2 * Copyright (c) 2000-2014 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
32 * Mach Operating System
33 * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University
34 * All Rights Reserved.
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
46 * Carnegie Mellon requests users of this software to return to
48 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
49 * School of Computer Science
50 * Carnegie Mellon University
51 * Pittsburgh PA 15213-3890
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
60 * Author: Avadis Tevanian, Jr.
62 * Zone-based memory allocator. A zone is a collection of fixed size
63 * data blocks for which quick allocation/deallocation is possible.
65 #include <zone_debug.h>
66 #include <zone_alias_addr.h>
68 #include <mach/mach_types.h>
69 #include <mach/vm_param.h>
70 #include <mach/kern_return.h>
71 #include <mach/mach_host_server.h>
72 #include <mach/task_server.h>
73 #include <mach/machine/vm_types.h>
74 #include <mach_debug/zone_info.h>
75 #include <mach/vm_map.h>
77 #include <kern/kern_types.h>
78 #include <kern/assert.h>
79 #include <kern/host.h>
80 #include <kern/macro_help.h>
81 #include <kern/sched.h>
82 #include <kern/locks.h>
83 #include <kern/sched_prim.h>
84 #include <kern/misc_protos.h>
85 #include <kern/thread_call.h>
86 #include <kern/zalloc.h>
87 #include <kern/kalloc.h>
88 #include <kern/btlog.h>
91 #include <vm/vm_map.h>
92 #include <vm/vm_kern.h>
93 #include <vm/vm_page.h>
95 #include <pexpert/pexpert.h>
97 #include <machine/machparam.h>
98 #include <machine/machine_routines.h> /* ml_cpu_get_info */
100 #include <libkern/OSDebug.h>
101 #include <libkern/OSAtomic.h>
102 #include <sys/kdebug.h>
107 * With this option enabled, zones with alloc_size <= PAGE_SIZE allocate
108 * a virtual page from the zone_map, but before zcram-ing the allocated memory
109 * into the zone, the page is translated to use the alias address of the page
110 * in the static kernel region. zone_gc reverses that translation when
111 * scanning the freelist to collect free pages so that it can look up the page
112 * in the zone_page_table, and free it to kmem_free.
114 * The static kernel region is a flat 1:1 mapping of physical memory passed
115 * to xnu by the booter. It is mapped to the range:
116 * [gVirtBase, gVirtBase + gPhysSize]
118 * Accessing memory via the static kernel region is faster due to the
119 * entire region being mapped via large pages, cutting down
122 * zinit favors using PAGE_SIZE backing allocations for a zone unless it would
123 * waste more than 10% space to use a single page, in order to take advantage
124 * of the speed benefit for as many zones as possible.
126 * Zones with > PAGE_SIZE allocations can't take advantage of this
127 * because kernel_memory_allocate doesn't give out physically contiguous pages.
129 * zone_virtual_addr()
130 * - translates an address from the static kernel region to the zone_map
131 * - returns the same address if it's not from the static kernel region
132 * It relies on the fact that a physical page mapped to the
133 * zone_map is not mapped anywhere else (except the static kernel region).
136 * - translates a virtual memory address from the zone_map to the
137 * corresponding address in the static kernel region
142 #define from_zone_map(addr, size) \
143 ((vm_offset_t)(addr) >= zone_map_min_address && \
144 ((vm_offset_t)(addr) + size - 1) < zone_map_max_address )
146 #define from_zone_map(addr, size) \
147 ((vm_offset_t)(zone_virtual_addr((vm_map_address_t)(uintptr_t)addr)) >= zone_map_min_address && \
148 ((vm_offset_t)(zone_virtual_addr((vm_map_address_t)(uintptr_t)addr)) + size -1) < zone_map_max_address )
152 * Zone Corruption Debugging
154 * We use three techniques to detect modification of a zone element
155 * after it's been freed.
157 * (1) Check the freelist next pointer for sanity.
158 * (2) Store a backup of the next pointer at the end of the element,
159 * and compare it to the primary next pointer when the element is allocated
160 * to detect corruption of the freelist due to use-after-free bugs.
161 * The backup pointer is also XORed with a per-boot random cookie.
162 * (3) Poison the freed element by overwriting it with 0xdeadbeef,
163 * and check for that value when the element is being reused to make sure
164 * no part of the element has been modified while it was on the freelist.
165 * This will also help catch read-after-frees, as code will now dereference
166 * 0xdeadbeef instead of a valid but freed pointer.
168 * (1) and (2) occur for every allocation and free to a zone.
169 * This is done to make it slightly more difficult for an attacker to
170 * manipulate the freelist to behave in a specific way.
172 * Poisoning (3) occurs periodically for every N frees (counted per-zone)
173 * and on every free for zones smaller than a cacheline. If -zp
174 * is passed as a boot arg, poisoning occurs for every free.
176 * Performance slowdown is inversely proportional to the frequency of poisoning,
177 * with a 4-5% hit around N=1, down to ~0.3% at N=16 and just "noise" at N=32
178 * and higher. You can expect to find a 100% reproducible bug in an average of
179 * N tries, with a standard deviation of about N, but you will want to set
180 * "-zp" to always poison every free if you are attempting to reproduce
183 * For a more heavyweight, but finer-grained method of detecting misuse
184 * of zone memory, look up the "Guard mode" zone allocator in gzalloc.c.
186 * Zone Corruption Logging
188 * You can also track where corruptions come from by using the boot-arguments
189 * "zlog=<zone name to log> -zc". Search for "Zone corruption logging" later
190 * in this document for more implementation and usage information.
192 * Zone Leak Detection
194 * To debug leaks of zone memory, use the zone leak detection tool 'zleaks'
195 * found later in this file via the showtopztrace and showz* macros in kgmacros,
196 * or use zlog without the -zc argument.
200 /* Returns TRUE if we rolled over the counter at factor */
201 static inline boolean_t
202 sample_counter(volatile uint32_t * count_p
, uint32_t factor
)
204 uint32_t old_count
, new_count
;
205 boolean_t rolled_over
;
208 new_count
= old_count
= *count_p
;
210 if (++new_count
>= factor
) {
217 } while (!OSCompareAndSwap(old_count
, new_count
, count_p
));
222 #if defined(__LP64__)
223 #define ZP_POISON 0xdeadbeefdeadbeef
225 #define ZP_POISON 0xdeadbeef
228 #define ZP_DEFAULT_SAMPLING_FACTOR 16
229 #define ZP_DEFAULT_SCALE_FACTOR 4
232 * A zp_factor of 0 indicates zone poisoning is disabled,
233 * however, we still poison zones smaller than zp_tiny_zone_limit (a cacheline).
234 * Passing the -no-zp boot-arg disables even this behavior.
235 * In all cases, we record and check the integrity of a backup pointer.
238 /* set by zp-factor=N boot arg, zero indicates non-tiny poisoning disabled */
239 uint32_t zp_factor
= 0;
241 /* set by zp-scale=N boot arg, scales zp_factor by zone size */
242 uint32_t zp_scale
= 0;
244 /* set in zp_init, zero indicates -no-zp boot-arg */
245 vm_size_t zp_tiny_zone_limit
= 0;
247 /* initialized to a per-boot random value in zp_init */
248 uintptr_t zp_poisoned_cookie
= 0;
249 uintptr_t zp_nopoison_cookie
= 0;
253 * initialize zone poisoning
254 * called from zone_bootstrap before any allocations are made from zalloc
262 * Initialize backup pointer random cookie for poisoned elements
263 * Try not to call early_random() back to back, it may return
264 * the same value if mach_absolute_time doesn't have sufficient time
265 * to tick over between calls. <rdar://problem/11597395>
266 * (This is only a problem on embedded devices)
268 zp_poisoned_cookie
= (uintptr_t) early_random();
271 * Always poison zones smaller than a cacheline,
272 * because it's pretty close to free
274 ml_cpu_info_t cpu_info
;
275 ml_cpu_get_info(&cpu_info
);
276 zp_tiny_zone_limit
= (vm_size_t
) cpu_info
.cache_line_size
;
278 zp_factor
= ZP_DEFAULT_SAMPLING_FACTOR
;
279 zp_scale
= ZP_DEFAULT_SCALE_FACTOR
;
281 //TODO: Bigger permutation?
283 * Permute the default factor +/- 1 to make it less predictable
284 * This adds or subtracts ~4 poisoned objects per 1000 frees.
286 if (zp_factor
!= 0) {
287 uint32_t rand_bits
= early_random() & 0x3;
289 if (rand_bits
== 0x1)
291 else if (rand_bits
== 0x2)
293 /* if 0x0 or 0x3, leave it alone */
296 /* -zp: enable poisoning for every alloc and free */
297 if (PE_parse_boot_argn("-zp", temp_buf
, sizeof(temp_buf
))) {
301 /* -no-zp: disable poisoning completely even for tiny zones */
302 if (PE_parse_boot_argn("-no-zp", temp_buf
, sizeof(temp_buf
))) {
304 zp_tiny_zone_limit
= 0;
305 printf("Zone poisoning disabled\n");
308 /* zp-factor=XXXX: override how often to poison freed zone elements */
309 if (PE_parse_boot_argn("zp-factor", &zp_factor
, sizeof(zp_factor
))) {
310 printf("Zone poisoning factor override: %u\n", zp_factor
);
313 /* zp-scale=XXXX: override how much zone size scales zp-factor by */
314 if (PE_parse_boot_argn("zp-scale", &zp_scale
, sizeof(zp_scale
))) {
315 printf("Zone poisoning scale factor override: %u\n", zp_scale
);
318 /* Initialize backup pointer random cookie for unpoisoned elements */
319 zp_nopoison_cookie
= (uintptr_t) early_random();
322 if (zp_poisoned_cookie
== zp_nopoison_cookie
)
323 panic("early_random() is broken: %p and %p are not random\n",
324 (void *) zp_poisoned_cookie
, (void *) zp_nopoison_cookie
);
328 * Use the last bit in the backup pointer to hint poisoning state
329 * to backup_ptr_mismatch_panic. Valid zone pointers are aligned, so
330 * the low bits are zero.
332 zp_poisoned_cookie
|= (uintptr_t)0x1ULL
;
333 zp_nopoison_cookie
&= ~((uintptr_t)0x1ULL
);
335 #if defined(__LP64__)
337 * Make backup pointers more obvious in GDB for 64 bit
338 * by making OxFFFFFF... ^ cookie = 0xFACADE...
339 * (0xFACADE = 0xFFFFFF ^ 0x053521)
340 * (0xC0FFEE = 0xFFFFFF ^ 0x3f0011)
341 * The high 3 bytes of a zone pointer are always 0xFFFFFF, and are checked
342 * by the sanity check, so it's OK for that part of the cookie to be predictable.
344 * TODO: Use #defines, xors, and shifts
347 zp_poisoned_cookie
&= 0x000000FFFFFFFFFF;
348 zp_poisoned_cookie
|= 0x0535210000000000; /* 0xFACADE */
350 zp_nopoison_cookie
&= 0x000000FFFFFFFFFF;
351 zp_nopoison_cookie
|= 0x3f00110000000000; /* 0xC0FFEE */
355 /* zone_map page count for page table structure */
356 uint64_t zone_map_table_page_count
= 0;
359 * These macros are used to keep track of the number
360 * of pages being used by the zone currently. The
361 * z->page_count is protected by the zone lock.
363 #define ZONE_PAGE_COUNT_INCR(z, count) \
365 OSAddAtomic64(count, &(z->page_count)); \
368 #define ZONE_PAGE_COUNT_DECR(z, count) \
370 OSAddAtomic64(-count, &(z->page_count)); \
373 /* for is_sane_zone_element and garbage collection */
375 vm_offset_t zone_map_min_address
= 0; /* initialized in zone_init */
376 vm_offset_t zone_map_max_address
= 0;
378 /* Globals for random boolean generator for elements in free list */
379 #define MAX_ENTROPY_PER_ZCRAM 4
380 #define RANDOM_BOOL_GEN_SEED_COUNT 4
381 static unsigned int bool_gen_seed
[RANDOM_BOOL_GEN_SEED_COUNT
];
382 static unsigned int bool_gen_global
= 0;
383 decl_simple_lock_data(, bool_gen_lock
)
385 /* Helpful for walking through a zone's free element list. */
386 struct zone_free_element
{
387 struct zone_free_element
*next
;
389 /* void *backup_ptr; */
392 struct zone_page_metadata
{
394 struct zone_free_element
*elements
;
396 uint16_t alloc_count
;
400 /* The backup pointer is stored in the last pointer-sized location in an element. */
401 static inline vm_offset_t
*
402 get_backup_ptr(vm_size_t elem_size
,
403 vm_offset_t
*element
)
405 return (vm_offset_t
*) ((vm_offset_t
)element
+ elem_size
- sizeof(vm_offset_t
));
408 static inline struct zone_page_metadata
*
409 get_zone_page_metadata(struct zone_free_element
*element
)
411 return (struct zone_page_metadata
*)(trunc_page((vm_offset_t
)element
));
415 * Zone checking helper function.
416 * A pointer that satisfies these conditions is OK to be a freelist next pointer
417 * A pointer that doesn't satisfy these conditions indicates corruption
419 static inline boolean_t
420 is_sane_zone_ptr(zone_t zone
,
424 /* Must be aligned to pointer boundary */
425 if (__improbable((addr
& (sizeof(vm_offset_t
) - 1)) != 0))
428 /* Must be a kernel address */
429 if (__improbable(!pmap_kernel_va(addr
)))
432 /* Must be from zone map if the zone only uses memory from the zone_map */
434 * TODO: Remove the zone->collectable check when every
435 * zone using foreign memory is properly tagged with allows_foreign
437 if (zone
->collectable
&& !zone
->allows_foreign
) {
440 * If this address is in the static kernel region, it might be
441 * the alias address of a valid zone element.
442 * If we tried to find the zone_virtual_addr() of an invalid
443 * address in the static kernel region, it will panic, so don't
444 * check addresses in this region.
446 * TODO: Use a safe variant of zone_virtual_addr to
447 * make this check more accurate
449 * The static kernel region is mapped at:
450 * [gVirtBase, gVirtBase + gPhysSize]
452 if ((addr
- gVirtBase
) < gPhysSize
)
455 /* check if addr is from zone map */
456 if (addr
>= zone_map_min_address
&&
457 (addr
+ obj_size
- 1) < zone_map_max_address
)
466 static inline boolean_t
467 is_sane_zone_page_metadata(zone_t zone
,
468 vm_offset_t page_meta
)
470 /* NULL page metadata structures are invalid */
473 return is_sane_zone_ptr(zone
, page_meta
, sizeof(struct zone_page_metadata
));
476 static inline boolean_t
477 is_sane_zone_element(zone_t zone
,
480 /* NULL is OK because it indicates the tail of the list */
483 return is_sane_zone_ptr(zone
, addr
, zone
->elem_size
);
486 /* Someone wrote to freed memory. */
487 static inline void /* noreturn */
488 zone_element_was_modified_panic(zone_t zone
,
491 vm_offset_t expected
,
494 panic("a freed zone element has been modified in zone %s: expected %p but found %p, bits changed %p, at offset %d of %d in element %p, cookies %p %p",
498 (void *) (expected
^ found
),
500 (uint32_t) zone
->elem_size
,
502 (void *) zp_nopoison_cookie
,
503 (void *) zp_poisoned_cookie
);
507 * The primary and backup pointers don't match.
508 * Determine which one was likely the corrupted pointer, find out what it
509 * probably should have been, and panic.
510 * I would like to mark this as noreturn, but panic() isn't marked noreturn.
512 static void /* noreturn */
513 backup_ptr_mismatch_panic(zone_t zone
,
518 vm_offset_t likely_backup
;
520 boolean_t sane_backup
;
521 boolean_t sane_primary
= is_sane_zone_element(zone
, primary
);
522 boolean_t element_was_poisoned
= (backup
& 0x1) ? TRUE
: FALSE
;
524 #if defined(__LP64__)
525 /* We can inspect the tag in the upper bits for additional confirmation */
526 if ((backup
& 0xFFFFFF0000000000) == 0xFACADE0000000000)
527 element_was_poisoned
= TRUE
;
528 else if ((backup
& 0xFFFFFF0000000000) == 0xC0FFEE0000000000)
529 element_was_poisoned
= FALSE
;
532 if (element_was_poisoned
) {
533 likely_backup
= backup
^ zp_poisoned_cookie
;
534 sane_backup
= is_sane_zone_element(zone
, likely_backup
);
536 likely_backup
= backup
^ zp_nopoison_cookie
;
537 sane_backup
= is_sane_zone_element(zone
, likely_backup
);
540 /* The primary is definitely the corrupted one */
541 if (!sane_primary
&& sane_backup
)
542 zone_element_was_modified_panic(zone
, element
, primary
, likely_backup
, 0);
544 /* The backup is definitely the corrupted one */
545 if (sane_primary
&& !sane_backup
)
546 zone_element_was_modified_panic(zone
, element
, backup
,
547 (primary
^ (element_was_poisoned
? zp_poisoned_cookie
: zp_nopoison_cookie
)),
548 zone
->elem_size
- sizeof(vm_offset_t
));
551 * Not sure which is the corrupted one.
552 * It's less likely that the backup pointer was overwritten with
553 * ( (sane address) ^ (valid cookie) ), so we'll guess that the
554 * primary pointer has been overwritten with a sane but incorrect address.
556 if (sane_primary
&& sane_backup
)
557 zone_element_was_modified_panic(zone
, element
, primary
, likely_backup
, 0);
559 /* Neither are sane, so just guess. */
560 zone_element_was_modified_panic(zone
, element
, primary
, likely_backup
, 0);
564 * Sets the next element of tail to elem.
566 * Preserves the poisoning state of the element.
