36756785d677bc1892e5208b0efaa1c9bf9626e2
[apple/xnu.git] / bsd / netinet / tcp_input.c
1 /*
2 * Copyright (c) 2000-2007 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
30 * The Regents of the University of California. All rights reserved.
31 *
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions
34 * are met:
35 * 1. Redistributions of source code must retain the above copyright
36 * notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in the
39 * documentation and/or other materials provided with the distribution.
40 * 3. All advertising materials mentioning features or use of this software
41 * must display the following acknowledgement:
42 * This product includes software developed by the University of
43 * California, Berkeley and its contributors.
44 * 4. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95
61 * $FreeBSD: src/sys/netinet/tcp_input.c,v 1.107.2.16 2001/08/22 00:59:12 silby Exp $
62 */
63 /*
64 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
65 * support for mandatory and extensible security protections. This notice
66 * is included in support of clause 2.2 (b) of the Apple Public License,
67 * Version 2.0.
68 */
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/kernel.h>
73 #include <sys/sysctl.h>
74 #include <sys/malloc.h>
75 #include <sys/mbuf.h>
76 #include <sys/proc.h> /* for proc0 declaration */
77 #include <sys/protosw.h>
78 #include <sys/socket.h>
79 #include <sys/socketvar.h>
80 #include <sys/syslog.h>
81
82 #include <kern/cpu_number.h> /* before tcp_seq.h, for tcp_random18() */
83
84 #include <net/if.h>
85 #include <net/if_types.h>
86 #include <net/route.h>
87
88 #include <netinet/in.h>
89 #include <netinet/in_systm.h>
90 #include <netinet/ip.h>
91 #include <netinet/ip_icmp.h> /* for ICMP_BANDLIM */
92 #include <netinet/in_var.h>
93 #include <netinet/icmp_var.h> /* for ICMP_BANDLIM */
94 #include <netinet/in_pcb.h>
95 #include <netinet/ip_var.h>
96 #if INET6
97 #include <netinet/ip6.h>
98 #include <netinet/icmp6.h>
99 #include <netinet6/nd6.h>
100 #include <netinet6/ip6_var.h>
101 #include <netinet6/in6_pcb.h>
102 #endif
103 #include <netinet/tcp.h>
104 #include <netinet/tcp_fsm.h>
105 #include <netinet/tcp_seq.h>
106 #include <netinet/tcp_timer.h>
107 #include <netinet/tcp_var.h>
108 #if INET6
109 #include <netinet6/tcp6_var.h>
110 #endif
111 #include <netinet/tcpip.h>
112 #if TCPDEBUG
113 #include <netinet/tcp_debug.h>
114 u_char tcp_saveipgen[40]; /* the size must be of max ip header, now IPv6 */
115 struct tcphdr tcp_savetcp;
116 #endif /* TCPDEBUG */
117
118 #if IPSEC
119 #include <netinet6/ipsec.h>
120 #if INET6
121 #include <netinet6/ipsec6.h>
122 #endif
123 #include <netkey/key.h>
124 #endif /*IPSEC*/
125
126 #if CONFIG_MACF_NET || CONFIG_MACF_SOCKET
127 #include <security/mac_framework.h>
128 #endif /* CONFIG_MACF_NET || CONFIG_MACF_SOCKET */
129
130 #include <sys/kdebug.h>
131
132 #ifndef __APPLE__
133 MALLOC_DEFINE(M_TSEGQ, "tseg_qent", "TCP segment queue entry");
134 #endif
135
136 #define DBG_LAYER_BEG NETDBG_CODE(DBG_NETTCP, 0)
137 #define DBG_LAYER_END NETDBG_CODE(DBG_NETTCP, 2)
138 #define DBG_FNC_TCP_INPUT NETDBG_CODE(DBG_NETTCP, (3 << 8))
139 #define DBG_FNC_TCP_NEWCONN NETDBG_CODE(DBG_NETTCP, (7 << 8))
140
141 static int tcprexmtthresh = 2;
142 tcp_cc tcp_ccgen;
143
144 #if IPSEC
145 extern int ipsec_bypass;
146 #endif
147
148 struct tcpstat tcpstat;
149
150 static int log_in_vain = 0;
151 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_RW,
152 &log_in_vain, 0, "Log all incoming TCP connections");
153
154 static int blackhole = 0;
155 SYSCTL_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_RW,
156 &blackhole, 0, "Do not send RST when dropping refused connections");
157
158 int tcp_delack_enabled = 3;
159 SYSCTL_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_RW,
160 &tcp_delack_enabled, 0,
161 "Delay ACK to try and piggyback it onto a data packet");
162
163 int tcp_lq_overflow = 1;
164 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcp_lq_overflow, CTLFLAG_RW,
165 &tcp_lq_overflow, 0,
166 "Listen Queue Overflow");
167
168 #if TCP_DROP_SYNFIN
169 static int drop_synfin = 1;
170 SYSCTL_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_RW,
171 &drop_synfin, 0, "Drop TCP packets with SYN+FIN set");
172 #endif
173
174 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, reass, CTLFLAG_RW|CTLFLAG_LOCKED, 0,
175 "TCP Segment Reassembly Queue");
176
177 __private_extern__ int tcp_reass_maxseg = 0;
178 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, maxsegments, CTLFLAG_RW,
179 &tcp_reass_maxseg, 0,
180 "Global maximum number of TCP Segments in Reassembly Queue");
181
182 __private_extern__ int tcp_reass_qsize = 0;
183 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, cursegments, CTLFLAG_RD,
184 &tcp_reass_qsize, 0,
185 "Global number of TCP Segments currently in Reassembly Queue");
186
187 static int tcp_reass_overflows = 0;
188 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, overflows, CTLFLAG_RD,
189 &tcp_reass_overflows, 0,
190 "Global number of TCP Segment Reassembly Queue Overflows");
191
192
193 __private_extern__ int slowlink_wsize = 8192;
194 SYSCTL_INT(_net_inet_tcp, OID_AUTO, slowlink_wsize, CTLFLAG_RW,
195 &slowlink_wsize, 0, "Maximum advertised window size for slowlink");
196
197 static int maxseg_unacked = 8;
198 SYSCTL_INT(_net_inet_tcp, OID_AUTO, maxseg_unacked, CTLFLAG_RW,
199 &maxseg_unacked, 0, "Maximum number of outstanding segments left unacked");
200
201 static int tcp_do_rfc3465 = 1;
202 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3465, CTLFLAG_RW,
203 &tcp_do_rfc3465, 0, "");
204 extern int tcp_TCPTV_MIN;
205
206 u_long tcp_now;
207
208 struct inpcbhead tcb;
209 #define tcb6 tcb /* for KAME src sync over BSD*'s */
210 struct inpcbinfo tcbinfo;
211
212 static void tcp_dooptions(struct tcpcb *,
213 u_char *, int, struct tcphdr *, struct tcpopt *);
214 static void tcp_pulloutofband(struct socket *,
215 struct tcphdr *, struct mbuf *, int);
216 static int tcp_reass(struct tcpcb *, struct tcphdr *, int *,
217 struct mbuf *);
218 static void tcp_xmit_timer(struct tcpcb *, int);
219 static inline unsigned int tcp_maxmtu(struct rtentry *);
220 #if INET6
221 static inline unsigned int tcp_maxmtu6(struct rtentry *);
222 #endif
223
224 /* Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint. */
225 #if INET6
226 #define ND6_HINT(tp) \
227 do { \
228 if ((tp) && (tp)->t_inpcb && \
229 ((tp)->t_inpcb->inp_vflag & INP_IPV6) != 0 && \
230 (tp)->t_inpcb->in6p_route.ro_rt) \
231 nd6_nud_hint((tp)->t_inpcb->in6p_route.ro_rt, NULL, 0); \
232 } while (0)
233 #else
234 #define ND6_HINT(tp)
235 #endif
236
237 extern u_long *delack_bitmask;
238
239 extern void add_to_time_wait(struct tcpcb *);
240 extern void postevent(struct socket *, struct sockbuf *, int);
241
242 extern void ipfwsyslog( int level, const char *format,...);
243 extern int ChkAddressOK( __uint32_t dstaddr, __uint32_t srcaddr );
244 extern int fw_verbose;
245 __private_extern__ int tcp_sockthreshold;
246 __private_extern__ int tcp_win_scale;
247
248 #if IPFIREWALL
249 #define log_in_vain_log( a ) { \
250 if ( (log_in_vain == 3 ) && (fw_verbose == 2)) { /* Apple logging, log to ipfw.log */ \
251 ipfwsyslog a ; \
252 } \
253 else log a ; \
254 }
255 #else
256 #define log_in_vain_log( a ) { log a; }
257 #endif
258
259
260 /*
261 * Indicate whether this ack should be delayed.
262 * We can delay the ack if:
263 * - delayed acks are enabled (set to 1) and
264 * - our last ack wasn't a 0-sized window. We never want to delay
265 * the ack that opens up a 0-sized window.
266 * - delayed acks are enabled (set to 2, "more compatible") and
267 * - our last ack wasn't a 0-sized window.
268 * - if the peer hasn't sent us a TH_PUSH data packet (this solves 3649245)
269 * - the peer hasn't sent us a TH_PUSH data packet, if he did, take this as a clue that we
270 * need to ACK with no delay. This helps higher level protocols who won't send
271 * us more data even if the window is open because their last "segment" hasn't been ACKed
272 * - delayed acks are enabled (set to 3, "streaming detection") and
273 * - if we receive more than "maxseg_unacked" full packets per second on this socket
274 * - if we don't have more than "maxseg_unacked" delayed so far
275 * - if those criteria aren't met, acts like "2". Allowing faster acking while browsing for example.
276 *
277 */
278 #define DELAY_ACK(tp) \
279 (((tcp_delack_enabled == 1) && ((tp->t_flags & TF_RXWIN0SENT) == 0)) || \
280 (((tcp_delack_enabled == 2) && (tp->t_flags & TF_RXWIN0SENT) == 0) && \
281 ((thflags & TH_PUSH) == 0) && ((tp->t_flags & TF_DELACK) == 0)) || \
282 (((tcp_delack_enabled == 3) && (tp->t_flags & TF_RXWIN0SENT) == 0) && \
283 (tp->t_rcvtime == 0) && ((thflags & TH_PUSH) == 0) && \
284 (((tp->t_unacksegs == 0)) || \
285 ((tp->rcv_byps > (maxseg_unacked * tp->t_maxseg)) && (tp->t_unacksegs < maxseg_unacked)))))
286
287 static int tcp_dropdropablreq(struct socket *head);
288 static void tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th);
289
290
291 static int
292 tcp_reass(tp, th, tlenp, m)
293 register struct tcpcb *tp;
294 register struct tcphdr *th;
295 int *tlenp;
296 struct mbuf *m;
297 {
298 struct tseg_qent *q;
299 struct tseg_qent *p = NULL;
300 struct tseg_qent *nq;
301 struct tseg_qent *te = NULL;
302 struct socket *so = tp->t_inpcb->inp_socket;
303 int flags;
304 int dowakeup = 0;
305
306 /*
307 * Call with th==0 after become established to
308 * force pre-ESTABLISHED data up to user socket.
309 */
310 if (th == NULL)
311 goto present;
312
313 /*
314 * Limit the number of segments in the reassembly queue to prevent
315 * holding on to too many segments (and thus running out of mbufs).
316 * Make sure to let the missing segment through which caused this
317 * queue. Always keep one global queue entry spare to be able to
318 * process the missing segment.
319 */
320 if (th->th_seq != tp->rcv_nxt &&
321 tcp_reass_qsize + 1 >= tcp_reass_maxseg) {
322 tcp_reass_overflows++;
323 tcpstat.tcps_rcvmemdrop++;
324 m_freem(m);
325 *tlenp = 0;
326 return (0);
327 }
328
329 /* Allocate a new queue entry. If we can't, just drop the pkt. XXX */
330 MALLOC(te, struct tseg_qent *, sizeof (struct tseg_qent), M_TSEGQ,
331 M_NOWAIT);
332 if (te == NULL) {
333 tcpstat.tcps_rcvmemdrop++;
334 m_freem(m);
335 return (0);
336 }
337 tcp_reass_qsize++;
338
339 /*
340 * Find a segment which begins after this one does.
341 */
342 LIST_FOREACH(q, &tp->t_segq, tqe_q) {
343 if (SEQ_GT(q->tqe_th->th_seq, th->th_seq))
344 break;
345 p = q;
346 }
347
348 /*
349 * If there is a preceding segment, it may provide some of
350 * our data already. If so, drop the data from the incoming
351 * segment. If it provides all of our data, drop us.
352 */
353 if (p != NULL) {
354 register int i;
355 /* conversion to int (in i) handles seq wraparound */
356 i = p->tqe_th->th_seq + p->tqe_len - th->th_seq;
357 if (i > 0) {
358 if (i >= *tlenp) {
359 tcpstat.tcps_rcvduppack++;
360 tcpstat.tcps_rcvdupbyte += *tlenp;
361 m_freem(m);
362 FREE(te, M_TSEGQ);
363 tcp_reass_qsize--;
364 /*
365 * Try to present any queued data
366 * at the left window edge to the user.
367 * This is needed after the 3-WHS
368 * completes.
369 */
370 goto present; /* ??? */
371 }
372 m_adj(m, i);
373 *tlenp -= i;
374 th->th_seq += i;
375 }
376 }
377 tcpstat.tcps_rcvoopack++;
378 tcpstat.tcps_rcvoobyte += *tlenp;
379
380 /*
381 * While we overlap succeeding segments trim them or,
382 * if they are completely covered, dequeue them.
383 */
384 while (q) {
385 register int i = (th->th_seq + *tlenp) - q->tqe_th->th_seq;
386 if (i <= 0)
387 break;
388 if (i < q->tqe_len) {
389 q->tqe_th->th_seq += i;
390 q->tqe_len -= i;
391 m_adj(q->tqe_m, i);
392 break;
393 }
394
395 nq = LIST_NEXT(q, tqe_q);
396 LIST_REMOVE(q, tqe_q);
397 m_freem(q->tqe_m);
398 FREE(q, M_TSEGQ);
399 tcp_reass_qsize--;
400 q = nq;
401 }
402
403 /* Insert the new segment queue entry into place. */
404 te->tqe_m = m;
405 te->tqe_th = th;
406 te->tqe_len = *tlenp;
407
408 if (p == NULL) {
409 LIST_INSERT_HEAD(&tp->t_segq, te, tqe_q);
410 } else {
411 LIST_INSERT_AFTER(p, te, tqe_q);
412 }
413
414 present:
415 /*
416 * Present data to user, advancing rcv_nxt through
417 * completed sequence space.
418 */
419 if (!TCPS_HAVEESTABLISHED(tp->t_state))
420 return (0);
421 q = LIST_FIRST(&tp->t_segq);
422 if (!q || q->tqe_th->th_seq != tp->rcv_nxt)
423 return (0);
424 do {
425 tp->rcv_nxt += q->tqe_len;
426 flags = q->tqe_th->th_flags & TH_FIN;
427 nq = LIST_NEXT(q, tqe_q);
428 LIST_REMOVE(q, tqe_q);
429 if (so->so_state & SS_CANTRCVMORE)
430 m_freem(q->tqe_m);
431 else {
432 if (sbappendstream(&so->so_rcv, q->tqe_m))
433 dowakeup = 1;
434 }
435 FREE(q, M_TSEGQ);
436 tcp_reass_qsize--;
437 q = nq;
438 } while (q && q->tqe_th->th_seq == tp->rcv_nxt);
439 ND6_HINT(tp);
440
441 #if INET6
442 if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
443
444 KERNEL_DEBUG(DBG_LAYER_BEG,
445 ((tp->t_inpcb->inp_fport << 16) | tp->t_inpcb->inp_lport),
446 (((tp->t_inpcb->in6p_laddr.s6_addr16[0] & 0xffff) << 16) |
447 (tp->t_inpcb->in6p_faddr.s6_addr16[0] & 0xffff)),
448 0,0,0);
449 }
450 else
451 #endif
452 {
453 KERNEL_DEBUG(DBG_LAYER_BEG,
454 ((tp->t_inpcb->inp_fport << 16) | tp->t_inpcb->inp_lport),
455 (((tp->t_inpcb->inp_laddr.s_addr & 0xffff) << 16) |
456 (tp->t_inpcb->inp_faddr.s_addr & 0xffff)),
457 0,0,0);
458 }
459 if (dowakeup)
460 sorwakeup(so); /* done with socket lock held */
461 return (flags);
462
463 }
464
465 /*
466 * Reduce congestion window.
467 */
468 static void
469 tcp_reduce_congestion_window(
470 struct tcpcb *tp)
471 {
472 u_int win;
473
474 win = min(tp->snd_wnd, tp->snd_cwnd) /
475 2 / tp->t_maxseg;
476 if (win < 2)
477 win = 2;
478 tp->snd_ssthresh = win * tp->t_maxseg;
479 ENTER_FASTRECOVERY(tp);
480 tp->snd_recover = tp->snd_max;
481 tp->t_timer[TCPT_REXMT] = 0;
482 tp->t_rtttime = 0;
483 tp->ecn_flags |= TE_SENDCWR;
484 tp->snd_cwnd = tp->snd_ssthresh +
485 tp->t_maxseg * tcprexmtthresh;
486 }
487
488
489 /*
490 * TCP input routine, follows pages 65-76 of the
491 * protocol specification dated September, 1981 very closely.
492 */
493 #if INET6
494 int
495 tcp6_input(mp, offp)
496 struct mbuf **mp;
497 int *offp;
498 {
499 register struct mbuf *m = *mp;
500 struct in6_ifaddr *ia6;
501
502 IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), return IPPROTO_DONE);
503
504 /*
505 * draft-itojun-ipv6-tcp-to-anycast
506 * better place to put this in?
