2 * Copyright (c) 2000-2016 Apple Computer, Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
29 #include <kern/policy_internal.h>
30 #include <mach/task_policy.h>
32 #include <mach/mach_types.h>
33 #include <mach/task_server.h>
35 #include <kern/host.h> /* host_priv_self() */
36 #include <mach/host_priv.h> /* host_get_special_port() */
37 #include <mach/host_special_ports.h> /* RESOURCE_NOTIFY_PORT */
38 #include <kern/sched.h>
39 #include <kern/task.h>
40 #include <mach/thread_policy.h>
41 #include <sys/errno.h>
42 #include <sys/resource.h>
43 #include <machine/limits.h>
44 #include <kern/ledger.h>
45 #include <kern/thread_call.h>
47 #include <kern/coalition.h>
49 #include <kern/telemetry.h>
52 #include <kern/kalloc.h>
53 #include <sys/errno.h>
54 #endif /* CONFIG_EMBEDDED */
56 #if IMPORTANCE_INHERITANCE
57 #include <ipc/ipc_importance.h>
59 #include <mach/machine/sdt.h>
60 #endif /* IMPORTANCE_TRACE */
61 #endif /* IMPORTANCE_INHERITACE */
63 #include <sys/kdebug.h>
68 * This subsystem manages task and thread IO priority and backgrounding,
69 * as well as importance inheritance, process suppression, task QoS, and apptype.
70 * These properties have a suprising number of complex interactions, so they are
71 * centralized here in one state machine to simplify the implementation of those interactions.
74 * Threads and tasks have two policy fields: requested, effective.
75 * Requested represents the wishes of each interface that influences task policy.
76 * Effective represents the distillation of that policy into a set of behaviors.
78 * Each thread making a modification in the policy system passes a 'pending' struct,
79 * which tracks updates that will be applied after dropping the policy engine lock.
81 * Each interface that has an input into the task policy state machine controls a field in requested.
82 * If the interface has a getter, it returns what is in the field in requested, but that is
83 * not necessarily what is actually in effect.
85 * All kernel subsystems that behave differently based on task policy call into
86 * the proc_get_effective_(task|thread)_policy functions, which return the decision of the task policy state machine
87 * for that subsystem by querying only the 'effective' field.
89 * Policy change operations:
90 * Here are the steps to change a policy on a task or thread:
92 * 2) Change requested field for the relevant policy
93 * 3) Run a task policy update, which recalculates effective based on requested,
94 * then takes a diff between the old and new versions of requested and calls the relevant
95 * other subsystems to apply these changes, and updates the pending field.
97 * 5) Run task policy update complete, which looks at the pending field to update
98 * subsystems which cannot be touched while holding the task lock.
100 * To add a new requested policy, add the field in the requested struct, the flavor in task.h,
101 * the setter and getter in proc_(set|get)_task_policy*,
102 * then set up the effects of that behavior in task_policy_update*. If the policy manifests
103 * itself as a distinct effective policy, add it to the effective struct and add it to the
104 * proc_get_effective_task_policy accessor.
106 * Most policies are set via proc_set_task_policy, but policies that don't fit that interface
107 * roll their own lock/set/update/unlock/complete code inside this file.
112 * These are a set of behaviors that can be requested for a task. They currently have specific
113 * implied actions when they're enabled, but they may be made customizable in the future.
115 * When the affected task is boosted, we temporarily disable the suppression behaviors
116 * so that the affected process has a chance to run so it can call the API to permanently
117 * disable the suppression behaviors.
121 * Changing task policy on a task takes the task lock.
122 * Changing task policy on a thread takes the thread mutex.
123 * Task policy changes that affect threads will take each thread's mutex to update it if necessary.
125 * Querying the effective policy does not take a lock, because callers
126 * may run in interrupt context or other place where locks are not OK.
128 * This means that any notification of state change needs to be externally synchronized.
129 * We do this by idempotent callouts after the state has changed to ask
130 * other subsystems to update their view of the world.
132 * TODO: Move all cpu/wakes/io monitor code into a separate file
133 * TODO: Move all importance code over to importance subsystem
134 * TODO: Move all taskwatch code into a separate file
135 * TODO: Move all VM importance code into a separate file
138 /* Task policy related helper functions */
139 static void proc_set_task_policy_locked(task_t task
, int category
, int flavor
, int value
, int value2
);
141 static void task_policy_update_locked(task_t task
, task_pend_token_t pend_token
);
142 static void task_policy_update_internal_locked(task_t task
, boolean_t in_create
, task_pend_token_t pend_token
);
144 /* For attributes that have two scalars as input/output */
145 static void proc_set_task_policy2(task_t task
, int category
, int flavor
, int value1
, int value2
);
146 static void proc_get_task_policy2(task_t task
, int category
, int flavor
, int *value1
, int *value2
);
148 static boolean_t
task_policy_update_coalition_focal_tasks(task_t task
, int prev_role
, int next_role
, task_pend_token_t pend_token
);
150 static uint64_t task_requested_bitfield(task_t task
);
151 static uint64_t task_effective_bitfield(task_t task
);
153 /* Convenience functions for munging a policy bitfield into a tracepoint */
154 static uintptr_t trequested_0(task_t task
);
155 static uintptr_t trequested_1(task_t task
);
156 static uintptr_t teffective_0(task_t task
);
157 static uintptr_t teffective_1(task_t task
);
159 /* CPU limits helper functions */
160 static int task_set_cpuusage(task_t task
, uint8_t percentage
, uint64_t interval
, uint64_t deadline
, int scope
, int entitled
);
161 static int task_get_cpuusage(task_t task
, uint8_t *percentagep
, uint64_t *intervalp
, uint64_t *deadlinep
, int *scope
);
162 static int task_enable_cpumon_locked(task_t task
);
163 static int task_disable_cpumon(task_t task
);
164 static int task_clear_cpuusage_locked(task_t task
, int cpumon_entitled
);
165 static int task_apply_resource_actions(task_t task
, int type
);
166 static void task_action_cpuusage(thread_call_param_t param0
, thread_call_param_t param1
);
169 typedef struct proc
* proc_t
;
170 int proc_pid(void *proc
);
171 extern int proc_selfpid(void);
172 extern char * proc_name_address(void *p
);
173 extern char * proc_best_name(proc_t proc
);
175 extern int proc_pidpathinfo_internal(proc_t p
, uint64_t arg
,
176 char *buffer
, uint32_t buffersize
,
178 #endif /* MACH_BSD */
182 /* TODO: make CONFIG_TASKWATCH */
183 /* Taskwatch related helper functions */
184 static void set_thread_appbg(thread_t thread
, int setbg
, int importance
);
185 static void add_taskwatch_locked(task_t task
, task_watch_t
* twp
);
186 static void remove_taskwatch_locked(task_t task
, task_watch_t
* twp
);
187 static void task_watch_lock(void);
188 static void task_watch_unlock(void);
189 static void apply_appstate_watchers(task_t task
);
191 typedef struct task_watcher
{
192 queue_chain_t tw_links
; /* queueing of threads */
193 task_t tw_task
; /* task that is being watched */
194 thread_t tw_thread
; /* thread that is watching the watch_task */
195 int tw_state
; /* the current app state of the thread */
196 int tw_importance
; /* importance prior to backgrounding */
199 typedef struct thread_watchlist
{
200 thread_t thread
; /* thread being worked on for taskwatch action */
201 int importance
; /* importance to be restored if thread is being made active */
202 } thread_watchlist_t
;
204 #endif /* CONFIG_EMBEDDED */
206 extern int memorystatus_update_priority_for_appnap(proc_t p
, boolean_t is_appnap
);
208 /* Importance Inheritance related helper functions */
210 #if IMPORTANCE_INHERITANCE
212 static void task_importance_mark_live_donor(task_t task
, boolean_t donating
);
213 static void task_importance_mark_receiver(task_t task
, boolean_t receiving
);
214 static void task_importance_mark_denap_receiver(task_t task
, boolean_t denap
);
216 static boolean_t
task_is_marked_live_importance_donor(task_t task
);
217 static boolean_t
task_is_importance_receiver(task_t task
);
218 static boolean_t
task_is_importance_denap_receiver(task_t task
);
220 static int task_importance_hold_internal_assertion(task_t target_task
, uint32_t count
);
222 static void task_add_importance_watchport(task_t task
, mach_port_t port
, int *boostp
);
223 static void task_importance_update_live_donor(task_t target_task
);
225 static void task_set_boost_locked(task_t task
, boolean_t boost_active
);
227 #endif /* IMPORTANCE_INHERITANCE */
230 #define __imptrace_only
231 #else /* IMPORTANCE_TRACE */
232 #define __imptrace_only __unused
233 #endif /* !IMPORTANCE_TRACE */
235 #if IMPORTANCE_INHERITANCE
238 #define __imp_only __unused
242 * Default parameters for certain policies
245 int proc_standard_daemon_tier
= THROTTLE_LEVEL_TIER1
;
246 int proc_suppressed_disk_tier
= THROTTLE_LEVEL_TIER1
;
247 int proc_tal_disk_tier
= THROTTLE_LEVEL_TIER1
;
249 int proc_graphics_timer_qos
= (LATENCY_QOS_TIER_0
& 0xFF);
251 const int proc_default_bg_iotier
= THROTTLE_LEVEL_TIER2
;
253 /* Latency/throughput QoS fields remain zeroed, i.e. TIER_UNSPECIFIED at creation */
254 const struct task_requested_policy default_task_requested_policy
= {
255 .trp_bg_iotier
= proc_default_bg_iotier
257 const struct task_effective_policy default_task_effective_policy
= {};
260 * Default parameters for CPU usage monitor.
