2 * Copyright (c) 2000 Apple Computer, Inc. All rights reserved.
4 * @APPLE_LICENSE_HEADER_START@
6 * The contents of this file constitute Original Code as defined in and
7 * are subject to the Apple Public Source License Version 1.1 (the
8 * "License"). You may not use this file except in compliance with the
9 * License. Please obtain a copy of the License at
10 * http://www.apple.com/publicsource and read it before using this file.
12 * This Original Code and all software distributed under the License are
13 * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
14 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
15 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the
17 * License for the specific language governing rights and limitations
20 * @APPLE_LICENSE_HEADER_END@
22 /* Copyright (c) 1998, 1999 Apple Computer, Inc. All Rights Reserved */
23 /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */
25 * Copyright (c) 1982, 1986, 1988, 1990, 1993
26 * The Regents of the University of California. All rights reserved.
28 * Redistribution and use in source and binary forms, with or without
29 * modification, are permitted provided that the following conditions
31 * 1. Redistributions of source code must retain the above copyright
32 * notice, this list of conditions and the following disclaimer.
33 * 2. Redistributions in binary form must reproduce the above copyright
34 * notice, this list of conditions and the following disclaimer in the
35 * documentation and/or other materials provided with the distribution.
36 * 3. All advertising materials mentioning features or use of this software
37 * must display the following acknowledgement:
38 * This product includes software developed by the University of
39 * California, Berkeley and its contributors.
40 * 4. Neither the name of the University nor the names of its contributors
41 * may be used to endorse or promote products derived from this software
42 * without specific prior written permission.
44 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
45 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
46 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
47 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
48 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
49 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
50 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
51 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
52 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
53 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
56 * @(#)uipc_socket2.c 8.1 (Berkeley) 6/10/93
57 * $FreeBSD: src/sys/kern/uipc_socket2.c,v 1.55.2.9 2001/07/26 18:53:02 peter Exp $
60 #include <sys/param.h>
61 #include <sys/systm.h>
62 #include <sys/domain.h>
63 #include <sys/kernel.h>
64 #include <sys/proc_internal.h>
65 #include <sys/kauth.h>
66 #include <sys/malloc.h>
68 #include <sys/protosw.h>
70 #include <sys/socket.h>
71 #include <sys/socketvar.h>
72 #include <sys/signalvar.h>
73 #include <sys/sysctl.h>
75 #include <kern/locks.h>
76 #include <net/route.h>
77 #include <netinet/in.h>
78 #include <netinet/in_pcb.h>
79 #include <sys/kdebug.h>
81 #define DBG_FNC_SBDROP NETDBG_CODE(DBG_NETSOCK, 4)
82 #define DBG_FNC_SBAPPEND NETDBG_CODE(DBG_NETSOCK, 5)
86 * Primitive routines for operating on sockets and socket buffers
89 u_long sb_max
= SB_MAX
; /* XXX should be static */
91 static u_long sb_efficiency
= 8; /* parameter for sbreserve() */
94 * Procedures to manipulate state flags of socket
95 * and do appropriate wakeups. Normal sequence from the
96 * active (originating) side is that soisconnecting() is
97 * called during processing of connect() call,
98 * resulting in an eventual call to soisconnected() if/when the
99 * connection is established. When the connection is torn down
100 * soisdisconnecting() is called during processing of disconnect() call,
101 * and soisdisconnected() is called when the connection to the peer
102 * is totally severed. The semantics of these routines are such that
103 * connectionless protocols can call soisconnected() and soisdisconnected()
104 * only, bypassing the in-progress calls when setting up a ``connection''
107 * From the passive side, a socket is created with
108 * two queues of sockets: so_incomp for connections in progress
109 * and so_comp for connections already made and awaiting user acceptance.
110 * As a protocol is preparing incoming connections, it creates a socket
111 * structure queued on so_incomp by calling sonewconn(). When the connection
112 * is established, soisconnected() is called, and transfers the
113 * socket structure to so_comp, making it available to accept().
115 * If a socket is closed with sockets on either
116 * so_incomp or so_comp, these sockets are dropped.
118 * If higher level protocols are implemented in
119 * the kernel, the wakeups done here will sometimes
120 * cause software-interrupt process scheduling.
124 register struct socket
*so
;
127 so
->so_state
&= ~(SS_ISCONNECTED
|SS_ISDISCONNECTING
);
128 so
->so_state
|= SS_ISCONNECTING
;
130 sflt_notify(so
, sock_evt_connecting
, NULL
);
137 struct socket
*head
= so
->so_head
;
139 so
->so_state
&= ~(SS_ISCONNECTING
|SS_ISDISCONNECTING
|SS_ISCONFIRMING
);
140 so
->so_state
|= SS_ISCONNECTED
;
142 sflt_notify(so
, sock_evt_connected
, NULL
);
144 if (head
&& (so
->so_state
& SS_INCOMP
)) {
145 if (head
->so_proto
->pr_getlock
!= NULL
)
146 socket_lock(head
, 1);
147 postevent(head
, 0, EV_RCONN
);
148 TAILQ_REMOVE(&head
->so_incomp
, so
, so_list
);
150 so
->so_state
&= ~SS_INCOMP
;
151 TAILQ_INSERT_TAIL(&head
->so_comp
, so
, so_list
);
152 so
->so_state
|= SS_COMP
;
154 wakeup_one((caddr_t
)&head
->so_timeo
);
155 if (head
->so_proto
->pr_getlock
!= NULL
)
156 socket_unlock(head
, 1);
158 postevent(so
, 0, EV_WCONN
);
159 wakeup((caddr_t
)&so
->so_timeo
);
166 soisdisconnecting(so
)
167 register struct socket
*so
;
169 so
->so_state
&= ~SS_ISCONNECTING
;
170 so
->so_state
|= (SS_ISDISCONNECTING
|SS_CANTRCVMORE
|SS_CANTSENDMORE
);
171 sflt_notify(so
, sock_evt_disconnecting
, NULL
);
172 wakeup((caddr_t
)&so
->so_timeo
);
179 register struct socket
*so
;
181 so
->so_state
&= ~(SS_ISCONNECTING
|SS_ISCONNECTED
|SS_ISDISCONNECTING
);
182 so
->so_state
|= (SS_CANTRCVMORE
|SS_CANTSENDMORE
|SS_ISDISCONNECTED
);
183 sflt_notify(so
, sock_evt_disconnected
, NULL
);
184 wakeup((caddr_t
)&so
->so_timeo
);
190 * Return a random connection that hasn't been serviced yet and
191 * is eligible for discard. There is a one in qlen chance that
192 * we will return a null, saying that there are no dropable
193 * requests. In this case, the protocol specific code should drop
194 * the new request. This insures fairness.
