2 * Copyright (c) 2003-2005 Apple Computer, Inc. All rights reserved.
4 * @APPLE_LICENSE_OSREFERENCE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the
10 * License may not be used to create, or enable the creation or
11 * redistribution of, unlawful or unlicensed copies of an Apple operating
12 * system, or to circumvent, violate, or enable the circumvention or
13 * violation of, any terms of an Apple operating system software license
16 * Please obtain a copy of the License at
17 * http://www.opensource.apple.com/apsl/ and read it before using this
20 * The Original Code and all software distributed under the License are
21 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
22 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
23 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
24 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
25 * Please see the License for the specific language governing rights and
26 * limitations under the License.
28 * @APPLE_LICENSE_OSREFERENCE_HEADER_END@
31 #include <sys/appleapiopts.h>
33 #include <ppc/proc_reg.h>
34 #include <machine/cpu_capabilities.h>
35 #include <machine/commpage.h>
38 // commpage_time_dcba() uses a stack frame as follows:
40 #define kBufSiz 1024 // Size of the buffer we use to do DCBA timing on G4
41 #define kSFSize (kBufSiz+128+16) // Stack frame size, which contains the 128-byte-aligned buffer
42 #define kLoopCnt 5 // Iterations of the timing loop
43 #define kDCBA 22 // Bit in cr5 used as a flag in timing loop
46 // commpage_set_timestamp() uses the red zone for temporary storage:
48 #define rzSaveF1 -8 // caller's FPR1
49 #define rzSaveF2 -16 // caller's FPR2
50 #define rzSaveF3 -24 // caller's FPR3
51 #define rzSaveF4 -32 // caller's FPR4
52 #define rzSaveF5 -40 // caller's FPR5
53 #define rzNewTimeBase -48 // used to load 64-bit TBR into a FPR
56 // commpage_set_timestamp() uses the following data. kkTicksPerSec remembers
57 // the number used to compute _COMM_PAGE_SEC_PER_TICK. Since this constant
58 // rarely changes, we use it to avoid needless recomputation. It is a double
59 // value, pre-initialize with an exponent of 2**52.
61 #define kkBinary0 0 // offset in data to long long 0 (a constant)
62 #define kkDouble1 8 // offset in data to double 1.0 (a constant)
63 #define kkTicksPerSec 16 // offset in data to double(ticks_per_sec)
66 .align 3 // three doubleword fields
70 .double 1.0e0 // kkDouble1
71 .long 0x43300000 // kkTicksPerSec (plus 2**52)
72 .long 0 // this is where we store ticks_per_sec, to float
76 .globl EXT(commpage_time_dcba)
77 .globl EXT(commpage_set_timestamp)
80 /* ***********************************************
81 * * C O M M P A G E _ S E T _ T I M E S T A M P *
82 * ***********************************************
84 * Update the gettimeofday() shared data on the commpages, as follows:
85 * _COMM_PAGE_TIMESTAMP = the clock offset at timebase (seconds)
86 * _COMM_PAGE_TIMEBASE = the timebase at which the timestamp was valid
87 * _COMM_PAGE_SEC_PER_TICK = multiply timebase ticks by this to get seconds (double)
88 * The convention is that if the timebase is 0, the data is invalid. Because other
89 * CPUs are reading the three values asynchronously and must get a consistent set,
90 * it is critical that we update them with the following protocol:
91 * 1. set timebase to 0 (atomically), to invalidate all three values
92 * 2. eieio (to create a barrier in stores to cacheable memory)
93 * 3. change timestamp and "secs per tick"
95 * 5. set timebase nonzero (atomically)
96 * This works because readers read the timebase, then the timestamp and divisor, sync
97 * if MP, then read the timebase a second time and check to be sure it is equal to the first.
99 * We could save a few cycles on 64-bit machines by special casing them, but it probably
100 * isn't necessary because this routine shouldn't be called very often.
103 * r3 = upper half of timebase (timebase is disabled if 0)
104 * r4 = lower half of timebase
105 * r5 = upper half of timestamp
106 * r6 = lower half of timestamp
107 * r7 = divisor (ie, timebase ticks per sec)
109 * r8 = ptr to our static data (kkBinary0, kkDouble1, kkTicksPerSec)
110 * r9 = ptr to 32-bit commpage in kernel map
111 * r10 = ptr to 64-bit commpage in kernel map
113 * --> Interrupts must be disabled and rtclock locked when called. <--
117 LEXT(commpage_set_timestamp) // void commpage_set_timestamp(tbr,secs,divisor)
119 ori r2,r11,MASK(MSR_FP) // turn FP on
121 isync // wait until MSR changes take effect
123 or. r0,r3,r4 // is timebase 0? (thus disabled)
124 lis r8,hi16(Ldata) // point to our data
125 lis r9,ha16(EXT(commPagePtr32)) // get ptrs to address of commpages in kernel map
126 lis r10,ha16(EXT(commPagePtr64))
127 stfd f1,rzSaveF1(r1) // save a FPR in the red zone
128 ori r8,r8,lo16(Ldata)
129 lwz r9,lo16(EXT(commPagePtr32))(r9) // r9 <- 32-bit commpage ptr
130 lwz r10,lo16(EXT(commPagePtr64))(r10) // r10 <- 64-bit commpage ptr
131 lfd f1,kkBinary0(r8) // get fixed 0s
132 li r0,_COMM_PAGE_BASE_ADDRESS // get va in user space of commpage
133 cmpwi cr1,r9,0 // is 32-bit commpage allocated yet?
134 cmpwi cr6,r10,0 // is 64-bit commpage allocated yet?
