2 * Copyright (c) 2000-2016 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
29 * Copyright (c) 1982, 1986, 1991, 1993, 1995
30 * The Regents of the University of California. All rights reserved.
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions
35 * 1. Redistributions of source code must retain the above copyright
36 * notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in the
39 * documentation and/or other materials provided with the distribution.
40 * 3. All advertising materials mentioning features or use of this software
41 * must display the following acknowledgement:
42 * This product includes software developed by the University of
43 * California, Berkeley and its contributors.
44 * 4. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * @(#)in_pcb.c 8.4 (Berkeley) 5/24/95
61 * $FreeBSD: src/sys/netinet/in_pcb.c,v 1.59.2.17 2001/08/13 16:26:17 ume Exp $
64 #include <sys/param.h>
65 #include <sys/systm.h>
66 #include <sys/malloc.h>
68 #include <sys/domain.h>
69 #include <sys/protosw.h>
70 #include <sys/socket.h>
71 #include <sys/socketvar.h>
73 #include <sys/kernel.h>
74 #include <sys/sysctl.h>
75 #include <sys/mcache.h>
76 #include <sys/kauth.h>
78 #include <sys/proc_uuid_policy.h>
79 #include <sys/syslog.h>
83 #include <libkern/OSAtomic.h>
84 #include <kern/locks.h>
86 #include <machine/limits.h>
88 #include <kern/zalloc.h>
91 #include <net/if_types.h>
92 #include <net/route.h>
93 #include <net/flowhash.h>
94 #include <net/flowadv.h>
95 #include <net/ntstat.h>
97 #include <netinet/in.h>
98 #include <netinet/in_pcb.h>
99 #include <netinet/in_var.h>
100 #include <netinet/ip_var.h>
102 #include <netinet/ip6.h>
103 #include <netinet6/ip6_var.h>
106 #include <sys/kdebug.h>
107 #include <sys/random.h>
109 #include <dev/random/randomdev.h>
110 #include <mach/boolean.h>
112 #include <pexpert/pexpert.h>
115 #include <net/necp.h>
118 #include <sys/stat.h>
120 #include <sys/vnode.h>
122 static lck_grp_t
*inpcb_lock_grp
;
123 static lck_attr_t
*inpcb_lock_attr
;
124 static lck_grp_attr_t
*inpcb_lock_grp_attr
;
125 decl_lck_mtx_data(static, inpcb_lock
); /* global INPCB lock */
126 decl_lck_mtx_data(static, inpcb_timeout_lock
);
128 static TAILQ_HEAD(, inpcbinfo
) inpcb_head
= TAILQ_HEAD_INITIALIZER(inpcb_head
);
130 static u_int16_t inpcb_timeout_run
= 0; /* INPCB timer is scheduled to run */
131 static boolean_t inpcb_garbage_collecting
= FALSE
; /* gc timer is scheduled */
132 static boolean_t inpcb_ticking
= FALSE
; /* "slow" timer is scheduled */
133 static boolean_t inpcb_fast_timer_on
= FALSE
;
134 static boolean_t intcoproc_unrestricted
= FALSE
;
136 extern char *proc_best_name(proc_t
);
138 #define INPCB_GCREQ_THRESHOLD 50000
140 static thread_call_t inpcb_thread_call
, inpcb_fast_thread_call
;
141 static void inpcb_sched_timeout(void);
142 static void inpcb_sched_lazy_timeout(void);
143 static void _inpcb_sched_timeout(unsigned int);
144 static void inpcb_timeout(void *, void *);
145 const int inpcb_timeout_lazy
= 10; /* 10 seconds leeway for lazy timers */
146 extern int tvtohz(struct timeval
*);
148 #if CONFIG_PROC_UUID_POLICY
149 static void inp_update_cellular_policy(struct inpcb
*, boolean_t
);
151 static void inp_update_necp_want_app_policy(struct inpcb
*, boolean_t
);
153 #endif /* !CONFIG_PROC_UUID_POLICY */
155 #define DBG_FNC_PCB_LOOKUP NETDBG_CODE(DBG_NETTCP, (6 << 8))
156 #define DBG_FNC_PCB_HLOOKUP NETDBG_CODE(DBG_NETTCP, ((6 << 8) | 1))
159 * These configure the range of local port addresses assigned to
160 * "unspecified" outgoing connections/packets/whatever.
162 int ipport_lowfirstauto
= IPPORT_RESERVED
- 1; /* 1023 */
163 int ipport_lowlastauto
= IPPORT_RESERVEDSTART
; /* 600 */
164 int ipport_firstauto
= IPPORT_HIFIRSTAUTO
; /* 49152 */
165 int ipport_lastauto
= IPPORT_HILASTAUTO
; /* 65535 */
166 int ipport_hifirstauto
= IPPORT_HIFIRSTAUTO
; /* 49152 */
167 int ipport_hilastauto
= IPPORT_HILASTAUTO
; /* 65535 */
169 #define RANGECHK(var, min, max) \
170 if ((var) < (min)) { (var) = (min); } \
171 else if ((var) > (max)) { (var) = (max); }
174 sysctl_net_ipport_check SYSCTL_HANDLER_ARGS
176 #pragma unused(arg1, arg2)
179 error
= sysctl_handle_int(oidp
, oidp
->oid_arg1
, oidp
->oid_arg2
, req
);
181 RANGECHK(ipport_lowfirstauto
, 1, IPPORT_RESERVED
- 1);
182 RANGECHK(ipport_lowlastauto
, 1, IPPORT_RESERVED
- 1);
183 RANGECHK(ipport_firstauto
, IPPORT_RESERVED
, USHRT_MAX
);
184 RANGECHK(ipport_lastauto
, IPPORT_RESERVED
, USHRT_MAX
);
185 RANGECHK(ipport_hifirstauto
, IPPORT_RESERVED
, USHRT_MAX
);
186 RANGECHK(ipport_hilastauto
, IPPORT_RESERVED
, USHRT_MAX
);
193 SYSCTL_NODE(_net_inet_ip
, IPPROTO_IP
, portrange
,
194 CTLFLAG_RW
|CTLFLAG_LOCKED
, 0, "IP Ports");
196 SYSCTL_PROC(_net_inet_ip_portrange
, OID_AUTO
, lowfirst
,
197 CTLTYPE_INT
|CTLFLAG_RW
| CTLFLAG_LOCKED
,
198 &ipport_lowfirstauto
, 0, &sysctl_net_ipport_check
, "I", "");
199 SYSCTL_PROC(_net_inet_ip_portrange
, OID_AUTO
, lowlast
,
200 CTLTYPE_INT
|CTLFLAG_RW
| CTLFLAG_LOCKED
,
201 &ipport_lowlastauto
, 0, &sysctl_net_ipport_check
, "I", "");
202 SYSCTL_PROC(_net_inet_ip_portrange
, OID_AUTO
, first
,
203 CTLTYPE_INT
|CTLFLAG_RW
| CTLFLAG_LOCKED
,
204 &ipport_firstauto
, 0, &sysctl_net_ipport_check
, "I", "");
205 SYSCTL_PROC(_net_inet_ip_portrange
, OID_AUTO
, last
,
206 CTLTYPE_INT
|CTLFLAG_RW
| CTLFLAG_LOCKED
,
207 &ipport_lastauto
, 0, &sysctl_net_ipport_check
, "I", "");
208 SYSCTL_PROC(_net_inet_ip_portrange
, OID_AUTO
, hifirst
,
209 CTLTYPE_INT
|CTLFLAG_RW
| CTLFLAG_LOCKED
,
210 &ipport_hifirstauto
, 0, &sysctl_net_ipport_check
, "I", "");
211 SYSCTL_PROC(_net_inet_ip_portrange
, OID_AUTO
, hilast
,
212 CTLTYPE_INT
|CTLFLAG_RW
| CTLFLAG_LOCKED
,
213 &ipport_hilastauto
, 0, &sysctl_net_ipport_check
, "I", "");
215 static uint32_t apn_fallbk_debug
= 0;
216 #define apn_fallbk_log(x) do { if (apn_fallbk_debug >= 1) log x; } while (0)
219 static boolean_t apn_fallbk_enabled
= TRUE
;
221 SYSCTL_DECL(_net_inet
);
222 SYSCTL_NODE(_net_inet
, OID_AUTO
, apn_fallback
, CTLFLAG_RW
|CTLFLAG_LOCKED
, 0, "APN Fallback");
223 SYSCTL_UINT(_net_inet_apn_fallback
, OID_AUTO
, debug
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
224 &apn_fallbk_debug
, 0, "APN fallback debug enable");
226 static boolean_t apn_fallbk_enabled
= FALSE
;
229 extern int udp_use_randomport
;
230 extern int tcp_use_randomport
;
232 /* Structs used for flowhash computation */
233 struct inp_flowhash_key_addr
{
243 struct inp_flowhash_key
{
244 struct inp_flowhash_key_addr infh_laddr
;
245 struct inp_flowhash_key_addr infh_faddr
;
246 u_int32_t infh_lport
;
247 u_int32_t infh_fport
;
249 u_int32_t infh_proto
;
250 u_int32_t infh_rand1
;
251 u_int32_t infh_rand2
;
254 static u_int32_t inp_hash_seed
= 0;
256 static int infc_cmp(const struct inpcb
*, const struct inpcb
*);
258 /* Flags used by inp_fc_getinp */
259 #define INPFC_SOLOCKED 0x1
260 #define INPFC_REMOVE 0x2
261 static struct inpcb
*inp_fc_getinp(u_int32_t
, u_int32_t
);
263 static void inp_fc_feedback(struct inpcb
*);
264 extern void tcp_remove_from_time_wait(struct inpcb
*inp
);
266 decl_lck_mtx_data(static, inp_fc_lck
);
268 RB_HEAD(inp_fc_tree
, inpcb
) inp_fc_tree
;
269 RB_PROTOTYPE(inp_fc_tree
, inpcb
, infc_link
, infc_cmp
);
270 RB_GENERATE(inp_fc_tree
, inpcb
, infc_link
, infc_cmp
);
273 * Use this inp as a key to find an inp in the flowhash tree.
274 * Accesses to it are protected by inp_fc_lck.
276 struct inpcb key_inp
;
279 * in_pcb.c: manage the Protocol Control Blocks.
285 static int inpcb_initialized
= 0;
287 VERIFY(!inpcb_initialized
);
288 inpcb_initialized
= 1;
290 inpcb_lock_grp_attr
= lck_grp_attr_alloc_init();
291 inpcb_lock_grp
= lck_grp_alloc_init("inpcb", inpcb_lock_grp_attr
);
292 inpcb_lock_attr
= lck_attr_alloc_init();
293 lck_mtx_init(&inpcb_lock
, inpcb_lock_grp
, inpcb_lock_attr
);
294 lck_mtx_init(&inpcb_timeout_lock
, inpcb_lock_grp
, inpcb_lock_attr
);
295 inpcb_thread_call
= thread_call_allocate_with_priority(inpcb_timeout
,
296 NULL
, THREAD_CALL_PRIORITY_KERNEL
);
297 inpcb_fast_thread_call
= thread_call_allocate_with_priority(
298 inpcb_timeout
, NULL
, THREAD_CALL_PRIORITY_KERNEL
);
299 if (inpcb_thread_call
== NULL
|| inpcb_fast_thread_call
== NULL
)
300 panic("unable to alloc the inpcb thread call");
303 * Initialize data structures required to deliver
306 lck_mtx_init(&inp_fc_lck
, inpcb_lock_grp
, inpcb_lock_attr
);
307 lck_mtx_lock(&inp_fc_lck
);
308 RB_INIT(&inp_fc_tree
);
309 bzero(&key_inp
, sizeof(key_inp
));
310 lck_mtx_unlock(&inp_fc_lck
);
312 PE_parse_boot_argn("intcoproc_unrestricted", &intcoproc_unrestricted
,
313 sizeof (intcoproc_unrestricted
));
316 #define INPCB_HAVE_TIMER_REQ(req) (((req).intimer_lazy > 0) || \
317 ((req).intimer_fast > 0) || ((req).intimer_nodelay > 0))
319 inpcb_timeout(void *arg0
, void *arg1
)
321 #pragma unused(arg0, arg1)
322 struct inpcbinfo
*ipi
;
324 struct intimercount gccnt
, tmcnt
;
327 * Update coarse-grained networking timestamp (in sec.); the idea
328 * is to piggy-back on the timeout callout to update the counter
329 * returnable via net_uptime().
333 bzero(&gccnt
, sizeof(gccnt
));
334 bzero(&tmcnt
, sizeof(tmcnt
));
336 lck_mtx_lock_spin(&inpcb_timeout_lock
);
337 gc
= inpcb_garbage_collecting
;
338 inpcb_garbage_collecting
= FALSE
;
341 inpcb_ticking
= FALSE
;
344 lck_mtx_unlock(&inpcb_timeout_lock
);
346 lck_mtx_lock(&inpcb_lock
);
347 TAILQ_FOREACH(ipi
, &inpcb_head
, ipi_entry
) {
348 if (INPCB_HAVE_TIMER_REQ(ipi
->ipi_gc_req
)) {
349 bzero(&ipi
->ipi_gc_req
,
350 sizeof(ipi
->ipi_gc_req
));
351 if (gc
&& ipi
->ipi_gc
!= NULL
) {
353 gccnt
.intimer_lazy
+=
354 ipi
->ipi_gc_req
.intimer_lazy
;
355 gccnt
.intimer_fast
+=
356 ipi
->ipi_gc_req
.intimer_fast
;
357 gccnt
.intimer_nodelay
+=
358 ipi
->ipi_gc_req
.intimer_nodelay
;
361 if (INPCB_HAVE_TIMER_REQ(ipi
->ipi_timer_req
)) {
362 bzero(&ipi
->ipi_timer_req
,
363 sizeof(ipi
->ipi_timer_req
));
364 if (t
&& ipi
->ipi_timer
!= NULL
) {
366 tmcnt
.intimer_lazy
+=
367 ipi
->ipi_timer_req
.intimer_lazy
;
368 tmcnt
.intimer_fast
+=
369 ipi
->ipi_timer_req
.intimer_fast
;
370 tmcnt
.intimer_nodelay
+=
371 ipi
->ipi_timer_req
.intimer_nodelay
;
375 lck_mtx_unlock(&inpcb_lock
);
376 lck_mtx_lock_spin(&inpcb_timeout_lock
);
379 /* lock was dropped above, so check first before overriding */
380 if (!inpcb_garbage_collecting
)
381 inpcb_garbage_collecting
= INPCB_HAVE_TIMER_REQ(gccnt
);
383 inpcb_ticking
= INPCB_HAVE_TIMER_REQ(tmcnt
);
385 /* re-arm the timer if there's work to do */
387 VERIFY(inpcb_timeout_run
>= 0 && inpcb_timeout_run
< 2);
389 if (gccnt
.intimer_nodelay
> 0 || tmcnt
.intimer_nodelay
> 0)
390 inpcb_sched_timeout();
391 else if ((gccnt
.intimer_fast
+ tmcnt
.intimer_fast
) <= 5)
392 /* be lazy when idle with little activity */
393 inpcb_sched_lazy_timeout();
395 inpcb_sched_timeout();
397 lck_mtx_unlock(&inpcb_timeout_lock
);
401 inpcb_sched_timeout(void)
403 _inpcb_sched_timeout(0);
407 inpcb_sched_lazy_timeout(void)
409 _inpcb_sched_timeout(inpcb_timeout_lazy
);
413 _inpcb_sched_timeout(unsigned int offset
)
415 uint64_t deadline
, leeway
;
417 clock_interval_to_deadline(1, NSEC_PER_SEC
, &deadline
);
418 LCK_MTX_ASSERT(&inpcb_timeout_lock
, LCK_MTX_ASSERT_OWNED
);
419 if (inpcb_timeout_run
== 0 &&
420 (inpcb_garbage_collecting
|| inpcb_ticking
)) {
421 lck_mtx_convert_spin(&inpcb_timeout_lock
);
424 inpcb_fast_timer_on
= TRUE
;
425 thread_call_enter_delayed(inpcb_thread_call
,
428 inpcb_fast_timer_on
= FALSE
;
429 clock_interval_to_absolutetime_interval(offset
,
430 NSEC_PER_SEC
, &leeway
);
431 thread_call_enter_delayed_with_leeway(
432 inpcb_thread_call
, NULL
, deadline
, leeway
,
433 THREAD_CALL_DELAY_LEEWAY
);
435 } else if (inpcb_timeout_run
== 1 &&
436 offset
== 0 && !inpcb_fast_timer_on
) {
438 * Since the request was for a fast timer but the
439 * scheduled timer is a lazy timer, try to schedule
440 * another instance of fast timer also.