507 */
508 ia6 = ip6_getdstifaddr(m);
509 if (ia6 && (ia6->ia6_flags & IN6_IFF_ANYCAST)) {
510 struct ip6_hdr *ip6;
511
512 ip6 = mtod(m, struct ip6_hdr *);
513 icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
514 (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
515 return IPPROTO_DONE;
516 }
517
518 tcp_input(m, *offp);
519 return IPPROTO_DONE;
520 }
521 #endif
522
523 void
524 tcp_input(m, off0)
525 struct mbuf *m;
526 int off0;
527 {
528 register struct tcphdr *th;
529 register struct ip *ip = NULL;
530 register struct ipovly *ipov;
531 register struct inpcb *inp;
532 u_char *optp = NULL;
533 int optlen = 0;
534 int len, tlen, off;
535 int drop_hdrlen;
536 register struct tcpcb *tp = 0;
537 register int thflags;
538 struct socket *so = 0;
539 int todrop, acked, ourfinisacked, needoutput = 0;
540 struct in_addr laddr;
541 #if INET6
542 struct in6_addr laddr6;
543 #endif
544 int dropsocket = 0;
545 int iss = 0;
546 int nosock = 0;
547 u_long tiwin;
548 struct tcpopt to; /* options in this segment */
549 struct sockaddr_in *next_hop = NULL;
550 #if TCPDEBUG
551 short ostate = 0;
552 #endif
553 struct m_tag *fwd_tag;
554 u_char ip_ecn = IPTOS_ECN_NOTECT;
555
556 /* Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain. */
557 fwd_tag = m_tag_locate(m, KERNEL_MODULE_TAG_ID, KERNEL_TAG_TYPE_IPFORWARD, NULL);
558 if (fwd_tag != NULL) {
559 struct ip_fwd_tag *ipfwd_tag = (struct ip_fwd_tag *)(fwd_tag+1);
560
561 next_hop = ipfwd_tag->next_hop;
562 m_tag_delete(m, fwd_tag);
563 }
564
565 #if INET6
566 struct ip6_hdr *ip6 = NULL;
567 int isipv6;
568 #endif /* INET6 */
569 int rstreason; /* For badport_bandlim accounting purposes */
570 struct proc *proc0=current_proc();
571
572 KERNEL_DEBUG(DBG_FNC_TCP_INPUT | DBG_FUNC_START,0,0,0,0,0);
573
574 #if INET6
575 isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
576 #endif
577 bzero((char *)&to, sizeof(to));
578
579 tcpstat.tcps_rcvtotal++;
580
581
582
583 #if INET6
584 if (isipv6) {
585 /* IP6_EXTHDR_CHECK() is already done at tcp6_input() */
586 ip6 = mtod(m, struct ip6_hdr *);
587 tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0;
588 if (in6_cksum(m, IPPROTO_TCP, off0, tlen)) {
589 tcpstat.tcps_rcvbadsum++;
590 goto dropnosock;
591 }
592 th = (struct tcphdr *)((caddr_t)ip6 + off0);
593
594 KERNEL_DEBUG(DBG_LAYER_BEG, ((th->th_dport << 16) | th->th_sport),
595 (((ip6->ip6_src.s6_addr16[0]) << 16) | (ip6->ip6_dst.s6_addr16[0])),
596 th->th_seq, th->th_ack, th->th_win);
597 /*
598 * Be proactive about unspecified IPv6 address in source.
599 * As we use all-zero to indicate unbounded/unconnected pcb,
600 * unspecified IPv6 address can be used to confuse us.
601 *
602 * Note that packets with unspecified IPv6 destination is
603 * already dropped in ip6_input.
604 */
605 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
606 /* XXX stat */
607 goto dropnosock;
608 }
609 } else
610 #endif /* INET6 */
611 {
612 /*
613 * Get IP and TCP header together in first mbuf.
614 * Note: IP leaves IP header in first mbuf.
615 */
616 if (off0 > sizeof (struct ip)) {
617 ip_stripoptions(m, (struct mbuf *)0);
618 off0 = sizeof(struct ip);
619 if (m->m_pkthdr.csum_flags & CSUM_TCP_SUM16)
620 m->m_pkthdr.csum_flags = 0; /* invalidate hwcksuming */
621
622 }
623 if (m->m_len < sizeof (struct tcpiphdr)) {
624 if ((m = m_pullup(m, sizeof (struct tcpiphdr))) == 0) {
625 tcpstat.tcps_rcvshort++;
626 return;
627 }
628 }
629 ip = mtod(m, struct ip *);
630 ipov = (struct ipovly *)ip;
631 th = (struct tcphdr *)((caddr_t)ip + off0);
632 tlen = ip->ip_len;
633
634 KERNEL_DEBUG(DBG_LAYER_BEG, ((th->th_dport << 16) | th->th_sport),
635 (((ip->ip_src.s_addr & 0xffff) << 16) | (ip->ip_dst.s_addr & 0xffff)),
636 th->th_seq, th->th_ack, th->th_win);
637
638 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
639 if (m->m_pkthdr.csum_flags & CSUM_TCP_SUM16) {
640 u_short pseudo;
641 char b[9];
642 *(uint32_t*)&b[0] = *(uint32_t*)&ipov->ih_x1[0];
643 *(uint32_t*)&b[4] = *(uint32_t*)&ipov->ih_x1[4];
644 *(uint8_t*)&b[8] = *(uint8_t*)&ipov->ih_x1[8];
645
646 bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
647 ipov->ih_len = (u_short)tlen;
648 HTONS(ipov->ih_len);
649 pseudo = in_cksum(m, sizeof (struct ip));
650
651 *(uint32_t*)&ipov->ih_x1[0] = *(uint32_t*)&b[0];
652 *(uint32_t*)&ipov->ih_x1[4] = *(uint32_t*)&b[4];
653 *(uint8_t*)&ipov->ih_x1[8] = *(uint8_t*)&b[8];
654
655 th->th_sum = in_addword(pseudo, (m->m_pkthdr.csum_data & 0xFFFF));
656 } else {
657 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
658 th->th_sum = m->m_pkthdr.csum_data;
659 else
660 th->th_sum = in_pseudo(ip->ip_src.s_addr,
661 ip->ip_dst.s_addr, htonl(m->m_pkthdr.csum_data +
662 ip->ip_len + IPPROTO_TCP));
663 }
664 th->th_sum ^= 0xffff;
665 } else {
666 char b[9];
667 /*
668 * Checksum extended TCP header and data.
669 */
670 *(uint32_t*)&b[0] = *(uint32_t*)&ipov->ih_x1[0];
671 *(uint32_t*)&b[4] = *(uint32_t*)&ipov->ih_x1[4];
672 *(uint8_t*)&b[8] = *(uint8_t*)&ipov->ih_x1[8];
673
674 len = sizeof (struct ip) + tlen;
675 bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
676 ipov->ih_len = (u_short)tlen;
677 HTONS(ipov->ih_len);
678 th->th_sum = in_cksum(m, len);
679
680 *(uint32_t*)&ipov->ih_x1[0] = *(uint32_t*)&b[0];
681 *(uint32_t*)&ipov->ih_x1[4] = *(uint32_t*)&b[4];
682 *(uint8_t*)&ipov->ih_x1[8] = *(uint8_t*)&b[8];
683
684 tcp_in_cksum_stats(len);
685 }
686 if (th->th_sum) {
687 tcpstat.tcps_rcvbadsum++;
688 goto dropnosock;
689 }
690 #if INET6
691 /* Re-initialization for later version check */
692 ip->ip_v = IPVERSION;
693 #endif
694 ip_ecn = (ip->ip_tos & IPTOS_ECN_MASK);
695 }
696
697 /*
698 * Check that TCP offset makes sense,
699 * pull out TCP options and adjust length. XXX
700 */
701 off = th->th_off << 2;
702 if (off < sizeof (struct tcphdr) || off > tlen) {
703 tcpstat.tcps_rcvbadoff++;
704 goto dropnosock;
705 }
706 tlen -= off; /* tlen is used instead of ti->ti_len */
707 if (off > sizeof (struct tcphdr)) {
708 #if INET6
709 if (isipv6) {
710 IP6_EXTHDR_CHECK(m, off0, off, return);
711 ip6 = mtod(m, struct ip6_hdr *);
712 th = (struct tcphdr *)((caddr_t)ip6 + off0);
713 } else
714 #endif /* INET6 */
715 {
716 if (m->m_len < sizeof(struct ip) + off) {
717 if ((m = m_pullup(m, sizeof (struct ip) + off)) == 0) {
718 tcpstat.tcps_rcvshort++;
719 return;
720 }
721 ip = mtod(m, struct ip *);
722 ipov = (struct ipovly *)ip;
723 th = (struct tcphdr *)((caddr_t)ip + off0);
724 }
725 }
726 optlen = off - sizeof (struct tcphdr);
727 optp = (u_char *)(th + 1);
728 /*
729 * Do quick retrieval of timestamp options ("options
730 * prediction?"). If timestamp is the only option and it's
731 * formatted as recommended in RFC 1323 appendix A, we
732 * quickly get the values now and not bother calling
733 * tcp_dooptions(), etc.
734 */
735 if ((optlen == TCPOLEN_TSTAMP_APPA ||
736 (optlen > TCPOLEN_TSTAMP_APPA &&
737 optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
738 *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
739 (th->th_flags & TH_SYN) == 0) {
740 to.to_flags |= TOF_TS;
741 to.to_tsval = ntohl(*(u_int32_t *)(optp + 4));
742 to.to_tsecr = ntohl(*(u_int32_t *)(optp + 8));
743 optp = NULL; /* we've parsed the options */
744 }
745 }
746 thflags = th->th_flags;
747
748 #if TCP_DROP_SYNFIN
749 /*
750 * If the drop_synfin option is enabled, drop all packets with
751 * both the SYN and FIN bits set. This prevents e.g. nmap from
752 * identifying the TCP/IP stack.
753 *
754 * This is a violation of the TCP specification.
755 */
756 if (drop_synfin && (thflags & (TH_SYN|TH_FIN)) == (TH_SYN|TH_FIN))
757 goto dropnosock;
758 #endif
759
760 /*
761 * Convert TCP protocol specific fields to host format.
762 */
763 NTOHL(th->th_seq);
764 NTOHL(th->th_ack);
765 NTOHS(th->th_win);
766 NTOHS(th->th_urp);
767
768 /*
769 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options,
770 * until after ip6_savecontrol() is called and before other functions
771 * which don't want those proto headers.
772 * Because ip6_savecontrol() is going to parse the mbuf to
773 * search for data to be passed up to user-land, it wants mbuf
774 * parameters to be unchanged.
775 */
776 drop_hdrlen = off0 + off;
777
778 /*
779 * Locate pcb for segment.
780 */
781 findpcb:
782 #if IPFIREWALL_FORWARD
783 if (next_hop != NULL
784 #if INET6
785 && isipv6 == 0 /* IPv6 support is not yet */
786 #endif /* INET6 */
787 ) {
788 /*
789 * Diverted. Pretend to be the destination.
790 * already got one like this?
791 */
792 inp = in_pcblookup_hash(&tcbinfo, ip->ip_src, th->th_sport,
793 ip->ip_dst, th->th_dport, 0, m->m_pkthdr.rcvif);
794 if (!inp) {
795 /*
796 * No, then it's new. Try find the ambushing socket
797 */
798 if (!next_hop->sin_port) {
799 inp = in_pcblookup_hash(&tcbinfo, ip->ip_src,
800 th->th_sport, next_hop->sin_addr,
801 th->th_dport, 1, m->m_pkthdr.rcvif);
802 } else {
803 inp = in_pcblookup_hash(&tcbinfo,
804 ip->ip_src, th->th_sport,
805 next_hop->sin_addr,
806 ntohs(next_hop->sin_port), 1,
807 m->m_pkthdr.rcvif);
808 }
809 }
810 } else
811 #endif /* IPFIREWALL_FORWARD */
812 {
813 #if INET6
814 if (isipv6)
815 inp = in6_pcblookup_hash(&tcbinfo, &ip6->ip6_src, th->th_sport,
816 &ip6->ip6_dst, th->th_dport, 1,
817 m->m_pkthdr.rcvif);
818 else
819 #endif /* INET6 */
820 inp = in_pcblookup_hash(&tcbinfo, ip->ip_src, th->th_sport,
821 ip->ip_dst, th->th_dport, 1, m->m_pkthdr.rcvif);
822 }
823
824 #if IPSEC
825 if (ipsec_bypass == 0) {
826 #if INET6
827 if (isipv6) {
828 if (inp != NULL && ipsec6_in_reject_so(m, inp->inp_socket)) {
829 IPSEC_STAT_INCREMENT(ipsec6stat.in_polvio);
830 goto dropnosock;
831 }
832 } else
833 #endif /* INET6 */
834 if (inp != NULL && ipsec4_in_reject_so(m, inp->inp_socket)) {
835 IPSEC_STAT_INCREMENT(ipsecstat.in_polvio);
836 goto dropnosock;
837 }
838 }
839 #endif /*IPSEC*/
840
841 /*
842 * If the state is CLOSED (i.e., TCB does not exist) then
843 * all data in the incoming segment is discarded.
844 * If the TCB exists but is in CLOSED state, it is embryonic,
845 * but should either do a listen or a connect soon.
846 */
847 if (inp == NULL) {
848 if (log_in_vain) {
849 #if INET6
850 char dbuf[MAX_IPv6_STR_LEN], sbuf[MAX_IPv6_STR_LEN];
851 #else /* INET6 */
852 char dbuf[MAX_IPv4_STR_LEN], sbuf[MAX_IPv4_STR_LEN];
853 #endif /* INET6 */
854
855 #if INET6
856 if (isipv6) {
857 inet_ntop(AF_INET6, &ip6->ip6_dst, dbuf, sizeof(dbuf));
858 inet_ntop(AF_INET6, &ip6->ip6_src, sbuf, sizeof(sbuf));
859 } else
860 #endif
861 {
862 inet_ntop(AF_INET, &ip->ip_dst, dbuf, sizeof(dbuf));
863 inet_ntop(AF_INET, &ip->ip_src, sbuf, sizeof(sbuf));
864 }
865 switch (log_in_vain) {
866 case 1:
867 if(thflags & TH_SYN)
868 log(LOG_INFO,
869 "Connection attempt to TCP %s:%d from %s:%d\n",
870 dbuf, ntohs(th->th_dport),
871 sbuf,
872 ntohs(th->th_sport));
873 break;
874 case 2:
875 log(LOG_INFO,
876 "Connection attempt to TCP %s:%d from %s:%d flags:0x%x\n",
877 dbuf, ntohs(th->th_dport), sbuf,
878 ntohs(th->th_sport), thflags);
879 break;
880 case 3:
881 if ((thflags & TH_SYN) &&
882 !(m->m_flags & (M_BCAST | M_MCAST)) &&
883 #if INET6
884 ((isipv6 && !IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &ip6->ip6_src)) ||
885 (!isipv6 && ip->ip_dst.s_addr != ip->ip_src.s_addr))
886 #else
887 ip->ip_dst.s_addr != ip->ip_src.s_addr
888 #endif
889 )
890 log_in_vain_log((LOG_INFO,
891 "Stealth Mode connection attempt to TCP %s:%d from %s:%d\n",
892 dbuf, ntohs(th->th_dport),
893 sbuf,
894 ntohs(th->th_sport)));
895 break;
896 default:
897 break;
898 }
899 }
900 if (blackhole) {
901 if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type != IFT_LOOP)
902 switch (blackhole) {
903 case 1:
904 if (thflags & TH_SYN)
905 goto dropnosock;
906 break;
907 case 2:
908 goto dropnosock;
909 default:
910 goto dropnosock;
911 }
912 }
913 rstreason = BANDLIM_RST_CLOSEDPORT;
914 goto dropwithresetnosock;
915 }
916 so = inp->inp_socket;
917 if (so == NULL) {
918 if (in_pcb_checkstate(inp, WNT_RELEASE, 1) == WNT_STOPUSING)
919 inp = NULL; // pretend we didn't find it
920 #if TEMPDEBUG
921 printf("tcp_input: no more socket for inp=%x\n", inp);
922 #endif
923 goto dropnosock;
924 }
925
926 #ifdef __APPLE__
927 /*
928 * Bogus state when listening port owned by SharedIP with loopback as the
929 * only configured interface: BlueBox does not filters loopback
930 */
931 if (so == &tcbinfo.nat_dummy_socket)
932 goto drop;
933
934 #endif
935 tcp_lock(so, 1, 2);
936 if (in_pcb_checkstate(inp, WNT_RELEASE, 1) == WNT_STOPUSING) {
937 tcp_unlock(so, 1, 2);
938 inp = NULL; // pretend we didn't find it
939 goto dropnosock;
940 }
941
942 tp = intotcpcb(inp);
943 if (tp == 0) {
944 rstreason = BANDLIM_RST_CLOSEDPORT;
945 goto dropwithreset;
946 }
947 if (tp->t_state == TCPS_CLOSED)
948 goto drop;
949
950 /* Unscale the window into a 32-bit value. */
951 if ((thflags & TH_SYN) == 0)
952 tiwin = th->th_win << tp->snd_scale;
953 else
954 tiwin = th->th_win;
955
956 #if CONFIG_MACF_NET
957 if (mac_inpcb_check_deliver(inp, m, AF_INET, SOCK_STREAM))
958 goto drop;
959 #endif
960
961 if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
962 #if TCPDEBUG
963 if (so->so_options & SO_DEBUG) {
964 ostate = tp->t_state;
965 #if INET6
966 if (isipv6)
967 bcopy((char *)ip6, (char *)tcp_saveipgen,
968 sizeof(*ip6));
969 else
970 #endif /* INET6 */
971 bcopy((char *)ip, (char *)tcp_saveipgen, sizeof(*ip));
972 tcp_savetcp = *th;
973 }
974 #endif
975 if (so->so_options & SO_ACCEPTCONN) {
976 register struct tcpcb *tp0 = tp;
977 struct socket *so2;
978 struct socket *oso;
979 struct sockaddr_storage from;
980 #if INET6
981 struct inpcb *oinp = sotoinpcb(so);
982 #endif /* INET6 */
983 int ogencnt = so->so_gencnt;
984
985 #if !IPSEC
986 /*
987 * Current IPsec implementation makes incorrect IPsec
988 * cache if this check is done here.
989 * So delay this until duplicated socket is created.
990 */
991 if ((thflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
992 /*
993 * Note: dropwithreset makes sure we don't
994 * send a RST in response to a RST.
995 */
996 if (thflags & TH_ACK) {
997 tcpstat.tcps_badsyn++;
998 rstreason = BANDLIM_RST_OPENPORT;
999 goto dropwithreset;
1000 }
1001 goto drop;
1002 }
1003 #endif
1004 KERNEL_DEBUG(DBG_FNC_TCP_NEWCONN | DBG_FUNC_START,0,0,0,0,0);
1005
1006 #if INET6
1007 /*
1008 * If deprecated address is forbidden,
1009 * we do not accept SYN to deprecated interface
1010 * address to prevent any new inbound connection from
1011 * getting established.
