]> git.saurik.com Git - apple/xnu.git/blob - pexpert/arm/pe_identify_machine.c
34ec23be76a04290cb10264e771543a16c91a20f
[apple/xnu.git] / pexpert / arm / pe_identify_machine.c
1 /*
2 * Copyright (c) 2007-2019 Apple Inc. All rights reserved.
3 * Copyright (c) 2000-2006 Apple Computer, Inc. All rights reserved.
4 */
5 #include <pexpert/pexpert.h>
6 #include <pexpert/boot.h>
7 #include <pexpert/protos.h>
8 #include <pexpert/device_tree.h>
9
10 #if defined(__arm__)
11 #include <pexpert/arm/board_config.h>
12 #elif defined(__arm64__)
13 #include <pexpert/arm64/board_config.h>
14 #endif
15
16 #include <kern/clock.h>
17 #include <machine/machine_routines.h>
18 #if DEVELOPMENT || DEBUG
19 #include <kern/simple_lock.h>
20 #include <kern/cpu_number.h>
21 #endif
22 /* Local declarations */
23 void pe_identify_machine(boot_args * bootArgs);
24
25 /* External declarations */
26 extern void clean_mmu_dcache(void);
27
28 static char *gPESoCDeviceType;
29 static char gPESoCDeviceTypeBuffer[SOC_DEVICE_TYPE_BUFFER_SIZE];
30 static vm_offset_t gPESoCBasePhys;
31
32 static uint32_t gTCFG0Value;
33
34 static uint32_t pe_arm_init_timer(void *args);
35
36 #if DEVELOPMENT || DEBUG
37 decl_simple_lock_data(, panic_hook_lock);
38 #endif
39 /*
40 * pe_identify_machine:
41 *
42 * Sets up platform parameters. Returns: nothing
43 */
44 void
45 pe_identify_machine(boot_args * bootArgs)
46 {
47 OpaqueDTEntryIterator iter;
48 DTEntry cpus, cpu;
49 uint32_t mclk = 0, hclk = 0, pclk = 0, tclk = 0, use_dt = 0;
50 unsigned long *value;
51 unsigned int size;
52 int err;
53
54 (void)bootArgs;
55
56 if (pe_arm_get_soc_base_phys() == 0) {
57 return;
58 }
59
60 /* Clear the gPEClockFrequencyInfo struct */
61 bzero((void *)&gPEClockFrequencyInfo, sizeof(clock_frequency_info_t));
62
63 if (!strcmp(gPESoCDeviceType, "s3c2410-io")) {
64 mclk = 192 << 23;
65 hclk = mclk / 2;
66 pclk = hclk / 2;
67 tclk = (1 << (23 + 2)) / 10;
68 tclk = pclk / tclk;
69
70 gTCFG0Value = tclk - 1;
71
72 tclk = pclk / (4 * tclk); /* Calculate the "actual"
73 * Timer0 frequency in fixed
74 * point. */
75
76 mclk = (mclk >> 17) * (125 * 125);
77 hclk = (hclk >> 17) * (125 * 125);
78 pclk = (pclk >> 17) * (125 * 125);
79 tclk = (((((tclk * 125) + 2) >> 2) * 125) + (1 << 14)) >> 15;
80 } else if (!strcmp(gPESoCDeviceType, "integratorcp-io")) {
81 mclk = 200000000;
82 hclk = mclk / 2;
83 pclk = hclk / 2;
84 tclk = 100000;
85 } else if (!strcmp(gPESoCDeviceType, "olocreek-io")) {
86 mclk = 1000000000;
87 hclk = mclk / 8;
88 pclk = hclk / 2;
89 tclk = pclk;
90 } else if (!strcmp(gPESoCDeviceType, "omap3430sdp-io")) {
91 mclk = 332000000;
92 hclk = 19200000;
93 pclk = hclk;
94 tclk = pclk;
95 } else if (!strcmp(gPESoCDeviceType, "s5i3000-io")) {
96 mclk = 400000000;
97 hclk = mclk / 4;
98 pclk = hclk / 2;
99 tclk = 100000; /* timer is at 100khz */
100 } else {
101 use_dt = 1;
102 }
103
104 if (use_dt) {
105 /* Start with default values. */
106 gPEClockFrequencyInfo.timebase_frequency_hz = 24000000;
107 gPEClockFrequencyInfo.bus_clock_rate_hz = 100000000;
108 gPEClockFrequencyInfo.cpu_clock_rate_hz = 400000000;
109
110 err = DTLookupEntry(NULL, "/cpus", &cpus);
111 assert(err == kSuccess);
112
113 err = DTInitEntryIterator(cpus, &iter);
114 assert(err == kSuccess);
115
116 while (kSuccess == DTIterateEntries(&iter, &cpu)) {
117 if ((kSuccess != DTGetProperty(cpu, "state", (void **)&value, &size)) ||
118 (strncmp((char*)value, "running", size) != 0)) {
119 continue;
120 }
121
122 /* Find the time base frequency first. */
123 if (DTGetProperty(cpu, "timebase-frequency", (void **)&value, &size) == kSuccess) {
124 /*
125 * timebase_frequency_hz is only 32 bits, and
126 * the device tree should never provide 64
127 * bits so this if should never be taken.
