]> git.saurik.com Git - apple/xnu.git/blob - osfmk/i386/Diagnostics.c
3023aeef9cd98eab84a68bbd90658f59924b82cc
[apple/xnu.git] / osfmk / i386 / Diagnostics.c
1 /*
2 * Copyright (c) 2005-2008 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * @OSF_FREE_COPYRIGHT@
30 */
31 /*
32 * @APPLE_FREE_COPYRIGHT@
33 */
34
35 /*
36 * Author: Bill Angell, Apple
37 * Date: 10/auht-five
38 *
39 * Random diagnostics, augmented Derek Kumar 2011
40 *
41 *
42 */
43
44
45 #include <kern/machine.h>
46 #include <kern/processor.h>
47 #include <mach/machine.h>
48 #include <mach/processor_info.h>
49 #include <mach/mach_types.h>
50 #include <mach/boolean.h>
51 #include <kern/thread.h>
52 #include <kern/task.h>
53 #include <kern/ipc_kobject.h>
54 #include <mach/vm_param.h>
55 #include <ipc/port.h>
56 #include <ipc/ipc_entry.h>
57 #include <ipc/ipc_space.h>
58 #include <ipc/ipc_object.h>
59 #include <ipc/ipc_port.h>
60 #include <vm/vm_kern.h>
61 #include <vm/vm_map.h>
62 #include <vm/vm_page.h>
63 #include <vm/pmap.h>
64 #include <pexpert/pexpert.h>
65 #include <console/video_console.h>
66 #include <i386/cpu_data.h>
67 #include <i386/Diagnostics.h>
68 #include <i386/mp.h>
69 #include <i386/pmCPU.h>
70 #include <i386/tsc.h>
71 #include <mach/i386/syscall_sw.h>
72 #include <kern/kalloc.h>
73 #include <sys/kdebug.h>
74
75 #include <i386/machine_cpu.h>
76 #include <i386/misc_protos.h>
77 #include <i386/cpuid.h>
78
79 #define PERMIT_PERMCHECK (0)
80
81 diagWork dgWork;
82 uint64_t lastRuptClear = 0ULL;
83
84 void cpu_powerstats(void *);
85
86 typedef struct {
87 uint64_t caperf;
88 uint64_t cmperf;
89 uint64_t ccres[6];
90 uint64_t crtimes[CPU_RTIME_BINS];
91 uint64_t citimes[CPU_ITIME_BINS];
92 uint64_t crtime_total;
93 uint64_t citime_total;
94 uint64_t cpu_idle_exits;
95 uint64_t cpu_insns;
96 uint64_t cpu_ucc;
97 uint64_t cpu_urc;
98 } core_energy_stat_t;
99
100 typedef struct {
101 uint64_t pkg_cres[2][7];
102 uint64_t pkg_power_unit;
103 uint64_t pkg_energy;
104 uint64_t pp0_energy;
105 uint64_t pp1_energy;
106 uint64_t ddr_energy;
107 uint64_t llc_flushed_cycles;
108 uint64_t ring_ratio_instantaneous;
109 uint64_t IA_frequency_clipping_cause;
110 uint64_t GT_frequency_clipping_cause;
111 uint64_t pkg_idle_exits;
112 uint64_t pkg_rtimes[CPU_RTIME_BINS];
113 uint64_t pkg_itimes[CPU_ITIME_BINS];
114 uint64_t mbus_delay_time;
115 uint64_t mint_delay_time;
116 uint32_t ncpus;
117 core_energy_stat_t cest[];
118 } pkg_energy_statistics_t;
119
120
121 int
122 diagCall64(x86_saved_state_t * state)
123 {
124 uint64_t curpos, i, j;
125 uint64_t selector, data;
126 uint64_t currNap, durNap;