1012 * When we do not accept SYN, we send a TCP RST,
1013 * with deprecated source address (instead of dropping
1014 * it). We compromise it as it is much better for peer
1015 * to send a RST, and RST will be the final packet
1016 * for the exchange.
1017 *
1018 * If we do not forbid deprecated addresses, we accept
1019 * the SYN packet. RFC2462 does not suggest dropping
1020 * SYN in this case.
1021 * If we decipher RFC2462 5.5.4, it says like this:
1022 * 1. use of deprecated addr with existing
1023 * communication is okay - "SHOULD continue to be
1024 * used"
1025 * 2. use of it with new communication:
1026 * (2a) "SHOULD NOT be used if alternate address
1027 * with sufficient scope is available"
1028 * (2b) nothing mentioned otherwise.
1029 * Here we fall into (2b) case as we have no choice in
1030 * our source address selection - we must obey the peer.
1031 *
1032 * The wording in RFC2462 is confusing, and there are
1033 * multiple description text for deprecated address
1034 * handling - worse, they are not exactly the same.
1035 * I believe 5.5.4 is the best one, so we follow 5.5.4.
1036 */
1037 if (isipv6 && !ip6_use_deprecated) {
1038 struct in6_ifaddr *ia6;
1039
1040 if ((ia6 = ip6_getdstifaddr(m)) &&
1041 (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1042 tp = NULL;
1043 rstreason = BANDLIM_RST_OPENPORT;
1044 goto dropwithreset;
1045 }
1046 }
1047 #endif
1048 if (so->so_filt) {
1049 #if INET6
1050 if (isipv6) {
1051 struct sockaddr_in6 *sin6 = (struct sockaddr_in6*)&from;
1052
1053 sin6->sin6_len = sizeof(*sin6);
1054 sin6->sin6_family = AF_INET6;
1055 sin6->sin6_port = th->th_sport;
1056 sin6->sin6_flowinfo = 0;
1057 sin6->sin6_addr = ip6->ip6_src;
1058 sin6->sin6_scope_id = 0;
1059 }
1060 else
1061 #endif
1062 {
1063 struct sockaddr_in *sin = (struct sockaddr_in*)&from;
1064
1065 sin->sin_len = sizeof(*sin);
1066 sin->sin_family = AF_INET;
1067 sin->sin_port = th->th_sport;
1068 sin->sin_addr = ip->ip_src;
1069 }
1070 so2 = sonewconn(so, 0, (struct sockaddr*)&from);
1071 } else {
1072 so2 = sonewconn(so, 0, NULL);
1073 }
1074 if (so2 == 0) {
1075 tcpstat.tcps_listendrop++;
1076 if (tcp_dropdropablreq(so)) {
1077 if (so->so_filt)
1078 so2 = sonewconn(so, 0, (struct sockaddr*)&from);
1079 else
1080 so2 = sonewconn(so, 0, NULL);
1081 }
1082 if (!so2)
1083 goto drop;
1084 }
1085 /*
1086 * Make sure listening socket did not get closed during socket allocation,
1087 * not only this is incorrect but it is know to cause panic
1088 */
1089 if (so->so_gencnt != ogencnt)
1090 goto drop;
1091
1092 oso = so;
1093 tcp_unlock(so, 0, 0); /* Unlock but keep a reference on listener for now */
1094
1095 so = so2;
1096 tcp_lock(so, 1, 0);
1097 /*
1098 * This is ugly, but ....
1099 *
1100 * Mark socket as temporary until we're
1101 * committed to keeping it. The code at
1102 * ``drop'' and ``dropwithreset'' check the
1103 * flag dropsocket to see if the temporary
1104 * socket created here should be discarded.
1105 * We mark the socket as discardable until
1106 * we're committed to it below in TCPS_LISTEN.
1107 */
1108 dropsocket++;
1109 inp = (struct inpcb *)so->so_pcb;
1110 #if INET6
1111 if (isipv6)
1112 inp->in6p_laddr = ip6->ip6_dst;
1113 else {
1114 inp->inp_vflag &= ~INP_IPV6;
1115 inp->inp_vflag |= INP_IPV4;
1116 #endif /* INET6 */
1117 inp->inp_laddr = ip->ip_dst;
1118 #if INET6
1119 }
1120 #endif /* INET6 */
1121 inp->inp_lport = th->th_dport;
1122 if (in_pcbinshash(inp, 0) != 0) {
1123 /*
1124 * Undo the assignments above if we failed to
1125 * put the PCB on the hash lists.
1126 */
1127 #if INET6
1128 if (isipv6)
1129 inp->in6p_laddr = in6addr_any;
1130 else
1131 #endif /* INET6 */
1132 inp->inp_laddr.s_addr = INADDR_ANY;
1133 inp->inp_lport = 0;
1134 tcp_lock(oso, 0, 0); /* release ref on parent */
1135 tcp_unlock(oso, 1, 0);
1136 goto drop;
1137 }
1138 #if IPSEC
1139 /*
1140 * To avoid creating incorrectly cached IPsec
1141 * association, this is need to be done here.
1142 *
1143 * Subject: (KAME-snap 748)
1144 * From: Wayne Knowles <w.knowles@niwa.cri.nz>
1145 * ftp://ftp.kame.net/pub/mail-list/snap-users/748
1146 */
1147 if ((thflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1148 /*
1149 * Note: dropwithreset makes sure we don't
1150 * send a RST in response to a RST.
1151 */
1152 tcp_lock(oso, 0, 0); /* release ref on parent */
1153 tcp_unlock(oso, 1, 0);
1154 if (thflags & TH_ACK) {
1155 tcpstat.tcps_badsyn++;
1156 rstreason = BANDLIM_RST_OPENPORT;
1157 goto dropwithreset;
1158 }
1159 goto drop;
1160 }
1161 #endif
1162 #if INET6
1163 if (isipv6) {
1164 /*
1165 * Inherit socket options from the listening
1166 * socket.
1167 * Note that in6p_inputopts are not (even
1168 * should not be) copied, since it stores
1169 * previously received options and is used to
1170 * detect if each new option is different than
1171 * the previous one and hence should be passed
1172 * to a user.
1173 * If we copied in6p_inputopts, a user would
1174 * not be able to receive options just after
1175 * calling the accept system call.
1176 */
1177 inp->inp_flags |=
1178 oinp->inp_flags & INP_CONTROLOPTS;
1179 if (oinp->in6p_outputopts)
1180 inp->in6p_outputopts =
1181 ip6_copypktopts(oinp->in6p_outputopts,
1182 M_NOWAIT);
1183 } else
1184 #endif /* INET6 */
1185 inp->inp_options = ip_srcroute();
1186 tcp_lock(oso, 0, 0);
1187 #if IPSEC
1188 /* copy old policy into new socket's */
1189 if (sotoinpcb(oso)->inp_sp)
1190 {
1191 int error = 0;
1192 /* Is it a security hole here to silently fail to copy the policy? */
1193 if (inp->inp_sp != NULL)
1194 error = ipsec_init_policy(so, &inp->inp_sp);
1195 if (error != 0 || ipsec_copy_policy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
1196 printf("tcp_input: could not copy policy\n");
1197 }
1198 #endif
1199 tcp_unlock(oso, 1, 0); /* now drop the reference on the listener */
1200 tp = intotcpcb(inp);
1201 tp->t_state = TCPS_LISTEN;
1202 tp->t_flags |= tp0->t_flags & (TF_NOPUSH|TF_NOOPT|TF_NODELAY);
1203 tp->t_inpcb->inp_ip_ttl = tp0->t_inpcb->inp_ip_ttl;
1204 /* Compute proper scaling value from buffer space */
1205 if (inp->inp_pcbinfo->ipi_count < tcp_sockthreshold) {
1206 tp->request_r_scale = max(tcp_win_scale, tp->request_r_scale);
1207 so->so_rcv.sb_hiwat = lmin(TCP_MAXWIN << tp->request_r_scale, (sb_max / (MSIZE+MCLBYTES)) * MCLBYTES);
1208 }
1209 else {
1210 while (tp->request_r_scale < TCP_MAX_WINSHIFT &&
1211 TCP_MAXWIN << tp->request_r_scale <
1212 so->so_rcv.sb_hiwat)
1213 tp->request_r_scale++;
1214 }
1215
1216 KERNEL_DEBUG(DBG_FNC_TCP_NEWCONN | DBG_FUNC_END,0,0,0,0,0);
1217 }
1218 }
1219
1220 #if 1
1221 lck_mtx_assert(((struct inpcb *)so->so_pcb)->inpcb_mtx, LCK_MTX_ASSERT_OWNED);
1222 #endif
1223 /*
1224 * Radar 3529618
1225 * This is the second part of the MSS DoS prevention code (after
1226 * minmss on the sending side) and it deals with too many too small
1227 * tcp packets in a too short timeframe (1 second).
1228 *
1229 * For every full second we count the number of received packets
1230 * and bytes. If we get a lot of packets per second for this connection
1231 * (tcp_minmssoverload) we take a closer look at it and compute the
1232 * average packet size for the past second. If that is less than
1233 * tcp_minmss we get too many packets with very small payload which
1234 * is not good and burdens our system (and every packet generates
1235 * a wakeup to the process connected to our socket). We can reasonable
1236 * expect this to be small packet DoS attack to exhaust our CPU
1237 * cycles.
1238 *
1239 * Care has to be taken for the minimum packet overload value. This
1240 * value defines the minimum number of packets per second before we
1241 * start to worry. This must not be too low to avoid killing for
1242 * example interactive connections with many small packets like
1243 * telnet or SSH.
1244 *
1245 * Setting either tcp_minmssoverload or tcp_minmss to "0" disables
1246 * this check.
1247 *
1248 * Account for packet if payload packet, skip over ACK, etc.
1249 *
1250 * The packet per second count is done all the time and is also used
1251 * by "DELAY_ACK" to detect streaming situations.
1252 *
1253 */
1254 if (tp->t_state == TCPS_ESTABLISHED && tlen > 0) {
1255 if (tp->rcv_reset > tcp_now) {
1256 tp->rcv_pps++;
1257 tp->rcv_byps += tlen + off;
1258 if (tp->rcv_byps > tp->rcv_maxbyps)
1259 tp->rcv_maxbyps = tp->rcv_byps;
1260 /*
1261 * Setting either tcp_minmssoverload or tcp_minmss to "0" disables
1262 * the check.
1263 */
1264 if (tcp_minmss && tcp_minmssoverload && tp->rcv_pps > tcp_minmssoverload) {
1265 if ((tp->rcv_byps / tp->rcv_pps) < tcp_minmss) {
1266 char ipstrbuf[MAX_IPv6_STR_LEN];
1267 printf("too many small tcp packets from "
1268 "%s:%u, av. %lubyte/packet, "
1269 "dropping connection\n",
1270 #if INET6
1271 isipv6 ?
1272 inet_ntop(AF_INET6, &inp->in6p_faddr, ipstrbuf,
1273 sizeof(ipstrbuf)) :
1274 #endif
1275 inet_ntop(AF_INET, &inp->inp_faddr, ipstrbuf,
1276 sizeof(ipstrbuf)),
1277 inp->inp_fport,
1278 tp->rcv_byps / tp->rcv_pps);
1279 tp = tcp_drop(tp, ECONNRESET);
1280 /* tcpstat.tcps_minmssdrops++; */
1281 goto drop;
1282 }
1283 }
1284 } else {
1285 tp->rcv_reset = tcp_now + TCP_RETRANSHZ;
1286 tp->rcv_pps = 1;
1287 tp->rcv_byps = tlen + off;
1288 }
1289 }
1290
1291 #if TRAFFIC_MGT
1292 if (so->so_traffic_mgt_flags & TRAFFIC_MGT_SO_BACKGROUND) {
1293 tcpstat.tcps_bg_rcvtotal++;
1294
1295 /* Take snapshots of pkts recv;
1296 * tcpcb should have been initialized to 0 when allocated,
1297 * so if 0 then this is the first time we're doing this
1298 */
1299 if (!tp->tot_recv_snapshot) {
1300 tp->tot_recv_snapshot = tcpstat.tcps_rcvtotal;
1301 }
1302 if (!tp->bg_recv_snapshot) {
1303 tp->bg_recv_snapshot = tcpstat.tcps_bg_rcvtotal;
1304 }
1305 }
1306 #endif /* TRAFFIC_MGT */
1307
1308 /*
1309 Explicit Congestion Notification - Flag that we need to send ECT if
1310 + The IP Congestion experienced flag was set.
1311 + Socket is in established state
1312 + We negotiated ECN in the TCP setup
1313 + This isn't a pure ack (tlen > 0)
1314 + The data is in the valid window
1315
1316 TE_SENDECE will be cleared when we receive a packet with TH_CWR set.
1317 */
1318 if (ip_ecn == IPTOS_ECN_CE && tp->t_state == TCPS_ESTABLISHED &&
1319 (tp->ecn_flags & (TE_SETUPSENT | TE_SETUPRECEIVED)) ==
1320 (TE_SETUPSENT | TE_SETUPRECEIVED) && tlen > 0 &&
1321 SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
1322 SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
1323 tp->ecn_flags |= TE_SENDECE;
1324 }
1325
1326 /*
1327 Clear TE_SENDECE if TH_CWR is set. This is harmless, so we don't
1328 bother doing extensive checks for state and whatnot.
1329 */
1330 if ((thflags & TH_CWR) == TH_CWR) {
1331 tp->ecn_flags &= ~TE_SENDECE;
1332 }
1333
1334 /*
1335 * Segment received on connection.
1336 * Reset idle time and keep-alive timer.
1337 */
1338 tp->t_rcvtime = 0;
1339 if (TCPS_HAVEESTABLISHED(tp->t_state))
1340 tp->t_timer[TCPT_KEEP] = TCP_KEEPIDLE(tp);
1341
1342 /*
1343 * Process options if not in LISTEN state,
1344 * else do it below (after getting remote address).
1345 */
1346 if (tp->t_state != TCPS_LISTEN && optp)
1347 tcp_dooptions(tp, optp, optlen, th, &to);
1348
1349 if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
1350 if (to.to_flags & TOF_SCALE) {
1351 tp->t_flags |= TF_RCVD_SCALE;
1352 tp->requested_s_scale = to.to_requested_s_scale;
1353 tp->snd_wnd = th->th_win << tp->snd_scale;
1354 tiwin = tp->snd_wnd;
1355 }
1356 if (to.to_flags & TOF_TS) {
1357 tp->t_flags |= TF_RCVD_TSTMP;
1358 tp->ts_recent = to.to_tsval;
1359 tp->ts_recent_age = tcp_now;
1360 }
1361 if (to.to_flags & TOF_MSS)
1362 tcp_mss(tp, to.to_mss);
1363 if (tp->sack_enable) {
1364 if (!(to.to_flags & TOF_SACK))
1365 tp->sack_enable = 0;
1366 else
1367 tp->t_flags |= TF_SACK_PERMIT;
1368 }
1369 }
1370
1371 /*
1372 * Header prediction: check for the two common cases
1373 * of a uni-directional data xfer. If the packet has
1374 * no control flags, is in-sequence, the window didn't
1375 * change and we're not retransmitting, it's a
1376 * candidate. If the length is zero and the ack moved
1377 * forward, we're the sender side of the xfer. Just
1378 * free the data acked & wake any higher level process
1379 * that was blocked waiting for space. If the length
1380 * is non-zero and the ack didn't move, we're the
1381 * receiver side. If we're getting packets in-order
1382 * (the reassembly queue is empty), add the data to
1383 * the socket buffer and note that we need a delayed ack.
1384 * Make sure that the hidden state-flags are also off.
1385 * Since we check for TCPS_ESTABLISHED above, it can only
1386 * be TH_NEEDSYN.
1387 */
1388 if (tp->t_state == TCPS_ESTABLISHED &&
1389 (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK|TH_ECE)) == TH_ACK &&
1390 ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) &&
1391 ((to.to_flags & TOF_TS) == 0 ||
1392 TSTMP_GEQ(to.to_tsval, tp->ts_recent)) &&
1393 th->th_seq == tp->rcv_nxt &&
1394 tiwin && tiwin == tp->snd_wnd &&
1395 tp->snd_nxt == tp->snd_max) {
1396
1397 /*
1398 * If last ACK falls within this segment's sequence numbers,
1399 * record the timestamp.
1400 * NOTE that the test is modified according to the latest
1401 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1402 */
1403 if ((to.to_flags & TOF_TS) != 0 &&
1404 SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1405 tp->ts_recent_age = tcp_now;
1406 tp->ts_recent = to.to_tsval;
1407 }
1408
1409 if (tlen == 0) {
1410 if (SEQ_GT(th->th_ack, tp->snd_una) &&
1411 SEQ_LEQ(th->th_ack, tp->snd_max) &&
1412 tp->snd_cwnd >= tp->snd_ssthresh &&
1413 ((!tcp_do_newreno && !tp->sack_enable &&
1414 tp->t_dupacks < tcprexmtthresh) ||
1415 ((tcp_do_newreno || tp->sack_enable) &&
1416 !IN_FASTRECOVERY(tp) && to.to_nsacks == 0 &&
1417 TAILQ_EMPTY(&tp->snd_holes)))) {
1418 /*
1419 * this is a pure ack for outstanding data.
1420 */
1421 ++tcpstat.tcps_predack;
1422 /*
1423 * "bad retransmit" recovery
1424 */
1425 if (tp->t_rxtshift == 1 &&
1426 tcp_now < tp->t_badrxtwin) {
1427 ++tcpstat.tcps_sndrexmitbad;
1428 tp->snd_cwnd = tp->snd_cwnd_prev;
1429 tp->snd_ssthresh =
1430 tp->snd_ssthresh_prev;
1431 tp->snd_recover = tp->snd_recover_prev;
1432 if (tp->t_flags & TF_WASFRECOVERY)
1433 ENTER_FASTRECOVERY(tp);
1434 tp->snd_nxt = tp->snd_max;
1435 tp->t_badrxtwin = 0;
1436 }
1437 /*
1438 * Recalculate the transmit timer / rtt.
1439 *
1440 * Some boxes send broken timestamp replies
1441 * during the SYN+ACK phase, ignore
1442 * timestamps of 0 or we could calculate a
1443 * huge RTT and blow up the retransmit timer.