569 append_zone_element(zone_t zone
,
570 struct zone_free_element
*tail
,
571 struct zone_free_element
*elem
)
573 vm_offset_t
*backup
= get_backup_ptr(zone
->elem_size
, (vm_offset_t
*) tail
);
575 vm_offset_t old_backup
= *backup
;
577 vm_offset_t old_next
= (vm_offset_t
) tail
->next
;
578 vm_offset_t new_next
= (vm_offset_t
) elem
;
580 if (old_next
== (old_backup
^ zp_nopoison_cookie
))
581 *backup
= new_next
^ zp_nopoison_cookie
;
582 else if (old_next
== (old_backup
^ zp_poisoned_cookie
))
583 *backup
= new_next
^ zp_poisoned_cookie
;
585 backup_ptr_mismatch_panic(zone
,
595 * Insert a linked list of elements (delineated by head and tail) at the head of
596 * the zone free list. Every element in the list being added has already gone
597 * through append_zone_element, so their backup pointers are already
599 * Precondition: There should be no elements after tail
602 add_list_to_zone(zone_t zone
,
603 struct zone_free_element
*head
,
604 struct zone_free_element
*tail
)
606 assert(tail
->next
== NULL
);
607 assert(!zone
->use_page_list
);
609 append_zone_element(zone
, tail
, zone
->free_elements
);
611 zone
->free_elements
= head
;
616 * Adds the element to the head of the zone's free list
617 * Keeps a backup next-pointer at the end of the element
620 free_to_zone(zone_t zone
,
624 vm_offset_t old_head
;
625 struct zone_page_metadata
*page_meta
;
627 vm_offset_t
*primary
= (vm_offset_t
*) element
;
628 vm_offset_t
*backup
= get_backup_ptr(zone
->elem_size
, primary
);
630 if (zone
->use_page_list
) {
631 page_meta
= get_zone_page_metadata((struct zone_free_element
*)element
);
632 assert(page_meta
->zone
== zone
);
633 old_head
= (vm_offset_t
)page_meta
->elements
;
635 old_head
= (vm_offset_t
)zone
->free_elements
;
639 if (__improbable(!is_sane_zone_element(zone
, old_head
)))
640 panic("zfree: invalid head pointer %p for freelist of zone %s\n",
641 (void *) old_head
, zone
->zone_name
);
644 if (__improbable(!is_sane_zone_element(zone
, element
)))
645 panic("zfree: freeing invalid pointer %p to zone %s\n",
646 (void *) element
, zone
->zone_name
);
649 * Always write a redundant next pointer
650 * So that it is more difficult to forge, xor it with a random cookie
651 * A poisoned element is indicated by using zp_poisoned_cookie
652 * instead of zp_nopoison_cookie
655 *backup
= old_head
^ (poison
? zp_poisoned_cookie
: zp_nopoison_cookie
);
657 /* Insert this element at the head of the free list */
659 if (zone
->use_page_list
) {
660 page_meta
->elements
= (struct zone_free_element
*)element
;
661 page_meta
->free_count
++;
662 if (zone
->allows_foreign
&& !from_zone_map(element
, zone
->elem_size
)) {
663 if (page_meta
->free_count
== 1) {
664 /* first foreign element freed on page, move from all_used */
665 remqueue((queue_entry_t
)page_meta
);
666 enqueue_tail(&zone
->pages
.any_free_foreign
, (queue_entry_t
)page_meta
);
668 /* no other list transitions */
670 } else if (page_meta
->free_count
== page_meta
->alloc_count
) {
671 /* whether the page was on the intermediate or all_used, queue, move it to free */
672 remqueue((queue_entry_t
)page_meta
);
673 enqueue_tail(&zone
->pages
.all_free
, (queue_entry_t
)page_meta
);
674 } else if (page_meta
->free_count
== 1) {
675 /* first free element on page, move from all_used */
676 remqueue((queue_entry_t
)page_meta
);
677 enqueue_tail(&zone
->pages
.intermediate
, (queue_entry_t
)page_meta
);
680 zone
->free_elements
= (struct zone_free_element
*)element
;
688 * Removes an element from the zone's free list, returning 0 if the free list is empty.
689 * Verifies that the next-pointer and backup next-pointer are intact,
690 * and verifies that a poisoned element hasn't been modified.
692 static inline vm_offset_t
693 try_alloc_from_zone(zone_t zone
,
694 boolean_t
* check_poison
)
697 struct zone_page_metadata
*page_meta
;
699 *check_poison
= FALSE
;
701 /* if zone is empty, bail */
702 if (zone
->use_page_list
) {
703 if (zone
->allows_foreign
&& !queue_empty(&zone
->pages
.any_free_foreign
))
704 page_meta
= (struct zone_page_metadata
*)queue_first(&zone
->pages
.any_free_foreign
);
705 else if (!queue_empty(&zone
->pages
.intermediate
))
706 page_meta
= (struct zone_page_metadata
*)queue_first(&zone
->pages
.intermediate
);
707 else if (!queue_empty(&zone
->pages
.all_free
))
708 page_meta
= (struct zone_page_metadata
*)queue_first(&zone
->pages
.all_free
);
713 /* Check if page_meta passes is_sane_zone_element */
714 if (__improbable(!is_sane_zone_page_metadata(zone
, (vm_offset_t
)page_meta
)))
715 panic("zalloc: invalid metadata structure %p for freelist of zone %s\n",
716 (void *) page_meta
, zone
->zone_name
);
717 assert(page_meta
->zone
== zone
);
718 element
= (vm_offset_t
)page_meta
->elements
;
720 if (zone
->free_elements
== NULL
)
723 element
= (vm_offset_t
)zone
->free_elements
;
727 if (__improbable(!is_sane_zone_element(zone
, element
)))
728 panic("zfree: invalid head pointer %p for freelist of zone %s\n",
729 (void *) element
, zone
->zone_name
);
732 vm_offset_t
*primary
= (vm_offset_t
*) element
;
733 vm_offset_t
*backup
= get_backup_ptr(zone
->elem_size
, primary
);
735 vm_offset_t next_element
= *primary
;
736 vm_offset_t next_element_backup
= *backup
;
739 * backup_ptr_mismatch_panic will determine what next_element
740 * should have been, and print it appropriately
742 if (__improbable(!is_sane_zone_element(zone
, next_element
)))
743 backup_ptr_mismatch_panic(zone
, element
, next_element
, next_element_backup
);
745 /* Check the backup pointer for the regular cookie */
746 if (__improbable(next_element
!= (next_element_backup
^ zp_nopoison_cookie
))) {
748 /* Check for the poisoned cookie instead */
749 if (__improbable(next_element
!= (next_element_backup
^ zp_poisoned_cookie
)))
750 /* Neither cookie is valid, corruption has occurred */
751 backup_ptr_mismatch_panic(zone
, element
, next_element
, next_element_backup
);
754 * Element was marked as poisoned, so check its integrity before using it.
756 *check_poison
= TRUE
;
759 if (zone
->use_page_list
) {
761 /* Make sure the page_meta is at the correct offset from the start of page */
762 if (__improbable(page_meta
!= get_zone_page_metadata((struct zone_free_element
*)element
)))
763 panic("zalloc: metadata located at incorrect location on page of zone %s\n",
766 /* Make sure next_element belongs to the same page as page_meta */
768 if (__improbable(page_meta
!= get_zone_page_metadata((struct zone_free_element
*)next_element
)))
769 panic("zalloc: next element pointer %p for element %p points to invalid element for zone %s\n",
770 (void *)next_element
, (void *)element
, zone
->zone_name
);
774 /* Remove this element from the free list */
775 if (zone
->use_page_list
) {
777 page_meta
->elements
= (struct zone_free_element
*)next_element
;
778 page_meta
->free_count
--;
780 if (zone
->allows_foreign
&& !from_zone_map(element
, zone
->elem_size
)) {
781 if (page_meta
->free_count
== 0) {
782 /* move to all used */
783 remqueue((queue_entry_t
)page_meta
);
784 enqueue_tail(&zone
->pages
.all_used
, (queue_entry_t
)page_meta
);
786 /* no other list transitions */
788 } else if (page_meta
->free_count
== 0) {
789 /* remove from intermediate or free, move to all_used */
790 remqueue((queue_entry_t
)page_meta
);
791 enqueue_tail(&zone
->pages
.all_used
, (queue_entry_t
)page_meta
);
792 } else if (page_meta
->alloc_count
== page_meta
->free_count
+ 1) {
793 /* remove from free, move to intermediate */
794 remqueue((queue_entry_t
)page_meta
);
795 enqueue_tail(&zone
->pages
.intermediate
, (queue_entry_t
)page_meta
);
798 zone
->free_elements
= (struct zone_free_element
*)next_element
;
809 * End of zone poisoning
813 * Fake zones for things that want to report via zprint but are not actually zones.
815 struct fake_zone_info
{
819 vm_size_t
*, vm_size_t
*, vm_size_t
*, vm_size_t
*,
820 uint64_t *, int *, int *, int *);
823 static const struct fake_zone_info fake_zones
[] = {
825 static const unsigned int num_fake_zones
=
826 sizeof (fake_zones
) / sizeof (fake_zones
[0]);
831 boolean_t zinfo_per_task
= FALSE
; /* enabled by -zinfop in boot-args */
832 #define ZINFO_SLOTS 200 /* for now */
833 #define ZONES_MAX (ZINFO_SLOTS - num_fake_zones - 1)
836 * Support for garbage collection of unused zone pages
838 * The kernel virtually allocates the "zone map" submap of the kernel
839 * map. When an individual zone needs more storage, memory is allocated
840 * out of the zone map, and the two-level "zone_page_table" is
841 * on-demand expanded so that it has entries for those pages.
842 * zone_page_init()/zone_page_alloc() initialize "alloc_count"
843 * to the number of zone elements that occupy the zone page (which may
844 * be a minimum of 1, including if a zone element spans multiple
847 * Asynchronously, the zone_gc() logic attempts to walk zone free
848 * lists to see if all the elements on a zone page are free. If
849 * "collect_count" (which it increments during the scan) matches
850 * "alloc_count", the zone page is a candidate for collection and the
851 * physical page is returned to the VM system. During this process, the
852 * first word of the zone page is re-used to maintain a linked list of
853 * to-be-collected zone pages.
855 typedef uint32_t zone_page_index_t
;
856 #define ZONE_PAGE_INDEX_INVALID ((zone_page_index_t)0xFFFFFFFFU)
858 struct zone_page_table_entry
{
859 volatile uint16_t alloc_count
;
860 volatile uint16_t collect_count
;
863 #define ZONE_PAGE_USED 0
864 #define ZONE_PAGE_UNUSED 0xffff
871 void zone_page_alloc(
875 void zone_page_free_element(
876 zone_page_index_t
*free_page_head
,
877 zone_page_index_t
*free_page_tail
,
881 void zone_page_collect(
885 boolean_t
zone_page_collectable(
893 void zone_display_zprint(void);
895 zone_t
zone_find_largest(void);
898 * Async allocation of zones
899 * This mechanism allows for bootstrapping an empty zone which is setup with
900 * non-blocking flags. The first call to zalloc_noblock() will kick off a thread_call
901 * to zalloc_async. We perform a zalloc() (which may block) and then an immediate free.
902 * This will prime the zone for the next use.
904 * Currently the thread_callout function (zalloc_async) will loop through all zones
905 * looking for any zone with async_pending set and do the work for it.
907 * NOTE: If the calling thread for zalloc_noblock is lower priority than thread_call,
908 * then zalloc_noblock to an empty zone may succeed.
911 thread_call_param_t p0
,
912 thread_call_param_t p1
);
914 static thread_call_data_t call_async_alloc
;
916 vm_map_t zone_map
= VM_MAP_NULL
;
918 zone_t zone_zone
= ZONE_NULL
; /* the zone containing other zones */
920 zone_t zinfo_zone
= ZONE_NULL
; /* zone of per-task zone info */
923 * The VM system gives us an initial chunk of memory.
924 * It has to be big enough to allocate the zone_zone
925 * all the way through the pmap zone.
929 vm_size_t zdata_size
;
931 * Align elements that use the zone page list to 32 byte boundaries.
933 #define ZONE_ELEMENT_ALIGNMENT 32
935 #define zone_wakeup(zone) thread_wakeup((event_t)(zone))
936 #define zone_sleep(zone) \
937 (void) lck_mtx_sleep(&(zone)->lock, LCK_SLEEP_SPIN, (event_t)(zone), THREAD_UNINT);
940 * The zone_locks_grp allows for collecting lock statistics.
941 * All locks are associated to this group in zinit.
942 * Look at tools/lockstat for debugging lock contention.
945 lck_grp_t zone_locks_grp
;
946 lck_grp_attr_t zone_locks_grp_attr
;
948 #define lock_zone_init(zone) \
950 lck_attr_setdefault(&(zone)->lock_attr); \
951 lck_mtx_init_ext(&(zone)->lock, &(zone)->lock_ext, \
952 &zone_locks_grp, &(zone)->lock_attr); \
955 #define lock_try_zone(zone) lck_mtx_try_lock_spin(&zone->lock)
958 * Garbage collection map information
960 #define ZONE_PAGE_TABLE_FIRST_LEVEL_SIZE (32)
961 struct zone_page_table_entry
* volatile zone_page_table
[ZONE_PAGE_TABLE_FIRST_LEVEL_SIZE
];
962 vm_size_t zone_page_table_used_size
;
963 unsigned int zone_pages
;
964 unsigned int zone_page_table_second_level_size
; /* power of 2 */
965 unsigned int zone_page_table_second_level_shift_amount
;
967 #define zone_page_table_first_level_slot(x) ((x) >> zone_page_table_second_level_shift_amount)
968 #define zone_page_table_second_level_slot(x) ((x) & (zone_page_table_second_level_size - 1))
970 void zone_page_table_expand(zone_page_index_t pindex
);
971 struct zone_page_table_entry
*zone_page_table_lookup(zone_page_index_t pindex
);
974 * Exclude more than one concurrent garbage collection
976 decl_lck_mtx_data(, zone_gc_lock
)
978 lck_attr_t zone_gc_lck_attr
;
979 lck_grp_t zone_gc_lck_grp
;
980 lck_grp_attr_t zone_gc_lck_grp_attr
;
981 lck_mtx_ext_t zone_gc_lck_ext
;
984 * Protects first_zone, last_zone, num_zones,
985 * and the next_zone field of zones.
987 decl_simple_lock_data(, all_zones_lock
)
990 unsigned int num_zones
;
992 boolean_t zone_gc_allowed
= TRUE
;
993 boolean_t zone_gc_forced
= FALSE
;
994 boolean_t panic_include_zprint
= FALSE
;
995 boolean_t zone_gc_allowed_by_time_throttle
= TRUE
;
997 vm_offset_t panic_kext_memory_info
= 0;
998 vm_size_t panic_kext_memory_size
= 0;
1000 #define ZALLOC_DEBUG_ZONEGC 0x00000001
1001 #define ZALLOC_DEBUG_ZCRAM 0x00000002
1002 uint32_t zalloc_debug
= 0;
1005 * Zone leak debugging code
1007 * When enabled, this code keeps a log to track allocations to a particular zone that have not
1008 * yet been freed. Examining this log will reveal the source of a zone leak. The log is allocated
1009 * only when logging is enabled, so there is no effect on the system when it's turned off. Logging is
1012 * Enable the logging via the boot-args. Add the parameter "zlog=<zone>" to boot-args where <zone>
1013 * is the name of the zone you wish to log.
1015 * This code only tracks one zone, so you need to identify which one is leaking first.
1016 * Generally, you'll know you have a leak when you get a "zalloc retry failed 3" panic from the zone
1017 * garbage collector. Note that the zone name printed in the panic message is not necessarily the one
1018 * containing the leak. So do a zprint from gdb and locate the zone with the bloated size. This
1019 * is most likely the problem zone, so set zlog in boot-args to this zone name, reboot and re-run the test. The
1020 * next time it panics with this message, examine the log using the kgmacros zstack, findoldest and countpcs.
1021 * See the help in the kgmacros for usage info.
1024 * Zone corruption logging
1026 * Logging can also be used to help identify the source of a zone corruption. First, identify the zone
1027 * that is being corrupted, then add "-zc zlog=<zone name>" to the boot-args. When -zc is used in conjunction
1028 * with zlog, it changes the logging style to track both allocations and frees to the zone. So when the
1029 * corruption is detected, examining the log will show you the stack traces of the callers who last allocated
1030 * and freed any particular element in the zone. Use the findelem kgmacro with the address of the element that's been
1031 * corrupted to examine its history. This should lead to the source of the corruption.
1034 static int log_records
; /* size of the log, expressed in number of records */
1036 #define MAX_ZONE_NAME 32 /* max length of a zone name we can take from the boot-args */
1038 static char zone_name_to_log
[MAX_ZONE_NAME
] = ""; /* the zone name we're logging, if any */
1040 /* Log allocations and frees to help debug a zone element corruption */
1041 boolean_t corruption_debug_flag
= FALSE
; /* enabled by "-zc" boot-arg */
1044 * The number of records in the log is configurable via the zrecs parameter in boot-args. Set this to
1045 * the number of records you want in the log. For example, "zrecs=1000" sets it to 1000 records. Note
1046 * that the larger the size of the log, the slower the system will run due to linear searching in the log,
1047 * but one doesn't generally care about performance when tracking down a leak. The log is capped at 8000
1048 * records since going much larger than this tends to make the system unresponsive and unbootable on small
1049 * memory configurations. The default value is 4000 records.
1052 #if defined(__LP64__)
1053 #define ZRECORDS_MAX 128000 /* Max records allowed in the log */
1055 #define ZRECORDS_MAX 8000 /* Max records allowed in the log */
1057 #define ZRECORDS_DEFAULT 4000 /* default records in log if zrecs is not specificed in boot-args */
1060 * Each record in the log contains a pointer to the zone element it refers to,
1061 * and a small array to hold the pc's from the stack trace. A
1062 * record is added to the log each time a zalloc() is done in the zone_of_interest. For leak debugging,
1063 * the record is cleared when a zfree() is done. For corruption debugging, the log tracks both allocs and frees.
1064 * If the log fills, old records are replaced as if it were a circular buffer.
1069 * Opcodes for the btlog operation field:
1076 * The allocation log and all the related variables are protected by the zone lock for the zone_of_interest
1078 static btlog_t
*zlog_btlog
; /* the log itself, dynamically allocated when logging is enabled */
1079 static zone_t zone_of_interest
= NULL
; /* the zone being watched; corresponds to zone_name_to_log */
1082 * Decide if we want to log this zone by doing a string compare between a zone name and the name
1083 * of the zone to log. Return true if the strings are equal, false otherwise. Because it's not
1084 * possible to include spaces in strings passed in via the boot-args, a period in the logname will
1085 * match a space in the zone name.
1089 log_this_zone(const char *zonename
, const char *logname
)
1092 const char *zc
= zonename
;
1093 const char *lc
= logname
;
1096 * Compare the strings. We bound the compare by MAX_ZONE_NAME.
1099 for (len
= 1; len
<= MAX_ZONE_NAME
; zc
++, lc
++, len
++) {
1102 * If the current characters don't match, check for a space in
1103 * in the zone name and a corresponding period in the log name.
1104 * If that's not there, then the strings don't match.
1107 if (*zc
!= *lc
&& !(*zc
== ' ' && *lc
== '.'))
1111 * The strings are equal so far. If we're at the end, then it's a match.
1123 * Test if we want to log this zalloc/zfree event. We log if this is the zone we're interested in and
1124 * the buffer for the records has been allocated.
1127 #define DO_LOGGING(z) (zlog_btlog && (z) == zone_of_interest)
1129 extern boolean_t kmem_alloc_ready
;
1133 #pragma mark Zone Leak Detection
1136 * The zone leak detector, abbreviated 'zleak', keeps track of a subset of the currently outstanding
1137 * allocations made by the zone allocator. Every zleak_sample_factor allocations in each zone, we capture a
1138 * backtrace. Every free, we examine the table and determine if the allocation was being tracked,
1139 * and stop tracking it if it was being tracked.
1141 * We track the allocations in the zallocations hash table, which stores the address that was returned from
1142 * the zone allocator. Each stored entry in the zallocations table points to an entry in the ztraces table, which
1143 * stores the backtrace associated with that allocation. This provides uniquing for the relatively large
1144 * backtraces - we don't store them more than once.
1146 * Data collection begins when the zone map is 50% full, and only occurs for zones that are taking up
1147 * a large amount of virtual space.