262 * Default setting is 50% over 3 minutes.
264 #define DEFAULT_CPUMON_PERCENTAGE 50
265 #define DEFAULT_CPUMON_INTERVAL (3 * 60)
267 uint8_t proc_max_cpumon_percentage
;
268 uint64_t proc_max_cpumon_interval
;
272 qos_latency_policy_validate(task_latency_qos_t ltier
)
274 if ((ltier
!= LATENCY_QOS_TIER_UNSPECIFIED
) &&
275 ((ltier
> LATENCY_QOS_TIER_5
) || (ltier
< LATENCY_QOS_TIER_0
))) {
276 return KERN_INVALID_ARGUMENT
;
283 qos_throughput_policy_validate(task_throughput_qos_t ttier
)
285 if ((ttier
!= THROUGHPUT_QOS_TIER_UNSPECIFIED
) &&
286 ((ttier
> THROUGHPUT_QOS_TIER_5
) || (ttier
< THROUGHPUT_QOS_TIER_0
))) {
287 return KERN_INVALID_ARGUMENT
;
294 task_qos_policy_validate(task_qos_policy_t qosinfo
, mach_msg_type_number_t count
)
296 if (count
< TASK_QOS_POLICY_COUNT
) {
297 return KERN_INVALID_ARGUMENT
;
300 task_latency_qos_t ltier
= qosinfo
->task_latency_qos_tier
;
301 task_throughput_qos_t ttier
= qosinfo
->task_throughput_qos_tier
;
303 kern_return_t kr
= qos_latency_policy_validate(ltier
);
305 if (kr
!= KERN_SUCCESS
) {
309 kr
= qos_throughput_policy_validate(ttier
);
315 qos_extract(uint32_t qv
)
321 qos_latency_policy_package(uint32_t qv
)
323 return (qv
== LATENCY_QOS_TIER_UNSPECIFIED
) ? LATENCY_QOS_TIER_UNSPECIFIED
: ((0xFF << 16) | qv
);
327 qos_throughput_policy_package(uint32_t qv
)
329 return (qv
== THROUGHPUT_QOS_TIER_UNSPECIFIED
) ? THROUGHPUT_QOS_TIER_UNSPECIFIED
: ((0xFE << 16) | qv
);
332 #define TASK_POLICY_SUPPRESSION_DISABLE 0x1
333 #define TASK_POLICY_SUPPRESSION_IOTIER2 0x2
334 #define TASK_POLICY_SUPPRESSION_NONDONOR 0x4
335 /* TEMPORARY boot-arg controlling task_policy suppression (App Nap) */
336 static boolean_t task_policy_suppression_flags
= TASK_POLICY_SUPPRESSION_IOTIER2
|
337 TASK_POLICY_SUPPRESSION_NONDONOR
;
342 task_policy_flavor_t flavor
,
343 task_policy_t policy_info
,
344 mach_msg_type_number_t count
)
346 kern_return_t result
= KERN_SUCCESS
;
348 if (task
== TASK_NULL
|| task
== kernel_task
) {
349 return KERN_INVALID_ARGUMENT
;
353 case TASK_CATEGORY_POLICY
: {
354 task_category_policy_t info
= (task_category_policy_t
)policy_info
;
356 if (count
< TASK_CATEGORY_POLICY_COUNT
) {
357 return KERN_INVALID_ARGUMENT
;
361 /* On embedded, you can't modify your own role. */
362 if (current_task() == task
) {
363 return KERN_INVALID_ARGUMENT
;
367 switch (info
->role
) {
368 case TASK_FOREGROUND_APPLICATION
:
369 case TASK_BACKGROUND_APPLICATION
:
370 case TASK_DEFAULT_APPLICATION
:
371 proc_set_task_policy(task
,
372 TASK_POLICY_ATTRIBUTE
, TASK_POLICY_ROLE
,
376 case TASK_CONTROL_APPLICATION
:
377 if (task
!= current_task() || task
->sec_token
.val
[0] != 0) {
378 result
= KERN_INVALID_ARGUMENT
;
380 proc_set_task_policy(task
,
381 TASK_POLICY_ATTRIBUTE
, TASK_POLICY_ROLE
,
386 case TASK_GRAPHICS_SERVER
:
387 /* TODO: Restrict this role to FCFS <rdar://problem/12552788> */
388 if (task
!= current_task() || task
->sec_token
.val
[0] != 0) {
389 result
= KERN_INVALID_ARGUMENT
;
391 proc_set_task_policy(task
,
392 TASK_POLICY_ATTRIBUTE
, TASK_POLICY_ROLE
,
397 result
= KERN_INVALID_ARGUMENT
;
399 } /* switch (info->role) */
404 /* Desired energy-efficiency/performance "quality-of-service" */
405 case TASK_BASE_QOS_POLICY
:
406 case TASK_OVERRIDE_QOS_POLICY
:
408 task_qos_policy_t qosinfo
= (task_qos_policy_t
)policy_info
;
409 kern_return_t kr
= task_qos_policy_validate(qosinfo
, count
);
411 if (kr
!= KERN_SUCCESS
) {
416 uint32_t lqos
= qos_extract(qosinfo
->task_latency_qos_tier
);
417 uint32_t tqos
= qos_extract(qosinfo
->task_throughput_qos_tier
);
419 proc_set_task_policy2(task
, TASK_POLICY_ATTRIBUTE
,
420 flavor
== TASK_BASE_QOS_POLICY
? TASK_POLICY_BASE_LATENCY_AND_THROUGHPUT_QOS
: TASK_POLICY_OVERRIDE_LATENCY_AND_THROUGHPUT_QOS
,
425 case TASK_BASE_LATENCY_QOS_POLICY
:
427 task_qos_policy_t qosinfo
= (task_qos_policy_t
)policy_info
;
428 kern_return_t kr
= task_qos_policy_validate(qosinfo
, count
);
430 if (kr
!= KERN_SUCCESS
) {
434 uint32_t lqos
= qos_extract(qosinfo
->task_latency_qos_tier
);
436 proc_set_task_policy(task
, TASK_POLICY_ATTRIBUTE
, TASK_BASE_LATENCY_QOS_POLICY
, lqos
);
440 case TASK_BASE_THROUGHPUT_QOS_POLICY
:
442 task_qos_policy_t qosinfo
= (task_qos_policy_t
)policy_info
;
443 kern_return_t kr
= task_qos_policy_validate(qosinfo
, count
);
445 if (kr
!= KERN_SUCCESS
) {
449 uint32_t tqos
= qos_extract(qosinfo
->task_throughput_qos_tier
);
451 proc_set_task_policy(task
, TASK_POLICY_ATTRIBUTE
, TASK_BASE_THROUGHPUT_QOS_POLICY
, tqos
);
455 case TASK_SUPPRESSION_POLICY
:
459 * Suppression policy is not enabled for embedded
460 * because apps aren't marked as denap receivers
462 result
= KERN_INVALID_ARGUMENT
;
464 #else /* CONFIG_EMBEDDED */
466 task_suppression_policy_t info
= (task_suppression_policy_t
)policy_info
;
468 if (count
< TASK_SUPPRESSION_POLICY_COUNT
) {
469 return KERN_INVALID_ARGUMENT
;
472 struct task_qos_policy qosinfo
;
474 qosinfo
.task_latency_qos_tier
= info
->timer_throttle
;
475 qosinfo
.task_throughput_qos_tier
= info
->throughput_qos
;
477 kern_return_t kr
= task_qos_policy_validate(&qosinfo
, TASK_QOS_POLICY_COUNT
);
479 if (kr
!= KERN_SUCCESS
) {
483 /* TEMPORARY disablement of task suppression */
485 (task_policy_suppression_flags
& TASK_POLICY_SUPPRESSION_DISABLE
)) {
489 struct task_pend_token pend_token
= {};
493 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
494 (IMPORTANCE_CODE(IMP_TASK_SUPPRESSION
, info
->active
)) | DBG_FUNC_START
,
495 proc_selfpid(), task_pid(task
), trequested_0(task
),
496 trequested_1(task
