]> git.saurik.com Git - apple/xnu.git/blob - bsd/kern/uipc_socket2.c
32b896ee819713702cb61956ceb67f4a514627a3
[apple/xnu.git] / bsd / kern / uipc_socket2.c
1 /*
2 * Copyright (c) 1998-2012 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */
29 /*
30 * Copyright (c) 1982, 1986, 1988, 1990, 1993
31 * The Regents of the University of California. All rights reserved.
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 * 3. All advertising materials mentioning features or use of this software
42 * must display the following acknowledgement:
43 * This product includes software developed by the University of
44 * California, Berkeley and its contributors.
45 * 4. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)uipc_socket2.c 8.1 (Berkeley) 6/10/93
62 * $FreeBSD: src/sys/kern/uipc_socket2.c,v 1.55.2.9 2001/07/26 18:53:02 peter Exp $
63 */
64 /*
65 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
66 * support for mandatory and extensible security protections. This notice
67 * is included in support of clause 2.2 (b) of the Apple Public License,
68 * Version 2.0.
69 */
70
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/domain.h>
74 #include <sys/kernel.h>
75 #include <sys/proc_internal.h>
76 #include <sys/kauth.h>
77 #include <sys/malloc.h>
78 #include <sys/mbuf.h>
79 #include <sys/mcache.h>
80 #include <sys/protosw.h>
81 #include <sys/stat.h>
82 #include <sys/socket.h>
83 #include <sys/socketvar.h>
84 #include <sys/signalvar.h>
85 #include <sys/sysctl.h>
86 #include <sys/ev.h>
87 #include <kern/locks.h>
88 #include <net/route.h>
89 #include <netinet/in.h>
90 #include <netinet/in_pcb.h>
91 #include <sys/kdebug.h>
92 #include <libkern/OSAtomic.h>
93
94 #if CONFIG_MACF
95 #include <security/mac_framework.h>
96 #endif
97
98 #include <mach/vm_param.h>
99
100 /* TODO: this should be in a header file somewhere */
101 extern void postevent(struct socket *, struct sockbuf *, int);
102
103 #define DBG_FNC_SBDROP NETDBG_CODE(DBG_NETSOCK, 4)
104 #define DBG_FNC_SBAPPEND NETDBG_CODE(DBG_NETSOCK, 5)
105
106 static inline void sbcompress(struct sockbuf *, struct mbuf *, struct mbuf *);
107 static struct socket *sonewconn_internal(struct socket *, int);
108 static int sbappendaddr_internal(struct sockbuf *, struct sockaddr *,
109 struct mbuf *, struct mbuf *);
110 static int sbappendcontrol_internal(struct sockbuf *, struct mbuf *,
111 struct mbuf *);
112
113 /*
114 * Primitive routines for operating on sockets and socket buffers
115 */
116 static int soqlimitcompat = 1;
117 static int soqlencomp = 0;
118
119 /* Based on the number of mbuf clusters configured, high_sb_max and sb_max can get
120 * scaled up or down to suit that memory configuration. high_sb_max is a higher
121 * limit on sb_max that is checked when sb_max gets set through sysctl.
122 */
123
124 u_int32_t sb_max = SB_MAX; /* XXX should be static */
125 u_int32_t high_sb_max = SB_MAX;
126
127 static u_int32_t sb_efficiency = 8; /* parameter for sbreserve() */
128 __private_extern__ int32_t total_sbmb_cnt = 0;
129
130 /* Control whether to throttle sockets eligible to be throttled */
131 __private_extern__ u_int32_t net_io_policy_throttled = 0;
132 static int sysctl_io_policy_throttled SYSCTL_HANDLER_ARGS;
133
134 /*
135 * Procedures to manipulate state flags of socket
136 * and do appropriate wakeups. Normal sequence from the
137 * active (originating) side is that soisconnecting() is
138 * called during processing of connect() call,
139 * resulting in an eventual call to soisconnected() if/when the
140 * connection is established. When the connection is torn down
141 * soisdisconnecting() is called during processing of disconnect() call,
142 * and soisdisconnected() is called when the connection to the peer
143 * is totally severed. The semantics of these routines are such that
144 * connectionless protocols can call soisconnected() and soisdisconnected()
145 * only, bypassing the in-progress calls when setting up a ``connection''
146 * takes no time.
147 *
148 * From the passive side, a socket is created with
149 * two queues of sockets: so_incomp for connections in progress
150 * and so_comp for connections already made and awaiting user acceptance.
151 * As a protocol is preparing incoming connections, it creates a socket
152 * structure queued on so_incomp by calling sonewconn(). When the connection
153 * is established, soisconnected() is called, and transfers the
154 * socket structure to so_comp, making it available to accept().
155 *
156 * If a socket is closed with sockets on either
157 * so_incomp or so_comp, these sockets are dropped.
158 *
159 * If higher level protocols are implemented in
160 * the kernel, the wakeups done here will sometimes
161 * cause software-interrupt process scheduling.
162 */
163 void
164 soisconnecting(struct socket *so)
165 {
166
167 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
168 so->so_state |= SS_ISCONNECTING;
169
170 sflt_notify(so, sock_evt_connecting, NULL);
171 }
172
173 void
174 soisconnected(struct socket *so)
175 {
176 struct socket *head = so->so_head;
177
178 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
179 so->so_state |= SS_ISCONNECTED;
180
181 sflt_notify(so, sock_evt_connected, NULL);
182
183 if (head && (so->so_state & SS_INCOMP)) {
184 so->so_state &= ~SS_INCOMP;
185 so->so_state |= SS_COMP;
186 if (head->so_proto->pr_getlock != NULL) {
187 socket_unlock(so, 0);
188 socket_lock(head, 1);
189 }
190 postevent(head, 0, EV_RCONN);
191 TAILQ_REMOVE(&head->so_incomp, so, so_list);
192 head->so_incqlen--;
193 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
194 sorwakeup(head);
195 wakeup_one((caddr_t)&head->so_timeo);
196 if (head->so_proto->pr_getlock != NULL) {
197 socket_unlock(head, 1);
198 socket_lock(so, 0);
199 }
200 } else {
201 postevent(so, 0, EV_WCONN);
202 wakeup((caddr_t)&so->so_timeo);
203 sorwakeup(so);
204 sowwakeup(so);
205 soevent(so, SO_FILT_HINT_LOCKED);
206 }
207 }
208
209 void
210 soisdisconnecting(struct socket *so)
211 {
212 so->so_state &= ~SS_ISCONNECTING;
213 so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
214 soevent(so, SO_FILT_HINT_LOCKED);
215 sflt_notify(so, sock_evt_disconnecting, NULL);
216 wakeup((caddr_t)&so->so_timeo);
217 sowwakeup(so);
218 sorwakeup(so);
219 }
220
221 void
222 soisdisconnected(struct socket *so)
223 {
224 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
225 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
226 soevent(so, SO_FILT_HINT_LOCKED);
227 sflt_notify(so, sock_evt_disconnected, NULL);
228 wakeup((caddr_t)&so->so_timeo);
229 sowwakeup(so);
230 sorwakeup(so);
231 }
232
233 /* This function will issue a wakeup like soisdisconnected but it will not
234 * notify the socket filters. This will avoid unlocking the socket
235 * in the midst of closing it.
236 */
237 void
238 sodisconnectwakeup(struct socket *so)
239 {
240 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
241 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
242 soevent(so, SO_FILT_HINT_LOCKED);
243 wakeup((caddr_t)&so->so_timeo);
244 sowwakeup(so);
245 sorwakeup(so);
246 }
247
248 /*
249 * When an attempt at a new connection is noted on a socket
250 * which accepts connections, sonewconn is called. If the
251 * connection is possible (subject to space constraints, etc.)
252 * then we allocate a new structure, propoerly linked into the
253 * data structure of the original socket, and return this.
254 * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
255 */
256 static struct socket *
257 sonewconn_internal(struct socket *head, int connstatus)
258 {
259 int so_qlen, error = 0;
260 struct socket *so;
261 lck_mtx_t *mutex_held;
262
263 if (head->so_proto->pr_getlock != NULL)
264 mutex_held = (*head->so_proto->pr_getlock)(head, 0);
265 else
266 mutex_held = head->so_proto->pr_domain->dom_mtx;
267 lck_mtx_assert(mutex_held, LCK_MTX_ASSERT_OWNED);
268
269 if (!soqlencomp) {
270 /*
271 * This is the default case; so_qlen represents the
272 * sum of both incomplete and completed queues.
273 */
274 so_qlen = head->so_qlen;
275 } else {
276 /*
277 * When kern.ipc.soqlencomp is set to 1, so_qlen
278 * represents only the completed queue. Since we
279 * cannot let the incomplete queue goes unbounded
280 * (in case of SYN flood), we cap the incomplete
281 * queue length to at most somaxconn, and use that
282 * as so_qlen so that we fail immediately below.