128 */
129 if (size == 8) {
130 gPEClockFrequencyInfo.timebase_frequency_hz = *(unsigned long long *)value;
131 } else {
132 gPEClockFrequencyInfo.timebase_frequency_hz = *value;
133 }
134 }
135 gPEClockFrequencyInfo.dec_clock_rate_hz = gPEClockFrequencyInfo.timebase_frequency_hz;
136
137 /* Find the bus frequency next. */
138 if (DTGetProperty(cpu, "bus-frequency", (void **)&value, &size) == kSuccess) {
139 if (size == 8) {
140 gPEClockFrequencyInfo.bus_frequency_hz = *(unsigned long long *)value;
141 } else {
142 gPEClockFrequencyInfo.bus_frequency_hz = *value;
143 }
144 }
145 gPEClockFrequencyInfo.bus_frequency_min_hz = gPEClockFrequencyInfo.bus_frequency_hz;
146 gPEClockFrequencyInfo.bus_frequency_max_hz = gPEClockFrequencyInfo.bus_frequency_hz;
147
148 if (gPEClockFrequencyInfo.bus_frequency_hz < 0x100000000ULL) {
149 gPEClockFrequencyInfo.bus_clock_rate_hz = gPEClockFrequencyInfo.bus_frequency_hz;
150 } else {
151 gPEClockFrequencyInfo.bus_clock_rate_hz = 0xFFFFFFFF;
152 }
153
154 /* Find the memory frequency next. */
155 if (DTGetProperty(cpu, "memory-frequency", (void **)&value, &size) == kSuccess) {
156 if (size == 8) {
157 gPEClockFrequencyInfo.mem_frequency_hz = *(unsigned long long *)value;
158 } else {
159 gPEClockFrequencyInfo.mem_frequency_hz = *value;
160 }
161 }
162 gPEClockFrequencyInfo.mem_frequency_min_hz = gPEClockFrequencyInfo.mem_frequency_hz;
163 gPEClockFrequencyInfo.mem_frequency_max_hz = gPEClockFrequencyInfo.mem_frequency_hz;
164
165 /* Find the peripheral frequency next. */
166 if (DTGetProperty(cpu, "peripheral-frequency", (void **)&value, &size) == kSuccess) {
167 if (size == 8) {
168 gPEClockFrequencyInfo.prf_frequency_hz = *(unsigned long long *)value;
169 } else {
170 gPEClockFrequencyInfo.prf_frequency_hz = *value;
171 }
172 }
173 gPEClockFrequencyInfo.prf_frequency_min_hz = gPEClockFrequencyInfo.prf_frequency_hz;
174 gPEClockFrequencyInfo.prf_frequency_max_hz = gPEClockFrequencyInfo.prf_frequency_hz;
175
176 /* Find the fixed frequency next. */
177 if (DTGetProperty(cpu, "fixed-frequency", (void **)&value, &size) == kSuccess) {
178 if (size == 8) {
179 gPEClockFrequencyInfo.fix_frequency_hz = *(unsigned long long *)value;
180 } else {
181 gPEClockFrequencyInfo.fix_frequency_hz = *value;
182 }
183 }
184 /* Find the cpu frequency last. */
185 if (DTGetProperty(cpu, "clock-frequency", (void **)&value, &size) == kSuccess) {
186 if (size == 8) {
187 gPEClockFrequencyInfo.cpu_frequency_hz = *(unsigned long long *)value;
188 } else {
189 gPEClockFrequencyInfo.cpu_frequency_hz = *value;
190 }
191 }
192 gPEClockFrequencyInfo.cpu_frequency_min_hz = gPEClockFrequencyInfo.cpu_frequency_hz;
193 gPEClockFrequencyInfo.cpu_frequency_max_hz = gPEClockFrequencyInfo.cpu_frequency_hz;
194
195 if (gPEClockFrequencyInfo.cpu_frequency_hz < 0x100000000ULL) {
196 gPEClockFrequencyInfo.cpu_clock_rate_hz = gPEClockFrequencyInfo.cpu_frequency_hz;
197 } else {
198 gPEClockFrequencyInfo.cpu_clock_rate_hz = 0xFFFFFFFF;
199 }
200 }
201 } else {
202 /* Use the canned values. */
203 gPEClockFrequencyInfo.timebase_frequency_hz = tclk;
204 gPEClockFrequencyInfo.fix_frequency_hz = tclk;
205 gPEClockFrequencyInfo.bus_frequency_hz = hclk;
206 gPEClockFrequencyInfo.cpu_frequency_hz = mclk;