), 0);
498 task
->requested_policy
.trp_sup_active
= (info
->active
) ? 1 : 0;
499 task
->requested_policy
.trp_sup_lowpri_cpu
= (info
->lowpri_cpu
) ? 1 : 0;
500 task
->requested_policy
.trp_sup_timer
= qos_extract(info
->timer_throttle
);
501 task
->requested_policy
.trp_sup_disk
= (info
->disk_throttle
) ? 1 : 0;
502 task
->requested_policy
.trp_sup_throughput
= qos_extract(info
->throughput_qos
);
503 task
->requested_policy
.trp_sup_cpu
= (info
->suppressed_cpu
) ? 1 : 0;
504 task
->requested_policy
.trp_sup_bg_sockets
= (info
->background_sockets
) ? 1 : 0;
506 task_policy_update_locked(task
, &pend_token
);
508 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
509 (IMPORTANCE_CODE(IMP_TASK_SUPPRESSION
, info
->active
)) | DBG_FUNC_END
,
510 proc_selfpid(), task_pid(task
), trequested_0(task
),
511 trequested_1(task
), 0);
515 task_policy_update_complete_unlocked(task
, &pend_token
);
519 #endif /* CONFIG_EMBEDDED */
523 result
= KERN_INVALID_ARGUMENT
;
530 /* Sets BSD 'nice' value on the task */
534 integer_t importance
)
536 if (task
== TASK_NULL
|| task
== kernel_task
) {
537 return KERN_INVALID_ARGUMENT
;
545 return KERN_TERMINATED
;
548 if (proc_get_effective_task_policy(task
, TASK_POLICY_ROLE
) >= TASK_CONTROL_APPLICATION
) {
551 return KERN_INVALID_ARGUMENT
;
554 task
->importance
= importance
;
556 struct task_pend_token pend_token
= {};
558 task_policy_update_locked(task
, &pend_token
);
562 task_policy_update_complete_unlocked(task
, &pend_token
);
570 task_policy_flavor_t flavor
,
571 task_policy_t policy_info
,
572 mach_msg_type_number_t
*count
,
573 boolean_t
*get_default
)
575 if (task
== TASK_NULL
|| task
== kernel_task
) {
576 return KERN_INVALID_ARGUMENT
;
580 case TASK_CATEGORY_POLICY
:
582 task_category_policy_t info
= (task_category_policy_t
)policy_info
;
584 if (*count
< TASK_CATEGORY_POLICY_COUNT
) {
585 return KERN_INVALID_ARGUMENT
;
589 info
->role
= TASK_UNSPECIFIED
;
591 info
->role
= proc_get_task_policy(task
, TASK_POLICY_ATTRIBUTE
, TASK_POLICY_ROLE
);
596 case TASK_BASE_QOS_POLICY
: /* FALLTHRU */
597 case TASK_OVERRIDE_QOS_POLICY
:
599 task_qos_policy_t info
= (task_qos_policy_t
)policy_info
;
601 if (*count
< TASK_QOS_POLICY_COUNT
) {
602 return KERN_INVALID_ARGUMENT
;
606 info
->task_latency_qos_tier
= LATENCY_QOS_TIER_UNSPECIFIED
;
607 info
->task_throughput_qos_tier
= THROUGHPUT_QOS_TIER_UNSPECIFIED
;
608 } else if (flavor
== TASK_BASE_QOS_POLICY
) {
611 proc_get_task_policy2(task
, TASK_POLICY_ATTRIBUTE
, TASK_POLICY_BASE_LATENCY_AND_THROUGHPUT_QOS
, &value1
, &value2
);
613 info
->task_latency_qos_tier
= qos_latency_policy_package(value1
);
614 info
->task_throughput_qos_tier
= qos_throughput_policy_package(value2
);
615 } else if (flavor
== TASK_OVERRIDE_QOS_POLICY
) {
618 proc_get_task_policy2(task
, TASK_POLICY_ATTRIBUTE
, TASK_POLICY_OVERRIDE_LATENCY_AND_THROUGHPUT_QOS
, &value1
, &value2
);
620 info
->task_latency_qos_tier
= qos_latency_policy_package(value1
);
621 info
->task_throughput_qos_tier
= qos_throughput_policy_package(value2
);
627 case TASK_POLICY_STATE
:
629 task_policy_state_t info
= (task_policy_state_t
)policy_info
;
631 if (*count
< TASK_POLICY_STATE_COUNT
) {
632 return KERN_INVALID_ARGUMENT
;
635 /* Only root can get this info */
636 if (current_task()->sec_token
.val
[0] != 0) {
637 return KERN_PROTECTION_FAILURE
;
644 info
->imp_assertcnt
= 0;
645 info
->imp_externcnt
= 0;
647 info
->imp_transitions
= 0;
651 info
->requested
= task_requested_bitfield(task
);
652 info
->effective
= task_effective_bitfield(task
);
655 info
->tps_requested_policy
= *(uint64_t*)(&task
->requested_policy
);
656 info
->tps_effective_policy
= *(uint64_t*)(&task
->effective_policy
);
659 if (task
->task_imp_base
!= NULL
) {
660 info
->imp_assertcnt
= task
->task_imp_base
->iit_assertcnt
;
661 info
->imp_externcnt
= IIT_EXTERN(task
->task_imp_base
);
662 info
->flags
|= (task_is_marked_importance_receiver(task
) ? TASK_IMP_RECEIVER
: 0);
663 info
->flags
|= (task_is_marked_importance_denap_receiver(task
) ? TASK_DENAP_RECEIVER
: 0);
664 info
->flags
|= (task_is_marked_importance_donor(task
) ? TASK_IMP_DONOR
: 0);
665 info
->flags
|= (task_is_marked_live_importance_donor(task
) ? TASK_IMP_LIVE_DONOR
: 0);
666 info
->imp_transitions
= task
->task_imp_base
->iit_transitions
;
668 info
->imp_assertcnt
= 0;
669 info
->imp_externcnt
= 0;
670 info
->imp_transitions
= 0;
678 case TASK_SUPPRESSION_POLICY
:
680 task_suppression_policy_t info
= (task_suppression_policy_t
)policy_info
;
682 if (*count
< TASK_SUPPRESSION_POLICY_COUNT
) {
683 return KERN_INVALID_ARGUMENT
;
690 info
->lowpri_cpu
= 0;
691 info
->timer_throttle
= LATENCY_QOS_TIER_UNSPECIFIED
;
692 info
->disk_throttle
= 0;
695 info
->throughput_qos
= 0;
696 info
->suppressed_cpu
= 0;
698 info
->active
= task
->requested_policy
.trp_sup_active
;
699 info
->lowpri_cpu
= task
->requested_policy
.trp_sup_lowpri_cpu
;
700 info
->timer_throttle
= qos_latency_policy_package(task
->requested_policy
.trp_sup_timer
);
701 info
->disk_throttle
= task
->requested_policy
.trp_sup_disk
;
704 info
->throughput_qos
= qos_throughput_policy_package(task
->requested_policy
.trp_sup_throughput
);
705 info
->suppressed_cpu
= task
->requested_policy
.trp_sup_cpu
;
706 info
->background_sockets
= task
->requested_policy
.trp_sup_bg_sockets
;
714 return KERN_INVALID_ARGUMENT
;
721 * Called at task creation
722 * We calculate the correct effective but don't apply it to anything yet.
723 * The threads, etc will inherit from the task as they get created.