196 * This may be used in conjunction with protocol specific queue
197 * congestion routines.
201 register struct socket
*head
;
203 struct socket
*so
, *sonext
= NULL
;
204 unsigned int i
, j
, qlen
;
206 static struct timeval old_runtime
;
207 static unsigned int cur_cnt
, old_cnt
;
211 if ((i
= (tv
.tv_sec
- old_runtime
.tv_sec
)) != 0) {
213 old_cnt
= cur_cnt
/ i
;
217 so
= TAILQ_FIRST(&head
->so_incomp
);
221 qlen
= head
->so_incqlen
;
222 if (++cur_cnt
> qlen
|| old_cnt
> qlen
) {
223 rnd
= (314159 * rnd
+ 66329) & 0xffff;
224 j
= ((qlen
+ 1) * rnd
) >> 16;
227 // if (in_pcb_checkstate(so->so_pcb, WNT_ACQUIRE, 0) != WNT_STOPUSING) {
229 sonext
= TAILQ_NEXT(so
, so_list
);
230 // in_pcb_check_state(so->so_pcb, WNT_RELEASE, 0);
231 socket_unlock(so
, 1);
236 // if (in_pcb_checkstate(so->so_pcb, WNT_ACQUIRE, 0) == WNT_STOPUSING)
243 * When an attempt at a new connection is noted on a socket
244 * which accepts connections, sonewconn is called. If the
245 * connection is possible (subject to space constraints, etc.)
246 * then we allocate a new structure, propoerly linked into the
247 * data structure of the original socket, and return this.
248 * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
250 static struct socket
*
251 sonewconn_internal(head
, connstatus
)
252 register struct socket
*head
;
256 register struct socket
*so
;
257 lck_mtx_t
*mutex_held
;
259 if (head
->so_proto
->pr_getlock
!= NULL
)
260 mutex_held
= (*head
->so_proto
->pr_getlock
)(head
, 0);
262 mutex_held
= head
->so_proto
->pr_domain
->dom_mtx
;
263 lck_mtx_assert(mutex_held
, LCK_MTX_ASSERT_OWNED
);
265 if (head
->so_qlen
> 3 * head
->so_qlimit
/ 2)
266 return ((struct socket
*)0);
267 so
= soalloc(1, head
->so_proto
->pr_domain
->dom_family
, head
->so_type
);
269 return ((struct socket
*)0);
270 /* check if head was closed during the soalloc */
271 if (head
->so_proto
== NULL
) {
273 return ((struct socket
*)0);
277 so
->so_type
= head
->so_type
;
278 so
->so_options
= head
->so_options
&~ SO_ACCEPTCONN
;
279 so
->so_linger
= head
->so_linger
;
280 so
->so_state
= head
->so_state
| SS_NOFDREF
;
281 so
->so_proto
= head
->so_proto
;
282 so
->so_timeo
= head
->so_timeo
;
283 so
->so_pgid
= head
->so_pgid
;
284 so
->so_uid
= head
->so_uid
;
287 if (soreserve(so
, head
->so_snd
.sb_hiwat
, head
->so_rcv
.sb_hiwat
)) {
290 return ((struct socket
*)0);
294 * Must be done with head unlocked to avoid deadlock with pcb list
296 socket_unlock(head
, 0);
297 if (((*so
->so_proto
->pr_usrreqs
->pru_attach
)(so
, 0, NULL
) != 0) || error
) {
300 socket_lock(head
, 0);
301 return ((struct socket
*)0);
303 socket_lock(head
, 0);
305 so
->so_proto
->pr_domain
->dom_refs
++;
309 TAILQ_INSERT_TAIL(&head
->so_comp
, so
, so_list
);
310 so
->so_state
|= SS_COMP
;
312 TAILQ_INSERT_TAIL(&head
->so_incomp
, so
, so_list
);
313 so
->so_state
|= SS_INCOMP
;
318 so
->so_rcv
.sb_so
= so
->so_snd
.sb_so
= so
;
319 TAILQ_INIT(&so
->so_evlist
);
321 /* Attach socket filters for this protocol */
325 so
->so_state
|= connstatus
;
327 wakeup((caddr_t
)&head
->so_timeo
);
337 const struct sockaddr
*from
)
340 struct socket_filter_entry
*filter
;
344 for (filter
= head
->so_filt
; filter
&& (error
== 0);
345 filter
= filter
->sfe_next_onsocket
) {
346 if (filter
->sfe_filter
->sf_filter
.sf_connect_in
) {
350 socket_unlock(head
, 0);
352 error
= filter
->sfe_filter
->sf_filter
.sf_connect_in(
353 filter
->sfe_cookie
, head
, from
);
357 socket_lock(head
, 0);
365 return sonewconn_internal(head
, connstatus
);
369 * Socantsendmore indicates that no more data will be sent on the
370 * socket; it would normally be applied to a socket when the user
371 * informs the system that no more data is to be sent, by the protocol
372 * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data
373 * will be received, and will normally be applied to the socket by a
374 * protocol when it detects that the peer will send no more data.