1149 #define ZLEAK_STATE_ENABLED 0x01 /* Zone leak monitoring should be turned on if zone_map fills up. */
1150 #define ZLEAK_STATE_ACTIVE 0x02 /* We are actively collecting traces. */
1151 #define ZLEAK_STATE_ACTIVATING 0x04 /* Some thread is doing setup; others should move along. */
1152 #define ZLEAK_STATE_FAILED 0x08 /* Attempt to allocate tables failed. We will not try again. */
1153 uint32_t zleak_state
= 0; /* State of collection, as above */
1155 boolean_t panic_include_ztrace
= FALSE
; /* Enable zleak logging on panic */
1156 vm_size_t zleak_global_tracking_threshold
; /* Size of zone map at which to start collecting data */
1157 vm_size_t zleak_per_zone_tracking_threshold
; /* Size a zone will have before we will collect data on it */
1158 unsigned int zleak_sample_factor
= 1000; /* Allocations per sample attempt */
1161 * Counters for allocation statistics.
1164 /* Times two active records want to occupy the same spot */
1165 unsigned int z_alloc_collisions
= 0;
1166 unsigned int z_trace_collisions
= 0;
1168 /* Times a new record lands on a spot previously occupied by a freed allocation */
1169 unsigned int z_alloc_overwrites
= 0;
1170 unsigned int z_trace_overwrites
= 0;
1172 /* Times a new alloc or trace is put into the hash table */
1173 unsigned int z_alloc_recorded
= 0;
1174 unsigned int z_trace_recorded
= 0;
1176 /* Times zleak_log returned false due to not being able to acquire the lock */
1177 unsigned int z_total_conflicts
= 0;
1180 #pragma mark struct zallocation
1182 * Structure for keeping track of an allocation
1183 * An allocation bucket is in use if its element is not NULL
1185 struct zallocation
{
1186 uintptr_t za_element
; /* the element that was zalloc'ed or zfree'ed, NULL if bucket unused */
1187 vm_size_t za_size
; /* how much memory did this allocation take up? */
1188 uint32_t za_trace_index
; /* index into ztraces for backtrace associated with allocation */
1189 /* TODO: #if this out */
1190 uint32_t za_hit_count
; /* for determining effectiveness of hash function */
1193 /* Size must be a power of two for the zhash to be able to just mask off bits instead of mod */
1194 uint32_t zleak_alloc_buckets
= CONFIG_ZLEAK_ALLOCATION_MAP_NUM
;
1195 uint32_t zleak_trace_buckets
= CONFIG_ZLEAK_TRACE_MAP_NUM
;
1197 vm_size_t zleak_max_zonemap_size
;
1199 /* Hashmaps of allocations and their corresponding traces */
1200 static struct zallocation
* zallocations
;
1201 static struct ztrace
* ztraces
;
1203 /* not static so that panic can see this, see kern/debug.c */
1204 struct ztrace
* top_ztrace
;
1206 /* Lock to protect zallocations, ztraces, and top_ztrace from concurrent modification. */
1207 static lck_spin_t zleak_lock
;
1208 static lck_attr_t zleak_lock_attr
;
1209 static lck_grp_t zleak_lock_grp
;
1210 static lck_grp_attr_t zleak_lock_grp_attr
;
1213 * Initializes the zone leak monitor. Called from zone_init()
1216 zleak_init(vm_size_t max_zonemap_size
)
1218 char scratch_buf
[16];
1219 boolean_t zleak_enable_flag
= FALSE
;
1221 zleak_max_zonemap_size
= max_zonemap_size
;
1222 zleak_global_tracking_threshold
= max_zonemap_size
/ 2;
1223 zleak_per_zone_tracking_threshold
= zleak_global_tracking_threshold
/ 8;
1225 /* -zleakoff (flag to disable zone leak monitor) */
1226 if (PE_parse_boot_argn("-zleakoff", scratch_buf
, sizeof(scratch_buf
))) {
1227 zleak_enable_flag
= FALSE
;
1228 printf("zone leak detection disabled\n");
1230 zleak_enable_flag
= TRUE
;
1231 printf("zone leak detection enabled\n");
1234 /* zfactor=XXXX (override how often to sample the zone allocator) */
1235 if (PE_parse_boot_argn("zfactor", &zleak_sample_factor
, sizeof(zleak_sample_factor
))) {
1236 printf("Zone leak factor override: %u\n", zleak_sample_factor
);
1239 /* zleak-allocs=XXXX (override number of buckets in zallocations) */
1240 if (PE_parse_boot_argn("zleak-allocs", &zleak_alloc_buckets
, sizeof(zleak_alloc_buckets
))) {
1241 printf("Zone leak alloc buckets override: %u\n", zleak_alloc_buckets
);
1242 /* uses 'is power of 2' trick: (0x01000 & 0x00FFF == 0) */
1243 if (zleak_alloc_buckets
== 0 || (zleak_alloc_buckets
& (zleak_alloc_buckets
-1))) {
1244 printf("Override isn't a power of two, bad things might happen!\n");
1248 /* zleak-traces=XXXX (override number of buckets in ztraces) */
1249 if (PE_parse_boot_argn("zleak-traces", &zleak_trace_buckets
, sizeof(zleak_trace_buckets
))) {
1250 printf("Zone leak trace buckets override: %u\n", zleak_trace_buckets
);
1251 /* uses 'is power of 2' trick: (0x01000 & 0x00FFF == 0) */
1252 if (zleak_trace_buckets
== 0 || (zleak_trace_buckets
& (zleak_trace_buckets
-1))) {
1253 printf("Override isn't a power of two, bad things might happen!\n");
1257 /* allocate the zleak_lock */
1258 lck_grp_attr_setdefault(&zleak_lock_grp_attr
);
1259 lck_grp_init(&zleak_lock_grp
, "zleak_lock", &zleak_lock_grp_attr
);
1260 lck_attr_setdefault(&zleak_lock_attr
);
1261 lck_spin_init(&zleak_lock
, &zleak_lock_grp
, &zleak_lock_attr
);
1263 if (zleak_enable_flag
) {
1264 zleak_state
= ZLEAK_STATE_ENABLED
;
1271 * Support for kern.zleak.active sysctl - a simplified
1272 * version of the zleak_state variable.
1275 get_zleak_state(void)
1277 if (zleak_state
& ZLEAK_STATE_FAILED
)
1279 if (zleak_state
& ZLEAK_STATE_ACTIVE
)
1288 zleak_activate(void)
1290 kern_return_t retval
;
1291 vm_size_t z_alloc_size
= zleak_alloc_buckets
* sizeof(struct zallocation
);
1292 vm_size_t z_trace_size
= zleak_trace_buckets
* sizeof(struct ztrace
);
1293 void *allocations_ptr
= NULL
;
1294 void *traces_ptr
= NULL
;
1296 /* Only one thread attempts to activate at a time */
1297 if (zleak_state
& (ZLEAK_STATE_ACTIVE
| ZLEAK_STATE_ACTIVATING
| ZLEAK_STATE_FAILED
)) {
1298 return KERN_SUCCESS
;
1301 /* Indicate that we're doing the setup */
1302 lck_spin_lock(&zleak_lock
);
1303 if (zleak_state
& (ZLEAK_STATE_ACTIVE
| ZLEAK_STATE_ACTIVATING
| ZLEAK_STATE_FAILED
)) {
1304 lck_spin_unlock(&zleak_lock
);
1305 return KERN_SUCCESS
;
1308 zleak_state
|= ZLEAK_STATE_ACTIVATING
;
1309 lck_spin_unlock(&zleak_lock
);
1311 /* Allocate and zero tables */
1312 retval
= kmem_alloc_kobject(kernel_map
, (vm_offset_t
*)&allocations_ptr
, z_alloc_size
, VM_KERN_MEMORY_OSFMK
);
1313 if (retval
!= KERN_SUCCESS
) {
1317 retval
= kmem_alloc_kobject(kernel_map
, (vm_offset_t
*)&traces_ptr
, z_trace_size
, VM_KERN_MEMORY_OSFMK
);
1318 if (retval
!= KERN_SUCCESS
) {
1322 bzero(allocations_ptr
, z_alloc_size
);
1323 bzero(traces_ptr
, z_trace_size
);
1325 /* Everything's set. Install tables, mark active. */
1326 zallocations
= allocations_ptr
;
1327 ztraces
= traces_ptr
;
1330 * Initialize the top_ztrace to the first entry in ztraces,
1331 * so we don't have to check for null in zleak_log
1333 top_ztrace
= &ztraces
[0];
1336 * Note that we do need a barrier between installing
1337 * the tables and setting the active flag, because the zfree()
1338 * path accesses the table without a lock if we're active.
1340 lck_spin_lock(&zleak_lock
);
1341 zleak_state
|= ZLEAK_STATE_ACTIVE
;
1342 zleak_state
&= ~ZLEAK_STATE_ACTIVATING
;
1343 lck_spin_unlock(&zleak_lock
);
1349 * If we fail to allocate memory, don't further tax
1350 * the system by trying again.
1352 lck_spin_lock(&zleak_lock
);
1353 zleak_state
|= ZLEAK_STATE_FAILED
;
1354 zleak_state
&= ~ZLEAK_STATE_ACTIVATING
;
1355 lck_spin_unlock(&zleak_lock
);
1357 if (allocations_ptr
!= NULL
) {
1358 kmem_free(kernel_map
, (vm_offset_t
)allocations_ptr
, z_alloc_size
);
1361 if (traces_ptr
!= NULL
) {
1362 kmem_free(kernel_map
, (vm_offset_t
)traces_ptr
, z_trace_size
);
1369 * TODO: What about allocations that never get deallocated,
1370 * especially ones with unique backtraces? Should we wait to record
1371 * until after boot has completed?
1372 * (How many persistent zallocs are there?)
1376 * This function records the allocation in the allocations table,
1377 * and stores the associated backtrace in the traces table
1378 * (or just increments the refcount if the trace is already recorded)
1379 * If the allocation slot is in use, the old allocation is replaced with the new allocation, and
1380 * the associated trace's refcount is decremented.
1381 * If the trace slot is in use, it returns.
1382 * The refcount is incremented by the amount of memory the allocation consumes.
1383 * The return value indicates whether to try again next time.
1386 zleak_log(uintptr_t* bt
,
1389 vm_size_t allocation_size
)
1391 /* Quit if there's someone else modifying the hash tables */
1392 if (!lck_spin_try_lock(&zleak_lock
)) {
1393 z_total_conflicts
++;
1397 struct zallocation
* allocation
= &zallocations
[hashaddr(addr
, zleak_alloc_buckets
)];
1399 uint32_t trace_index
= hashbacktrace(bt
, depth
, zleak_trace_buckets
);
1400 struct ztrace
* trace
= &ztraces
[trace_index
];
1402 allocation
->za_hit_count
++;
1403 trace
->zt_hit_count
++;
1406 * If the allocation bucket we want to be in is occupied, and if the occupier
1407 * has the same trace as us, just bail.
1409 if (allocation
->za_element
!= (uintptr_t) 0 && trace_index
== allocation
->za_trace_index
) {
1410 z_alloc_collisions
++;
1412 lck_spin_unlock(&zleak_lock
);
1416 /* STEP 1: Store the backtrace in the traces array. */
1417 /* A size of zero indicates that the trace bucket is free. */
1419 if (trace
->zt_size
> 0 && bcmp(trace
->zt_stack
, bt
, (depth
* sizeof(uintptr_t))) != 0 ) {
1421 * Different unique trace with same hash!
1422 * Just bail - if we're trying to record the leaker, hopefully the other trace will be deallocated
1423 * and get out of the way for later chances
1425 trace
->zt_collisions
++;
1426 z_trace_collisions
++;
1428 lck_spin_unlock(&zleak_lock
);
1430 } else if (trace
->zt_size
> 0) {
1431 /* Same trace, already added, so increment refcount */
1432 trace
->zt_size
+= allocation_size
;
1434 /* Found an unused trace bucket, record the trace here! */
1435 if (trace
->zt_depth
!= 0) /* if this slot was previously used but not currently in use */
1436 z_trace_overwrites
++;
1439 trace
->zt_size
= allocation_size
;
1440 memcpy(trace
->zt_stack
, bt
, (depth
* sizeof(uintptr_t)) );
1442 trace
->zt_depth
= depth
;
1443 trace
->zt_collisions
= 0;
1446 /* STEP 2: Store the allocation record in the allocations array. */
1448 if (allocation
->za_element
!= (uintptr_t) 0) {
1450 * Straight up replace any allocation record that was there. We don't want to do the work
1451 * to preserve the allocation entries that were there, because we only record a subset of the
1452 * allocations anyways.
1455 z_alloc_collisions
++;
1457 struct ztrace
* associated_trace
= &ztraces
[allocation
->za_trace_index
];
1458 /* Knock off old allocation's size, not the new allocation */
1459 associated_trace
->zt_size
-= allocation
->za_size
;
1460 } else if (allocation
->za_trace_index
!= 0) {
1461 /* Slot previously used but not currently in use */
1462 z_alloc_overwrites
++;
1465 allocation
->za_element
= addr
;
1466 allocation
->za_trace_index
= trace_index
;
1467 allocation
->za_size
= allocation_size
;
1471 if (top_ztrace
->zt_size
< trace
->zt_size
)
1474 lck_spin_unlock(&zleak_lock
);
1479 * Free the allocation record and release the stacktrace.
1480 * This should be as fast as possible because it will be called for every free.
1483 zleak_free(uintptr_t addr
,
1484 vm_size_t allocation_size
)
1486 if (addr
== (uintptr_t) 0)
1489 struct zallocation
* allocation
= &zallocations
[hashaddr(addr
, zleak_alloc_buckets
)];
1491 /* Double-checked locking: check to find out if we're interested, lock, check to make
1492 * sure it hasn't changed, then modify it, and release the lock.
1495 if (allocation
->za_element
== addr
&& allocation
->za_trace_index
< zleak_trace_buckets
) {
1496 /* if the allocation was the one, grab the lock, check again, then delete it */
1497 lck_spin_lock(&zleak_lock
);
1499 if (allocation
->za_element
== addr
&& allocation
->za_trace_index
< zleak_trace_buckets
) {
1500 struct ztrace
*trace
;
1502 /* allocation_size had better match what was passed into zleak_log - otherwise someone is freeing into the wrong zone! */
1503 if (allocation
->za_size
!= allocation_size
) {
1504 panic("Freeing as size %lu memory that was allocated with size %lu\n",
1505 (uintptr_t)allocation_size
, (uintptr_t)allocation
->za_size
);
1508 trace
= &ztraces
[allocation
->za_trace_index
];
1510 /* size of 0 indicates trace bucket is unused */
1511 if (trace
->zt_size
> 0) {
1512 trace
->zt_size
-= allocation_size
;
1515 /* A NULL element means the allocation bucket is unused */
1516 allocation
->za_element
= 0;
1518 lck_spin_unlock(&zleak_lock
);
1522 #endif /* CONFIG_ZLEAKS */
1524 /* These functions outside of CONFIG_ZLEAKS because they are also used in
1525 * mbuf.c for mbuf leak-detection. This is why they lack the z_ prefix.
1529 * This function captures a backtrace from the current stack and
1530 * returns the number of frames captured, limited by max_frames.
1531 * It's fast because it does no checking to make sure there isn't bad data.
1532 * Since it's only called from threads that we're going to keep executing,
1533 * if there's bad data we were going to die eventually.
1534 * If this function is inlined, it doesn't record the frame of the function it's inside.
1535 * (because there's no stack frame!)
1539 fastbacktrace(uintptr_t* bt
, uint32_t max_frames
)
1541 uintptr_t* frameptr
= NULL
, *frameptr_next
= NULL
;
1542 uintptr_t retaddr
= 0;
1543 uint32_t frame_index
= 0, frames
= 0;
1544 uintptr_t kstackb
, kstackt
;
1545 thread_t cthread
= current_thread();
1547 if (__improbable(cthread
== NULL
))
1550 kstackb
= cthread
->kernel_stack
;
1551 kstackt
= kstackb
+ kernel_stack_size
;
1552 /* Load stack frame pointer (EBP on x86) into frameptr */
1553 frameptr
= __builtin_frame_address(0);
1554 if (((uintptr_t)frameptr
> kstackt
) || ((uintptr_t)frameptr
< kstackb
))
1557 while (frameptr
!= NULL
&& frame_index
< max_frames
) {
1558 /* Next frame pointer is pointed to by the previous one */
1559 frameptr_next
= (uintptr_t*) *frameptr
;
1561 /* Bail if we see a zero in the stack frame, that means we've reached the top of the stack */
1562 /* That also means the return address is worthless, so don't record it */
1563 if (frameptr_next
== NULL
)
1565 /* Verify thread stack bounds */
1566 if (((uintptr_t)frameptr_next
> kstackt
) || ((uintptr_t)frameptr_next
< kstackb
))
1568 /* Pull return address from one spot above the frame pointer */
1569 retaddr
= *(frameptr
+ 1);
1571 /* Store it in the backtrace array */
1572 bt
[frame_index
++] = retaddr
;
1574 frameptr
= frameptr_next
;
1577 /* Save the number of frames captured for return value */
1578 frames
= frame_index
;
1580 /* Fill in the rest of the backtrace with zeros */
1581 while (frame_index
< max_frames
)
1582 bt
[frame_index
++] = 0;
1587 /* "Thomas Wang's 32/64 bit mix functions." http://www.concentric.net/~Ttwang/tech/inthash.htm */
1589 hash_mix(uintptr_t x
)
1612 hashbacktrace(uintptr_t* bt
, uint32_t depth
, uint32_t max_size
)
1616 uintptr_t mask
= max_size
- 1;
1619 hash
+= bt
[--depth
];
1622 hash
= hash_mix(hash
) & mask
;
1624 assert(hash
< max_size
);
1626 return (uint32_t) hash
;
1630 * TODO: Determine how well distributed this is
1631 * max_size must be a power of 2. i.e 0x10000 because 0x10000-1 is 0x0FFFF which is a great bitmask
1634 hashaddr(uintptr_t pt
, uint32_t max_size
)
1637 uintptr_t mask
= max_size
- 1;
1639 hash
= hash_mix(pt
) & mask
;
1641 assert(hash
< max_size
);
1643 return (uint32_t) hash
;
1646 /* End of all leak-detection code */
1650 * zinit initializes a new zone. The zone data structures themselves
1651 * are stored in a zone, which is initially a static structure that
1652 * is initialized by zone_init.
1656 vm_size_t size
, /* the size of an element */
1657 vm_size_t max
, /* maximum memory to use */
1658 vm_size_t alloc
, /* allocation size */
1659 const char *name
) /* a name for the zone */
1662 boolean_t use_page_list
= FALSE
;
1664 if (zone_zone
== ZONE_NULL
) {
1666 z
= (struct zone
*)zdata
;
1667 /* special handling in zcram() because the first element is being used */
1669 z
= (zone_t
) zalloc(zone_zone
);
1674 /* Zone elements must fit both a next pointer and a backup pointer */
1675 vm_size_t minimum_element_size
= sizeof(vm_offset_t
) * 2;
1676 if (size
< minimum_element_size
)
1677 size
= minimum_element_size
;
1680 * Round element size to a multiple of sizeof(pointer)
1681 * This also enforces that allocations will be aligned on pointer boundaries
1683 size
= ((size
-1) + sizeof(vm_offset_t
)) -
1684 ((size
-1) % sizeof(vm_offset_t
));
1689 alloc
= round_page(alloc
);
1690 max
= round_page(max
);
1693 * we look for an allocation size with less than 1% waste
1694 * up to 5 pages in size...