442 lck_mtx_convert_spin(&inpcb_timeout_lock
);
444 inpcb_fast_timer_on
= TRUE
;
445 thread_call_enter_delayed(inpcb_fast_thread_call
, deadline
);
450 inpcb_gc_sched(struct inpcbinfo
*ipi
, u_int32_t type
)
454 lck_mtx_lock_spin(&inpcb_timeout_lock
);
455 inpcb_garbage_collecting
= TRUE
;
456 gccnt
= ipi
->ipi_gc_req
.intimer_nodelay
+
457 ipi
->ipi_gc_req
.intimer_fast
;
459 if (gccnt
> INPCB_GCREQ_THRESHOLD
) {
460 type
= INPCB_TIMER_FAST
;
464 case INPCB_TIMER_NODELAY
:
465 atomic_add_32(&ipi
->ipi_gc_req
.intimer_nodelay
, 1);
466 inpcb_sched_timeout();
468 case INPCB_TIMER_FAST
:
469 atomic_add_32(&ipi
->ipi_gc_req
.intimer_fast
, 1);
470 inpcb_sched_timeout();
473 atomic_add_32(&ipi
->ipi_gc_req
.intimer_lazy
, 1);
474 inpcb_sched_lazy_timeout();
477 lck_mtx_unlock(&inpcb_timeout_lock
);
481 inpcb_timer_sched(struct inpcbinfo
*ipi
, u_int32_t type
)
484 lck_mtx_lock_spin(&inpcb_timeout_lock
);
485 inpcb_ticking
= TRUE
;
487 case INPCB_TIMER_NODELAY
:
488 atomic_add_32(&ipi
->ipi_timer_req
.intimer_nodelay
, 1);
489 inpcb_sched_timeout();
491 case INPCB_TIMER_FAST
:
492 atomic_add_32(&ipi
->ipi_timer_req
.intimer_fast
, 1);
493 inpcb_sched_timeout();
496 atomic_add_32(&ipi
->ipi_timer_req
.intimer_lazy
, 1);
497 inpcb_sched_lazy_timeout();
500 lck_mtx_unlock(&inpcb_timeout_lock
);
504 in_pcbinfo_attach(struct inpcbinfo
*ipi
)
506 struct inpcbinfo
*ipi0
;
508 lck_mtx_lock(&inpcb_lock
);
509 TAILQ_FOREACH(ipi0
, &inpcb_head
, ipi_entry
) {
511 panic("%s: ipi %p already in the list\n",
516 TAILQ_INSERT_TAIL(&inpcb_head
, ipi
, ipi_entry
);
517 lck_mtx_unlock(&inpcb_lock
);
521 in_pcbinfo_detach(struct inpcbinfo
*ipi
)
523 struct inpcbinfo
*ipi0
;
526 lck_mtx_lock(&inpcb_lock
);
527 TAILQ_FOREACH(ipi0
, &inpcb_head
, ipi_entry
) {
532 TAILQ_REMOVE(&inpcb_head
, ipi0
, ipi_entry
);
535 lck_mtx_unlock(&inpcb_lock
);
541 * Allocate a PCB and associate it with the socket.
548 in_pcballoc(struct socket
*so
, struct inpcbinfo
*pcbinfo
, struct proc
*p
)
555 #endif /* CONFIG_MACF_NET */
557 if ((so
->so_flags1
& SOF1_CACHED_IN_SOCK_LAYER
) == 0) {
558 inp
= (struct inpcb
*)zalloc(pcbinfo
->ipi_zone
);
561 bzero((caddr_t
)inp
, sizeof (*inp
));
563 inp
= (struct inpcb
*)(void *)so
->so_saved_pcb
;
564 temp
= inp
->inp_saved_ppcb
;
565 bzero((caddr_t
)inp
, sizeof (*inp
));
566 inp
->inp_saved_ppcb
= temp
;
569 inp
->inp_gencnt
= ++pcbinfo
->ipi_gencnt
;
570 inp
->inp_pcbinfo
= pcbinfo
;
571 inp
->inp_socket
= so
;
573 mac_error
= mac_inpcb_label_init(inp
, M_WAITOK
);
574 if (mac_error
!= 0) {
575 if ((so
->so_flags1
& SOF1_CACHED_IN_SOCK_LAYER
) == 0)
576 zfree(pcbinfo
->ipi_zone
, inp
);
579 mac_inpcb_label_associate(so
, inp
);
580 #endif /* CONFIG_MACF_NET */
581 /* make sure inp_stat is always 64-bit aligned */
582 inp
->inp_stat
= (struct inp_stat
*)P2ROUNDUP(inp
->inp_stat_store
,
584 if (((uintptr_t)inp
->inp_stat
- (uintptr_t)inp
->inp_stat_store
) +
585 sizeof (*inp
->inp_stat
) > sizeof (inp
->inp_stat_store
)) {
586 panic("%s: insufficient space to align inp_stat", __func__
);
590 /* make sure inp_cstat is always 64-bit aligned */
591 inp
->inp_cstat
= (struct inp_stat
*)P2ROUNDUP(inp
->inp_cstat_store
,
593 if (((uintptr_t)inp
->inp_cstat
- (uintptr_t)inp
->inp_cstat_store
) +
594 sizeof (*inp
->inp_cstat
) > sizeof (inp
->inp_cstat_store
)) {
595 panic("%s: insufficient space to align inp_cstat", __func__
);
599 /* make sure inp_wstat is always 64-bit aligned */
600 inp
->inp_wstat
= (struct inp_stat
*)P2ROUNDUP(inp
->inp_wstat_store
,
602 if (((uintptr_t)inp
->inp_wstat
- (uintptr_t)inp
->inp_wstat_store
) +
603 sizeof (*inp
->inp_wstat
) > sizeof (inp
->inp_wstat_store
)) {
604 panic("%s: insufficient space to align inp_wstat", __func__
);
608 /* make sure inp_Wstat is always 64-bit aligned */
609 inp
->inp_Wstat
= (struct inp_stat
*)P2ROUNDUP(inp
->inp_Wstat_store
,
611 if (((uintptr_t)inp
->inp_Wstat
- (uintptr_t)inp
->inp_Wstat_store
) +
612 sizeof (*inp
->inp_Wstat
) > sizeof (inp
->inp_Wstat_store
)) {
613 panic("%s: insufficient space to align inp_Wstat", __func__
);
617 so
->so_pcb
= (caddr_t
)inp
;
619 if (so
->so_proto
->pr_flags
& PR_PCBLOCK
) {
620 lck_mtx_init(&inp
->inpcb_mtx
, pcbinfo
->ipi_lock_grp
,
621 pcbinfo
->ipi_lock_attr
);
625 if (SOCK_DOM(so
) == PF_INET6
&& !ip6_mapped_addr_on
)
626 inp
->inp_flags
|= IN6P_IPV6_V6ONLY
;
628 if (ip6_auto_flowlabel
)
629 inp
->inp_flags
|= IN6P_AUTOFLOWLABEL
;
631 if (intcoproc_unrestricted
)
632 inp
->inp_flags2
|= INP2_INTCOPROC_ALLOWED
;
634 (void) inp_update_policy(inp
);
636 lck_rw_lock_exclusive(pcbinfo
->ipi_lock
);
637 inp
->inp_gencnt
= ++pcbinfo
->ipi_gencnt
;
638 LIST_INSERT_HEAD(pcbinfo
->ipi_listhead
, inp
, inp_list
);
639 pcbinfo
->ipi_count
++;
640 lck_rw_done(pcbinfo
->ipi_lock
);
645 * in_pcblookup_local_and_cleanup does everything
646 * in_pcblookup_local does but it checks for a socket
647 * that's going away. Since we know that the lock is
648 * held read+write when this funciton is called, we
649 * can safely dispose of this socket like the slow
650 * timer would usually do and return NULL. This is
654 in_pcblookup_local_and_cleanup(struct inpcbinfo
*pcbinfo
, struct in_addr laddr
,
655 u_int lport_arg
, int wild_okay
)
659 /* Perform normal lookup */
660 inp
= in_pcblookup_local(pcbinfo
, laddr
, lport_arg
, wild_okay
);
662 /* Check if we found a match but it's waiting to be disposed */
663 if (inp
!= NULL
&& inp
->inp_wantcnt
== WNT_STOPUSING
) {
664 struct socket
*so
= inp
->inp_socket
;
668 if (so
->so_usecount
== 0) {
669 if (inp
->inp_state
!= INPCB_STATE_DEAD
)
671 in_pcbdispose(inp
); /* will unlock & destroy */
674 socket_unlock(so
, 0);
682 in_pcb_conflict_post_msg(u_int16_t port
)
685 * Radar 5523020 send a kernel event notification if a
686 * non-participating socket tries to bind the port a socket
687 * who has set SOF_NOTIFYCONFLICT owns.
689 struct kev_msg ev_msg
;
690 struct kev_in_portinuse in_portinuse
;
692 bzero(&in_portinuse
, sizeof (struct kev_in_portinuse
));
693 bzero(&ev_msg
, sizeof (struct kev_msg
));
694 in_portinuse
.port
= ntohs(port
); /* port in host order */
695 in_portinuse
.req_pid
= proc_selfpid();
696 ev_msg
.vendor_code
= KEV_VENDOR_APPLE
;
697 ev_msg
.kev_class
= KEV_NETWORK_CLASS
;
698 ev_msg
.kev_subclass
= KEV_INET_SUBCLASS
;
699 ev_msg
.event_code
= KEV_INET_PORTINUSE
;
700 ev_msg
.dv
[0].data_ptr
= &in_portinuse
;
701 ev_msg
.dv
[0].data_length
= sizeof (struct kev_in_portinuse
);
702 ev_msg
.dv
[1].data_length
= 0;
703 dlil_post_complete_msg(NULL
, &ev_msg
);
707 * Bind an INPCB to an address and/or port. This routine should not alter
708 * the caller-supplied local address "nam".
711 * EADDRNOTAVAIL Address not available.
712 * EINVAL Invalid argument
713 * EAFNOSUPPORT Address family not supported [notdef]
714 * EACCES Permission denied
715 * EADDRINUSE Address in use
716 * EAGAIN Resource unavailable, try again
717 * priv_check_cred:EPERM Operation not permitted
720 in_pcbbind(struct inpcb
*inp
, struct sockaddr
*nam
, struct proc
*p
)
722 struct socket
*so
= inp
->inp_socket
;
723 unsigned short *lastport
;
724 struct inpcbinfo
*pcbinfo
= inp
->inp_pcbinfo
;
725 u_short lport
= 0, rand_port
= 0;
726 int wild
= 0, reuseport
= (so
->so_options
& SO_REUSEPORT
);
727 int error
, randomport
, conflict
= 0;
728 boolean_t anonport
= FALSE
;
730 struct in_addr laddr
;
731 struct ifnet
*outif
= NULL
;
733 if (TAILQ_EMPTY(&in_ifaddrhead
)) /* XXX broken! */
734 return (EADDRNOTAVAIL
);
735 if (inp
->inp_lport
!= 0 || inp
->inp_laddr
.s_addr
!= INADDR_ANY
)
737 if (!(so
->so_options
& (SO_REUSEADDR
|SO_REUSEPORT
)))
740 bzero(&laddr
, sizeof(laddr
));
742 socket_unlock(so
, 0); /* keep reference on socket */
743 lck_rw_lock_exclusive(pcbinfo
->ipi_lock
);
747 if (nam
->sa_len
!= sizeof (struct sockaddr_in
)) {
748 lck_rw_done(pcbinfo
->ipi_lock
);
754 * We should check the family, but old programs
755 * incorrectly fail to initialize it.
757 if (nam
->sa_family
!= AF_INET
) {
758 lck_rw_done(pcbinfo
->ipi_lock
);
760 return (EAFNOSUPPORT
);
763 lport
= SIN(nam
)->sin_port
;
765 if (IN_MULTICAST(ntohl(SIN(nam
)->sin_addr
.s_addr
))) {
767 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
768 * allow complete duplication of binding if
769 * SO_REUSEPORT is set, or if SO_REUSEADDR is set
770 * and a multicast address is bound on both
771 * new and duplicated sockets.
773 if (so
->so_options
& SO_REUSEADDR
)
774 reuseport
= SO_REUSEADDR
|SO_REUSEPORT
;
775 } else if (SIN(nam
)->sin_addr
.s_addr
!= INADDR_ANY
) {
776 struct sockaddr_in sin
;
779 /* Sanitized for interface address searches */
780 bzero(&sin
, sizeof (sin
));
781 sin
.sin_family
= AF_INET
;
782 sin
.sin_len
= sizeof (struct sockaddr_in
);
783 sin
.sin_addr
.s_addr
= SIN(nam
)->sin_addr
.s_addr
;
785 ifa
= ifa_ifwithaddr(SA(&sin
));
787 lck_rw_done(pcbinfo
->ipi_lock
);
789 return (EADDRNOTAVAIL
);
792 * Opportunistically determine the outbound
793 * interface that may be used; this may not
794 * hold true if we end up using a route
795 * going over a different interface, e.g.
796 * when sending to a local address. This
797 * will get updated again after sending.