283 */
284 so_qlen = head->so_qlen - head->so_incqlen;
285 if (head->so_incqlen > somaxconn)
286 so_qlen = somaxconn;
287 }
288
289 if (so_qlen >=
290 (soqlimitcompat ? head->so_qlimit : (3 * head->so_qlimit / 2)))
291 return ((struct socket *)0);
292 so = soalloc(1, head->so_proto->pr_domain->dom_family,
293 head->so_type);
294 if (so == NULL)
295 return ((struct socket *)0);
296 /* check if head was closed during the soalloc */
297 if (head->so_proto == NULL) {
298 sodealloc(so);
299 return ((struct socket *)0);
300 }
301
302 so->so_type = head->so_type;
303 so->so_options = head->so_options &~ SO_ACCEPTCONN;
304 so->so_linger = head->so_linger;
305 so->so_state = head->so_state | SS_NOFDREF;
306 so->so_proto = head->so_proto;
307 so->so_timeo = head->so_timeo;
308 so->so_pgid = head->so_pgid;
309 kauth_cred_ref(head->so_cred);
310 so->so_cred = head->so_cred;
311 so->last_pid = head->last_pid;
312 so->last_upid = head->last_upid;
313 /* inherit socket options stored in so_flags */
314 so->so_flags = head->so_flags & (SOF_NOSIGPIPE |
315 SOF_NOADDRAVAIL |
316 SOF_REUSESHAREUID |
317 SOF_NOTIFYCONFLICT |
318 SOF_BINDRANDOMPORT |
319 SOF_NPX_SETOPTSHUT |
320 SOF_NODEFUNCT |
321 SOF_PRIVILEGED_TRAFFIC_CLASS|
322 SOF_NOTSENT_LOWAT |
323 SOF_USELRO);
324 so->so_usecount = 1;
325 so->next_lock_lr = 0;
326 so->next_unlock_lr = 0;
327
328 #ifdef __APPLE__
329 so->so_rcv.sb_flags |= SB_RECV; /* XXX */
330 so->so_rcv.sb_so = so->so_snd.sb_so = so;
331 TAILQ_INIT(&so->so_evlist);
332 #endif
333
334 #if CONFIG_MACF_SOCKET
335 mac_socket_label_associate_accept(head, so);
336 #endif
337
338 /* inherit traffic management properties of listener */
339 so->so_traffic_mgt_flags = head->so_traffic_mgt_flags & (TRAFFIC_MGT_SO_BACKGROUND);
340 so->so_background_thread = head->so_background_thread;
341 so->so_traffic_class = head->so_traffic_class;
342
343 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) {
344 sodealloc(so);
345 return ((struct socket *)0);
346 }
347 so->so_rcv.sb_flags |= (head->so_rcv.sb_flags & SB_USRSIZE);
348 so->so_snd.sb_flags |= (head->so_snd.sb_flags & SB_USRSIZE);
349
350 /*
351 * Must be done with head unlocked to avoid deadlock
352 * for protocol with per socket mutexes.
353 */
354 if (head->so_proto->pr_unlock)
355 socket_unlock(head, 0);
356 if (((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL) != 0) ||
357 error) {
358 sodealloc(so);
359 if (head->so_proto->pr_unlock)
360 socket_lock(head, 0);
361 return ((struct socket *)0);
362 }
363 if (head->so_proto->pr_unlock) {
364 socket_lock(head, 0);
365 /* Radar 7385998 Recheck that the head is still accepting
366 * to avoid race condition when head is getting closed.
367 */
368 if ((head->so_options & SO_ACCEPTCONN) == 0) {
369 so->so_state &= ~SS_NOFDREF;
370 soclose(so);
371 return ((struct socket *)0);
372 }
373 }
374
375 #ifdef __APPLE__
376 so->so_proto->pr_domain->dom_refs++;
377 #endif
378 /* Insert in head appropriate lists */
379 so->so_head = head;
380
381 /* Since this socket is going to be inserted into the incomp
382 * queue, it can be picked up by another thread in
383 * tcp_dropdropablreq to get dropped before it is setup..
384 * To prevent this race, set in-progress flag which can be
385 * cleared later
386 */
387 so->so_flags |= SOF_INCOMP_INPROGRESS;
388
389 if (connstatus) {
390 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
391 so->so_state |= SS_COMP;
392 } else {
393 TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list);
394 so->so_state |= SS_INCOMP;
395 head->so_incqlen++;
396 }
397 head->so_qlen++;
398
399 #ifdef __APPLE__
400 /* Attach socket filters for this protocol */
401 sflt_initsock(so);
402 #endif
403
404 if (connstatus) {
405 so->so_state |= connstatus;
406 sorwakeup(head);
407 wakeup((caddr_t)&head->so_timeo);
408 }
409 return (so);
410 }
411
412
413 struct socket *
414 sonewconn(struct socket *head, int connstatus, const struct sockaddr *from)
415 {
416 int error = sflt_connectin(head, from);
417 if (error) {
418 return (NULL);
419 }
420
421 return (sonewconn_internal(head, connstatus));
422 }
423
424 /*
425 * Socantsendmore indicates that no more data will be sent on the
426 * socket; it would normally be applied to a socket when the user
427 * informs the system that no more data is to be sent, by the protocol
428 * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data
429 * will be received, and will normally be applied to the socket by a
430 * protocol when it detects that the peer will send no more data.
431 * Data queued for reading in the socket may yet be read.
432 */
433
434 void
435 socantsendmore(struct socket *so)
436 {
437 so->so_state |= SS_CANTSENDMORE;
438 soevent(so, SO_FILT_HINT_LOCKED);
439 sflt_notify(so, sock_evt_cantsendmore, NULL);
440 sowwakeup(so);
441 }
442
443 void
444 socantrcvmore(struct socket *so)
445 {
446 so->so_state |= SS_CANTRCVMORE;
447 soevent(so, SO_FILT_HINT_LOCKED);
448 sflt_notify(so, sock_evt_cantrecvmore, NULL);
449 sorwakeup(so);
450 }
451
452 /*
453 * Wait for data to arrive at/drain from a socket buffer.
454 *
455 * Returns: 0 Success
456 * EBADF
457 * msleep:EINTR
458 */
459 int
460 sbwait(struct sockbuf *sb)
461 {
462 int error = 0;
463 uintptr_t lr_saved;
464 struct socket *so = sb->sb_so;
465 lck_mtx_t *mutex_held;
466 struct timespec ts;
467
468 lr_saved = (uintptr_t) __builtin_return_address(0);
469
470 if (so->so_proto->pr_getlock != NULL)
471 mutex_held = (*so->so_proto->pr_getlock)(so, 0);
472 else
473 mutex_held = so->so_proto->pr_domain->dom_mtx;
474 lck_mtx_assert(mutex_held, LCK_MTX_ASSERT_OWNED);
475
476 sb->sb_flags |= SB_WAIT;
477
478 if (so->so_usecount < 1)
479 panic("sbwait: so=%p refcount=%d\n", so, so->so_usecount);
480 ts.tv_sec = sb->sb_timeo.tv_sec;
481 ts.tv_nsec = sb->sb_timeo.tv_usec * 1000;
482 error = msleep((caddr_t)&sb->sb_cc, mutex_held,
483 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, "sbwait", &ts);
484
485 lck_mtx_assert(mutex_held, LCK_MTX_ASSERT_OWNED);
486
487 if (so->so_usecount < 1)
488 panic("sbwait: so=%p refcount=%d\n", so, so->so_usecount);
489
490 if ((so->so_state & SS_DRAINING) || (so->so_flags & SOF_DEFUNCT)) {
491 error = EBADF;
492 if (so->so_flags & SOF_DEFUNCT) {
493 SODEFUNCTLOG(("%s[%d]: defunct so %p [%d,%d] (%d)\n",
494 __func__, proc_selfpid(), so, INP_SOCKAF(so),
495 INP_SOCKTYPE(so), error));
496 }
497 }
498
499 return (error);
500 }
501
502 /*
503 * Lock a sockbuf already known to be locked;
504 * return any error returned from sleep (EINTR).
505 *
506 * Returns: 0 Success
507 * EINTR
508 */
509 int
510 sb_lock(struct sockbuf *sb)
511 {
512 struct socket *so = sb->sb_so;
513 lck_mtx_t *mutex_held;
514 int error = 0;
515
516 if (so == NULL)
517 panic("sb_lock: null so back pointer sb=%p\n", sb);
518
519 while (sb->sb_flags & SB_LOCK) {
520 sb->sb_flags |= SB_WANT;
521
522 if (so->so_proto->pr_getlock != NULL)
523 mutex_held = (*so->so_proto->pr_getlock)(so, 0);
524 else
525 mutex_held = so->so_proto->pr_domain->dom_mtx;
526 lck_mtx_assert(mutex_held, LCK_MTX_ASSERT_OWNED);
527
528 if (so->so_usecount < 1)
529 panic("sb_lock: so=%p refcount=%d\n", so,
530 so->so_usecount);
531
532 error = msleep((caddr_t)&sb->sb_flags, mutex_held,
533 (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH,
534 "sb_lock", 0);
535 if (so->so_usecount < 1)
536 panic("sb_lock: 2 so=%p refcount=%d\n", so,
537 so->so_usecount);
538
539 if (error == 0 && (so->so_flags & SOF_DEFUNCT)) {
540 error = EBADF;
541 SODEFUNCTLOG(("%s[%d]: defunct so %p [%d,%d] (%d)\n",
542 __func__, proc_selfpid(), so, INP_SOCKAF(so),
543 INP_SOCKTYPE(so), error));
544 }
545
546 if (error)
547 return (error);
548 }
549 sb->sb_flags |= SB_LOCK;
550 return (0);
551 }
552
553 void
554 sbwakeup(struct sockbuf *sb)
555 {
556 if (sb->sb_flags & SB_WAIT) {
557 sb->sb_flags &= ~SB_WAIT;
558 wakeup((caddr_t)&sb->sb_cc);
559 }
560 }
561
562 /*
563 * Wakeup processes waiting on a socket buffer.