1444 */
1445 if (((to.to_flags & TOF_TS) != 0) && (to.to_tsecr != 0)) { /* Makes sure we already have a TS */
1446 if (!tp->t_rttlow ||
1447 tp->t_rttlow > tcp_now - to.to_tsecr)
1448 tp->t_rttlow = tcp_now - to.to_tsecr;
1449 tcp_xmit_timer(tp,
1450 tcp_now - to.to_tsecr);
1451 } else if (tp->t_rtttime &&
1452 SEQ_GT(th->th_ack, tp->t_rtseq)) {
1453 if (!tp->t_rttlow ||
1454 tp->t_rttlow > tcp_now - tp->t_rtttime)
1455 tp->t_rttlow = tcp_now - tp->t_rtttime;
1456 tcp_xmit_timer(tp, tp->t_rtttime);
1457 }
1458 acked = th->th_ack - tp->snd_una;
1459 tcpstat.tcps_rcvackpack++;
1460 tcpstat.tcps_rcvackbyte += acked;
1461 /*
1462 * Grow the congestion window, if the
1463 * connection is cwnd bound.
1464 */
1465 if (tp->snd_cwnd < tp->snd_wnd) {
1466 tp->t_bytes_acked += acked;
1467 if (tp->t_bytes_acked > tp->snd_cwnd) {
1468 tp->t_bytes_acked -= tp->snd_cwnd;
1469 tp->snd_cwnd += tp->t_maxseg;
1470 }
1471 }
1472 sbdrop(&so->so_snd, acked);
1473 if (SEQ_GT(tp->snd_una, tp->snd_recover) &&
1474 SEQ_LEQ(th->th_ack, tp->snd_recover))
1475 tp->snd_recover = th->th_ack - 1;
1476 tp->snd_una = th->th_ack;
1477 /*
1478 * pull snd_wl2 up to prevent seq wrap relative
1479 * to th_ack.
1480 */
1481 tp->snd_wl2 = th->th_ack;
1482 tp->t_dupacks = 0;
1483 m_freem(m);
1484 ND6_HINT(tp); /* some progress has been done */
1485
1486 /*
1487 * If all outstanding data are acked, stop
1488 * retransmit timer, otherwise restart timer
1489 * using current (possibly backed-off) value.
1490 * If process is waiting for space,
1491 * wakeup/selwakeup/signal. If data
1492 * are ready to send, let tcp_output
1493 * decide between more output or persist.
1494 */
1495 if (tp->snd_una == tp->snd_max)
1496 tp->t_timer[TCPT_REXMT] = 0;
1497 else if (tp->t_timer[TCPT_PERSIST] == 0)
1498 tp->t_timer[TCPT_REXMT] = tp->t_rxtcur;
1499
1500 sowwakeup(so); /* has to be done with socket lock held */
1501 if ((so->so_snd.sb_cc) || (tp->t_flags & TF_ACKNOW)) {
1502 tp->t_unacksegs = 0;
1503 (void) tcp_output(tp);
1504 }
1505 tcp_unlock(so, 1, 0);
1506 KERNEL_DEBUG(DBG_FNC_TCP_INPUT | DBG_FUNC_END,0,0,0,0,0);
1507 return;
1508 }
1509 } else if (th->th_ack == tp->snd_una &&
1510 LIST_EMPTY(&tp->t_segq) &&
1511 tlen <= tcp_sbspace(tp)) {
1512 /*
1513 * this is a pure, in-sequence data packet
1514 * with nothing on the reassembly queue and
1515 * we have enough buffer space to take it.
1516 */
1517 /* Clean receiver SACK report if present */
1518 if (tp->sack_enable && tp->rcv_numsacks)
1519 tcp_clean_sackreport(tp);
1520 ++tcpstat.tcps_preddat;
1521 tp->rcv_nxt += tlen;
1522 /*
1523 * Pull snd_wl1 up to prevent seq wrap relative to
1524 * th_seq.
1525 */
1526 tp->snd_wl1 = th->th_seq;
1527 /*
1528 * Pull rcv_up up to prevent seq wrap relative to
1529 * rcv_nxt.
1530 */
1531 tp->rcv_up = tp->rcv_nxt;
1532 tcpstat.tcps_rcvpack++;
1533 tcpstat.tcps_rcvbyte += tlen;
1534 ND6_HINT(tp); /* some progress has been done */
1535 /*
1536 * Add data to socket buffer.
1537 */
1538 m_adj(m, drop_hdrlen); /* delayed header drop */
1539 if (sbappendstream(&so->so_rcv, m))
1540 sorwakeup(so);
1541 #if INET6
1542 if (isipv6) {
1543 KERNEL_DEBUG(DBG_LAYER_END, ((th->th_dport << 16) | th->th_sport),
1544 (((ip6->ip6_src.s6_addr16[0]) << 16) | (ip6->ip6_dst.s6_addr16[0])),
1545 th->th_seq, th->th_ack, th->th_win);
1546 }
1547 else
1548 #endif
1549 {
1550 KERNEL_DEBUG(DBG_LAYER_END, ((th->th_dport << 16) | th->th_sport),
1551 (((ip->ip_src.s_addr & 0xffff) << 16) | (ip->ip_dst.s_addr & 0xffff)),
1552 th->th_seq, th->th_ack, th->th_win);
1553 }
1554 if (DELAY_ACK(tp)) {
1555 tp->t_flags |= TF_DELACK;
1556 tp->t_unacksegs++;
1557 } else {
1558 tp->t_unacksegs = 0;
1559 tp->t_flags |= TF_ACKNOW;
1560 tcp_output(tp);
1561 }
1562 tcp_unlock(so, 1, 0);
1563 KERNEL_DEBUG(DBG_FNC_TCP_INPUT | DBG_FUNC_END,0,0,0,0,0);
1564 return;
1565 }
1566 }
1567
1568 /*
1569 * Calculate amount of space in receive window,
1570 * and then do TCP input processing.
1571 * Receive window is amount of space in rcv queue,
1572 * but not less than advertised window.
1573 */
1574 #if 1
1575 lck_mtx_assert(((struct inpcb *)so->so_pcb)->inpcb_mtx, LCK_MTX_ASSERT_OWNED);
1576 #endif
1577 { int win;
1578
1579 win = tcp_sbspace(tp);
1580
1581 if (win < 0)
1582 win = 0;
1583 else { /* clip rcv window to 4K for modems */
1584 if (tp->t_flags & TF_SLOWLINK && slowlink_wsize > 0)
1585 win = min(win, slowlink_wsize);
1586 }
1587 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1588 }
1589
1590 switch (tp->t_state) {
1591
1592 /*
1593 * If the state is LISTEN then ignore segment if it contains an RST.
1594 * If the segment contains an ACK then it is bad and send a RST.
1595 * If it does not contain a SYN then it is not interesting; drop it.
1596 * If it is from this socket, drop it, it must be forged.
1597 * Don't bother responding if the destination was a broadcast.
1598 * Otherwise initialize tp->rcv_nxt, and tp->irs, select an initial
1599 * tp->iss, and send a segment:
1600 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
1601 * Also initialize tp->snd_nxt to tp->iss+1 and tp->snd_una to tp->iss.
1602 * Fill in remote peer address fields if not previously specified.
1603 * Enter SYN_RECEIVED state, and process any other fields of this
1604 * segment in this state.
1605 */
1606 case TCPS_LISTEN: {
1607 register struct sockaddr_in *sin;
1608 #if INET6
1609 register struct sockaddr_in6 *sin6;
1610 #endif
1611
1612 #if 1
1613 lck_mtx_assert(((struct inpcb *)so->so_pcb)->inpcb_mtx, LCK_MTX_ASSERT_OWNED);
1614 #endif
1615 if (thflags & TH_RST)
1616 goto drop;
1617 if (thflags & TH_ACK) {
1618 rstreason = BANDLIM_RST_OPENPORT;
1619 goto dropwithreset;
1620 }
1621 if ((thflags & TH_SYN) == 0)
1622 goto drop;
1623 if (th->th_dport == th->th_sport) {
1624 #if INET6
1625 if (isipv6) {
1626 if (IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
1627 &ip6->ip6_src))
1628 goto drop;
1629 } else
1630 #endif /* INET6 */
1631 if (ip->ip_dst.s_addr == ip->ip_src.s_addr)
1632 goto drop;
1633 }
1634 /*
1635 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1636 * in_broadcast() should never return true on a received
1637 * packet with M_BCAST not set.
1638 *
1639 * Packets with a multicast source address should also
1640 * be discarded.
1641 */
1642 if (m->m_flags & (M_BCAST|M_MCAST))
1643 goto drop;
1644 #if INET6
1645 if (isipv6) {
1646 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
1647 IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
1648 goto drop;
1649 } else
1650 #endif
1651 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
1652 IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
1653 ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
1654 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
1655 goto drop;
1656 #if INET6
1657 if (isipv6) {
1658 MALLOC(sin6, struct sockaddr_in6 *, sizeof *sin6,
1659 M_SONAME, M_NOWAIT);
1660 if (sin6 == NULL)
1661 goto drop;
1662 bzero(sin6, sizeof(*sin6));
1663 sin6->sin6_family = AF_INET6;
1664 sin6->sin6_len = sizeof(*sin6);
1665 sin6->sin6_addr = ip6->ip6_src;
1666 sin6->sin6_port = th->th_sport;
1667 laddr6 = inp->in6p_laddr;
1668 if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
1669 inp->in6p_laddr = ip6->ip6_dst;
1670 if (in6_pcbconnect(inp, (struct sockaddr *)sin6,
1671 proc0)) {
1672 inp->in6p_laddr = laddr6;
1673 FREE(sin6, M_SONAME);
1674 goto drop;
1675 }
1676 FREE(sin6, M_SONAME);
1677 } else
1678 #endif
1679 {
1680 #if 0
1681 lck_mtx_assert(((struct inpcb *)so->so_pcb)->inpcb_mtx, LCK_MTX_ASSERT_OWNED);
1682 #endif
1683 MALLOC(sin, struct sockaddr_in *, sizeof *sin, M_SONAME,
1684 M_NOWAIT);
1685 if (sin == NULL)
1686 goto drop;
1687 sin->sin_family = AF_INET;
1688 sin->sin_len = sizeof(*sin);
1689 sin->sin_addr = ip->ip_src;
1690 sin->sin_port = th->th_sport;
1691 bzero((caddr_t)sin->sin_zero, sizeof(sin->sin_zero));
1692 laddr = inp->inp_laddr;
1693 if (inp->inp_laddr.s_addr == INADDR_ANY)
1694 inp->inp_laddr = ip->ip_dst;
1695 if (in_pcbconnect(inp, (struct sockaddr *)sin, proc0)) {
1696 inp->inp_laddr = laddr;
1697 FREE(sin, M_SONAME);
1698 goto drop;
1699 }
1700 FREE(sin, M_SONAME);
1701 }
1702
1703 tcp_dooptions(tp, optp, optlen, th, &to);
1704
1705 if (tp->sack_enable) {
1706 if (!(to.to_flags & TOF_SACK))
1707 tp->sack_enable = 0;
1708 else
1709 tp->t_flags |= TF_SACK_PERMIT;
1710 }
1711
1712 if (iss)
1713 tp->iss = iss;
1714 else {
1715 tp->iss = tcp_new_isn(tp);
1716 }
1717 tp->irs = th->th_seq;
1718 tcp_sendseqinit(tp);
1719 tcp_rcvseqinit(tp);
1720 tp->snd_recover = tp->snd_una;
1721 /*
1722 * Initialization of the tcpcb for transaction;
1723 * set SND.WND = SEG.WND,
1724 * initialize CCsend and CCrecv.
1725 */
1726 tp->snd_wnd = tiwin; /* initial send-window */
1727 tp->t_flags |= TF_ACKNOW;
1728 tp->t_unacksegs = 0;
1729 tp->t_state = TCPS_SYN_RECEIVED;
1730 tp->t_timer[TCPT_KEEP] = tcp_keepinit;
1731 dropsocket = 0; /* committed to socket */
1732 tcpstat.tcps_accepts++;
1733 if ((thflags & (TH_ECE | TH_CWR)) == (TH_ECE | TH_CWR)) {
1734 /* ECN-setup SYN */
1735 tp->ecn_flags |= (TE_SETUPRECEIVED | TE_SENDIPECT);
1736 }
1737 #ifdef IFEF_NOWINDOWSCALE
1738 if (m->m_pkthdr.rcvif != NULL &&
1739 (m->m_pkthdr.rcvif->if_eflags & IFEF_NOWINDOWSCALE) != 0)
1740 {
1741 // Timestamps are not enabled on this interface
1742 tp->t_flags &= ~(TF_REQ_SCALE);
1743 }
1744 #endif
1745 goto trimthenstep6;
1746 }
1747
1748 /*
1749 * If the state is SYN_RECEIVED:
1750 * if seg contains an ACK, but not for our SYN/ACK, send a RST.
1751 */
1752 case TCPS_SYN_RECEIVED:
1753 if ((thflags & TH_ACK) &&
1754 (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1755 SEQ_GT(th->th_ack, tp->snd_max))) {
1756 rstreason = BANDLIM_RST_OPENPORT;
1757 goto dropwithreset;
1758 }
1759 break;
1760
1761 /*
1762 * If the state is SYN_SENT:
1763 * if seg contains an ACK, but not for our SYN, drop the input.
1764 * if seg contains a RST, then drop the connection.
1765 * if seg does not contain SYN, then drop it.
1766 * Otherwise this is an acceptable SYN segment
1767 * initialize tp->rcv_nxt and tp->irs
1768 * if seg contains ack then advance tp->snd_una
1769 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1770 * arrange for segment to be acked (eventually)
1771 * continue processing rest of data/controls, beginning with URG
1772 */
1773 case TCPS_SYN_SENT:
1774 if ((thflags & TH_ACK) &&
1775 (SEQ_LEQ(th->th_ack, tp->iss) ||
1776 SEQ_GT(th->th_ack, tp->snd_max))) {
1777 rstreason = BANDLIM_UNLIMITED;
1778 goto dropwithreset;
1779 }
1780 if (thflags & TH_RST) {
1781 if ((thflags & TH_ACK) != 0) {
1782 tp = tcp_drop(tp, ECONNREFUSED);
1783 postevent(so, 0, EV_RESET);
1784 }
1785 goto drop;
1786 }
1787 if ((thflags & TH_SYN) == 0)
1788 goto drop;
1789 tp->snd_wnd = th->th_win; /* initial send window */
1790
1791 tp->irs = th->th_seq;
1792 tcp_rcvseqinit(tp);
1793 if (thflags & TH_ACK) {
1794 tcpstat.tcps_connects++;
1795
1796 if ((thflags & (TH_ECE | TH_CWR)) == (TH_ECE)) {
1797 /* ECN-setup SYN-ACK */
1798 tp->ecn_flags |= TE_SETUPRECEIVED;
1799 }
1800 else {
1801 /* non-ECN-setup SYN-ACK */
1802 tp->ecn_flags &= ~TE_SENDIPECT;
1803 }
1804
1805 #if CONFIG_MACF_NET && CONFIG_MACF_SOCKET
1806 /* XXXMAC: recursive lock: SOCK_LOCK(so); */
1807 mac_socketpeer_label_associate_mbuf(m, so);
1808 /* XXXMAC: SOCK_UNLOCK(so); */
1809 #endif
1810 /* Do window scaling on this connection? */
1811 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1812 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1813 tp->snd_scale = tp->requested_s_scale;
1814 tp->rcv_scale = tp->request_r_scale;
1815 }
1816 tp->rcv_adv += tp->rcv_wnd;
1817 tp->snd_una++; /* SYN is acked */
1818 /*
1819 * If there's data, delay ACK; if there's also a FIN
1820 * ACKNOW will be turned on later.
1821 */
1822 if (DELAY_ACK(tp) && tlen != 0) {
1823 tp->t_flags |= TF_DELACK;
1824 tp->t_unacksegs++;
1825 }
1826 else {
1827 tp->t_flags |= TF_ACKNOW;
1828 tp->t_unacksegs = 0;
1829 }
1830 /*
1831 * Received <SYN,ACK> in SYN_SENT[*] state.
1832 * Transitions:
1833 * SYN_SENT --> ESTABLISHED
1834 * SYN_SENT* --> FIN_WAIT_1
1835 */
1836 tp->t_starttime = 0;
1837 if (tp->t_flags & TF_NEEDFIN) {
1838 tp->t_state = TCPS_FIN_WAIT_1;
1839 tp->t_flags &= ~TF_NEEDFIN;
1840 thflags &= ~TH_SYN;
1841 } else {
1842 tp->t_state = TCPS_ESTABLISHED;
1843 tp->t_timer[TCPT_KEEP] = TCP_KEEPIDLE(tp);
1844 }
1845 /* soisconnected may lead to socket_unlock in case of upcalls,
1846 * make sure this is done when everything is setup.
1847 */
1848 soisconnected(so);
1849 } else {
1850 /*
1851 * Received initial SYN in SYN-SENT[*] state => simul-
1852 * taneous open. If segment contains CC option and there is
1853 * a cached CC, apply TAO test; if it succeeds, connection is
1854 * half-synchronized. Otherwise, do 3-way handshake:
1855 * SYN-SENT -> SYN-RECEIVED
1856 * SYN-SENT* -> SYN-RECEIVED*
1857 */
1858 tp->t_flags |= TF_ACKNOW;
1859 tp->t_timer[TCPT_REXMT] = 0;
1860 tp->t_state = TCPS_SYN_RECEIVED;
1861
1862 }
1863
1864 trimthenstep6:
1865 /*
1866 * Advance th->th_seq to correspond to first data byte.
1867 * If data, trim to stay within window,
1868 * dropping FIN if necessary.
1869 */
1870 th->th_seq++;
1871 if (tlen > tp->rcv_wnd) {
1872 todrop = tlen - tp->rcv_wnd;
1873 m_adj(m, -todrop);
1874 tlen = tp->rcv_wnd;
1875 thflags &= ~TH_FIN;
1876 tcpstat.tcps_rcvpackafterwin++;
1877 tcpstat.tcps_rcvbyteafterwin += todrop;
1878 }
1879 tp->snd_wl1 = th->th_seq - 1;
1880 tp->rcv_up = th->th_seq;
1881 /*
1882 * Client side of transaction: already sent SYN and data.
1883 * If the remote host used T/TCP to validate the SYN,
1884 * our data will be ACK'd; if so, enter normal data segment
1885 * processing in the middle of step 5, ack processing.
1886 * Otherwise, goto step 6.
1887 */
1888 if (thflags & TH_ACK)
1889 goto process_ACK;
1890 goto step6;
1891 /*
1892 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
1893 * do normal processing.
1894 *
1895 * NB: Leftover from RFC1644 T/TCP. Cases to be reused later.