1695 * otherwise, we look for an allocation size with least fragmentation
1696 * in the range of 1 - 5 pages
1697 * This size will be used unless
1698 * the user suggestion is larger AND has less fragmentation
1701 /* Favor PAGE_SIZE allocations unless we waste >10% space */
1702 if ((size
< PAGE_SIZE
) && (PAGE_SIZE
% size
<= PAGE_SIZE
/ 10))
1706 #if defined(__LP64__)
1707 if (((alloc
% size
) != 0) || (alloc
> PAGE_SIZE
* 8))
1710 vm_size_t best
, waste
; unsigned int i
;
1712 waste
= best
% size
;
1714 for (i
= 1; i
<= 5; i
++) {
1715 vm_size_t tsize
, twaste
;
1717 tsize
= i
* PAGE_SIZE
;
1719 if ((tsize
% size
) < (tsize
/ 100)) {
1721 goto use_this_allocation
;
1723 twaste
= tsize
% size
;
1725 best
= tsize
, waste
= twaste
;
1727 if (alloc
<= best
|| (alloc
% size
>= waste
))
1730 use_this_allocation
:
1731 if (max
&& (max
< alloc
))
1735 * Opt into page list tracking if we can reliably map an allocation
1736 * to its page_metadata, and if the wastage in the tail of
1737 * the allocation is not too large
1740 /* zone_zone can't use page metadata since the page metadata will overwrite zone metadata */
1741 if (alloc
== PAGE_SIZE
&& zone_zone
!= ZONE_NULL
) {
1742 vm_offset_t first_element_offset
;
1743 size_t zone_page_metadata_size
= sizeof(struct zone_page_metadata
);
1745 if (zone_page_metadata_size
% ZONE_ELEMENT_ALIGNMENT
== 0) {
1746 first_element_offset
= zone_page_metadata_size
;
1748 first_element_offset
= zone_page_metadata_size
+ (ZONE_ELEMENT_ALIGNMENT
- (zone_page_metadata_size
% ZONE_ELEMENT_ALIGNMENT
));
1751 if (((PAGE_SIZE
- first_element_offset
) % size
) <= PAGE_SIZE
/ 100) {
1752 use_page_list
= TRUE
;
1756 z
->free_elements
= NULL
;
1757 queue_init(&z
->pages
.any_free_foreign
);
1758 queue_init(&z
->pages
.all_free
);
1759 queue_init(&z
->pages
.intermediate
);
1760 queue_init(&z
->pages
.all_used
);
1764 z
->elem_size
= size
;
1765 z
->alloc_size
= alloc
;
1766 z
->zone_name
= name
;
1770 z
->doing_alloc_without_vm_priv
= FALSE
;
1771 z
->doing_alloc_with_vm_priv
= FALSE
;
1772 z
->doing_gc
= FALSE
;
1773 z
->exhaustible
= FALSE
;
1774 z
->collectable
= TRUE
;
1775 z
->allows_foreign
= FALSE
;
1776 z
->expandable
= TRUE
;
1778 z
->async_pending
= FALSE
;
1779 z
->caller_acct
= TRUE
;
1780 z
->noencrypt
= FALSE
;
1781 z
->no_callout
= FALSE
;
1782 z
->async_prio_refill
= FALSE
;
1783 z
->gzalloc_exempt
= FALSE
;
1784 z
->alignment_required
= FALSE
;
1785 z
->use_page_list
= use_page_list
;
1786 z
->prio_refill_watermark
= 0;
1787 z
->zone_replenish_thread
= NULL
;
1790 z
->zleak_capture
= 0;
1791 z
->zleak_on
= FALSE
;
1792 #endif /* CONFIG_ZLEAKS */
1795 z
->active_zones
.next
= z
->active_zones
.prev
= NULL
;
1796 zone_debug_enable(z
);
1797 #endif /* ZONE_DEBUG */
1801 * Add the zone to the all-zones list.
1802 * If we are tracking zone info per task, and we have
1803 * already used all the available stat slots, then keep
1804 * using the overflow zone slot.
1806 z
->next_zone
= ZONE_NULL
;
1807 simple_lock(&all_zones_lock
);
1809 last_zone
= &z
->next_zone
;
1810 z
->index
= num_zones
;
1811 if (zinfo_per_task
) {
1812 if (num_zones
> ZONES_MAX
)
1813 z
->index
= ZONES_MAX
;
1816 simple_unlock(&all_zones_lock
);
1819 * Check if we should be logging this zone. If so, remember the zone pointer.
1821 if (log_this_zone(z
->zone_name
, zone_name_to_log
)) {
1822 zone_of_interest
= z
;
1826 * If we want to log a zone, see if we need to allocate buffer space for the log. Some vm related zones are
1827 * zinit'ed before we can do a kmem_alloc, so we have to defer allocation in that case. kmem_alloc_ready is set to
1828 * TRUE once enough of the VM system is up and running to allow a kmem_alloc to work. If we want to log one
1829 * of the VM related zones that's set up early on, we will skip allocation of the log until zinit is called again
1830 * later on some other zone. So note we may be allocating a buffer to log a zone other than the one being initialized
1833 if (zone_of_interest
!= NULL
&& zlog_btlog
== NULL
&& kmem_alloc_ready
) {
1834 zlog_btlog
= btlog_create(log_records
, MAX_ZTRACE_DEPTH
, NULL
, NULL
, NULL
);
1836 printf("zone: logging started for zone %s\n", zone_of_interest
->zone_name
);
1838 printf("zone: couldn't allocate memory for zrecords, turning off zleak logging\n");
1839 zone_of_interest
= NULL
;
1843 gzalloc_zone_init(z
);
1847 unsigned zone_replenish_loops
, zone_replenish_wakeups
, zone_replenish_wakeups_initiated
, zone_replenish_throttle_count
;
1849 static void zone_replenish_thread(zone_t
);
1851 /* High priority VM privileged thread used to asynchronously refill a designated
1852 * zone, such as the reserved VM map entry zone.
1854 static void zone_replenish_thread(zone_t z
) {
1855 vm_size_t free_size
;
1856 current_thread()->options
|= TH_OPT_VMPRIV
;
1860 assert(z
->prio_refill_watermark
!= 0);
1861 while ((free_size
= (z
->cur_size
- (z
->count
* z
->elem_size
))) < (z
->prio_refill_watermark
* z
->elem_size
)) {
1862 assert(z
->doing_alloc_without_vm_priv
== FALSE
);
1863 assert(z
->doing_alloc_with_vm_priv
== FALSE
);
1864 assert(z
->async_prio_refill
== TRUE
);
1867 int zflags
= KMA_KOBJECT
|KMA_NOPAGEWAIT
;
1868 vm_offset_t space
, alloc_size
;
1872 alloc_size
= round_page(z
->elem_size
);
1874 alloc_size
= z
->alloc_size
;
1877 zflags
|= KMA_NOENCRYPT
;
1879 kr
= kernel_memory_allocate(zone_map
, &space
, alloc_size
, 0, zflags
, VM_KERN_MEMORY_ZONE
);
1881 if (kr
== KERN_SUCCESS
) {
1883 if (alloc_size
== PAGE_SIZE
)
1884 space
= zone_alias_addr(space
);
1886 zcram(z
, space
, alloc_size
);
1887 } else if (kr
== KERN_RESOURCE_SHORTAGE
) {
1889 } else if (kr
== KERN_NO_SPACE
) {
1890 kr
= kernel_memory_allocate(kernel_map
, &space
, alloc_size
, 0, zflags
, VM_KERN_MEMORY_ZONE
);
1891 if (kr
== KERN_SUCCESS
) {
1893 if (alloc_size
== PAGE_SIZE
)
1894 space
= zone_alias_addr(space
);
1896 zcram(z
, space
, alloc_size
);
1898 assert_wait_timeout(&z
->zone_replenish_thread
, THREAD_UNINT
, 1, 100 * NSEC_PER_USEC
);
1899 thread_block(THREAD_CONTINUE_NULL
);
1904 zone_replenish_loops
++;
1908 /* Signal any potential throttled consumers, terminating
1909 * their timer-bounded waits.
1913 assert_wait(&z
->zone_replenish_thread
, THREAD_UNINT
);
1914 thread_block(THREAD_CONTINUE_NULL
);
1915 zone_replenish_wakeups
++;
1920 zone_prio_refill_configure(zone_t z
, vm_size_t low_water_mark
) {
1921 z
->prio_refill_watermark
= low_water_mark
;
1923 z
->async_prio_refill
= TRUE
;
1925 kern_return_t tres
= kernel_thread_start_priority((thread_continue_t
)zone_replenish_thread
, z
, MAXPRI_KERNEL
, &z
->zone_replenish_thread
);
1927 if (tres
!= KERN_SUCCESS
) {
1928 panic("zone_prio_refill_configure, thread create: 0x%x", tres
);
1931 thread_deallocate(z
->zone_replenish_thread
);
1935 * Boolean Random Number Generator for generating booleans to randomize
1936 * the order of elements in newly zcram()'ed memory. The algorithm is a
1937 * modified version of the KISS RNG proposed in the paper:
1938 * http://stat.fsu.edu/techreports/M802.pdf
1939 * The modifications have been documented in the technical paper
1941 * http://www0.cs.ucl.ac.uk/staff/d.jones/GoodPracticeRNG.pdf
1944 static void random_bool_gen_entropy(
1950 simple_lock(&bool_gen_lock
);
1951 for (i
= 0; i
< count
; i
++) {
1952 bool_gen_seed
[1] ^= (bool_gen_seed
[1] << 5);
1953 bool_gen_seed
[1] ^= (bool_gen_seed
[1] >> 7);
1954 bool_gen_seed
[1] ^= (bool_gen_seed
[1] << 22);
1955 t
= bool_gen_seed
[2] + bool_gen_seed
[3] + bool_gen_global
;
1956 bool_gen_seed
[2] = bool_gen_seed
[3];
1957 bool_gen_global
= t
< 0;
1958 bool_gen_seed
[3] = t
&2147483647;
1959 bool_gen_seed
[0] += 1411392427;
1960 buffer
[i
] = (bool_gen_seed
[0] + bool_gen_seed
[1] + bool_gen_seed
[3]);
1962 simple_unlock(&bool_gen_lock
);
1965 static boolean_t
random_bool_gen(
1970 int valindex
, bitpos
;
1971 valindex
= (index
/ (8 * sizeof(int))) % bufsize
;
1972 bitpos
= index
% (8 * sizeof(int));
1973 return (boolean_t
)(buffer
[valindex
] & (1 << bitpos
));
1977 random_free_to_zone(
1980 vm_offset_t first_element_offset
,
1983 int *entropy_buffer
)
1985 vm_offset_t last_element_offset
;
1986 vm_offset_t element_addr
;
1987 vm_size_t elem_size
;
1990 elem_size
= zone
->elem_size
;
1991 last_element_offset
= first_element_offset
+ ((element_count
* elem_size
) - elem_size
);
1992 for (index
= 0; index
< element_count
; index
++) {
1993 assert(first_element_offset
<= last_element_offset
);
1994 if (random_bool_gen(entropy_buffer
, index
, MAX_ENTROPY_PER_ZCRAM
)) {
1995 element_addr
= newmem
+ first_element_offset
;
1996 first_element_offset
+= elem_size
;
1998 element_addr
= newmem
+ last_element_offset
;
1999 last_element_offset
-= elem_size
;
2001 if (element_addr
!= (vm_offset_t
)zone
) {
2002 zone
->count
++; /* compensate for free_to_zone */
2003 free_to_zone(zone
, element_addr
, FALSE
);
2005 if (!zone
->use_page_list
&& from_zm
) {
2006 zone_page_alloc(element_addr
, elem_size
);
2008 zone
->cur_size
+= elem_size
;
2013 * Cram the given memory into the specified zone. Update the zone page count accordingly.
2021 vm_size_t elem_size
;
2022 boolean_t from_zm
= FALSE
;
2023 vm_offset_t first_element_offset
;
2025 int entropy_buffer
[MAX_ENTROPY_PER_ZCRAM
];
2027 /* Basic sanity checks */
2028 assert(zone
!= ZONE_NULL
&& newmem
!= (vm_offset_t
)0);
2029 assert(!zone
->collectable
|| zone
->allows_foreign
2030 || (from_zone_map(newmem
, size
)));
2032 elem_size
= zone
->elem_size
;
2034 KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_ZALLOC
, ZALLOC_ZCRAM
) | DBG_FUNC_START
, VM_KERNEL_ADDRPERM(zone
), size
, 0, 0, 0);
2036 if (from_zone_map(newmem
, size
))
2039 if (zalloc_debug
& ZALLOC_DEBUG_ZCRAM
)
2040 kprintf("zcram(%p[%s], 0x%lx%s, 0x%lx)\n", zone
, zone
->zone_name
,
2041 (unsigned long)newmem
, from_zm
? "" : "[F]", (unsigned long)size
);
2043 if (from_zm
&& !zone
->use_page_list
)
2044 zone_page_init(newmem
, size
);
2046 ZONE_PAGE_COUNT_INCR(zone
, (size
/ PAGE_SIZE
));
2048 random_bool_gen_entropy(entropy_buffer
, MAX_ENTROPY_PER_ZCRAM
);
2052 if (zone
->use_page_list
) {
2053 struct zone_page_metadata
*page_metadata
;
2054 size_t zone_page_metadata_size
= sizeof(struct zone_page_metadata
);
2056 assert((newmem
& PAGE_MASK
) == 0);
2057 assert((size
& PAGE_MASK
) == 0);
2058 for (; size
> 0; newmem
+= PAGE_SIZE
, size
-= PAGE_SIZE
) {
2060 page_metadata
= (struct zone_page_metadata
*)(newmem
);
2062 page_metadata
->pages
.next
= NULL
;
2063 page_metadata
->pages
.prev
= NULL
;
2064 page_metadata
->elements
= NULL
;
2065 page_metadata
->zone
= zone
;
2066 page_metadata
->alloc_count
= 0;
2067 page_metadata
->free_count
= 0;
2069 enqueue_tail(&zone
->pages
.all_used
, (queue_entry_t
)page_metadata
);
2071 if (zone_page_metadata_size
% ZONE_ELEMENT_ALIGNMENT
== 0){
2072 first_element_offset
= zone_page_metadata_size
;
2074 first_element_offset
= zone_page_metadata_size
+ (ZONE_ELEMENT_ALIGNMENT
- (zone_page_metadata_size
% ZONE_ELEMENT_ALIGNMENT
));
2076 element_count
= (int)((PAGE_SIZE
- first_element_offset
) / elem_size
);
2077 page_metadata
->alloc_count
+= element_count
;
2078 random_free_to_zone(zone
, newmem
, first_element_offset
, element_count
, from_zm
, entropy_buffer
);
2081 first_element_offset
= 0;
2082 element_count
= (int)((size
- first_element_offset
) / elem_size
);
2083 random_free_to_zone(zone
, newmem
, first_element_offset
, element_count
, from_zm
, entropy_buffer
);
2087 KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_ZALLOC
, ZALLOC_ZCRAM
) | DBG_FUNC_END
, VM_KERNEL_ADDRPERM(zone
), 0, 0, 0, 0);
2093 * Steal memory for the zone package. Called from
2094 * vm_page_bootstrap().
2097 zone_steal_memory(void)
2100 gzalloc_configure();
2102 /* Request enough early memory to get to the pmap zone */
2103 zdata_size
= 12 * sizeof(struct zone
);
2104 zdata_size
= round_page(zdata_size
);
2105 zdata
= (vm_offset_t
)pmap_steal_memory(zdata_size
);
2110 * Fill a zone with enough memory to contain at least nelem elements.
2111 * Memory is obtained with kmem_alloc_kobject from the kernel_map.
2112 * Return the number of elements actually put into the zone, which may
2113 * be more than the caller asked for since the memory allocation is
2114 * rounded up to a full page.
2129 size
= nelem
* zone
->elem_size
;
2130 size
= round_page(size
);
2131 kr
= kmem_alloc_kobject(kernel_map
, &memory
, size
, VM_KERN_MEMORY_ZONE
);
2132 if (kr
!= KERN_SUCCESS
)
2135 zone_change(zone
, Z_FOREIGN
, TRUE
);
2136 zcram(zone
, memory
, size
);
2137 nalloc
= (int)(size
/ zone
->elem_size
);
2138 assert(nalloc
>= nelem
);
2144 * Initialize the "zone of zones" which uses fixed memory allocated
2145 * earlier in memory initialization. zone_bootstrap is called
2149 zone_bootstrap(void)
2154 if (PE_parse_boot_argn("-zinfop", temp_buf
, sizeof(temp_buf
))) {
2155 zinfo_per_task
= TRUE
;
2158 if (!PE_parse_boot_argn("zalloc_debug", &zalloc_debug
, sizeof(zalloc_debug
)))
2161 /* Set up zone element poisoning */
2164 /* Seed the random boolean generator for elements in zone free list */
2165 for (i
= 0; i
< RANDOM_BOOL_GEN_SEED_COUNT
; i
++) {
2166 bool_gen_seed
[i
] = (unsigned int)early_random();
2168 simple_lock_init(&bool_gen_lock
, 0);
2170 /* should zlog log to debug zone corruption instead of leaks? */
2171 if (PE_parse_boot_argn("-zc", temp_buf
, sizeof(temp_buf
))) {
2172 corruption_debug_flag
= TRUE
;
2176 * Check for and set up zone leak detection if requested via boot-args. We recognized two
2179 * zlog=<zone_to_log>
2180 * zrecs=<num_records_in_log>
2182 * The zlog arg is used to specify the zone name that should be logged, and zrecs is used to
2183 * control the size of the log. If zrecs is not specified, a default value is used.
2186 if (PE_parse_boot_argn("zlog", zone_name_to_log
, sizeof(zone_name_to_log
)) == TRUE
) {
2187 if (PE_parse_boot_argn("zrecs", &log_records
, sizeof(log_records
)) == TRUE
) {
2190 * Don't allow more than ZRECORDS_MAX records even if the user asked for more.