564 * Do asynchronous notification via SIGIO
565 * if the socket has the SS_ASYNC flag set.
566 */
567 void
568 sowakeup(struct socket *so, struct sockbuf *sb)
569 {
570 if (so->so_flags & SOF_DEFUNCT) {
571 SODEFUNCTLOG(("%s[%d]: defunct so %p [%d,%d] si 0x%x, "
572 "fl 0x%x [%s]\n", __func__, proc_selfpid(), so,
573 INP_SOCKAF(so), INP_SOCKTYPE(so),
574 (uint32_t)sb->sb_sel.si_flags, (uint16_t)sb->sb_flags,
575 (sb->sb_flags & SB_RECV) ? "rcv" : "snd"));
576 }
577
578 sb->sb_flags &= ~SB_SEL;
579 selwakeup(&sb->sb_sel);
580 sbwakeup(sb);
581 if (so->so_state & SS_ASYNC) {
582 if (so->so_pgid < 0)
583 gsignal(-so->so_pgid, SIGIO);
584 else if (so->so_pgid > 0)
585 proc_signal(so->so_pgid, SIGIO);
586 }
587 if (sb->sb_flags & SB_KNOTE) {
588 KNOTE(&sb->sb_sel.si_note, SO_FILT_HINT_LOCKED);
589 }
590 if (sb->sb_flags & SB_UPCALL) {
591 void (*so_upcall)(struct socket *, caddr_t, int);
592 caddr_t so_upcallarg;
593
594 so_upcall = so->so_upcall;
595 so_upcallarg = so->so_upcallarg;
596 /* Let close know that we're about to do an upcall */
597 so->so_upcallusecount++;
598
599 socket_unlock(so, 0);
600 (*so_upcall)(so, so_upcallarg, M_DONTWAIT);
601 socket_lock(so, 0);
602
603 so->so_upcallusecount--;
604 /* Tell close that it's safe to proceed */
605 if (so->so_flags & SOF_CLOSEWAIT && so->so_upcallusecount == 0)
606 wakeup((caddr_t)&so->so_upcall);
607 }
608 }
609
610 /*
611 * Socket buffer (struct sockbuf) utility routines.
612 *
613 * Each socket contains two socket buffers: one for sending data and
614 * one for receiving data. Each buffer contains a queue of mbufs,
615 * information about the number of mbufs and amount of data in the
616 * queue, and other fields allowing select() statements and notification
617 * on data availability to be implemented.
618 *
619 * Data stored in a socket buffer is maintained as a list of records.
620 * Each record is a list of mbufs chained together with the m_next
621 * field. Records are chained together with the m_nextpkt field. The upper
622 * level routine soreceive() expects the following conventions to be
623 * observed when placing information in the receive buffer:
624 *
625 * 1. If the protocol requires each message be preceded by the sender's
626 * name, then a record containing that name must be present before
627 * any associated data (mbuf's must be of type MT_SONAME).
628 * 2. If the protocol supports the exchange of ``access rights'' (really
629 * just additional data associated with the message), and there are
630 * ``rights'' to be received, then a record containing this data
631 * should be present (mbuf's must be of type MT_RIGHTS).
632 * 3. If a name or rights record exists, then it must be followed by
633 * a data record, perhaps of zero length.
634 *
635 * Before using a new socket structure it is first necessary to reserve
636 * buffer space to the socket, by calling sbreserve(). This should commit
637 * some of the available buffer space in the system buffer pool for the
638 * socket (currently, it does nothing but enforce limits). The space
639 * should be released by calling sbrelease() when the socket is destroyed.
640 */
641
642 /*
643 * Returns: 0 Success
644 * ENOBUFS
645 */
646 int
647 soreserve(struct socket *so, u_int32_t sndcc, u_int32_t rcvcc)
648 {
649
650 if (sbreserve(&so->so_snd, sndcc) == 0)
651 goto bad;
652 else
653 so->so_snd.sb_idealsize = sndcc;
654
655 if (sbreserve(&so->so_rcv, rcvcc) == 0)
656 goto bad2;
657 else
658 so->so_rcv.sb_idealsize = rcvcc;
659
660 if (so->so_rcv.sb_lowat == 0)
661 so->so_rcv.sb_lowat = 1;
662 if (so->so_snd.sb_lowat == 0)
663 so->so_snd.sb_lowat = MCLBYTES;
664 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
665 so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
666 return (0);
667 bad2:
668 #ifdef __APPLE__
669 selthreadclear(&so->so_snd.sb_sel);
670 #endif
671 sbrelease(&so->so_snd);
672 bad:
673 return (ENOBUFS);
674 }
675
676 /*
677 * Allot mbufs to a sockbuf.
678 * Attempt to scale mbmax so that mbcnt doesn't become limiting
679 * if buffering efficiency is near the normal case.
680 */
681 int
682 sbreserve(struct sockbuf *sb, u_int32_t cc)
683 {
684 if ((u_quad_t)cc > (u_quad_t)sb_max * MCLBYTES / (MSIZE + MCLBYTES))
685 return (0);
686 sb->sb_hiwat = cc;
687 sb->sb_mbmax = min(cc * sb_efficiency, sb_max);
688 if (sb->sb_lowat > sb->sb_hiwat)
689 sb->sb_lowat = sb->sb_hiwat;
690 return (1);
691 }
692
693 /*
694 * Free mbufs held by a socket, and reserved mbuf space.
695 */
696 /* WARNING needs to do selthreadclear() before calling this */
697 void
698 sbrelease(struct sockbuf *sb)
699 {
700 sbflush(sb);
701 sb->sb_hiwat = 0;
702 sb->sb_mbmax = 0;
703 }
704
705 /*
706 * Routines to add and remove
707 * data from an mbuf queue.
708 *
709 * The routines sbappend() or sbappendrecord() are normally called to
710 * append new mbufs to a socket buffer, after checking that adequate
711 * space is available, comparing the function sbspace() with the amount
712 * of data to be added. sbappendrecord() differs from sbappend() in
713 * that data supplied is treated as the beginning of a new record.
714 * To place a sender's address, optional access rights, and data in a
715 * socket receive buffer, sbappendaddr() should be used. To place
716 * access rights and data in a socket receive buffer, sbappendrights()
717 * should be used. In either case, the new data begins a new record.
718 * Note that unlike sbappend() and sbappendrecord(), these routines check
719 * for the caller that there will be enough space to store the data.
720 * Each fails if there is not enough space, or if it cannot find mbufs
721 * to store additional information in.
722 *
723 * Reliable protocols may use the socket send buffer to hold data
724 * awaiting acknowledgement. Data is normally copied from a socket
725 * send buffer in a protocol with m_copy for output to a peer,
726 * and then removing the data from the socket buffer with sbdrop()
727 * or sbdroprecord() when the data is acknowledged by the peer.
728 */
729
730 /*
731 * Append mbuf chain m to the last record in the
732 * socket buffer sb. The additional space associated
733 * the mbuf chain is recorded in sb. Empty mbufs are
734 * discarded and mbufs are compacted where possible.
735 */
736 int
737 sbappend(struct sockbuf *sb, struct mbuf *m)
738 {
739 struct socket *so = sb->sb_so;
740
741 if (m == NULL || (sb->sb_flags & SB_DROP)) {
742 if (m != NULL)
743 m_freem(m);
744 return (0);
745 }
746
747 SBLASTRECORDCHK(sb, "sbappend 1");
748
749 if (sb->sb_lastrecord != NULL && (sb->sb_mbtail->m_flags & M_EOR))
750 return (sbappendrecord(sb, m));
751
752 if (sb->sb_flags & SB_RECV) {
753 int error = sflt_data_in(so, NULL, &m, NULL, 0);
754 SBLASTRECORDCHK(sb, "sbappend 2");
755 if (error != 0) {
756 if (error != EJUSTRETURN)
757 m_freem(m);
758 return (0);
759 }
760 }
761
762 /* If this is the first record, it's also the last record */
763 if (sb->sb_lastrecord == NULL)
764 sb->sb_lastrecord = m;
765
766 sbcompress(sb, m, sb->sb_mbtail);
767 SBLASTRECORDCHK(sb, "sbappend 3");
768 return (1);
769 }
770
771 /*
772 * Similar to sbappend, except that this is optimized for stream sockets.