207 gPEClockFrequencyInfo.prf_frequency_hz = pclk;
208
209 gPEClockFrequencyInfo.bus_frequency_min_hz = gPEClockFrequencyInfo.bus_frequency_hz;
210 gPEClockFrequencyInfo.bus_frequency_max_hz = gPEClockFrequencyInfo.bus_frequency_hz;
211 gPEClockFrequencyInfo.cpu_frequency_min_hz = gPEClockFrequencyInfo.cpu_frequency_hz;
212 gPEClockFrequencyInfo.cpu_frequency_max_hz = gPEClockFrequencyInfo.cpu_frequency_hz;
213 gPEClockFrequencyInfo.prf_frequency_min_hz = gPEClockFrequencyInfo.prf_frequency_hz;
214 gPEClockFrequencyInfo.prf_frequency_max_hz = gPEClockFrequencyInfo.prf_frequency_hz;
215
216 gPEClockFrequencyInfo.dec_clock_rate_hz = gPEClockFrequencyInfo.timebase_frequency_hz;
217 gPEClockFrequencyInfo.bus_clock_rate_hz = gPEClockFrequencyInfo.bus_frequency_hz;
218 gPEClockFrequencyInfo.cpu_clock_rate_hz = gPEClockFrequencyInfo.cpu_frequency_hz;
219 }
220
221 /* Set the num / den pairs form the hz values. */
222 gPEClockFrequencyInfo.bus_clock_rate_num = gPEClockFrequencyInfo.bus_clock_rate_hz;
223 gPEClockFrequencyInfo.bus_clock_rate_den = 1;
224
225 gPEClockFrequencyInfo.bus_to_cpu_rate_num =
226 (2 * gPEClockFrequencyInfo.cpu_clock_rate_hz) / gPEClockFrequencyInfo.bus_clock_rate_hz;
227 gPEClockFrequencyInfo.bus_to_cpu_rate_den = 2;
228
229 gPEClockFrequencyInfo.bus_to_dec_rate_num = 1;
230 gPEClockFrequencyInfo.bus_to_dec_rate_den =
231 gPEClockFrequencyInfo.bus_clock_rate_hz / gPEClockFrequencyInfo.dec_clock_rate_hz;
232 }
233
234 vm_offset_t
235 pe_arm_get_soc_base_phys(void)
236 {
237 DTEntry entryP;
238 uintptr_t *ranges_prop;
239 uint32_t prop_size;
240 char *tmpStr;
241
242 if (DTFindEntry("name", "arm-io", &entryP) == kSuccess) {
243 if (gPESoCDeviceType == 0) {
244 DTGetProperty(entryP, "device_type", (void **)&tmpStr, &prop_size);
245 strlcpy(gPESoCDeviceTypeBuffer, tmpStr, SOC_DEVICE_TYPE_BUFFER_SIZE);
246 gPESoCDeviceType = gPESoCDeviceTypeBuffer;
247
248 DTGetProperty(entryP, "ranges", (void **)&ranges_prop, &prop_size);
249 gPESoCBasePhys = *(ranges_prop + 1);
250 }
251 return gPESoCBasePhys;
252 }
253 return 0;
254 }
255
256 uint32_t
257 pe_arm_get_soc_revision(void)
258 {
259 DTEntry entryP;
260 uint32_t *value;
261 uint32_t size;
262
263 if ((DTFindEntry("name", "arm-io", &entryP) == kSuccess)
264 && (DTGetProperty(entryP, "chip-revision", (void **)&value, &size) == kSuccess)) {
265 if (size == 8) {
266 return (uint32_t)*(unsigned long long *)value;
267 } else {
268 return *value;
269 }
270 }
271 return 0;
272 }
273
274
275 extern void fleh_fiq_generic(void);
276
277
278 #if defined(ARM_BOARD_CLASS_T7000)
279 static struct tbd_ops t7000_funcs = {NULL, NULL, NULL};
280 #endif /* defined(ARM_BOARD_CLASS_T7000) */
281
282 #if defined(ARM_BOARD_CLASS_S7002)
283 extern void fleh_fiq_s7002(void);
284 extern uint32_t s7002_get_decrementer(void);
285 extern void s7002_set_decrementer(uint32_t);
286 static struct tbd_ops s7002_funcs = {&fleh_fiq_s7002, &s7002_get_decrementer, &s7002_set_decrementer};
287 #endif /* defined(ARM_BOARD_CLASS_S7002) */
288
289 #if defined(ARM_BOARD_CLASS_S8000)
290 static struct tbd_ops s8000_funcs = {NULL, NULL, NULL};
291 #endif /* defined(ARM_BOARD_CLASS_T7000) */
292
293 #if defined(ARM_BOARD_CLASS_T8002)
294 extern void fleh_fiq_t8002(void);