2191 * This prevents accidentally hogging too much kernel memory and making the system
2195 log_records
= MIN(ZRECORDS_MAX
, log_records
);
2198 log_records
= ZRECORDS_DEFAULT
;
2202 simple_lock_init(&all_zones_lock
, 0);
2204 first_zone
= ZONE_NULL
;
2205 last_zone
= &first_zone
;
2207 thread_call_setup(&call_async_alloc
, zalloc_async
, NULL
);
2209 /* assertion: nobody else called zinit before us */
2210 assert(zone_zone
== ZONE_NULL
);
2212 /* initializing global lock group for zones */
2213 lck_grp_attr_setdefault(&zone_locks_grp_attr
);
2214 lck_grp_init(&zone_locks_grp
, "zone_locks", &zone_locks_grp_attr
);
2216 zone_zone
= zinit(sizeof(struct zone
), 128 * sizeof(struct zone
),
2217 sizeof(struct zone
), "zones");
2218 zone_change(zone_zone
, Z_COLLECT
, FALSE
);
2219 zone_change(zone_zone
, Z_CALLERACCT
, FALSE
);
2220 zone_change(zone_zone
, Z_NOENCRYPT
, TRUE
);
2222 zcram(zone_zone
, zdata
, zdata_size
);
2223 VM_PAGE_MOVE_STOLEN(atop_64(zdata_size
));
2225 /* initialize fake zones and zone info if tracking by task */
2226 if (zinfo_per_task
) {
2227 vm_size_t zisize
= sizeof(zinfo_usage_store_t
) * ZINFO_SLOTS
;
2229 for (i
= 0; i
< num_fake_zones
; i
++)
2230 fake_zones
[i
].init(ZINFO_SLOTS
- num_fake_zones
+ i
);
2231 zinfo_zone
= zinit(zisize
, zisize
* CONFIG_TASK_MAX
,
2232 zisize
, "per task zinfo");
2233 zone_change(zinfo_zone
, Z_CALLERACCT
, FALSE
);
2238 zinfo_task_init(task_t task
)
2240 if (zinfo_per_task
) {
2241 task
->tkm_zinfo
= zalloc(zinfo_zone
);
2242 memset(task
->tkm_zinfo
, 0, sizeof(zinfo_usage_store_t
) * ZINFO_SLOTS
);
2244 task
->tkm_zinfo
= NULL
;
2249 zinfo_task_free(task_t task
)
2251 assert(task
!= kernel_task
);
2252 if (task
->tkm_zinfo
!= NULL
) {
2253 zfree(zinfo_zone
, task
->tkm_zinfo
);
2254 task
->tkm_zinfo
= NULL
;
2258 /* Global initialization of Zone Allocator.
2259 * Runs after zone_bootstrap.
2263 vm_size_t max_zonemap_size
)
2265 kern_return_t retval
;
2266 vm_offset_t zone_min
;
2267 vm_offset_t zone_max
;
2269 retval
= kmem_suballoc(kernel_map
, &zone_min
, max_zonemap_size
,
2270 FALSE
, VM_FLAGS_ANYWHERE
| VM_FLAGS_PERMANENT
| VM_MAKE_TAG(VM_KERN_MEMORY_ZONE
),
2273 if (retval
!= KERN_SUCCESS
)
2274 panic("zone_init: kmem_suballoc failed");
2275 zone_max
= zone_min
+ round_page(max_zonemap_size
);
2277 gzalloc_init(max_zonemap_size
);
2280 * Setup garbage collection information:
2282 zone_map_min_address
= zone_min
;
2283 zone_map_max_address
= zone_max
;
2285 #if defined(__LP64__)
2287 * ensure that any vm_page_t that gets created from
2288 * the vm_page zone can be packed properly (see vm_page.h
2289 * for the packing requirements
2291 if (VM_PAGE_UNPACK_PTR(VM_PAGE_PACK_PTR(zone_map_min_address
)) != (vm_page_t
)zone_map_min_address
)
2292 panic("VM_PAGE_PACK_PTR failed on zone_map_min_address - %p", (void *)zone_map_min_address
);
2294 if (VM_PAGE_UNPACK_PTR(VM_PAGE_PACK_PTR(zone_map_max_address
)) != (vm_page_t
)zone_map_max_address
)
2295 panic("VM_PAGE_PACK_PTR failed on zone_map_max_address - %p", (void *)zone_map_max_address
);
2298 zone_pages
= (unsigned int)atop_kernel(zone_max
- zone_min
);
2299 zone_page_table_used_size
= sizeof(zone_page_table
);
2301 zone_page_table_second_level_size
= 1;
2302 zone_page_table_second_level_shift_amount
= 0;
2305 * Find the power of 2 for the second level that allows
2306 * the first level to fit in ZONE_PAGE_TABLE_FIRST_LEVEL_SIZE
2309 while ((zone_page_table_first_level_slot(zone_pages
-1)) >= ZONE_PAGE_TABLE_FIRST_LEVEL_SIZE
) {
2310 zone_page_table_second_level_size
<<= 1;
2311 zone_page_table_second_level_shift_amount
++;
2314 lck_grp_attr_setdefault(&zone_gc_lck_grp_attr
);
2315 lck_grp_init(&zone_gc_lck_grp
, "zone_gc", &zone_gc_lck_grp_attr
);
2316 lck_attr_setdefault(&zone_gc_lck_attr
);
2317 lck_mtx_init_ext(&zone_gc_lock
, &zone_gc_lck_ext
, &zone_gc_lck_grp
, &zone_gc_lck_attr
);
2321 * Initialize the zone leak monitor
2323 zleak_init(max_zonemap_size
);
2324 #endif /* CONFIG_ZLEAKS */
2328 zone_page_table_expand(zone_page_index_t pindex
)
2330 unsigned int first_index
;
2331 struct zone_page_table_entry
* volatile * first_level_ptr
;
2333 assert(pindex
< zone_pages
);
2335 first_index
= zone_page_table_first_level_slot(pindex
);
2336 first_level_ptr
= &zone_page_table
[first_index
];
2338 if (*first_level_ptr
== NULL
) {
2340 * We were able to verify the old first-level slot
2341 * had NULL, so attempt to populate it.
2344 vm_offset_t second_level_array
= 0;
2345 vm_size_t second_level_size
= round_page(zone_page_table_second_level_size
* sizeof(struct zone_page_table_entry
));
2346 zone_page_index_t i
;
2347 struct zone_page_table_entry
*entry_array
;
2349 if (kmem_alloc_kobject(zone_map
, &second_level_array
,
2350 second_level_size
, VM_KERN_MEMORY_OSFMK
) != KERN_SUCCESS
) {
2351 panic("zone_page_table_expand");
2353 zone_map_table_page_count
+= (second_level_size
/ PAGE_SIZE
);
2356 * zone_gc() may scan the "zone_page_table" directly,
2357 * so make sure any slots have a valid unused state.
2359 entry_array
= (struct zone_page_table_entry
*)second_level_array
;
2360 for (i
=0; i
< zone_page_table_second_level_size
; i
++) {
2361 entry_array
[i
].alloc_count
= ZONE_PAGE_UNUSED
;
2362 entry_array
[i
].collect_count
= 0;
2365 if (OSCompareAndSwapPtr(NULL
, entry_array
, first_level_ptr
)) {
2366 /* Old slot was NULL, replaced with expanded level */
2367 OSAddAtomicLong(second_level_size
, &zone_page_table_used_size
);
2369 /* Old slot was not NULL, someone else expanded first */
2370 kmem_free(zone_map
, second_level_array
, second_level_size
);
2371 zone_map_table_page_count
-= (second_level_size
/ PAGE_SIZE
);
2374 /* Old slot was not NULL, already been expanded */
2378 struct zone_page_table_entry
*
2379 zone_page_table_lookup(zone_page_index_t pindex
)
2381 unsigned int first_index
= zone_page_table_first_level_slot(pindex
);
2382 struct zone_page_table_entry
*second_level
= zone_page_table
[first_index
];
2385 return &second_level
[zone_page_table_second_level_slot(pindex
)];
2391 extern volatile SInt32 kfree_nop_count
;
2394 #pragma mark zalloc_canblock
2397 * zalloc returns an element from the specified zone.
2403 boolean_t nopagewait
)
2405 vm_offset_t addr
= 0;
2406 kern_return_t retval
;
2407 uintptr_t zbt
[MAX_ZTRACE_DEPTH
]; /* used in zone leak logging and zone leak detection */
2409 boolean_t zone_replenish_wakeup
= FALSE
, zone_alloc_throttle
= FALSE
;
2410 #if CONFIG_GZALLOC || ZONE_DEBUG
2411 boolean_t did_gzalloc
= FALSE
;
2413 thread_t thr
= current_thread();
2414 boolean_t check_poison
= FALSE
;
2415 boolean_t set_doing_alloc_with_vm_priv
= FALSE
;
2418 uint32_t zleak_tracedepth
= 0; /* log this allocation if nonzero */
2419 #endif /* CONFIG_ZLEAKS */
2421 assert(zone
!= ZONE_NULL
);
2424 addr
= gzalloc_alloc(zone
, canblock
);
2425 did_gzalloc
= (addr
!= 0);
2429 * If zone logging is turned on and this is the zone we're tracking, grab a backtrace.
2431 if (__improbable(DO_LOGGING(zone
)))
2432 numsaved
= OSBacktrace((void*) zbt
, MAX_ZTRACE_DEPTH
);
2436 * Zone leak detection: capture a backtrace every zleak_sample_factor
2437 * allocations in this zone.
2439 if (__improbable(zone
->zleak_on
&& sample_counter(&zone
->zleak_capture
, zleak_sample_factor
) == TRUE
)) {
2440 /* Avoid backtracing twice if zone logging is on */
2442 zleak_tracedepth
= fastbacktrace(zbt
, MAX_ZTRACE_DEPTH
);
2444 zleak_tracedepth
= numsaved
;
2446 #endif /* CONFIG_ZLEAKS */
2450 if (zone
->async_prio_refill
&& zone
->zone_replenish_thread
) {
2452 vm_size_t zfreec
= (zone
->cur_size
- (zone
->count
* zone
->elem_size
));
2453 vm_size_t zrefillwm
= zone
->prio_refill_watermark
* zone
->elem_size
;
2454 zone_replenish_wakeup
= (zfreec
< zrefillwm
);
2455 zone_alloc_throttle
= (zfreec
< (zrefillwm
/ 2)) && ((thr
->options
& TH_OPT_VMPRIV
) == 0);
2457 if (zone_replenish_wakeup
) {
2458 zone_replenish_wakeups_initiated
++;
2460 /* Signal the potentially waiting
2463 thread_wakeup(&zone
->zone_replenish_thread
);
2465 /* Scheduling latencies etc. may prevent
2466 * the refill thread from keeping up
2467 * with demand. Throttle consumers
2468 * when we fall below half the
2469 * watermark, unless VM privileged
2471 if (zone_alloc_throttle
) {
2472 zone_replenish_throttle_count
++;
2473 assert_wait_timeout(zone
, THREAD_UNINT
, 1, NSEC_PER_MSEC
);
2474 thread_block(THREAD_CONTINUE_NULL
);
2478 } while (zone_alloc_throttle
== TRUE
);
2481 if (__probable(addr
== 0))
2482 addr
= try_alloc_from_zone(zone
, &check_poison
);
2485 while ((addr
== 0) && canblock
) {
2487 * zone is empty, try to expand it
2489 * Note that we now allow up to 2 threads (1 vm_privliged and 1 non-vm_privliged)
2490 * to expand the zone concurrently... this is necessary to avoid stalling
2491 * vm_privileged threads running critical code necessary to continue compressing/swapping
2492 * pages (i.e. making new free pages) from stalling behind non-vm_privileged threads
2493 * waiting to acquire free pages when the vm_page_free_count is below the
2494 * vm_page_free_reserved limit.
2496 if ((zone
->doing_alloc_without_vm_priv
|| zone
->doing_alloc_with_vm_priv
) &&
2497 (((thr
->options
& TH_OPT_VMPRIV
) == 0) || zone
->doing_alloc_with_vm_priv
)) {
2499 * This is a non-vm_privileged thread and a non-vm_privileged or
2500 * a vm_privileged thread is already expanding the zone...
2502 * this is a vm_privileged thread and a vm_privileged thread is
2503 * already expanding the zone...
2505 * In either case wait for a thread to finish, then try again.
2507 zone
->waiting
= TRUE
;
2509 } else if (zone
->doing_gc
) {
2511 * zone_gc() is running. Since we need an element
2512 * from the free list that is currently being
2513 * collected, set the waiting bit and
2514 * wait for the GC process to finish
2515 * before trying again
2517 zone
->waiting
= TRUE
;
2521 vm_size_t alloc_size
;
2524 if ((zone
->cur_size
+ zone
->elem_size
) >
2526 if (zone
->exhaustible
)
2528 if (zone
->expandable
) {
2530 * We're willing to overflow certain
2531 * zones, but not without complaining.
2533 * This is best used in conjunction
2534 * with the collectable flag. What we
2535 * want is an assurance we can get the
2536 * memory back, assuming there's no
2539 zone
->max_size
+= (zone
->max_size
>> 1);
2543 panic_include_zprint
= TRUE
;
2545 if (zleak_state
& ZLEAK_STATE_ACTIVE
)
2546 panic_include_ztrace
= TRUE
;
2547 #endif /* CONFIG_ZLEAKS */
2548 panic("zalloc: zone \"%s\" empty.", zone
->zone_name
);
2551 if ((thr
->options
& TH_OPT_VMPRIV
)) {
2552 zone
->doing_alloc_with_vm_priv
= TRUE
;
2553 set_doing_alloc_with_vm_priv
= TRUE
;
2555 zone
->doing_alloc_without_vm_priv
= TRUE
;
2560 int zflags
= KMA_KOBJECT
|KMA_NOPAGEWAIT
;
2562 if (vm_pool_low() || retry
>= 1)
2564 round_page(zone
->elem_size
);
2566 alloc_size
= zone
->alloc_size
;
2568 if (zone
->noencrypt
)
2569 zflags
|= KMA_NOENCRYPT
;
2571 retval
= kernel_memory_allocate(zone_map
, &space
, alloc_size
, 0, zflags
, VM_KERN_MEMORY_ZONE
);
2572 if (retval
== KERN_SUCCESS
) {
2574 if (alloc_size
== PAGE_SIZE
)
2575 space
= zone_alias_addr(space
);
2579 if ((zleak_state
& (ZLEAK_STATE_ENABLED
| ZLEAK_STATE_ACTIVE
)) == ZLEAK_STATE_ENABLED
) {
2580 if (zone_map
->size
>= zleak_global_tracking_threshold
) {
2583 kr
= zleak_activate();
2584 if (kr
!= KERN_SUCCESS
) {
2585 printf("Failed to activate live zone leak debugging (%d).\n", kr
);
2590 if ((zleak_state
& ZLEAK_STATE_ACTIVE
) && !(zone
->zleak_on
)) {
2591 if (zone
->cur_size
> zleak_per_zone_tracking_threshold
) {
2592 zone
->zleak_on
= TRUE
;
2595 #endif /* CONFIG_ZLEAKS */
2596 zcram(zone
, space
, alloc_size
);
2599 } else if (retval
!= KERN_RESOURCE_SHORTAGE
) {
2604 printf("zalloc did gc\n");
2605 zone_display_zprint();
2608 panic_include_zprint
= TRUE
;
2610 if ((zleak_state
& ZLEAK_STATE_ACTIVE
)) {
2611 panic_include_ztrace
= TRUE
;
2613 #endif /* CONFIG_ZLEAKS */
2614 if (retval
== KERN_NO_SPACE
) {
2615 zone_t zone_largest
= zone_find_largest();
2616 panic("zalloc: zone map exhausted while allocating from zone %s, likely due to memory leak in zone %s (%lu total bytes, %d elements allocated)",
2617 zone
->zone_name
, zone_largest
->zone_name
,
2618 (unsigned long)zone_largest
->cur_size
, zone_largest
->count
);
2621 panic("zalloc: \"%s\" (%d elements) retry fail %d, kfree_nop_count: %d", zone
->zone_name
, zone
->count
, retval
, (int)kfree_nop_count
);
2629 if (set_doing_alloc_with_vm_priv
== TRUE
)
2630 zone
->doing_alloc_with_vm_priv
= FALSE
;
2632 zone
->doing_alloc_without_vm_priv
= FALSE
;
2634 if (zone
->waiting
) {
2635 zone
->waiting
= FALSE
;
2638 addr
= try_alloc_from_zone(zone
, &check_poison
);
2640 retval
== KERN_RESOURCE_SHORTAGE
) {
2641 if (nopagewait
== TRUE
)
2642 break; /* out of the main while loop */
2650 addr
= try_alloc_from_zone(zone
, &check_poison
);
2654 /* Zone leak detection:
2655 * If we're sampling this allocation, add it to the zleaks hash table.
2657 if (addr
&& zleak_tracedepth
> 0) {
2658 /* Sampling can fail if another sample is happening at the same time in a different zone. */
2659 if (!zleak_log(zbt
, addr
, zleak_tracedepth
, zone
->elem_size
)) {
2660 /* If it failed, roll back the counter so we sample the next allocation instead. */
2661 zone
->zleak_capture
= zleak_sample_factor
;
2664 #endif /* CONFIG_ZLEAKS */
2667 if ((addr
== 0) && (!canblock
|| nopagewait
) && (zone
->async_pending
== FALSE
) && (zone
->no_callout
== FALSE
) && (zone
->exhaustible
== FALSE
) && (!vm_pool_low())) {
2668 zone
->async_pending
= TRUE
;
2670 thread_call_enter(&call_async_alloc
);
2672 addr
= try_alloc_from_zone(zone
, &check_poison
);
2676 * See if we should be logging allocations in this zone. Logging is rarely done except when a leak is
2677 * suspected, so this code rarely executes. We need to do this code while still holding the zone lock
2678 * since it protects the various log related data structures.
2681 if (__improbable(DO_LOGGING(zone
) && addr
)) {
2682 btlog_add_entry(zlog_btlog
, (void *)addr
, ZOP_ALLOC
, (void **)zbt
, numsaved
);
2685 vm_offset_t inner_size
= zone
->elem_size
;
2688 if (!did_gzalloc
&& addr
&& zone_debug_enabled(zone
)) {
2689 enqueue_tail(&zone
->active_zones
, (queue_entry_t
)addr
);
2690 addr
+= ZONE_DEBUG_OFFSET
;
2691 inner_size
-= ZONE_DEBUG_OFFSET
;
2697 if (__improbable(check_poison
&& addr
)) {
2698 vm_offset_t
*element_cursor
= ((vm_offset_t
*) addr
) + 1;
2699 vm_offset_t
*backup
= get_backup_ptr(inner_size
, (vm_offset_t
*) addr
);
2701 for ( ; element_cursor
< backup
; element_cursor
++)
2702 if (__improbable(*element_cursor
!= ZP_POISON
))
2703 zone_element_was_modified_panic(zone
,
2707 ((vm_offset_t
)element_cursor
) - addr
);
2712 * Clear out the old next pointer and backup to avoid leaking the cookie
2713 * and so that only values on the freelist have a valid cookie
2716 vm_offset_t
*primary
= (vm_offset_t
*) addr
;
2717 vm_offset_t
*backup
= get_backup_ptr(inner_size
, primary
);
2719 *primary
= ZP_POISON
;
2720 *backup
= ZP_POISON
;
2723 TRACE_MACHLEAKS(ZALLOC_CODE
, ZALLOC_CODE_2
, zone
->elem_size
, addr
);
2727 zinfo_usage_t zinfo
;
2728 vm_size_t sz
= zone
->elem_size
;
2730 if (zone
->caller_acct
)
2731 ledger_credit(thr
->t_ledger
, task_ledgers
.tkm_private
, sz
);
2733 ledger_credit(thr
->t_ledger
, task_ledgers
.tkm_shared
, sz
);
2735 if ((task
= thr
->task
) != NULL
&& (zinfo
= task
->tkm_zinfo
) != NULL
)
2736 OSAddAtomic64(sz
, (int64_t *)&zinfo
[zone
->index
].alloc
);
2738 return((void *)addr
);
2745 return (zalloc_internal(zone
, TRUE
, FALSE
));
2749 zalloc_noblock(zone_t zone
)
2751 return (zalloc_internal(zone
, FALSE
, FALSE
));
2755 zalloc_nopagewait(zone_t zone
)
2757 return (zalloc_internal(zone
, TRUE
, TRUE
));
2761 zalloc_canblock(zone_t zone
, boolean_t canblock
)
2763 return (zalloc_internal(zone
, canblock
, FALSE
));
2769 __unused thread_call_param_t p0
,
2770 __unused thread_call_param_t p1
)
2772 zone_t current_z
= NULL
, head_z
;
2773 unsigned int max_zones
, i
;
2775 boolean_t pending
= FALSE
;
2777 simple_lock(&all_zones_lock
);
2778 head_z
= first_zone
;
2779 max_zones
= num_zones
;
2780 simple_unlock(&all_zones_lock
);
2782 for (i
= 0; i
< max_zones
; i
++) {
2783 lock_zone(current_z
);
2784 if (current_z
->async_pending
== TRUE
) {
2785 current_z
->async_pending
= FALSE
;
2788 unlock_zone(current_z
);
2790 if (pending
== TRUE
) {
2791 elt
= zalloc_canblock(current_z
, TRUE
);
2792 zfree(current_z
, elt
);
2796 * This is based on assumption that zones never get
2797 * freed once allocated and linked.