773 */
774 int
775 sbappendstream(struct sockbuf *sb, struct mbuf *m)
776 {
777 struct socket *so = sb->sb_so;
778
779 if (m->m_nextpkt != NULL || (sb->sb_mb != sb->sb_lastrecord))
780 panic("sbappendstream: nexpkt %p || mb %p != lastrecord %p\n",
781 m->m_nextpkt, sb->sb_mb, sb->sb_lastrecord);
782
783 SBLASTMBUFCHK(sb, __func__);
784
785 if (m == NULL || (sb->sb_flags & SB_DROP)) {
786 if (m != NULL)
787 m_freem(m);
788 return (0);
789 }
790
791 if (sb->sb_flags & SB_RECV) {
792 int error = sflt_data_in(so, NULL, &m, NULL, 0);
793 SBLASTRECORDCHK(sb, "sbappendstream 1");
794 if (error != 0) {
795 if (error != EJUSTRETURN)
796 m_freem(m);
797 return (0);
798 }
799 }
800
801 sbcompress(sb, m, sb->sb_mbtail);
802 sb->sb_lastrecord = sb->sb_mb;
803 SBLASTRECORDCHK(sb, "sbappendstream 2");
804 return (1);
805 }
806
807 #ifdef SOCKBUF_DEBUG
808 void
809 sbcheck(struct sockbuf *sb)
810 {
811 struct mbuf *m;
812 struct mbuf *n = 0;
813 u_int32_t len = 0, mbcnt = 0;
814 lck_mtx_t *mutex_held;
815
816 if (sb->sb_so->so_proto->pr_getlock != NULL)
817 mutex_held = (*sb->sb_so->so_proto->pr_getlock)(sb->sb_so, 0);
818 else
819 mutex_held = sb->sb_so->so_proto->pr_domain->dom_mtx;
820
821 lck_mtx_assert(mutex_held, LCK_MTX_ASSERT_OWNED);
822
823 if (sbchecking == 0)
824 return;
825
826 for (m = sb->sb_mb; m; m = n) {
827 n = m->m_nextpkt;
828 for (; m; m = m->m_next) {
829 len += m->m_len;
830 mbcnt += MSIZE;
831 /* XXX pretty sure this is bogus */
832 if (m->m_flags & M_EXT)
833 mbcnt += m->m_ext.ext_size;
834 }
835 }
836 if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
837 panic("cc %ld != %ld || mbcnt %ld != %ld\n", len, sb->sb_cc,
838 mbcnt, sb->sb_mbcnt);
839 }
840 }
841 #endif
842
843 void
844 sblastrecordchk(struct sockbuf *sb, const char *where)
845 {
846 struct mbuf *m = sb->sb_mb;
847
848 while (m && m->m_nextpkt)
849 m = m->m_nextpkt;
850
851 if (m != sb->sb_lastrecord) {
852 printf("sblastrecordchk: mb %p lastrecord %p last %p\n",
853 sb->sb_mb, sb->sb_lastrecord, m);
854 printf("packet chain:\n");
855 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
856 printf("\t%p\n", m);
857 panic("sblastrecordchk from %s", where);
858 }
859 }
860
861 void
862 sblastmbufchk(struct sockbuf *sb, const char *where)
863 {
864 struct mbuf *m = sb->sb_mb;
865 struct mbuf *n;
866
867 while (m && m->m_nextpkt)
868 m = m->m_nextpkt;
869
870 while (m && m->m_next)
871 m = m->m_next;
872
873 if (m != sb->sb_mbtail) {
874 printf("sblastmbufchk: mb %p mbtail %p last %p\n",
875 sb->sb_mb, sb->sb_mbtail, m);
876 printf("packet tree:\n");
877 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
878 printf("\t");
879 for (n = m; n != NULL; n = n->m_next)
880 printf("%p ", n);
881 printf("\n");
882 }
883 panic("sblastmbufchk from %s", where);
884 }
885 }
886
887 /*
888 * Similar to sbappend, except the mbuf chain begins a new record.
889 */
890 int
891 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
892 {
893 struct mbuf *m;
894 int space = 0;
895
896 if (m0 == NULL || (sb->sb_flags & SB_DROP)) {
897 if (m0 != NULL)
898 m_freem(m0);
899 return (0);
900 }
901
902 for (m = m0; m != NULL; m = m->m_next)
903 space += m->m_len;
904
905 if (space > sbspace(sb) && !(sb->sb_flags & SB_UNIX)) {
906 m_freem(m0);
907 return (0);
908 }
909
910 if (sb->sb_flags & SB_RECV) {
911 int error = sflt_data_in(sb->sb_so, NULL, &m0, NULL,
912 sock_data_filt_flag_record);
913 if (error != 0) {
914 SBLASTRECORDCHK(sb, "sbappendrecord 1");
915 if (error != EJUSTRETURN)
916 m_freem(m0);
917 return (0);
918 }
919 }
920
921 /*
922 * Note this permits zero length records.
923 */
924 sballoc(sb, m0);
925 SBLASTRECORDCHK(sb, "sbappendrecord 2");
926 if (sb->sb_lastrecord != NULL) {
927 sb->sb_lastrecord->m_nextpkt = m0;
928 } else {
929 sb->sb_mb = m0;
930 }
931 sb->sb_lastrecord = m0;
932 sb->sb_mbtail = m0;
933
934 m = m0->m_next;
935 m0->m_next = 0;
936 if (m && (m0->m_flags & M_EOR)) {
937 m0->m_flags &= ~M_EOR;
938 m->m_flags |= M_EOR;
939 }
940 sbcompress(sb, m, m0);
941 SBLASTRECORDCHK(sb, "sbappendrecord 3");
942 return (1);
943 }
944
945 /*
946 * As above except that OOB data
947 * is inserted at the beginning of the sockbuf,
948 * but after any other OOB data.
949 */
950 int
951 sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
952 {
953 struct mbuf *m;
954 struct mbuf **mp;
955
956 if (m0 == 0)
957 return (0);
958
959 SBLASTRECORDCHK(sb, "sbinsertoob 1");
960
961 if ((sb->sb_flags & SB_RECV) != 0) {
962 int error = sflt_data_in(sb->sb_so, NULL, &m0, NULL,
963 sock_data_filt_flag_oob);
964
965 SBLASTRECORDCHK(sb, "sbinsertoob 2");
966 if (error) {
967 if (error != EJUSTRETURN) {
968 m_freem(m0);
969 }
970 return (0);
971 }
972 }
973
974 for (mp = &sb->sb_mb; *mp; mp = &((*mp)->m_nextpkt)) {
975 m = *mp;
976 again:
977 switch (m->m_type) {
978
979 case MT_OOBDATA:
980 continue; /* WANT next train */
981
982 case MT_CONTROL:
983 m = m->m_next;
984 if (m)
985 goto again; /* inspect THIS train further */
986 }
987 break;
988 }
989 /*
990 * Put the first mbuf on the queue.
991 * Note this permits zero length records.
992 */
993 sballoc(sb, m0);
994 m0->m_nextpkt = *mp;
995 if (*mp == NULL) {
996 /* m0 is actually the new tail */
997 sb->sb_lastrecord = m0;
998 }
999 *mp = m0;
1000 m = m0->m_next;
1001 m0->m_next = 0;
1002 if (m && (m0->m_flags & M_EOR)) {
1003 m0->m_flags &= ~M_EOR;
1004 m->m_flags |= M_EOR;
1005 }
1006 sbcompress(sb, m, m0);
1007 SBLASTRECORDCHK(sb, "sbinsertoob 3");
1008 return (1);
1009 }
1010
1011 /*
1012 * Append address and data, and optionally, control (ancillary) data
1013 * to the receive queue of a socket. If present,
1014 * m0 must include a packet header with total length.
1015 * Returns 0 if no space in sockbuf or insufficient mbufs.
1016 *
1017 * Returns: 0 No space/out of mbufs
1018 * 1 Success
1019 */
1020 static int
1021 sbappendaddr_internal(struct sockbuf *sb, struct sockaddr *asa,
1022 struct mbuf *m0, struct mbuf *control)
1023 {
1024 struct mbuf *m, *n, *nlast;
1025 int space = asa->sa_len;
1026
1027 if (m0 && (m0->m_flags & M_PKTHDR) == 0)
1028 panic("sbappendaddr");
1029
1030 if (m0)
1031 space += m0->m_pkthdr.len;
1032 for (n = control; n; n = n->m_next) {
1033 space += n->m_len;
1034 if (n->m_next == 0) /* keep pointer to last control buf */
1035 break;
1036 }
1037 if (space > sbspace(sb))
1038 return (0);
1039 if (asa->sa_len > MLEN)
1040 return (0);
1041 MGET(m, M_DONTWAIT, MT_SONAME);
1042 if (m == 0)
1043 return (0);
1044 m->m_len = asa->sa_len;
1045 bcopy((caddr_t)asa, mtod(m, caddr_t), asa->sa_len);
1046 if (n)
1047 n->m_next = m0; /* concatenate data to control */
1048 else
1049 control = m0;
1050 m->m_next = control;
1051
1052 SBLASTRECORDCHK(sb, "sbappendadddr 1");
1053
1054 for (n = m; n->m_next != NULL; n = n->m_next)
1055 sballoc(sb, n);
1056 sballoc(sb, n);
1057 nlast = n;
1058
1059 if (sb->sb_lastrecord != NULL) {
1060 sb->sb_lastrecord->m_nextpkt = m;
1061 } else {
1062 sb->sb_mb = m;
1063 }
1064 sb->sb_lastrecord = m;
1065 sb->sb_mbtail = nlast;
1066
1067 SBLASTMBUFCHK(sb, __func__);
1068 SBLASTRECORDCHK(sb, "sbappendadddr 2");
1069
1070 postevent(0, sb, EV_RWBYTES);
1071 return (1);
1072 }
1073
1074 /*
1075 * Returns: 0 Error: No space/out of mbufs/etc.