295 extern uint32_t t8002_get_decrementer(void);
296 extern void t8002_set_decrementer(uint32_t);
297 static struct tbd_ops t8002_funcs = {&fleh_fiq_t8002, &t8002_get_decrementer, &t8002_set_decrementer};
298 #endif /* defined(ARM_BOARD_CLASS_T8002) */
299
300 #if defined(ARM_BOARD_CLASS_T8010)
301 static struct tbd_ops t8010_funcs = {NULL, NULL, NULL};
302 #endif /* defined(ARM_BOARD_CLASS_T8010) */
303
304 #if defined(ARM_BOARD_CLASS_T8011)
305 static struct tbd_ops t8011_funcs = {NULL, NULL, NULL};
306 #endif /* defined(ARM_BOARD_CLASS_T8011) */
307
308 #if defined(ARM_BOARD_CLASS_T8015)
309 static struct tbd_ops t8015_funcs = {NULL, NULL, NULL};
310 #endif /* defined(ARM_BOARD_CLASS_T8015) */
311
312
313
314
315
316
317
318
319
320 #if defined(ARM_BOARD_CLASS_BCM2837)
321 static struct tbd_ops bcm2837_funcs = {NULL, NULL, NULL};
322 #endif /* defined(ARM_BOARD_CLASS_BCM2837) */
323
324 vm_offset_t gPicBase;
325 vm_offset_t gTimerBase;
326 vm_offset_t gSocPhys;
327
328 #if DEVELOPMENT || DEBUG
329 // This block contains the panic trace implementation
330
331 // These variables are local to this file, and contain the panic trace configuration information
332 typedef enum{
333 panic_trace_disabled = 0,
334 panic_trace_unused,
335 panic_trace_enabled,
336 panic_trace_alt_enabled,
337 } panic_trace_t;
338 static panic_trace_t bootarg_panic_trace;
339
340 static int bootarg_stop_clocks;
341
342 // The command buffer contains the converted commands from the device tree for commanding cpu_halt, enable_trace, etc.
343 #define DEBUG_COMMAND_BUFFER_SIZE 256
344 typedef struct command_buffer_element {
345 uintptr_t address;
346 uintptr_t value;
347 uint16_t destination_cpu_selector;
348 uint16_t delay_us;
349 bool is_32bit;
350 } command_buffer_element_t;
351 static command_buffer_element_t debug_command_buffer[DEBUG_COMMAND_BUFFER_SIZE]; // statically allocate to prevent needing alloc at runtime
352 static uint32_t next_command_buffer_entry = 0; // index of next unused slot in debug_command_buffer
353
354 #define CPU_SELECTOR_SHIFT (16)
355 #define CPU_SELECTOR_MASK (0xFFFF << CPU_SELECTOR_SHIFT)
356 #define REGISTER_OFFSET_MASK ((1 << CPU_SELECTOR_SHIFT) - 1)
357 #define REGISTER_OFFSET(register_prop) (register_prop & REGISTER_OFFSET_MASK)
358 #define CPU_SELECTOR(register_offset) ((register_offset & CPU_SELECTOR_MASK) >> CPU_SELECTOR_SHIFT) // Upper 16bits holds the cpu selector
359 #define MAX_WINDOW_SIZE 0xFFFF
360 #define PE_ISSPACE(c) (c == ' ' || c == '\t' || c == '\n' || c == '\12')
361 #define DELAY_SHIFT (32)
362 #define DELAY_MASK (0xFFFFULL << DELAY_SHIFT)
363 #define DELAY_US(register_offset) ((register_offset & DELAY_MASK) >> DELAY_SHIFT)
364 #define REGISTER_32BIT_MASK (1ULL << 63)
365 /*
366 * 0x0000 - all cpus
367 * 0x0001 - cpu 0
368 * 0x0002 - cpu 1
369 * 0x0004 - cpu 2
370 * 0x0003 - cpu 0 and 1
371 * since it's 16bits, we can have up to 16 cpus
372 */
373 #define ALL_CPUS 0x0000
374 #define IS_CPU_SELECTED(cpu_number, cpu_selector) (cpu_selector == ALL_CPUS || (cpu_selector & (1<<cpu_number) ) != 0 )
375
376 #define RESET_VIRTUAL_ADDRESS_WINDOW 0xFFFFFFFF
377
378 // Pointers into debug_command_buffer for each operation. Assumes runtime will init them to zero.