375 * Data queued for reading in the socket may yet be read.
382 so
->so_state
|= SS_CANTSENDMORE
;
383 sflt_notify(so
, sock_evt_cantsendmore
, NULL
);
391 so
->so_state
|= SS_CANTRCVMORE
;
392 sflt_notify(so
, sock_evt_cantrecvmore
, NULL
);
397 * Wait for data to arrive at/drain from a socket buffer.
403 int error
= 0, lr
, lr_saved
;
404 struct socket
*so
= sb
->sb_so
;
405 lck_mtx_t
*mutex_held
;
409 __asm__
volatile("mflr %0" : "=r" (lr
));
414 if (so
->so_proto
->pr_getlock
!= NULL
)
415 mutex_held
= (*so
->so_proto
->pr_getlock
)(so
, 0);
417 mutex_held
= so
->so_proto
->pr_domain
->dom_mtx
;
419 sb
->sb_flags
|= SB_WAIT
;
421 if (so
->so_usecount
< 1)
422 panic("sbwait: so=%x refcount=%d\n", so
, so
->so_usecount
);
423 ts
.tv_sec
= sb
->sb_timeo
.tv_sec
;
424 ts
.tv_nsec
= sb
->sb_timeo
.tv_usec
* 1000;
425 error
= msleep((caddr_t
)&sb
->sb_cc
, mutex_held
,
426 (sb
->sb_flags
& SB_NOINTR
) ? PSOCK
: PSOCK
| PCATCH
, "sbwait",
429 lck_mtx_assert(mutex_held
, LCK_MTX_ASSERT_OWNED
);
431 if (so
->so_usecount
< 1)
432 panic("sbwait: so=%x refcount=%d\n", so
, so
->so_usecount
);
434 if ((so
->so_state
& SS_DRAINING
)) {
442 * Lock a sockbuf already known to be locked;
443 * return any error returned from sleep (EINTR).
447 register struct sockbuf
*sb
;
449 struct socket
*so
= sb
->sb_so
;
450 lck_mtx_t
* mutex_held
;
451 int error
= 0, lr
, lr_saved
;
454 __asm__
volatile("mflr %0" : "=r" (lr
));
459 panic("sb_lock: null so back pointer sb=%x\n", sb
);
461 while (sb
->sb_flags
& SB_LOCK
) {
462 sb
->sb_flags
|= SB_WANT
;
463 if (so
->so_proto
->pr_getlock
!= NULL
)
464 mutex_held
= (*so
->so_proto
->pr_getlock
)(so
, 0);
466 mutex_held
= so
->so_proto
->pr_domain
->dom_mtx
;
467 if (so
->so_usecount
< 1)
468 panic("sb_lock: so=%x refcount=%d\n", so
, so
->so_usecount
);
469 error
= msleep((caddr_t
)&sb
->sb_flags
, mutex_held
,
470 (sb
->sb_flags
& SB_NOINTR
) ? PSOCK
: PSOCK
| PCATCH
, "sblock", 0);
471 if (so
->so_usecount
< 1)
472 panic("sb_lock: 2 so=%x refcount=%d\n", so
, so
->so_usecount
);
476 sb
->sb_flags
|= SB_LOCK
;
481 * Wakeup processes waiting on a socket buffer.
482 * Do asynchronous notification via SIGIO
483 * if the socket has the SS_ASYNC flag set.
487 register struct socket
*so
;
488 register struct sockbuf
*sb
;
490 struct proc
*p
= current_proc();
491 sb
->sb_flags
&= ~SB_SEL
;
492 selwakeup(&sb
->sb_sel
);
493 if (sb
->sb_flags
& SB_WAIT
) {
494 sb
->sb_flags
&= ~SB_WAIT
;
495 wakeup((caddr_t
)&sb
->sb_cc
);
497 if (so
->so_state
& SS_ASYNC
) {
499 gsignal(-so
->so_pgid
, SIGIO
);
500 else if (so
->so_pgid
> 0 && (p
= pfind(so
->so_pgid
)) != 0)
503 if (sb
->sb_flags
& SB_KNOTE
) {
504 KNOTE(&sb
->sb_sel
.si_note
, SO_FILT_HINT_LOCKED
);
506 if (sb
->sb_flags
& SB_UPCALL
) {
507 socket_unlock(so
, 0);
508 (*so
->so_upcall
)(so
, so
->so_upcallarg
, M_DONTWAIT
);
514 * Socket buffer (struct sockbuf) utility routines.
516 * Each socket contains two socket buffers: one for sending data and
517 * one for receiving data. Each buffer contains a queue of mbufs,
518 * information about the number of mbufs and amount of data in the
519 * queue, and other fields allowing select() statements and notification
520 * on data availability to be implemented.
522 * Data stored in a socket buffer is maintained as a list of records.
523 * Each record is a list of mbufs chained together with the m_next
524 * field. Records are chained together with the m_nextpkt field. The upper
525 * level routine soreceive() expects the following conventions to be
526 * observed when placing information in the receive buffer:
528 * 1. If the protocol requires each message be preceded by the sender's
529 * name, then a record containing that name must be present before
530 * any associated data (mbuf's must be of type MT_SONAME).
531 * 2. If the protocol supports the exchange of ``access rights'' (really
532 * just additional data associated with the message), and there are
533 * ``rights'' to be received, then a record containing this data
534 * should be present (mbuf's must be of type MT_RIGHTS).
535 * 3. If a name or rights record exists, then it must be followed by
536 * a data record, perhaps of zero length.
