * Prevent a vfork while we are in vfork(); we should
407 * also likely preventing a fork here as well, and this
408 * check should then be outside the switch statement,
409 * since the proc struct contents will copy from the
410 * child and the tash/thread/uthread from the parent in
411 * that case. We do not support vfork() in vfork()
412 * because we don't have to; the same non-requirement
413 * is true of both fork() and posix_spawn() and any
414 * call other than execve() amd _exit(), but we've
415 * been historically lenient, so we continue to be so
418 * <rdar://6640521> Probably a source of random panics
420 if (parent_uthread
->uu_flag
& UT_VFORK
) {
421 printf("fork1 called within vfork by %s\n", parent_proc
->p_comm
);
427 * Flag us in progress; if we chose to support vfork() in
428 * vfork(), we would chain our parent at this point (in
429 * effect, a stack push). We don't, since we actually want
430 * to disallow everything not specified in the standard
432 proc_vfork_begin(parent_proc
);
434 /* The newly created process comes with signal lock held */
435 if ((child_proc
= forkproc(parent_proc
)) == NULL
) {
436 /* Failed to allocate new process */
437 proc_vfork_end(parent_proc
);
442 // XXX BEGIN: wants to move to be common code (and safe)
445 * allow policies to associate the credential/label that
446 * we referenced from the parent ... with the child
447 * JMM - this really isn't safe, as we can drop that
448 * association without informing the policy in other
449 * situations (keep long enough to get policies changed)
451 mac_cred_label_associate_fork(child_proc
->p_ucred
, child_proc
);
455 * Propogate change of PID - may get new cred if auditing.
457 * NOTE: This has no effect in the vfork case, since
458 * child_proc->task != current_task(), but we duplicate it
459 * because this is probably, ultimately, wrong, since we
460 * will be running in the "child" which is the parent task
461 * with the wrong token until we get to the execve() or
462 * _exit() call; a lot of "undefined" can happen before
465 * <rdar://6640530> disallow everything but exeve()/_exit()?
467 set_security_token(child_proc
);
469 AUDIT_ARG(pid
, child_proc
->p_pid
);
471 // XXX END: wants to move to be common code (and safe)
474 * BORROW PARENT TASK, THREAD, UTHREAD FOR CHILD
476 * Note: this is where we would "push" state instead of setting
477 * it for nested vfork() support (see proc_vfork_end() for
478 * description if issues here).
480 child_proc
->task
= parent_proc
->task
;
482 child_proc
->p_lflag
|= P_LINVFORK
;
483 child_proc
->p_vforkact
= parent_thread
;
484 child_proc
->p_stat
= SRUN
;
486 parent_uthread
->uu_flag
|= UT_VFORK
;
487 parent_uthread
->uu_proc
= child_proc
;
488 parent_uthread
->uu_userstate
= (void *)act_thread_csave();
489 parent_uthread
->uu_vforkmask
= parent_uthread
->uu_sigmask
;
491 /* temporarily drop thread-set-id state */
492 if (parent_uthread
->uu_flag
& UT_SETUID
) {
493 parent_uthread
->uu_flag
|= UT_WASSETUID
;
494 parent_uthread
->uu_flag
&= ~UT_SETUID
;
497 /* blow thread state information */
498 /* XXX is this actually necessary, given syscall return? */
499 thread_set_child(parent_thread
, child_proc
->p_pid
);
501 child_proc
->p_acflag
= AFORK
; /* forked but not exec'ed */
504 * Preserve synchronization semantics of vfork. If
505 * waiting for child to exec or exit, set P_PPWAIT
506 * on child, and sleep on our proc (in case of exit).
508 child_proc
->p_lflag
|= P_LPPWAIT
;
509 pinsertchild(parent_proc
, child_proc
); /* set visible */
513 case PROC_CREATE_SPAWN
:
515 * A spawned process differs from a forked process in that
516 * the spawned process does not carry around the parents
517 * baggage with regard to address space copying, dtrace,
524 case PROC_CREATE_FORK
:
526 * When we clone the parent process, we are going to inherit
527 * its task attributes and memory, since when we fork, we
528 * will, in effect, create a duplicate of it, with only minor
529 * differences. Contrarily, spawned processes do not inherit.
531 if ((child_thread
= cloneproc(parent_proc
->task
, parent_proc
, spawn
? FALSE
: TRUE
)) == NULL
) {
532 /* Failed to create thread */
537 /* copy current thread state into the child thread (only for fork) */
539 thread_dup(child_thread
);
542 /* child_proc = child_thread->task->proc; */
543 child_proc
= (proc_t
)(get_bsdtask_info(get_threadtask(child_thread
)));
545 // XXX BEGIN: wants to move to be common code (and safe)
548 * allow policies to associate the credential/label that
549 * we referenced from the parent ... with the child
550 * JMM - this really isn't safe, as we can drop that
551 * association without informing the policy in other
552 * situations (keep long enough to get policies changed)
554 mac_cred_label_associate_fork(child_proc
->p_ucred
, child_proc
);
558 * Propogate change of PID - may get new cred if auditing.