379 static command_buffer_element_t *cpu_halt;
380 static command_buffer_element_t *enable_trace;
381 static command_buffer_element_t *enable_alt_trace;
382 static command_buffer_element_t *trace_halt;
383 static command_buffer_element_t *enable_stop_clocks;
384 static command_buffer_element_t *stop_clocks;
385
386 // Record which CPU is currently running one of our debug commands, so we can trap panic reentrancy to PE_arm_debug_panic_hook.
387 static int running_debug_command_on_cpu_number = -1;
388
389 static void
390 pe_init_debug_command(DTEntry entryP, command_buffer_element_t **command_buffer, const char* entry_name)
391 {
392 uintptr_t *reg_prop;
393 uint32_t prop_size, reg_window_size = 0, command_starting_index;
394 uintptr_t debug_reg_window = 0;
395
396 if (command_buffer == 0) {
397 return;
398 }
399
400 if (DTGetProperty(entryP, entry_name, (void **)&reg_prop, &prop_size) != kSuccess) {
401 panic("pe_init_debug_command: failed to read property %s\n", entry_name);
402 }
403
404 // make sure command will fit
405 if (next_command_buffer_entry + prop_size / sizeof(uintptr_t) > DEBUG_COMMAND_BUFFER_SIZE - 1) {
406 panic("pe_init_debug_command: property %s is %u bytes, command buffer only has %lu bytes remaining\n",
407 entry_name, prop_size, ((DEBUG_COMMAND_BUFFER_SIZE - 1) - next_command_buffer_entry) * sizeof(uintptr_t));
408 }
409
410 // Hold the pointer in a temp variable and later assign it to command buffer, in case we panic while half-initialized
411 command_starting_index = next_command_buffer_entry;
412
413 // convert to real virt addresses and stuff commands into debug_command_buffer
414 for (; prop_size; reg_prop += 2, prop_size -= 2 * sizeof(uintptr_t)) {
415 if (*reg_prop == RESET_VIRTUAL_ADDRESS_WINDOW) {
416 debug_reg_window = 0; // Create a new window
417 } else if (debug_reg_window == 0) {
418 // create a window from virtual address to the specified physical address
419 reg_window_size = ((uint32_t)*(reg_prop + 1));
420 if (reg_window_size > MAX_WINDOW_SIZE) {
421 panic("pe_init_debug_command: Command page size is %0x, exceeds the Maximum allowed page size 0f 0%x\n", reg_window_size, MAX_WINDOW_SIZE );
422 }
423 debug_reg_window = ml_io_map(gSocPhys + *reg_prop, reg_window_size);
424 // for debug -- kprintf("pe_init_debug_command: %s registers @ 0x%08lX for 0x%08lX\n", entry_name, debug_reg_window, *(reg_prop + 1) );
425 } else {
426 if ((REGISTER_OFFSET(*reg_prop) + sizeof(uintptr_t)) >= reg_window_size) {
427 panic("pe_init_debug_command: Command Offset is %lx, exceeds allocated size of %x\n", REGISTER_OFFSET(*reg_prop), reg_window_size );
428 }
429 debug_command_buffer[next_command_buffer_entry].address = debug_reg_window + REGISTER_OFFSET(*reg_prop);
430 debug_command_buffer[next_command_buffer_entry].destination_cpu_selector = CPU_SELECTOR(*reg_prop);
431 #if defined(__arm64__)
432 debug_command_buffer[next_command_buffer_entry].delay_us = DELAY_US(*reg_prop);
433 debug_command_buffer[next_command_buffer_entry].is_32bit = ((*reg_prop & REGISTER_32BIT_MASK) != 0);
434 #else
435 debug_command_buffer[next_command_buffer_entry].delay_us = 0;
436 debug_command_buffer[next_command_buffer_entry].is_32bit = false;
437 #endif
438 debug_command_buffer[next_command_buffer_entry++].value = *(reg_prop + 1);
439 }
440 }
441
442 // null terminate the address field of the command to end it
443 debug_command_buffer[next_command_buffer_entry++].address = 0;
444
445 // save pointer into table for this command
446 *command_buffer = &debug_command_buffer[command_starting_index];