1076 * 1 Success
1077 *
1078 * Imputed: (*error_out) errno for error
1079 * ENOBUFS
1080 * sflt_data_in:??? [whatever a filter author chooses]
1081 */
1082 int
1083 sbappendaddr(struct sockbuf *sb, struct sockaddr *asa, struct mbuf *m0,
1084 struct mbuf *control, int *error_out)
1085 {
1086 int result = 0;
1087 boolean_t sb_unix = (sb->sb_flags & SB_UNIX);
1088
1089 if (error_out)
1090 *error_out = 0;
1091
1092 if (m0 && (m0->m_flags & M_PKTHDR) == 0)
1093 panic("sbappendaddrorfree");
1094
1095 if (sb->sb_flags & SB_DROP) {
1096 if (m0 != NULL)
1097 m_freem(m0);
1098 if (control != NULL && !sb_unix)
1099 m_freem(control);
1100 if (error_out != NULL)
1101 *error_out = EINVAL;
1102 return (0);
1103 }
1104
1105 /* Call socket data in filters */
1106 if ((sb->sb_flags & SB_RECV) != 0) {
1107 int error;
1108 error = sflt_data_in(sb->sb_so, asa, &m0, &control, 0);
1109 SBLASTRECORDCHK(sb, __func__);
1110 if (error) {
1111 if (error != EJUSTRETURN) {
1112 if (m0)
1113 m_freem(m0);
1114 if (control != NULL && !sb_unix)
1115 m_freem(control);
1116 if (error_out)
1117 *error_out = error;
1118 }
1119 return (0);
1120 }
1121 }
1122
1123 result = sbappendaddr_internal(sb, asa, m0, control);
1124 if (result == 0) {
1125 if (m0)
1126 m_freem(m0);
1127 if (control != NULL && !sb_unix)
1128 m_freem(control);
1129 if (error_out)
1130 *error_out = ENOBUFS;
1131 }
1132
1133 return (result);
1134 }
1135
1136 static int
1137 sbappendcontrol_internal(struct sockbuf *sb, struct mbuf *m0,
1138 struct mbuf *control)
1139 {
1140 struct mbuf *m, *mlast, *n;
1141 int space = 0;
1142
1143 if (control == 0)
1144 panic("sbappendcontrol");
1145
1146 for (m = control; ; m = m->m_next) {
1147 space += m->m_len;
1148 if (m->m_next == 0)
1149 break;
1150 }
1151 n = m; /* save pointer to last control buffer */
1152 for (m = m0; m; m = m->m_next)
1153 space += m->m_len;
1154 if (space > sbspace(sb) && !(sb->sb_flags & SB_UNIX))
1155 return (0);
1156 n->m_next = m0; /* concatenate data to control */
1157
1158 SBLASTRECORDCHK(sb, "sbappendcontrol 1");
1159
1160 for (m = control; m->m_next != NULL; m = m->m_next)
1161 sballoc(sb, m);
1162 sballoc(sb, m);
1163 mlast = m;
1164
1165 if (sb->sb_lastrecord != NULL) {
1166 sb->sb_lastrecord->m_nextpkt = control;
1167 } else {
1168 sb->sb_mb = control;
1169 }
1170 sb->sb_lastrecord = control;
1171 sb->sb_mbtail = mlast;
1172
1173 SBLASTMBUFCHK(sb, __func__);
1174 SBLASTRECORDCHK(sb, "sbappendcontrol 2");
1175
1176 postevent(0, sb, EV_RWBYTES);
1177 return (1);
1178 }
1179
1180 int
1181 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control,
1182 int *error_out)
1183 {
1184 int result = 0;
1185 boolean_t sb_unix = (sb->sb_flags & SB_UNIX);
1186
1187 if (error_out)
1188 *error_out = 0;
1189
1190 if (sb->sb_flags & SB_DROP) {
1191 if (m0 != NULL)
1192 m_freem(m0);
1193 if (control != NULL && !sb_unix)
1194 m_freem(control);
1195 if (error_out != NULL)
1196 *error_out = EINVAL;
1197 return (0);
1198 }
1199
1200 if (sb->sb_flags & SB_RECV) {
1201 int error;
1202
1203 error = sflt_data_in(sb->sb_so, NULL, &m0, &control, 0);
1204 SBLASTRECORDCHK(sb, __func__);
1205 if (error) {
1206 if (error != EJUSTRETURN) {
1207 if (m0)
1208 m_freem(m0);
1209 if (control != NULL && !sb_unix)
1210 m_freem(control);
1211 if (error_out)
1212 *error_out = error;
1213 }
1214 return (0);
1215 }
1216 }
1217
1218 result = sbappendcontrol_internal(sb, m0, control);
1219 if (result == 0) {
1220 if (m0)
1221 m_freem(m0);
1222 if (control != NULL && !sb_unix)
1223 m_freem(control);
1224 if (error_out)
1225 *error_out = ENOBUFS;
1226 }
1227
1228 return (result);
1229 }
1230
1231 /*
1232 * Compress mbuf chain m into the socket
1233 * buffer sb following mbuf n. If n
1234 * is null, the buffer is presumed empty.
1235 */
1236 static inline void
1237 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
1238 {
1239 int eor = 0;
1240 struct mbuf *o;
1241
1242 if (m == NULL) {
1243 /* There is nothing to compress; just update the tail */
1244 for (; n->m_next != NULL; n = n->m_next)
1245 ;
1246 sb->sb_mbtail = n;
1247 goto done;
1248 }
1249
1250 while (m) {
1251 eor |= m->m_flags & M_EOR;
1252 if (m->m_len == 0 && (eor == 0 ||
1253 (((o = m->m_next) || (o = n)) && o->m_type == m->m_type))) {
1254 if (sb->sb_lastrecord == m)
1255 sb->sb_lastrecord = m->m_next;
1256 m = m_free(m);
1257 continue;
1258 }
1259 if (n && (n->m_flags & M_EOR) == 0 &&
1260 #ifndef __APPLE__
1261 M_WRITABLE(n) &&
1262 #endif
1263 m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */
1264 m->m_len <= M_TRAILINGSPACE(n) &&
1265 n->m_type == m->m_type) {
1266 bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len,
1267 (unsigned)m->m_len);
1268 n->m_len += m->m_len;
1269 sb->sb_cc += m->m_len;
1270 if (m->m_type != MT_DATA && m->m_type != MT_HEADER &&
1271 m->m_type != MT_OOBDATA)
1272 /* XXX: Probably don't need.*/
1273 sb->sb_ctl += m->m_len;
1274 m = m_free(m);
1275 continue;
1276 }
1277 if (n)
1278 n->m_next = m;
1279 else
1280 sb->sb_mb = m;
1281 sb->sb_mbtail = m;
1282 sballoc(sb, m);
1283 n = m;
1284 m->m_flags &= ~M_EOR;
1285 m = m->m_next;
1286 n->m_next = 0;
1287 }
1288 if (eor) {
1289 if (n)
1290 n->m_flags |= eor;
1291 else
1292 printf("semi-panic: sbcompress\n");
1293 }
1294 done:
1295 SBLASTMBUFCHK(sb, __func__);
1296 postevent(0, sb, EV_RWBYTES);
1297 }
1298
1299 void
1300 sb_empty_assert(struct sockbuf *sb, const char *where)
1301 {
1302 if (!(sb->sb_cc == 0 && sb->sb_mb == NULL && sb->sb_mbcnt == 0 &&
1303 sb->sb_mbtail == NULL && sb->sb_lastrecord == NULL)) {
1304 panic("%s: sb %p so %p cc %d mbcnt %d mb %p mbtail %p "
1305 "lastrecord %p\n", where, sb, sb->sb_so, sb->sb_cc,
1306 sb->sb_mbcnt, sb->sb_mb, sb->sb_mbtail, sb->sb_lastrecord);
1307 /* NOTREACHED */
1308 }
1309 }
1310
1311 /*
1312 * Free all mbufs in a sockbuf.
1313 * Check that all resources are reclaimed.
1314 */
1315 void
1316 sbflush(struct sockbuf *sb)
1317 {
1318 if (sb->sb_so == NULL)
1319 panic("sbflush sb->sb_so already null sb=%p\n", sb);
1320 (void) sblock(sb, M_WAIT);
1321 while (sb->sb_mbcnt) {
1322 /*
1323 * Don't call sbdrop(sb, 0) if the leading mbuf is non-empty:
1324 * we would loop forever. Panic instead.
1325 */
1326 if (!sb->sb_cc && (sb->sb_mb == NULL || sb->sb_mb->m_len))
1327 break;
1328 sbdrop(sb, (int)sb->sb_cc);
1329 }
1330 sb_empty_assert(sb, __func__);
1331 postevent(0, sb, EV_RWBYTES);
1332 sbunlock(sb, 1); /* keep socket locked */
1333
1334 }
1335
1336 /*
1337 * Drop data from (the front of) a sockbuf.
