]> git.saurik.com Git - apple/xnu.git/blob - bsd/kern/kern_time.c
315863131bb2e7ae6cafdcd5394adda7b5255c9f
[apple/xnu.git] / bsd / kern / kern_time.c
1 /*
2 * Copyright (c) 2000-2008 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */
29 /*
30 * Copyright (c) 1982, 1986, 1989, 1993
31 * The Regents of the University of California. All rights reserved.
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 * 3. All advertising materials mentioning features or use of this software
42 * must display the following acknowledgement:
43 * This product includes software developed by the University of
44 * California, Berkeley and its contributors.
45 * 4. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
62 */
63 /*
64 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
65 * support for mandatory and extensible security protections. This notice
66 * is included in support of clause 2.2 (b) of the Apple Public License,
67 * Version 2.0.
68 */
69
70 #include <sys/param.h>
71 #include <sys/resourcevar.h>
72 #include <sys/kernel.h>
73 #include <sys/systm.h>
74 #include <sys/proc_internal.h>
75 #include <sys/kauth.h>
76 #include <sys/vnode.h>
77 #include <sys/time.h>
78 #include <sys/priv.h>
79
80 #include <sys/mount_internal.h>
81 #include <sys/sysproto.h>
82 #include <sys/signalvar.h>
83
84 #include <kern/clock.h>
85 #include <kern/task.h>
86 #include <kern/thread_call.h>
87 #if CONFIG_MACF
88 #include <security/mac_framework.h>
89 #endif
90
91 #define HZ 100 /* XXX */
92
93 /* simple lock used to access timezone, tz structure */
94 lck_spin_t * tz_slock;
95 lck_grp_t * tz_slock_grp;
96 lck_attr_t * tz_slock_attr;
97 lck_grp_attr_t *tz_slock_grp_attr;
98
99 static void setthetime(
100 struct timeval *tv);
101
102 void time_zone_slock_init(void) __attribute__((section("__TEXT, initcode")));
103
104 /*
105 * Time of day and interval timer support.
106 *
107 * These routines provide the kernel entry points to get and set
108 * the time-of-day and per-process interval timers. Subroutines
109 * here provide support for adding and subtracting timeval structures
110 * and decrementing interval timers, optionally reloading the interval
111 * timers when they expire.
112 */
113 /* ARGSUSED */
114 int
115 gettimeofday(
116 __unused struct proc *p,
117 struct gettimeofday_args *uap,
118 int32_t *retval)
119 {
120 int error = 0;
121 struct timezone ltz; /* local copy */
122
123 if (uap->tp) {
124 clock_sec_t secs;
125 clock_usec_t usecs;
126
127 clock_gettimeofday(&secs, &usecs);
128 retval[0] = secs;
129 retval[1] = usecs;
130 }
131
132 if (uap->tzp) {
133 lck_spin_lock(tz_slock);
134 ltz = tz;
135 lck_spin_unlock(tz_slock);
136
137 error = copyout((caddr_t)&ltz, CAST_USER_ADDR_T(uap->tzp), sizeof (tz));
138 }
139
140 return (error);
141 }
142
143 /*
144 * XXX Y2038 bug because of setthetime() argument
145 */
146 /* ARGSUSED */
147 int
148 settimeofday(__unused struct proc *p, struct settimeofday_args *uap, __unused int32_t *retval)
149 {
150 struct timeval atv;
151 struct timezone atz;
152 int error;
153
154 bzero(&atv, sizeof(atv));
155
156 #if CONFIG_MACF
157 error = mac_system_check_settime(kauth_cred_get());
158 if (error)
159 return (error);
160 #endif
161 #ifndef CONFIG_EMBEDDED
162 if ((error = suser(kauth_cred_get(), &p->p_acflag)))
163 return (error);
164 #endif
165 /* Verify all parameters before changing time */
166 if (uap->tv) {
167 if (IS_64BIT_PROCESS(p)) {
168 struct user64_timeval user_atv;
169 error = copyin(uap->tv, &user_atv, sizeof(user_atv));
170 atv.tv_sec = user_atv.tv_sec;
171 atv.tv_usec = user_atv.tv_usec;
172 } else {
173 struct user32_timeval user_atv;
174 error = copyin(uap->tv, &user_atv, sizeof(user_atv));
175 atv.tv_sec = user_atv.tv_sec;