447 }
448
449 static void
450 pe_run_debug_command(command_buffer_element_t *command_buffer)
451 {
452 // When both the CPUs panic, one will get stuck on the lock and the other CPU will be halted when the first executes the debug command
453 simple_lock(&panic_hook_lock, LCK_GRP_NULL);
454
455 running_debug_command_on_cpu_number = cpu_number();
456
457 while (command_buffer && command_buffer->address) {
458 if (IS_CPU_SELECTED(running_debug_command_on_cpu_number, command_buffer->destination_cpu_selector)) {
459 if (command_buffer->is_32bit) {
460 *((volatile uint32_t*)(command_buffer->address)) = (uint32_t)(command_buffer->value);
461 } else {
462 *((volatile uintptr_t*)(command_buffer->address)) = command_buffer->value; // register = value;
463 }
464 if (command_buffer->delay_us != 0) {
465 uint64_t deadline;
466 nanoseconds_to_absolutetime(command_buffer->delay_us * NSEC_PER_USEC, &deadline);
467 deadline += ml_get_timebase();
468 while (ml_get_timebase() < deadline) {
469 ;
470 }
471 }
472 }
473 command_buffer++;
474 }
475
476 running_debug_command_on_cpu_number = -1;
477 simple_unlock(&panic_hook_lock);
478 }
479
480
481 void
482 PE_arm_debug_enable_trace(void)
483 {
484 switch (bootarg_panic_trace) {
485 case panic_trace_enabled:
486 pe_run_debug_command(enable_trace);
487 break;
488
489 case panic_trace_alt_enabled:
490 pe_run_debug_command(enable_alt_trace);
491 break;
492
493 default:
494 break;
495 }
496 }
497
498 static void
499 PE_arm_panic_hook(const char *str __unused)
500 {
501 (void)str; // not used
502 if (bootarg_stop_clocks != 0) {
503 pe_run_debug_command(stop_clocks);
504 }
505 // if panic trace is enabled
506 if (bootarg_panic_trace != 0) {
507 if (running_debug_command_on_cpu_number == cpu_number()) {
508 // This is going to end badly if we don't trap, since we'd be panic-ing during our own code
509 kprintf("## Panic Trace code caused the panic ##\n");
510 return; // allow the normal panic operation to occur.
511 }
512
513 // Stop tracing to freeze the buffer and return to normal panic processing.
514 pe_run_debug_command(trace_halt);
515 }
516 }
517
518 void (*PE_arm_debug_panic_hook)(const char *str) = PE_arm_panic_hook;
519
520 void
521 PE_init_cpu(void)
522 {
523 if (bootarg_stop_clocks != 0) {
524 pe_run_debug_command(enable_stop_clocks);
525 }
526 }
527
528 #else
529
530 void(*const PE_arm_debug_panic_hook)(const char *str) = NULL;
531
532 void
533 PE_init_cpu(void)
534 {
535 }
536
537 #endif // DEVELOPMENT || DEBUG
538
539 void
540 PE_panic_hook(const char *str __unused)
541 {
542 if (PE_arm_debug_panic_hook != NULL) {
543 PE_arm_debug_panic_hook(str);
544 }
545 }
546
547 void
548 pe_arm_init_debug(void *args)
549 {
550 DTEntry entryP;
551 uintptr_t *reg_prop;
552 uint32_t prop_size;
553
554 if (gSocPhys == 0) {
555 kprintf("pe_arm_init_debug: failed to initialize gSocPhys == 0\n");
556 return;
557 }
558
559 if (DTFindEntry("device_type", "cpu-debug-interface", &entryP) == kSuccess) {
560 if (args != NULL) {
561 if (DTGetProperty(entryP, "reg", (void **)&reg_prop, &prop_size) == kSuccess) {
562 ml_init_arm_debug_interface(args, ml_io_map(gSocPhys + *reg_prop, *(reg_prop + 1)));
563 }
564 #if DEVELOPMENT || DEBUG
565 // When args != NULL, this means we're being called from arm_init on the boot CPU.
566 // This controls one-time initialization of the Panic Trace infrastructure
567
568 simple_lock_init(&panic_hook_lock, 0); //assuming single threaded mode
569
570 // Panic_halt is deprecated. Please use panic_trace istead.