1338 * use m_freem_list to free the mbuf structures
1339 * under a single lock... this is done by pruning
1340 * the top of the tree from the body by keeping track
1341 * of where we get to in the tree and then zeroing the
1342 * two pertinent pointers m_nextpkt and m_next
1343 * the socket buffer is then updated to point at the new
1344 * top of the tree and the pruned area is released via
1345 * m_freem_list.
1346 */
1347 void
1348 sbdrop(struct sockbuf *sb, int len)
1349 {
1350 struct mbuf *m, *free_list, *ml;
1351 struct mbuf *next, *last;
1352
1353 KERNEL_DEBUG((DBG_FNC_SBDROP | DBG_FUNC_START), sb, len, 0, 0, 0);
1354
1355 next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
1356 free_list = last = m;
1357 ml = (struct mbuf *)0;
1358
1359 while (len > 0) {
1360 if (m == 0) {
1361 if (next == 0) {
1362 /*
1363 * temporarily replacing this panic with printf
1364 * because it occurs occasionally when closing
1365 * a socket when there is no harm in ignoring
1366 * it. This problem will be investigated
1367 * further.
1368 */
1369 /* panic("sbdrop"); */
1370 printf("sbdrop - count not zero\n");
1371 len = 0;
1372 /*
1373 * zero the counts. if we have no mbufs,
1374 * we have no data (PR-2986815)
1375 */
1376 sb->sb_cc = 0;
1377 sb->sb_mbcnt = 0;
1378 break;
1379 }
1380 m = last = next;
1381 next = m->m_nextpkt;
1382 continue;
1383 }
1384 if (m->m_len > len) {
1385 m->m_len -= len;
1386 m->m_data += len;
1387 sb->sb_cc -= len;
1388 if (m->m_type != MT_DATA && m->m_type != MT_HEADER &&
1389 m->m_type != MT_OOBDATA)
1390 sb->sb_ctl -= len;
1391 break;
1392 }
1393 len -= m->m_len;
1394 sbfree(sb, m);
1395
1396 ml = m;
1397 m = m->m_next;
1398 }
1399 while (m && m->m_len == 0) {
1400 sbfree(sb, m);
1401
1402 ml = m;
1403 m = m->m_next;
1404 }
1405 if (ml) {
1406 ml->m_next = (struct mbuf *)0;
1407 last->m_nextpkt = (struct mbuf *)0;
1408 m_freem_list(free_list);
1409 }
1410 if (m) {
1411 sb->sb_mb = m;
1412 m->m_nextpkt = next;
1413 } else {
1414 sb->sb_mb = next;
1415 }
1416
1417 /*
1418 * First part is an inline SB_EMPTY_FIXUP(). Second part
1419 * makes sure sb_lastrecord is up-to-date if we dropped
1420 * part of the last record.
1421 */
1422 m = sb->sb_mb;
1423 if (m == NULL) {
1424 sb->sb_mbtail = NULL;
1425 sb->sb_lastrecord = NULL;
1426 } else if (m->m_nextpkt == NULL) {
1427 sb->sb_lastrecord = m;
1428 }
1429
1430 postevent(0, sb, EV_RWBYTES);
1431
1432 KERNEL_DEBUG((DBG_FNC_SBDROP | DBG_FUNC_END), sb, 0, 0, 0, 0);
1433 }
1434
1435 /*
1436 * Drop a record off the front of a sockbuf
1437 * and move the next record to the front.
1438 */
1439 void
1440 sbdroprecord(struct sockbuf *sb)
1441 {
1442 struct mbuf *m, *mn;
1443
1444 m = sb->sb_mb;
1445 if (m) {
1446 sb->sb_mb = m->m_nextpkt;
1447 do {
1448 sbfree(sb, m);
1449 MFREE(m, mn);
1450 m = mn;
1451 } while (m);
1452 }
1453 SB_EMPTY_FIXUP(sb);
1454 postevent(0, sb, EV_RWBYTES);
1455 }
1456
1457 /*
1458 * Create a "control" mbuf containing the specified data
1459 * with the specified type for presentation on a socket buffer.
1460 */
1461 struct mbuf *
1462 sbcreatecontrol(caddr_t p, int size, int type, int level)
1463 {
1464 struct cmsghdr *cp;
1465 struct mbuf *m;
1466
1467 if (CMSG_SPACE((u_int)size) > MLEN)
1468 return ((struct mbuf *)NULL);
1469 if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
1470 return ((struct mbuf *)NULL);
1471 cp = mtod(m, struct cmsghdr *);
1472 VERIFY(IS_P2ALIGNED(cp, sizeof (u_int32_t)));
1473 /* XXX check size? */
1474 (void) memcpy(CMSG_DATA(cp), p, size);
1475 m->m_len = CMSG_SPACE(size);
1476 cp->cmsg_len = CMSG_LEN(size);
1477 cp->cmsg_level = level;
1478 cp->cmsg_type = type;
1479 return (m);
1480 }
1481
1482 struct mbuf**
1483 sbcreatecontrol_mbuf(caddr_t p, int size, int type, int level, struct mbuf** mp)
1484 {
1485 struct mbuf* m;
1486 struct cmsghdr *cp;
1487
1488 if (*mp == NULL){
1489 *mp = sbcreatecontrol(p, size, type, level);
1490 return mp;
1491 }
1492
1493 if (CMSG_SPACE((u_int)size) + (*mp)->m_len > MLEN){
1494 mp = &(*mp)->m_next;
1495 *mp = sbcreatecontrol(p, size, type, level);
1496 return mp;
1497 }
1498
1499 m = *mp;
1500
1501 cp = (struct cmsghdr *)(void *)(mtod(m, char *) + m->m_len);
1502 /* CMSG_SPACE ensures 32-bit alignment */
1503 VERIFY(IS_P2ALIGNED(cp, sizeof (u_int32_t)));
1504 m->m_len += CMSG_SPACE(size);
1505
1506 /* XXX check size? */
1507 (void) memcpy(CMSG_DATA(cp), p, size);
1508 cp->cmsg_len = CMSG_LEN(size);
1509 cp->cmsg_level = level;
1510 cp->cmsg_type = type;
1511
1512 return mp;
1513 }
1514
1515
1516 /*
1517 * Some routines that return EOPNOTSUPP for entry points that are not
1518 * supported by a protocol. Fill in as needed.
1519 */
1520 int
1521 pru_abort_notsupp(__unused struct socket *so)
1522 {
1523 return (EOPNOTSUPP);
1524 }
1525
1526 int
1527 pru_accept_notsupp(__unused struct socket *so, __unused struct sockaddr **nam)
1528 {
1529 return (EOPNOTSUPP);
1530 }
1531
1532 int
1533 pru_attach_notsupp(__unused struct socket *so, __unused int proto,
1534 __unused struct proc *p)
1535 {
1536 return (EOPNOTSUPP);
1537 }
1538
1539 int
1540 pru_bind_notsupp(__unused struct socket *so, __unused struct sockaddr *nam,
1541 __unused struct proc *p)
1542 {
1543 return (EOPNOTSUPP);
1544 }
1545
1546 int
1547 pru_connect_notsupp(__unused struct socket *so, __unused struct sockaddr *nam,
1548 __unused struct proc *p)
1549 {
1550 return (EOPNOTSUPP);
1551 }
1552
1553 int
1554 pru_connect2_notsupp(__unused struct socket *so1, __unused struct socket *so2)
1555 {
1556 return (EOPNOTSUPP);
1557 }
1558
1559 int
1560 pru_control_notsupp(__unused struct socket *so, __unused u_long cmd,
1561 __unused caddr_t data, __unused struct ifnet *ifp, __unused struct proc *p)
1562 {
1563 return (EOPNOTSUPP);
1564 }
1565
1566 int
1567 pru_detach_notsupp(__unused struct socket *so)
1568 {
1569 return (EOPNOTSUPP);
1570 }
1571
1572 int
1573 pru_disconnect_notsupp(__unused struct socket *so)
1574 {
1575 return (EOPNOTSUPP);
1576 }
1577
1578 int
1579 pru_listen_notsupp(__unused struct socket *so, __unused struct proc *p)
1580 {
1581 return (EOPNOTSUPP);
1582 }
1583
1584 int
1585 pru_peeraddr_notsupp(__unused struct socket *so, __unused struct sockaddr **nam)
1586 {
1587 return (EOPNOTSUPP);
1588 }
1589
1590 int
1591 pru_rcvd_notsupp(__unused struct socket *so, __unused int flags)
1592 {
1593 return (EOPNOTSUPP);
1594 }
1595
1596 int
1597 pru_rcvoob_notsupp(__unused struct socket *so, __unused struct mbuf *m,
1598 __unused int flags)
1599 {
1600 return (EOPNOTSUPP);
1601 }
1602
1603 int
1604 pru_send_notsupp(__unused struct socket *so, __unused int flags,
1605 __unused struct mbuf *m, __unused struct sockaddr *addr,
1606 __unused struct mbuf *control, __unused struct proc *p)
1607
1608 {
1609 return (EOPNOTSUPP);
1610 }
1611
1612
1613 /*
1614 * This isn't really a ``null'' operation, but it's the default one
1615 * and doesn't do anything destructive.