560 * NOTE: This has no effect in the vfork case, since
561 * child_proc->task != current_task(), but we duplicate it
562 * because this is probably, ultimately, wrong, since we
563 * will be running in the "child" which is the parent task
564 * with the wrong token until we get to the execve() or
565 * _exit() call; a lot of "undefined" can happen before
568 * <rdar://6640530> disallow everything but exeve()/_exit()?
570 set_security_token(child_proc
);
572 AUDIT_ARG(pid
, child_proc
->p_pid
);
574 // XXX END: wants to move to be common code (and safe)
577 * Blow thread state information; this is what gives the child
578 * process its "return" value from a fork() call.
580 * Note: this should probably move to fork() proper, since it
581 * is not relevent to spawn, and the value won't matter
582 * until we resume the child there. If you are in here
583 * refactoring code, consider doing this at the same time.
585 thread_set_child(child_thread
, child_proc
->p_pid
);
587 child_proc
->p_acflag
= AFORK
; /* forked but not exec'ed */
589 // <rdar://6598155> dtrace code cleanup needed
592 * This code applies to new processes who are copying the task
593 * and thread state and address spaces of their parent process.
596 // <rdar://6598155> call dtrace specific function here instead of all this...
598 * APPLE NOTE: Solaris does a sprlock() and drops the
599 * proc_lock here. We're cheating a bit and only taking
600 * the p_dtrace_sprlock lock. A full sprlock would
601 * task_suspend the parent.
603 lck_mtx_lock(&parent_proc
->p_dtrace_sprlock
);
606 * Remove all DTrace tracepoints from the child process. We
607 * need to do this _before_ duplicating USDT providers since
608 * any associated probes may be immediately enabled.
610 if (parent_proc
->p_dtrace_count
> 0) {
611 dtrace_fasttrap_fork(parent_proc
, child_proc
);
614 lck_mtx_unlock(&parent_proc
->p_dtrace_sprlock
);
617 * Duplicate any lazy dof(s). This must be done while NOT
618 * holding the parent sprlock! Lock ordering is
619 * dtrace_dof_mode_lock, then sprlock. It is imperative we
620 * always call dtrace_lazy_dofs_duplicate, rather than null
621 * check and call if !NULL. If we NULL test, during lazy dof
622 * faulting we can race with the faulting code and proceed
623 * from here to beyond the helpers copy. The lazy dof
624 * faulting will then fail to copy the helpers to the child
627 dtrace_lazy_dofs_duplicate(parent_proc
, child_proc
);
630 * Duplicate any helper actions and providers. The SFORKING
631 * we set above informs the code to enable USDT probes that
632 * sprlock() may fail because the child is being forked.
635 * APPLE NOTE: As best I can tell, Apple's sprlock() equivalent
636 * never fails to find the child. We do not set SFORKING.
638 if (parent_proc
->p_dtrace_helpers
!= NULL
&& dtrace_helpers_fork
) {
639 (*dtrace_helpers_fork
)(parent_proc
, child_proc
);
643 #endif /* CONFIG_DTRACE */
648 panic("fork1 called with unknown kind %d", kind
);
653 /* return the thread pointer to the caller */
654 *child_threadp
= child_thread
;
656 #if CONFIG_MEMORYSTATUS
658 memorystatus_list_add(child_proc
->p_pid
, DEFAULT_JETSAM_PRIORITY
, -1);
664 * In the error case, we return a 0 value for the returned pid (but
665 * it is ignored in the trampoline due to the error return); this
666 * is probably not necessary.
669 (void)chgproccnt(uid
, -1);
679 * Description: "Return" to parent vfork thread() following execve/_exit;
680 * this is done by reassociating the parent process structure
681 * with the task, thread, and uthread.
683 * Refer to the ASCII art above vfork() to figure out the
684 * state we're undoing.
686 * Parameters: child_proc Child process
687 * retval System call return value array
688 * rval Return value to present to parent
692 * Notes: The caller resumes or exits the parent, as appropriate, after
693 * calling this function.