571 unsigned int temp_bootarg_panic_trace;
572 if (PE_parse_boot_argn("panic_trace", &temp_bootarg_panic_trace, sizeof(temp_bootarg_panic_trace)) ||
573 PE_parse_boot_argn("panic_halt", &temp_bootarg_panic_trace, sizeof(temp_bootarg_panic_trace))) {
574 kprintf("pe_arm_init_debug: panic_trace=%d\n", temp_bootarg_panic_trace);
575
576 // Prepare debug command buffers.
577 pe_init_debug_command(entryP, &cpu_halt, "cpu_halt");
578 pe_init_debug_command(entryP, &enable_trace, "enable_trace");
579 pe_init_debug_command(entryP, &enable_alt_trace, "enable_alt_trace");
580 pe_init_debug_command(entryP, &trace_halt, "trace_halt");
581
582 // now that init's are done, enable the panic halt capture (allows pe_init_debug_command to panic normally if necessary)
583 bootarg_panic_trace = temp_bootarg_panic_trace;
584
585 // start tracing now if enabled
586 PE_arm_debug_enable_trace();
587 }
588 unsigned int temp_bootarg_stop_clocks;
589 if (PE_parse_boot_argn("stop_clocks", &temp_bootarg_stop_clocks, sizeof(temp_bootarg_stop_clocks))) {
590 pe_init_debug_command(entryP, &enable_stop_clocks, "enable_stop_clocks");
591 pe_init_debug_command(entryP, &stop_clocks, "stop_clocks");
592 bootarg_stop_clocks = temp_bootarg_stop_clocks;
593 }
594 #endif
595 }
596 } else {
597 kprintf("pe_arm_init_debug: failed to find cpu-debug-interface\n");
598 }
599 }
600
601 static uint32_t
602 pe_arm_map_interrupt_controller(void)
603 {
604 DTEntry entryP;
605 uintptr_t *reg_prop;
606 uint32_t prop_size;
607 vm_offset_t soc_phys = 0;
608
609 gSocPhys = pe_arm_get_soc_base_phys();
610
611 soc_phys = gSocPhys;
612 kprintf("pe_arm_map_interrupt_controller: soc_phys: 0x%lx\n", (unsigned long)soc_phys);
613 if (soc_phys == 0) {
614 return 0;
615 }
616
617 if (DTFindEntry("interrupt-controller", "master", &entryP) == kSuccess) {
618 kprintf("pe_arm_map_interrupt_controller: found interrupt-controller\n");
619 DTGetProperty(entryP, "reg", (void **)&reg_prop, &prop_size);
620 gPicBase = ml_io_map(soc_phys + *reg_prop, *(reg_prop + 1));
621 kprintf("pe_arm_map_interrupt_controller: gPicBase: 0x%lx\n", (unsigned long)gPicBase);
622 }
623 if (gPicBase == 0) {
624 kprintf("pe_arm_map_interrupt_controller: failed to find the interrupt-controller.\n");
625 return 0;
626 }
627
628 if (DTFindEntry("device_type", "timer", &entryP) == kSuccess) {
629 kprintf("pe_arm_map_interrupt_controller: found timer\n");
630 DTGetProperty(entryP, "reg", (void **)&reg_prop, &prop_size);
631 gTimerBase = ml_io_map(soc_phys + *reg_prop, *(reg_prop + 1));
632 kprintf("pe_arm_map_interrupt_controller: gTimerBase: 0x%lx\n", (unsigned long)gTimerBase);
633 }
634 if (gTimerBase == 0) {
635 kprintf("pe_arm_map_interrupt_controller: failed to find the timer.\n");
636 return 0;
637 }
638
639 return 1;
640 }
641
642 uint32_t
643 pe_arm_init_interrupts(void *args)
644 {
645 kprintf("pe_arm_init_interrupts: args: %p\n", args);
646
647 /* Set up mappings for interrupt controller and possibly timers (if they haven't been set up already) */
648 if (args != NULL) {
649 if (!pe_arm_map_interrupt_controller()) {