127 x86_saved_state64_t *regs;
128 boolean_t diagflag;
129 uint32_t rval = 0;
130
131 assert(is_saved_state64(state));
132 regs = saved_state64(state);
133 diagflag = ((dgWork.dgFlags & enaDiagSCs) != 0);
134 selector = regs->rdi;
135
136 switch (selector) { /* Select the routine */
137 case dgRuptStat: /* Suck Interruption statistics */
138 (void) ml_set_interrupts_enabled(TRUE);
139 data = regs->rsi; /* Get the number of processors */
140
141 if (data == 0) { /* If no location is specified for data, clear all
142 * counts
143 */
144 for (i = 0; i < real_ncpus; i++) { /* Cycle through
145 * processors */
146 for (j = 0; j < 256; j++)
147 cpu_data_ptr[i]->cpu_hwIntCnt[j] = 0;
148 }
149
150 lastRuptClear = mach_absolute_time(); /* Get the time of clear */
151 rval = 1; /* Normal return */
152 break;
153 }
154
155 (void) copyout((char *) &real_ncpus, data, sizeof(real_ncpus)); /* Copy out number of
156 * processors */
157
158 currNap = mach_absolute_time(); /* Get the time now */
159 durNap = currNap - lastRuptClear; /* Get the last interval
160 * duration */
161 if (durNap == 0)
162 durNap = 1; /* This is a very short time, make it
163 * bigger */
164
165 curpos = data + sizeof(real_ncpus); /* Point to the next
166 * available spot */
167
168 for (i = 0; i < real_ncpus; i++) { /* Move 'em all out */
169 (void) copyout((char *) &durNap, curpos, 8); /* Copy out the time
170 * since last clear */
171 (void) copyout((char *) &cpu_data_ptr[i]->cpu_hwIntCnt, curpos + 8, 256 * sizeof(uint32_t)); /* Copy out interrupt
172 * data for this
173 * processor */
174 curpos = curpos + (256 * sizeof(uint32_t) + 8); /* Point to next out put
175 * slot */
176 }
177 rval = 1;
178 break;
179 case dgPowerStat:
180 {
181 uint32_t c2l = 0, c2h = 0, c3l = 0, c3h = 0, c6l = 0, c6h = 0, c7l = 0, c7h = 0;
182 uint32_t pkg_unit_l = 0, pkg_unit_h = 0, pkg_ecl = 0, pkg_ech = 0;
183
184 pkg_energy_statistics_t pkes;
185 core_energy_stat_t cest;
186
187 bzero(&pkes, sizeof(pkes));
188 bzero(&cest, sizeof(cest));
189
190 rdmsr_carefully(MSR_IA32_PKG_C2_RESIDENCY, &c2l, &c2h);
191 rdmsr_carefully(MSR_IA32_PKG_C3_RESIDENCY, &c3l, &c3h);
192 rdmsr_carefully(MSR_IA32_PKG_C6_RESIDENCY, &c6l, &c6h);
193 rdmsr_carefully(MSR_IA32_PKG_C7_RESIDENCY, &c7l, &c7h);
194
195 pkes.pkg_cres[0][0] = ((uint64_t)c2h << 32) | c2l;
196 pkes.pkg_cres[0][1] = ((uint64_t)c3h << 32) | c3l;
197 pkes.pkg_cres[0][2] = ((uint64_t)c6h << 32) | c6l;
198 pkes.pkg_cres[0][3] = ((uint64_t)c7h << 32) | c7l;
199
200 uint32_t cpumodel = cpuid_info()->cpuid_model;
201 boolean_t c8avail;
202 switch (cpumodel) {
203 case CPUID_MODEL_HASWELL_ULT:
204 c8avail = TRUE;
205 break;
206 default:
207 c8avail = FALSE;
208 break;
209 }
210 uint64_t c8r = ~0ULL, c9r = ~0ULL, c10r = ~0ULL;
211
212 if (c8avail) {
213 rdmsr64_carefully(MSR_IA32_PKG_C8_RESIDENCY, &c8r);
214 rdmsr64_carefully(MSR_IA32_PKG_C9_RESIDENCY, &c9r);
215 rdmsr64_carefully(MSR_IA32_PKG_C10_RESIDENCY, &c10r);
216 }
217
218 pkes.pkg_cres[0][4] = c8r;
219 pkes.pkg_cres[0][5] = c9r;
220 pkes.pkg_cres[0][6] = c10r;
221
222 pkes.ddr_energy = ~0ULL;
223 rdmsr64_carefully(MSR_IA32_DDR_ENERGY_STATUS, &pkes.ddr_energy);
224 pkes.llc_flushed_cycles = ~0ULL;
225 rdmsr64_carefully(MSR_IA32_LLC_FLUSHED_RESIDENCY_TIMER, &pkes.llc_flushed_cycles);
226
227 pkes.ring_ratio_instantaneous = ~0ULL;
228 rdmsr64_carefully(MSR_IA32_RING_PERF_STATUS, &pkes.ring_ratio_instantaneous);
229
230 pkes.IA_frequency_clipping_cause = ~0ULL;
231 rdmsr64_carefully(MSR_IA32_IA_PERF_LIMIT_REASONS, &pkes.IA_frequency_clipping_cause);
232
233 pkes.GT_frequency_clipping_cause = ~0ULL;
234 rdmsr64_carefully(MSR_IA32_GT_PERF_LIMIT_REASONS, &pkes.GT_frequency_clipping_cause);
235
236 rdmsr_carefully(MSR_IA32_PKG_POWER_SKU_UNIT, &pkg_unit_l, &pkg_unit_h);
237 rdmsr_carefully(MSR_IA32_PKG_ENERGY_STATUS, &pkg_ecl, &pkg_ech);
238 pkes.pkg_power_unit = ((uint64_t)pkg_unit_h << 32) | pkg_unit_l;
239 pkes.pkg_energy = ((uint64_t)pkg_ech << 32) | pkg_ecl;
240
241 rdmsr_carefully(MSR_IA32_PP0_ENERGY_STATUS, &pkg_ecl, &pkg_ech);
242 pkes.pp0_energy = ((uint64_t)pkg_ech << 32) | pkg_ecl;
243
244 rdmsr_carefully(MSR_IA32_PP1_ENERGY_STATUS, &pkg_ecl, &pkg_ech);
245 pkes.pp1_energy = ((uint64_t)pkg_ech << 32) | pkg_ecl;
246
247 pkes.pkg_idle_exits = current_cpu_datap()->lcpu.package->package_idle_exits;
248 pkes.ncpus = real_ncpus;
249
250 (void) ml_set_interrupts_enabled(TRUE);
251
252 copyout(&pkes, regs->rsi, sizeof(pkes));
253 curpos = regs->rsi + sizeof(pkes);
254
255 mp_cpus_call(CPUMASK_ALL, ASYNC, cpu_powerstats, NULL);
256
257 for (i = 0; i < real_ncpus; i++) {
258 (void) ml_set_interrupts_enabled(FALSE);
259
260 cest.caperf = cpu_data_ptr[i]->cpu_aperf;
261 cest.cmperf = cpu_data_ptr[i]->cpu_mperf;
262 cest.ccres[0] = cpu_data_ptr[i]->cpu_c3res;
263 cest.ccres[1] = cpu_data_ptr[i]->cpu_c6res;
264 cest.ccres[2] = cpu_data_ptr[i]->cpu_c7res;
265
266 bcopy(&cpu_data_ptr[i]->cpu_rtimes[0], &cest.crtimes[0], sizeof(cest.crtimes));
267 bcopy(&cpu_data_ptr[i]->cpu_itimes[0], &cest.citimes[0], sizeof(cest.citimes));
268
269 cest.citime_total = cpu_data_ptr[i]->cpu_itime_total;
270 cest.crtime_total = cpu_data_ptr[i]->cpu_rtime_total;
271 cest.cpu_idle_exits = cpu_data_ptr[i]->cpu_idle_exits;