696 vfork_return(proc_t child_proc
, int32_t *retval
, int rval
)
698 task_t parent_task
= get_threadtask(child_proc
->p_vforkact
);
699 proc_t parent_proc
= get_bsdtask_info(parent_task
);
700 thread_t th
= current_thread();
701 uthread_t uth
= get_bsdthread_info(th
);
703 act_thread_catt(uth
->uu_userstate
);
705 /* clear vfork state in parent proc structure */
706 proc_vfork_end(parent_proc
);
708 /* REPATRIATE PARENT TASK, THREAD, UTHREAD */
709 uth
->uu_userstate
= 0;
710 uth
->uu_flag
&= ~UT_VFORK
;
711 /* restore thread-set-id state */
712 if (uth
->uu_flag
& UT_WASSETUID
) {
713 uth
->uu_flag
|= UT_SETUID
;
714 uth
->uu_flag
&= UT_WASSETUID
;
717 uth
->uu_sigmask
= uth
->uu_vforkmask
;
719 proc_lock(child_proc
);
720 child_proc
->p_lflag
&= ~P_LINVFORK
;
721 child_proc
->p_vforkact
= 0;
722 proc_unlock(child_proc
);
724 thread_set_parent(th
, rval
);
728 retval
[1] = 0; /* mark parent */
736 * Description: Common operations associated with the creation of a child
739 * Parameters: parent_task parent task
740 * child_proc child process
741 * inherit_memory TRUE, if the parents address space is
742 * to be inherited by the child
743 * is64bit TRUE, if the child being created will
744 * be associated with a 64 bit process
745 * rather than a 32 bit process
747 * Note: This code is called in the fork() case, from the execve() call
748 * graph, if implementing an execve() following a vfork(), from
749 * the posix_spawn() call graph (which implicitly includes a
750 * vfork() equivalent call, and in the system bootstrap case.
752 * It creates a new task and thread (and as a side effect of the
753 * thread creation, a uthread), which is then associated with the
754 * process 'child'. If the parent process address space is to
755 * be inherited, then a flag indicates that the newly created
756 * task should inherit this from the child task.
758 * As a special concession to bootstrapping the initial process
759 * in the system, it's possible for 'parent_task' to be TASK_NULL;
760 * in this case, 'inherit_memory' MUST be FALSE.
763 fork_create_child(task_t parent_task
, proc_t child_proc
, int inherit_memory
, int is64bit
)
765 thread_t child_thread
= NULL
;
767 kern_return_t result
;
769 /* Create a new task for the child process */
770 result
= task_create_internal(parent_task
,
774 if (result
!= KERN_SUCCESS
) {
775 printf("execve: task_create_internal failed. Code: %d\n", result
);
779 /* Set the child process task to the new task */
780 child_proc
->task
= child_task
;
782 /* Set child task process to child proc */
783 set_bsdtask_info(child_task
, child_proc
);
785 /* Propagate CPU limit timer from parent */
786 if (timerisset(&child_proc
->p_rlim_cpu
))
787 task_vtimer_set(child_task
, TASK_VTIMER_RLIM
);
789 /* Set/clear 64 bit vm_map flag */
791 vm_map_set_64bit(get_task_map(child_task
));
793 vm_map_set_32bit(get_task_map(child_task
));
796 /* Update task for MAC framework */
797 /* valid to use p_ucred as child is still not running ... */
798 mac_task_label_update_cred(child_proc
->p_ucred
, child_task
);
802 * Set child process BSD visible scheduler priority if nice value
803 * inherited from parent
805 if (child_proc
->p_nice
!= 0)
806 resetpriority(child_proc
);
808 /* Create a new thread for the child process */
809 result
= thread_create(child_task
, &child_thread
);
810 if (result
!= KERN_SUCCESS
) {
811 printf("execve: thread_create failed. Code: %d\n", result
);
812 task_deallocate(child_task
);
816 thread_yield_internal(1);
818 return(child_thread
);
825 * Description: fork system call.
827 * Parameters: parent Parent process to fork
828 * uap (void) [unused]
829 * retval Return value
832 * EAGAIN Resource unavailable, try again
834 * Notes: Attempts to create a new child process which inherits state
835 * from the parent process. If successful, the call returns
836 * having created an initially suspended child process with an
837 * extra Mach task and thread reference, for which the thread
838 * is initially suspended. Until we resume the child process,
839 * it is not yet running.
841 * The return information to the child is contained in the
842 * thread state structure of the new child, and does not
843 * become visible to the child through a normal return process,
844 * since it never made the call into the kernel itself in the
847 * After resuming the thread, this function returns directly to
848 * the parent process which invoked the fork() system call.
850 * Important: The child thread_resume occurs before the parent returns;
851 * depending on scheduling latency, this means that it is not
852 * deterministic as to whether the parent or child is scheduled
853 * to run first. It is entirely possible that the child could
854 * run to completion prior to the parent running.
857 fork(proc_t parent_proc
, __unused
struct fork_args
*uap
, int32_t *retval
)
859 thread_t child_thread
;
862 retval
[1] = 0; /* flag parent return for user space */
864 if ((err
= fork1(parent_proc
, &child_thread
, PROC_CREATE_FORK
)) == 0) {
868 /* Return to the parent */
869 child_proc
= (proc_t
)get_bsdthreadtask_info(child_thread
);
870 retval
[0] = child_proc
->p_pid
;
873 * Drop the signal lock on the child which was taken on our
874 * behalf by forkproc()/cloneproc() to prevent signals being
875 * received by the child in a partially constructed state.