726 task_policy_create(task_t task
, task_t parent_task
)
728 task
->requested_policy
.trp_apptype
= parent_task
->requested_policy
.trp_apptype
;
730 task
->requested_policy
.trp_int_darwinbg
= parent_task
->requested_policy
.trp_int_darwinbg
;
731 task
->requested_policy
.trp_ext_darwinbg
= parent_task
->requested_policy
.trp_ext_darwinbg
;
732 task
->requested_policy
.trp_int_iotier
= parent_task
->requested_policy
.trp_int_iotier
;
733 task
->requested_policy
.trp_ext_iotier
= parent_task
->requested_policy
.trp_ext_iotier
;
734 task
->requested_policy
.trp_int_iopassive
= parent_task
->requested_policy
.trp_int_iopassive
;
735 task
->requested_policy
.trp_ext_iopassive
= parent_task
->requested_policy
.trp_ext_iopassive
;
736 task
->requested_policy
.trp_bg_iotier
= parent_task
->requested_policy
.trp_bg_iotier
;
737 task
->requested_policy
.trp_terminated
= parent_task
->requested_policy
.trp_terminated
;
738 task
->requested_policy
.trp_qos_clamp
= parent_task
->requested_policy
.trp_qos_clamp
;
740 if (task
->requested_policy
.trp_apptype
== TASK_APPTYPE_DAEMON_ADAPTIVE
&& !task_is_exec_copy(task
)) {
741 /* Do not update the apptype for exec copy task */
742 if (parent_task
->requested_policy
.trp_boosted
) {
743 task
->requested_policy
.trp_apptype
= TASK_APPTYPE_DAEMON_INTERACTIVE
;
744 task_importance_mark_donor(task
, TRUE
);
746 task
->requested_policy
.trp_apptype
= TASK_APPTYPE_DAEMON_BACKGROUND
;
747 task_importance_mark_receiver(task
, FALSE
);
751 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
752 (IMPORTANCE_CODE(IMP_UPDATE
, (IMP_UPDATE_TASK_CREATE
| TASK_POLICY_TASK
))) | DBG_FUNC_START
,
753 task_pid(task
), teffective_0(task
),
754 teffective_1(task
), task
->priority
, 0);
756 task_policy_update_internal_locked(task
, TRUE
, NULL
);
758 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
759 (IMPORTANCE_CODE(IMP_UPDATE
, (IMP_UPDATE_TASK_CREATE
| TASK_POLICY_TASK
))) | DBG_FUNC_END
,
760 task_pid(task
), teffective_0(task
),
761 teffective_1(task
), task
->priority
, 0);
763 task_importance_update_live_donor(task
);
768 task_policy_update_locked(task_t task
, task_pend_token_t pend_token
)
770 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
771 (IMPORTANCE_CODE(IMP_UPDATE
, TASK_POLICY_TASK
) | DBG_FUNC_START
),
772 task_pid(task
), teffective_0(task
),
773 teffective_1(task
), task
->priority
, 0);
775 task_policy_update_internal_locked(task
, FALSE
, pend_token
);
777 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
778 (IMPORTANCE_CODE(IMP_UPDATE
, TASK_POLICY_TASK
)) | DBG_FUNC_END
,
779 task_pid(task
), teffective_0(task
),
780 teffective_1(task
), task
->priority
, 0);
784 * One state update function TO RULE THEM ALL
786 * This function updates the task or thread effective policy fields
787 * and pushes the results to the relevant subsystems.
789 * Must call update_complete after unlocking the task,
790 * as some subsystems cannot be updated while holding the task lock.
792 * Called with task locked, not thread
796 task_policy_update_internal_locked(task_t task
, boolean_t in_create
, task_pend_token_t pend_token
)
800 * Gather requested policy
803 struct task_requested_policy requested
= task
->requested_policy
;
807 * Calculate new effective policies from requested policy and task state
809 * Don't change requested, it won't take effect
812 struct task_effective_policy next
= {};
814 /* Update task role */
815 next
.tep_role
= requested
.trp_role
;
817 /* Set task qos clamp and ceiling */
818 next
.tep_qos_clamp
= requested
.trp_qos_clamp
;
820 if (requested
.trp_apptype
== TASK_APPTYPE_APP_DEFAULT
||
821 requested
.trp_apptype
== TASK_APPTYPE_APP_TAL
) {
822 switch (next
.tep_role
) {
823 case TASK_FOREGROUND_APPLICATION
:
824 /* Foreground apps get urgent scheduler priority */
825 next
.tep_qos_ui_is_urgent
= 1;
826 next
.tep_qos_ceiling
= THREAD_QOS_UNSPECIFIED
;
829 case TASK_BACKGROUND_APPLICATION
:
830 /* This is really 'non-focal but on-screen' */
831 next
.tep_qos_ceiling
= THREAD_QOS_UNSPECIFIED
;
834 case TASK_DEFAULT_APPLICATION
:
835 /* This is 'may render UI but we don't know if it's focal/nonfocal' */
836 next
.tep_qos_ceiling
= THREAD_QOS_UNSPECIFIED
;
839 case TASK_NONUI_APPLICATION
:
840 /* i.e. 'off-screen' */
841 next
.tep_qos_ceiling
= THREAD_QOS_LEGACY
;
844 case TASK_CONTROL_APPLICATION
:
845 case TASK_GRAPHICS_SERVER
:
846 next
.tep_qos_ui_is_urgent
= 1;
847 next
.tep_qos_ceiling
= THREAD_QOS_UNSPECIFIED
;
850 case TASK_THROTTLE_APPLICATION
:
851 /* i.e. 'TAL launch' */
852 next
.tep_qos_ceiling
= THREAD_QOS_UTILITY
;
855 case TASK_DARWINBG_APPLICATION
:
856 /* i.e. 'DARWIN_BG throttled background application' */
857 next
.tep_qos_ceiling
= THREAD_QOS_BACKGROUND
;
860 case TASK_UNSPECIFIED
:
862 /* Apps that don't have an application role get
863 * USER_INTERACTIVE and USER_INITIATED squashed to LEGACY */
864 next
.tep_qos_ceiling
= THREAD_QOS_LEGACY
;
868 /* Daemons get USER_INTERACTIVE squashed to USER_INITIATED */
869 next
.tep_qos_ceiling
= THREAD_QOS_USER_INITIATED
;
872 /* Calculate DARWIN_BG */
873 boolean_t wants_darwinbg
= FALSE
;
874 boolean_t wants_all_sockets_bg
= FALSE
; /* Do I want my existing sockets to be bg */
875 boolean_t wants_watchersbg
= FALSE
; /* Do I want my pidbound threads to be bg */
878 * If DARWIN_BG has been requested at either level, it's engaged.
879 * Only true DARWIN_BG changes cause watchers to transition.
881 * Backgrounding due to apptype does.
883 if (requested
.trp_int_darwinbg
|| requested
.trp_ext_darwinbg
||
884 next
.tep_role
== TASK_DARWINBG_APPLICATION
) {
885 wants_watchersbg
= wants_all_sockets_bg
= wants_darwinbg
= TRUE
;
889 * Deprecated TAL implementation for TAL apptype
890 * Background TAL apps are throttled when TAL is enabled
892 if (requested
.trp_apptype
== TASK_APPTYPE_APP_TAL
&&
893 requested
.trp_role
== TASK_BACKGROUND_APPLICATION
&&
894 requested
.trp_tal_enabled
== 1) {
895 next
.tep_tal_engaged
= 1;
898 /* New TAL implementation based on TAL role alone, works for all apps */
899 if ((requested
.trp_apptype
== TASK_APPTYPE_APP_DEFAULT
||
900 requested
.trp_apptype
== TASK_APPTYPE_APP_TAL
) &&
901 requested
.trp_role
== TASK_THROTTLE_APPLICATION
) {
902 next
.tep_tal_engaged
= 1;
905 /* Adaptive daemons are DARWIN_BG unless boosted, and don't get network throttled. */
906 if (requested
.trp_apptype
== TASK_APPTYPE_DAEMON_ADAPTIVE
&&
907 requested
.trp_boosted
== 0) {
908 wants_darwinbg
= TRUE
;
911 /* Background daemons are always DARWIN_BG, no exceptions, and don't get network throttled. */
912 if (requested
.trp_apptype
== TASK_APPTYPE_DAEMON_BACKGROUND
) {
913 wants_darwinbg
= TRUE
;
916 if (next
.tep_qos_clamp
== THREAD_QOS_BACKGROUND
|| next
.tep_qos_clamp
== THREAD_QOS_MAINTENANCE
) {
917 wants_darwinbg
= TRUE
;
920 /* Calculate side effects of DARWIN_BG */
922 if (wants_darwinbg
) {
923 next
.tep_darwinbg
= 1;
924 /* darwinbg tasks always create bg sockets, but we don't always loop over all sockets */