1896 */
1897 case TCPS_LAST_ACK:
1898 case TCPS_CLOSING:
1899 case TCPS_TIME_WAIT:
1900 break; /* continue normal processing */
1901
1902 /* Received a SYN while connection is already established.
1903 * This is a "half open connection and other anomalies" described
1904 * in RFC793 page 34, send an ACK so the remote reset the connection
1905 * or recovers by adjusting its sequence numberering
1906 */
1907 case TCPS_ESTABLISHED:
1908 if (thflags & TH_SYN)
1909 goto dropafterack;
1910 break;
1911 }
1912
1913 /*
1914 * States other than LISTEN or SYN_SENT.
1915 * First check the RST flag and sequence number since reset segments
1916 * are exempt from the timestamp and connection count tests. This
1917 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
1918 * below which allowed reset segments in half the sequence space
1919 * to fall though and be processed (which gives forged reset
1920 * segments with a random sequence number a 50 percent chance of
1921 * killing a connection).
1922 * Then check timestamp, if present.
1923 * Then check the connection count, if present.
1924 * Then check that at least some bytes of segment are within
1925 * receive window. If segment begins before rcv_nxt,
1926 * drop leading data (and SYN); if nothing left, just ack.
1927 *
1928 *
1929 * If the RST bit is set, check the sequence number to see
1930 * if this is a valid reset segment.
1931 * RFC 793 page 37:
1932 * In all states except SYN-SENT, all reset (RST) segments
1933 * are validated by checking their SEQ-fields. A reset is
1934 * valid if its sequence number is in the window.
1935 * Note: this does not take into account delayed ACKs, so
1936 * we should test against last_ack_sent instead of rcv_nxt.
1937 * The sequence number in the reset segment is normally an
1938 * echo of our outgoing acknowlegement numbers, but some hosts
1939 * send a reset with the sequence number at the rightmost edge
1940 * of our receive window, and we have to handle this case.
1941 * Note 2: Paul Watson's paper "Slipping in the Window" has shown
1942 * that brute force RST attacks are possible. To combat this,
1943 * we use a much stricter check while in the ESTABLISHED state,
1944 * only accepting RSTs where the sequence number is equal to
1945 * last_ack_sent. In all other states (the states in which a
1946 * RST is more likely), the more permissive check is used.
1947 * If we have multiple segments in flight, the intial reset
1948 * segment sequence numbers will be to the left of last_ack_sent,
1949 * but they will eventually catch up.
1950 * In any case, it never made sense to trim reset segments to
1951 * fit the receive window since RFC 1122 says:
1952 * 4.2.2.12 RST Segment: RFC-793 Section 3.4
1953 *
1954 * A TCP SHOULD allow a received RST segment to include data.
1955 *
1956 * DISCUSSION
1957 * It has been suggested that a RST segment could contain
1958 * ASCII text that encoded and explained the cause of the
1959 * RST. No standard has yet been established for such
1960 * data.
1961 *
1962 * If the reset segment passes the sequence number test examine
1963 * the state:
1964 * SYN_RECEIVED STATE:
1965 * If passive open, return to LISTEN state.
1966 * If active open, inform user that connection was refused.
1967 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2, CLOSE_WAIT STATES:
1968 * Inform user that connection was reset, and close tcb.
1969 * CLOSING, LAST_ACK STATES:
1970 * Close the tcb.
1971 * TIME_WAIT STATE:
1972 * Drop the segment - see Stevens, vol. 2, p. 964 and
1973 * RFC 1337.
1974 *
1975 * Radar 4803931: Allows for the case where we ACKed the FIN but
1976 * there is already a RST in flight from the peer.
1977 * In that case, accept the RST for non-established
1978 * state if it's one off from last_ack_sent.
1979
1980 */
1981 if (thflags & TH_RST) {
1982 if ((SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
1983 SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) ||
1984 (tp->rcv_wnd == 0 &&
1985 ((tp->last_ack_sent == th->th_seq) || ((tp->last_ack_sent -1) == th->th_seq)))) {
1986 switch (tp->t_state) {
1987
1988 case TCPS_SYN_RECEIVED:
1989 so->so_error = ECONNREFUSED;
1990 goto close;
1991
1992 case TCPS_ESTABLISHED:
1993 if (tp->last_ack_sent != th->th_seq) {
1994 tcpstat.tcps_badrst++;
1995 goto drop;
1996 }
1997 case TCPS_FIN_WAIT_1:
1998 case TCPS_CLOSE_WAIT:
1999 /*
2000 Drop through ...
2001 */
2002 case TCPS_FIN_WAIT_2:
2003 so->so_error = ECONNRESET;
2004 close:
2005 postevent(so, 0, EV_RESET);
2006 tp->t_state = TCPS_CLOSED;
2007 tcpstat.tcps_drops++;
2008 tp = tcp_close(tp);
2009 break;
2010
2011 case TCPS_CLOSING:
2012 case TCPS_LAST_ACK:
2013 tp = tcp_close(tp);
2014 break;
2015
2016 case TCPS_TIME_WAIT:
2017 break;
2018 }
2019 }
2020 goto drop;
2021 }
2022
2023 #if 0
2024 lck_mtx_assert(((struct inpcb *)so->so_pcb)->inpcb_mtx, LCK_MTX_ASSERT_OWNED);
2025 #endif
2026
2027 /*
2028 * RFC 1323 PAWS: If we have a timestamp reply on this segment
2029 * and it's less than ts_recent, drop it.
2030 */
2031 if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
2032 TSTMP_LT(to.to_tsval, tp->ts_recent)) {
2033
2034 /* Check to see if ts_recent is over 24 days old. */
2035 if ((int)(tcp_now - tp->ts_recent_age) > TCP_PAWS_IDLE) {
2036 /*
2037 * Invalidate ts_recent. If this segment updates
2038 * ts_recent, the age will be reset later and ts_recent
2039 * will get a valid value. If it does not, setting
2040 * ts_recent to zero will at least satisfy the
2041 * requirement that zero be placed in the timestamp
2042 * echo reply when ts_recent isn't valid. The
2043 * age isn't reset until we get a valid ts_recent
2044 * because we don't want out-of-order segments to be
2045 * dropped when ts_recent is old.
2046 */
2047 tp->ts_recent = 0;
2048 } else {
2049 tcpstat.tcps_rcvduppack++;
2050 tcpstat.tcps_rcvdupbyte += tlen;
2051 tcpstat.tcps_pawsdrop++;
2052 if (tlen)
2053 goto dropafterack;
2054 goto drop;
2055 }
2056 }
2057
2058 /*
2059 * In the SYN-RECEIVED state, validate that the packet belongs to
2060 * this connection before trimming the data to fit the receive
2061 * window. Check the sequence number versus IRS since we know
2062 * the sequence numbers haven't wrapped. This is a partial fix
2063 * for the "LAND" DoS attack.
2064 */
2065 if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
2066 rstreason = BANDLIM_RST_OPENPORT;
2067 goto dropwithreset;
2068 }
2069
2070 todrop = tp->rcv_nxt - th->th_seq;
2071 if (todrop > 0) {
2072 if (thflags & TH_SYN) {
2073 thflags &= ~TH_SYN;
2074 th->th_seq++;
2075 if (th->th_urp > 1)
2076 th->th_urp--;
2077 else
2078 thflags &= ~TH_URG;
2079 todrop--;
2080 }
2081 /*
2082 * Following if statement from Stevens, vol. 2, p. 960.
2083 */
2084 if (todrop > tlen
2085 || (todrop == tlen && (thflags & TH_FIN) == 0)) {
2086 /*
2087 * Any valid FIN must be to the left of the window.
2088 * At this point the FIN must be a duplicate or out
2089 * of sequence; drop it.
2090 */
2091 thflags &= ~TH_FIN;
2092
2093 /*
2094 * Send an ACK to resynchronize and drop any data.
2095 * But keep on processing for RST or ACK.
2096 */
2097 tp->t_flags |= TF_ACKNOW;
2098 tp->t_unacksegs = 0;
2099 todrop = tlen;
2100 tcpstat.tcps_rcvduppack++;
2101 tcpstat.tcps_rcvdupbyte += todrop;
2102 } else {
2103 tcpstat.tcps_rcvpartduppack++;
2104 tcpstat.tcps_rcvpartdupbyte += todrop;
2105 }
2106 drop_hdrlen += todrop; /* drop from the top afterwards */
2107 th->th_seq += todrop;
2108 tlen -= todrop;
2109 if (th->th_urp > todrop)
2110 th->th_urp -= todrop;
2111 else {
2112 thflags &= ~TH_URG;
2113 th->th_urp = 0;
2114 }
2115 }
2116
2117 /*
2118 * If new data are received on a connection after the
2119 * user processes are gone, then RST the other end.
2120 */
2121 if ((so->so_state & SS_NOFDREF) &&
2122 tp->t_state > TCPS_CLOSE_WAIT && tlen) {
2123 tp = tcp_close(tp);
2124 tcpstat.tcps_rcvafterclose++;
2125 rstreason = BANDLIM_UNLIMITED;
2126 goto dropwithreset;
2127 }
2128
2129 /*
2130 * If segment ends after window, drop trailing data
2131 * (and PUSH and FIN); if nothing left, just ACK.
2132 */
2133 todrop = (th->th_seq+tlen) - (tp->rcv_nxt+tp->rcv_wnd);
2134 if (todrop > 0) {
2135 tcpstat.tcps_rcvpackafterwin++;
2136 if (todrop >= tlen) {
2137 tcpstat.tcps_rcvbyteafterwin += tlen;
2138 /*
2139 * If a new connection request is received
2140 * while in TIME_WAIT, drop the old connection
2141 * and start over if the sequence numbers
2142 * are above the previous ones.
2143 */
2144 if (thflags & TH_SYN &&
2145 tp->t_state == TCPS_TIME_WAIT &&
2146 SEQ_GT(th->th_seq, tp->rcv_nxt)) {
2147 iss = tcp_new_isn(tp);
2148 tp = tcp_close(tp);
2149 tcp_unlock(so, 1, 0);
2150 goto findpcb;
2151 }
2152 /*
2153 * If window is closed can only take segments at
2154 * window edge, and have to drop data and PUSH from
2155 * incoming segments. Continue processing, but
2156 * remember to ack. Otherwise, drop segment
2157 * and ack.
2158 */
2159 if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
2160 tp->t_flags |= TF_ACKNOW;
2161 tp->t_unacksegs = 0;
2162 tcpstat.tcps_rcvwinprobe++;
2163 } else
2164 goto dropafterack;
2165 } else
2166 tcpstat.tcps_rcvbyteafterwin += todrop;
2167 m_adj(m, -todrop);
2168 tlen -= todrop;
2169 thflags &= ~(TH_PUSH|TH_FIN);
2170 }
2171
2172 /*
2173 * If last ACK falls within this segment's sequence numbers,
2174 * record its timestamp.
2175 * NOTE:
2176 * 1) That the test incorporates suggestions from the latest
2177 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
2178 * 2) That updating only on newer timestamps interferes with
2179 * our earlier PAWS tests, so this check should be solely
2180 * predicated on the sequence space of this segment.
2181 * 3) That we modify the segment boundary check to be
2182 * Last.ACK.Sent <= SEG.SEQ + SEG.Len
2183 * instead of RFC1323's
2184 * Last.ACK.Sent < SEG.SEQ + SEG.Len,
2185 * This modified check allows us to overcome RFC1323's
2186 * limitations as described in Stevens TCP/IP Illustrated
2187 * Vol. 2 p.869. In such cases, we can still calculate the
2188 * RTT correctly when RCV.NXT == Last.ACK.Sent.
2189 */
2190 if ((to.to_flags & TOF_TS) != 0 &&
2191 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
2192 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
2193 ((thflags & (TH_SYN|TH_FIN)) != 0))) {
2194 tp->ts_recent_age = tcp_now;
2195 tp->ts_recent = to.to_tsval;
2196 }
2197
2198 /*
2199 * If a SYN is in the window, then this is an
2200 * error and we send an RST and drop the connection.
2201 */
2202 if (thflags & TH_SYN) {
2203 tp = tcp_drop(tp, ECONNRESET);
2204 rstreason = BANDLIM_UNLIMITED;
2205 postevent(so, 0, EV_RESET);
2206 goto dropwithreset;
2207 }
2208
2209 /*
2210 * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN
2211 * flag is on (half-synchronized state), then queue data for
2212 * later processing; else drop segment and return.
2213 */
2214 if ((thflags & TH_ACK) == 0) {
2215 if (tp->t_state == TCPS_SYN_RECEIVED ||
2216 (tp->t_flags & TF_NEEDSYN))
2217 goto step6;
2218 else if (tp->t_flags & TF_ACKNOW)
2219 goto dropafterack;
2220 else
2221 goto drop;
2222 }
2223
2224 /*
2225 * Ack processing.
2226 */
2227 switch (tp->t_state) {
2228
2229 /*
2230 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
2231 * ESTABLISHED state and continue processing.
2232 * The ACK was checked above.
2233 */
2234 case TCPS_SYN_RECEIVED:
2235
2236 tcpstat.tcps_connects++;
2237
2238 /* Do window scaling? */
2239 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2240 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2241 tp->snd_scale = tp->requested_s_scale;
2242 tp->rcv_scale = tp->request_r_scale;
2243 }
2244 /*
2245 * Make transitions:
2246 * SYN-RECEIVED -> ESTABLISHED
2247 * SYN-RECEIVED* -> FIN-WAIT-1
2248 */
2249 tp->t_starttime = 0;
2250 if (tp->t_flags & TF_NEEDFIN) {
2251 tp->t_state = TCPS_FIN_WAIT_1;
2252 tp->t_flags &= ~TF_NEEDFIN;
2253 } else {
2254 tp->t_state = TCPS_ESTABLISHED;
2255 tp->t_timer[TCPT_KEEP] = TCP_KEEPIDLE(tp);
2256 }
2257 /*
2258 * If segment contains data or ACK, will call tcp_reass()
2259 * later; if not, do so now to pass queued data to user.
2260 */
2261 if (tlen == 0 && (thflags & TH_FIN) == 0)
2262 (void) tcp_reass(tp, (struct tcphdr *)0, &tlen,
2263 (struct mbuf *)0);
2264 tp->snd_wl1 = th->th_seq - 1;
2265
2266 /* FALLTHROUGH */
2267
2268 /* soisconnected may lead to socket_unlock in case of upcalls,
2269 * make sure this is done when everything is setup.
2270 */
2271 soisconnected(so);
2272
2273 /*
2274 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2275 * ACKs. If the ack is in the range
2276 * tp->snd_una < th->th_ack <= tp->snd_max
2277 * then advance tp->snd_una to th->th_ack and drop
2278 * data from the retransmission queue. If this ACK reflects
2279 * more up to date window information we update our window information.
2280 */
2281 case TCPS_ESTABLISHED:
2282 case TCPS_FIN_WAIT_1:
2283 case TCPS_FIN_WAIT_2:
2284 case TCPS_CLOSE_WAIT:
2285 case TCPS_CLOSING:
2286 case TCPS_LAST_ACK:
2287 case TCPS_TIME_WAIT:
2288 if (SEQ_GT(th->th_ack, tp->snd_max)) {
2289 tcpstat.tcps_rcvacktoomuch++;
2290 goto dropafterack;
2291 }
2292 if (tp->sack_enable &&
2293 (to.to_nsacks > 0 || !TAILQ_EMPTY(&tp->snd_holes)))
2294 tcp_sack_doack(tp, &to, th->th_ack);
2295 if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2296 if (tlen == 0 && tiwin == tp->snd_wnd) {
2297 tcpstat.tcps_rcvdupack++;
2298 /*
2299 * If we have outstanding data (other than
2300 * a window probe), this is a completely
2301 * duplicate ack (ie, window info didn't
2302 * change), the ack is the biggest we've
2303 * seen and we've seen exactly our rexmt
2304 * threshhold of them, assume a packet
2305 * has been dropped and retransmit it.
2306 * Kludge snd_nxt & the congestion
2307 * window so we send only this one
2308 * packet.
2309 *
2310 * We know we're losing at the current
2311 * window size so do congestion avoidance
2312 * (set ssthresh to half the current window
2313 * and pull our congestion window back to
2314 * the new ssthresh).
2315 *
2316 * Dup acks mean that packets have left the
2317 * network (they're now cached at the receiver)
2318 * so bump cwnd by the amount in the receiver
2319 * to keep a constant cwnd packets in the
2320 * network.
2321 */
2322 if (tp->t_timer[TCPT_REXMT] == 0 ||
2323 th->th_ack != tp->snd_una)
2324 tp->t_dupacks = 0;
2325 else if (++tp->t_dupacks > tcprexmtthresh ||
2326 ((tcp_do_newreno || tp->sack_enable) &&
2327 IN_FASTRECOVERY(tp))) {
2328 if (tp->sack_enable && IN_FASTRECOVERY(tp)) {
2329 int awnd;
2330
2331 /*
2332 * Compute the amount of data in flight first.
2333 * We can inject new data into the pipe iff
2334 * we have less than 1/2 the original window's
2335 * worth of data in flight.
2336 */
2337 awnd = (tp->snd_nxt - tp->snd_fack) +
2338 tp->sackhint.sack_bytes_rexmit;
2339 if (awnd < tp->snd_ssthresh) {
2340 tp->snd_cwnd += tp->t_maxseg;
2341 if (tp->snd_cwnd > tp->snd_ssthresh)
2342 tp->snd_cwnd = tp->snd_ssthresh;
2343 }
2344 } else
2345 tp->snd_cwnd += tp->t_maxseg;
2346 tp->t_unacksegs = 0;
2347 (void) tcp_output(tp);
2348 goto drop;
2349 } else if (tp->t_dupacks == tcprexmtthresh) {
2350 tcp_seq onxt = tp->snd_nxt;
2351 u_int win;
2352
2353 /*
2354 * If we're doing sack, check to
2355 * see if we're already in sack
2356 * recovery. If we're not doing sack,
2357 * check to see if we're in newreno
2358 * recovery.