877 proc_signalend(child_proc
, 0);
878 proc_transend(child_proc
, 0);
880 /* flag the fork has occurred */
881 proc_knote(parent_proc
, NOTE_FORK
| child_proc
->p_pid
);
882 DTRACE_PROC1(create
, proc_t
, child_proc
);
884 /* "Return" to the child */
885 (void)thread_resume(child_thread
);
887 /* drop the extra references we got during the creation */
888 if ((child_task
= (task_t
)get_threadtask(child_thread
)) != NULL
) {
889 task_deallocate(child_task
);
891 thread_deallocate(child_thread
);
901 * Description: Create a new process from a specified process.
903 * Parameters: parent_task The parent task to be cloned, or
904 * TASK_NULL is task characteristics
905 * are not to be inherited
906 * be cloned, or TASK_NULL if the new
907 * task is not to inherit the VM
908 * characteristics of the parent
909 * parent_proc The parent process to be cloned
910 * inherit_memory True if the child is to inherit
911 * memory from the parent; if this is
912 * non-NULL, then the parent_task must
915 * Returns: !NULL pointer to new child thread
916 * NULL Failure (unspecified)
918 * Note: On return newly created child process has signal lock held
919 * to block delivery of signal to it if called with lock set.
920 * fork() code needs to explicity remove this lock before
921 * signals can be delivered
923 * In the case of bootstrap, this function can be called from
924 * bsd_utaskbootstrap() in order to bootstrap the first process;
925 * the net effect is to provide a uthread structure for the
926 * kernel process associated with the kernel task.
928 * XXX: Tristating using the value parent_task as the major key
929 * and inherit_memory as the minor key is something we should
930 * refactor later; we owe the current semantics, ultimately,
931 * to the semantics of task_create_internal. For now, we will
932 * live with this being somewhat awkward.
935 cloneproc(task_t parent_task
, proc_t parent_proc
, int inherit_memory
)
939 thread_t child_thread
= NULL
;
941 if ((child_proc
= forkproc(parent_proc
)) == NULL
) {
942 /* Failed to allocate new process */
946 child_thread
= fork_create_child(parent_task
, child_proc
, inherit_memory
, (parent_task
== TASK_NULL
) ? FALSE
: (parent_proc
->p_flag
& P_LP64
));
948 if (child_thread
== NULL
) {
950 * Failed to create thread; now we must deconstruct the new
951 * process previously obtained from forkproc().
953 forkproc_free(child_proc
);
957 child_task
= get_threadtask(child_thread
);
958 if (parent_proc
->p_flag
& P_LP64
) {
959 task_set_64bit(child_task
, TRUE
);
960 OSBitOrAtomic(P_LP64
, (UInt32
*)&child_proc
->p_flag
);
962 task_set_64bit(child_task
, FALSE
);
963 OSBitAndAtomic(~((uint32_t)P_LP64
), (UInt32
*)&child_proc
->p_flag
);
966 /* make child visible */
967 pinsertchild(parent_proc
, child_proc
);
970 * Make child runnable, set start time.
972 child_proc
->p_stat
= SRUN
;
974 return(child_thread
);
979 * Destroy a process structure that resulted from a call to forkproc(), but
980 * which must be returned to the system because of a subsequent failure
981 * preventing it from becoming active.
983 * Parameters: p The incomplete process from forkproc()
987 * Note: This function should only be used in an error handler following
988 * a call to forkproc().
990 * Operations occur in reverse order of those in forkproc().
993 forkproc_free(proc_t p
)
996 /* We held signal and a transition locks; drop them */
997 proc_signalend(p
, 0);
1001 * If we have our own copy of the resource limits structure, we
1002 * need to free it. If it's a shared copy, we need to drop our
1005 proc_limitdrop(p
, 0);
1009 /* Need to drop references to the shared memory segment(s), if any */
1012 * Use shmexec(): we have no address space, so no mappings
1014 * XXX Yes, the routine is badly named.
1020 /* Need to undo the effects of the fdcopy(), if any */
1023 #if !CONFIG_EMBEDDED
1024 if (p
->p_legacy_behavior
& PROC_LEGACY_BEHAVIOR_IOTHROTTLE
) {
1025 throttle_legacy_process_decr();
1030 * Drop the reference on a text vnode pointer, if any
1031 * XXX This code is broken in forkproc(); see <rdar://4256419>;
1032 * XXX if anyone ever uses this field, we will be extremely unhappy.
1035 vnode_rele(p
->p_textvp
);
1039 /* Stop the profiling clock */
1042 /* Update the audit session proc count */
1043 AUDIT_SESSION_PROCEXIT(p
);
1045 /* Release the credential reference */
1046 kauth_cred_unref(&p
->p_ucred
);
1049 /* Decrement the count of processes in the system */
1053 thread_call_free(p
->p_rcall
);
1055 /* Free allocated memory */
1056 FREE_ZONE(p
->p_sigacts
, sizeof *p
->p_sigacts
, M_SIGACTS
);
1057 FREE_ZONE(p
->p_stats
, sizeof *p
->p_stats
, M_PSTATS
);
1058 proc_checkdeadrefs(p
);
1059 FREE_ZONE(p
, sizeof *p
, M_PROC
);
1066 * Description: Create a new process structure, given a parent process
1069 * Parameters: parent_proc The parent process
1071 * Returns: !NULL The new process structure
1072 * NULL Error (insufficient free memory)
1074 * Note: When successful, the newly created process structure is
1075 * partially initialized; if a caller needs to deconstruct the
1076 * returned structure, they must call forkproc_free() to do so.