800 outif
= ifa
->ifa_ifp
;
810 if (ntohs(lport
) < IPPORT_RESERVED
) {
811 cred
= kauth_cred_proc_ref(p
);
812 error
= priv_check_cred(cred
,
813 PRIV_NETINET_RESERVEDPORT
, 0);
814 kauth_cred_unref(&cred
);
816 lck_rw_done(pcbinfo
->ipi_lock
);
821 #endif /* !CONFIG_EMBEDDED */
822 if (!IN_MULTICAST(ntohl(SIN(nam
)->sin_addr
.s_addr
)) &&
823 (u
= kauth_cred_getuid(so
->so_cred
)) != 0 &&
824 (t
= in_pcblookup_local_and_cleanup(
825 inp
->inp_pcbinfo
, SIN(nam
)->sin_addr
, lport
,
826 INPLOOKUP_WILDCARD
)) != NULL
&&
827 (SIN(nam
)->sin_addr
.s_addr
!= INADDR_ANY
||
828 t
->inp_laddr
.s_addr
!= INADDR_ANY
||
829 !(t
->inp_socket
->so_options
& SO_REUSEPORT
)) &&
830 (u
!= kauth_cred_getuid(t
->inp_socket
->so_cred
)) &&
831 !(t
->inp_socket
->so_flags
& SOF_REUSESHAREUID
) &&
832 (SIN(nam
)->sin_addr
.s_addr
!= INADDR_ANY
||
833 t
->inp_laddr
.s_addr
!= INADDR_ANY
)) {
834 if ((t
->inp_socket
->so_flags
&
835 SOF_NOTIFYCONFLICT
) &&
836 !(so
->so_flags
& SOF_NOTIFYCONFLICT
))
839 lck_rw_done(pcbinfo
->ipi_lock
);
842 in_pcb_conflict_post_msg(lport
);
847 t
= in_pcblookup_local_and_cleanup(pcbinfo
,
848 SIN(nam
)->sin_addr
, lport
, wild
);
850 (reuseport
& t
->inp_socket
->so_options
) == 0) {
852 if (SIN(nam
)->sin_addr
.s_addr
!= INADDR_ANY
||
853 t
->inp_laddr
.s_addr
!= INADDR_ANY
||
854 SOCK_DOM(so
) != PF_INET6
||
855 SOCK_DOM(t
->inp_socket
) != PF_INET6
)
859 if ((t
->inp_socket
->so_flags
&
860 SOF_NOTIFYCONFLICT
) &&
861 !(so
->so_flags
& SOF_NOTIFYCONFLICT
))
864 lck_rw_done(pcbinfo
->ipi_lock
);
867 in_pcb_conflict_post_msg(lport
);
873 laddr
= SIN(nam
)->sin_addr
;
880 randomport
= (so
->so_flags
& SOF_BINDRANDOMPORT
) ||
881 (so
->so_type
== SOCK_STREAM
? tcp_use_randomport
:
885 * Even though this looks similar to the code in
886 * in6_pcbsetport, the v6 vs v4 checks are different.
889 if (inp
->inp_flags
& INP_HIGHPORT
) {
890 first
= ipport_hifirstauto
; /* sysctl */
891 last
= ipport_hilastauto
;
892 lastport
= &pcbinfo
->ipi_lasthi
;
893 } else if (inp
->inp_flags
& INP_LOWPORT
) {
894 cred
= kauth_cred_proc_ref(p
);
895 error
= priv_check_cred(cred
,
896 PRIV_NETINET_RESERVEDPORT
, 0);
897 kauth_cred_unref(&cred
);
899 lck_rw_done(pcbinfo
->ipi_lock
);
903 first
= ipport_lowfirstauto
; /* 1023 */
904 last
= ipport_lowlastauto
; /* 600 */
905 lastport
= &pcbinfo
->ipi_lastlow
;
907 first
= ipport_firstauto
; /* sysctl */
908 last
= ipport_lastauto
;
909 lastport
= &pcbinfo
->ipi_lastport
;
911 /* No point in randomizing if only one port is available */
916 * Simple check to ensure all ports are not used up causing
919 * We split the two cases (up and down) so that the direction
920 * is not being tested on each round of the loop.
923 struct in_addr lookup_addr
;
929 read_frandom(&rand_port
, sizeof (rand_port
));
931 first
- (rand_port
% (first
- last
));
933 count
= first
- last
;
935 lookup_addr
= (laddr
.s_addr
!= INADDR_ANY
) ? laddr
:
940 if (count
-- < 0) { /* completely used? */
941 lck_rw_done(pcbinfo
->ipi_lock
);
943 return (EADDRNOTAVAIL
);
946 if (*lastport
> first
|| *lastport
< last
)
948 lport
= htons(*lastport
);
950 found
= in_pcblookup_local_and_cleanup(pcbinfo
,
951 lookup_addr
, lport
, wild
) == NULL
;
954 struct in_addr lookup_addr
;
960 read_frandom(&rand_port
, sizeof (rand_port
));
962 first
+ (rand_port
% (first
- last
));
964 count
= last
- first
;
966 lookup_addr
= (laddr
.s_addr
!= INADDR_ANY
) ? laddr
:
971 if (count
-- < 0) { /* completely used? */
972 lck_rw_done(pcbinfo
->ipi_lock
);
974 return (EADDRNOTAVAIL
);
977 if (*lastport
< first
|| *lastport
> last
)
979 lport
= htons(*lastport
);
981 found
= in_pcblookup_local_and_cleanup(pcbinfo
,
982 lookup_addr
, lport
, wild
) == NULL
;
989 * We unlocked socket's protocol lock for a long time.
990 * The socket might have been dropped/defuncted.
991 * Checking if world has changed since.
993 if (inp
->inp_state
== INPCB_STATE_DEAD
) {
994 lck_rw_done(pcbinfo
->ipi_lock
);
995 return (ECONNABORTED
);
998 if (inp
->inp_lport
!= 0 || inp
->inp_laddr
.s_addr
!= INADDR_ANY
) {
999 lck_rw_done(pcbinfo
->ipi_lock
);
1003 if (laddr
.s_addr
!= INADDR_ANY
) {
1004 inp
->inp_laddr
= laddr
;
1005 inp
->inp_last_outifp
= outif
;
1007 inp
->inp_lport
= lport
;
1009 inp
->inp_flags
|= INP_ANONPORT
;
1011 if (in_pcbinshash(inp
, 1) != 0) {
1012 inp
->inp_laddr
.s_addr
= INADDR_ANY
;
1013 inp
->inp_last_outifp
= NULL
;
1017 inp
->inp_flags
&= ~INP_ANONPORT
;
1018 lck_rw_done(pcbinfo
->ipi_lock
);
1021 lck_rw_done(pcbinfo
->ipi_lock
);
1022 sflt_notify(so
, sock_evt_bound
, NULL
);
1026 #define APN_FALLBACK_IP_FILTER(a) \
1027 (IN_LINKLOCAL(ntohl((a)->sin_addr.s_addr)) || \
1028 IN_LOOPBACK(ntohl((a)->sin_addr.s_addr)) || \
1029 IN_ZERONET(ntohl((a)->sin_addr.s_addr)) || \
1030 IN_MULTICAST(ntohl((a)->sin_addr.s_addr)) || \
1031 IN_PRIVATE(ntohl((a)->sin_addr.s_addr)))
1033 #define APN_FALLBACK_NOTIF_INTERVAL 2 /* Magic Number */
1034 static uint64_t last_apn_fallback
= 0;
1037 apn_fallback_required (proc_t proc
, struct socket
*so
, struct sockaddr_in
*p_dstv4
)
1040 struct sockaddr_storage lookup_default_addr
;
1041 struct rtentry
*rt
= NULL
;
1043 VERIFY(proc
!= NULL
);
1045 if (apn_fallbk_enabled
== FALSE
)
1048 if (proc
== kernproc
)
1051 if (so
&& (so
->so_options
& SO_NOAPNFALLBK
))
1054 timenow
= net_uptime();
1055 if ((timenow
- last_apn_fallback
) < APN_FALLBACK_NOTIF_INTERVAL
) {
1056 apn_fallbk_log((LOG_INFO
, "APN fallback notification throttled.\n"));
1060 if (p_dstv4
&& APN_FALLBACK_IP_FILTER(p_dstv4
))
1063 /* Check if we have unscoped IPv6 default route through cellular */
1064 bzero(&lookup_default_addr
, sizeof(lookup_default_addr
));
1065 lookup_default_addr
.ss_family
= AF_INET6
;
1066 lookup_default_addr
.ss_len
= sizeof(struct sockaddr_in6
);
1068 rt
= rtalloc1((struct sockaddr
*)&lookup_default_addr
, 0, 0);
1070 apn_fallbk_log((LOG_INFO
, "APN fallback notification could not find "
1071 "unscoped default IPv6 route.\n"));
1075 if (!IFNET_IS_CELLULAR(rt
->rt_ifp
)) {
1077 apn_fallbk_log((LOG_INFO
, "APN fallback notification could not find "
1078 "unscoped default IPv6 route through cellular interface.\n"));
1083 * We have a default IPv6 route, ensure that
1084 * we do not have IPv4 default route before triggering
1090 bzero(&lookup_default_addr
, sizeof(lookup_default_addr
));
1091 lookup_default_addr
.ss_family
= AF_INET
;
1092 lookup_default_addr
.ss_len
= sizeof(struct sockaddr_in
);
1094 rt
= rtalloc1((struct sockaddr
*)&lookup_default_addr
, 0, 0);
1099 apn_fallbk_log((LOG_INFO
, "APN fallback notification found unscoped "
1100 "IPv4 default route!\n"));
1106 * We disable APN fallback if the binary is not a third-party app.
1107 * Note that platform daemons use their process name as a
1108 * bundle ID so we filter out bundle IDs without dots.
1110 const char *bundle_id
= cs_identity_get(proc
);
1111 if (bundle_id
== NULL
||
1112 bundle_id
[0] == '\0' ||
1113 strchr(bundle_id
, '.') == NULL
||
1114 strncmp(bundle_id
, "com.apple.", sizeof("com.apple.") - 1) == 0) {
1115 apn_fallbk_log((LOG_INFO
, "Abort: APN fallback notification found first-"
1116 "party bundle ID \"%s\"!\n", (bundle_id
? bundle_id
: "NULL")));
1123 * The Apple App Store IPv6 requirement started on
1124 * June 1st, 2016 at 12:00:00 AM PDT.
1125 * We disable APN fallback if the binary is more recent than that.
1126 * We check both atime and birthtime since birthtime is not always supported.
1128 static const long ipv6_start_date
= 1464764400L;
1129 vfs_context_t context
;
1133 bzero(&sb
, sizeof(struct stat64
));
1134 context
= vfs_context_create(NULL
);
1135 vn_stat_error
= vn_stat(proc
->p_textvp
, &sb
, NULL
, 1, context
);
1136 (void)vfs_context_rele(context
);
1138 if (vn_stat_error
!= 0 ||
1139 sb
.st_atimespec
.tv_sec
>= ipv6_start_date
||
1140 sb
.st_birthtimespec
.tv_sec
>= ipv6_start_date
) {
1141 apn_fallbk_log((LOG_INFO
, "Abort: APN fallback notification found binary "
1142 "too recent! (err %d atime %ld mtime %ld ctime %ld birthtime %ld)\n",
1143 vn_stat_error
, sb
.st_atimespec
.tv_sec
, sb
.st_mtimespec
.tv_sec
,
1144 sb
.st_ctimespec
.tv_sec
, sb
.st_birthtimespec
.tv_sec
));
1152 apn_fallback_trigger(proc_t proc
)
1155 struct kev_msg ev_msg
;
1156 struct kev_netevent_apnfallbk_data apnfallbk_data
;
1158 last_apn_fallback
= net_uptime();
1159 pid
= proc_pid(proc
);
1160 uuid_t application_uuid
;
1161 uuid_clear(application_uuid
);
1162 proc_getexecutableuuid(proc
, application_uuid
,
1163 sizeof(application_uuid
));
1165 bzero(&ev_msg
, sizeof (struct kev_msg
));
1166 ev_msg
.vendor_code
= KEV_VENDOR_APPLE
;
1167 ev_msg
.kev_class
= KEV_NETWORK_CLASS
;
1168 ev_msg
.kev_subclass
= KEV_NETEVENT_SUBCLASS
;
1169 ev_msg
.event_code
= KEV_NETEVENT_APNFALLBACK
;
1171 bzero(&apnfallbk_data
, sizeof(apnfallbk_data
));
1172 apnfallbk_data
.epid
= pid
;
1173 uuid_copy(apnfallbk_data
.euuid
, application_uuid
);
1175 ev_msg
.dv
[0].data_ptr
= &apnfallbk_data
;
1176 ev_msg
.dv
[0].data_length
= sizeof(apnfallbk_data
);
1177 kev_post_msg(&ev_msg
);
1178 apn_fallbk_log((LOG_INFO
, "APN fallback notification issued.\n"));
1182 * Transform old in_pcbconnect() into an inner subroutine for new
1183 * in_pcbconnect(); do some validity-checking on the remote address
1184 * (in "nam") and then determine local host address (i.e., which
1185 * interface) to use to access that remote host.
1187 * This routine may alter the caller-supplied remote address "nam".
1189 * The caller may override the bound-to-interface setting of the socket
1190 * by specifying the ifscope parameter (e.g. from IP_PKTINFO.)
1192 * This routine might return an ifp with a reference held if the caller
1193 * provides a non-NULL outif, even in the error case. The caller is
1194 * responsible for releasing its reference.
1196 * Returns: 0 Success
1197 * EINVAL Invalid argument
1198 * EAFNOSUPPORT Address family not supported
1199 * EADDRNOTAVAIL Address not available
1202 in_pcbladdr(struct inpcb
*inp
, struct sockaddr
*nam
, struct in_addr
*laddr
,
1203 unsigned int ifscope
, struct ifnet
**outif
, int raw
)
1205 struct route
*ro
= &inp
->inp_route
;
1206 struct in_ifaddr
*ia
= NULL
;
1207 struct sockaddr_in sin
;
1209 boolean_t restricted
= FALSE
;
1213 if (nam
->sa_len
!= sizeof (struct sockaddr_in
))
1215 if (SIN(nam
)->sin_family
!= AF_INET
)
1216 return (EAFNOSUPPORT
);
1217 if (raw
== 0 && SIN(nam
)->sin_port
== 0)
1218 return (EADDRNOTAVAIL
);
1221 * If the destination address is INADDR_ANY,
1222 * use the primary local address.
1223 * If the supplied address is INADDR_BROADCAST,
1224 * and the primary interface supports broadcast,
1225 * choose the broadcast address for that interface.
1227 if (raw
== 0 && (SIN(nam
)->sin_addr
.s_addr
== INADDR_ANY
||
1228 SIN(nam
)->sin_addr
.s_addr
== (u_int32_t
)INADDR_BROADCAST
)) {
1229 lck_rw_lock_shared(in_ifaddr_rwlock
);
1230 if (!TAILQ_EMPTY(&in_ifaddrhead
)) {
1231 ia
= TAILQ_FIRST(&in_ifaddrhead
);
1232 IFA_LOCK_SPIN(&ia
->ia_ifa
);
1233 if (SIN(nam
)->sin_addr
.s_addr
== INADDR_ANY
) {
1234 SIN(nam
)->sin_addr
= IA_SIN(ia
)->sin_addr
;
1235 } else if (ia
->ia_ifp
->if_flags
& IFF_BROADCAST
) {
1236 SIN(nam
)->sin_addr
=
1237 SIN(&ia
->ia_broadaddr
)->sin_addr
;
1239 IFA_UNLOCK(&ia
->ia_ifa
);
1242 lck_rw_done(in_ifaddr_rwlock
);
1245 * Otherwise, if the socket has already bound the source, just use it.
1247 if (inp
->inp_laddr
.s_addr
!= INADDR_ANY
) {
1249 *laddr
= inp
->inp_laddr
;
1254 * If the ifscope is specified by the caller (e.g. IP_PKTINFO)
1255 * then it overrides the sticky ifscope set for the socket.
1257 if (ifscope
== IFSCOPE_NONE
&& (inp
->inp_flags
& INP_BOUND_IF
))
1258 ifscope
= inp
->inp_boundifp
->if_index
;
1261 * If route is known or can be allocated now,
1262 * our src addr is taken from the i/f, else punt.
1263 * Note that we should check the address family of the cached
1264 * destination, in case of sharing the cache with IPv6.