135 sub r9,r9,r0 // r9 <- 32-bit commpage address, biased by user va
136 sub r10,r10,r0 // r10<- 64-bit commpage address
137 beq-- cr1,3f // skip if 32-bit commpage not allocated (64-bit won't be either)
138 bne++ cr6,1f // skip if 64-bit commpage is allocated
139 mr r10,r9 // if no 64-bit commpage, point to 32-bit version with r10 too
141 stfd f1,_COMM_PAGE_TIMEBASE(r9) // turn off the 32-bit-commpage timestamp (atomically)
142 stfd f1,_COMM_PAGE_TIMEBASE(r10) // and the 64-bit one too
143 eieio // make sure all CPUs see it is off
144 beq 3f // all we had to do is turn off timestamp
146 lwz r0,kkTicksPerSec+4(r8) // get last ticks_per_sec (or 0 if first)
147 stw r3,rzNewTimeBase(r1) // store new timebase so we can lfd
148 stw r4,rzNewTimeBase+4(r1)
149 cmpw r0,r7 // do we need to recompute _COMM_PAGE_SEC_PER_TICK?
150 stw r5,_COMM_PAGE_TIMESTAMP(r9) // store the new timestamp in the 32-bit page
151 stw r6,_COMM_PAGE_TIMESTAMP+4(r9)
152 stw r5,_COMM_PAGE_TIMESTAMP(r10)// and the 64-bit commpage
153 stw r6,_COMM_PAGE_TIMESTAMP+4(r10)
154 lfd f1,rzNewTimeBase(r1) // get timebase in a FPR so we can store atomically
155 beq++ 2f // same ticks_per_sec, no need to recompute
157 stw r7,kkTicksPerSec+4(r8) // must recompute SEC_PER_TICK
158 stfd f2,rzSaveF2(r1) // we'll need a few more temp FPRs
162 lfd f2,_COMM_PAGE_2_TO_52(r9) // f2 <- double(2**52)
163 lfd f3,kkTicksPerSec(r8) // float new ticks_per_sec + 2**52
164 lfd f4,kkDouble1(r8) // f4 <- double(1.0)
165 mffs f5 // save caller's FPSCR
166 mtfsfi 7,1 // clear Inexeact Exception bit, set round-to-zero
167 fsub f3,f3,f2 // get ticks_per_sec
168 fdiv f3,f4,f3 // divide 1 by ticks_per_sec to get SEC_PER_TICK
169 stfd f3,_COMM_PAGE_SEC_PER_TICK(r9)
170 stfd f3,_COMM_PAGE_SEC_PER_TICK(r10)
171 mtfsf 0xFF,f5 // restore FPSCR
172 lfd f2,rzSaveF2(r1) // restore FPRs
176 2: // f1 == new timestamp
177 eieio // wait until the stores take
178 stfd f1,_COMM_PAGE_TIMEBASE(r9) // then turn the timestamp back on (atomically)
179 stfd f1,_COMM_PAGE_TIMEBASE(r10) // both
180 3: // here once all fields updated
181 lfd f1,rzSaveF1(r1) // restore last FPR
182 mtmsr r11 // turn FP back off
187 /* ***************************************
188 * * C O M M P A G E _ T I M E _ D C B A *
189 * ***************************************
191 * Not all processors that support the DCBA opcode actually benefit from it.
192 * Some store-gather and read-cancel well enough that there is no need to use
193 * DCBA to avoid fetching cache lines that will be completely overwritten, while
194 * others have this feature disabled (to work around errata etc), and so benefit
195 * from DCBA. Since it is hard to tell the one group from the other, we just
196 * time loops with and without DCBA, and pick the fastest. Thus we avoid
197 * delicate dependence on processor and/or platform revisions.
199 * We return either kDcbaRecommended or zero.
201 * int commpage_time_dcba( void );
204 LEXT(commpage_time_dcba)
205 mflr r12 // get return
206 stw r12,8(r1) // save
207 stwu r1,-kSFSize(r1) // carve our temp buffer from the stack
208 addi r11,r1,127+16 // get base address...
209 rlwinm r11,r11,0,0,24 // ...of our buffer, 128-byte aligned
210 crset kDCBA // first, use DCBA
211 bl LTest // time it with DCBA
212 srwi r0,r3,3 // bias 12 pct in favor of not using DCBA...
213 add r10,r3,r0 // ...because DCBA is always slower with warm cache
215 bl LTest // time without DCBA
216 cmplw r10,r3 // which is better?
217 mtlr r12 // restore return
218 lwz r1,0(r1) // pop off our stack frame
219 li r3,kDcbaRecommended // assume using DCBA is faster
221 li r3,0 // no DCBA is faster
225 // Subroutine to time a loop with or without DCBA.
226 // kDCBA = set if we should use DCBA
227 // r11 = base of buffer to use for test (kBufSiz bytes)
229 // We return TBR ticks in r3.
233 li r4,kLoopCnt // number of times to loop
234 li r3,-1 // initialize fastest time
236 mr r6,r11 // initialize buffer ptr
237 li r0,kBufSiz/32 // r0 <- cache blocks to test
240 dcbf 0,r6 // first, force the blocks out of the cache
243 sync // make sure all the flushes take
244 mr r6,r11 // re-initialize buffer ptr
245 mtctr r0 // reset cache-block count
246 mftbu r7 // remember upper half so we can check for carry
247 mftb r8 // start the timer
248 3: // loop over cache blocks
249 bf kDCBA,4f // should we DCBA?
252 stw r0,0(r6) // store the entire cache block
264 cmpw r0,r7 // did timebase carry?
265 bne 1b // yes, retest rather than fuss
266 sub r9,r9,r8 // r9 <- time for this loop
267 cmplw r9,r3 // faster than current best?
269 mr r3,r9 // remember fastest time through loop
271 subi r4,r4,1 // decrement outer loop count
272 cmpwi r4,0 // more to go?
274 blr // return fastest time in r3