1079 forkproc(proc_t parent_proc
)
1081 proc_t child_proc
; /* Our new process */
1082 static int nextpid
= 0, pidwrap
= 0, nextpidversion
= 0;
1083 static uint64_t nextuniqueid
= 0;
1085 struct session
*sessp
;
1086 uthread_t parent_uthread
= (uthread_t
)get_bsdthread_info(current_thread());
1088 MALLOC_ZONE(child_proc
, proc_t
, sizeof *child_proc
, M_PROC
, M_WAITOK
);
1089 if (child_proc
== NULL
) {
1090 printf("forkproc: M_PROC zone exhausted\n");
1093 /* zero it out as we need to insert in hash */
1094 bzero(child_proc
, sizeof *child_proc
);
1096 MALLOC_ZONE(child_proc
->p_stats
, struct pstats
*,
1097 sizeof *child_proc
->p_stats
, M_PSTATS
, M_WAITOK
);
1098 if (child_proc
->p_stats
== NULL
) {
1099 printf("forkproc: M_SUBPROC zone exhausted (p_stats)\n");
1100 FREE_ZONE(child_proc
, sizeof *child_proc
, M_PROC
);
1104 MALLOC_ZONE(child_proc
->p_sigacts
, struct sigacts
*,
1105 sizeof *child_proc
->p_sigacts
, M_SIGACTS
, M_WAITOK
);
1106 if (child_proc
->p_sigacts
== NULL
) {
1107 printf("forkproc: M_SUBPROC zone exhausted (p_sigacts)\n");
1108 FREE_ZONE(child_proc
->p_stats
, sizeof *child_proc
->p_stats
, M_PSTATS
);
1109 FREE_ZONE(child_proc
, sizeof *child_proc
, M_PROC
);
1114 /* allocate a callout for use by interval timers */
1115 child_proc
->p_rcall
= thread_call_allocate((thread_call_func_t
)realitexpire
, child_proc
);
1116 if (child_proc
->p_rcall
== NULL
) {
1117 FREE_ZONE(child_proc
->p_sigacts
, sizeof *child_proc
->p_sigacts
, M_SIGACTS
);
1118 FREE_ZONE(child_proc
->p_stats
, sizeof *child_proc
->p_stats
, M_PSTATS
);
1119 FREE_ZONE(child_proc
, sizeof *child_proc
, M_PROC
);
1126 * Find an unused PID.
1134 * If the process ID prototype has wrapped around,
1135 * restart somewhat above 0, as the low-numbered procs
1136 * tend to include daemons that don't exit.
1138 if (nextpid
>= PID_MAX
) {
1144 /* if the pid stays in hash both for zombie and runniing state */
1145 if (pfind_locked(nextpid
) != PROC_NULL
) {
1150 if (pgfind_internal(nextpid
) != PGRP_NULL
) {
1154 if (session_find_internal(nextpid
) != SESSION_NULL
) {
1160 child_proc
->p_pid
= nextpid
;
1161 child_proc
->p_idversion
= nextpidversion
++;
1162 /* kernel process is handcrafted and not from fork, so start from 1 */
1163 child_proc
->p_uniqueid
= ++nextuniqueid
;
1165 if (child_proc
->p_pid
!= 0) {
1166 if (pfind_locked(child_proc
->p_pid
) != PROC_NULL
)
1167 panic("proc in the list already\n");
1170 /* Insert in the hash */
1171 child_proc
->p_listflag
|= (P_LIST_INHASH
| P_LIST_INCREATE
);
1172 LIST_INSERT_HEAD(PIDHASH(child_proc
->p_pid
), child_proc
, p_hash
);
1177 * We've identified the PID we are going to use; initialize the new
1178 * process structure.
1180 child_proc
->p_stat
= SIDL
;
1181 child_proc
->p_pgrpid
= PGRPID_DEAD
;
1184 * The zero'ing of the proc was at the allocation time due to need
1185 * for insertion to hash. Copy the section that is to be copied
1186 * directly from the parent.
1188 bcopy(&parent_proc
->p_startcopy
, &child_proc
->p_startcopy
,
1189 (unsigned) ((caddr_t
)&child_proc
->p_endcopy
- (caddr_t
)&child_proc
->p_startcopy
));
1192 * Some flags are inherited from the parent.
1193 * Duplicate sub-structures as needed.
1194 * Increase reference counts on shared objects.
1195 * The p_stats and p_sigacts substructs are set in vm_fork.