2359 */
2360 if (tp->sack_enable) {
2361 if (IN_FASTRECOVERY(tp)) {
2362 tp->t_dupacks = 0;
2363 break;
2364 }
2365 } else if (tcp_do_newreno) {
2366 if (SEQ_LEQ(th->th_ack,
2367 tp->snd_recover)) {
2368 tp->t_dupacks = 0;
2369 break;
2370 }
2371 }
2372 win = min(tp->snd_wnd, tp->snd_cwnd) /
2373 2 / tp->t_maxseg;
2374 if (win < 2)
2375 win = 2;
2376 tp->snd_ssthresh = win * tp->t_maxseg;
2377 ENTER_FASTRECOVERY(tp);
2378 tp->snd_recover = tp->snd_max;
2379 tp->t_timer[TCPT_REXMT] = 0;
2380 tp->t_rtttime = 0;
2381 tp->ecn_flags |= TE_SENDCWR;
2382 if (tp->sack_enable) {
2383 tcpstat.tcps_sack_recovery_episode++;
2384 tp->sack_newdata = tp->snd_nxt;
2385 tp->snd_cwnd = tp->t_maxseg;
2386 tp->t_unacksegs = 0;
2387 (void) tcp_output(tp);
2388 goto drop;
2389 }
2390 tp->snd_nxt = th->th_ack;
2391 tp->snd_cwnd = tp->t_maxseg;
2392 tp->t_unacksegs = 0;
2393 (void) tcp_output(tp);
2394 tp->snd_cwnd = tp->snd_ssthresh +
2395 tp->t_maxseg * tp->t_dupacks;
2396 if (SEQ_GT(onxt, tp->snd_nxt))
2397 tp->snd_nxt = onxt;
2398 goto drop;
2399 }
2400 } else
2401 tp->t_dupacks = 0;
2402 break;
2403 }
2404
2405 if (!IN_FASTRECOVERY(tp)) {
2406 /*
2407 * We were not in fast recovery. Reset the duplicate ack
2408 * counter.
2409 */
2410 tp->t_dupacks = 0;
2411 }
2412 /*
2413 * If the congestion window was inflated to account
2414 * for the other side's cached packets, retract it.
2415 */
2416 else {
2417 if (tcp_do_newreno || tp->sack_enable) {
2418 if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2419 if (tp->sack_enable)
2420 tcp_sack_partialack(tp, th);
2421 else
2422 tcp_newreno_partial_ack(tp, th);
2423 }
2424 else {
2425 if (tcp_do_newreno) {
2426 long ss = tp->snd_max - th->th_ack;
2427
2428 /*
2429 * Complete ack. Inflate the congestion window to
2430 * ssthresh and exit fast recovery.
2431 *
2432 * Window inflation should have left us with approx.
2433 * snd_ssthresh outstanding data. But in case we
2434 * would be inclined to send a burst, better to do
2435 * it via the slow start mechanism.
2436 */
2437 if (ss < tp->snd_ssthresh)
2438 tp->snd_cwnd = ss + tp->t_maxseg;
2439 else
2440 tp->snd_cwnd = tp->snd_ssthresh;
2441 }
2442 else {
2443 /*
2444 * Clamp the congestion window to the crossover point
2445 * and exit fast recovery.
2446 */
2447 if (tp->snd_cwnd > tp->snd_ssthresh)
2448 tp->snd_cwnd = tp->snd_ssthresh;
2449 }
2450
2451 EXIT_FASTRECOVERY(tp);
2452 tp->t_dupacks = 0;
2453 tp->t_bytes_acked = 0;
2454 }
2455 }
2456 else {
2457 /*
2458 * Clamp the congestion window to the crossover point
2459 * and exit fast recovery in non-newreno and non-SACK case.
2460 */
2461 if (tp->snd_cwnd > tp->snd_ssthresh)
2462 tp->snd_cwnd = tp->snd_ssthresh;
2463 EXIT_FASTRECOVERY(tp);
2464 tp->t_dupacks = 0;
2465 tp->t_bytes_acked = 0;
2466 }
2467 }
2468
2469
2470 /*
2471 * If we reach this point, ACK is not a duplicate,
2472 * i.e., it ACKs something we sent.
2473 */
2474 if (tp->t_flags & TF_NEEDSYN) {
2475 /*
2476 * T/TCP: Connection was half-synchronized, and our
2477 * SYN has been ACK'd (so connection is now fully
2478 * synchronized). Go to non-starred state,
2479 * increment snd_una for ACK of SYN, and check if
2480 * we can do window scaling.
2481 */
2482 tp->t_flags &= ~TF_NEEDSYN;
2483 tp->snd_una++;
2484 /* Do window scaling? */
2485 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2486 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2487 tp->snd_scale = tp->requested_s_scale;
2488 tp->rcv_scale = tp->request_r_scale;
2489 }
2490 }
2491
2492 process_ACK:
2493 acked = th->th_ack - tp->snd_una;
2494 tcpstat.tcps_rcvackpack++;
2495 tcpstat.tcps_rcvackbyte += acked;
2496
2497 /*
2498 * If we just performed our first retransmit, and the ACK
2499 * arrives within our recovery window, then it was a mistake
2500 * to do the retransmit in the first place. Recover our
2501 * original cwnd and ssthresh, and proceed to transmit where
2502 * we left off.
2503 */
2504 if (tp->t_rxtshift == 1 && tcp_now < tp->t_badrxtwin) {
2505 ++tcpstat.tcps_sndrexmitbad;
2506 tp->snd_cwnd = tp->snd_cwnd_prev;
2507 tp->snd_ssthresh = tp->snd_ssthresh_prev;
2508 tp->snd_recover = tp->snd_recover_prev;
2509 if (tp->t_flags & TF_WASFRECOVERY)
2510 ENTER_FASTRECOVERY(tp);
2511 tp->snd_nxt = tp->snd_max;
2512 tp->t_badrxtwin = 0; /* XXX probably not required */
2513 }
2514
2515 /*
2516 * If we have a timestamp reply, update smoothed
2517 * round trip time. If no timestamp is present but
2518 * transmit timer is running and timed sequence
2519 * number was acked, update smoothed round trip time.
2520 * Since we now have an rtt measurement, cancel the
2521 * timer backoff (cf., Phil Karn's retransmit alg.).
2522 * Recompute the initial retransmit timer.
2523 * Also makes sure we have a valid time stamp in hand
2524 *
2525 * Some boxes send broken timestamp replies
2526 * during the SYN+ACK phase, ignore
2527 * timestamps of 0 or we could calculate a
2528 * huge RTT and blow up the retransmit timer.
2529 */
2530 if (((to.to_flags & TOF_TS) != 0) && (to.to_tsecr != 0)) {
2531 if (!tp->t_rttlow || tp->t_rttlow > tcp_now - to.to_tsecr)
2532 tp->t_rttlow = tcp_now - to.to_tsecr;
2533 tcp_xmit_timer(tp, tcp_now - to.to_tsecr);
2534 } else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq)) {
2535 if (!tp->t_rttlow || tp->t_rttlow > tcp_now - tp->t_rtttime)
2536 tp->t_rttlow = tcp_now - tp->t_rtttime;
2537 tcp_xmit_timer(tp, tp->t_rtttime);
2538 }
2539
2540 /*
2541 * If all outstanding data is acked, stop retransmit
2542 * timer and remember to restart (more output or persist).
2543 * If there is more data to be acked, restart retransmit
2544 * timer, using current (possibly backed-off) value.
2545 */
2546 if (th->th_ack == tp->snd_max) {
2547 tp->t_timer[TCPT_REXMT] = 0;
2548 needoutput = 1;
2549 } else if (tp->t_timer[TCPT_PERSIST] == 0)
2550 tp->t_timer[TCPT_REXMT] = tp->t_rxtcur;
2551
2552 /*
2553 * If no data (only SYN) was ACK'd,
2554 * skip rest of ACK processing.
2555 */
2556 if (acked == 0)
2557 goto step6;
2558
2559 /*
2560 * When new data is acked, open the congestion window.
2561 */
2562 if ((thflags & TH_ECE) != 0 &&
2563 (tp->ecn_flags & TE_SETUPSENT) != 0) {
2564 /*
2565 * Reduce the congestion window if we haven't done so.
2566 */
2567 if (!(tp->sack_enable && IN_FASTRECOVERY(tp)) &&
2568 !(tcp_do_newreno && SEQ_LEQ(th->th_ack, tp->snd_recover))) {
2569 tcp_reduce_congestion_window(tp);
2570 }
2571 } else if ((!tcp_do_newreno && !tp->sack_enable) ||
2572 !IN_FASTRECOVERY(tp)) {
2573 /*
2574 * RFC 3465 - Appropriate Byte Counting.
2575 *
2576 * If the window is currently less than ssthresh,
2577 * open the window by the number of bytes ACKed by
2578 * the last ACK, however clamp the window increase
2579 * to an upper limit "L".
2580 *
2581 * In congestion avoidance phase, open the window by
2582 * one segment each time "bytes_acked" grows to be
2583 * greater than or equal to the congestion window.
2584 */
2585
2586 register u_int cw = tp->snd_cwnd;
2587 register u_int incr = tp->t_maxseg;
2588
2589 if (cw >= tp->snd_ssthresh) {
2590 tp->t_bytes_acked += acked;
2591 if (tp->t_bytes_acked >= cw) {
2592 /* Time to increase the window. */
2593 tp->t_bytes_acked -= cw;
2594 } else {
2595 /* No need to increase yet. */
2596 incr = 0;
2597 }
2598 } else {
2599 /*
2600 * If the user explicitly enables RFC3465
2601 * use 2*SMSS for the "L" param. Otherwise
2602 * use the more conservative 1*SMSS.
2603 *
2604 * (See RFC 3465 2.3 Choosing the Limit)
2605 */
2606 u_int abc_lim;
2607
2608 abc_lim = (tcp_do_rfc3465 == 0) ?
2609 incr : incr * 2;
2610 incr = min(acked, abc_lim);
2611 }
2612
2613 tp->snd_cwnd = min(cw+incr, TCP_MAXWIN<<tp->snd_scale);
2614 }
2615 if (acked > so->so_snd.sb_cc) {
2616 tp->snd_wnd -= so->so_snd.sb_cc;
2617 sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
2618 ourfinisacked = 1;
2619 } else {
2620 sbdrop(&so->so_snd, acked);
2621 tp->snd_wnd -= acked;
2622 ourfinisacked = 0;
2623 }
2624 /* detect una wraparound */
2625 if ((tcp_do_newreno || tp->sack_enable) &&
2626 !IN_FASTRECOVERY(tp) &&
2627 SEQ_GT(tp->snd_una, tp->snd_recover) &&
2628 SEQ_LEQ(th->th_ack, tp->snd_recover))
2629 tp->snd_recover = th->th_ack - 1;
2630 if ((tcp_do_newreno || tp->sack_enable) &&
2631 IN_FASTRECOVERY(tp) &&
2632 SEQ_GEQ(th->th_ack, tp->snd_recover))
2633 EXIT_FASTRECOVERY(tp);
2634 tp->snd_una = th->th_ack;
2635 if (tp->sack_enable) {
2636 if (SEQ_GT(tp->snd_una, tp->snd_recover))
2637 tp->snd_recover = tp->snd_una;
2638 }
2639 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2640 tp->snd_nxt = tp->snd_una;
2641
2642 /*
2643 * sowwakeup must happen after snd_una, et al. are updated so that
2644 * the sequence numbers are in sync with so_snd
2645 */
2646 sowwakeup(so);
2647
2648 switch (tp->t_state) {
2649
2650 /*
2651 * In FIN_WAIT_1 STATE in addition to the processing
2652 * for the ESTABLISHED state if our FIN is now acknowledged
2653 * then enter FIN_WAIT_2.
2654 */
2655 case TCPS_FIN_WAIT_1:
2656 if (ourfinisacked) {
2657 /*
2658 * If we can't receive any more
2659 * data, then closing user can proceed.
2660 * Starting the timer is contrary to the
2661 * specification, but if we don't get a FIN
2662 * we'll hang forever.
2663 */
2664 if (so->so_state & SS_CANTRCVMORE) {
2665 tp->t_timer[TCPT_2MSL] = tcp_maxidle;
2666 add_to_time_wait(tp);
2667 soisdisconnected(so);
2668 }
2669 tp->t_state = TCPS_FIN_WAIT_2;
2670 goto drop;
2671 }
2672 break;
2673
2674 /*
2675 * In CLOSING STATE in addition to the processing for
2676 * the ESTABLISHED state if the ACK acknowledges our FIN
2677 * then enter the TIME-WAIT state, otherwise ignore
2678 * the segment.
2679 */
2680 case TCPS_CLOSING:
2681 if (ourfinisacked) {
2682 tp->t_state = TCPS_TIME_WAIT;
2683 tcp_canceltimers(tp);
2684 /* Shorten TIME_WAIT [RFC-1644, p.28] */
2685 if (tp->cc_recv != 0 &&
2686 tp->t_starttime < (u_long)tcp_msl)
2687 tp->t_timer[TCPT_2MSL] =
2688 tp->t_rxtcur * TCPTV_TWTRUNC;
2689 else
2690 tp->t_timer[TCPT_2MSL] = 2 * tcp_msl;
2691 add_to_time_wait(tp);
2692 soisdisconnected(so);
2693 }
2694 break;
2695
2696 /*
2697 * In LAST_ACK, we may still be waiting for data to drain
2698 * and/or to be acked, as well as for the ack of our FIN.
2699 * If our FIN is now acknowledged, delete the TCB,
2700 * enter the closed state and return.
2701 */
2702 case TCPS_LAST_ACK:
2703 if (ourfinisacked) {
2704 tp = tcp_close(tp);
2705 goto drop;
2706 }
2707 break;
2708
2709 /*
2710 * In TIME_WAIT state the only thing that should arrive
2711 * is a retransmission of the remote FIN. Acknowledge
2712 * it and restart the finack timer.
2713 */
2714 case TCPS_TIME_WAIT:
2715 tp->t_timer[TCPT_2MSL] = 2 * tcp_msl;
2716 add_to_time_wait(tp);
2717 goto dropafterack;
2718 }
2719 }
2720
2721 step6:
2722 /*
2723 * Update window information.
2724 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2725 */
2726 if ((thflags & TH_ACK) &&
2727 (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2728 (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2729 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2730 /* keep track of pure window updates */
2731 if (tlen == 0 &&
2732 tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2733 tcpstat.tcps_rcvwinupd++;
2734 tp->snd_wnd = tiwin;
2735 tp->snd_wl1 = th->th_seq;
2736 tp->snd_wl2 = th->th_ack;
2737 if (tp->snd_wnd > tp->max_sndwnd)
2738 tp->max_sndwnd = tp->snd_wnd;
2739 needoutput = 1;
2740 }
2741
2742 /*
2743 * Process segments with URG.
2744 */
2745 if ((thflags & TH_URG) && th->th_urp &&
2746 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2747 /*
2748 * This is a kludge, but if we receive and accept
2749 * random urgent pointers, we'll crash in
2750 * soreceive. It's hard to imagine someone
2751 * actually wanting to send this much urgent data.
2752 */
2753 if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2754 th->th_urp = 0; /* XXX */
2755 thflags &= ~TH_URG; /* XXX */
2756 goto dodata; /* XXX */
2757 }
2758 /*
2759 * If this segment advances the known urgent pointer,
2760 * then mark the data stream. This should not happen
2761 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2762 * a FIN has been received from the remote side.
2763 * In these states we ignore the URG.
2764 *
2765 * According to RFC961 (Assigned Protocols),
2766 * the urgent pointer points to the last octet
2767 * of urgent data. We continue, however,
2768 * to consider it to indicate the first octet
2769 * of data past the urgent section as the original
2770 * spec states (in one of two places).
2771 */
2772 if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2773 tp->rcv_up = th->th_seq + th->th_urp;
2774 so->so_oobmark = so->so_rcv.sb_cc +
2775 (tp->rcv_up - tp->rcv_nxt) - 1;
2776 if (so->so_oobmark == 0) {
2777 so->so_state |= SS_RCVATMARK;
2778 postevent(so, 0, EV_OOB);
2779 }
2780 sohasoutofband(so);
2781 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2782 }
2783 /*
2784 * Remove out of band data so doesn't get presented to user.
2785 * This can happen independent of advancing the URG pointer,
2786 * but if two URG's are pending at once, some out-of-band
2787 * data may creep in... ick.
2788 */
2789 if (th->th_urp <= (u_long)tlen
2790 #if SO_OOBINLINE
2791 && (so->so_options & SO_OOBINLINE) == 0
2792 #endif
2793 )
2794 tcp_pulloutofband(so, th, m,
2795 drop_hdrlen); /* hdr drop is delayed */
2796 } else
2797 /*
2798 * If no out of band data is expected,
2799 * pull receive urgent pointer along
2800 * with the receive window.
2801 */
2802 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2803 tp->rcv_up = tp->rcv_nxt;
2804 dodata: /* XXX */
2805
2806 /*
2807 * Process the segment text, merging it into the TCP sequencing queue,
2808 * and arranging for acknowledgment of receipt if necessary.
2809 * This process logically involves adjusting tp->rcv_wnd as data
2810 * is presented to the user (this happens in tcp_usrreq.c,
2811 * case PRU_RCVD). If a FIN has already been received on this
2812 * connection then we just ignore the text.
2813 */
2814 if ((tlen || (thflags&TH_FIN)) &&
2815 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2816 tcp_seq save_start = th->th_seq;
2817 tcp_seq save_end = th->th_seq + tlen;
2818 m_adj(m, drop_hdrlen); /* delayed header drop */
2819 /*
2820 * Insert segment which includes th into TCP reassembly queue
2821 * with control block tp. Set thflags to whether reassembly now
2822 * includes a segment with FIN. This handles the common case
2823 * inline (segment is the next to be received on an established
2824 * connection, and the queue is empty), avoiding linkage into
2825 * and removal from the queue and repetition of various
2826 * conversions.
2827 * Set DELACK for segments received in order, but ack
2828 * immediately when segments are out of order (so
2829 * fast retransmit can work).