1266 if (ro
->ro_rt
!= NULL
)
1267 RT_LOCK_SPIN(ro
->ro_rt
);
1268 if (ROUTE_UNUSABLE(ro
) || ro
->ro_dst
.sa_family
!= AF_INET
||
1269 SIN(&ro
->ro_dst
)->sin_addr
.s_addr
!= SIN(nam
)->sin_addr
.s_addr
||
1270 (inp
->inp_socket
->so_options
& SO_DONTROUTE
)) {
1271 if (ro
->ro_rt
!= NULL
)
1272 RT_UNLOCK(ro
->ro_rt
);
1275 if (!(inp
->inp_socket
->so_options
& SO_DONTROUTE
) &&
1276 (ro
->ro_rt
== NULL
|| ro
->ro_rt
->rt_ifp
== NULL
)) {
1277 if (ro
->ro_rt
!= NULL
)
1278 RT_UNLOCK(ro
->ro_rt
);
1280 /* No route yet, so try to acquire one */
1281 bzero(&ro
->ro_dst
, sizeof (struct sockaddr_in
));
1282 ro
->ro_dst
.sa_family
= AF_INET
;
1283 ro
->ro_dst
.sa_len
= sizeof (struct sockaddr_in
);
1284 SIN(&ro
->ro_dst
)->sin_addr
= SIN(nam
)->sin_addr
;
1285 rtalloc_scoped(ro
, ifscope
);
1286 if (ro
->ro_rt
!= NULL
)
1287 RT_LOCK_SPIN(ro
->ro_rt
);
1289 /* Sanitized local copy for interface address searches */
1290 bzero(&sin
, sizeof (sin
));
1291 sin
.sin_family
= AF_INET
;
1292 sin
.sin_len
= sizeof (struct sockaddr_in
);
1293 sin
.sin_addr
.s_addr
= SIN(nam
)->sin_addr
.s_addr
;
1295 * If we did not find (or use) a route, assume dest is reachable
1296 * on a directly connected network and try to find a corresponding
1297 * interface to take the source address from.
1299 if (ro
->ro_rt
== NULL
) {
1300 proc_t proc
= current_proc();
1303 ia
= ifatoia(ifa_ifwithdstaddr(SA(&sin
)));
1305 ia
= ifatoia(ifa_ifwithnet_scoped(SA(&sin
), ifscope
));
1306 error
= ((ia
== NULL
) ? ENETUNREACH
: 0);
1308 if (apn_fallback_required(proc
, inp
->inp_socket
,
1310 apn_fallback_trigger(proc
);
1314 RT_LOCK_ASSERT_HELD(ro
->ro_rt
);
1316 * If the outgoing interface on the route found is not
1317 * a loopback interface, use the address from that interface.
1319 if (!(ro
->ro_rt
->rt_ifp
->if_flags
& IFF_LOOPBACK
)) {
1322 * If the route points to a cellular interface and the
1323 * caller forbids our using interfaces of such type,
1324 * pretend that there is no route.
1325 * Apply the same logic for expensive interfaces.
1327 if (inp_restricted_send(inp
, ro
->ro_rt
->rt_ifp
)) {
1328 RT_UNLOCK(ro
->ro_rt
);
1330 error
= EHOSTUNREACH
;
1333 /* Become a regular mutex */
1334 RT_CONVERT_LOCK(ro
->ro_rt
);
1335 ia
= ifatoia(ro
->ro_rt
->rt_ifa
);
1336 IFA_ADDREF(&ia
->ia_ifa
);
1337 RT_UNLOCK(ro
->ro_rt
);
1342 VERIFY(ro
->ro_rt
->rt_ifp
->if_flags
& IFF_LOOPBACK
);
1343 RT_UNLOCK(ro
->ro_rt
);
1345 * The outgoing interface is marked with 'loopback net', so a route
1346 * to ourselves is here.
1347 * Try to find the interface of the destination address and then
1348 * take the address from there. That interface is not necessarily
1349 * a loopback interface.
1352 ia
= ifatoia(ifa_ifwithdstaddr(SA(&sin
)));
1354 ia
= ifatoia(ifa_ifwithaddr_scoped(SA(&sin
), ifscope
));
1356 ia
= ifatoia(ifa_ifwithnet_scoped(SA(&sin
), ifscope
));
1359 ia
= ifatoia(ro
->ro_rt
->rt_ifa
);
1361 IFA_ADDREF(&ia
->ia_ifa
);
1362 RT_UNLOCK(ro
->ro_rt
);
1364 error
= ((ia
== NULL
) ? ENETUNREACH
: 0);
1368 * If the destination address is multicast and an outgoing
1369 * interface has been set as a multicast option, use the
1370 * address of that interface as our source address.
1372 if (IN_MULTICAST(ntohl(SIN(nam
)->sin_addr
.s_addr
)) &&
1373 inp
->inp_moptions
!= NULL
) {
1374 struct ip_moptions
*imo
;
1377 imo
= inp
->inp_moptions
;
1379 if (imo
->imo_multicast_ifp
!= NULL
&& (ia
== NULL
||
1380 ia
->ia_ifp
!= imo
->imo_multicast_ifp
)) {
1381 ifp
= imo
->imo_multicast_ifp
;
1383 IFA_REMREF(&ia
->ia_ifa
);
1384 lck_rw_lock_shared(in_ifaddr_rwlock
);
1385 TAILQ_FOREACH(ia
, &in_ifaddrhead
, ia_link
) {
1386 if (ia
->ia_ifp
== ifp
)
1390 IFA_ADDREF(&ia
->ia_ifa
);
1391 lck_rw_done(in_ifaddr_rwlock
);
1393 error
= EADDRNOTAVAIL
;
1400 * Don't do pcblookup call here; return interface in laddr
1401 * and exit to caller, that will do the lookup.
1405 * If the source address belongs to a cellular interface
1406 * and the socket forbids our using interfaces of such
1407 * type, pretend that there is no source address.
1408 * Apply the same logic for expensive interfaces.
1410 IFA_LOCK_SPIN(&ia
->ia_ifa
);
1411 if (inp_restricted_send(inp
, ia
->ia_ifa
.ifa_ifp
)) {
1412 IFA_UNLOCK(&ia
->ia_ifa
);
1413 error
= EHOSTUNREACH
;
1415 } else if (error
== 0) {
1416 *laddr
= ia
->ia_addr
.sin_addr
;
1417 if (outif
!= NULL
) {
1420 if (ro
->ro_rt
!= NULL
)
1421 ifp
= ro
->ro_rt
->rt_ifp
;
1425 VERIFY(ifp
!= NULL
);
1426 IFA_CONVERT_LOCK(&ia
->ia_ifa
);
1427 ifnet_reference(ifp
); /* for caller */
1429 ifnet_release(*outif
);
1432 IFA_UNLOCK(&ia
->ia_ifa
);
1434 IFA_UNLOCK(&ia
->ia_ifa
);
1436 IFA_REMREF(&ia
->ia_ifa
);
1440 if (restricted
&& error
== EHOSTUNREACH
) {
1441 soevent(inp
->inp_socket
, (SO_FILT_HINT_LOCKED
|
1442 SO_FILT_HINT_IFDENIED
));
1450 * Connect from a socket to a specified address.
1451 * Both address and port must be specified in argument sin.
1452 * If don't have a local address for this socket yet,
1455 * The caller may override the bound-to-interface setting of the socket
1456 * by specifying the ifscope parameter (e.g. from IP_PKTINFO.)
1459 in_pcbconnect(struct inpcb
*inp
, struct sockaddr
*nam
, struct proc
*p
,
1460 unsigned int ifscope
, struct ifnet
**outif
)
1462 struct in_addr laddr
;
1463 struct sockaddr_in
*sin
= (struct sockaddr_in
*)(void *)nam
;
1466 struct socket
*so
= inp
->inp_socket
;
1469 * Call inner routine, to assign local interface address.
1471 if ((error
= in_pcbladdr(inp
, nam
, &laddr
, ifscope
, outif
, 0)) != 0)
1474 socket_unlock(so
, 0);
1475 pcb
= in_pcblookup_hash(inp
->inp_pcbinfo
, sin
->sin_addr
, sin
->sin_port
,
1476 inp
->inp_laddr
.s_addr
? inp
->inp_laddr
: laddr
,
1477 inp
->inp_lport
, 0, NULL
);
1481 * Check if the socket is still in a valid state. When we unlock this
1482 * embryonic socket, it can get aborted if another thread is closing
1483 * the listener (radar 7947600).
1485 if ((so
->so_flags
& SOF_ABORTED
) != 0)
1486 return (ECONNREFUSED
);
1489 in_pcb_checkstate(pcb
, WNT_RELEASE
, pcb
== inp
? 1 : 0);
1490 return (EADDRINUSE
);
1492 if (inp
->inp_laddr
.s_addr
== INADDR_ANY
) {
1493 if (inp
->inp_lport
== 0) {
1494 error
= in_pcbbind(inp
, NULL
, p
);
1498 if (!lck_rw_try_lock_exclusive(inp
->inp_pcbinfo
->ipi_lock
)) {
1500 * Lock inversion issue, mostly with udp
1501 * multicast packets.
1503 socket_unlock(so
, 0);
1504 lck_rw_lock_exclusive(inp
->inp_pcbinfo
->ipi_lock
);
1507 inp
->inp_laddr
= laddr
;
1508 /* no reference needed */
1509 inp
->inp_last_outifp
= (outif
!= NULL
) ? *outif
: NULL
;
1510 inp
->inp_flags
|= INP_INADDR_ANY
;
1513 * Usage of IP_PKTINFO, without local port already
1514 * speficified will cause kernel to panic,
1515 * see rdar://problem/18508185.
1516 * For now returning error to avoid a kernel panic
1517 * This routines can be refactored and handle this better
1520 if (inp
->inp_lport
== 0)
1522 if (!lck_rw_try_lock_exclusive(inp
->inp_pcbinfo
->ipi_lock
)) {
1524 * Lock inversion issue, mostly with udp
1525 * multicast packets.
1527 socket_unlock(so
, 0);
1528 lck_rw_lock_exclusive(inp
->inp_pcbinfo
->ipi_lock
);
1532 inp
->inp_faddr
= sin
->sin_addr
;
1533 inp
->inp_fport
= sin
->sin_port
;
1534 if (nstat_collect
&& SOCK_PROTO(so
) == IPPROTO_UDP
)
1535 nstat_pcb_invalidate_cache(inp
);
1537 lck_rw_done(inp
->inp_pcbinfo
->ipi_lock
);
1542 in_pcbdisconnect(struct inpcb
*inp
)
1544 struct socket
*so
= inp
->inp_socket
;
1546 if (nstat_collect
&& SOCK_PROTO(so
) == IPPROTO_UDP
)
1547 nstat_pcb_cache(inp
);
1549 inp
->inp_faddr
.s_addr
= INADDR_ANY
;
1552 if (!lck_rw_try_lock_exclusive(inp
->inp_pcbinfo
->ipi_lock
)) {
1553 /* lock inversion issue, mostly with udp multicast packets */
1554 socket_unlock(so
, 0);
1555 lck_rw_lock_exclusive(inp
->inp_pcbinfo
->ipi_lock
);
1560 lck_rw_done(inp
->inp_pcbinfo
->ipi_lock
);
1562 * A multipath subflow socket would have its SS_NOFDREF set by default,
1563 * so check for SOF_MP_SUBFLOW socket flag before detaching the PCB;
1564 * when the socket is closed for real, SOF_MP_SUBFLOW would be cleared.
1566 if (!(so
->so_flags
& SOF_MP_SUBFLOW
) && (so
->so_state
& SS_NOFDREF
))
1571 in_pcbdetach(struct inpcb
*inp
)
1573 struct socket
*so
= inp
->inp_socket
;
1575 if (so
->so_pcb
== NULL
) {
1576 /* PCB has been disposed */
1577 panic("%s: inp=%p so=%p proto=%d so_pcb is null!\n", __func__
,
1578 inp
, so
, SOCK_PROTO(so
));
1583 if (inp
->inp_sp
!= NULL
) {
1584 (void) ipsec4_delete_pcbpolicy(inp
);
1588 if (inp
->inp_stat
!= NULL
&& SOCK_PROTO(so
) == IPPROTO_UDP
) {
1589 if (inp
->inp_stat
->rxpackets
== 0 && inp
->inp_stat
->txpackets
== 0) {
1590 INC_ATOMIC_INT64_LIM(net_api_stats
.nas_socket_inet_dgram_no_data
);
1595 * Let NetworkStatistics know this PCB is going away
1596 * before we detach it.
1598 if (nstat_collect
&&
1599 (SOCK_PROTO(so
) == IPPROTO_TCP
|| SOCK_PROTO(so
) == IPPROTO_UDP
))
1600 nstat_pcb_detach(inp
);
1602 /* Free memory buffer held for generating keep alives */
1603 if (inp
->inp_keepalive_data
!= NULL
) {
1604 FREE(inp
->inp_keepalive_data
, M_TEMP
);
1605 inp
->inp_keepalive_data
= NULL
;
1608 /* mark socket state as dead */
1609 if (in_pcb_checkstate(inp
, WNT_STOPUSING
, 1) != WNT_STOPUSING
) {
1610 panic("%s: so=%p proto=%d couldn't set to STOPUSING\n",
1611 __func__
, so
, SOCK_PROTO(so
));
1615 if (!(so
->so_flags
& SOF_PCBCLEARING
)) {
1616 struct ip_moptions
*imo
;
1619 if (inp
->inp_options
!= NULL
) {
1620 (void) m_free(inp
->inp_options
);
1621 inp
->inp_options
= NULL
;
1623 ROUTE_RELEASE(&inp
->inp_route
);
1624 imo
= inp
->inp_moptions
;
1625 inp
->inp_moptions
= NULL
;
1626 sofreelastref(so
, 0);
1627 inp
->inp_state
= INPCB_STATE_DEAD
;
1628 /* makes sure we're not called twice from so_close */
1629 so
->so_flags
|= SOF_PCBCLEARING
;
1631 inpcb_gc_sched(inp
->inp_pcbinfo
, INPCB_TIMER_FAST
);
1634 * See inp_join_group() for why we need to unlock
1637 socket_unlock(so
, 0);
1646 in_pcbdispose(struct inpcb
*inp
)
1648 struct socket
*so
= inp
->inp_socket
;
1649 struct inpcbinfo
*ipi
= inp
->inp_pcbinfo
;
1651 if (so
!= NULL
&& so
->so_usecount
!= 0) {
1652 panic("%s: so %p [%d,%d] usecount %d lockhistory %s\n",
1653 __func__
, so
, SOCK_DOM(so
), SOCK_TYPE(so
), so
->so_usecount
,
1654 solockhistory_nr(so
));
1656 } else if (inp
->inp_wantcnt
!= WNT_STOPUSING
) {
1658 panic_plain("%s: inp %p invalid wantcnt %d, so %p "
1659 "[%d,%d] usecount %d retaincnt %d state 0x%x "
1660 "flags 0x%x lockhistory %s\n", __func__
, inp
,
1661 inp
->inp_wantcnt
, so
, SOCK_DOM(so
), SOCK_TYPE(so
),
1662 so
->so_usecount
, so
->so_retaincnt
, so
->so_state
,
1663 so
->so_flags
, solockhistory_nr(so
));
1666 panic("%s: inp %p invalid wantcnt %d no socket\n",
1667 __func__
, inp
, inp
->inp_wantcnt
);
1672 LCK_RW_ASSERT(ipi
->ipi_lock
, LCK_RW_ASSERT_EXCLUSIVE
);
1674 inp
->inp_gencnt
= ++ipi
->ipi_gencnt
;
1675 /* access ipi in in_pcbremlists */
1676 in_pcbremlists(inp
);
1679 if (so
->so_proto
->pr_flags
& PR_PCBLOCK
) {
1680 sofreelastref(so
, 0);
1681 if (so
->so_rcv
.sb_cc
> 0 || so
->so_snd
.sb_cc
> 0) {
1683 * selthreadclear() already called
1684 * during sofreelastref() above.