272 cest.cpu_insns = cpu_data_ptr[i]->cpu_cur_insns;
273 cest.cpu_ucc = cpu_data_ptr[i]->cpu_cur_ucc;
274 cest.cpu_urc = cpu_data_ptr[i]->cpu_cur_urc;
275 (void) ml_set_interrupts_enabled(TRUE);
276
277 copyout(&cest, curpos, sizeof(cest));
278 curpos += sizeof(cest);
279 }
280 rval = 1;
281 }
282 break;
283 case dgEnaPMC:
284 {
285 boolean_t enable = TRUE;
286 mp_cpus_call(CPUMASK_ALL, ASYNC, cpu_pmc_control, &enable);
287 rval = 1;
288 }
289 break;
290
291 #if DEBUG
292 case dgGzallocTest:
293 {
294 (void) ml_set_interrupts_enabled(TRUE);
295 if (diagflag == 0)
296 break;
297
298 unsigned *ptr = (unsigned *)kalloc(1024);
299 kfree(ptr, 1024);
300 *ptr = 0x42;
301 }
302 break;
303 #endif
304
305 #if PERMIT_PERMCHECK
306 case dgPermCheck:
307 {
308 (void) ml_set_interrupts_enabled(TRUE);
309 if (diagflag == 0)
310 break;
311
312 rval = pmap_permissions_verify(kernel_pmap, kernel_map, 0, ~0ULL);
313 }
314 break;
315 #endif /* PERMIT_PERMCHECK */
316
317 default: /* Handle invalid ones */
318 rval = 0; /* Return an exception */
319 }
320
321 regs->rax = rval;
322
323 return rval; /* Normal non-ast check return */
324 }
325
326 void cpu_powerstats(__unused void *arg) {
327 cpu_data_t *cdp = current_cpu_datap();
328 __unused int cnum = cdp->cpu_number;
329 uint32_t cl = 0, ch = 0, mpl = 0, mph = 0, apl = 0, aph = 0;
330
331 rdmsr_carefully(MSR_IA32_MPERF, &mpl, &mph);
332 rdmsr_carefully(MSR_IA32_APERF, &apl, &aph);
333
334 cdp->cpu_mperf = ((uint64_t)mph << 32) | mpl;
335 cdp->cpu_aperf = ((uint64_t)aph << 32) | apl;
336
337 uint64_t ctime = mach_absolute_time();
338 cdp->cpu_rtime_total += ctime - cdp->cpu_ixtime;
339 cdp->cpu_ixtime = ctime;
340
341 rdmsr_carefully(MSR_IA32_CORE_C3_RESIDENCY, &cl, &ch);
342 cdp->cpu_c3res = ((uint64_t)ch << 32) | cl;
343
344 rdmsr_carefully(MSR_IA32_CORE_C6_RESIDENCY, &cl, &ch);
345 cdp->cpu_c6res = ((uint64_t)ch << 32) | cl;
346
347 rdmsr_carefully(MSR_IA32_CORE_C7_RESIDENCY, &cl, &ch);
348 cdp->cpu_c7res = ((uint64_t)ch << 32) | cl;
349
350 uint64_t insns = read_pmc(FIXED_PMC0);
351 uint64_t ucc = read_pmc(FIXED_PMC1);
352 uint64_t urc = read_pmc(FIXED_PMC2);
353 cdp->cpu_cur_insns = insns;
354 cdp->cpu_cur_ucc = ucc;
355 cdp->cpu_cur_urc = urc;
356 }
357
358 void cpu_pmc_control(void *enablep) {
359 boolean_t enable = *(boolean_t *)enablep;
360 cpu_data_t *cdp = current_cpu_datap();
361
362 if (enable) {
363 wrmsr64(0x38F, 0x70000000FULL);
364 wrmsr64(0x38D, 0x333);
365 set_cr4(get_cr4() | CR4_PCE);
366
367 } else {
368 wrmsr64(0x38F, 0);
369 wrmsr64(0x38D, 0);
370 set_cr4((get_cr4() & ~CR4_PCE));
371 }
372 cdp->cpu_fixed_pmcs_enabled = enable;
373 }