538 * Before using a new socket structure it is first necessary to reserve
539 * buffer space to the socket, by calling sbreserve(). This should commit
540 * some of the available buffer space in the system buffer pool for the
541 * socket (currently, it does nothing but enforce limits). The space
542 * should be released by calling sbrelease() when the socket is destroyed.
546 soreserve(so
, sndcc
, rcvcc
)
547 register struct socket
*so
;
551 if (sbreserve(&so
->so_snd
, sndcc
) == 0)
553 if (sbreserve(&so
->so_rcv
, rcvcc
) == 0)
555 if (so
->so_rcv
.sb_lowat
== 0)
556 so
->so_rcv
.sb_lowat
= 1;
557 if (so
->so_snd
.sb_lowat
== 0)
558 so
->so_snd
.sb_lowat
= MCLBYTES
;
559 if (so
->so_snd
.sb_lowat
> so
->so_snd
.sb_hiwat
)
560 so
->so_snd
.sb_lowat
= so
->so_snd
.sb_hiwat
;
564 selthreadclear(&so
->so_snd
.sb_sel
);
566 sbrelease(&so
->so_snd
);
572 * Allot mbufs to a sockbuf.
573 * Attempt to scale mbmax so that mbcnt doesn't become limiting
574 * if buffering efficiency is near the normal case.
581 if ((u_quad_t
)cc
> (u_quad_t
)sb_max
* MCLBYTES
/ (MSIZE
+ MCLBYTES
))
584 sb
->sb_mbmax
= min(cc
* sb_efficiency
, sb_max
);
585 if (sb
->sb_lowat
> sb
->sb_hiwat
)
586 sb
->sb_lowat
= sb
->sb_hiwat
;
591 * Free mbufs held by a socket, and reserved mbuf space.
593 /* WARNING needs to do selthreadclear() before calling this */
606 * Routines to add and remove
607 * data from an mbuf queue.
609 * The routines sbappend() or sbappendrecord() are normally called to
610 * append new mbufs to a socket buffer, after checking that adequate
611 * space is available, comparing the function sbspace() with the amount
612 * of data to be added. sbappendrecord() differs from sbappend() in
613 * that data supplied is treated as the beginning of a new record.
614 * To place a sender's address, optional access rights, and data in a
615 * socket receive buffer, sbappendaddr() should be used. To place
616 * access rights and data in a socket receive buffer, sbappendrights()
617 * should be used. In either case, the new data begins a new record.
618 * Note that unlike sbappend() and sbappendrecord(), these routines check
619 * for the caller that there will be enough space to store the data.
620 * Each fails if there is not enough space, or if it cannot find mbufs
621 * to store additional information in.
623 * Reliable protocols may use the socket send buffer to hold data
624 * awaiting acknowledgement. Data is normally copied from a socket
625 * send buffer in a protocol with m_copy for output to a peer,
626 * and then removing the data from the socket buffer with sbdrop()
627 * or sbdroprecord() when the data is acknowledged by the peer.
631 * Append mbuf chain m to the last record in the
632 * socket buffer sb. The additional space associated
633 * the mbuf chain is recorded in sb. Empty mbufs are
634 * discarded and mbufs are compacted where possible.
641 register struct mbuf
*n
, *sb_first
;
646 KERNEL_DEBUG((DBG_FNC_SBAPPEND
| DBG_FUNC_START
), sb
, m
->m_len
, 0, 0, 0);
650 sb_first
= n
= sb
->sb_mb
;
655 if (n
->m_flags
& M_EOR
) {
656 result
= sbappendrecord(sb
, m
); /* XXXXXX!!!! */
657 KERNEL_DEBUG((DBG_FNC_SBAPPEND
| DBG_FUNC_END
), sb
, sb
->sb_cc
, 0, 0, 0);
660 } while (n
->m_next
&& (n
= n
->m_next
));
663 if ((sb
->sb_flags
& SB_RECV
) != 0) {
664 error
= sflt_data_in(sb
->sb_so
, NULL
, &m
, NULL
, 0);
666 /* no data was appended, caller should not call sowakeup */
671 /* 3962537 - sflt_data_in may drop the lock, need to validate state again */
672 if (sb_first
!= sb
->sb_mb
) {
680 result
= sbcompress(sb
, m
, n
);
682 KERNEL_DEBUG((DBG_FNC_SBAPPEND
| DBG_FUNC_END
), sb
, sb
->sb_cc
, 0, 0, 0);
690 register struct sockbuf
*sb
;
692 register struct mbuf
*m
;
693 register struct mbuf
*n
= 0;
694 register u_long len
= 0, mbcnt
= 0;
695 lck_mtx_t
*mutex_held
;
697 if (sb
->sb_so
->so_proto
->pr_getlock
!= NULL
)
698 mutex_held
= (*sb
->sb_so
->so_proto
->pr_getlock
)(sb
->sb_so
, 0);
700 mutex_held
= sb
->sb_so
->so_proto
->pr_domain
->dom_mtx
;
702 lck_mtx_assert(mutex_held
, LCK_MTX_ASSERT_OWNED
);
707 for (m
= sb
->sb_mb
; m
; m
= n
) {
709 for (; m
; m
= m
->m_next
) {
712 if (m
->m_flags
& M_EXT
) /*XXX*/ /* pretty sure this is bogus */
713 mbcnt
+= m
->m_ext
.ext_size
;
716 if (len
!= sb
->sb_cc
|| mbcnt
!= sb
->sb_mbcnt
) {
717 panic("cc %ld != %ld || mbcnt %ld != %ld\n", len
, sb
->sb_cc
,
718 mbcnt
, sb
->sb_mbcnt
);
724 * As above, except the mbuf chain
725 * begins a new record.