1686 sbrelease(&so
->so_rcv
);
1687 sbrelease(&so
->so_snd
);
1689 if (so
->so_head
!= NULL
) {
1690 panic("%s: so=%p head still exist\n",
1694 lck_mtx_unlock(&inp
->inpcb_mtx
);
1697 necp_inpcb_remove_cb(inp
);
1700 lck_mtx_destroy(&inp
->inpcb_mtx
, ipi
->ipi_lock_grp
);
1702 /* makes sure we're not called twice from so_close */
1703 so
->so_flags
|= SOF_PCBCLEARING
;
1704 so
->so_saved_pcb
= (caddr_t
)inp
;
1706 inp
->inp_socket
= NULL
;
1708 mac_inpcb_label_destroy(inp
);
1709 #endif /* CONFIG_MACF_NET */
1711 necp_inpcb_dispose(inp
);
1714 * In case there a route cached after a detach (possible
1715 * in the tcp case), make sure that it is freed before
1716 * we deallocate the structure.
1718 ROUTE_RELEASE(&inp
->inp_route
);
1719 if ((so
->so_flags1
& SOF1_CACHED_IN_SOCK_LAYER
) == 0) {
1720 zfree(ipi
->ipi_zone
, inp
);
1727 * The calling convention of in_getsockaddr() and in_getpeeraddr() was
1728 * modified to match the pru_sockaddr() and pru_peeraddr() entry points
1729 * in struct pr_usrreqs, so that protocols can just reference then directly
1730 * without the need for a wrapper function.
1733 in_getsockaddr(struct socket
*so
, struct sockaddr
**nam
)
1736 struct sockaddr_in
*sin
;
1739 * Do the malloc first in case it blocks.
1741 MALLOC(sin
, struct sockaddr_in
*, sizeof (*sin
), M_SONAME
, M_WAITOK
);
1744 bzero(sin
, sizeof (*sin
));
1745 sin
->sin_family
= AF_INET
;
1746 sin
->sin_len
= sizeof (*sin
);
1748 if ((inp
= sotoinpcb(so
)) == NULL
) {
1749 FREE(sin
, M_SONAME
);
1752 sin
->sin_port
= inp
->inp_lport
;
1753 sin
->sin_addr
= inp
->inp_laddr
;
1755 *nam
= (struct sockaddr
*)sin
;
1760 in_getsockaddr_s(struct socket
*so
, struct sockaddr_in
*ss
)
1762 struct sockaddr_in
*sin
= ss
;
1766 bzero(ss
, sizeof (*ss
));
1768 sin
->sin_family
= AF_INET
;
1769 sin
->sin_len
= sizeof (*sin
);
1771 if ((inp
= sotoinpcb(so
)) == NULL
)
1774 sin
->sin_port
= inp
->inp_lport
;
1775 sin
->sin_addr
= inp
->inp_laddr
;
1780 in_getpeeraddr(struct socket
*so
, struct sockaddr
**nam
)
1783 struct sockaddr_in
*sin
;
1786 * Do the malloc first in case it blocks.
1788 MALLOC(sin
, struct sockaddr_in
*, sizeof (*sin
), M_SONAME
, M_WAITOK
);
1791 bzero((caddr_t
)sin
, sizeof (*sin
));
1792 sin
->sin_family
= AF_INET
;
1793 sin
->sin_len
= sizeof (*sin
);
1795 if ((inp
= sotoinpcb(so
)) == NULL
) {
1796 FREE(sin
, M_SONAME
);
1799 sin
->sin_port
= inp
->inp_fport
;
1800 sin
->sin_addr
= inp
->inp_faddr
;
1802 *nam
= (struct sockaddr
*)sin
;
1807 in_pcbnotifyall(struct inpcbinfo
*pcbinfo
, struct in_addr faddr
,
1808 int errno
, void (*notify
)(struct inpcb
*, int))
1812 lck_rw_lock_shared(pcbinfo
->ipi_lock
);
1814 LIST_FOREACH(inp
, pcbinfo
->ipi_listhead
, inp_list
) {
1816 if (!(inp
->inp_vflag
& INP_IPV4
))
1819 if (inp
->inp_faddr
.s_addr
!= faddr
.s_addr
||
1820 inp
->inp_socket
== NULL
)
1822 if (in_pcb_checkstate(inp
, WNT_ACQUIRE
, 0) == WNT_STOPUSING
)
1824 socket_lock(inp
->inp_socket
, 1);
1825 (*notify
)(inp
, errno
);
1826 (void) in_pcb_checkstate(inp
, WNT_RELEASE
, 1);
1827 socket_unlock(inp
->inp_socket
, 1);
1829 lck_rw_done(pcbinfo
->ipi_lock
);
1833 * Check for alternatives when higher level complains
1834 * about service problems. For now, invalidate cached
1835 * routing information. If the route was created dynamically
1836 * (by a redirect), time to try a default gateway again.
1839 in_losing(struct inpcb
*inp
)
1841 boolean_t release
= FALSE
;
1844 if ((rt
= inp
->inp_route
.ro_rt
) != NULL
) {
1845 struct in_ifaddr
*ia
= NULL
;
1848 if (rt
->rt_flags
& RTF_DYNAMIC
) {
1850 * Prevent another thread from modifying rt_key,
1851 * rt_gateway via rt_setgate() after rt_lock is
1852 * dropped by marking the route as defunct.
1854 rt
->rt_flags
|= RTF_CONDEMNED
;
1856 (void) rtrequest(RTM_DELETE
, rt_key(rt
),
1857 rt
->rt_gateway
, rt_mask(rt
), rt
->rt_flags
, NULL
);
1861 /* if the address is gone keep the old route in the pcb */
1862 if (inp
->inp_laddr
.s_addr
!= INADDR_ANY
&&
1863 (ia
= ifa_foraddr(inp
->inp_laddr
.s_addr
)) != NULL
) {
1865 * Address is around; ditch the route. A new route
1866 * can be allocated the next time output is attempted.
1871 IFA_REMREF(&ia
->ia_ifa
);
1873 if (rt
== NULL
|| release
)
1874 ROUTE_RELEASE(&inp
->inp_route
);
1878 * After a routing change, flush old routing
1879 * and allocate a (hopefully) better one.
1882 in_rtchange(struct inpcb
*inp
, int errno
)
1884 #pragma unused(errno)
1885 boolean_t release
= FALSE
;
1888 if ((rt
= inp
->inp_route
.ro_rt
) != NULL
) {
1889 struct in_ifaddr
*ia
= NULL
;
1891 /* if address is gone, keep the old route */
1892 if (inp
->inp_laddr
.s_addr
!= INADDR_ANY
&&
1893 (ia
= ifa_foraddr(inp
->inp_laddr
.s_addr
)) != NULL
) {
1895 * Address is around; ditch the route. A new route
1896 * can be allocated the next time output is attempted.
1901 IFA_REMREF(&ia
->ia_ifa
);
1903 if (rt
== NULL
|| release
)
1904 ROUTE_RELEASE(&inp
->inp_route
);
1908 * Lookup a PCB based on the local address and port.
1911 in_pcblookup_local(struct inpcbinfo
*pcbinfo
, struct in_addr laddr
,
1912 unsigned int lport_arg
, int wild_okay
)
1915 int matchwild
= 3, wildcard
;
1916 u_short lport
= lport_arg
;
1918 KERNEL_DEBUG(DBG_FNC_PCB_LOOKUP
| DBG_FUNC_START
, 0, 0, 0, 0, 0);
1921 struct inpcbhead
*head
;
1923 * Look for an unconnected (wildcard foreign addr) PCB that
1924 * matches the local address and port we're looking for.
1926 head
= &pcbinfo
->ipi_hashbase
[INP_PCBHASH(INADDR_ANY
, lport
, 0,
1927 pcbinfo
->ipi_hashmask
)];
1928 LIST_FOREACH(inp
, head
, inp_hash
) {
1930 if (!(inp
->inp_vflag
& INP_IPV4
))
1933 if (inp
->inp_faddr
.s_addr
== INADDR_ANY
&&
1934 inp
->inp_laddr
.s_addr
== laddr
.s_addr
&&
1935 inp
->inp_lport
== lport
) {
1945 KERNEL_DEBUG(DBG_FNC_PCB_LOOKUP
| DBG_FUNC_END
, 0, 0, 0, 0, 0);
1948 struct inpcbporthead
*porthash
;
1949 struct inpcbport
*phd
;
1950 struct inpcb
*match
= NULL
;
1952 * Best fit PCB lookup.
1954 * First see if this local port is in use by looking on the
1957 porthash
= &pcbinfo
->ipi_porthashbase
[INP_PCBPORTHASH(lport
,
1958 pcbinfo
->ipi_porthashmask
)];
1959 LIST_FOREACH(phd
, porthash
, phd_hash
) {
1960 if (phd
->phd_port
== lport
)
1965 * Port is in use by one or more PCBs. Look for best
1968 LIST_FOREACH(inp
, &phd
->phd_pcblist
, inp_portlist
) {
1971 if (!(inp
->inp_vflag
& INP_IPV4
))
1974 if (inp
->inp_faddr
.s_addr
!= INADDR_ANY
)
1976 if (inp
->inp_laddr
.s_addr
!= INADDR_ANY
) {
1977 if (laddr
.s_addr
== INADDR_ANY
)
1979 else if (inp
->inp_laddr
.s_addr
!=
1983 if (laddr
.s_addr
!= INADDR_ANY
)
1986 if (wildcard
< matchwild
) {
1988 matchwild
= wildcard
;
1989 if (matchwild
== 0) {
1995 KERNEL_DEBUG(DBG_FNC_PCB_LOOKUP
| DBG_FUNC_END
, match
,
2002 * Check if PCB exists in hash list.
2005 in_pcblookup_hash_exists(struct inpcbinfo
*pcbinfo
, struct in_addr faddr
,
2006 u_int fport_arg
, struct in_addr laddr
, u_int lport_arg
, int wildcard
,
2007 uid_t
*uid
, gid_t
*gid
, struct ifnet
*ifp
)
2009 struct inpcbhead
*head
;
2011 u_short fport
= fport_arg
, lport
= lport_arg
;
2013 struct inpcb
*local_wild
= NULL
;
2015 struct inpcb
*local_wild_mapped
= NULL
;
2022 * We may have found the pcb in the last lookup - check this first.
2025 lck_rw_lock_shared(pcbinfo
->ipi_lock
);
2028 * First look for an exact match.
2030 head
= &pcbinfo
->ipi_hashbase
[INP_PCBHASH(faddr
.s_addr
, lport
, fport
,
2031 pcbinfo
->ipi_hashmask
)];
2032 LIST_FOREACH(inp
, head
, inp_hash
) {
2034 if (!(inp
->inp_vflag
& INP_IPV4
))
2037 if (inp_restricted_recv(inp
, ifp
))
2040 if (inp
->inp_faddr
.s_addr
== faddr
.s_addr
&&
2041 inp
->inp_laddr
.s_addr
== laddr
.s_addr
&&
2042 inp
->inp_fport
== fport
&&
2043 inp
->inp_lport
== lport
) {
2044 if ((found
= (inp
->inp_socket
!= NULL
))) {
2048 *uid
= kauth_cred_getuid(
2049 inp
->inp_socket
->so_cred
);
2050 *gid
= kauth_cred_getgid(
2051 inp
->inp_socket
->so_cred
);
2053 lck_rw_done(pcbinfo
->ipi_lock
);
2062 lck_rw_done(pcbinfo
->ipi_lock
);
2066 head
= &pcbinfo
->ipi_hashbase
[INP_PCBHASH(INADDR_ANY
, lport
, 0,
2067 pcbinfo
->ipi_hashmask
)];
2068 LIST_FOREACH(inp
, head
, inp_hash
) {
2070 if (!(inp
->inp_vflag
& INP_IPV4
))
2073 if (inp_restricted_recv(inp
, ifp
))
2076 if (inp
->inp_faddr
.s_addr
== INADDR_ANY
&&
2077 inp
->inp_lport
== lport
) {
2078 if (inp
->inp_laddr
.s_addr
== laddr
.s_addr
) {
2079 if ((found
= (inp
->inp_socket
!= NULL
))) {
2080 *uid
= kauth_cred_getuid(
2081 inp
->inp_socket
->so_cred
);
2082 *gid
= kauth_cred_getgid(
2083 inp
->inp_socket
->so_cred
);
2085 lck_rw_done(pcbinfo
->ipi_lock
);
2087 } else if (inp
->inp_laddr
.s_addr
== INADDR_ANY
) {
2089 if (inp
->inp_socket
&&
2090 SOCK_CHECK_DOM(inp
->inp_socket
, PF_INET6
))
2091 local_wild_mapped
= inp
;
2098 if (local_wild
== NULL
) {
2100 if (local_wild_mapped
!= NULL
) {
2101 if ((found
= (local_wild_mapped
->inp_socket
!= NULL
))) {
2102 *uid
= kauth_cred_getuid(
2103 local_wild_mapped
->inp_socket
->so_cred
);
2104 *gid
= kauth_cred_getgid(
2105 local_wild_mapped
->inp_socket
->so_cred
);
2107 lck_rw_done(pcbinfo
->ipi_lock
);
2111 lck_rw_done(pcbinfo
->ipi_lock
);
2114 if ((found
= (local_wild
->inp_socket
!= NULL
))) {
2115 *uid
= kauth_cred_getuid(
2116 local_wild
->inp_socket
->so_cred
);
2117 *gid
= kauth_cred_getgid(
2118 local_wild
->inp_socket
->so_cred
);
2120 lck_rw_done(pcbinfo
->ipi_lock
);
2125 * Lookup PCB in hash list.
2128 in_pcblookup_hash(struct inpcbinfo
*pcbinfo
, struct in_addr faddr
,
2129 u_int fport_arg
, struct in_addr laddr
, u_int lport_arg
, int wildcard
,
2132 struct inpcbhead
*head
;
2134 u_short fport
= fport_arg
, lport
= lport_arg
;
2135 struct inpcb
*local_wild
= NULL
;
2137 struct inpcb
*local_wild_mapped
= NULL
;
2141 * We may have found the pcb in the last lookup - check this first.
2144 lck_rw_lock_shared(pcbinfo
->ipi_lock
);
2147 * First look for an exact match.