925 next
.tep_new_sockets_bg
= 1;
926 next
.tep_lowpri_cpu
= 1;
929 if (wants_all_sockets_bg
) {
930 next
.tep_all_sockets_bg
= 1;
933 if (wants_watchersbg
) {
934 next
.tep_watchers_bg
= 1;
937 /* Calculate low CPU priority */
939 boolean_t wants_lowpri_cpu
= FALSE
;
941 if (wants_darwinbg
) {
942 wants_lowpri_cpu
= TRUE
;
945 if (next
.tep_tal_engaged
) {
946 wants_lowpri_cpu
= TRUE
;
949 if (requested
.trp_sup_lowpri_cpu
&& requested
.trp_boosted
== 0) {
950 wants_lowpri_cpu
= TRUE
;
953 if (wants_lowpri_cpu
) {
954 next
.tep_lowpri_cpu
= 1;
957 /* Calculate IO policy */
959 /* Update BG IO policy (so we can see if it has changed) */
960 next
.tep_bg_iotier
= requested
.trp_bg_iotier
;
962 int iopol
= THROTTLE_LEVEL_TIER0
;
964 if (wants_darwinbg
) {
965 iopol
= MAX(iopol
, requested
.trp_bg_iotier
);
968 if (requested
.trp_apptype
== TASK_APPTYPE_DAEMON_STANDARD
) {
969 iopol
= MAX(iopol
, proc_standard_daemon_tier
);
972 if (requested
.trp_sup_disk
&& requested
.trp_boosted
== 0) {
973 iopol
= MAX(iopol
, proc_suppressed_disk_tier
);
976 if (next
.tep_tal_engaged
) {
977 iopol
= MAX(iopol
, proc_tal_disk_tier
);
980 if (next
.tep_qos_clamp
!= THREAD_QOS_UNSPECIFIED
) {
981 iopol
= MAX(iopol
, thread_qos_policy_params
.qos_iotier
[next
.tep_qos_clamp
]);
984 iopol
= MAX(iopol
, requested
.trp_int_iotier
);
985 iopol
= MAX(iopol
, requested
.trp_ext_iotier
);
987 next
.tep_io_tier
= iopol
;
989 /* Calculate Passive IO policy */
991 if (requested
.trp_ext_iopassive
|| requested
.trp_int_iopassive
) {
992 next
.tep_io_passive
= 1;
995 /* Calculate suppression-active flag */
996 boolean_t appnap_transition
= FALSE
;
998 if (requested
.trp_sup_active
&& requested
.trp_boosted
== 0) {
999 next
.tep_sup_active
= 1;
1002 if (task
->effective_policy
.tep_sup_active
!= next
.tep_sup_active
) {
1003 appnap_transition
= TRUE
;
1006 /* Calculate timer QOS */
1007 int latency_qos
= requested
.trp_base_latency_qos
;
1009 if (requested
.trp_sup_timer
&& requested
.trp_boosted
== 0) {
1010 latency_qos
= requested
.trp_sup_timer
;
1013 if (next
.tep_qos_clamp
!= THREAD_QOS_UNSPECIFIED
) {
1014 latency_qos
= MAX(latency_qos
, (int)thread_qos_policy_params
.qos_latency_qos
[next
.tep_qos_clamp
]);
1017 if (requested
.trp_over_latency_qos
!= 0) {
1018 latency_qos
= requested
.trp_over_latency_qos
;
1021 /* Treat the windowserver special */
1022 if (requested
.trp_role
== TASK_GRAPHICS_SERVER
) {
1023 latency_qos
= proc_graphics_timer_qos
;
1026 next
.tep_latency_qos
= latency_qos
;
1028 /* Calculate throughput QOS */
1029 int through_qos
= requested
.trp_base_through_qos
;
1031 if (requested
.trp_sup_throughput
&& requested
.trp_boosted
== 0) {
1032 through_qos
= requested
.trp_sup_throughput
;
1035 if (next
.tep_qos_clamp
!= THREAD_QOS_UNSPECIFIED
) {
1036 through_qos
= MAX(through_qos
, (int)thread_qos_policy_params
.qos_through_qos
[next
.tep_qos_clamp
]);
1039 if (requested
.trp_over_through_qos
!= 0) {
1040 through_qos
= requested
.trp_over_through_qos
;
1043 next
.tep_through_qos
= through_qos
;
1045 /* Calculate suppressed CPU priority */
1046 if (requested
.trp_sup_cpu
&& requested
.trp_boosted
== 0) {
1047 next
.tep_suppressed_cpu
= 1;
1051 * Calculate background sockets
1052 * Don't take into account boosting to limit transition frequency.
1054 if (requested
.trp_sup_bg_sockets
) {
1055 next
.tep_all_sockets_bg
= 1;
1056 next
.tep_new_sockets_bg
= 1;
1059 /* Apply SFI Managed class bit */
1060 next
.tep_sfi_managed
= requested
.trp_sfi_managed
;
1062 /* Calculate 'live donor' status for live importance */
1063 switch (requested
.trp_apptype
) {
1064 case TASK_APPTYPE_APP_TAL
:
1065 case TASK_APPTYPE_APP_DEFAULT
:
1066 if (requested
.trp_ext_darwinbg
== 1 ||
1067 (next
.tep_sup_active
== 1 &&
1068 (task_policy_suppression_flags
& TASK_POLICY_SUPPRESSION_NONDONOR
)) ||
1069 next
.tep_role
== TASK_DARWINBG_APPLICATION
) {
1070 next
.tep_live_donor
= 0;
1072 next
.tep_live_donor
= 1;
1076 case TASK_APPTYPE_DAEMON_INTERACTIVE
:
1077 case TASK_APPTYPE_DAEMON_STANDARD
:
1078 case TASK_APPTYPE_DAEMON_ADAPTIVE
:
1079 case TASK_APPTYPE_DAEMON_BACKGROUND
:
1081 next
.tep_live_donor
= 0;
1085 if (requested
.trp_terminated
) {
1087 * Shoot down the throttles that slow down exit or response to SIGTERM
1088 * We don't need to shoot down:
1089 * passive (don't want to cause others to throttle)
1090 * all_sockets_bg (don't need to iterate FDs on every exit)
1091 * new_sockets_bg (doesn't matter for exiting process)
1092 * pidsuspend (jetsam-ed BG process shouldn't run again)
1093 * watchers_bg (watcher threads don't need to be unthrottled)
1094 * latency_qos (affects userspace timers only)
1097 next
.tep_terminated
= 1;
1098 next
.tep_darwinbg
= 0;
1099 next
.tep_lowpri_cpu
= 0;
1100 next
.tep_io_tier
= THROTTLE_LEVEL_TIER0
;
1101 next
.tep_tal_engaged
= 0;
1102 next
.tep_role
= TASK_UNSPECIFIED
;
1103 next
.tep_suppressed_cpu
= 0;
1108 * Swap out old policy for new policy
1111 struct task_effective_policy prev
= task
->effective_policy
;
1113 /* This is the point where the new values become visible to other threads */
1114 task
->effective_policy
= next
;
1116 /* Don't do anything further to a half-formed task */
1121 if (task
== kernel_task
) {
1122 panic("Attempting to set task policy on kernel_task");
1127 * Pend updates that can't be done while holding the task lock
1130 if (prev
.tep_all_sockets_bg
!= next
.tep_all_sockets_bg
) {
1131 pend_token
->tpt_update_sockets
= 1;
1134 /* Only re-scan the timer list if the qos level is getting less strong */
1135 if (prev
.tep_latency_qos
> next
.tep_latency_qos
) {
1136 pend_token
->tpt_update_timers
= 1;
1140 if (prev
.tep_watchers_bg
!= next
.tep_watchers_bg
) {
1141 pend_token
->tpt_update_watchers
= 1;
1143 #endif /* CONFIG_EMBEDDED */
1145 if (prev
.tep_live_donor
!= next
.tep_live_donor
) {
1146 pend_token
->tpt_update_live_donor
= 1;
1151 * Update other subsystems as necessary if something has changed
1154 boolean_t update_threads
= FALSE
, update_sfi
= FALSE
;
1157 * Check for the attributes that thread_policy_update_internal_locked() consults,
1158 * and trigger thread policy re-evaluation.
1160 if (prev
.tep_io_tier
!= next
.tep_io_tier
||
1161 prev
.tep_bg_iotier
!= next
.tep_bg_iotier
||
1162 prev
.tep_io_passive
!= next
.tep_io_passive
||
1163 prev
.tep_darwinbg
!= next
.tep_darwinbg
||
1164 prev
.tep_qos_clamp
!= next
.tep_qos_clamp
||
1165 prev
.tep_qos_ceiling
!= next
.tep_qos_ceiling
||
1166 prev
.tep_qos_ui_is_urgent
!= next
.tep_qos_ui_is_urgent
||
1167 prev
.tep_latency_qos
!= next
.tep_latency_qos
||
1168 prev
.tep_through_qos
!= next
.tep_through_qos
||
1169 prev
.tep_lowpri_cpu
!= next
.tep_lowpri_cpu
||
1170 prev
.tep_new_sockets_bg
!= next
.tep_new_sockets_bg
||
1171 prev
.tep_terminated
!= next
.tep_terminated
) {
1172 update_threads
= TRUE
;
1176 * Check for the attributes that sfi_thread_classify() consults,
1177 * and trigger SFI re-evaluation.