1616 */
1617 int
1618 pru_sense_null(struct socket *so, void *ub, int isstat64)
1619 {
1620 if (isstat64 != 0) {
1621 struct stat64 *sb64;
1622
1623 sb64 = (struct stat64 *)ub;
1624 sb64->st_blksize = so->so_snd.sb_hiwat;
1625 } else {
1626 struct stat *sb;
1627
1628 sb = (struct stat *)ub;
1629 sb->st_blksize = so->so_snd.sb_hiwat;
1630 }
1631
1632 return (0);
1633 }
1634
1635
1636 int
1637 pru_sosend_notsupp(__unused struct socket *so, __unused struct sockaddr *addr,
1638 __unused struct uio *uio, __unused struct mbuf *top,
1639 __unused struct mbuf *control, __unused int flags)
1640
1641 {
1642 return (EOPNOTSUPP);
1643 }
1644
1645 int
1646 pru_soreceive_notsupp(__unused struct socket *so,
1647 __unused struct sockaddr **paddr,
1648 __unused struct uio *uio, __unused struct mbuf **mp0,
1649 __unused struct mbuf **controlp, __unused int *flagsp)
1650 {
1651 return (EOPNOTSUPP);
1652 }
1653
1654 int
1655 pru_shutdown_notsupp(__unused struct socket *so)
1656 {
1657 return (EOPNOTSUPP);
1658 }
1659
1660 int
1661 pru_sockaddr_notsupp(__unused struct socket *so, __unused struct sockaddr **nam)
1662 {
1663 return (EOPNOTSUPP);
1664 }
1665
1666 int
1667 pru_sopoll_notsupp(__unused struct socket *so, __unused int events,
1668 __unused kauth_cred_t cred, __unused void *wql)
1669 {
1670 return (EOPNOTSUPP);
1671 }
1672
1673
1674 #ifdef __APPLE__
1675 /*
1676 * The following are macros on BSD and functions on Darwin
1677 */
1678
1679 /*
1680 * Do we need to notify the other side when I/O is possible?
1681 */
1682
1683 int
1684 sb_notify(struct sockbuf *sb)
1685 {
1686 return ((sb->sb_flags &
1687 (SB_WAIT|SB_SEL|SB_ASYNC|SB_UPCALL|SB_KNOTE)) != 0);
1688 }
1689
1690 /*
1691 * How much space is there in a socket buffer (so->so_snd or so->so_rcv)?
1692 * This is problematical if the fields are unsigned, as the space might
1693 * still be negative (cc > hiwat or mbcnt > mbmax). Should detect
1694 * overflow and return 0.
1695 */
1696 int
1697 sbspace(struct sockbuf *sb)
1698 {
1699 int space =
1700 imin((int)(sb->sb_hiwat - sb->sb_cc),
1701 (int)(sb->sb_mbmax - sb->sb_mbcnt));
1702 if (space < 0)
1703 space = 0;
1704
1705 return space;
1706 }
1707
1708 /* do we have to send all at once on a socket? */
1709 int
1710 sosendallatonce(struct socket *so)
1711 {
1712 return (so->so_proto->pr_flags & PR_ATOMIC);
1713 }
1714
1715 /* can we read something from so? */
1716 int
1717 soreadable(struct socket *so)
1718 {
1719 return (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat ||
1720 (so->so_state & SS_CANTRCVMORE) ||
1721 so->so_comp.tqh_first || so->so_error);
1722 }
1723
1724 /* can we write something to so? */
1725
1726 int
1727 sowriteable(struct socket *so)
1728 {
1729 return ((!so_wait_for_if_feedback(so) &&
1730 sbspace(&(so)->so_snd) >= (so)->so_snd.sb_lowat &&
1731 ((so->so_state & SS_ISCONNECTED) ||
1732 (so->so_proto->pr_flags & PR_CONNREQUIRED) == 0)) ||
1733 (so->so_state & SS_CANTSENDMORE) ||
1734 so->so_error);
1735 }
1736
1737 /* adjust counters in sb reflecting allocation of m */
1738
1739 void
1740 sballoc(struct sockbuf *sb, struct mbuf *m)
1741 {
1742 u_int32_t cnt = 1;
1743 sb->sb_cc += m->m_len;
1744 if (m->m_type != MT_DATA && m->m_type != MT_HEADER &&
1745 m->m_type != MT_OOBDATA)
1746 sb->sb_ctl += m->m_len;
1747 sb->sb_mbcnt += MSIZE;
1748
1749 if (m->m_flags & M_EXT) {
1750 sb->sb_mbcnt += m->m_ext.ext_size;
1751 cnt += (m->m_ext.ext_size >> MSIZESHIFT) ;
1752 }
1753 OSAddAtomic(cnt, &total_sbmb_cnt);
1754 VERIFY(total_sbmb_cnt > 0);
1755 }
1756
1757 /* adjust counters in sb reflecting freeing of m */
1758 void
1759 sbfree(struct sockbuf *sb, struct mbuf *m)
1760 {
1761 int cnt = -1;
1762
1763 sb->sb_cc -= m->m_len;
1764 if (m->m_type != MT_DATA && m->m_type != MT_HEADER &&
1765 m->m_type != MT_OOBDATA)
1766 sb->sb_ctl -= m->m_len;
1767 sb->sb_mbcnt -= MSIZE;
1768 if (m->m_flags & M_EXT) {
1769 sb->sb_mbcnt -= m->m_ext.ext_size;
1770 cnt -= (m->m_ext.ext_size >> MSIZESHIFT) ;
1771 }
1772 OSAddAtomic(cnt, &total_sbmb_cnt);
1773 VERIFY(total_sbmb_cnt >= 0);
1774 }
1775
1776 /*
1777 * Set lock on sockbuf sb; sleep if lock is already held.
1778 * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
1779 * Returns error without lock if sleep is interrupted.
1780 *
1781 * Returns: 0 Success
1782 * EWOULDBLOCK
1783 * sb_lock:EINTR
1784 */
1785 int
1786 sblock(struct sockbuf *sb, int wf)
1787 {
1788 int error = 0;
1789
1790 if (sb->sb_flags & SB_LOCK)
1791 error = (wf == M_WAIT) ? sb_lock(sb) : EWOULDBLOCK;
1792 else
1793 sb->sb_flags |= SB_LOCK;
1794
1795 return (error);
1796 }
1797
1798 /* release lock on sockbuf sb */
1799 void
1800 sbunlock(struct sockbuf *sb, int keeplocked)
1801 {
1802 struct socket *so = sb->sb_so;
1803 void *lr_saved;
1804 lck_mtx_t *mutex_held;
1805
1806 lr_saved = __builtin_return_address(0);
1807
1808 sb->sb_flags &= ~SB_LOCK;
1809
1810 if (sb->sb_flags & SB_WANT) {
1811 sb->sb_flags &= ~SB_WANT;
1812 if (so->so_usecount < 0) {
1813 panic("sbunlock: b4 wakeup so=%p ref=%d lr=%p "
1814 "sb_flags=%x lrh= %s\n", sb->sb_so, so->so_usecount,
1815 lr_saved, sb->sb_flags, solockhistory_nr(so));
1816 /* NOTREACHED */
1817 }
1818 wakeup((caddr_t)&(sb)->sb_flags);
1819 }
1820 if (keeplocked == 0) { /* unlock on exit */
1821 if (so->so_proto->pr_getlock != NULL)
1822 mutex_held = (*so->so_proto->pr_getlock)(so, 0);
1823 else
1824 mutex_held = so->so_proto->pr_domain->dom_mtx;
1825
1826 lck_mtx_assert(mutex_held, LCK_MTX_ASSERT_OWNED);
1827
1828 so->so_usecount--;
1829 if (so->so_usecount < 0)
1830 panic("sbunlock: unlock on exit so=%p ref=%d lr=%p "
1831 "sb_flags=%x lrh= %s\n", so, so->so_usecount, lr_saved,
1832 sb->sb_flags, solockhistory_nr(so));
1833 so->unlock_lr[so->next_unlock_lr] = lr_saved;
1834 so->next_unlock_lr = (so->next_unlock_lr+1) % SO_LCKDBG_MAX;
1835 lck_mtx_unlock(mutex_held);
1836 }
1837 }
1838
1839 void
1840 sorwakeup(struct socket *so)
1841 {
1842 if (sb_notify(&so->so_rcv))
1843 sowakeup(so, &so->so_rcv);
1844 }
1845
1846 void
1847 sowwakeup(struct socket *so)
1848 {
1849 if (sb_notify(&so->so_snd))
1850 sowakeup(so, &so->so_snd);
1851 }
1852
1853 void
1854 soevent(struct socket *so, long hint)
1855 {
1856 if (so->so_flags & SOF_KNOTE)
1857 KNOTE(&so->so_klist, hint);
1858 }
1859
1860 #endif /* __APPLE__ */
1861
1862 /*
1863 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
1864 */
1865 struct sockaddr *
1866 dup_sockaddr(struct sockaddr *sa, int canwait)
1867 {
1868 struct sockaddr *sa2;
1869
1870 MALLOC(sa2, struct sockaddr *, sa->sa_len, M_SONAME,
1871 canwait ? M_WAITOK : M_NOWAIT);
1872 if (sa2)
1873 bcopy(sa, sa2, sa->sa_len);
1874 return (sa2);
1875 }
1876
1877 /*
1878 * Create an external-format (``xsocket'') structure using the information
1879 * in the kernel-format socket structure pointed to by so. This is done
1880 * to reduce the spew of irrelevant information over this interface,
1881 * to isolate user code from changes in the kernel structure, and
1882 * potentially to provide information-hiding if we decide that
1883 * some of this information should be hidden from users.