2798 * Hence a read outside of lock is OK.
2800 current_z
= current_z
->next_zone
;
2805 * zget returns an element from the specified zone
2806 * and immediately returns nothing if there is nothing there.
2808 * This form should be used when you can not block (like when
2809 * processing an interrupt).
2811 * XXX: It seems like only vm_page_grab_fictitious_common uses this, and its
2812 * friend vm_page_more_fictitious can block, so it doesn't seem like
2813 * this is used for interrupts any more....
2817 register zone_t zone
)
2820 boolean_t check_poison
= FALSE
;
2823 uintptr_t zbt
[MAX_ZTRACE_DEPTH
]; /* used for zone leak detection */
2824 uint32_t zleak_tracedepth
= 0; /* log this allocation if nonzero */
2825 #endif /* CONFIG_ZLEAKS */
2827 assert( zone
!= ZONE_NULL
);
2831 * Zone leak detection: capture a backtrace
2833 if (__improbable(zone
->zleak_on
&& sample_counter(&zone
->zleak_capture
, zleak_sample_factor
) == TRUE
)) {
2834 zleak_tracedepth
= fastbacktrace(zbt
, MAX_ZTRACE_DEPTH
);
2836 #endif /* CONFIG_ZLEAKS */
2838 if (!lock_try_zone(zone
))
2841 addr
= try_alloc_from_zone(zone
, &check_poison
);
2843 vm_offset_t inner_size
= zone
->elem_size
;
2846 if (addr
&& zone_debug_enabled(zone
)) {
2847 enqueue_tail(&zone
->active_zones
, (queue_entry_t
)addr
);
2848 addr
+= ZONE_DEBUG_OFFSET
;
2849 inner_size
-= ZONE_DEBUG_OFFSET
;
2851 #endif /* ZONE_DEBUG */
2855 * Zone leak detection: record the allocation
2857 if (zone
->zleak_on
&& zleak_tracedepth
> 0 && addr
) {
2858 /* Sampling can fail if another sample is happening at the same time in a different zone. */
2859 if (!zleak_log(zbt
, addr
, zleak_tracedepth
, zone
->elem_size
)) {
2860 /* If it failed, roll back the counter so we sample the next allocation instead. */
2861 zone
->zleak_capture
= zleak_sample_factor
;
2864 #endif /* CONFIG_ZLEAKS */
2868 if (__improbable(check_poison
&& addr
)) {
2869 vm_offset_t
*element_cursor
= ((vm_offset_t
*) addr
) + 1;
2870 vm_offset_t
*backup
= get_backup_ptr(inner_size
, (vm_offset_t
*) addr
);
2872 for ( ; element_cursor
< backup
; element_cursor
++)
2873 if (__improbable(*element_cursor
!= ZP_POISON
))
2874 zone_element_was_modified_panic(zone
,
2878 ((vm_offset_t
)element_cursor
) - addr
);
2883 * Clear out the old next pointer and backup to avoid leaking the cookie
2884 * and so that only values on the freelist have a valid cookie
2886 vm_offset_t
*primary
= (vm_offset_t
*) addr
;
2887 vm_offset_t
*backup
= get_backup_ptr(inner_size
, primary
);
2889 *primary
= ZP_POISON
;
2890 *backup
= ZP_POISON
;
2893 return((void *) addr
);
2896 /* Keep this FALSE by default. Large memory machine run orders of magnitude
2897 slower in debug mode when true. Use debugger to enable if needed */
2898 /* static */ boolean_t zone_check
= FALSE
;
2900 static void zone_check_freelist(zone_t zone
, vm_offset_t elem
)
2902 struct zone_free_element
*this;
2903 struct zone_page_metadata
*thispage
;
2905 if (zone
->use_page_list
) {
2906 if (zone
->allows_foreign
) {
2907 for (thispage
= (struct zone_page_metadata
*)queue_first(&zone
->pages
.any_free_foreign
);
2908 !queue_end(&zone
->pages
.any_free_foreign
, (queue_entry_t
)thispage
);
2909 thispage
= (struct zone_page_metadata
*)queue_next((queue_chain_t
*)thispage
)) {
2910 for (this = thispage
->elements
;
2912 this = this->next
) {
2913 if (!is_sane_zone_element(zone
, (vm_address_t
)this) || (vm_address_t
)this == elem
)
2914 panic("zone_check_freelist");
2918 for (thispage
= (struct zone_page_metadata
*)queue_first(&zone
->pages
.all_free
);
2919 !queue_end(&zone
->pages
.all_free
, (queue_entry_t
)thispage
);
2920 thispage
= (struct zone_page_metadata
*)queue_next((queue_chain_t
*)thispage
)) {
2921 for (this = thispage
->elements
;
2923 this = this->next
) {
2924 if (!is_sane_zone_element(zone
, (vm_address_t
)this) || (vm_address_t
)this == elem
)
2925 panic("zone_check_freelist");
2928 for (thispage
= (struct zone_page_metadata
*)queue_first(&zone
->pages
.intermediate
);
2929 !queue_end(&zone
->pages
.intermediate
, (queue_entry_t
)thispage
);
2930 thispage
= (struct zone_page_metadata
*)queue_next((queue_chain_t
*)thispage
)) {
2931 for (this = thispage
->elements
;
2933 this = this->next
) {
2934 if (!is_sane_zone_element(zone
, (vm_address_t
)this) || (vm_address_t
)this == elem
)
2935 panic("zone_check_freelist");
2939 for (this = zone
->free_elements
;
2941 this = this->next
) {
2942 if (!is_sane_zone_element(zone
, (vm_address_t
)this) || (vm_address_t
)this == elem
)
2943 panic("zone_check_freelist");
2948 static zone_t zone_last_bogus_zone
= ZONE_NULL
;
2949 static vm_offset_t zone_last_bogus_elem
= 0;
2953 register zone_t zone
,
2956 vm_offset_t elem
= (vm_offset_t
) addr
;
2957 uintptr_t zbt
[MAX_ZTRACE_DEPTH
]; /* only used if zone logging is enabled via boot-args */
2959 boolean_t gzfreed
= FALSE
;
2960 boolean_t poison
= FALSE
;
2962 assert(zone
!= ZONE_NULL
);
2965 if (zone
->use_page_list
) {
2966 struct zone_page_metadata
*page_meta
= get_zone_page_metadata((struct zone_free_element
*)addr
);
2967 if (zone
!= page_meta
->zone
) {
2969 * Something bad has happened. Someone tried to zfree a pointer but the metadata says it is from
2970 * a different zone (or maybe it's from a zone that doesn't use page free lists at all). We can repair
2971 * some cases of this, if:
2972 * 1) The specified zone had use_page_list, and the true zone also has use_page_list set. In that case
2973 * we can swap the zone_t
2974 * 2) The specified zone had use_page_list, but the true zone does not. In this case page_meta is garbage,
2975 * and dereferencing page_meta->zone might panic.
2976 * To distinguish the two, we enumerate the zone list to match it up.
2977 * We do not handle the case where an incorrect zone is passed that does not have use_page_list set,
2978 * even if the true zone did have this set.
2980 zone_t fixed_zone
= NULL
;
2981 int fixed_i
, max_zones
;
2983 simple_lock(&all_zones_lock
);
2984 max_zones
= num_zones
;
2985 fixed_zone
= first_zone
;
2986 simple_unlock(&all_zones_lock
);
2988 for (fixed_i
=0; fixed_i
< max_zones
; fixed_i
++, fixed_zone
= fixed_zone
->next_zone
) {
2989 if (fixed_zone
== page_meta
->zone
&& fixed_zone
->use_page_list
) {
2990 /* we can fix this */
2991 printf("Fixing incorrect zfree from zone %s to zone %s\n", zone
->zone_name
, fixed_zone
->zone_name
);
3001 * If zone logging is turned on and this is the zone we're tracking, grab a backtrace.
3004 if (__improbable(DO_LOGGING(zone
) && corruption_debug_flag
))
3005 numsaved
= OSBacktrace((void *)zbt
, MAX_ZTRACE_DEPTH
);
3008 /* Basic sanity checks */
3009 if (zone
== ZONE_NULL
|| elem
== (vm_offset_t
)0)
3010 panic("zfree: NULL");
3011 /* zone_gc assumes zones are never freed */
3012 if (zone
== zone_zone
)
3013 panic("zfree: freeing to zone_zone breaks zone_gc!");
3017 gzfreed
= gzalloc_free(zone
, addr
);
3020 TRACE_MACHLEAKS(ZFREE_CODE
, ZFREE_CODE_2
, zone
->elem_size
, (uintptr_t)addr
);
3022 if (__improbable(!gzfreed
&& zone
->collectable
&& !zone
->allows_foreign
&&
3023 !from_zone_map(elem
, zone
->elem_size
))) {
3025 panic("zfree: non-allocated memory in collectable zone!");
3027 zone_last_bogus_zone
= zone
;
3028 zone_last_bogus_elem
= elem
;
3032 if ((zp_factor
!= 0 || zp_tiny_zone_limit
!= 0) && !gzfreed
) {
3034 * Poison the memory before it ends up on the freelist to catch
3035 * use-after-free and use of uninitialized memory
3037 * Always poison tiny zones' elements (limit is 0 if -no-zp is set)
3038 * Also poison larger elements periodically
3041 vm_offset_t inner_size
= zone
->elem_size
;
3044 if (!gzfreed
&& zone_debug_enabled(zone
)) {
3045 inner_size
-= ZONE_DEBUG_OFFSET
;
3048 uint32_t sample_factor
= zp_factor
+ (((uint32_t)inner_size
) >> zp_scale
);
3050 if (inner_size
<= zp_tiny_zone_limit
)
3052 else if (zp_factor
!= 0 && sample_counter(&zone
->zp_count
, sample_factor
) == TRUE
)
3055 if (__improbable(poison
)) {
3057 /* memset_pattern{4|8} could help make this faster: <rdar://problem/4662004> */
3058 /* Poison everything but primary and backup */
3059 vm_offset_t
*element_cursor
= ((vm_offset_t
*) elem
) + 1;
3060 vm_offset_t
*backup
= get_backup_ptr(inner_size
, (vm_offset_t
*)elem
);
3062 for ( ; element_cursor
< backup
; element_cursor
++)
3063 *element_cursor
= ZP_POISON
;
3070 * See if we're doing logging on this zone. There are two styles of logging used depending on
3071 * whether we're trying to catch a leak or corruption. See comments above in zalloc for details.
3074 if (__improbable(DO_LOGGING(zone
))) {
3075 if (corruption_debug_flag
) {
3077 * We're logging to catch a corruption. Add a record of this zfree operation
3080 btlog_add_entry(zlog_btlog
, (void *)addr
, ZOP_FREE
, (void **)zbt
, numsaved
);
3083 * We're logging to catch a leak. Remove any record we might have for this
3084 * element since it's being freed. Note that we may not find it if the buffer
3085 * overflowed and that's OK. Since the log is of a limited size, old records
3086 * get overwritten if there are more zallocs than zfrees.
3088 btlog_remove_entries_for_element(zlog_btlog
, (void *)addr
);
3093 if (!gzfreed
&& zone_debug_enabled(zone
)) {
3096 elem
-= ZONE_DEBUG_OFFSET
;
3098 /* check the zone's consistency */
3100 for (tmp_elem
= queue_first(&zone
->active_zones
);
3101 !queue_end(tmp_elem
, &zone
->active_zones
);
3102 tmp_elem
= queue_next(tmp_elem
))
3103 if (elem
== (vm_offset_t
)tmp_elem
)
3105 if (elem
!= (vm_offset_t
)tmp_elem
)
3106 panic("zfree()ing element from wrong zone");
3108 remqueue((queue_t
) elem
);
3110 #endif /* ZONE_DEBUG */
3112 zone_check_freelist(zone
, elem
);
3115 if (__probable(!gzfreed
))
3116 free_to_zone(zone
, elem
, poison
);
3119 if (zone
->count
< 0)
3120 panic("zfree: zone count underflow in zone %s while freeing element %p, possible cause: double frees or freeing memory that did not come from this zone",
3121 zone
->zone_name
, addr
);
3127 * Zone leak detection: un-track the allocation
3129 if (zone
->zleak_on
) {
3130 zleak_free(elem
, zone
->elem_size
);
3132 #endif /* CONFIG_ZLEAKS */
3135 * If elements have one or more pages, and memory is low,
3136 * request to run the garbage collection in the zone the next
3137 * time the pageout thread runs.
3139 if (zone
->elem_size
>= PAGE_SIZE
&&
3141 zone_gc_forced
= TRUE
;
3146 thread_t thr
= current_thread();
3148 zinfo_usage_t zinfo
;
3149 vm_size_t sz
= zone
->elem_size
;
3151 if (zone
->caller_acct
)
3152 ledger_debit(thr
->t_ledger
, task_ledgers
.tkm_private
, sz
);
3154 ledger_debit(thr
->t_ledger
, task_ledgers
.tkm_shared
, sz
);
3156 if ((task
= thr
->task
) != NULL
&& (zinfo
= task
->tkm_zinfo
) != NULL
)
3157 OSAddAtomic64(sz
, (int64_t *)&zinfo
[zone
->index
].free
);
3162 /* Change a zone's flags.
3163 * This routine must be called immediately after zinit.
3171 assert( zone
!= ZONE_NULL
);
3172 assert( value
== TRUE
|| value
== FALSE
);
3176 zone
->noencrypt
= value
;
3179 zone
->exhaustible
= value
;
3182 zone
->collectable
= value
;
3185 zone
->expandable
= value
;
3188 zone
->allows_foreign
= value
;
3191 zone
->caller_acct
= value
;
3194 zone
->no_callout
= value
;
3196 case Z_GZALLOC_EXEMPT
:
3197 zone
->gzalloc_exempt
= value
;
3199 gzalloc_reconfigure(zone
);
3202 case Z_ALIGNMENT_REQUIRED
:
3203 zone
->alignment_required
= value
;
3205 * Disable the page list optimization here to provide
3206 * more of an alignment guarantee. This prevents
3207 * the alignment from being modified by the metadata stored
3208 * at the beginning of the page.
3210 zone
->use_page_list
= FALSE
;
3212 zone_debug_disable(zone
);
3215 gzalloc_reconfigure(zone
);
3219 panic("Zone_change: Wrong Item Type!");
3225 * Return the expected number of free elements in the zone.
3226 * This calculation will be incorrect if items are zfree'd that
3227 * were never zalloc'd/zget'd. The correct way to stuff memory
3228 * into a zone is by zcram.
3232 zone_free_count(zone_t zone
)
3234 integer_t free_count
;
3237 free_count
= zone
->countfree
;
3240 assert(free_count
>= 0);
3246 * Zone garbage collection subroutines
3250 zone_page_collectable(
3254 struct zone_page_table_entry
*zp
;
3255 zone_page_index_t i
, j
;
3258 addr
= zone_virtual_addr(addr
);
3261 if (!from_zone_map(addr
, size
))
3262 panic("zone_page_collectable");
3265 i
= (zone_page_index_t
)atop_kernel(addr
-zone_map_min_address
);
3266 j
= (zone_page_index_t
)atop_kernel((addr
+size
-1) - zone_map_min_address
);
3268 for (; i
<= j
; i
++) {
3269 zp
= zone_page_table_lookup(i
);
3270 if (zp
->collect_count
== zp
->alloc_count
)
3282 struct zone_page_table_entry
*zp
;
3283 zone_page_index_t i
, j
;
3286 addr
= zone_virtual_addr(addr
);
3289 if (!from_zone_map(addr
, size
))
3290 panic("zone_page_keep");
3293 i
= (zone_page_index_t
)atop_kernel(addr
-zone_map_min_address
);
3294 j
= (zone_page_index_t
)atop_kernel((addr
+size
-1) - zone_map_min_address
);
3296 for (; i
<= j
; i
++) {
3297 zp
= zone_page_table_lookup(i
);
3298 zp
->collect_count
= 0;
3307 struct zone_page_table_entry
*zp
;
3308 zone_page_index_t i
, j
;
3311 addr
= zone_virtual_addr(addr
);
3314 if (!from_zone_map(addr
, size
))
3315 panic("zone_page_collect");
3318 i
= (zone_page_index_t
)atop_kernel(addr
-zone_map_min_address
);
3319 j
= (zone_page_index_t
)atop_kernel((addr
+size
-1) - zone_map_min_address
);
3321 for (; i
<= j
; i
++) {
3322 zp
= zone_page_table_lookup(i
);
3323 ++zp
->collect_count
;
3332 struct zone_page_table_entry
*zp
;
3333 zone_page_index_t i
, j
;
3336 addr
= zone_virtual_addr(addr
);
3339 if (!from_zone_map(addr
, size
))
3340 panic("zone_page_init");
3343 i
= (zone_page_index_t
)atop_kernel(addr
-zone_map_min_address
);
3344 j
= (zone_page_index_t
)atop_kernel((addr
+size
-1) - zone_map_min_address
);
3346 for (; i
<= j
; i
++) {
3347 /* make sure entry exists before marking unused */
3348 zone_page_table_expand(i
);
3350 zp
= zone_page_table_lookup(i
);
3352 zp
->alloc_count
= ZONE_PAGE_UNUSED
;
3353 zp
->collect_count
= 0;
3362 struct zone_page_table_entry
*zp
;
3363 zone_page_index_t i
, j
;
3366 addr
= zone_virtual_addr(addr
);
3369 if (!from_zone_map(addr
, size
))
3370 panic("zone_page_alloc");
3373 i
= (zone_page_index_t
)atop_kernel(addr
-zone_map_min_address
);
3374 j
= (zone_page_index_t
)atop_kernel((addr
+size
-1) - zone_map_min_address
);
3376 for (; i
<= j
; i
++) {
3377 zp
= zone_page_table_lookup(i
);
3381 * Set alloc_count to ZONE_PAGE_USED if
3382 * it was previously set to ZONE_PAGE_UNUSED.