650 return 0;
651 }
652 }
653
654 return pe_arm_init_timer(args);
655 }
656
657 static uint32_t
658 pe_arm_init_timer(void *args)
659 {
660 vm_offset_t pic_base = 0;
661 vm_offset_t timer_base = 0;
662 vm_offset_t soc_phys;
663 vm_offset_t eoi_addr = 0;
664 uint32_t eoi_value = 0;
665 struct tbd_ops generic_funcs = {&fleh_fiq_generic, NULL, NULL};
666 tbd_ops_t tbd_funcs = &generic_funcs;
667
668 /* The SoC headers expect to use pic_base, timer_base, etc... */
669 pic_base = gPicBase;
670 timer_base = gTimerBase;
671 soc_phys = gSocPhys;
672
673 #if defined(ARM_BOARD_CLASS_T7000)
674 if (!strcmp(gPESoCDeviceType, "t7000-io") ||
675 !strcmp(gPESoCDeviceType, "t7001-io")) {
676 tbd_funcs = &t7000_funcs;
677 } else
678 #endif
679 #if defined(ARM_BOARD_CLASS_S7002)
680 if (!strcmp(gPESoCDeviceType, "s7002-io")) {
681 #ifdef ARM_BOARD_WFE_TIMEOUT_NS
682 // Enable the WFE Timer
683 rPMGR_EVENT_TMR_PERIOD = ((uint64_t)(ARM_BOARD_WFE_TIMEOUT_NS) *gPEClockFrequencyInfo.timebase_frequency_hz) / NSEC_PER_SEC;
684 rPMGR_EVENT_TMR = rPMGR_EVENT_TMR_PERIOD;
685 rPMGR_EVENT_TMR_CTL = PMGR_EVENT_TMR_CTL_EN;
686 #endif /* ARM_BOARD_WFE_TIMEOUT_NS */
687
688 rPMGR_INTERVAL_TMR = 0x7FFFFFFF;
689 rPMGR_INTERVAL_TMR_CTL = PMGR_INTERVAL_TMR_CTL_EN | PMGR_INTERVAL_TMR_CTL_CLR_INT;
690
691 eoi_addr = timer_base;
692 eoi_value = PMGR_INTERVAL_TMR_CTL_EN | PMGR_INTERVAL_TMR_CTL_CLR_INT;
693 tbd_funcs = &s7002_funcs;
694 } else
695 #endif
696 #if defined(ARM_BOARD_CLASS_S8000)
697 if (!strcmp(gPESoCDeviceType, "s8000-io") ||
698 !strcmp(gPESoCDeviceType, "s8001-io")) {
699 tbd_funcs = &s8000_funcs;
700 } else
701 #endif
702 #if defined(ARM_BOARD_CLASS_T8002)
703 if (!strcmp(gPESoCDeviceType, "t8002-io") ||
704 !strcmp(gPESoCDeviceType, "t8004-io")) {
705 /* Enable the Decrementer */
706 aic_write32(kAICTmrCnt, 0x7FFFFFFF);
707 aic_write32(kAICTmrCfg, kAICTmrCfgEn);
708 aic_write32(kAICTmrIntStat, kAICTmrIntStatPct);
709 #ifdef ARM_BOARD_WFE_TIMEOUT_NS
710 // Enable the WFE Timer
711 rPMGR_EVENT_TMR_PERIOD = ((uint64_t)(ARM_BOARD_WFE_TIMEOUT_NS) *gPEClockFrequencyInfo.timebase_frequency_hz) / NSEC_PER_SEC;
712 rPMGR_EVENT_TMR = rPMGR_EVENT_TMR_PERIOD;
713 rPMGR_EVENT_TMR_CTL = PMGR_EVENT_TMR_CTL_EN;
714 #endif /* ARM_BOARD_WFE_TIMEOUT_NS */
715
716 eoi_addr = pic_base;
717 eoi_value = kAICTmrIntStatPct;
718 tbd_funcs = &t8002_funcs;
719 } else
720 #endif
721 #if defined(ARM_BOARD_CLASS_T8010)
722 if (!strcmp(gPESoCDeviceType, "t8010-io")) {
723 tbd_funcs = &t8010_funcs;
724 } else
725 #endif
726 #if defined(ARM_BOARD_CLASS_T8011)
727 if (!strcmp(gPESoCDeviceType, "t8011-io")) {
728 tbd_funcs = &t8011_funcs;
729 } else
730 #endif
731 #if defined(ARM_BOARD_CLASS_T8015)
732 if (!strcmp(gPESoCDeviceType, "t8015-io")) {
733 tbd_funcs = &t8015_funcs;
734 } else
735 #endif
736 #if defined(ARM_BOARD_CLASS_BCM2837)
737 if (!strcmp(gPESoCDeviceType, "bcm2837-io")) {
738 tbd_funcs = &bcm2837_funcs;
739 } else
740 #endif
741 return 0;
742
743 if (args != NULL) {
744 ml_init_timebase(args, tbd_funcs, eoi_addr, eoi_value);
745 }
746
747 return 1;
748 }