728 sbappendrecord(sb
, m0
)
729 register struct sockbuf
*sb
;
730 register struct mbuf
*m0
;
732 register struct mbuf
*m
;
738 if ((sb
->sb_flags
& SB_RECV
) != 0) {
739 int error
= sflt_data_in(sb
->sb_so
, NULL
, &m0
, NULL
, sock_data_filt_flag_record
);
741 if (error
!= EJUSTRETURN
)
752 * Put the first mbuf on the queue.
753 * Note this permits zero length records.
762 if (m
&& (m0
->m_flags
& M_EOR
)) {
763 m0
->m_flags
&= ~M_EOR
;
766 return sbcompress(sb
, m
, m0
);
770 * As above except that OOB data
771 * is inserted at the beginning of the sockbuf,
772 * but after any other OOB data.
785 if ((sb
->sb_flags
& SB_RECV
) != 0) {
786 int error
= sflt_data_in(sb
->sb_so
, NULL
, &m0
, NULL
,
787 sock_data_filt_flag_oob
);
790 if (error
!= EJUSTRETURN
) {
797 for (mp
= &sb
->sb_mb
; *mp
; mp
= &((*mp
)->m_nextpkt
)) {
803 continue; /* WANT next train */
808 goto again
; /* inspect THIS train further */
813 * Put the first mbuf on the queue.
814 * Note this permits zero length records.
821 if (m
&& (m0
->m_flags
& M_EOR
)) {
822 m0
->m_flags
&= ~M_EOR
;
825 return sbcompress(sb
, m
, m0
);
829 * Append address and data, and optionally, control (ancillary) data
830 * to the receive queue of a socket. If present,
831 * m0 must include a packet header with total length.
832 * Returns 0 if no space in sockbuf or insufficient mbufs.
835 sbappendaddr_internal(sb
, asa
, m0
, control
)
836 register struct sockbuf
*sb
;
837 struct sockaddr
*asa
;
838 struct mbuf
*m0
, *control
;
840 register struct mbuf
*m
, *n
;
841 int space
= asa
->sa_len
;
843 if (m0
&& (m0
->m_flags
& M_PKTHDR
) == 0)
844 panic("sbappendaddr");
847 space
+= m0
->m_pkthdr
.len
;
848 for (n
= control
; n
; n
= n
->m_next
) {
850 if (n
->m_next
== 0) /* keep pointer to last control buf */
853 if (space
> sbspace(sb
))
855 if (asa
->sa_len
> MLEN
)
857 MGET(m
, M_DONTWAIT
, MT_SONAME
);
860 m
->m_len
= asa
->sa_len
;
861 bcopy((caddr_t
)asa
, mtod(m
, caddr_t
), asa
->sa_len
);
863 n
->m_next
= m0
; /* concatenate data to control */
867 for (n
= m
; n
; n
= n
->m_next
)
876 postevent(0,sb
,EV_RWBYTES
);
883 struct sockaddr
* asa
,
885 struct mbuf
*control
,
890 if (error_out
) *error_out
= 0;
892 if (m0
&& (m0
->m_flags
& M_PKTHDR
) == 0)
893 panic("sbappendaddrorfree");
895 /* Call socket data in filters */
896 if ((sb
->sb_flags
& SB_RECV
) != 0) {
898 error
= sflt_data_in(sb
->sb_so
, asa
, &m0
, &control
, 0);
900 if (error
!= EJUSTRETURN
) {
902 if (control
) m_freem(control
);
903 if (error_out
) *error_out
= error
;
909 result
= sbappendaddr_internal(sb
, asa
, m0
, control
);
912 if (control
) m_freem(control
);
913 if (error_out
) *error_out
= ENOBUFS
;
920 sbappendcontrol_internal(sb
, m0
, control
)
922 struct mbuf
*control
, *m0
;
924 register struct mbuf
*m
, *n
;
928 panic("sbappendcontrol");
930 for (m
= control
; ; m
= m
->m_next
) {
935 n
= m
; /* save pointer to last control buffer */
936 for (m
= m0
; m
; m
= m
->m_next
)
938 if (space
> sbspace(sb
))
940 n
->m_next
= m0
; /* concatenate data to control */
941 for (m
= control
; m
; m
= m
->m_next
)
947 n
->m_nextpkt
= control
;
950 postevent(0,sb
,EV_RWBYTES
);
958 struct mbuf
*control
,
963 if (error_out
) *error_out
= 0;
965 if (sb
->sb_flags
& SB_RECV
) {
967 error
= sflt_data_in(sb
->sb_so
, NULL
, &m0
, &control
, 0);
969 if (error
!= EJUSTRETURN
) {
971 if (control
) m_freem(control
);
972 if (error_out
) *error_out
= error
;
978 result
= sbappendcontrol_internal(sb
, m0
, control
);
981 if (control
) m_freem(control
);
982 if (error_out
) *error_out
= ENOBUFS
;
989 * Compress mbuf chain m into the socket
990 * buffer sb following mbuf n. If n
991 * is null, the buffer is presumed empty.
995 register struct sockbuf
*sb
;
996 register struct mbuf
*m
, *n
;
998 register int eor
= 0;
999 register struct mbuf
*o
;
1002 eor
|= m
->m_flags
& M_EOR
;
1003 if (m
->m_len
== 0 &&
1005 (((o
= m
->m_next
) || (o
= n
)) &&
1006 o
->m_type
== m
->m_type
))) {
1010 if (n
&& (n
->m_flags
& M_EOR
) == 0 &&
1014 m
->m_len
<= MCLBYTES
/ 4 && /* XXX: Don't copy too much */
1015 m
->m_len
<= M_TRAILINGSPACE(n
) &&
1016 n
->m_type
== m
->m_type
) {
1017 bcopy(mtod(m
, caddr_t
), mtod(n
, caddr_t
) + n
->m_len
,
1018 (unsigned)m
->m_len
);
1019 n
->m_len
+= m
->m_len
;
1020 sb
->sb_cc
+= m
->m_len
;
1030 m
->m_flags
&= ~M_EOR
;
1038 printf("semi-panic: sbcompress\n");
1040 postevent(0,sb
, EV_RWBYTES
);
1045 * Free all mbufs in a sockbuf.