1197 #if !CONFIG_EMBEDDED
1198 child_proc
->p_flag
= (parent_proc
->p_flag
& (P_LP64
| P_TRANSLATED
| P_AFFINITY
| P_DISABLE_ASLR
| P_DELAYIDLESLEEP
));
1199 #else /* !CONFIG_EMBEDDED */
1200 child_proc
->p_flag
= (parent_proc
->p_flag
& (P_LP64
| P_TRANSLATED
| P_AFFINITY
| P_DISABLE_ASLR
));
1201 #endif /* !CONFIG_EMBEDDED */
1202 if (parent_proc
->p_flag
& P_PROFIL
)
1203 startprofclock(child_proc
);
1205 #if !CONFIG_EMBEDDED
1206 if (child_proc
->p_legacy_behavior
& PROC_LEGACY_BEHAVIOR_IOTHROTTLE
) {
1207 throttle_legacy_process_incr();
1212 * Note that if the current thread has an assumed identity, this
1213 * credential will be granted to the new process.
1215 child_proc
->p_ucred
= kauth_cred_get_with_ref();
1216 /* update cred on proc */
1217 PROC_UPDATE_CREDS_ONPROC(child_proc
);
1218 /* update audit session proc count */
1219 AUDIT_SESSION_PROCNEW(child_proc
);
1221 #if CONFIG_FINE_LOCK_GROUPS
1222 lck_mtx_init(&child_proc
->p_mlock
, proc_mlock_grp
, proc_lck_attr
);
1223 lck_mtx_init(&child_proc
->p_fdmlock
, proc_fdmlock_grp
, proc_lck_attr
);
1225 lck_mtx_init(&child_proc
->p_dtrace_sprlock
, proc_lck_grp
, proc_lck_attr
);
1227 lck_spin_init(&child_proc
->p_slock
, proc_slock_grp
, proc_lck_attr
);
1228 #else /* !CONFIG_FINE_LOCK_GROUPS */
1229 lck_mtx_init(&child_proc
->p_mlock
, proc_lck_grp
, proc_lck_attr
);
1230 lck_mtx_init(&child_proc
->p_fdmlock
, proc_lck_grp
, proc_lck_attr
);
1232 lck_mtx_init(&child_proc
->p_dtrace_sprlock
, proc_lck_grp
, proc_lck_attr
);
1234 lck_spin_init(&child_proc
->p_slock
, proc_lck_grp
, proc_lck_attr
);
1235 #endif /* !CONFIG_FINE_LOCK_GROUPS */
1236 klist_init(&child_proc
->p_klist
);
1238 if (child_proc
->p_textvp
!= NULLVP
) {
1239 /* bump references to the text vnode */
1240 /* Need to hold iocount across the ref call */
1241 if (vnode_getwithref(child_proc
->p_textvp
) == 0) {
1242 error
= vnode_ref(child_proc
->p_textvp
);
1243 vnode_put(child_proc
->p_textvp
);
1245 child_proc
->p_textvp
= NULLVP
;
1250 * Copy the parents per process open file table to the child; if
1251 * there is a per-thread current working directory, set the childs
1252 * per-process current working directory to that instead of the
1255 * XXX may fail to copy descriptors to child
1257 child_proc
->p_fd
= fdcopy(parent_proc
, parent_uthread
->uu_cdir
);
1260 if (parent_proc
->vm_shm
) {
1261 /* XXX may fail to attach shm to child */
1262 (void)shmfork(parent_proc
, child_proc
);
1266 * inherit the limit structure to child
1268 proc_limitfork(parent_proc
, child_proc
);
1270 if (child_proc
->p_limit
->pl_rlimit
[RLIMIT_CPU
].rlim_cur
!= RLIM_INFINITY
) {
1271 uint64_t rlim_cur
= child_proc
->p_limit
->pl_rlimit
[RLIMIT_CPU
].rlim_cur
;
1272 child_proc
->p_rlim_cpu
.tv_sec
= (rlim_cur
> __INT_MAX__
) ? __INT_MAX__
: rlim_cur
;
1275 /* Intialize new process stats, including start time */
1276 /* <rdar://6640543> non-zeroed portion contains garbage AFAICT */
1277 bzero(&child_proc
->p_stats
->pstat_startzero
,
1278 (unsigned) ((caddr_t
)&child_proc
->p_stats
->pstat_endzero
-
1279 (caddr_t
)&child_proc
->p_stats
->pstat_startzero
));
1280 bzero(&child_proc
->p_stats
->user_p_prof
, sizeof(struct user_uprof
));
1281 microtime(&child_proc
->p_start
);
1282 child_proc
->p_stats
->p_start
= child_proc
->p_start
; /* for compat */
1284 if (parent_proc
->p_sigacts
!= NULL
)
1285 (void)memcpy(child_proc
->p_sigacts
,
1286 parent_proc
->p_sigacts
, sizeof *child_proc
->p_sigacts
);
1288 (void)memset(child_proc
->p_sigacts
, 0, sizeof *child_proc
->p_sigacts
);
1290 sessp
= proc_session(parent_proc
);
1291 if (sessp
->s_ttyvp
!= NULL
&& parent_proc
->p_flag
& P_CONTROLT
)
1292 OSBitOrAtomic(P_CONTROLT
, &child_proc
->p_flag
);
1293 session_rele(sessp
);
1296 * block all signals to reach the process.