2149 head
= &pcbinfo
->ipi_hashbase
[INP_PCBHASH(faddr
.s_addr
, lport
, fport
,
2150 pcbinfo
->ipi_hashmask
)];
2151 LIST_FOREACH(inp
, head
, inp_hash
) {
2153 if (!(inp
->inp_vflag
& INP_IPV4
))
2156 if (inp_restricted_recv(inp
, ifp
))
2159 if (inp
->inp_faddr
.s_addr
== faddr
.s_addr
&&
2160 inp
->inp_laddr
.s_addr
== laddr
.s_addr
&&
2161 inp
->inp_fport
== fport
&&
2162 inp
->inp_lport
== lport
) {
2166 if (in_pcb_checkstate(inp
, WNT_ACQUIRE
, 0) !=
2168 lck_rw_done(pcbinfo
->ipi_lock
);
2171 /* it's there but dead, say it isn't found */
2172 lck_rw_done(pcbinfo
->ipi_lock
);
2182 lck_rw_done(pcbinfo
->ipi_lock
);
2186 head
= &pcbinfo
->ipi_hashbase
[INP_PCBHASH(INADDR_ANY
, lport
, 0,
2187 pcbinfo
->ipi_hashmask
)];
2188 LIST_FOREACH(inp
, head
, inp_hash
) {
2190 if (!(inp
->inp_vflag
& INP_IPV4
))
2193 if (inp_restricted_recv(inp
, ifp
))
2196 if (inp
->inp_faddr
.s_addr
== INADDR_ANY
&&
2197 inp
->inp_lport
== lport
) {
2198 if (inp
->inp_laddr
.s_addr
== laddr
.s_addr
) {
2199 if (in_pcb_checkstate(inp
, WNT_ACQUIRE
, 0) !=
2201 lck_rw_done(pcbinfo
->ipi_lock
);
2204 /* it's dead; say it isn't found */
2205 lck_rw_done(pcbinfo
->ipi_lock
);
2208 } else if (inp
->inp_laddr
.s_addr
== INADDR_ANY
) {
2210 if (SOCK_CHECK_DOM(inp
->inp_socket
, PF_INET6
))
2211 local_wild_mapped
= inp
;
2218 if (local_wild
== NULL
) {
2220 if (local_wild_mapped
!= NULL
) {
2221 if (in_pcb_checkstate(local_wild_mapped
,
2222 WNT_ACQUIRE
, 0) != WNT_STOPUSING
) {
2223 lck_rw_done(pcbinfo
->ipi_lock
);
2224 return (local_wild_mapped
);
2226 /* it's dead; say it isn't found */
2227 lck_rw_done(pcbinfo
->ipi_lock
);
2232 lck_rw_done(pcbinfo
->ipi_lock
);
2235 if (in_pcb_checkstate(local_wild
, WNT_ACQUIRE
, 0) != WNT_STOPUSING
) {
2236 lck_rw_done(pcbinfo
->ipi_lock
);
2237 return (local_wild
);
2240 * It's either not found or is already dead.
2242 lck_rw_done(pcbinfo
->ipi_lock
);
2247 * @brief Insert PCB onto various hash lists.
2249 * @param inp Pointer to internet protocol control block
2250 * @param locked Implies if ipi_lock (protecting pcb list)
2251 * is already locked or not.
2253 * @return int error on failure and 0 on success
2256 in_pcbinshash(struct inpcb
*inp
, int locked
)
2258 struct inpcbhead
*pcbhash
;
2259 struct inpcbporthead
*pcbporthash
;
2260 struct inpcbinfo
*pcbinfo
= inp
->inp_pcbinfo
;
2261 struct inpcbport
*phd
;
2262 u_int32_t hashkey_faddr
;
2265 if (!lck_rw_try_lock_exclusive(pcbinfo
->ipi_lock
)) {
2267 * Lock inversion issue, mostly with udp
2270 socket_unlock(inp
->inp_socket
, 0);
2271 lck_rw_lock_exclusive(pcbinfo
->ipi_lock
);
2272 socket_lock(inp
->inp_socket
, 0);
2277 * This routine or its caller may have given up
2278 * socket's protocol lock briefly.
2279 * During that time the socket may have been dropped.
2280 * Safe-guarding against that.
2282 if (inp
->inp_state
== INPCB_STATE_DEAD
) {
2284 lck_rw_done(pcbinfo
->ipi_lock
);
2286 return (ECONNABORTED
);
2291 if (inp
->inp_vflag
& INP_IPV6
)
2292 hashkey_faddr
= inp
->in6p_faddr
.s6_addr32
[3] /* XXX */;
2295 hashkey_faddr
= inp
->inp_faddr
.s_addr
;
2297 inp
->inp_hash_element
= INP_PCBHASH(hashkey_faddr
, inp
->inp_lport
,
2298 inp
->inp_fport
, pcbinfo
->ipi_hashmask
);
2300 pcbhash
= &pcbinfo
->ipi_hashbase
[inp
->inp_hash_element
];
2302 pcbporthash
= &pcbinfo
->ipi_porthashbase
[INP_PCBPORTHASH(inp
->inp_lport
,
2303 pcbinfo
->ipi_porthashmask
)];
2306 * Go through port list and look for a head for this lport.
2308 LIST_FOREACH(phd
, pcbporthash
, phd_hash
) {
2309 if (phd
->phd_port
== inp
->inp_lport
)
2314 * If none exists, malloc one and tack it on.
2317 MALLOC(phd
, struct inpcbport
*, sizeof (struct inpcbport
),
2321 lck_rw_done(pcbinfo
->ipi_lock
);
2322 return (ENOBUFS
); /* XXX */
2324 phd
->phd_port
= inp
->inp_lport
;
2325 LIST_INIT(&phd
->phd_pcblist
);
2326 LIST_INSERT_HEAD(pcbporthash
, phd
, phd_hash
);
2329 VERIFY(!(inp
->inp_flags2
& INP2_INHASHLIST
));
2333 LIST_INSERT_HEAD(&phd
->phd_pcblist
, inp
, inp_portlist
);
2334 LIST_INSERT_HEAD(pcbhash
, inp
, inp_hash
);
2335 inp
->inp_flags2
|= INP2_INHASHLIST
;
2338 lck_rw_done(pcbinfo
->ipi_lock
);
2341 // This call catches the original setting of the local address
2342 inp_update_necp_policy(inp
, NULL
, NULL
, 0);
2349 * Move PCB to the proper hash bucket when { faddr, fport } have been
2350 * changed. NOTE: This does not handle the case of the lport changing (the
2351 * hashed port list would have to be updated as well), so the lport must
2352 * not change after in_pcbinshash() has been called.
2355 in_pcbrehash(struct inpcb
*inp
)
2357 struct inpcbhead
*head
;
2358 u_int32_t hashkey_faddr
;
2361 if (inp
->inp_vflag
& INP_IPV6
)
2362 hashkey_faddr
= inp
->in6p_faddr
.s6_addr32
[3] /* XXX */;
2365 hashkey_faddr
= inp
->inp_faddr
.s_addr
;
2367 inp
->inp_hash_element
= INP_PCBHASH(hashkey_faddr
, inp
->inp_lport
,
2368 inp
->inp_fport
, inp
->inp_pcbinfo
->ipi_hashmask
);
2369 head
= &inp
->inp_pcbinfo
->ipi_hashbase
[inp
->inp_hash_element
];
2371 if (inp
->inp_flags2
& INP2_INHASHLIST
) {
2372 LIST_REMOVE(inp
, inp_hash
);
2373 inp
->inp_flags2
&= ~INP2_INHASHLIST
;
2376 VERIFY(!(inp
->inp_flags2
& INP2_INHASHLIST
));
2377 LIST_INSERT_HEAD(head
, inp
, inp_hash
);
2378 inp
->inp_flags2
|= INP2_INHASHLIST
;
2381 // This call catches updates to the remote addresses
2382 inp_update_necp_policy(inp
, NULL
, NULL
, 0);
2387 * Remove PCB from various lists.
2388 * Must be called pcbinfo lock is held in exclusive mode.
2391 in_pcbremlists(struct inpcb
*inp
)
2393 inp
->inp_gencnt
= ++inp
->inp_pcbinfo
->ipi_gencnt
;
2396 * Check if it's in hashlist -- an inp is placed in hashlist when
2397 * it's local port gets assigned. So it should also be present
2400 if (inp
->inp_flags2
& INP2_INHASHLIST
) {
2401 struct inpcbport
*phd
= inp
->inp_phd
;
2403 VERIFY(phd
!= NULL
&& inp
->inp_lport
> 0);
2405 LIST_REMOVE(inp
, inp_hash
);
2406 inp
->inp_hash
.le_next
= NULL
;
2407 inp
->inp_hash
.le_prev
= NULL
;
2409 LIST_REMOVE(inp
, inp_portlist
);
2410 inp
->inp_portlist
.le_next
= NULL
;
2411 inp
->inp_portlist
.le_prev
= NULL
;
2412 if (LIST_EMPTY(&phd
->phd_pcblist
)) {
2413 LIST_REMOVE(phd
, phd_hash
);
2416 inp
->inp_phd
= NULL
;
2417 inp
->inp_flags2
&= ~INP2_INHASHLIST
;
2419 VERIFY(!(inp
->inp_flags2
& INP2_INHASHLIST
));
2421 if (inp
->inp_flags2
& INP2_TIMEWAIT
) {
2422 /* Remove from time-wait queue */
2423 tcp_remove_from_time_wait(inp
);
2424 inp
->inp_flags2
&= ~INP2_TIMEWAIT
;
2425 VERIFY(inp
->inp_pcbinfo
->ipi_twcount
!= 0);
2426 inp
->inp_pcbinfo
->ipi_twcount
--;
2428 /* Remove from global inp list if it is not time-wait */
2429 LIST_REMOVE(inp
, inp_list
);
2432 if (inp
->inp_flags2
& INP2_IN_FCTREE
) {
2433 inp_fc_getinp(inp
->inp_flowhash
, (INPFC_SOLOCKED
|INPFC_REMOVE
));
2434 VERIFY(!(inp
->inp_flags2
& INP2_IN_FCTREE
));
2437 inp
->inp_pcbinfo
->ipi_count
--;
2441 * Mechanism used to defer the memory release of PCBs
2442 * The pcb list will contain the pcb until the reaper can clean it up if
2443 * the following conditions are met:
2445 * 2) wantcnt is STOPUSING
2447 * This function will be called to either mark the pcb as
2450 in_pcb_checkstate(struct inpcb
*pcb
, int mode
, int locked
)
2452 volatile UInt32
*wantcnt
= (volatile UInt32
*)&pcb
->inp_wantcnt
;
2459 * Try to mark the pcb as ready for recycling. CAS with
2460 * STOPUSING, if success we're good, if it's in use, will
2464 socket_lock(pcb
->inp_socket
, 1);
2465 pcb
->inp_state
= INPCB_STATE_DEAD
;
2468 if (pcb
->inp_socket
->so_usecount
< 0) {
2469 panic("%s: pcb=%p so=%p usecount is negative\n",
2470 __func__
, pcb
, pcb
->inp_socket
);
2474 socket_unlock(pcb
->inp_socket
, 1);
2476 inpcb_gc_sched(pcb
->inp_pcbinfo
, INPCB_TIMER_FAST
);
2478 origwant
= *wantcnt
;
2479 if ((UInt16
) origwant
== 0xffff) /* should stop using */
2480 return (WNT_STOPUSING
);
2482 if ((UInt16
) origwant
== 0) {
2483 /* try to mark it as unsuable now */
2484 OSCompareAndSwap(origwant
, newwant
, wantcnt
);
2486 return (WNT_STOPUSING
);
2490 * Try to increase reference to pcb. If WNT_STOPUSING
2491 * should bail out. If socket state DEAD, try to set count
2492 * to STOPUSING, return failed otherwise increase cnt.
2495 origwant
= *wantcnt
;
2496 if ((UInt16
) origwant
== 0xffff) {
2497 /* should stop using */
2498 return (WNT_STOPUSING
);
2500 newwant
= origwant
+ 1;
2501 } while (!OSCompareAndSwap(origwant
, newwant
, wantcnt
));
2502 return (WNT_ACQUIRE
);
2506 * Release reference. If result is null and pcb state
2507 * is DEAD, set wanted bit to STOPUSING
2510 socket_lock(pcb
->inp_socket
, 1);
2513 origwant
= *wantcnt
;
2514 if ((UInt16
) origwant
== 0x0) {
2515 panic("%s: pcb=%p release with zero count",
2519 if ((UInt16
) origwant
== 0xffff) {
2520 /* should stop using */
2522 socket_unlock(pcb
->inp_socket
, 1);
2523 return (WNT_STOPUSING
);
2525 newwant
= origwant
- 1;
2526 } while (!OSCompareAndSwap(origwant
, newwant
, wantcnt
));
2528 if (pcb
->inp_state
== INPCB_STATE_DEAD
)
2530 if (pcb
->inp_socket
->so_usecount
< 0) {
2531 panic("%s: RELEASE pcb=%p so=%p usecount is negative\n",
2532 __func__
, pcb
, pcb
->inp_socket
);
2537 socket_unlock(pcb
->inp_socket
, 1);
2538 return (WNT_RELEASE
);
2541 panic("%s: so=%p not a valid state =%x\n", __func__
,
2542 pcb
->inp_socket
, mode
);
2551 * inpcb_to_compat copies specific bits of an inpcb to a inpcb_compat.
2552 * The inpcb_compat data structure is passed to user space and must
2553 * not change. We intentionally avoid copying pointers.
2556 inpcb_to_compat(struct inpcb
*inp
, struct inpcb_compat
*inp_compat
)
2558 bzero(inp_compat
, sizeof (*inp_compat
));
2559 inp_compat
->inp_fport
= inp
->inp_fport
;
2560 inp_compat
->inp_lport
= inp
->inp_lport
;
2561 inp_compat
->nat_owner
= 0;
2562 inp_compat
->nat_cookie
= 0;
2563 inp_compat
->inp_gencnt
= inp
->inp_gencnt
;
2564 inp_compat
->inp_flags
= inp
->inp_flags
;
2565 inp_compat
->inp_flow
= inp
->inp_flow
;
2566 inp_compat
->inp_vflag
= inp
->inp_vflag
;
2567 inp_compat
->inp_ip_ttl
= inp
->inp_ip_ttl
;
2568 inp_compat
->inp_ip_p
= inp
->inp_ip_p
;
2569 inp_compat
->inp_dependfaddr
.inp6_foreign
=
2570 inp
->inp_dependfaddr
.inp6_foreign
;
2571 inp_compat
->inp_dependladdr
.inp6_local
=
2572 inp
->inp_dependladdr
.inp6_local
;
2573 inp_compat
->inp_depend4
.inp4_ip_tos
= inp
->inp_depend4
.inp4_ip_tos
;
2574 inp_compat
->inp_depend6
.inp6_hlim
= 0;
2575 inp_compat
->inp_depend6
.inp6_cksum
= inp
->inp_depend6
.inp6_cksum
;
2576 inp_compat
->inp_depend6
.inp6_ifindex
= 0;
2577 inp_compat
->inp_depend6
.inp6_hops
= inp
->inp_depend6
.inp6_hops
;
2580 #if !CONFIG_EMBEDDED
2582 inpcb_to_xinpcb64(struct inpcb
*inp
, struct xinpcb64
*xinp
)
2584 xinp
->inp_fport
= inp
->inp_fport
;
2585 xinp
->inp_lport
= inp
->inp_lport
;
2586 xinp
->inp_gencnt
= inp
->inp_gencnt
;
2587 xinp
->inp_flags
= inp
->inp_flags
;
2588 xinp
->inp_flow
= inp
->inp_flow
;
2589 xinp
->inp_vflag
= inp
->inp_vflag
;
2590 xinp
->inp_ip_ttl
= inp
->inp_ip_ttl
;
2591 xinp
->inp_ip_p
= inp
->inp_ip_p
;
2592 xinp
->inp_dependfaddr
.inp6_foreign
= inp
->inp_dependfaddr
.inp6_foreign
;
2593 xinp
->inp_dependladdr
.inp6_local
= inp
->inp_dependladdr
.inp6_local
;
2594 xinp
->inp_depend4
.inp4_ip_tos
= inp
->inp_depend4
.inp4_ip_tos
;
2595 xinp
->inp_depend6
.inp6_hlim
= 0;
2596 xinp
->inp_depend6
.inp6_cksum
= inp
->inp_depend6
.inp6_cksum
;
2597 xinp
->inp_depend6
.inp6_ifindex
= 0;
2598 xinp
->inp_depend6
.inp6_hops
= inp
->inp_depend6
.inp6_hops
;
2600 #endif /* !CONFIG_EMBEDDED */
2603 * The following routines implement this scheme:
2605 * Callers of ip_output() that intend to cache the route in the inpcb pass
2606 * a local copy of the struct route to ip_output(). Using a local copy of
2607 * the cached route significantly simplifies things as IP no longer has to
2608 * worry about having exclusive access to the passed in struct route, since
2609 * it's defined in the caller's stack; in essence, this allows for a lock-
2610 * less operation when updating the struct route at the IP level and below,
2611 * whenever necessary. The scheme works as follows:
2613 * Prior to dropping the socket's lock and calling ip_output(), the caller
2614 * copies the struct route from the inpcb into its stack, and adds a reference
2615 * to the cached route entry, if there was any. The socket's lock is then
2616 * dropped and ip_output() is called with a pointer to the copy of struct
2617 * route defined on the stack (not to the one in the inpcb.)