1046 * Check that all resources are reclaimed.
1050 register struct sockbuf
*sb
;
1052 if (sb
->sb_so
== NULL
)
1053 panic ("sbflush sb->sb_so already null sb=%x\n", sb
);
1054 (void)sblock(sb
, M_WAIT
);
1055 while (sb
->sb_mbcnt
) {
1057 * Don't call sbdrop(sb, 0) if the leading mbuf is non-empty:
1058 * we would loop forever. Panic instead.
1060 if (!sb
->sb_cc
&& (sb
->sb_mb
== NULL
|| sb
->sb_mb
->m_len
))
1062 sbdrop(sb
, (int)sb
->sb_cc
);
1064 if (sb
->sb_cc
|| sb
->sb_mb
|| sb
->sb_mbcnt
|| sb
->sb_so
== NULL
)
1065 panic("sbflush: cc %ld || mb %p || mbcnt %ld sb_so=%x", sb
->sb_cc
, (void *)sb
->sb_mb
, sb
->sb_mbcnt
, sb
->sb_so
);
1067 postevent(0, sb
, EV_RWBYTES
);
1068 sbunlock(sb
, 1); /* keep socket locked */
1073 * Drop data from (the front of) a sockbuf.
1074 * use m_freem_list to free the mbuf structures
1075 * under a single lock... this is done by pruning
1076 * the top of the tree from the body by keeping track
1077 * of where we get to in the tree and then zeroing the
1078 * two pertinent pointers m_nextpkt and m_next
1079 * the socket buffer is then updated to point at the new
1080 * top of the tree and the pruned area is released via
1085 register struct sockbuf
*sb
;
1088 register struct mbuf
*m
, *free_list
, *ml
;
1089 struct mbuf
*next
, *last
;
1091 KERNEL_DEBUG((DBG_FNC_SBDROP
| DBG_FUNC_START
), sb
, len
, 0, 0, 0);
1093 next
= (m
= sb
->sb_mb
) ? m
->m_nextpkt
: 0;
1094 free_list
= last
= m
;
1095 ml
= (struct mbuf
*)0;
1100 /* temporarily replacing this panic with printf because
1101 * it occurs occasionally when closing a socket when there
1102 * is no harm in ignoring it. This problem will be investigated
1105 /* panic("sbdrop"); */
1106 printf("sbdrop - count not zero\n");
1108 /* zero the counts. if we have no mbufs, we have no data (PR-2986815) */
1114 next
= m
->m_nextpkt
;
1117 if (m
->m_len
> len
) {
1129 while (m
&& m
->m_len
== 0) {
1136 ml
->m_next
= (struct mbuf
*)0;
1137 last
->m_nextpkt
= (struct mbuf
*)0;
1138 m_freem_list(free_list
);
1142 m
->m_nextpkt
= next
;
1146 postevent(0, sb
, EV_RWBYTES
);
1148 KERNEL_DEBUG((DBG_FNC_SBDROP
| DBG_FUNC_END
), sb
, 0, 0, 0, 0);
1152 * Drop a record off the front of a sockbuf
1153 * and move the next record to the front.
1157 register struct sockbuf
*sb
;
1159 register struct mbuf
*m
, *mn
;
1163 sb
->sb_mb
= m
->m_nextpkt
;
1170 postevent(0, sb
, EV_RWBYTES
);
1174 * Create a "control" mbuf containing the specified data
1175 * with the specified type for presentation on a socket buffer.
1178 sbcreatecontrol(p
, size
, type
, level
)
1183 register struct cmsghdr
*cp
;
1186 if (CMSG_SPACE((u_int
)size
) > MLEN
)
1187 return ((struct mbuf
*) NULL
);
1188 if ((m
= m_get(M_DONTWAIT
, MT_CONTROL
)) == NULL
)
1189 return ((struct mbuf
*) NULL
);
1190 cp
= mtod(m
, struct cmsghdr
*);
1191 /* XXX check size? */
1192 (void)memcpy(CMSG_DATA(cp
), p
, size
);
1193 m
->m_len
= CMSG_SPACE(size
);
1194 cp
->cmsg_len
= CMSG_LEN(size
);
1195 cp
->cmsg_level
= level
;
1196 cp
->cmsg_type
= type
;
1201 * Some routines that return EOPNOTSUPP for entry points that are not
1202 * supported by a protocol. Fill in as needed.
1205 pru_abort_notsupp(struct socket
*so
)
1212 pru_accept_notsupp(struct socket
*so
, struct sockaddr
**nam
)
1218 pru_attach_notsupp(struct socket
*so
, int proto
, struct proc
*p
)
1224 pru_bind_notsupp(struct socket
*so
, struct sockaddr
*nam
, struct proc
*p
)
1230 pru_connect_notsupp(struct socket
*so
, struct sockaddr
*nam
, struct proc
*p
)
1236 pru_connect2_notsupp(struct socket
*so1
, struct socket
*so2
)
1242 pru_control_notsupp(struct socket
*so
, u_long cmd
, caddr_t data
,
1243 struct ifnet
*ifp
, struct proc
*p
)
1249 pru_detach_notsupp(struct socket
*so
)
1255 pru_disconnect_notsupp(struct socket
*so
)
1261 pru_listen_notsupp(struct socket
*so
, struct proc
*p
)
1267 pru_peeraddr_notsupp(struct socket
*so
, struct sockaddr
**nam
)
1273 pru_rcvd_notsupp(struct socket
*so
, int flags
)
1279 pru_rcvoob_notsupp(struct socket
*so
, struct mbuf
*m
, int flags
)
1285 pru_send_notsupp(struct socket
*so
, int flags
, struct mbuf
*m
,
1286 struct sockaddr
*addr
, struct mbuf
*control
,
1295 * This isn't really a ``null'' operation, but it's the default one
1296 * and doesn't do anything destructive.