176 atv.tv_usec = user_atv.tv_usec;
177 }
178 if (error)
179 return (error);
180 }
181 if (uap->tzp && (error = copyin(uap->tzp, (caddr_t)&atz, sizeof(atz))))
182 return (error);
183 if (uap->tv) {
184 timevalfix(&atv);
185 if (atv.tv_sec < 0 || (atv.tv_sec == 0 && atv.tv_usec < 0))
186 return (EPERM);
187 setthetime(&atv);
188 }
189 if (uap->tzp) {
190 lck_spin_lock(tz_slock);
191 tz = atz;
192 lck_spin_unlock(tz_slock);
193 }
194 return (0);
195 }
196
197 static void
198 setthetime(
199 struct timeval *tv)
200 {
201 clock_set_calendar_microtime(tv->tv_sec, tv->tv_usec);
202 }
203
204 /*
205 * XXX Y2038 bug because of clock_adjtime() first argument
206 */
207 /* ARGSUSED */
208 int
209 adjtime(struct proc *p, struct adjtime_args *uap, __unused int32_t *retval)
210 {
211 struct timeval atv;
212 int error;
213
214 #if CONFIG_MACF
215 error = mac_system_check_settime(kauth_cred_get());
216 if (error)
217 return (error);
218 #endif
219 if ((error = priv_check_cred(kauth_cred_get(), PRIV_ADJTIME, 0)))
220 return (error);
221 if (IS_64BIT_PROCESS(p)) {
222 struct user64_timeval user_atv;
223 error = copyin(uap->delta, &user_atv, sizeof(user_atv));
224 atv.tv_sec = user_atv.tv_sec;
225 atv.tv_usec = user_atv.tv_usec;
226 } else {
227 struct user32_timeval user_atv;
228 error = copyin(uap->delta, &user_atv, sizeof(user_atv));
229 atv.tv_sec = user_atv.tv_sec;
230 atv.tv_usec = user_atv.tv_usec;
231 }
232 if (error)
233 return (error);
234
235 /*
236 * Compute the total correction and the rate at which to apply it.
237 */
238 clock_adjtime(&atv.tv_sec, &atv.tv_usec);
239
240 if (uap->olddelta) {
241 if (IS_64BIT_PROCESS(p)) {
242 struct user64_timeval user_atv;
243 user_atv.tv_sec = atv.tv_sec;
244 user_atv.tv_usec = atv.tv_usec;
245 error = copyout(&user_atv, uap->olddelta, sizeof(user_atv));
246 } else {
247 struct user32_timeval user_atv;
248 user_atv.tv_sec = atv.tv_sec;
249 user_atv.tv_usec = atv.tv_usec;
250 error = copyout(&user_atv, uap->olddelta, sizeof(user_atv));
251 }
252 }
253
254 return (0);
255 }
256
257 /*
258 * Verify the calendar value. If negative,
259 * reset to zero (the epoch).
260 */
261 void
262 inittodr(
263 __unused time_t base)
264 {
265 struct timeval tv;
266
267 /*
268 * Assertion:
269 * The calendar has already been
270 * set up from the platform clock.
271 *
272 * The value returned by microtime()
273 * is gotten from the calendar.
274 */
275 microtime(&tv);
276
277 if (tv.tv_sec < 0 || tv.tv_usec < 0) {
278 printf ("WARNING: preposterous time in Real Time Clock");
279 tv.tv_sec = 0; /* the UNIX epoch */
280 tv.tv_usec = 0;
281 setthetime(&tv);
282 printf(" -- CHECK AND RESET THE DATE!\n");
283 }
284 }
285
286 time_t
287 boottime_sec(void)
288 {
289 clock_sec_t secs;
290 clock_nsec_t nanosecs;
291
292 clock_get_boottime_nanotime(&secs, &nanosecs);
293 return (secs);
294 }
295
296 /*
297 * Get value of an interval timer. The process virtual and
298 * profiling virtual time timers are kept internally in the
299 * way they are specified externally: in time until they expire.
300 *
301 * The real time interval timer expiration time (p_rtime)
302 * is kept as an absolute time rather than as a delta, so that
303 * it is easy to keep periodic real-time signals from drifting.
304 *
305 * The real time timer is processed by a callout routine.
306 * Since a callout may be delayed in real time due to
307 * other processing in the system, it is possible for the real
308 * time callout routine (realitexpire, given below), to be delayed
309 * in real time past when it is supposed to occur. It does not
310 * suffice, therefore, to reload the real time .it_value from the
311 * real time .it_interval. Rather, we compute the next time in
312 * absolute time when the timer should go off.