3384 if (zp
->alloc_count
== ZONE_PAGE_UNUSED
)
3385 zp
->alloc_count
= ZONE_PAGE_USED
;
3392 zone_page_free_element(
3393 zone_page_index_t
*free_page_head
,
3394 zone_page_index_t
*free_page_tail
,
3398 struct zone_page_table_entry
*zp
;
3399 zone_page_index_t i
, j
;
3402 addr
= zone_virtual_addr(addr
);
3405 if (!from_zone_map(addr
, size
))
3406 panic("zone_page_free_element");
3409 /* Clear out the old next and backup pointers */
3410 vm_offset_t
*primary
= (vm_offset_t
*) addr
;
3411 vm_offset_t
*backup
= get_backup_ptr(size
, primary
);
3413 *primary
= ZP_POISON
;
3414 *backup
= ZP_POISON
;
3416 i
= (zone_page_index_t
)atop_kernel(addr
-zone_map_min_address
);
3417 j
= (zone_page_index_t
)atop_kernel((addr
+size
-1) - zone_map_min_address
);
3419 for (; i
<= j
; i
++) {
3420 zp
= zone_page_table_lookup(i
);
3422 if (zp
->collect_count
> 0)
3423 --zp
->collect_count
;
3424 if (--zp
->alloc_count
== 0) {
3425 vm_address_t free_page_address
;
3426 vm_address_t prev_free_page_address
;
3428 zp
->alloc_count
= ZONE_PAGE_UNUSED
;
3429 zp
->collect_count
= 0;
3433 * This element was the last one on this page, re-use the page's
3434 * storage for a page freelist
3436 free_page_address
= zone_map_min_address
+ PAGE_SIZE
* ((vm_size_t
)i
);
3437 *(zone_page_index_t
*)free_page_address
= ZONE_PAGE_INDEX_INVALID
;
3439 if (*free_page_head
== ZONE_PAGE_INDEX_INVALID
) {
3440 *free_page_head
= i
;
3441 *free_page_tail
= i
;
3443 prev_free_page_address
= zone_map_min_address
+ PAGE_SIZE
* ((vm_size_t
)(*free_page_tail
));
3444 *(zone_page_index_t
*)prev_free_page_address
= i
;
3445 *free_page_tail
= i
;
3452 #define ZONEGC_SMALL_ELEMENT_SIZE 4096
3455 uint64_t zgc_invoked
;
3456 uint64_t zgc_bailed
;
3459 uint32_t elems_collected
,
3464 /* Zone garbage collection
3466 * zone_gc will walk through all the free elements in all the
3467 * zones that are marked collectable looking for reclaimable
3468 * pages. zone_gc is called by consider_zone_gc when the system
3469 * begins to run out of memory.
3472 zone_gc(boolean_t all_zones
)
3474 unsigned int max_zones
;
3477 uint32_t old_pgs_freed
;
3478 zone_page_index_t zone_free_page_head
;
3479 zone_page_index_t zone_free_page_tail
;
3480 thread_t mythread
= current_thread();
3482 lck_mtx_lock(&zone_gc_lock
);
3484 zgc_stats
.zgc_invoked
++;
3485 old_pgs_freed
= zgc_stats
.pgs_freed
;
3487 simple_lock(&all_zones_lock
);
3488 max_zones
= num_zones
;
3490 simple_unlock(&all_zones_lock
);
3492 if (zalloc_debug
& ZALLOC_DEBUG_ZONEGC
)
3493 kprintf("zone_gc(all_zones=%s) starting...\n", all_zones
? "TRUE" : "FALSE");
3496 * it's ok to allow eager kernel preemption while
3497 * while holding a zone lock since it's taken
3498 * as a spin lock (which prevents preemption)
3500 thread_set_eager_preempt(mythread
);
3503 for (i
= 0; i
< zone_pages
; i
++) {
3504 struct zone_page_table_entry
*zp
;
3506 zp
= zone_page_table_lookup(i
);
3507 assert(!zp
|| (zp
->collect_count
== 0));
3509 #endif /* MACH_ASSERT */
3511 for (i
= 0; i
< max_zones
; i
++, z
= z
->next_zone
) {
3513 vm_size_t elt_size
, size_freed
;
3514 struct zone_free_element
*elt
, *base_elt
, *base_prev
, *prev
, *scan
, *keep
, *tail
;
3515 int kmem_frees
= 0, total_freed_pages
= 0;
3516 struct zone_page_metadata
*page_meta
;
3517 queue_head_t page_meta_head
;
3519 assert(z
!= ZONE_NULL
);
3521 if (!z
->collectable
)
3524 if (all_zones
== FALSE
&& z
->elem_size
< ZONEGC_SMALL_ELEMENT_SIZE
&& !z
->use_page_list
)
3529 elt_size
= z
->elem_size
;
3532 * Do a quick feasibility check before we scan the zone:
3533 * skip unless there is likelihood of getting pages back
3534 * (i.e we need a whole allocation block's worth of free
3535 * elements before we can garbage collect) and
3536 * the zone has more than 10 percent of it's elements free
3537 * or the element size is a multiple of the PAGE_SIZE
3539 if ((elt_size
& PAGE_MASK
) &&
3540 !z
->use_page_list
&&
3541 (((z
->cur_size
- z
->count
* elt_size
) <= (2 * z
->alloc_size
)) ||
3542 ((z
->cur_size
- z
->count
* elt_size
) <= (z
->cur_size
/ 10)))) {
3550 * Snatch all of the free elements away from the zone.
3553 if (z
->use_page_list
) {
3554 queue_new_head(&z
->pages
.all_free
, &page_meta_head
, struct zone_page_metadata
*, pages
);
3555 queue_init(&z
->pages
.all_free
);
3557 scan
= (void *)z
->free_elements
;
3558 z
->free_elements
= 0;
3563 if (z
->use_page_list
) {
3565 * For zones that maintain page lists (which in turn
3566 * track free elements on those pages), zone_gc()
3567 * is incredibly easy, and we bypass all the logic
3568 * for scanning elements and mapping them to
3574 queue_iterate(&page_meta_head
, page_meta
, struct zone_page_metadata
*, pages
) {
3575 assert(from_zone_map((vm_address_t
)page_meta
, sizeof(*page_meta
))); /* foreign elements should be in any_free_foreign */
3577 zgc_stats
.elems_freed
+= page_meta
->free_count
;
3578 size_freed
+= elt_size
* page_meta
->free_count
;
3579 zgc_stats
.elems_collected
+= page_meta
->free_count
;
3584 if (size_freed
> 0) {
3585 z
->cur_size
-= size_freed
;
3586 z
->countfree
-= size_freed
/elt_size
;
3589 z
->doing_gc
= FALSE
;
3597 if (queue_empty(&page_meta_head
))
3600 thread_clear_eager_preempt(mythread
);
3602 while ((page_meta
= (struct zone_page_metadata
*)dequeue_head(&page_meta_head
)) != NULL
) {
3603 vm_address_t free_page_address
;
3605 free_page_address
= trunc_page((vm_address_t
)page_meta
);
3607 free_page_address
= zone_virtual_addr(free_page_address
);
3609 kmem_free(zone_map
, free_page_address
, PAGE_SIZE
);
3610 ZONE_PAGE_COUNT_DECR(z
, 1);
3611 total_freed_pages
++;
3612 zgc_stats
.pgs_freed
+= 1;
3614 if (++kmem_frees
== 32) {
3615 thread_yield_internal(1);
3620 if (zalloc_debug
& ZALLOC_DEBUG_ZONEGC
)
3621 kprintf("zone_gc() of zone %s freed %lu elements, %d pages\n", z
->zone_name
, (unsigned long)size_freed
/elt_size
, total_freed_pages
);
3623 thread_set_eager_preempt(mythread
);
3624 continue; /* go to next zone */
3630 * Determine which elements we can attempt to collect
3631 * and count them up in the page table. Foreign elements
3632 * are returned to the zone.
3635 prev
= (void *)&scan
;
3637 n
= 0; tail
= keep
= NULL
;
3639 zone_free_page_head
= ZONE_PAGE_INDEX_INVALID
;
3640 zone_free_page_tail
= ZONE_PAGE_INDEX_INVALID
;
3643 while (elt
!= NULL
) {
3644 if (from_zone_map(elt
, elt_size
)) {
3645 zone_page_collect((vm_offset_t
)elt
, elt_size
);
3650 ++zgc_stats
.elems_collected
;
3656 append_zone_element(z
, tail
, elt
);
3660 append_zone_element(z
, prev
, elt
->next
);
3662 append_zone_element(z
, tail
, NULL
);
3666 * Dribble back the elements we are keeping.
3667 * If there are none, give some elements that we haven't looked at yet
3668 * back to the freelist so that others waiting on the zone don't get stuck
3669 * for too long. This might prevent us from recovering some memory,
3670 * but allows us to avoid having to allocate new memory to serve requests
3671 * while zone_gc has all the free memory tied up.
3672 * <rdar://problem/3893406>
3676 if (z
->waiting
== TRUE
) {
3677 /* z->waiting checked without lock held, rechecked below after locking */
3681 add_list_to_zone(z
, keep
, tail
);
3687 while ((elt
!= NULL
) && (++m
< 50)) {
3692 /* Extract the elements from the list and
3694 append_zone_element(z
, prev
, NULL
);
3695 add_list_to_zone(z
, base_elt
, prev
);
3696 append_zone_element(z
, base_prev
, elt
);
3713 * Return any remaining elements.
3719 add_list_to_zone(z
, keep
, tail
);
3732 * Determine which pages we can reclaim and
3733 * free those elements.
3738 n
= 0; tail
= keep
= NULL
;
3740 while (elt
!= NULL
) {
3741 if (zone_page_collectable((vm_offset_t
)elt
, elt_size
)) {
3742 struct zone_free_element
*next_elt
= elt
->next
;
3744 size_freed
+= elt_size
;
3747 * If this is the last allocation on the page(s),
3748 * we may use their storage to maintain the linked
3749 * list of free-able pages. So store elt->next because
3750 * "elt" may be scribbled over.
3752 zone_page_free_element(&zone_free_page_head
, &zone_free_page_tail
, (vm_offset_t
)elt
, elt_size
);
3756 ++zgc_stats
.elems_freed
;
3759 zone_page_keep((vm_offset_t
)elt
, elt_size
);
3764 append_zone_element(z
, tail
, elt
);
3769 append_zone_element(z
, tail
, NULL
);
3771 ++zgc_stats
.elems_kept
;
3775 * Dribble back the elements we are keeping,
3776 * and update the zone size info.
3782 z
->cur_size
-= size_freed
;
3783 z
->countfree
-= size_freed
/elt_size
;
3787 add_list_to_zone(z
, keep
, tail
);
3797 n
= 0; tail
= keep
= NULL
;
3802 * Return any remaining elements, and update
3803 * the zone size info.
3808 if (size_freed
> 0 || keep
!= NULL
) {
3810 z
->cur_size
-= size_freed
;
3811 z
->countfree
-= size_freed
/elt_size
;
3814 add_list_to_zone(z
, keep
, tail
);
3819 z
->doing_gc
= FALSE
;
3826 if (zone_free_page_head
== ZONE_PAGE_INDEX_INVALID
)
3830 * we don't want to allow eager kernel preemption while holding the
3831 * various locks taken in the kmem_free path of execution
3833 thread_clear_eager_preempt(mythread
);
3837 * This loop counts the number of pages that should be freed by the
3838 * next loop that tries to coalesce the kmem_frees()
3840 uint32_t pages_to_free_count
= 0;
3842 zone_page_index_t index
;
3843 for (index
= zone_free_page_head
; index
!= ZONE_PAGE_INDEX_INVALID
;) {
3844 pages_to_free_count
++;
3845 fpa
= zone_map_min_address
+ PAGE_SIZE
* ((vm_size_t
)index
);
3846 index
= *(zone_page_index_t
*)fpa
;
3850 * Reclaim the pages we are freeing.
3852 while (zone_free_page_head
!= ZONE_PAGE_INDEX_INVALID
) {
3853 zone_page_index_t zind
= zone_free_page_head
;
3854 vm_address_t free_page_address
;
3858 * Use the first word of the page about to be freed to find the next free page
3860 free_page_address
= zone_map_min_address
+ PAGE_SIZE
* ((vm_size_t
)zind
);
3861 zone_free_page_head
= *(zone_page_index_t
*)free_page_address
;
3864 total_freed_pages
++;
3866 while (zone_free_page_head
!= ZONE_PAGE_INDEX_INVALID
) {
3867 zone_page_index_t next_zind
= zone_free_page_head
;
3868 vm_address_t next_free_page_address
;
3870 next_free_page_address
= zone_map_min_address
+ PAGE_SIZE
* ((vm_size_t
)next_zind
);
3872 if (next_free_page_address
== (free_page_address
- PAGE_SIZE
)) {
3873 free_page_address
= next_free_page_address
;
3874 } else if (next_free_page_address
!= (free_page_address
+ (PAGE_SIZE
* page_count
)))
3877 zone_free_page_head
= *(zone_page_index_t
*)next_free_page_address
;
3879 total_freed_pages
++;
3881 kmem_free(zone_map
, free_page_address
, page_count
* PAGE_SIZE
);
3882 ZONE_PAGE_COUNT_DECR(z
, page_count
);
3883 zgc_stats
.pgs_freed
+= page_count
;
3884 pages_to_free_count
-= page_count
;
3886 if (++kmem_frees
== 32) {
3887 thread_yield_internal(1);
3892 /* Check that we actually free the exact number of pages we were supposed to */
3893 assert(pages_to_free_count
== 0);
3895 if (zalloc_debug
& ZALLOC_DEBUG_ZONEGC
)
3896 kprintf("zone_gc() of zone %s freed %lu elements, %d pages\n", z
->zone_name
, (unsigned long)size_freed
/elt_size
, total_freed_pages
);
3898 thread_set_eager_preempt(mythread
);
3901 if (old_pgs_freed
== zgc_stats
.pgs_freed
)
3902 zgc_stats
.zgc_bailed
++;
3904 thread_clear_eager_preempt(mythread
);
3906 lck_mtx_unlock(&zone_gc_lock
);
3910 extern vm_offset_t kmapoff_kaddr
;
3911 extern unsigned int kmapoff_pgcnt
;
3916 * Called by the pageout daemon when the system needs more free pages.
3920 consider_zone_gc(boolean_t force
)
3922 boolean_t all_zones
= FALSE
;
3924 if (kmapoff_kaddr
!= 0) {
3926 * One-time reclaim of kernel_map resources we allocated in
3929 (void) vm_deallocate(kernel_map
,
3930 kmapoff_kaddr
, kmapoff_pgcnt
* PAGE_SIZE_64
);
3934 if (zone_gc_allowed
&&
3935 (zone_gc_allowed_by_time_throttle
||
3938 if (zone_gc_allowed_by_time_throttle
== TRUE
) {
3939 zone_gc_allowed_by_time_throttle
= FALSE
;
3942 zone_gc_forced
= FALSE
;
3949 * By default, don't attempt zone GC more frequently
3950 * than once / 1 minutes.
3953 compute_zone_gc_throttle(void *arg __unused
)
3955 zone_gc_allowed_by_time_throttle
= TRUE
;
3959 #if CONFIG_TASK_ZONE_INFO
3964 mach_zone_name_array_t
*namesp
,
3965 mach_msg_type_number_t
*namesCntp
,
3966 task_zone_info_array_t
*infop
,
3967 mach_msg_type_number_t
*infoCntp
)
3969 mach_zone_name_t
*names
;
3970 vm_offset_t names_addr
;
3971 vm_size_t names_size
;
3972 task_zone_info_t
*info
;
3973 vm_offset_t info_addr
;
3974 vm_size_t info_size
;
3975 unsigned int max_zones
, i
;
3977 mach_zone_name_t
*zn
;
3978 task_zone_info_t
*zi
;
3985 if (task
== TASK_NULL
)
3986 return KERN_INVALID_TASK
;
3989 * We assume that zones aren't freed once allocated.
3990 * We won't pick up any zones that are allocated later.