1297 * no transition race should be occuring with the child yet,
1298 * but indicate that the process is in (the creation) transition.
1300 proc_signalstart(child_proc
, 0);
1301 proc_transstart(child_proc
, 0);
1303 child_proc
->p_pcaction
= (parent_proc
->p_pcaction
) & P_PCMAX
;
1304 TAILQ_INIT(&child_proc
->p_uthlist
);
1305 TAILQ_INIT(&child_proc
->p_aio_activeq
);
1306 TAILQ_INIT(&child_proc
->p_aio_doneq
);
1308 /* Inherit the parent flags for code sign */
1309 child_proc
->p_csflags
= (parent_proc
->p_csflags
& ~CS_KILLED
);
1312 * All processes have work queue locks; cleaned up by
1313 * reap_child_locked()
1315 workqueue_init_lock(child_proc
);
1318 * Copy work queue information
1320 * Note: This should probably only happen in the case where we are
1321 * creating a child that is a copy of the parent; since this
1322 * routine is called in the non-duplication case of vfork()
1323 * or posix_spawn(), then this information should likely not
1326 * <rdar://6640553> Work queue pointers that no longer point to code
1328 child_proc
->p_wqthread
= parent_proc
->p_wqthread
;
1329 child_proc
->p_threadstart
= parent_proc
->p_threadstart
;
1330 child_proc
->p_pthsize
= parent_proc
->p_pthsize
;
1331 child_proc
->p_targconc
= parent_proc
->p_targconc
;
1332 if ((parent_proc
->p_lflag
& P_LREGISTER
) != 0) {
1333 child_proc
->p_lflag
|= P_LREGISTER
;
1335 child_proc
->p_dispatchqueue_offset
= parent_proc
->p_dispatchqueue_offset
;
1337 pth_proc_hashinit(child_proc
);
1341 child_proc
->p_lctx
= NULL
;
1342 /* Add new process to login context (if any). */
1343 if (parent_proc
->p_lctx
!= NULL
) {
1345 * <rdar://6640564> This should probably be delayed in the
1346 * vfork() or posix_spawn() cases.
1348 LCTX_LOCK(parent_proc
->p_lctx
);
1349 enterlctx(child_proc
, parent_proc
->p_lctx
, 0);
1353 /* Default to no tracking of dirty state */
1354 child_proc
->p_dirty
= 0;
1363 lck_mtx_lock(&p
->p_mlock
);
1367 proc_unlock(proc_t p
)
1369 lck_mtx_unlock(&p
->p_mlock
);
1373 proc_spinlock(proc_t p
)
1375 lck_spin_lock(&p
->p_slock
);
1379 proc_spinunlock(proc_t p
)
1381 lck_spin_unlock(&p
->p_slock
);
1385 proc_list_lock(void)
1387 lck_mtx_lock(proc_list_mlock
);
1391 proc_list_unlock(void)
1393 lck_mtx_unlock(proc_list_mlock
);
1396 #include <kern/zalloc.h>
1398 struct zone
*uthread_zone
;
1399 static int uthread_zone_inited
= 0;
1402 uthread_zone_init(void)
1404 if (!uthread_zone_inited
) {
1405 uthread_zone
= zinit(sizeof(struct uthread
),
1406 thread_max
* sizeof(struct uthread
),
1407 THREAD_CHUNK
* sizeof(struct uthread
),
1409 uthread_zone_inited
= 1;
1414 uthread_alloc(task_t task
, thread_t thread
, int noinherit
)
1418 uthread_t uth_parent
;
1421 if (!uthread_zone_inited
)
1422 uthread_zone_init();
1424 ut
= (void *)zalloc(uthread_zone
);
1425 bzero(ut
, sizeof(struct uthread
));
1427 p
= (proc_t
) get_bsdtask_info(task
);
1428 uth
= (uthread_t
)ut
;
1429 uth
->uu_kwe
.kwe_uth
= uth
;
1430 uth
->uu_thread
= thread
;
1433 * Thread inherits credential from the creating thread, if both
1434 * are in the same task.
1436 * If the creating thread has no credential or is from another
1437 * task we can leave the new thread credential NULL. If it needs
1438 * one later, it will be lazily assigned from the task's process.