2830 */
2831 if (th->th_seq == tp->rcv_nxt &&
2832 LIST_EMPTY(&tp->t_segq) &&
2833 TCPS_HAVEESTABLISHED(tp->t_state)) {
2834 if (DELAY_ACK(tp) && ((tp->t_flags & TF_ACKNOW) == 0)) {
2835 tp->t_flags |= TF_DELACK;
2836 tp->t_unacksegs++;
2837 }
2838 else {
2839 tp->t_unacksegs = 0;
2840 tp->t_flags |= TF_ACKNOW;
2841 }
2842 tp->rcv_nxt += tlen;
2843 thflags = th->th_flags & TH_FIN;
2844 tcpstat.tcps_rcvpack++;
2845 tcpstat.tcps_rcvbyte += tlen;
2846 ND6_HINT(tp);
2847 if (sbappendstream(&so->so_rcv, m))
2848 sorwakeup(so);
2849 } else {
2850 thflags = tcp_reass(tp, th, &tlen, m);
2851 tp->t_flags |= TF_ACKNOW;
2852 tp->t_unacksegs = 0;
2853 }
2854
2855 if (tlen > 0 && tp->sack_enable)
2856 tcp_update_sack_list(tp, save_start, save_end);
2857
2858 if (tp->t_flags & TF_DELACK)
2859 {
2860 #if INET6
2861 if (isipv6) {
2862 KERNEL_DEBUG(DBG_LAYER_END, ((th->th_dport << 16) | th->th_sport),
2863 (((ip6->ip6_src.s6_addr16[0]) << 16) | (ip6->ip6_dst.s6_addr16[0])),
2864 th->th_seq, th->th_ack, th->th_win);
2865 }
2866 else
2867 #endif
2868 {
2869 KERNEL_DEBUG(DBG_LAYER_END, ((th->th_dport << 16) | th->th_sport),
2870 (((ip->ip_src.s_addr & 0xffff) << 16) | (ip->ip_dst.s_addr & 0xffff)),
2871 th->th_seq, th->th_ack, th->th_win);
2872 }
2873
2874 }
2875 /*
2876 * Note the amount of data that peer has sent into
2877 * our window, in order to estimate the sender's
2878 * buffer size.
2879 */
2880 len = (u_int)(so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt));
2881 if (len > so->so_rcv.sb_maxused)
2882 so->so_rcv.sb_maxused = len;
2883 } else {
2884 m_freem(m);
2885 thflags &= ~TH_FIN;
2886 }
2887
2888 /*
2889 * If FIN is received ACK the FIN and let the user know
2890 * that the connection is closing.
2891 */
2892 if (thflags & TH_FIN) {
2893 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2894 socantrcvmore(so);
2895 postevent(so, 0, EV_FIN);
2896 /*
2897 * If connection is half-synchronized
2898 * (ie NEEDSYN flag on) then delay ACK,
2899 * If connection is half-synchronized
2900 * (ie NEEDSYN flag on) then delay ACK,
2901 * so it may be piggybacked when SYN is sent.
2902 * Otherwise, since we received a FIN then no
2903 * more input can be expected, send ACK now.
2904 */
2905 if (DELAY_ACK(tp) && (tp->t_flags & TF_NEEDSYN)) {
2906 tp->t_flags |= TF_DELACK;
2907 tp->t_unacksegs++;
2908 }
2909 else {
2910 tp->t_flags |= TF_ACKNOW;
2911 tp->t_unacksegs = 0;
2912 }
2913 tp->rcv_nxt++;
2914 }
2915 switch (tp->t_state) {
2916
2917 /*
2918 * In SYN_RECEIVED and ESTABLISHED STATES
2919 * enter the CLOSE_WAIT state.
2920 */
2921 case TCPS_SYN_RECEIVED:
2922 tp->t_starttime = 0;
2923 case TCPS_ESTABLISHED:
2924 tp->t_state = TCPS_CLOSE_WAIT;
2925 break;
2926
2927 /*
2928 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2929 * enter the CLOSING state.
2930 */
2931 case TCPS_FIN_WAIT_1:
2932 tp->t_state = TCPS_CLOSING;
2933 break;
2934
2935 /*
2936 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2937 * starting the time-wait timer, turning off the other
2938 * standard timers.
2939 */
2940 case TCPS_FIN_WAIT_2:
2941 tp->t_state = TCPS_TIME_WAIT;
2942 tcp_canceltimers(tp);
2943 /* Shorten TIME_WAIT [RFC-1644, p.28] */
2944 if (tp->cc_recv != 0 &&
2945 tp->t_starttime < (u_long)tcp_msl) {
2946 tp->t_timer[TCPT_2MSL] =
2947 tp->t_rxtcur * TCPTV_TWTRUNC;
2948 /* For transaction client, force ACK now. */
2949 tp->t_flags |= TF_ACKNOW;
2950 tp->t_unacksegs = 0;
2951 }
2952 else
2953 tp->t_timer[TCPT_2MSL] = 2 * tcp_msl;
2954
2955 add_to_time_wait(tp);
2956 soisdisconnected(so);
2957 break;
2958
2959 /*
2960 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2961 */
2962 case TCPS_TIME_WAIT:
2963 tp->t_timer[TCPT_2MSL] = 2 * tcp_msl;
2964 add_to_time_wait(tp);
2965 break;
2966 }
2967 }
2968 #if TCPDEBUG
2969 if (so->so_options & SO_DEBUG)
2970 tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen,
2971 &tcp_savetcp, 0);
2972 #endif
2973
2974 /*
2975 * Return any desired output.
2976 */
2977 if (needoutput || (tp->t_flags & TF_ACKNOW)) {
2978 tp->t_unacksegs = 0;
2979 (void) tcp_output(tp);
2980 }
2981 tcp_unlock(so, 1, 0);
2982 KERNEL_DEBUG(DBG_FNC_TCP_INPUT | DBG_FUNC_END,0,0,0,0,0);
2983 return;
2984
2985 dropafterack:
2986 /*
2987 * Generate an ACK dropping incoming segment if it occupies
2988 * sequence space, where the ACK reflects our state.
2989 *
2990 * We can now skip the test for the RST flag since all
2991 * paths to this code happen after packets containing
2992 * RST have been dropped.
2993 *
2994 * In the SYN-RECEIVED state, don't send an ACK unless the
2995 * segment we received passes the SYN-RECEIVED ACK test.
2996 * If it fails send a RST. This breaks the loop in the
2997 * "LAND" DoS attack, and also prevents an ACK storm
2998 * between two listening ports that have been sent forged
2999 * SYN segments, each with the source address of the other.
3000 */
3001 if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
3002 (SEQ_GT(tp->snd_una, th->th_ack) ||
3003 SEQ_GT(th->th_ack, tp->snd_max)) ) {
3004 rstreason = BANDLIM_RST_OPENPORT;
3005 goto dropwithreset;
3006 }
3007 #if TCPDEBUG
3008 if (so->so_options & SO_DEBUG)
3009 tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
3010 &tcp_savetcp, 0);
3011 #endif
3012 m_freem(m);
3013 tp->t_flags |= TF_ACKNOW;
3014 tp->t_unacksegs = 0;
3015 (void) tcp_output(tp);
3016 tcp_unlock(so, 1, 0);
3017 KERNEL_DEBUG(DBG_FNC_TCP_INPUT | DBG_FUNC_END,0,0,0,0,0);
3018 return;
3019 dropwithresetnosock:
3020 nosock = 1;
3021 dropwithreset:
3022 /*
3023 * Generate a RST, dropping incoming segment.
3024 * Make ACK acceptable to originator of segment.
3025 * Don't bother to respond if destination was broadcast/multicast.
3026 */
3027 if ((thflags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST))
3028 goto drop;
3029 #if INET6
3030 if (isipv6) {
3031 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
3032 IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
3033 goto drop;
3034 } else
3035 #endif /* INET6 */
3036 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
3037 IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
3038 ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
3039 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
3040 goto drop;
3041 /* IPv6 anycast check is done at tcp6_input() */
3042
3043 /*
3044 * Perform bandwidth limiting.
3045 */
3046 #if ICMP_BANDLIM
3047 if (badport_bandlim(rstreason) < 0)
3048 goto drop;
3049 #endif
3050
3051 #if TCPDEBUG
3052 if (tp == 0 || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
3053 tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
3054 &tcp_savetcp, 0);
3055 #endif
3056 if (thflags & TH_ACK)
3057 /* mtod() below is safe as long as hdr dropping is delayed */
3058 tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0, th->th_ack,
3059 TH_RST, m->m_pkthdr.rcvif);
3060 else {
3061 if (thflags & TH_SYN)
3062 tlen++;
3063 /* mtod() below is safe as long as hdr dropping is delayed */
3064 tcp_respond(tp, mtod(m, void *), th, m, th->th_seq+tlen,
3065 (tcp_seq)0, TH_RST|TH_ACK, m->m_pkthdr.rcvif);
3066 }
3067 /* destroy temporarily created socket */
3068 if (dropsocket) {
3069 (void) soabort(so);
3070 tcp_unlock(so, 1, 0);
3071 }
3072 else
3073 if ((inp != NULL) && (nosock == 0))
3074 tcp_unlock(so, 1, 0);
3075 KERNEL_DEBUG(DBG_FNC_TCP_INPUT | DBG_FUNC_END,0,0,0,0,0);
3076 return;
3077 dropnosock:
3078 nosock = 1;
3079 drop:
3080 /*
3081 * Drop space held by incoming segment and return.
3082 */
3083 #if TCPDEBUG
3084 if (tp == 0 || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
3085 tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
3086 &tcp_savetcp, 0);
3087 #endif
3088 m_freem(m);
3089 /* destroy temporarily created socket */
3090 if (dropsocket) {
3091 (void) soabort(so);
3092 tcp_unlock(so, 1, 0);
3093 }
3094 else
3095 if (nosock == 0)
3096 tcp_unlock(so, 1, 0);
3097 KERNEL_DEBUG(DBG_FNC_TCP_INPUT | DBG_FUNC_END,0,0,0,0,0);
3098 return;
3099 }
3100
3101 static void
3102 tcp_dooptions(tp, cp, cnt, th, to)
3103 /*
3104 * Parse TCP options and place in tcpopt.
3105 */
3106 struct tcpcb *tp;
3107 u_char *cp;
3108 int cnt;
3109 struct tcphdr *th;
3110 struct tcpopt *to;
3111 {
3112 u_short mss = 0;
3113 int opt, optlen;
3114
3115 for (; cnt > 0; cnt -= optlen, cp += optlen) {
3116 opt = cp[0];
3117 if (opt == TCPOPT_EOL)
3118 break;
3119 if (opt == TCPOPT_NOP)
3120 optlen = 1;
3121 else {
3122 if (cnt < 2)
3123 break;
3124 optlen = cp[1];
3125 if (optlen < 2 || optlen > cnt)
3126 break;
3127 }
3128 switch (opt) {
3129
3130 default:
3131 continue;
3132
3133 case TCPOPT_MAXSEG:
3134 if (optlen != TCPOLEN_MAXSEG)
3135 continue;
3136 if (!(th->th_flags & TH_SYN))
3137 continue;
3138 bcopy((char *) cp + 2, (char *) &mss, sizeof(mss));
3139 NTOHS(mss);
3140 break;
3141
3142 case TCPOPT_WINDOW:
3143 if (optlen != TCPOLEN_WINDOW)
3144 continue;
3145 if (!(th->th_flags & TH_SYN))
3146 continue;
3147 tp->t_flags |= TF_RCVD_SCALE;
3148 tp->requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT);
3149 break;
3150
3151 case TCPOPT_TIMESTAMP:
3152 if (optlen != TCPOLEN_TIMESTAMP)
3153 continue;
3154 to->to_flags |= TOF_TS;
3155 bcopy((char *)cp + 2,
3156 (char *)&to->to_tsval, sizeof(to->to_tsval));
3157 NTOHL(to->to_tsval);
3158 bcopy((char *)cp + 6,
3159 (char *)&to->to_tsecr, sizeof(to->to_tsecr));
3160 NTOHL(to->to_tsecr);
3161
3162 /*
3163 * A timestamp received in a SYN makes
3164 * it ok to send timestamp requests and replies.
3165 */
3166 if (th->th_flags & TH_SYN) {
3167 tp->t_flags |= TF_RCVD_TSTMP;
3168 tp->ts_recent = to->to_tsval;
3169 tp->ts_recent_age = tcp_now;
3170 }
3171 break;
3172 case TCPOPT_SACK_PERMITTED:
3173 if (!tcp_do_sack ||
3174 optlen != TCPOLEN_SACK_PERMITTED)
3175 continue;
3176 if (th->th_flags & TH_SYN)
3177 to->to_flags |= TOF_SACK;
3178 break;
3179 case TCPOPT_SACK:
3180 if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0)
3181 continue;
3182 to->to_nsacks = (optlen - 2) / TCPOLEN_SACK;
3183 to->to_sacks = cp + 2;
3184 tcpstat.tcps_sack_rcv_blocks++;
3185
3186 break;
3187 }
3188 }
3189 if (th->th_flags & TH_SYN)
3190 tcp_mss(tp, mss); /* sets t_maxseg */
3191 }
3192
3193 /*
3194 * Pull out of band byte out of a segment so
3195 * it doesn't appear in the user's data queue.
3196 * It is still reflected in the segment length for
3197 * sequencing purposes.
3198 */
3199 static void
3200 tcp_pulloutofband(so, th, m, off)
3201 struct socket *so;
3202 struct tcphdr *th;
3203 register struct mbuf *m;
3204 int off; /* delayed to be droped hdrlen */
3205 {
3206 int cnt = off + th->th_urp - 1;
3207
3208 while (cnt >= 0) {
3209 if (m->m_len > cnt) {
3210 char *cp = mtod(m, caddr_t) + cnt;
3211 struct tcpcb *tp = sototcpcb(so);
3212
3213 tp->t_iobc = *cp;
3214 tp->t_oobflags |= TCPOOB_HAVEDATA;
3215 bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
3216 m->m_len--;
3217 if (m->m_flags & M_PKTHDR)
3218 m->m_pkthdr.len--;
3219 return;
3220 }
3221 cnt -= m->m_len;
3222 m = m->m_next;
3223 if (m == 0)
3224 break;
3225 }
3226 panic("tcp_pulloutofband");
3227 }
3228
3229 /*
3230 * Collect new round-trip time estimate
3231 * and update averages and current timeout.
3232 */
3233 static void
3234 tcp_xmit_timer(tp, rtt)
3235 register struct tcpcb *tp;
3236 int rtt;
3237 {
3238 register int delta;
3239
3240 tcpstat.tcps_rttupdated++;
3241 tp->t_rttupdated++;
3242 if (tp->t_srtt != 0) {
3243 /*
3244 * srtt is stored as fixed point with 5 bits after the
3245 * binary point (i.e., scaled by 8). The following magic
3246 * is equivalent to the smoothing algorithm in rfc793 with
3247 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
3248 * point). Adjust rtt to origin 0.
3249 */
3250 delta = ((rtt - 1) << TCP_DELTA_SHIFT)
3251 - (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
3252
3253 if ((tp->t_srtt += delta) <= 0)
3254 tp->t_srtt = 1;
3255
3256 /*
3257 * We accumulate a smoothed rtt variance (actually, a
3258 * smoothed mean difference), then set the retransmit
3259 * timer to smoothed rtt + 4 times the smoothed variance.
3260 * rttvar is stored as fixed point with 4 bits after the
3261 * binary point (scaled by 16). The following is
3262 * equivalent to rfc793 smoothing with an alpha of .75
3263 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces
3264 * rfc793's wired-in beta.
3265 */
3266 if (delta < 0)
3267 delta = -delta;
3268 delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
3269 if ((tp->t_rttvar += delta) <= 0)
3270 tp->t_rttvar = 1;
3271 if (tp->t_rttbest > tp->t_srtt + tp->t_rttvar)
3272 tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3273 } else {
3274 /*
3275 * No rtt measurement yet - use the unsmoothed rtt.
3276 * Set the variance to half the rtt (so our first
3277 * retransmit happens at 3*rtt).
3278 */
3279 tp->t_srtt = rtt << TCP_RTT_SHIFT;
3280 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
3281 tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
3282 }
3283 tp->t_rtttime = 0;
3284 tp->t_rxtshift = 0;
3285
3286 /*
3287 * the retransmit should happen at rtt + 4 * rttvar.
3288 * Because of the way we do the smoothing, srtt and rttvar
3289 * will each average +1/2 tick of bias. When we compute
3290 * the retransmit timer, we want 1/2 tick of rounding and
3291 * 1 extra tick because of +-1/2 tick uncertainty in the
3292 * firing of the timer. The bias will give us exactly the
3293 * 1.5 tick we need. But, because the bias is
3294 * statistical, we have to test that we don't drop below
3295 * the minimum feasible timer (which is 2 ticks).
3296 */
3297 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3298 max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3299
3300 /*
3301 * We received an ack for a packet that wasn't retransmitted;
3302 * it is probably safe to discard any error indications we've
3303 * received recently. This isn't quite right, but close enough
3304 * for now (a route might have failed after we sent a segment,
3305 * and the return path might not be symmetrical).
3306 */
3307 tp->t_softerror = 0;
3308 }
3309
3310 static inline unsigned int
3311 tcp_maxmtu(struct rtentry *rt)
3312 {
3313 unsigned int maxmtu;
3314
3315 if (rt->rt_rmx.rmx_mtu == 0)
3316 maxmtu = rt->rt_ifp->if_mtu;
3317 else
3318 maxmtu = MIN(rt->rt_rmx.rmx_mtu, rt->rt_ifp->if_mtu);
3319
3320 return (maxmtu);
3321 }
3322
3323 #if INET6
3324 static inline unsigned int
3325 tcp_maxmtu6(struct rtentry *rt)
3326 {
3327 unsigned int maxmtu;
3328
3329 if (rt->rt_rmx.rmx_mtu == 0)
3330 maxmtu = IN6_LINKMTU(rt->rt_ifp);
3331 else
3332 maxmtu = MIN(rt->rt_rmx.rmx_mtu, IN6_LINKMTU(rt->rt_ifp));
3333
3334 return (maxmtu);
3335 }
3336 #endif
3337
3338 /*
3339 * Determine a reasonable value for maxseg size.
3340 * If the route is known, check route for mtu.
3341 * If none, use an mss that can be handled on the outgoing
3342 * interface without forcing IP to fragment; if bigger than
3343 * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
3344 * to utilize large mbufs. If no route is found, route has no mtu,
3345 * or the destination isn't local, use a default, hopefully conservative
3346 * size (usually 512 or the default IP max size, but no more than the mtu
3347 * of the interface), as we can't discover anything about intervening
3348 * gateways or networks. We also initialize the congestion/slow start
3349 * window to be a single segment if the destination isn't local.
3350 * While looking at the routing entry, we also initialize other path-dependent
3351 * parameters from pre-set or cached values in the routing entry.
3352 *
3353 * Also take into account the space needed for options that we
3354 * send regularly. Make maxseg shorter by that amount to assure
3355 * that we can send maxseg amount of data even when the options
3356 * are present. Store the upper limit of the length of options plus
3357 * data in maxopd.
3358 *
3359 * NOTE that this routine is only called when we process an incoming
3360 * segment, for outgoing segments only tcp_mssopt is called.