1299 pru_sense_null(struct socket
*so
, struct stat
*sb
)
1301 sb
->st_blksize
= so
->so_snd
.sb_hiwat
;
1306 int pru_sosend_notsupp(struct socket
*so
, struct sockaddr
*addr
,
1307 struct uio
*uio
, struct mbuf
*top
,
1308 struct mbuf
*control
, int flags
)
1314 int pru_soreceive_notsupp(struct socket
*so
,
1315 struct sockaddr
**paddr
,
1316 struct uio
*uio
, struct mbuf
**mp0
,
1317 struct mbuf
**controlp
, int *flagsp
)
1324 pru_shutdown_notsupp(struct socket
*so
)
1330 pru_sockaddr_notsupp(struct socket
*so
, struct sockaddr
**nam
)
1335 int pru_sosend(struct socket
*so
, struct sockaddr
*addr
,
1336 struct uio
*uio
, struct mbuf
*top
,
1337 struct mbuf
*control
, int flags
)
1342 int pru_soreceive(struct socket
*so
,
1343 struct sockaddr
**paddr
,
1344 struct uio
*uio
, struct mbuf
**mp0
,
1345 struct mbuf
**controlp
, int *flagsp
)
1352 pru_sopoll_notsupp(__unused
struct socket
*so
, __unused
int events
,
1353 __unused kauth_cred_t cred
, __unused
void *wql
)
1361 * The following are macros on BSD and functions on Darwin
1365 * Do we need to notify the other side when I/O is possible?
1369 sb_notify(struct sockbuf
*sb
)
1371 return ((sb
->sb_flags
& (SB_WAIT
|SB_SEL
|SB_ASYNC
|SB_UPCALL
|SB_KNOTE
)) != 0);
1375 * How much space is there in a socket buffer (so->so_snd or so->so_rcv)?
1376 * This is problematical if the fields are unsigned, as the space might
1377 * still be negative (cc > hiwat or mbcnt > mbmax). Should detect
1378 * overflow and return 0. Should use "lmin" but it doesn't exist now.
1381 sbspace(struct sockbuf
*sb
)
1383 return ((long) imin((int)(sb
->sb_hiwat
- sb
->sb_cc
),
1384 (int)(sb
->sb_mbmax
- sb
->sb_mbcnt
)));
1387 /* do we have to send all at once on a socket? */
1389 sosendallatonce(struct socket
*so
)
1391 return (so
->so_proto
->pr_flags
& PR_ATOMIC
);
1394 /* can we read something from so? */
1396 soreadable(struct socket
*so
)
1398 return (so
->so_rcv
.sb_cc
>= so
->so_rcv
.sb_lowat
||
1399 (so
->so_state
& SS_CANTRCVMORE
) ||
1400 so
->so_comp
.tqh_first
|| so
->so_error
);
1403 /* can we write something to so? */
1406 sowriteable(struct socket
*so
)
1408 return ((sbspace(&(so
)->so_snd
) >= (so
)->so_snd
.sb_lowat
&&
1409 ((so
->so_state
&SS_ISCONNECTED
) ||
1410 (so
->so_proto
->pr_flags
&PR_CONNREQUIRED
)==0)) ||
1411 (so
->so_state
& SS_CANTSENDMORE
) ||
1415 /* adjust counters in sb reflecting allocation of m */
1418 sballoc(struct sockbuf
*sb
, struct mbuf
*m
)
1420 sb
->sb_cc
+= m
->m_len
;
1421 sb
->sb_mbcnt
+= MSIZE
;
1422 if (m
->m_flags
& M_EXT
)
1423 sb
->sb_mbcnt
+= m
->m_ext
.ext_size
;
1426 /* adjust counters in sb reflecting freeing of m */
1428 sbfree(struct sockbuf
*sb
, struct mbuf
*m
)
1430 sb
->sb_cc
-= m
->m_len
;
1431 sb
->sb_mbcnt
-= MSIZE
;
1432 if (m
->m_flags
& M_EXT
)
1433 sb
->sb_mbcnt
-= m
->m_ext
.ext_size
;
1437 * Set lock on sockbuf sb; sleep if lock is already held.
1438 * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
1439 * Returns error without lock if sleep is interrupted.
1442 sblock(struct sockbuf
*sb
, int wf
)
1444 return(sb
->sb_flags
& SB_LOCK
?