313 *
314 * Returns: 0 Success
315 * EINVAL Invalid argument
316 * copyout:EFAULT Bad address
317 */
318 /* ARGSUSED */
319 int
320 getitimer(struct proc *p, struct getitimer_args *uap, __unused int32_t *retval)
321 {
322 struct itimerval aitv;
323
324 if (uap->which > ITIMER_PROF)
325 return(EINVAL);
326
327 bzero(&aitv, sizeof(aitv));
328
329 proc_spinlock(p);
330 switch (uap->which) {
331
332 case ITIMER_REAL:
333 /*
334 * If time for real time timer has passed return 0,
335 * else return difference between current time and
336 * time for the timer to go off.
337 */
338 aitv = p->p_realtimer;
339 if (timerisset(&p->p_rtime)) {
340 struct timeval now;
341
342 microuptime(&now);
343 if (timercmp(&p->p_rtime, &now, <))
344 timerclear(&aitv.it_value);
345 else {
346 aitv.it_value = p->p_rtime;
347 timevalsub(&aitv.it_value, &now);
348 }
349 }
350 else
351 timerclear(&aitv.it_value);
352 break;
353
354 case ITIMER_VIRTUAL:
355 aitv = p->p_vtimer_user;
356 break;
357
358 case ITIMER_PROF:
359 aitv = p->p_vtimer_prof;
360 break;
361 }
362
363 proc_spinunlock(p);
364
365 if (IS_64BIT_PROCESS(p)) {
366 struct user64_itimerval user_itv;
367 user_itv.it_interval.tv_sec = aitv.it_interval.tv_sec;
368 user_itv.it_interval.tv_usec = aitv.it_interval.tv_usec;
369 user_itv.it_value.tv_sec = aitv.it_value.tv_sec;
370 user_itv.it_value.tv_usec = aitv.it_value.tv_usec;
371 return (copyout((caddr_t)&user_itv, uap->itv, sizeof (user_itv)));
372 } else {
373 struct user32_itimerval user_itv;
374 user_itv.it_interval.tv_sec = aitv.it_interval.tv_sec;
375 user_itv.it_interval.tv_usec = aitv.it_interval.tv_usec;
376 user_itv.it_value.tv_sec = aitv.it_value.tv_sec;
377 user_itv.it_value.tv_usec = aitv.it_value.tv_usec;
378 return (copyout((caddr_t)&user_itv, uap->itv, sizeof (user_itv)));
379 }
380 }
381
382 /*
383 * Returns: 0 Success
384 * EINVAL Invalid argument
385 * copyin:EFAULT Bad address
386 * getitimer:EINVAL Invalid argument
387 * getitimer:EFAULT Bad address
388 */
389 /* ARGSUSED */
390 int
391 setitimer(struct proc *p, struct setitimer_args *uap, int32_t *retval)
392 {
393 struct itimerval aitv;
394 user_addr_t itvp;
395 int error;
396
397 bzero(&aitv, sizeof(aitv));
398
399 if (uap->which > ITIMER_PROF)
400 return (EINVAL);
401 if ((itvp = uap->itv)) {
402 if (IS_64BIT_PROCESS(p)) {
403 struct user64_itimerval user_itv;
404 if ((error = copyin(itvp, (caddr_t)&user_itv, sizeof (user_itv))))
405 return (error);
406 aitv.it_interval.tv_sec = user_itv.it_interval.tv_sec;
407 aitv.it_interval.tv_usec = user_itv.it_interval.tv_usec;
408 aitv.it_value.tv_sec = user_itv.it_value.tv_sec;
409 aitv.it_value.tv_usec = user_itv.it_value.tv_usec;
410 } else {
411 struct user32_itimerval user_itv;
412 if ((error = copyin(itvp, (caddr_t)&user_itv, sizeof (user_itv))))
413 return (error);
414 aitv.it_interval.tv_sec = user_itv.it_interval.tv_sec;
415 aitv.it_interval.tv_usec = user_itv.it_interval.tv_usec;
416 aitv.it_value.tv_sec = user_itv.it_value.tv_sec;
417 aitv.it_value.tv_usec = user_itv.it_value.tv_usec;
418 }
419 }
420 if ((uap->itv = uap->oitv) && (error = getitimer(p, (struct getitimer_args *)uap, retval)))
421 return (error);
422 if (itvp == 0)
423 return (0);
424 if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