1179 if (prev
.tep_latency_qos
!= next
.tep_latency_qos
||
1180 prev
.tep_role
!= next
.tep_role
||
1181 prev
.tep_sfi_managed
!= next
.tep_sfi_managed
) {
1185 /* Reflect task role transitions into the coalition role counters */
1186 if (prev
.tep_role
!= next
.tep_role
) {
1187 if (task_policy_update_coalition_focal_tasks(task
, prev
.tep_role
, next
.tep_role
, pend_token
)) {
1192 boolean_t update_priority
= FALSE
;
1194 int priority
= BASEPRI_DEFAULT
;
1195 int max_priority
= MAXPRI_USER
;
1197 if (next
.tep_lowpri_cpu
) {
1198 priority
= MAXPRI_THROTTLE
;
1199 max_priority
= MAXPRI_THROTTLE
;
1200 } else if (next
.tep_suppressed_cpu
) {
1201 priority
= MAXPRI_SUPPRESSED
;
1202 max_priority
= MAXPRI_SUPPRESSED
;
1204 switch (next
.tep_role
) {
1205 case TASK_CONTROL_APPLICATION
:
1206 priority
= BASEPRI_CONTROL
;
1208 case TASK_GRAPHICS_SERVER
:
1209 priority
= BASEPRI_GRAPHICS
;
1210 max_priority
= MAXPRI_RESERVED
;
1216 /* factor in 'nice' value */
1217 priority
+= task
->importance
;
1219 if (task
->effective_policy
.tep_qos_clamp
!= THREAD_QOS_UNSPECIFIED
) {
1220 int qos_clamp_priority
= thread_qos_policy_params
.qos_pri
[task
->effective_policy
.tep_qos_clamp
];
1222 priority
= MIN(priority
, qos_clamp_priority
);
1223 max_priority
= MIN(max_priority
, qos_clamp_priority
);
1226 if (priority
> max_priority
) {
1227 priority
= max_priority
;
1228 } else if (priority
< MINPRI
) {
1233 assert(priority
<= max_priority
);
1235 /* avoid extra work if priority isn't changing */
1236 if (priority
!= task
->priority
||
1237 max_priority
!= task
->max_priority
) {
1238 /* update the scheduling priority for the task */
1239 task
->max_priority
= max_priority
;
1240 task
->priority
= priority
;
1241 update_priority
= TRUE
;
1244 /* Loop over the threads in the task:
1247 * with one thread mutex hold per thread
1249 if (update_threads
|| update_priority
|| update_sfi
) {
1252 queue_iterate(&task
->threads
, thread
, thread_t
, task_threads
) {
1253 struct task_pend_token thread_pend_token
= {};
1256 thread_pend_token
.tpt_update_thread_sfi
= 1;
1259 if (update_priority
|| update_threads
) {
1260 thread_policy_update_tasklocked(thread
,
1261 task
->priority
, task
->max_priority
,
1262 &thread_pend_token
);
1265 assert(!thread_pend_token
.tpt_update_sockets
);
1267 // Slightly risky, as we still hold the task lock...
1268 thread_policy_update_complete_unlocked(thread
, &thread_pend_token
);
1273 * Use the app-nap transitions to influence the
1274 * transition of the process within the jetsam band
1275 * [and optionally its live-donor status]
1278 if (appnap_transition
== TRUE
) {
1279 if (task
->effective_policy
.tep_sup_active
== 1) {
1280 memorystatus_update_priority_for_appnap(((proc_t
) task
->bsd_info
), TRUE
);
1282 memorystatus_update_priority_for_appnap(((proc_t
) task
->bsd_info
), FALSE
);
1289 * Yet another layering violation. We reach out and bang on the coalition directly.
1292 task_policy_update_coalition_focal_tasks(task_t task
,
1295 task_pend_token_t pend_token
)
1297 boolean_t sfi_transition
= FALSE
;
1298 uint32_t new_count
= 0;
1300 /* task moving into/out-of the foreground */
1301 if (prev_role
!= TASK_FOREGROUND_APPLICATION
&& next_role
== TASK_FOREGROUND_APPLICATION
) {
1302 if (task_coalition_adjust_focal_count(task
, 1, &new_count
) && (new_count
== 1)) {
1303 sfi_transition
= TRUE
;
1304 pend_token
->tpt_update_tg_ui_flag
= TRUE
;
1306 } else if (prev_role
== TASK_FOREGROUND_APPLICATION
&& next_role
!= TASK_FOREGROUND_APPLICATION
) {
1307 if (task_coalition_adjust_focal_count(task
, -1, &new_count
) && (new_count
== 0)) {
1308 sfi_transition
= TRUE
;
1309 pend_token
->tpt_update_tg_ui_flag
= TRUE
;
1313 /* task moving into/out-of background */
1314 if (prev_role
!= TASK_BACKGROUND_APPLICATION
&& next_role
== TASK_BACKGROUND_APPLICATION
) {
1315 if (task_coalition_adjust_nonfocal_count(task
, 1, &new_count
) && (new_count
== 1)) {
1316 sfi_transition
= TRUE
;
1318 } else if (prev_role
== TASK_BACKGROUND_APPLICATION
&& next_role
!= TASK_BACKGROUND_APPLICATION
) {
1319 if (task_coalition_adjust_nonfocal_count(task
, -1, &new_count
) && (new_count
== 0)) {
1320 sfi_transition
= TRUE
;
1324 if (sfi_transition
) {
1325 pend_token
->tpt_update_coal_sfi
= 1;
1327 return sfi_transition
;
1330 #if CONFIG_SCHED_SFI
1332 /* coalition object is locked */
1334 task_sfi_reevaluate_cb(coalition_t coal
, void *ctx
, task_t task
)
1338 /* unused for now */
1341 /* skip the task we're re-evaluating on behalf of: it's already updated */
1342 if (task
== (task_t
)ctx
) {
1348 queue_iterate(&task
->threads
, thread
, thread_t
, task_threads
) {
1349 sfi_reevaluate(thread
);
1354 #endif /* CONFIG_SCHED_SFI */
1357 * Called with task unlocked to do things that can't be done while holding the task lock
1360 task_policy_update_complete_unlocked(task_t task
, task_pend_token_t pend_token
)
1363 if (pend_token
->tpt_update_sockets
) {
1364 proc_apply_task_networkbg(task
->bsd_info
, THREAD_NULL
);
1366 #endif /* MACH_BSD */
1368 /* The timer throttle has been removed or reduced, we need to look for expired timers and fire them */
1369 if (pend_token
->tpt_update_timers
) {
1370 ml_timer_evaluate();
1374 if (pend_token
->tpt_update_watchers
) {
1375 apply_appstate_watchers(task
);
1377 #endif /* CONFIG_EMBEDDED */
1379 if (pend_token
->tpt_update_live_donor
) {
1380 task_importance_update_live_donor(task
);
1383 #if CONFIG_SCHED_SFI
1384 /* use the resource coalition for SFI re-evaluation */
1385 if (pend_token
->tpt_update_coal_sfi
) {
1386 coalition_for_each_task(task
->coalition
[COALITION_TYPE_RESOURCE
],
1387 (void *)task
, task_sfi_reevaluate_cb
);
1389 #endif /* CONFIG_SCHED_SFI */
1394 * Initiate a task policy state transition
1396 * Everything that modifies requested except functions that need to hold the task lock
1397 * should use this function
1399 * Argument validation should be performed before reaching this point.
1401 * TODO: Do we need to check task->active?
1404 proc_set_task_policy(task_t task
,
1409 struct task_pend_token pend_token
= {};
1413 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
1414 (IMPORTANCE_CODE(flavor
, (category
| TASK_POLICY_TASK
))) | DBG_FUNC_START
,
1415 task_pid(task
), trequested_0(task
),
1416 trequested_1(task
), value
, 0);
1418 proc_set_task_policy_locked(task
, category
, flavor
, value
, 0);
1420 task_policy_update_locked(task
, &pend_token
);
1423 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
1424 (IMPORTANCE_CODE(flavor
, (category
| TASK_POLICY_TASK
))) | DBG_FUNC_END
,
1425 task_pid(task
), trequested_0(task
),
1426 trequested_1(task
), tpending(&pend_token
), 0);
1430 task_policy_update_complete_unlocked(task
, &pend_token
);
1434 * Variant of proc_set_task_policy() that sets two scalars in the requested policy structure.
1435 * Same locking rules apply.