2619 * Upon returning from ip_output(), the caller then acquires the socket's
2620 * lock and synchronizes the cache; if there is no route cached in the inpcb,
2621 * it copies the local copy of struct route (which may or may not contain any
2622 * route) back into the cache; otherwise, if the inpcb has a route cached in
2623 * it, the one in the local copy will be freed, if there's any. Trashing the
2624 * cached route in the inpcb can be avoided because ip_output() is single-
2625 * threaded per-PCB (i.e. multiple transmits on a PCB are always serialized
2626 * by the socket/transport layer.)
2629 inp_route_copyout(struct inpcb
*inp
, struct route
*dst
)
2631 struct route
*src
= &inp
->inp_route
;
2633 socket_lock_assert_owned(inp
->inp_socket
);
2636 * If the route in the PCB is stale or not for IPv4, blow it away;
2637 * this is possible in the case of IPv4-mapped address case.
2639 if (ROUTE_UNUSABLE(src
) || rt_key(src
->ro_rt
)->sa_family
!= AF_INET
)
2642 route_copyout(dst
, src
, sizeof (*dst
));
2646 inp_route_copyin(struct inpcb
*inp
, struct route
*src
)
2648 struct route
*dst
= &inp
->inp_route
;
2650 socket_lock_assert_owned(inp
->inp_socket
);
2652 /* Minor sanity check */
2653 if (src
->ro_rt
!= NULL
&& rt_key(src
->ro_rt
)->sa_family
!= AF_INET
)
2654 panic("%s: wrong or corrupted route: %p", __func__
, src
);
2656 route_copyin(src
, dst
, sizeof (*src
));
2660 * Handler for setting IP_BOUND_IF/IPV6_BOUND_IF socket option.
2663 inp_bindif(struct inpcb
*inp
, unsigned int ifscope
, struct ifnet
**pifp
)
2665 struct ifnet
*ifp
= NULL
;
2667 ifnet_head_lock_shared();
2668 if ((ifscope
> (unsigned)if_index
) || (ifscope
!= IFSCOPE_NONE
&&
2669 (ifp
= ifindex2ifnet
[ifscope
]) == NULL
)) {
2675 VERIFY(ifp
!= NULL
|| ifscope
== IFSCOPE_NONE
);
2678 * A zero interface scope value indicates an "unbind".
2679 * Otherwise, take in whatever value the app desires;
2680 * the app may already know the scope (or force itself
2681 * to such a scope) ahead of time before the interface
2682 * gets attached. It doesn't matter either way; any
2683 * route lookup from this point on will require an
2684 * exact match for the embedded interface scope.
2686 inp
->inp_boundifp
= ifp
;
2687 if (inp
->inp_boundifp
== NULL
)
2688 inp
->inp_flags
&= ~INP_BOUND_IF
;
2690 inp
->inp_flags
|= INP_BOUND_IF
;
2692 /* Blow away any cached route in the PCB */
2693 ROUTE_RELEASE(&inp
->inp_route
);
2702 * Handler for setting IP_NO_IFT_CELLULAR/IPV6_NO_IFT_CELLULAR socket option,
2703 * as well as for setting PROC_UUID_NO_CELLULAR policy.
2706 inp_set_nocellular(struct inpcb
*inp
)
2708 inp
->inp_flags
|= INP_NO_IFT_CELLULAR
;
2710 /* Blow away any cached route in the PCB */
2711 ROUTE_RELEASE(&inp
->inp_route
);
2715 * Handler for clearing IP_NO_IFT_CELLULAR/IPV6_NO_IFT_CELLULAR socket option,
2716 * as well as for clearing PROC_UUID_NO_CELLULAR policy.
2719 inp_clear_nocellular(struct inpcb
*inp
)
2721 struct socket
*so
= inp
->inp_socket
;
2724 * SO_RESTRICT_DENY_CELLULAR socket restriction issued on the socket
2725 * has a higher precendence than INP_NO_IFT_CELLULAR. Clear the flag
2726 * if and only if the socket is unrestricted.
2728 if (so
!= NULL
&& !(so
->so_restrictions
& SO_RESTRICT_DENY_CELLULAR
)) {
2729 inp
->inp_flags
&= ~INP_NO_IFT_CELLULAR
;
2731 /* Blow away any cached route in the PCB */
2732 ROUTE_RELEASE(&inp
->inp_route
);
2737 inp_set_noexpensive(struct inpcb
*inp
)
2739 inp
->inp_flags2
|= INP2_NO_IFF_EXPENSIVE
;
2741 /* Blow away any cached route in the PCB */
2742 ROUTE_RELEASE(&inp
->inp_route
);
2746 inp_set_awdl_unrestricted(struct inpcb
*inp
)
2748 inp
->inp_flags2
|= INP2_AWDL_UNRESTRICTED
;
2750 /* Blow away any cached route in the PCB */
2751 ROUTE_RELEASE(&inp
->inp_route
);
2755 inp_get_awdl_unrestricted(struct inpcb
*inp
)
2757 return (inp
->inp_flags2
& INP2_AWDL_UNRESTRICTED
) ? TRUE
: FALSE
;
2761 inp_clear_awdl_unrestricted(struct inpcb
*inp
)
2763 inp
->inp_flags2
&= ~INP2_AWDL_UNRESTRICTED
;
2765 /* Blow away any cached route in the PCB */
2766 ROUTE_RELEASE(&inp
->inp_route
);
2770 inp_set_intcoproc_allowed(struct inpcb
*inp
)
2772 inp
->inp_flags2
|= INP2_INTCOPROC_ALLOWED
;
2774 /* Blow away any cached route in the PCB */
2775 ROUTE_RELEASE(&inp
->inp_route
);
2779 inp_get_intcoproc_allowed(struct inpcb
*inp
)
2781 return (inp
->inp_flags2
& INP2_INTCOPROC_ALLOWED
) ? TRUE
: FALSE
;
2785 inp_clear_intcoproc_allowed(struct inpcb
*inp
)
2787 inp
->inp_flags2
&= ~INP2_INTCOPROC_ALLOWED
;
2789 /* Blow away any cached route in the PCB */
2790 ROUTE_RELEASE(&inp
->inp_route
);
2795 * Called when PROC_UUID_NECP_APP_POLICY is set.
2798 inp_set_want_app_policy(struct inpcb
*inp
)
2800 inp
->inp_flags2
|= INP2_WANT_APP_POLICY
;
2804 * Called when PROC_UUID_NECP_APP_POLICY is cleared.
2807 inp_clear_want_app_policy(struct inpcb
*inp
)
2809 inp
->inp_flags2
&= ~INP2_WANT_APP_POLICY
;
2814 * Calculate flow hash for an inp, used by an interface to identify a
2815 * flow. When an interface provides flow control advisory, this flow
2816 * hash is used as an identifier.
2819 inp_calc_flowhash(struct inpcb
*inp
)
2821 struct inp_flowhash_key fh
__attribute__((aligned(8)));
2822 u_int32_t flowhash
= 0;
2823 struct inpcb
*tmp_inp
= NULL
;
2825 if (inp_hash_seed
== 0)
2826 inp_hash_seed
= RandomULong();
2828 bzero(&fh
, sizeof (fh
));
2830 bcopy(&inp
->inp_dependladdr
, &fh
.infh_laddr
, sizeof (fh
.infh_laddr
));
2831 bcopy(&inp
->inp_dependfaddr
, &fh
.infh_faddr
, sizeof (fh
.infh_faddr
));
2833 fh
.infh_lport
= inp
->inp_lport
;
2834 fh
.infh_fport
= inp
->inp_fport
;
2835 fh
.infh_af
= (inp
->inp_vflag
& INP_IPV6
) ? AF_INET6
: AF_INET
;
2836 fh
.infh_proto
= inp
->inp_ip_p
;
2837 fh
.infh_rand1
= RandomULong();
2838 fh
.infh_rand2
= RandomULong();
2841 flowhash
= net_flowhash(&fh
, sizeof (fh
), inp_hash_seed
);
2842 if (flowhash
== 0) {
2843 /* try to get a non-zero flowhash */
2844 inp_hash_seed
= RandomULong();
2848 inp
->inp_flowhash
= flowhash
;
2850 /* Insert the inp into inp_fc_tree */
2851 lck_mtx_lock_spin(&inp_fc_lck
);
2852 tmp_inp
= RB_FIND(inp_fc_tree
, &inp_fc_tree
, inp
);
2853 if (tmp_inp
!= NULL
) {
2855 * There is a different inp with the same flowhash.
2856 * There can be a collision on flow hash but the
2857 * probability is low. Let's recompute the
2860 lck_mtx_unlock(&inp_fc_lck
);
2861 /* recompute hash seed */
2862 inp_hash_seed
= RandomULong();
2866 RB_INSERT(inp_fc_tree
, &inp_fc_tree
, inp
);
2867 inp
->inp_flags2
|= INP2_IN_FCTREE
;
2868 lck_mtx_unlock(&inp_fc_lck
);
2874 inp_flowadv(uint32_t flowhash
)
2878 inp
= inp_fc_getinp(flowhash
, 0);
2882 inp_fc_feedback(inp
);
2886 * Function to compare inp_fc_entries in inp flow control tree
2889 infc_cmp(const struct inpcb
*inp1
, const struct inpcb
*inp2
)
2891 return (memcmp(&(inp1
->inp_flowhash
), &(inp2
->inp_flowhash
),
2892 sizeof(inp1
->inp_flowhash
)));
2895 static struct inpcb
*
2896 inp_fc_getinp(u_int32_t flowhash
, u_int32_t flags
)
2898 struct inpcb
*inp
= NULL
;
2899 int locked
= (flags
& INPFC_SOLOCKED
) ? 1 : 0;
2901 lck_mtx_lock_spin(&inp_fc_lck
);
2902 key_inp
.inp_flowhash
= flowhash
;
2903 inp
= RB_FIND(inp_fc_tree
, &inp_fc_tree
, &key_inp
);
2905 /* inp is not present, return */
2906 lck_mtx_unlock(&inp_fc_lck
);
2910 if (flags
& INPFC_REMOVE
) {
2911 RB_REMOVE(inp_fc_tree
, &inp_fc_tree
, inp
);
2912 lck_mtx_unlock(&inp_fc_lck
);
2914 bzero(&(inp
->infc_link
), sizeof (inp
->infc_link
));
2915 inp
->inp_flags2
&= ~INP2_IN_FCTREE
;
2919 if (in_pcb_checkstate(inp
, WNT_ACQUIRE
, locked
) == WNT_STOPUSING
)
2921 lck_mtx_unlock(&inp_fc_lck
);
2927 inp_fc_feedback(struct inpcb
*inp
)
2929 struct socket
*so
= inp
->inp_socket
;
2931 /* we already hold a want_cnt on this inp, socket can't be null */
2935 if (in_pcb_checkstate(inp
, WNT_RELEASE
, 1) == WNT_STOPUSING
) {
2936 socket_unlock(so
, 1);
2940 if (inp
->inp_sndinprog_cnt
> 0)
2941 inp
->inp_flags
|= INP_FC_FEEDBACK
;
2944 * Return if the connection is not in flow-controlled state.
2945 * This can happen if the connection experienced
2946 * loss while it was in flow controlled state
2948 if (!INP_WAIT_FOR_IF_FEEDBACK(inp
)) {
2949 socket_unlock(so
, 1);
2952 inp_reset_fc_state(inp
);
2954 if (SOCK_TYPE(so
) == SOCK_STREAM
)
2955 inp_fc_unthrottle_tcp(inp
);
2957 socket_unlock(so
, 1);
2961 inp_reset_fc_state(struct inpcb
*inp
)
2963 struct socket
*so
= inp
->inp_socket
;
2964 int suspended
= (INP_IS_FLOW_SUSPENDED(inp
)) ? 1 : 0;
2965 int needwakeup
= (INP_WAIT_FOR_IF_FEEDBACK(inp
)) ? 1 : 0;
2967 inp
->inp_flags
&= ~(INP_FLOW_CONTROLLED
| INP_FLOW_SUSPENDED
);
2970 so
->so_flags
&= ~(SOF_SUSPENDED
);
2971 soevent(so
, (SO_FILT_HINT_LOCKED
| SO_FILT_HINT_RESUME
));
2974 /* Give a write wakeup to unblock the socket */
2980 inp_set_fc_state(struct inpcb
*inp
, int advcode
)
2982 struct inpcb
*tmp_inp
= NULL
;
2984 * If there was a feedback from the interface when
2985 * send operation was in progress, we should ignore
2986 * this flow advisory to avoid a race between setting
2987 * flow controlled state and receiving feedback from
2990 if (inp
->inp_flags
& INP_FC_FEEDBACK
)
2993 inp
->inp_flags
&= ~(INP_FLOW_CONTROLLED
| INP_FLOW_SUSPENDED
);
2994 if ((tmp_inp
= inp_fc_getinp(inp
->inp_flowhash
,
2995 INPFC_SOLOCKED
)) != NULL
) {
2996 if (in_pcb_checkstate(tmp_inp
, WNT_RELEASE
, 1) == WNT_STOPUSING
)
2998 VERIFY(tmp_inp
== inp
);
3000 case FADV_FLOW_CONTROLLED
:
3001 inp
->inp_flags
|= INP_FLOW_CONTROLLED
;
3003 case FADV_SUSPENDED
:
3004 inp
->inp_flags
|= INP_FLOW_SUSPENDED
;
3005 soevent(inp
->inp_socket
,
3006 (SO_FILT_HINT_LOCKED
| SO_FILT_HINT_SUSPEND
));
3008 /* Record the fact that suspend event was sent */
3009 inp
->inp_socket
->so_flags
|= SOF_SUSPENDED
;
3018 * Handler for SO_FLUSH socket option.
3021 inp_flush(struct inpcb
*inp
, int optval
)
3023 u_int32_t flowhash
= inp
->inp_flowhash
;
3024 struct ifnet
*rtifp
, *oifp
;
3026 /* Either all classes or one of the valid ones */
3027 if (optval
!= SO_TC_ALL
&& !SO_VALID_TC(optval
))
3030 /* We need a flow hash for identification */
3034 /* Grab the interfaces from the route and pcb */
3035 rtifp
= ((inp
->inp_route
.ro_rt
!= NULL
) ?