425 return (EINVAL);
426
427 switch (uap->which) {
428
429 case ITIMER_REAL:
430 proc_spinlock(p);
431 if (timerisset(&aitv.it_value)) {
432 microuptime(&p->p_rtime);
433 timevaladd(&p->p_rtime, &aitv.it_value);
434 p->p_realtimer = aitv;
435 if (!thread_call_enter_delayed(p->p_rcall, tvtoabstime(&p->p_rtime)))
436 p->p_ractive++;
437 } else {
438 timerclear(&p->p_rtime);
439 p->p_realtimer = aitv;
440 if (thread_call_cancel(p->p_rcall))
441 p->p_ractive--;
442 }
443 proc_spinunlock(p);
444
445 break;
446
447
448 case ITIMER_VIRTUAL:
449 if (timerisset(&aitv.it_value))
450 task_vtimer_set(p->task, TASK_VTIMER_USER);
451 else
452 task_vtimer_clear(p->task, TASK_VTIMER_USER);
453
454 proc_spinlock(p);
455 p->p_vtimer_user = aitv;
456 proc_spinunlock(p);
457 break;
458
459 case ITIMER_PROF:
460 if (timerisset(&aitv.it_value))
461 task_vtimer_set(p->task, TASK_VTIMER_PROF);
462 else
463 task_vtimer_clear(p->task, TASK_VTIMER_PROF);
464
465 proc_spinlock(p);
466 p->p_vtimer_prof = aitv;
467 proc_spinunlock(p);
468 break;
469 }
470
471 return (0);
472 }
473
474 /*
475 * Real interval timer expired:
476 * send process whose timer expired an alarm signal.
477 * If time is not set up to reload, then just return.
478 * Else compute next time timer should go off which is > current time.
479 * This is where delay in processing this timeout causes multiple
480 * SIGALRM calls to be compressed into one.
481 */
482 void
483 realitexpire(
484 struct proc *p)
485 {
486 struct proc *r;
487 struct timeval t;
488
489 r = proc_find(p->p_pid);
490
491 proc_spinlock(p);
492
493 if (--p->p_ractive > 0 || r != p) {
494 proc_spinunlock(p);
495
496 if (r != NULL)
497 proc_rele(r);
498 return;
499 }
500
501 if (!timerisset(&p->p_realtimer.it_interval)) {
502 timerclear(&p->p_rtime);
503 proc_spinunlock(p);
504
505 psignal(p, SIGALRM);
506 proc_rele(p);
507 return;
508 }
509
510 microuptime(&t);
511 timevaladd(&p->p_rtime, &p->p_realtimer.it_interval);
512 if (timercmp(&p->p_rtime, &t, <=)) {
513 if ((p->p_rtime.tv_sec + 2) >= t.tv_sec) {
514 for (;;) {
515 timevaladd(&p->p_rtime, &p->p_realtimer.it_interval);
516 if (timercmp(&p->p_rtime, &t, >))
517 break;
518 }
519 }
520 else {
521 p->p_rtime = p->p_realtimer.it_interval;
522 timevaladd(&p->p_rtime, &t);
523 }
524 }
525
526 if (!thread_call_enter_delayed(p->p_rcall, tvtoabstime(&p->p_rtime)))
527 p->p_ractive++;
528 proc_spinunlock(p);
529
530 psignal(p, SIGALRM);
531 proc_rele(p);
532 }
533
534 /*
535 * Check that a proposed value to load into the .it_value or
536 * .it_interval part of an interval timer is acceptable.
537 */
538 int
539 itimerfix(
540 struct timeval *tv)
541 {
542
543 if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
544 tv->tv_usec < 0 || tv->tv_usec >= 1000000)
545 return (EINVAL);
546 return (0);
547 }
548
549 /*
550 * Decrement an interval timer by a specified number
551 * of microseconds, which must be less than a second,
552 * i.e. < 1000000. If the timer expires, then reload
553 * it. In this case, carry over (usec - old value) to
554 * reduce the value reloaded into the timer so that
555 * the timer does not drift. This routine assumes
556 * that it is called in a context where the timers
557 * on which it is operating cannot change in value.