1438 proc_set_task_policy2(task_t task
,
1444 struct task_pend_token pend_token
= {};
1448 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
1449 (IMPORTANCE_CODE(flavor
, (category
| TASK_POLICY_TASK
))) | DBG_FUNC_START
,
1450 task_pid(task
), trequested_0(task
),
1451 trequested_1(task
), value
, 0);
1453 proc_set_task_policy_locked(task
, category
, flavor
, value
, value2
);
1455 task_policy_update_locked(task
, &pend_token
);
1457 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
1458 (IMPORTANCE_CODE(flavor
, (category
| TASK_POLICY_TASK
))) | DBG_FUNC_END
,
1459 task_pid(task
), trequested_0(task
),
1460 trequested_1(task
), tpending(&pend_token
), 0);
1464 task_policy_update_complete_unlocked(task
, &pend_token
);
1468 * Set the requested state for a specific flavor to a specific value.
1471 * Verify that arguments to non iopol things are 1 or 0
1474 proc_set_task_policy_locked(task_t task
,
1482 struct task_requested_policy requested
= task
->requested_policy
;
1485 /* Category: EXTERNAL and INTERNAL */
1487 case TASK_POLICY_DARWIN_BG
:
1488 if (category
== TASK_POLICY_EXTERNAL
) {
1489 requested
.trp_ext_darwinbg
= value
;
1491 requested
.trp_int_darwinbg
= value
;
1495 case TASK_POLICY_IOPOL
:
1496 proc_iopol_to_tier(value
, &tier
, &passive
);
1497 if (category
== TASK_POLICY_EXTERNAL
) {
1498 requested
.trp_ext_iotier
= tier
;
1499 requested
.trp_ext_iopassive
= passive
;
1501 requested
.trp_int_iotier
= tier
;
1502 requested
.trp_int_iopassive
= passive
;
1506 case TASK_POLICY_IO
:
1507 if (category
== TASK_POLICY_EXTERNAL
) {
1508 requested
.trp_ext_iotier
= value
;
1510 requested
.trp_int_iotier
= value
;
1514 case TASK_POLICY_PASSIVE_IO
:
1515 if (category
== TASK_POLICY_EXTERNAL
) {
1516 requested
.trp_ext_iopassive
= value
;
1518 requested
.trp_int_iopassive
= value
;
1522 /* Category: INTERNAL */
1524 case TASK_POLICY_DARWIN_BG_IOPOL
:
1525 assert(category
== TASK_POLICY_INTERNAL
);
1526 proc_iopol_to_tier(value
, &tier
, &passive
);
1527 requested
.trp_bg_iotier
= tier
;
1530 /* Category: ATTRIBUTE */
1532 case TASK_POLICY_TAL
:
1533 assert(category
== TASK_POLICY_ATTRIBUTE
);
1534 requested
.trp_tal_enabled
= value
;
1537 case TASK_POLICY_BOOST
:
1538 assert(category
== TASK_POLICY_ATTRIBUTE
);
1539 requested
.trp_boosted
= value
;
1542 case TASK_POLICY_ROLE
:
1543 assert(category
== TASK_POLICY_ATTRIBUTE
);
1544 requested
.trp_role
= value
;
1547 case TASK_POLICY_TERMINATED
:
1548 assert(category
== TASK_POLICY_ATTRIBUTE
);
1549 requested
.trp_terminated
= value
;
1552 case TASK_BASE_LATENCY_QOS_POLICY
:
1553 assert(category
== TASK_POLICY_ATTRIBUTE
);
1554 requested
.trp_base_latency_qos
= value
;
1557 case TASK_BASE_THROUGHPUT_QOS_POLICY
:
1558 assert(category
== TASK_POLICY_ATTRIBUTE
);
1559 requested
.trp_base_through_qos
= value
;
1562 case TASK_POLICY_SFI_MANAGED
:
1563 assert(category
== TASK_POLICY_ATTRIBUTE
);
1564 requested
.trp_sfi_managed
= value
;
1567 case TASK_POLICY_BASE_LATENCY_AND_THROUGHPUT_QOS
:
1568 assert(category
== TASK_POLICY_ATTRIBUTE
);
1569 requested
.trp_base_latency_qos
= value
;
1570 requested
.trp_base_through_qos
= value2
;
1573 case TASK_POLICY_OVERRIDE_LATENCY_AND_THROUGHPUT_QOS
:
1574 assert(category
== TASK_POLICY_ATTRIBUTE
);
1575 requested
.trp_over_latency_qos
= value
;
1576 requested
.trp_over_through_qos
= value2
;
1580 panic("unknown task policy: %d %d %d %d", category
, flavor
, value
, value2
);
1584 task
->requested_policy
= requested
;
1588 * Gets what you set. Effective values may be different.
1591 proc_get_task_policy(task_t task
,
1599 struct task_requested_policy requested
= task
->requested_policy
;
1602 case TASK_POLICY_DARWIN_BG
:
1603 if (category
== TASK_POLICY_EXTERNAL
) {
1604 value
= requested
.trp_ext_darwinbg
;
1606 value
= requested
.trp_int_darwinbg
;
1609 case TASK_POLICY_IOPOL
:
1610 if (category
== TASK_POLICY_EXTERNAL
) {
1611 value
= proc_tier_to_iopol(requested
.trp_ext_iotier
,
1612 requested
.trp_ext_iopassive
);
1614 value
= proc_tier_to_iopol(requested
.trp_int_iotier
,
1615 requested
.trp_int_iopassive
);
1618 case TASK_POLICY_IO
:
1619 if (category
== TASK_POLICY_EXTERNAL
) {
1620 value
= requested
.trp_ext_iotier
;
1622 value
= requested
.trp_int_iotier
;
1625 case TASK_POLICY_PASSIVE_IO
:
1626 if (category
== TASK_POLICY_EXTERNAL
) {
1627 value
= requested
.trp_ext_iopassive
;
1629 value
= requested
.trp_int_iopassive
;
1632 case TASK_POLICY_DARWIN_BG_IOPOL
:
1633 assert(category
== TASK_POLICY_ATTRIBUTE
);
1634 value
= proc_tier_to_iopol(requested
.trp_bg_iotier
, 0);
1636 case TASK_POLICY_ROLE
:
1637 assert(category
== TASK_POLICY_ATTRIBUTE
);
1638 value
= requested
.trp_role
;
1640 case TASK_POLICY_SFI_MANAGED
:
1641 assert(category
== TASK_POLICY_ATTRIBUTE
);
1642 value
= requested
.trp_sfi_managed
;
1645 panic("unknown policy_flavor %d", flavor
);
1655 * Variant of proc_get_task_policy() that returns two scalar outputs.
1658 proc_get_task_policy2(task_t task
,
1659 __assert_only
int category
,
1666 struct task_requested_policy requested
= task
->requested_policy
;
1669 case TASK_POLICY_BASE_LATENCY_AND_THROUGHPUT_QOS
:
1670 assert(category
== TASK_POLICY_ATTRIBUTE
);
1671 *value1
= requested
.trp_base_latency_qos
;
1672 *value2
= requested
.trp_base_through_qos
;
1675 case TASK_POLICY_OVERRIDE_LATENCY_AND_THROUGHPUT_QOS
:
1676 assert(category
== TASK_POLICY_ATTRIBUTE
);
1677 *value1
= requested
.trp_over_latency_qos
;
1678 *value2
= requested
.trp_over_through_qos
;
1682 panic("unknown policy_flavor %d", flavor
);
1690 * Function for querying effective state for relevant subsystems
1691 * Gets what is actually in effect, for subsystems which pull policy instead of receive updates.
1693 * ONLY the relevant subsystem should query this.
1694 * NEVER take a value from the 'effective' function and stuff it into a setter.
1696 * NOTE: This accessor does not take the task lock.
1697 * Notifications of state updates need to be externally synchronized with state queries.
1698 * This routine *MUST* remain interrupt safe, as it is potentially invoked
1699 * within the context of a timer interrupt. It is also called in KDP context for stackshot.
1702 proc_get_effective_task_policy(task_t task
,
1708 case TASK_POLICY_DARWIN_BG
:
1710 * This backs the KPI call proc_pidbackgrounded to find
1711 * out if a pid is backgrounded.
1712 * It is used to communicate state to the VM system, as well as
1713 * prioritizing requests to the graphics system.
1714 * Returns 1 for background mode, 0 for normal mode
1716 value
= task
->effective_policy
.tep_darwinbg
;
1718 case TASK_POLICY_ALL_SOCKETS_BG
:
1720 * do_background_socket() calls this to determine what it should do to the proc's sockets
1721 * Returns 1 for background mode, 0 for normal mode
1723 * This consults both thread and task so un-DBGing a thread while the task is BG
1724 * doesn't get you out of the network throttle.