1440 uth_parent
= (uthread_t
)get_bsdthread_info(current_thread());
1441 if ((noinherit
== 0) && task
== current_task() &&
1442 uth_parent
!= NULL
&&
1443 IS_VALID_CRED(uth_parent
->uu_ucred
)) {
1445 * XXX The new thread is, in theory, being created in context
1446 * XXX of parent thread, so a direct reference to the parent
1449 kauth_cred_ref(uth_parent
->uu_ucred
);
1450 uth
->uu_ucred
= uth_parent
->uu_ucred
;
1451 /* the credential we just inherited is an assumed credential */
1452 if (uth_parent
->uu_flag
& UT_SETUID
)
1453 uth
->uu_flag
|= UT_SETUID
;
1455 /* sometimes workqueue threads are created out task context */
1456 if ((task
!= kernel_task
) && (p
!= PROC_NULL
))
1457 uth
->uu_ucred
= kauth_cred_proc_ref(p
);
1459 uth
->uu_ucred
= NOCRED
;
1463 if ((task
!= kernel_task
) && p
) {
1466 if (noinherit
!= 0) {
1467 /* workq threads will not inherit masks */
1468 uth
->uu_sigmask
= ~workq_threadmask
;
1469 } else if (uth_parent
) {
1470 if (uth_parent
->uu_flag
& UT_SAS_OLDMASK
)
1471 uth
->uu_sigmask
= uth_parent
->uu_oldmask
;
1473 uth
->uu_sigmask
= uth_parent
->uu_sigmask
;
1475 uth
->uu_context
.vc_thread
= thread
;
1476 TAILQ_INSERT_TAIL(&p
->p_uthlist
, uth
, uu_list
);
1480 if (p
->p_dtrace_ptss_pages
!= NULL
) {
1481 uth
->t_dtrace_scratch
= dtrace_ptss_claim_entry(p
);
1485 mac_thread_label_init(uth
);
1494 * This routine frees all the BSD context in uthread except the credential.
1495 * It does not free the uthread structure as well
1498 uthread_cleanup(task_t task
, void *uthread
, void * bsd_info
)
1500 struct _select
*sel
;
1501 uthread_t uth
= (uthread_t
)uthread
;
1502 proc_t p
= (proc_t
)bsd_info
;
1505 if (uth
->uu_lowpri_window
|| uth
->uu_throttle_info
) {
1507 * task is marked as a low priority I/O type
1508 * and we've somehow managed to not dismiss the throttle
1509 * through the normal exit paths back to user space...
1510 * no need to throttle this thread since its going away
1511 * but we do need to update our bookeeping w/r to throttled threads
1513 * Calling this routine will clean up any throttle info reference
1514 * still inuse by the thread.
1516 throttle_lowpri_io(FALSE
);
1519 * Per-thread audit state should never last beyond system
1520 * call return. Since we don't audit the thread creation/
1521 * removal, the thread state pointer should never be
1522 * non-NULL when we get here.
1524 assert(uth
->uu_ar
== NULL
);
1526 sel
= &uth
->uu_select
;
1527 /* cleanup the select bit space */
1529 FREE(sel
->ibits
, M_TEMP
);
1530 FREE(sel
->obits
, M_TEMP
);
1535 vnode_rele(uth
->uu_cdir
);
1536 uth
->uu_cdir
= NULLVP
;
1539 if (uth
->uu_allocsize
&& uth
->uu_wqset
){
1540 kfree(uth
->uu_wqset
, uth
->uu_allocsize
);
1542 uth
->uu_allocsize
= 0;
1547 if(uth
->pth_name
!= NULL
)
1549 kfree(uth
->pth_name
, MAXTHREADNAMESIZE
);
1552 if ((task
!= kernel_task
) && p
) {
1554 if (((uth
->uu_flag
& UT_VFORK
) == UT_VFORK
) && (uth
->uu_proc
!= PROC_NULL
)) {
1555 vfork_exit_internal(uth
->uu_proc
, 0, 1);
1558 * Remove the thread from the process list and
1559 * transfer [appropriate] pending signals to the process.
1561 if (get_bsdtask_info(task
) == p
) {
1563 TAILQ_REMOVE(&p
->p_uthlist
, uth
, uu_list
);
1564 p
->p_siglist
|= (uth
->uu_siglist
& execmask
& (~p
->p_sigignore
| sigcantmask
));
1568 struct dtrace_ptss_page_entry
*tmpptr
= uth
->t_dtrace_scratch
;
1569 uth
->t_dtrace_scratch
= NULL
;
1570 if (tmpptr
!= NULL
) {
1571 dtrace_ptss_release_entry(p
, tmpptr
);
1575 mac_thread_label_destroy(uth
);
1580 /* This routine releases the credential stored in uthread */
1582 uthread_cred_free(void *uthread
)
1584 uthread_t uth
= (uthread_t
)uthread
;
1586 /* and free the uthread itself */
1587 if (IS_VALID_CRED(uth
->uu_ucred
)) {
1588 kauth_cred_t oldcred
= uth
->uu_ucred
;
1589 uth
->uu_ucred
= NOCRED
;
1590 kauth_cred_unref(&oldcred
);
1594 /* This routine frees the uthread structure held in thread structure */
1596 uthread_zone_free(void *uthread
)
1598 /* and free the uthread itself */
1599 zfree(uthread_zone
, uthread
);