1884 */
1885 void
1886 sotoxsocket(struct socket *so, struct xsocket *xso)
1887 {
1888 xso->xso_len = sizeof (*xso);
1889 xso->xso_so = (_XSOCKET_PTR(struct socket *))VM_KERNEL_ADDRPERM(so);
1890 xso->so_type = so->so_type;
1891 xso->so_options = (short)(so->so_options & 0xffff);
1892 xso->so_linger = so->so_linger;
1893 xso->so_state = so->so_state;
1894 xso->so_pcb = (_XSOCKET_PTR(caddr_t))VM_KERNEL_ADDRPERM(so->so_pcb);
1895 if (so->so_proto) {
1896 xso->xso_protocol = so->so_proto->pr_protocol;
1897 xso->xso_family = so->so_proto->pr_domain->dom_family;
1898 } else {
1899 xso->xso_protocol = xso->xso_family = 0;
1900 }
1901 xso->so_qlen = so->so_qlen;
1902 xso->so_incqlen = so->so_incqlen;
1903 xso->so_qlimit = so->so_qlimit;
1904 xso->so_timeo = so->so_timeo;
1905 xso->so_error = so->so_error;
1906 xso->so_pgid = so->so_pgid;
1907 xso->so_oobmark = so->so_oobmark;
1908 sbtoxsockbuf(&so->so_snd, &xso->so_snd);
1909 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
1910 xso->so_uid = kauth_cred_getuid(so->so_cred);
1911 }
1912
1913
1914 #if !CONFIG_EMBEDDED
1915
1916 void
1917 sotoxsocket64(struct socket *so, struct xsocket64 *xso)
1918 {
1919 xso->xso_len = sizeof (*xso);
1920 xso->xso_so = (u_int64_t)VM_KERNEL_ADDRPERM(so);
1921 xso->so_type = so->so_type;
1922 xso->so_options = (short)(so->so_options & 0xffff);
1923 xso->so_linger = so->so_linger;
1924 xso->so_state = so->so_state;
1925 xso->so_pcb = (u_int64_t)VM_KERNEL_ADDRPERM(so->so_pcb);
1926 if (so->so_proto) {
1927 xso->xso_protocol = so->so_proto->pr_protocol;
1928 xso->xso_family = so->so_proto->pr_domain->dom_family;
1929 } else {
1930 xso->xso_protocol = xso->xso_family = 0;
1931 }
1932 xso->so_qlen = so->so_qlen;
1933 xso->so_incqlen = so->so_incqlen;
1934 xso->so_qlimit = so->so_qlimit;
1935 xso->so_timeo = so->so_timeo;
1936 xso->so_error = so->so_error;
1937 xso->so_pgid = so->so_pgid;
1938 xso->so_oobmark = so->so_oobmark;
1939 sbtoxsockbuf(&so->so_snd, &xso->so_snd);
1940 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
1941 xso->so_uid = kauth_cred_getuid(so->so_cred);
1942 }
1943
1944 #endif /* !CONFIG_EMBEDDED */
1945
1946 /*
1947 * This does the same for sockbufs. Note that the xsockbuf structure,
1948 * since it is always embedded in a socket, does not include a self
1949 * pointer nor a length. We make this entry point public in case
1950 * some other mechanism needs it.
1951 */
1952 void
1953 sbtoxsockbuf(struct sockbuf *sb, struct xsockbuf *xsb)
1954 {
1955 xsb->sb_cc = sb->sb_cc;
1956 xsb->sb_hiwat = sb->sb_hiwat;
1957 xsb->sb_mbcnt = sb->sb_mbcnt;
1958 xsb->sb_mbmax = sb->sb_mbmax;
1959 xsb->sb_lowat = sb->sb_lowat;
1960 xsb->sb_flags = sb->sb_flags;
1961 xsb->sb_timeo = (short)
1962 (sb->sb_timeo.tv_sec * hz) + sb->sb_timeo.tv_usec / tick;
1963 if (xsb->sb_timeo == 0 && sb->sb_timeo.tv_usec != 0)
1964 xsb->sb_timeo = 1;
1965 }
1966
1967 /*
1968 * Based on the policy set by an all knowing decison maker, throttle sockets
1969 * that either have been marked as belonging to "background" process.
1970 */
1971 int
1972 soisthrottled(struct socket *so)
1973 {
1974 /*
1975 * On non-embedded, we rely on implicit throttling by the application,
1976 * as we're missing the system-wide "decision maker".
1977 */
1978 return (
1979 #if CONFIG_EMBEDDED
1980 net_io_policy_throttled &&
1981 #endif /* CONFIG_EMBEDDED */
1982 (so->so_traffic_mgt_flags & TRAFFIC_MGT_SO_BACKGROUND));
1983 }
1984
1985 int
1986 soisprivilegedtraffic(struct socket *so)
1987 {
1988 return (so->so_flags & SOF_PRIVILEGED_TRAFFIC_CLASS);
1989 }
1990
1991 /*
1992 * Here is the definition of some of the basic objects in the kern.ipc
1993 * branch of the MIB.
1994 */
1995 SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW|CTLFLAG_LOCKED|CTLFLAG_ANYBODY, 0, "IPC");
1996
1997 /* Check that the maximum socket buffer size is within a range */
1998
1999 static int
2000 sysctl_sb_max(__unused struct sysctl_oid *oidp, __unused void *arg1,
2001 __unused int arg2, struct sysctl_req *req)
2002 {
2003 u_int32_t new_value;
2004 int changed = 0;
2005 int error = sysctl_io_number(req, sb_max, sizeof(u_int32_t), &new_value,
2006 &changed);
2007 if (!error && changed) {
2008 if (new_value > LOW_SB_MAX &&
2009 new_value <= high_sb_max ) {
2010 sb_max = new_value;
2011 } else {
2012 error = ERANGE;
2013 }
2014 }
2015 return error;
2016 }
2017
2018 static int
2019 sysctl_io_policy_throttled SYSCTL_HANDLER_ARGS
2020 {
2021 #pragma unused(arg1, arg2)
2022 int i, err;
2023
2024 i = net_io_policy_throttled;
2025
2026 err = sysctl_handle_int(oidp, &i, 0, req);
2027 if (err != 0 || req->newptr == USER_ADDR_NULL)
2028 return (err);
2029
2030 if (i != net_io_policy_throttled)
2031 SOTHROTTLELOG(("throttle: network IO policy throttling is "
2032 "now %s\n", i ? "ON" : "OFF"));
2033
2034 net_io_policy_throttled = i;
2035
2036 return (err);
2037 }
2038
2039 SYSCTL_PROC(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
2040 &sb_max, 0, &sysctl_sb_max, "IU", "Maximum socket buffer size");
2041
2042 SYSCTL_INT(_kern_ipc, OID_AUTO, maxsockets, CTLFLAG_RD | CTLFLAG_LOCKED,
2043 &maxsockets, 0, "Maximum number of sockets avaliable");
2044 SYSCTL_INT(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor, CTLFLAG_RW | CTLFLAG_LOCKED,
2045 &sb_efficiency, 0, "");
2046 SYSCTL_INT(_kern_ipc, KIPC_NMBCLUSTERS, nmbclusters, CTLFLAG_RD | CTLFLAG_LOCKED,
2047 &nmbclusters, 0, "");
2048 SYSCTL_INT(_kern_ipc, OID_AUTO, njcl, CTLFLAG_RD | CTLFLAG_LOCKED, &njcl, 0, "");
2049 SYSCTL_INT(_kern_ipc, OID_AUTO, njclbytes, CTLFLAG_RD | CTLFLAG_LOCKED, &njclbytes, 0, "");
2050 SYSCTL_INT(_kern_ipc, KIPC_SOQLIMITCOMPAT, soqlimitcompat, CTLFLAG_RW | CTLFLAG_LOCKED,
2051 &soqlimitcompat, 1, "Enable socket queue limit compatibility");
2052 SYSCTL_INT(_kern_ipc, OID_AUTO, soqlencomp, CTLFLAG_RW | CTLFLAG_LOCKED,
2053 &soqlencomp, 0, "Listen backlog represents only complete queue");
2054
2055 SYSCTL_NODE(_kern_ipc, OID_AUTO, io_policy, CTLFLAG_RW, 0, "network IO policy");
2056
2057 SYSCTL_PROC(_kern_ipc_io_policy, OID_AUTO, throttled,
2058 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &net_io_policy_throttled, 0,
2059 sysctl_io_policy_throttled, "I", "");