3361 *
3362 */
3363 void
3364 tcp_mss(tp, offer)
3365 struct tcpcb *tp;
3366 int offer;
3367 {
3368 register struct rtentry *rt;
3369 struct ifnet *ifp;
3370 register int rtt, mss;
3371 u_long bufsize;
3372 struct inpcb *inp;
3373 struct socket *so;
3374 struct rmxp_tao *taop;
3375 int origoffer = offer;
3376 u_long sb_max_corrected;
3377 int isnetlocal = 0;
3378 #if INET6
3379 int isipv6;
3380 int min_protoh;
3381 #endif
3382
3383 inp = tp->t_inpcb;
3384 #if INET6
3385 isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
3386 min_protoh = isipv6 ? sizeof (struct ip6_hdr) + sizeof (struct tcphdr)
3387 : sizeof (struct tcpiphdr);
3388 #else
3389 #define min_protoh (sizeof (struct tcpiphdr))
3390 #endif
3391 lck_mtx_lock(rt_mtx);
3392 #if INET6
3393 if (isipv6) {
3394 rt = tcp_rtlookup6(inp);
3395 if (rt && (IN6_IS_ADDR_LOOPBACK(&inp->in6p_faddr) || IN6_IS_ADDR_LINKLOCAL(&inp->in6p_faddr) || rt->rt_gateway->sa_family == AF_LINK))
3396 isnetlocal = TRUE;
3397 }
3398 else
3399 #endif /* INET6 */
3400 {
3401 rt = tcp_rtlookup(inp);
3402 if (rt && (rt->rt_gateway->sa_family == AF_LINK ||
3403 rt->rt_ifp->if_flags & IFF_LOOPBACK))
3404 isnetlocal = TRUE;
3405 }
3406 if (rt == NULL) {
3407 tp->t_maxopd = tp->t_maxseg =
3408 #if INET6
3409 isipv6 ? tcp_v6mssdflt :
3410 #endif /* INET6 */
3411 tcp_mssdflt;
3412 lck_mtx_unlock(rt_mtx);
3413 return;
3414 }
3415 ifp = rt->rt_ifp;
3416 /*
3417 * Slower link window correction:
3418 * If a value is specificied for slowlink_wsize use it for PPP links
3419 * believed to be on a serial modem (speed <128Kbps). Excludes 9600bps as
3420 * it is the default value adversized by pseudo-devices over ppp.
3421 */
3422 if (ifp->if_type == IFT_PPP && slowlink_wsize > 0 &&
3423 ifp->if_baudrate > 9600 && ifp->if_baudrate <= 128000) {
3424 tp->t_flags |= TF_SLOWLINK;
3425 }
3426 so = inp->inp_socket;
3427
3428 taop = rmx_taop(rt->rt_rmx);
3429 /*
3430 * Offer == -1 means that we didn't receive SYN yet,
3431 * use cached value in that case;
3432 */
3433 if (offer == -1)
3434 offer = taop->tao_mssopt;
3435 /*
3436 * Offer == 0 means that there was no MSS on the SYN segment,
3437 * in this case we use tcp_mssdflt.
3438 */
3439 if (offer == 0)
3440 offer =
3441 #if INET6
3442 isipv6 ? tcp_v6mssdflt :
3443 #endif /* INET6 */
3444 tcp_mssdflt;
3445 else {
3446 /*
3447 * Prevent DoS attack with too small MSS. Round up
3448 * to at least minmss.
3449 */
3450 offer = max(offer, tcp_minmss);
3451 /*
3452 * Sanity check: make sure that maxopd will be large
3453 * enough to allow some data on segments even is the
3454 * all the option space is used (40bytes). Otherwise
3455 * funny things may happen in tcp_output.
3456 */
3457 offer = max(offer, 64);
3458 }
3459 taop->tao_mssopt = offer;
3460
3461 /*
3462 * While we're here, check if there's an initial rtt
3463 * or rttvar. Convert from the route-table units
3464 * to scaled multiples of the slow timeout timer.
3465 */
3466 if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
3467 /*
3468 * XXX the lock bit for RTT indicates that the value
3469 * is also a minimum value; this is subject to time.
3470 */
3471 if (rt->rt_rmx.rmx_locks & RTV_RTT)
3472 tp->t_rttmin = rtt / (RTM_RTTUNIT / TCP_RETRANSHZ);
3473 else
3474 tp->t_rttmin = isnetlocal ? tcp_TCPTV_MIN : TCP_RETRANSHZ;
3475 tp->t_srtt = rtt / (RTM_RTTUNIT / (TCP_RETRANSHZ * TCP_RTT_SCALE));
3476 tcpstat.tcps_usedrtt++;
3477 if (rt->rt_rmx.rmx_rttvar) {
3478 tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
3479 (RTM_RTTUNIT / (TCP_RETRANSHZ * TCP_RTTVAR_SCALE));
3480 tcpstat.tcps_usedrttvar++;
3481 } else {
3482 /* default variation is +- 1 rtt */
3483 tp->t_rttvar =
3484 tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
3485 }
3486 TCPT_RANGESET(tp->t_rxtcur,
3487 ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
3488 tp->t_rttmin, TCPTV_REXMTMAX);
3489 }
3490 else
3491 tp->t_rttmin = isnetlocal ? tcp_TCPTV_MIN : TCP_RETRANSHZ;
3492
3493 #if INET6
3494 mss = (isipv6 ? tcp_maxmtu6(rt) : tcp_maxmtu(rt));
3495 #else
3496 mss = tcp_maxmtu(rt);
3497 #endif
3498 mss -= min_protoh;
3499
3500 if (rt->rt_rmx.rmx_mtu == 0) {
3501 #if INET6
3502 if (isipv6) {
3503 if (!isnetlocal)
3504 mss = min(mss, tcp_v6mssdflt);
3505 } else
3506 #endif /* INET6 */
3507 if (!isnetlocal)
3508 mss = min(mss, tcp_mssdflt);
3509 }
3510
3511 mss = min(mss, offer);
3512 /*
3513 * maxopd stores the maximum length of data AND options
3514 * in a segment; maxseg is the amount of data in a normal
3515 * segment. We need to store this value (maxopd) apart
3516 * from maxseg, because now every segment carries options
3517 * and thus we normally have somewhat less data in segments.
3518 */
3519 tp->t_maxopd = mss;
3520
3521 /*
3522 * origoffer==-1 indicates, that no segments were received yet.
3523 * In this case we just guess.
3524 */
3525 if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
3526 (origoffer == -1 ||
3527 (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP))
3528 mss -= TCPOLEN_TSTAMP_APPA;
3529 tp->t_maxseg = mss;
3530
3531 /*
3532 * Calculate corrected value for sb_max; ensure to upgrade the
3533 * numerator for large sb_max values else it will overflow.
3534 */
3535 sb_max_corrected = (sb_max * (u_int64_t)MCLBYTES) / (MSIZE + MCLBYTES);
3536
3537 /*
3538 * If there's a pipesize (ie loopback), change the socket
3539 * buffer to that size only if it's bigger than the current
3540 * sockbuf size. Make the socket buffers an integral
3541 * number of mss units; if the mss is larger than
3542 * the socket buffer, decrease the mss.
3543 */
3544 #if RTV_SPIPE
3545 bufsize = rt->rt_rmx.rmx_sendpipe;
3546 if (bufsize < so->so_snd.sb_hiwat)
3547 #endif
3548 bufsize = so->so_snd.sb_hiwat;
3549 if (bufsize < mss)
3550 mss = bufsize;
3551 else {
3552 bufsize = (((bufsize + (u_int64_t)mss - 1) / (u_int64_t)mss) * (u_int64_t)mss);
3553 if (bufsize > sb_max_corrected)
3554 bufsize = sb_max_corrected;
3555 (void)sbreserve(&so->so_snd, bufsize);
3556 }
3557 tp->t_maxseg = mss;
3558
3559 #if RTV_RPIPE
3560 bufsize = rt->rt_rmx.rmx_recvpipe;
3561 if (bufsize < so->so_rcv.sb_hiwat)
3562 #endif
3563 bufsize = so->so_rcv.sb_hiwat;
3564 if (bufsize > mss) {
3565 bufsize = (((bufsize + (u_int64_t)mss - 1) / (u_int64_t)mss) * (u_int64_t)mss);
3566 if (bufsize > sb_max_corrected)
3567 bufsize = sb_max_corrected;
3568 (void)sbreserve(&so->so_rcv, bufsize);
3569 }
3570
3571 /*
3572 * Set the slow-start flight size depending on whether this
3573 * is a local network or not.
3574 */
3575 if (isnetlocal)
3576 tp->snd_cwnd = mss * ss_fltsz_local;
3577 else
3578 tp->snd_cwnd = mss * ss_fltsz;
3579
3580 if (rt->rt_rmx.rmx_ssthresh) {
3581 /*
3582 * There's some sort of gateway or interface
3583 * buffer limit on the path. Use this to set
3584 * the slow start threshhold, but set the
3585 * threshold to no less than 2*mss.
3586 */
3587 tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
3588 tcpstat.tcps_usedssthresh++;
3589 }
3590 else
3591 tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
3592
3593 lck_mtx_unlock(rt_mtx);
3594 }
3595
3596 /*
3597 * Determine the MSS option to send on an outgoing SYN.
3598 */
3599 int
3600 tcp_mssopt(tp)
3601 struct tcpcb *tp;
3602 {
3603 struct rtentry *rt;
3604 int mss;
3605 #if INET6
3606 int isipv6;
3607 int min_protoh;
3608 #endif
3609
3610 #if INET6
3611 isipv6 = ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
3612 min_protoh = isipv6 ? sizeof (struct ip6_hdr) + sizeof (struct tcphdr)
3613 : sizeof (struct tcpiphdr);
3614 #else
3615 #define min_protoh (sizeof (struct tcpiphdr))
3616 #endif
3617 lck_mtx_lock(rt_mtx);
3618 #if INET6
3619 if (isipv6)
3620 rt = tcp_rtlookup6(tp->t_inpcb);
3621 else
3622 #endif /* INET6 */
3623 rt = tcp_rtlookup(tp->t_inpcb);
3624 if (rt == NULL) {
3625 lck_mtx_unlock(rt_mtx);
3626 return (
3627 #if INET6
3628 isipv6 ? tcp_v6mssdflt :
3629 #endif /* INET6 */
3630 tcp_mssdflt);
3631 }
3632 /*
3633 * Slower link window correction:
3634 * If a value is specificied for slowlink_wsize use it for PPP links
3635 * believed to be on a serial modem (speed <128Kbps). Excludes 9600bps as
3636 * it is the default value adversized by pseudo-devices over ppp.
3637 */
3638 if (rt->rt_ifp->if_type == IFT_PPP && slowlink_wsize > 0 &&
3639 rt->rt_ifp->if_baudrate > 9600 && rt->rt_ifp->if_baudrate <= 128000) {
3640 tp->t_flags |= TF_SLOWLINK;
3641 }
3642
3643 #if INET6
3644 mss = (isipv6 ? tcp_maxmtu6(rt) : tcp_maxmtu(rt));
3645 #else
3646 mss = tcp_maxmtu(rt);
3647 #endif
3648 lck_mtx_unlock(rt_mtx);
3649 return (mss - min_protoh);
3650 }
3651
3652 /*
3653 * On a partial ack arrives, force the retransmission of the
3654 * next unacknowledged segment. Do not clear tp->t_dupacks.
3655 * By setting snd_nxt to ti_ack, this forces retransmission timer to
3656 * be started again.
3657 */
3658 static void
3659 tcp_newreno_partial_ack(tp, th)
3660 struct tcpcb *tp;
3661 struct tcphdr *th;
3662 {
3663 tcp_seq onxt = tp->snd_nxt;
3664 u_long ocwnd = tp->snd_cwnd;
3665 tp->t_timer[TCPT_REXMT] = 0;
3666 tp->t_rtttime = 0;
3667 tp->snd_nxt = th->th_ack;
3668 /*
3669 * Set snd_cwnd to one segment beyond acknowledged offset
3670 * (tp->snd_una has not yet been updated when this function
3671 * is called)
3672 */
3673 tp->snd_cwnd = tp->t_maxseg + (th->th_ack - tp->snd_una);
3674 tp->t_flags |= TF_ACKNOW;
3675 tp->t_unacksegs = 0;
3676 (void) tcp_output(tp);
3677 tp->snd_cwnd = ocwnd;
3678 if (SEQ_GT(onxt, tp->snd_nxt))
3679 tp->snd_nxt = onxt;
3680 /*
3681 * Partial window deflation. Relies on fact that tp->snd_una
3682 * not updated yet.
3683 */
3684 if (tp->snd_cwnd > th->th_ack - tp->snd_una)
3685 tp->snd_cwnd -= th->th_ack - tp->snd_una;
3686 else
3687 tp->snd_cwnd = 0;
3688 tp->snd_cwnd += tp->t_maxseg;
3689
3690 }
3691
3692 /*
3693 * Drop a random TCP connection that hasn't been serviced yet and
3694 * is eligible for discard. There is a one in qlen chance that
3695 * we will return a null, saying that there are no dropable
3696 * requests. In this case, the protocol specific code should drop
3697 * the new request. This insures fairness.
3698 *
3699 * The listening TCP socket "head" must be locked
3700 */
3701 static int
3702 tcp_dropdropablreq(struct socket *head)
3703 {
3704 struct socket *so, *sonext;
3705 unsigned int i, j, qlen;
3706 static int rnd;
3707 static struct timeval old_runtime;
3708 static unsigned int cur_cnt, old_cnt;
3709 struct timeval tv;
3710 struct inpcb *inp = NULL;
3711 struct tcpcb *tp;
3712
3713 if ((head->so_options & SO_ACCEPTCONN) == 0)
3714 return 0;
3715
3716 so = TAILQ_FIRST(&head->so_incomp);
3717 if (!so)
3718 return 0;
3719
3720 microtime(&tv);
3721 if ((i = (tv.tv_sec - old_runtime.tv_sec)) != 0) {
3722 old_runtime = tv;
3723 old_cnt = cur_cnt / i;
3724 cur_cnt = 0;
3725 }
3726
3727
3728 qlen = head->so_incqlen;
3729 if (++cur_cnt > qlen || old_cnt > qlen) {
3730 rnd = (314159 * rnd + 66329) & 0xffff;
3731 j = ((qlen + 1) * rnd) >> 16;
3732
3733 while (j-- && so)
3734 so = TAILQ_NEXT(so, so_list);
3735 }
3736 /* Find a connection that is not already closing (or being served) */
3737 while (so) {
3738 inp = (struct inpcb *)so->so_pcb;
3739
3740 sonext = TAILQ_NEXT(so, so_list);
3741
3742 if (in_pcb_checkstate(inp, WNT_ACQUIRE, 0) != WNT_STOPUSING) {
3743 /* Avoid the issue of a socket being accepted by one input thread
3744 * and being dropped by another input thread.
3745 * If we can't get a hold on this mutex, then grab the next socket in line.
3746 */
3747 if (lck_mtx_try_lock(inp->inpcb_mtx)) {
3748 so->so_usecount++;
3749 if ((so->so_usecount == 2) && so->so_state & SS_INCOMP)
3750 break;
3751 else {/* don't use if beeing accepted or used in any other way */
3752 in_pcb_checkstate(inp, WNT_RELEASE, 1);
3753 tcp_unlock(so, 1, 0);
3754 }
3755 }
3756 }
3757 so = sonext;
3758
3759 }
3760 if (!so)
3761 return 0;
3762
3763 TAILQ_REMOVE(&head->so_incomp, so, so_list);
3764 tcp_unlock(head, 0, 0);
3765
3766 /* Makes sure socket is still in the right state to be discarded */
3767
3768 if (in_pcb_checkstate(inp, WNT_RELEASE, 1) == WNT_STOPUSING) {
3769 tcp_unlock(so, 1, 0);
3770 tcp_lock(head, 0, 0);
3771 return 0;
3772 }
3773
3774 if (so->so_usecount != 2 || !(so->so_state & SS_INCOMP)) {
3775 /* do not discard: that socket is beeing accepted */
3776 tcp_unlock(so, 1, 0);
3777 tcp_lock(head, 0, 0);
3778 return 0;
3779 }
3780
3781 so->so_head = NULL;
3782
3783 /*
3784 * We do not want to lose track of the PCB right away in case we receive
3785 * more segments from the peer
3786 */
3787 tp = sototcpcb(so);
3788 so->so_flags |= SOF_OVERFLOW;
3789 tp->t_state = TCPS_TIME_WAIT;
3790 (void) tcp_close(tp);
3791 tp->t_unacksegs = 0;
3792 tcpstat.tcps_drops++;
3793 tcp_canceltimers(tp);
3794 add_to_time_wait(tp);
3795
3796 tcp_unlock(so, 1, 0);
3797 tcp_lock(head, 0, 0);
3798 head->so_incqlen--;
3799 head->so_qlen--;
3800 return 1;
3801 }
3802
3803 static int
3804 tcp_getstat SYSCTL_HANDLER_ARGS
3805 {
3806 #pragma unused(oidp, arg1, arg2)
3807
3808 int error;
3809
3810 if (req->oldptr == 0) {
3811 req->oldlen= (size_t)sizeof(struct tcpstat);
3812 }
3813
3814 error = SYSCTL_OUT(req, &tcpstat, MIN(sizeof (tcpstat), req->oldlen));
3815
3816 return (error);
3817
3818 }
3819
3820 SYSCTL_PROC(_net_inet_tcp, TCPCTL_STATS, stats, CTLFLAG_RD, 0, 0,
3821 tcp_getstat, "S,tcpstat", "TCP statistics (struct tcpstat, netinet/tcp_var.h)");
3822
3823 static int
3824 sysctl_rexmtthresh SYSCTL_HANDLER_ARGS
3825 {
3826 #pragma unused(arg1, arg2)
3827
3828 int error, val = tcprexmtthresh;
3829
3830 error = sysctl_handle_int(oidp, &val, 0, req);
3831 if (error || !req->newptr)
3832 return (error);
3833
3834 /*
3835 * Constrain the number of duplicate ACKs
3836 * to consider for TCP fast retransmit
3837 * to either 2 or 3
3838 */
3839
3840 if (val < 2 || val > 3)
3841 return (EINVAL);
3842
3843 tcprexmtthresh = val;
3844
3845 return (0);
3846 }
3847
3848 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, rexmt_thresh, CTLTYPE_INT|CTLFLAG_RW,
3849 &tcprexmtthresh, 0, &sysctl_rexmtthresh, "I", "Duplicate ACK Threshold for Fast Retransmit");