558 */
559 int
560 itimerdecr(proc_t p,
561 struct itimerval *itp, int usec)
562 {
563
564 proc_spinlock(p);
565
566 if (itp->it_value.tv_usec < usec) {
567 if (itp->it_value.tv_sec == 0) {
568 /* expired, and already in next interval */
569 usec -= itp->it_value.tv_usec;
570 goto expire;
571 }
572 itp->it_value.tv_usec += 1000000;
573 itp->it_value.tv_sec--;
574 }
575 itp->it_value.tv_usec -= usec;
576 usec = 0;
577 if (timerisset(&itp->it_value)) {
578 proc_spinunlock(p);
579 return (1);
580 }
581 /* expired, exactly at end of interval */
582 expire:
583 if (timerisset(&itp->it_interval)) {
584 itp->it_value = itp->it_interval;
585 if (itp->it_value.tv_sec > 0) {
586 itp->it_value.tv_usec -= usec;
587 if (itp->it_value.tv_usec < 0) {
588 itp->it_value.tv_usec += 1000000;
589 itp->it_value.tv_sec--;
590 }
591 }
592 } else
593 itp->it_value.tv_usec = 0; /* sec is already 0 */
594 proc_spinunlock(p);
595 return (0);
596 }
597
598 /*
599 * Add and subtract routines for timevals.
600 * N.B.: subtract routine doesn't deal with
601 * results which are before the beginning,
602 * it just gets very confused in this case.
603 * Caveat emptor.
604 */
605 void
606 timevaladd(
607 struct timeval *t1,
608 struct timeval *t2)
609 {
610
611 t1->tv_sec += t2->tv_sec;
612 t1->tv_usec += t2->tv_usec;
613 timevalfix(t1);
614 }
615 void
616 timevalsub(
617 struct timeval *t1,
618 struct timeval *t2)
619 {
620
621 t1->tv_sec -= t2->tv_sec;
622 t1->tv_usec -= t2->tv_usec;
623 timevalfix(t1);
624 }
625 void
626 timevalfix(
627 struct timeval *t1)
628 {
629
630 if (t1->tv_usec < 0) {
631 t1->tv_sec--;
632 t1->tv_usec += 1000000;
633 }
634 if (t1->tv_usec >= 1000000) {
635 t1->tv_sec++;
636 t1->tv_usec -= 1000000;
637 }
638 }
639
640 /*
641 * Return the best possible estimate of the time in the timeval
642 * to which tvp points.
643 */
644 void
645 microtime(
646 struct timeval *tvp)
647 {
648 clock_sec_t tv_sec;
649 clock_usec_t tv_usec;
650
651 clock_get_calendar_microtime(&tv_sec, &tv_usec);
652
653 tvp->tv_sec = tv_sec;
654 tvp->tv_usec = tv_usec;
655 }
656
657 void
658 microuptime(
659 struct timeval *tvp)
660 {
661 clock_sec_t tv_sec;
662 clock_usec_t tv_usec;
663
664 clock_get_system_microtime(&tv_sec, &tv_usec);
665
666 tvp->tv_sec = tv_sec;
667 tvp->tv_usec = tv_usec;
668 }
669
670 /*
671 * Ditto for timespec.
672 */
673 void
674 nanotime(
675 struct timespec *tsp)
676 {
677 clock_sec_t tv_sec;
678 clock_nsec_t tv_nsec;
679
680 clock_get_calendar_nanotime(&tv_sec, &tv_nsec);
681
682 tsp->tv_sec = tv_sec;
683 tsp->tv_nsec = tv_nsec;
684 }
685
686 void
687 nanouptime(
688 struct timespec *tsp)
689 {
690 clock_sec_t tv_sec;
691 clock_nsec_t tv_nsec;
692
693 clock_get_system_nanotime(&tv_sec, &tv_nsec);
694
695 tsp->tv_sec = tv_sec;
696 tsp->tv_nsec = tv_nsec;
697 }
698
699 uint64_t
700 tvtoabstime(
701 struct timeval *tvp)
702 {
703 uint64_t result, usresult;
704
705 clock_interval_to_absolutetime_interval(
706 tvp->tv_sec, NSEC_PER_SEC, &result);
707 clock_interval_to_absolutetime_interval(
708 tvp->tv_usec, NSEC_PER_USEC, &usresult);
709
710 return (result + usresult);
711 }
712 void
713 time_zone_slock_init(void)
714 {
715 /* allocate lock group attribute and group */
716 tz_slock_grp_attr = lck_grp_attr_alloc_init();
717
718 tz_slock_grp = lck_grp_alloc_init("tzlock", tz_slock_grp_attr);
719
720 /* Allocate lock attribute */
721 tz_slock_attr = lck_attr_alloc_init();
722
723 /* Allocate the spin lock */
724 tz_slock = lck_spin_alloc_init(tz_slock_grp, tz_slock_attr);
725 }