3993 simple_lock(&all_zones_lock
);
3994 max_zones
= (unsigned int)(num_zones
+ num_fake_zones
);
3996 simple_unlock(&all_zones_lock
);
3998 names_size
= round_page(max_zones
* sizeof *names
);
3999 kr
= kmem_alloc_pageable(ipc_kernel_map
,
4000 &names_addr
, names_size
, VM_KERN_MEMORY_IPC
);
4001 if (kr
!= KERN_SUCCESS
)
4003 names
= (mach_zone_name_t
*) names_addr
;
4005 info_size
= round_page(max_zones
* sizeof *info
);
4006 kr
= kmem_alloc_pageable(ipc_kernel_map
,
4007 &info_addr
, info_size
, VM_KERN_MEMORY_IPC
);
4008 if (kr
!= KERN_SUCCESS
) {
4009 kmem_free(ipc_kernel_map
,
4010 names_addr
, names_size
);
4014 info
= (task_zone_info_t
*) info_addr
;
4019 for (i
= 0; i
< max_zones
- num_fake_zones
; i
++) {
4022 assert(z
!= ZONE_NULL
);
4028 simple_lock(&all_zones_lock
);
4030 simple_unlock(&all_zones_lock
);
4032 /* assuming here the name data is static */
4033 (void) strncpy(zn
->mzn_name
, zcopy
.zone_name
,
4034 sizeof zn
->mzn_name
);
4035 zn
->mzn_name
[sizeof zn
->mzn_name
- 1] = '\0';
4037 zi
->tzi_count
= (uint64_t)zcopy
.count
;
4038 zi
->tzi_cur_size
= ptoa_64(zcopy
.page_count
);
4039 zi
->tzi_max_size
= (uint64_t)zcopy
.max_size
;
4040 zi
->tzi_elem_size
= (uint64_t)zcopy
.elem_size
;
4041 zi
->tzi_alloc_size
= (uint64_t)zcopy
.alloc_size
;
4042 zi
->tzi_sum_size
= zcopy
.sum_count
* zcopy
.elem_size
;
4043 zi
->tzi_exhaustible
= (uint64_t)zcopy
.exhaustible
;
4044 zi
->tzi_collectable
= (uint64_t)zcopy
.collectable
;
4045 zi
->tzi_caller_acct
= (uint64_t)zcopy
.caller_acct
;
4046 if (task
->tkm_zinfo
!= NULL
) {
4047 zi
->tzi_task_alloc
= task
->tkm_zinfo
[zcopy
.index
].alloc
;
4048 zi
->tzi_task_free
= task
->tkm_zinfo
[zcopy
.index
].free
;
4050 zi
->tzi_task_alloc
= 0;
4051 zi
->tzi_task_free
= 0;
4058 * loop through the fake zones and fill them using the specialized
4061 for (i
= 0; i
< num_fake_zones
; i
++) {
4062 int count
, collectable
, exhaustible
, caller_acct
, index
;
4063 vm_size_t cur_size
, max_size
, elem_size
, alloc_size
;
4066 strncpy(zn
->mzn_name
, fake_zones
[i
].name
, sizeof zn
->mzn_name
);
4067 zn
->mzn_name
[sizeof zn
->mzn_name
- 1] = '\0';
4068 fake_zones
[i
].query(&count
, &cur_size
,
4069 &max_size
, &elem_size
,
4070 &alloc_size
, &sum_size
,
4071 &collectable
, &exhaustible
, &caller_acct
);
4072 zi
->tzi_count
= (uint64_t)count
;
4073 zi
->tzi_cur_size
= (uint64_t)cur_size
;
4074 zi
->tzi_max_size
= (uint64_t)max_size
;
4075 zi
->tzi_elem_size
= (uint64_t)elem_size
;
4076 zi
->tzi_alloc_size
= (uint64_t)alloc_size
;
4077 zi
->tzi_sum_size
= sum_size
;
4078 zi
->tzi_collectable
= (uint64_t)collectable
;
4079 zi
->tzi_exhaustible
= (uint64_t)exhaustible
;
4080 zi
->tzi_caller_acct
= (uint64_t)caller_acct
;
4081 if (task
->tkm_zinfo
!= NULL
) {
4082 index
= ZINFO_SLOTS
- num_fake_zones
+ i
;
4083 zi
->tzi_task_alloc
= task
->tkm_zinfo
[index
].alloc
;
4084 zi
->tzi_task_free
= task
->tkm_zinfo
[index
].free
;
4086 zi
->tzi_task_alloc
= 0;
4087 zi
->tzi_task_free
= 0;
4093 used
= max_zones
* sizeof *names
;
4094 if (used
!= names_size
)
4095 bzero((char *) (names_addr
+ used
), names_size
- used
);
4097 kr
= vm_map_copyin(ipc_kernel_map
, (vm_map_address_t
)names_addr
,
4098 (vm_map_size_t
)used
, TRUE
, ©
);
4099 assert(kr
== KERN_SUCCESS
);
4101 *namesp
= (mach_zone_name_t
*) copy
;
4102 *namesCntp
= max_zones
;
4104 used
= max_zones
* sizeof *info
;
4106 if (used
!= info_size
)
4107 bzero((char *) (info_addr
+ used
), info_size
- used
);
4109 kr
= vm_map_copyin(ipc_kernel_map
, (vm_map_address_t
)info_addr
,
4110 (vm_map_size_t
)used
, TRUE
, ©
);
4111 assert(kr
== KERN_SUCCESS
);
4113 *infop
= (task_zone_info_t
*) copy
;
4114 *infoCntp
= max_zones
;
4116 return KERN_SUCCESS
;
4119 #else /* CONFIG_TASK_ZONE_INFO */
4123 __unused task_t task
,
4124 __unused mach_zone_name_array_t
*namesp
,
4125 __unused mach_msg_type_number_t
*namesCntp
,
4126 __unused task_zone_info_array_t
*infop
,
4127 __unused mach_msg_type_number_t
*infoCntp
)
4129 return KERN_FAILURE
;
4132 #endif /* CONFIG_TASK_ZONE_INFO */
4137 mach_zone_name_array_t
*namesp
,
4138 mach_msg_type_number_t
*namesCntp
,
4139 mach_zone_info_array_t
*infop
,
4140 mach_msg_type_number_t
*infoCntp
)
4142 return (mach_memory_info(host
, namesp
, namesCntp
, infop
, infoCntp
, NULL
, NULL
));
4148 mach_zone_name_array_t
*namesp
,
4149 mach_msg_type_number_t
*namesCntp
,
4150 mach_zone_info_array_t
*infop
,
4151 mach_msg_type_number_t
*infoCntp
,
4152 mach_memory_info_array_t
*memoryInfop
,
4153 mach_msg_type_number_t
*memoryInfoCntp
)
4155 mach_zone_name_t
*names
;
4156 vm_offset_t names_addr
;
4157 vm_size_t names_size
;
4159 mach_zone_info_t
*info
;
4160 vm_offset_t info_addr
;
4161 vm_size_t info_size
;
4163 mach_memory_info_t
*memory_info
;
4164 vm_offset_t memory_info_addr
;
4165 vm_size_t memory_info_size
;
4166 vm_size_t memory_info_vmsize
;
4167 unsigned int num_sites
;
4169 unsigned int max_zones
, i
;
4171 mach_zone_name_t
*zn
;
4172 mach_zone_info_t
*zi
;
4179 if (host
== HOST_NULL
)
4180 return KERN_INVALID_HOST
;
4181 #if CONFIG_DEBUGGER_FOR_ZONE_INFO
4182 if (!PE_i_can_has_debugger(NULL
))
4183 return KERN_INVALID_HOST
;
4187 * We assume that zones aren't freed once allocated.
4188 * We won't pick up any zones that are allocated later.
4191 simple_lock(&all_zones_lock
);
4192 max_zones
= (unsigned int)(num_zones
+ num_fake_zones
);
4194 simple_unlock(&all_zones_lock
);
4196 names_size
= round_page(max_zones
* sizeof *names
);
4197 kr
= kmem_alloc_pageable(ipc_kernel_map
,
4198 &names_addr
, names_size
, VM_KERN_MEMORY_IPC
);
4199 if (kr
!= KERN_SUCCESS
)
4201 names
= (mach_zone_name_t
*) names_addr
;
4203 info_size
= round_page(max_zones
* sizeof *info
);
4204 kr
= kmem_alloc_pageable(ipc_kernel_map
,
4205 &info_addr
, info_size
, VM_KERN_MEMORY_IPC
);
4206 if (kr
!= KERN_SUCCESS
) {
4207 kmem_free(ipc_kernel_map
,
4208 names_addr
, names_size
);
4211 info
= (mach_zone_info_t
*) info_addr
;
4214 memory_info_addr
= 0;
4215 if (memoryInfop
&& memoryInfoCntp
)
4217 num_sites
= VM_KERN_MEMORY_COUNT
+ VM_KERN_COUNTER_COUNT
;
4218 memory_info_size
= num_sites
* sizeof(*info
);
4219 memory_info_vmsize
= round_page(memory_info_size
);
4220 kr
= kmem_alloc_pageable(ipc_kernel_map
,
4221 &memory_info_addr
, memory_info_vmsize
, VM_KERN_MEMORY_IPC
);
4222 if (kr
!= KERN_SUCCESS
) {
4223 kmem_free(ipc_kernel_map
,
4224 names_addr
, names_size
);
4225 kmem_free(ipc_kernel_map
,
4226 info_addr
, info_size
);
4230 kr
= vm_map_wire(ipc_kernel_map
, memory_info_addr
, memory_info_addr
+ memory_info_vmsize
,
4231 VM_PROT_READ
|VM_PROT_WRITE
|VM_PROT_MEMORY_TAG_MAKE(VM_KERN_MEMORY_IPC
), FALSE
);
4232 assert(kr
== KERN_SUCCESS
);
4234 memory_info
= (mach_memory_info_t
*) memory_info_addr
;
4235 vm_page_diagnose(memory_info
, num_sites
);
4237 kr
= vm_map_unwire(ipc_kernel_map
, memory_info_addr
, memory_info_addr
+ memory_info_vmsize
, FALSE
);
4238 assert(kr
== KERN_SUCCESS
);
4244 for (i
= 0; i
< max_zones
- num_fake_zones
; i
++) {
4247 assert(z
!= ZONE_NULL
);
4253 simple_lock(&all_zones_lock
);
4255 simple_unlock(&all_zones_lock
);
4257 /* assuming here the name data is static */
4258 (void) strncpy(zn
->mzn_name
, zcopy
.zone_name
,
4259 sizeof zn
->mzn_name
);
4260 zn
->mzn_name
[sizeof zn
->mzn_name
- 1] = '\0';
4262 zi
->mzi_count
= (uint64_t)zcopy
.count
;
4263 zi
->mzi_cur_size
= ptoa_64(zcopy
.page_count
);
4264 zi
->mzi_max_size
= (uint64_t)zcopy
.max_size
;
4265 zi
->mzi_elem_size
= (uint64_t)zcopy
.elem_size
;
4266 zi
->mzi_alloc_size
= (uint64_t)zcopy
.alloc_size
;
4267 zi
->mzi_sum_size
= zcopy
.sum_count
* zcopy
.elem_size
;
4268 zi
->mzi_exhaustible
= (uint64_t)zcopy
.exhaustible
;
4269 zi
->mzi_collectable
= (uint64_t)zcopy
.collectable
;
4275 * loop through the fake zones and fill them using the specialized
4278 for (i
= 0; i
< num_fake_zones
; i
++) {
4279 int count
, collectable
, exhaustible
, caller_acct
;
4280 vm_size_t cur_size
, max_size
, elem_size
, alloc_size
;
4283 strncpy(zn
->mzn_name
, fake_zones
[i
].name
, sizeof zn
->mzn_name
);
4284 zn
->mzn_name
[sizeof zn
->mzn_name
- 1] = '\0';
4285 fake_zones
[i
].query(&count
, &cur_size
,
4286 &max_size
, &elem_size
,
4287 &alloc_size
, &sum_size
,
4288 &collectable
, &exhaustible
, &caller_acct
);
4289 zi
->mzi_count
= (uint64_t)count
;
4290 zi
->mzi_cur_size
= (uint64_t)cur_size
;
4291 zi
->mzi_max_size
= (uint64_t)max_size
;
4292 zi
->mzi_elem_size
= (uint64_t)elem_size
;
4293 zi
->mzi_alloc_size
= (uint64_t)alloc_size
;
4294 zi
->mzi_sum_size
= sum_size
;
4295 zi
->mzi_collectable
= (uint64_t)collectable
;
4296 zi
->mzi_exhaustible
= (uint64_t)exhaustible
;
4302 used
= max_zones
* sizeof *names
;
4303 if (used
!= names_size
)
4304 bzero((char *) (names_addr
+ used
), names_size
- used
);
4306 kr
= vm_map_copyin(ipc_kernel_map
, (vm_map_address_t
)names_addr
,
4307 (vm_map_size_t
)used
, TRUE
, ©
);
4308 assert(kr
== KERN_SUCCESS
);
4310 *namesp
= (mach_zone_name_t
*) copy
;
4311 *namesCntp
= max_zones
;
4313 used
= max_zones
* sizeof *info
;
4315 if (used
!= info_size
)
4316 bzero((char *) (info_addr
+ used
), info_size
- used
);
4318 kr
= vm_map_copyin(ipc_kernel_map
, (vm_map_address_t
)info_addr
,
4319 (vm_map_size_t
)used
, TRUE
, ©
);
4320 assert(kr
== KERN_SUCCESS
);
4322 *infop
= (mach_zone_info_t
*) copy
;
4323 *infoCntp
= max_zones
;
4325 if (memoryInfop
&& memoryInfoCntp
)
4327 kr
= vm_map_copyin(ipc_kernel_map
, (vm_map_address_t
)memory_info_addr
,
4328 (vm_map_size_t
)memory_info_size
, TRUE
, ©
);
4329 assert(kr
== KERN_SUCCESS
);
4331 *memoryInfop
= (mach_memory_info_t
*) copy
;
4332 *memoryInfoCntp
= num_sites
;
4335 return KERN_SUCCESS
;
4339 * host_zone_info - LEGACY user interface for Mach zone information
4340 * Should use mach_zone_info() instead!
4345 zone_name_array_t
*namesp
,
4346 mach_msg_type_number_t
*namesCntp
,
4347 zone_info_array_t
*infop
,
4348 mach_msg_type_number_t
*infoCntp
)
4351 vm_offset_t names_addr
;
4352 vm_size_t names_size
;
4354 vm_offset_t info_addr
;
4355 vm_size_t info_size
;
4356 unsigned int max_zones
, i
;
4366 if (host
== HOST_NULL
)
4367 return KERN_INVALID_HOST
;
4368 #if CONFIG_DEBUGGER_FOR_ZONE_INFO
4369 if (!PE_i_can_has_debugger(NULL
))
4370 return KERN_INVALID_HOST
;
4373 #if defined(__LP64__)
4374 if (!thread_is_64bit(current_thread()))
4375 return KERN_NOT_SUPPORTED
;
4377 if (thread_is_64bit(current_thread()))
4378 return KERN_NOT_SUPPORTED
;
4382 * We assume that zones aren't freed once allocated.
4383 * We won't pick up any zones that are allocated later.
4386 simple_lock(&all_zones_lock
);
4387 max_zones
= (unsigned int)(num_zones
+ num_fake_zones
);
4389 simple_unlock(&all_zones_lock
);
4391 names_size
= round_page(max_zones
* sizeof *names
);
4392 kr
= kmem_alloc_pageable(ipc_kernel_map
,
4393 &names_addr
, names_size
, VM_KERN_MEMORY_IPC
);
4394 if (kr
!= KERN_SUCCESS
)
4396 names
= (zone_name_t
*) names_addr
;
4398 info_size
= round_page(max_zones
* sizeof *info
);
4399 kr
= kmem_alloc_pageable(ipc_kernel_map
,
4400 &info_addr
, info_size
, VM_KERN_MEMORY_IPC
);
4401 if (kr
!= KERN_SUCCESS
) {
4402 kmem_free(ipc_kernel_map
,
4403 names_addr
, names_size
);
4407 info
= (zone_info_t
*) info_addr
;
4412 for (i
= 0; i
< max_zones
- num_fake_zones
; i
++) {
4415 assert(z
!= ZONE_NULL
);
4421 simple_lock(&all_zones_lock
);
4423 simple_unlock(&all_zones_lock
);
4425 /* assuming here the name data is static */
4426 (void) strncpy(zn
->zn_name
, zcopy
.zone_name
,
4427 sizeof zn
->zn_name
);
4428 zn
->zn_name
[sizeof zn
->zn_name
- 1] = '\0';
4430 zi
->zi_count
= zcopy
.count
;
4431 zi
->zi_cur_size
= ptoa(zcopy
.page_count
);
4432 zi
->zi_max_size
= zcopy
.max_size
;
4433 zi
->zi_elem_size
= zcopy
.elem_size
;
4434 zi
->zi_alloc_size
= zcopy
.alloc_size
;
4435 zi
->zi_exhaustible
= zcopy
.exhaustible
;
4436 zi
->zi_collectable
= zcopy
.collectable
;
4443 * loop through the fake zones and fill them using the specialized
4446 for (i
= 0; i
< num_fake_zones
; i
++) {
4449 strncpy(zn
->zn_name
, fake_zones
[i
].name
, sizeof zn
->zn_name
);
4450 zn
->zn_name
[sizeof zn
->zn_name
- 1] = '\0';
4451 fake_zones
[i
].query(&zi
->zi_count
, &zi
->zi_cur_size
,
4452 &zi
->zi_max_size
, &zi
->zi_elem_size
,
4453 &zi
->zi_alloc_size
, &sum_space
,
4454 &zi
->zi_collectable
, &zi
->zi_exhaustible
, &caller_acct
);
4459 used
= max_zones
* sizeof *names
;
4460 if (used
!= names_size
)
4461 bzero((char *) (names_addr
+ used
), names_size
- used
);
4463 kr
= vm_map_copyin(ipc_kernel_map
, (vm_map_address_t
)names_addr
,
4464 (vm_map_size_t
)used
, TRUE
, ©
);
4465 assert(kr
== KERN_SUCCESS
);
4467 *namesp
= (zone_name_t
*) copy
;
4468 *namesCntp
= max_zones
;
4470 used
= max_zones
* sizeof *info
;
4471 if (used
!= info_size
)
4472 bzero((char *) (info_addr
+ used
), info_size
- used
);
4474 kr
= vm_map_copyin(ipc_kernel_map
, (vm_map_address_t
)info_addr
,
4475 (vm_map_size_t
)used
, TRUE
, ©
);
4476 assert(kr
== KERN_SUCCESS
);
4478 *infop
= (zone_info_t
*) copy
;
4479 *infoCntp
= max_zones
;
4481 return KERN_SUCCESS
;
4489 if (host
== HOST_NULL
)
4490 return KERN_INVALID_HOST
;
4492 consider_zone_gc(TRUE
);
4494 return (KERN_SUCCESS
);
4497 extern unsigned int stack_total
;
4498 extern unsigned long long stack_allocs
;
4500 #if defined(__i386__) || defined (__x86_64__)
4501 extern unsigned int inuse_ptepages_count
;
4502 extern long long alloc_ptepages_count
;
4505 void zone_display_zprint()
4510 if(first_zone
!=NULL
) {
4511 the_zone
= first_zone
;
4512 for (i
= 0; i
< num_zones
; i
++) {
4513 if(the_zone
->cur_size
> (1024*1024)) {
4514 printf("%.20s:\t%lu\n",the_zone
->zone_name
,(uintptr_t)the_zone
->cur_size
);
4517 if(the_zone
->next_zone
== NULL
) {
4521 the_zone
= the_zone
->next_zone
;
4525 printf("Kernel Stacks:\t%lu\n",(uintptr_t)(kernel_stack_size
* stack_total
));
4527 #if defined(__i386__) || defined (__x86_64__)
4528 printf("PageTables:\t%lu\n",(uintptr_t)(PAGE_SIZE
* inuse_ptepages_count
));
4531 printf("Kalloc.Large:\t%lu\n",(uintptr_t)kalloc_large_total
);
4535 zone_find_largest(void)
4538 unsigned int max_zones
;
4540 zone_t zone_largest
;
4542 simple_lock(&all_zones_lock
);
4543 the_zone
= first_zone
;
4544 max_zones
= num_zones
;
4545 simple_unlock(&all_zones_lock
);
4547 zone_largest
= the_zone
;
4548 for (i
= 0; i
< max_zones
; i
++) {
4549 if (the_zone
->cur_size
> zone_largest
->cur_size
) {
4550 zone_largest
= the_zone
;
4553 if (the_zone
->next_zone
== NULL
) {
4557 the_zone
= the_zone
->next_zone
;
4559 return zone_largest
;
4564 /* should we care about locks here ? */
4566 #define zone_in_use(z) ( z->count || z->free_elements \
4567 || !queue_empty(&z->pages.all_free) \
4568 || !queue_empty(&z->pages.intermediate) \
4569 || (z->allows_foreign && !queue_empty(&z->pages.any_free_foreign)))
4575 if (zone_debug_enabled(z
) || zone_in_use(z
) ||
4576 z
->alloc_size
< (z
->elem_size
+ ZONE_DEBUG_OFFSET
))
4578 queue_init(&z
->active_zones
);
4579 z
->elem_size
+= ZONE_DEBUG_OFFSET
;
4586 if (!zone_debug_enabled(z
) || zone_in_use(z
))
4588 z
->elem_size
-= ZONE_DEBUG_OFFSET
;
4589 z
->active_zones
.next
= z
->active_zones
.prev
= NULL
;
4593 #endif /* ZONE_DEBUG */