3036 inp
->inp_route
.ro_rt
->rt_ifp
: NULL
);
3037 oifp
= inp
->inp_last_outifp
;
3040 if_qflush_sc(rtifp
, so_tc2msc(optval
), flowhash
, NULL
, NULL
, 0);
3041 if (oifp
!= NULL
&& oifp
!= rtifp
)
3042 if_qflush_sc(oifp
, so_tc2msc(optval
), flowhash
, NULL
, NULL
, 0);
3048 * Clear the INP_INADDR_ANY flag (special case for PPP only)
3051 inp_clear_INP_INADDR_ANY(struct socket
*so
)
3053 struct inpcb
*inp
= NULL
;
3056 inp
= sotoinpcb(so
);
3058 inp
->inp_flags
&= ~INP_INADDR_ANY
;
3060 socket_unlock(so
, 1);
3064 inp_get_soprocinfo(struct inpcb
*inp
, struct so_procinfo
*soprocinfo
)
3066 struct socket
*so
= inp
->inp_socket
;
3068 soprocinfo
->spi_pid
= so
->last_pid
;
3069 if (so
->last_pid
!= 0)
3070 uuid_copy(soprocinfo
->spi_uuid
, so
->last_uuid
);
3072 * When not delegated, the effective pid is the same as the real pid
3074 if (so
->so_flags
& SOF_DELEGATED
) {
3075 soprocinfo
->spi_delegated
= 1;
3076 soprocinfo
->spi_epid
= so
->e_pid
;
3077 uuid_copy(soprocinfo
->spi_euuid
, so
->e_uuid
);
3079 soprocinfo
->spi_delegated
= 0;
3080 soprocinfo
->spi_epid
= so
->last_pid
;
3085 inp_findinpcb_procinfo(struct inpcbinfo
*pcbinfo
, uint32_t flowhash
,
3086 struct so_procinfo
*soprocinfo
)
3088 struct inpcb
*inp
= NULL
;
3091 bzero(soprocinfo
, sizeof (struct so_procinfo
));
3096 lck_rw_lock_shared(pcbinfo
->ipi_lock
);
3097 LIST_FOREACH(inp
, pcbinfo
->ipi_listhead
, inp_list
) {
3098 if (inp
->inp_state
!= INPCB_STATE_DEAD
&&
3099 inp
->inp_socket
!= NULL
&&
3100 inp
->inp_flowhash
== flowhash
) {
3102 inp_get_soprocinfo(inp
, soprocinfo
);
3106 lck_rw_done(pcbinfo
->ipi_lock
);
3111 #if CONFIG_PROC_UUID_POLICY
3113 inp_update_cellular_policy(struct inpcb
*inp
, boolean_t set
)
3115 struct socket
*so
= inp
->inp_socket
;
3119 VERIFY(inp
->inp_state
!= INPCB_STATE_DEAD
);
3121 before
= INP_NO_CELLULAR(inp
);
3123 inp_set_nocellular(inp
);
3125 inp_clear_nocellular(inp
);
3127 after
= INP_NO_CELLULAR(inp
);
3128 if (net_io_policy_log
&& (before
!= after
)) {
3129 static const char *ok
= "OK";
3130 static const char *nok
= "NOACCESS";
3131 uuid_string_t euuid_buf
;
3134 if (so
->so_flags
& SOF_DELEGATED
) {
3135 uuid_unparse(so
->e_uuid
, euuid_buf
);
3138 uuid_unparse(so
->last_uuid
, euuid_buf
);
3139 epid
= so
->last_pid
;
3142 /* allow this socket to generate another notification event */
3143 so
->so_ifdenied_notifies
= 0;
3145 log(LOG_DEBUG
, "%s: so 0x%llx [%d,%d] epid %d "
3146 "euuid %s%s %s->%s\n", __func__
,
3147 (uint64_t)VM_KERNEL_ADDRPERM(so
), SOCK_DOM(so
),
3148 SOCK_TYPE(so
), epid
, euuid_buf
,
3149 (so
->so_flags
& SOF_DELEGATED
) ?
3150 " [delegated]" : "",
3151 ((before
< after
) ? ok
: nok
),
3152 ((before
< after
) ? nok
: ok
));
3158 inp_update_necp_want_app_policy(struct inpcb
*inp
, boolean_t set
)
3160 struct socket
*so
= inp
->inp_socket
;
3164 VERIFY(inp
->inp_state
!= INPCB_STATE_DEAD
);
3166 before
= (inp
->inp_flags2
& INP2_WANT_APP_POLICY
);
3168 inp_set_want_app_policy(inp
);
3170 inp_clear_want_app_policy(inp
);
3172 after
= (inp
->inp_flags2
& INP2_WANT_APP_POLICY
);
3173 if (net_io_policy_log
&& (before
!= after
)) {
3174 static const char *wanted
= "WANTED";
3175 static const char *unwanted
= "UNWANTED";
3176 uuid_string_t euuid_buf
;
3179 if (so
->so_flags
& SOF_DELEGATED
) {
3180 uuid_unparse(so
->e_uuid
, euuid_buf
);
3183 uuid_unparse(so
->last_uuid
, euuid_buf
);
3184 epid
= so
->last_pid
;
3187 log(LOG_DEBUG
, "%s: so 0x%llx [%d,%d] epid %d "
3188 "euuid %s%s %s->%s\n", __func__
,
3189 (uint64_t)VM_KERNEL_ADDRPERM(so
), SOCK_DOM(so
),
3190 SOCK_TYPE(so
), epid
, euuid_buf
,
3191 (so
->so_flags
& SOF_DELEGATED
) ?
3192 " [delegated]" : "",
3193 ((before
< after
) ? unwanted
: wanted
),
3194 ((before
< after
) ? wanted
: unwanted
));
3198 #endif /* !CONFIG_PROC_UUID_POLICY */
3202 inp_update_necp_policy(struct inpcb
*inp
, struct sockaddr
*override_local_addr
, struct sockaddr
*override_remote_addr
, u_int override_bound_interface
)
3204 necp_socket_find_policy_match(inp
, override_local_addr
, override_remote_addr
, override_bound_interface
);
3205 if (necp_socket_should_rescope(inp
) &&
3206 inp
->inp_lport
== 0 &&
3207 inp
->inp_laddr
.s_addr
== INADDR_ANY
&&
3208 IN6_IS_ADDR_UNSPECIFIED(&inp
->in6p_laddr
)) {
3209 // If we should rescope, and the socket is not yet bound
3210 inp_bindif(inp
, necp_socket_get_rescope_if_index(inp
), NULL
);
3216 inp_update_policy(struct inpcb
*inp
)
3218 #if CONFIG_PROC_UUID_POLICY
3219 struct socket
*so
= inp
->inp_socket
;
3220 uint32_t pflags
= 0;
3224 if (!net_io_policy_uuid
||
3225 so
== NULL
|| inp
->inp_state
== INPCB_STATE_DEAD
)
3229 * Kernel-created sockets that aren't delegating other sockets
3230 * are currently exempted from UUID policy checks.
3232 if (so
->last_pid
== 0 && !(so
->so_flags
& SOF_DELEGATED
))
3235 ogencnt
= so
->so_policy_gencnt
;
3236 err
= proc_uuid_policy_lookup(((so
->so_flags
& SOF_DELEGATED
) ?
3237 so
->e_uuid
: so
->last_uuid
), &pflags
, &so
->so_policy_gencnt
);
3240 * Discard cached generation count if the entry is gone (ENOENT),
3241 * so that we go thru the checks below.
3243 if (err
== ENOENT
&& ogencnt
!= 0)
3244 so
->so_policy_gencnt
= 0;
3247 * If the generation count has changed, inspect the policy flags
3248 * and act accordingly. If a policy flag was previously set and
3249 * the UUID is no longer present in the table (ENOENT), treat it
3250 * as if the flag has been cleared.
3252 if ((err
== 0 || err
== ENOENT
) && ogencnt
!= so
->so_policy_gencnt
) {
3253 /* update cellular policy for this socket */
3254 if (err
== 0 && (pflags
& PROC_UUID_NO_CELLULAR
)) {
3255 inp_update_cellular_policy(inp
, TRUE
);
3256 } else if (!(pflags
& PROC_UUID_NO_CELLULAR
)) {
3257 inp_update_cellular_policy(inp
, FALSE
);
3260 /* update necp want app policy for this socket */
3261 if (err
== 0 && (pflags
& PROC_UUID_NECP_APP_POLICY
)) {
3262 inp_update_necp_want_app_policy(inp
, TRUE
);
3263 } else if (!(pflags
& PROC_UUID_NECP_APP_POLICY
)) {
3264 inp_update_necp_want_app_policy(inp
, FALSE
);
3269 return ((err
== ENOENT
) ? 0 : err
);
3270 #else /* !CONFIG_PROC_UUID_POLICY */
3273 #endif /* !CONFIG_PROC_UUID_POLICY */
3276 static unsigned int log_restricted
;
3277 SYSCTL_DECL(_net_inet
);
3278 SYSCTL_INT(_net_inet
, OID_AUTO
, log_restricted
,
3279 CTLFLAG_RW
| CTLFLAG_LOCKED
, &log_restricted
, 0,
3280 "Log network restrictions");
3282 * Called when we need to enforce policy restrictions in the input path.
3284 * Returns TRUE if we're not allowed to receive data, otherwise FALSE.
3287 _inp_restricted_recv(struct inpcb
*inp
, struct ifnet
*ifp
)
3289 VERIFY(inp
!= NULL
);
3292 * Inbound restrictions.
3294 if (!sorestrictrecv
)
3300 if (IFNET_IS_CELLULAR(ifp
) && INP_NO_CELLULAR(inp
))
3303 if (IFNET_IS_EXPENSIVE(ifp
) && INP_NO_EXPENSIVE(inp
))
3306 if (IFNET_IS_AWDL_RESTRICTED(ifp
) && !INP_AWDL_UNRESTRICTED(inp
))
3309 if (!(ifp
->if_eflags
& IFEF_RESTRICTED_RECV
))
3312 if (inp
->inp_flags
& INP_RECV_ANYIF
)
3315 if ((inp
->inp_flags
& INP_BOUND_IF
) && inp
->inp_boundifp
== ifp
)
3318 if (IFNET_IS_INTCOPROC(ifp
) && !INP_INTCOPROC_ALLOWED(inp
))
3325 inp_restricted_recv(struct inpcb
*inp
, struct ifnet
*ifp
)
3329 ret
= _inp_restricted_recv(inp
, ifp
);
3330 if (ret
== TRUE
&& log_restricted
) {
3331 printf("pid %d (%s) is unable to receive packets on %s\n",
3332 current_proc()->p_pid
, proc_best_name(current_proc()),
3339 * Called when we need to enforce policy restrictions in the output path.
3341 * Returns TRUE if we're not allowed to send data out, otherwise FALSE.
3344 _inp_restricted_send(struct inpcb
*inp
, struct ifnet
*ifp
)
3346 VERIFY(inp
!= NULL
);
3349 * Outbound restrictions.
3351 if (!sorestrictsend
)
3357 if (IFNET_IS_CELLULAR(ifp
) && INP_NO_CELLULAR(inp
))
3360 if (IFNET_IS_EXPENSIVE(ifp
) && INP_NO_EXPENSIVE(inp
))
3363 if (IFNET_IS_AWDL_RESTRICTED(ifp
) && !INP_AWDL_UNRESTRICTED(inp
))
3366 if (IFNET_IS_INTCOPROC(ifp
) && !INP_INTCOPROC_ALLOWED(inp
))
3373 inp_restricted_send(struct inpcb
*inp
, struct ifnet
*ifp
)
3377 ret
= _inp_restricted_send(inp
, ifp
);
3378 if (ret
== TRUE
&& log_restricted
) {
3379 printf("pid %d (%s) is unable to transmit packets on %s\n",
3380 current_proc()->p_pid
, proc_best_name(current_proc()),
3387 inp_count_sndbytes(struct inpcb
*inp
, u_int32_t th_ack
)
3389 struct ifnet
*ifp
= inp
->inp_last_outifp
;
3390 struct socket
*so
= inp
->inp_socket
;
3391 if (ifp
!= NULL
&& !(so
->so_flags
& SOF_MP_SUBFLOW
) &&
3392 (ifp
->if_type
== IFT_CELLULAR
||
3393 ifp
->if_subfamily
== IFNET_SUBFAMILY_WIFI
)) {
3396 so
->so_snd
.sb_flags
|= SB_SNDBYTE_CNT
;
3399 * There can be data outstanding before the connection
3400 * becomes established -- TFO case
3402 if (so
->so_snd
.sb_cc
> 0)
3403 inp_incr_sndbytes_total(so
, so
->so_snd
.sb_cc
);
3405 unsent
= inp_get_sndbytes_allunsent(so
, th_ack
);
3407 inp_incr_sndbytes_unsent(so
, unsent
);
3412 inp_incr_sndbytes_total(struct socket
*so
, int32_t len
)
3414 struct inpcb
*inp
= (struct inpcb
*)so
->so_pcb
;
3415 struct ifnet
*ifp
= inp
->inp_last_outifp
;
3418 VERIFY(ifp
->if_sndbyte_total
>= 0);
3419 OSAddAtomic64(len
, &ifp
->if_sndbyte_total
);
3424 inp_decr_sndbytes_total(struct socket
*so
, int32_t len
)
3426 struct inpcb
*inp
= (struct inpcb
*)so
->so_pcb
;
3427 struct ifnet
*ifp
= inp
->inp_last_outifp
;
3430 VERIFY(ifp
->if_sndbyte_total
>= len
);
3431 OSAddAtomic64(-len
, &ifp
->if_sndbyte_total
);
3436 inp_incr_sndbytes_unsent(struct socket
*so
, int32_t len
)
3438 struct inpcb
*inp
= (struct inpcb
*)so
->so_pcb
;
3439 struct ifnet
*ifp
= inp
->inp_last_outifp
;
3442 VERIFY(ifp
->if_sndbyte_unsent
>= 0);
3443 OSAddAtomic64(len
, &ifp
->if_sndbyte_unsent
);
3448 inp_decr_sndbytes_unsent(struct socket
*so
, int32_t len
)
3450 struct inpcb
*inp
= (struct inpcb
*)so
->so_pcb
;
3451 struct ifnet
*ifp
= inp
->inp_last_outifp
;
3453 if (so
== NULL
|| !(so
->so_snd
.sb_flags
& SB_SNDBYTE_CNT
))
3457 if (ifp
->if_sndbyte_unsent
>= len
)
3458 OSAddAtomic64(-len
, &ifp
->if_sndbyte_unsent
);
3460 ifp
->if_sndbyte_unsent
= 0;
3465 inp_decr_sndbytes_allunsent(struct socket
*so
, u_int32_t th_ack
)
3469 if (so
== NULL
|| !(so
->so_snd
.sb_flags
& SB_SNDBYTE_CNT
))
3472 len
= inp_get_sndbytes_allunsent(so
, th_ack
);
3473 inp_decr_sndbytes_unsent(so
, len
);
3478 inp_set_activity_bitmap(struct inpcb
*inp
)
3480 in_stat_set_activity_bitmap(&inp
->inp_nw_activity
, net_uptime());
3484 inp_get_activity_bitmap(struct inpcb
*inp
, activity_bitmap_t
*ab
)
3486 bcopy(&inp
->inp_nw_activity
, ab
, sizeof (*ab
));