1445 ((wf
== M_WAIT
) ? sb_lock(sb
) : EWOULDBLOCK
) :
1446 (sb
->sb_flags
|= SB_LOCK
), 0);
1449 /* release lock on sockbuf sb */
1451 sbunlock(struct sockbuf
*sb
, int keeplocked
)
1453 struct socket
*so
= sb
->sb_so
;
1455 lck_mtx_t
*mutex_held
;
1458 __asm__
volatile("mflr %0" : "=r" (lr
));
1461 sb
->sb_flags
&= ~SB_LOCK
;
1463 if (so
->so_proto
->pr_getlock
!= NULL
)
1464 mutex_held
= (*so
->so_proto
->pr_getlock
)(so
, 0);
1466 mutex_held
= so
->so_proto
->pr_domain
->dom_mtx
;
1468 if (keeplocked
== 0)
1469 lck_mtx_assert(mutex_held
, LCK_MTX_ASSERT_OWNED
);
1471 if (sb
->sb_flags
& SB_WANT
) {
1472 sb
->sb_flags
&= ~SB_WANT
;
1473 if (so
->so_usecount
< 0)
1474 panic("sbunlock: b4 wakeup so=%x ref=%d lr=%x sb_flags=%x\n", sb
->sb_so
, so
->so_usecount
, lr_saved
, sb
->sb_flags
);
1476 wakeup((caddr_t
)&(sb
)->sb_flags
);
1478 if (keeplocked
== 0) { /* unlock on exit */
1480 if (so
->so_usecount
< 0)
1481 panic("sbunlock: unlock on exit so=%x lr=%x sb_flags=%x\n", so
, so
->so_usecount
,lr_saved
, sb
->sb_flags
);
1482 so
->reserved4
= lr_saved
;
1483 lck_mtx_unlock(mutex_held
);
1488 sorwakeup(struct socket
* so
)
1490 if (sb_notify(&so
->so_rcv
))
1491 sowakeup(so
, &so
->so_rcv
);
1495 sowwakeup(struct socket
* so
)
1497 if (sb_notify(&so
->so_snd
))
1498 sowakeup(so
, &so
->so_snd
);
1503 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
1506 dup_sockaddr(sa
, canwait
)
1507 struct sockaddr
*sa
;
1510 struct sockaddr
*sa2
;
1512 MALLOC(sa2
, struct sockaddr
*, sa
->sa_len
, M_SONAME
,
1513 canwait
? M_WAITOK
: M_NOWAIT
);
1515 bcopy(sa
, sa2
, sa
->sa_len
);
1520 * Create an external-format (``xsocket'') structure using the information
1521 * in the kernel-format socket structure pointed to by so. This is done
1522 * to reduce the spew of irrelevant information over this interface,
1523 * to isolate user code from changes in the kernel structure, and
1524 * potentially to provide information-hiding if we decide that
1525 * some of this information should be hidden from users.
1528 sotoxsocket(struct socket
*so
, struct xsocket
*xso
)
1530 xso
->xso_len
= sizeof *xso
;
1532 xso
->so_type
= so
->so_type
;
1533 xso
->so_options
= so
->so_options
;
1534 xso
->so_linger
= so
->so_linger
;
1535 xso
->so_state
= so
->so_state
;
1536 xso
->so_pcb
= so
->so_pcb
;
1538 xso
->xso_protocol
= so
->so_proto
->pr_protocol
;
1539 xso
->xso_family
= so
->so_proto
->pr_domain
->dom_family
;
1542 xso
->xso_protocol
= xso
->xso_family
= 0;
1543 xso
->so_qlen
= so
->so_qlen
;
1544 xso
->so_incqlen
= so
->so_incqlen
;
1545 xso
->so_qlimit
= so
->so_qlimit
;
1546 xso
->so_timeo
= so
->so_timeo
;
1547 xso
->so_error
= so
->so_error
;
1548 xso
->so_pgid
= so
->so_pgid
;
1549 xso
->so_oobmark
= so
->so_oobmark
;
1550 sbtoxsockbuf(&so
->so_snd
, &xso
->so_snd
);
1551 sbtoxsockbuf(&so
->so_rcv
, &xso
->so_rcv
);
1552 xso
->so_uid
= so
->so_uid
;
1556 * This does the same for sockbufs. Note that the xsockbuf structure,
1557 * since it is always embedded in a socket, does not include a self
1558 * pointer nor a length. We make this entry point public in case
1559 * some other mechanism needs it.
1562 sbtoxsockbuf(struct sockbuf
*sb
, struct xsockbuf
*xsb
)
1564 xsb
->sb_cc
= sb
->sb_cc
;
1565 xsb
->sb_hiwat
= sb
->sb_hiwat
;
1566 xsb
->sb_mbcnt
= sb
->sb_mbcnt
;
1567 xsb
->sb_mbmax
= sb
->sb_mbmax
;
1568 xsb
->sb_lowat
= sb
->sb_lowat
;
1569 xsb
->sb_flags
= sb
->sb_flags
;
1570 xsb
->sb_timeo
= (u_long
)(sb
->sb_timeo
.tv_sec
* hz
) + sb
->sb_timeo
.tv_usec
/ tick
;
1571 if (xsb
->sb_timeo
== 0 && sb
->sb_timeo
.tv_usec
!= 0)
1576 * Here is the definition of some of the basic objects in the kern.ipc
1577 * branch of the MIB.
1579 SYSCTL_NODE(_kern
, KERN_IPC
, ipc
, CTLFLAG_RW
, 0, "IPC");
1581 /* This takes the place of kern.maxsockbuf, which moved to kern.ipc. */
1583 SYSCTL_INT(_kern
, KERN_DUMMY
, dummy
, CTLFLAG_RW
, &dummy
, 0, "");
1585 SYSCTL_INT(_kern_ipc
, KIPC_MAXSOCKBUF
, maxsockbuf
, CTLFLAG_RW
,
1586 &sb_max
, 0, "Maximum socket buffer size");
1587 SYSCTL_INT(_kern_ipc
, OID_AUTO
, maxsockets
, CTLFLAG_RD
,
1588 &maxsockets
, 0, "Maximum number of sockets avaliable");
1589 SYSCTL_INT(_kern_ipc
, KIPC_SOCKBUF_WASTE
, sockbuf_waste_factor
, CTLFLAG_RW
,
1590 &sb_efficiency
, 0, "");
1591 SYSCTL_INT(_kern_ipc
, KIPC_NMBCLUSTERS
, nmbclusters
, CTLFLAG_RD
, &nmbclusters
, 0, "");