1726 value
= task
->effective_policy
.tep_all_sockets_bg
;
1728 case TASK_POLICY_SUP_ACTIVE
:
1730 * Is the task in AppNap? This is used to determine the urgency
1731 * that's passed to the performance management subsystem for threads
1732 * that are running at a priority <= MAXPRI_THROTTLE.
1734 value
= task
->effective_policy
.tep_sup_active
;
1736 case TASK_POLICY_LATENCY_QOS
:
1738 * timer arming calls into here to find out the timer coalescing level
1739 * Returns a QoS tier (0-6)
1741 value
= task
->effective_policy
.tep_latency_qos
;
1743 case TASK_POLICY_THROUGH_QOS
:
1745 * This value is passed into the urgency callout from the scheduler
1746 * to the performance management subsystem.
1747 * Returns a QoS tier (0-6)
1749 value
= task
->effective_policy
.tep_through_qos
;
1751 case TASK_POLICY_ROLE
:
1753 * This controls various things that ask whether a process is foreground,
1754 * like SFI, VM, access to GPU, etc
1756 value
= task
->effective_policy
.tep_role
;
1758 case TASK_POLICY_WATCHERS_BG
:
1760 * This controls whether or not a thread watching this process should be BG.
1762 value
= task
->effective_policy
.tep_watchers_bg
;
1764 case TASK_POLICY_SFI_MANAGED
:
1766 * This controls whether or not a process is targeted for specific control by thermald.
1768 value
= task
->effective_policy
.tep_sfi_managed
;
1771 panic("unknown policy_flavor %d", flavor
);
1779 * Convert from IOPOL_* values to throttle tiers.
1781 * TODO: Can this be made more compact, like an array lookup
1782 * Note that it is possible to support e.g. IOPOL_PASSIVE_STANDARD in the future
1786 proc_iopol_to_tier(int iopolicy
, int *tier
, int *passive
)
1791 case IOPOL_IMPORTANT
:
1792 *tier
= THROTTLE_LEVEL_TIER0
;
1795 *tier
= THROTTLE_LEVEL_TIER0
;
1798 case IOPOL_STANDARD
:
1799 *tier
= THROTTLE_LEVEL_TIER1
;
1802 *tier
= THROTTLE_LEVEL_TIER2
;
1804 case IOPOL_THROTTLE
:
1805 *tier
= THROTTLE_LEVEL_TIER3
;
1808 panic("unknown I/O policy %d", iopolicy
);
1814 proc_tier_to_iopol(int tier
, int passive
)
1818 case THROTTLE_LEVEL_TIER0
:
1819 return IOPOL_PASSIVE
;
1821 panic("unknown passive tier %d", tier
);
1822 return IOPOL_DEFAULT
;
1826 case THROTTLE_LEVEL_NONE
:
1827 case THROTTLE_LEVEL_TIER0
:
1828 return IOPOL_DEFAULT
;
1829 case THROTTLE_LEVEL_TIER1
:
1830 return IOPOL_STANDARD
;
1831 case THROTTLE_LEVEL_TIER2
:
1832 return IOPOL_UTILITY
;
1833 case THROTTLE_LEVEL_TIER3
:
1834 return IOPOL_THROTTLE
;
1836 panic("unknown tier %d", tier
);
1837 return IOPOL_DEFAULT
;
1843 proc_darwin_role_to_task_role(int darwin_role
, int* task_role
)
1845 integer_t role
= TASK_UNSPECIFIED
;
1847 switch (darwin_role
) {
1848 case PRIO_DARWIN_ROLE_DEFAULT
:
1849 role
= TASK_UNSPECIFIED
;
1851 case PRIO_DARWIN_ROLE_UI_FOCAL
:
1852 role
= TASK_FOREGROUND_APPLICATION
;
1854 case PRIO_DARWIN_ROLE_UI
:
1855 role
= TASK_DEFAULT_APPLICATION
;
1857 case PRIO_DARWIN_ROLE_NON_UI
:
1858 role
= TASK_NONUI_APPLICATION
;
1860 case PRIO_DARWIN_ROLE_UI_NON_FOCAL
:
1861 role
= TASK_BACKGROUND_APPLICATION
;
1863 case PRIO_DARWIN_ROLE_TAL_LAUNCH
:
1864 role
= TASK_THROTTLE_APPLICATION
;
1866 case PRIO_DARWIN_ROLE_DARWIN_BG
:
1867 role
= TASK_DARWINBG_APPLICATION
;
1879 proc_task_role_to_darwin_role(int task_role
)
1881 switch (task_role
) {
1882 case TASK_FOREGROUND_APPLICATION
:
1883 return PRIO_DARWIN_ROLE_UI_FOCAL
;
1884 case TASK_BACKGROUND_APPLICATION
:
1885 return PRIO_DARWIN_ROLE_UI_NON_FOCAL
;
1886 case TASK_NONUI_APPLICATION
:
1887 return PRIO_DARWIN_ROLE_NON_UI
;
1888 case TASK_DEFAULT_APPLICATION
:
1889 return PRIO_DARWIN_ROLE_UI
;
1890 case TASK_THROTTLE_APPLICATION
:
1891 return PRIO_DARWIN_ROLE_TAL_LAUNCH
;
1892 case TASK_DARWINBG_APPLICATION
:
1893 return PRIO_DARWIN_ROLE_DARWIN_BG
;
1894 case TASK_UNSPECIFIED
:
1896 return PRIO_DARWIN_ROLE_DEFAULT
;
1901 /* TODO: remove this variable when interactive daemon audit period is over */
1902 extern boolean_t ipc_importance_interactive_receiver
;
1905 * Called at process exec to initialize the apptype, qos clamp, and qos seed of a process
1907 * TODO: Make this function more table-driven instead of ad-hoc
1910 proc_set_task_spawnpolicy(task_t task
, int apptype
, int qos_clamp
, int role
,
1911 ipc_port_t
* portwatch_ports
, int portwatch_count
)
1913 struct task_pend_token pend_token
= {};
1915 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
1916 (IMPORTANCE_CODE(IMP_TASK_APPTYPE
, apptype
)) | DBG_FUNC_START
,
1917 task_pid(task
), trequested_0(task
), trequested_1(task
),
1921 case TASK_APPTYPE_APP_TAL
:
1922 case TASK_APPTYPE_APP_DEFAULT
:
1923 /* Apps become donors via the 'live-donor' flag instead of the static donor flag */
1924 task_importance_mark_donor(task
, FALSE
);
1925 task_importance_mark_live_donor(task
, TRUE
);
1926 task_importance_mark_receiver(task
, FALSE
);
1928 task_importance_mark_denap_receiver(task
, FALSE
);
1930 /* Apps are de-nap recievers on desktop for suppression behaviors */
1931 task_importance_mark_denap_receiver(task
, TRUE
);
1932 #endif /* CONFIG_EMBEDDED */
1935 case TASK_APPTYPE_DAEMON_INTERACTIVE
:
1936 task_importance_mark_donor(task
, TRUE
);
1937 task_importance_mark_live_donor(task
, FALSE
);
1940 * A boot arg controls whether interactive daemons are importance receivers.
1941 * Normally, they are not. But for testing their behavior as an adaptive
1942 * daemon, the boot-arg can be set.
1944 * TODO: remove this when the interactive daemon audit period is over.
1946 task_importance_mark_receiver(task
, /* FALSE */ ipc_importance_interactive_receiver
);
1947 task_importance_mark_denap_receiver(task
, FALSE
);
1950 case TASK_APPTYPE_DAEMON_STANDARD
:
1951 task_importance_mark_donor(task
, TRUE
);
1952 task_importance_mark_live_donor(task
, FALSE
);
1953 task_importance_mark_receiver(task
, FALSE
);
1954 task_importance_mark_denap_receiver(task
, FALSE
);
1957 case TASK_APPTYPE_DAEMON_ADAPTIVE
:
1958 task_importance_mark_donor(task
, FALSE
);
1959 task_importance_mark_live_donor(task
, FALSE
);
1960 task_importance_mark_receiver(task
, TRUE
);
1961 task_importance_mark_denap_receiver(task
, FALSE
);
1964 case TASK_APPTYPE_DAEMON_BACKGROUND
:
1965 task_importance_mark_donor(task
, FALSE
);
1966 task_importance_mark_live_donor(task
, FALSE
);
1967 task_importance_mark_receiver(task
, FALSE
);
1968 task_importance_mark_denap_receiver(task
, FALSE
);
1971 case TASK_APPTYPE_NONE
:
1975 if (portwatch_ports
!= NULL
&& apptype
== TASK_APPTYPE_DAEMON_ADAPTIVE
) {
1976 int portwatch_boosts
= 0;
1978 for (int i
= 0; i
< portwatch_count
; i
++) {
1979 ipc_port_t port
= NULL
;
1981 if ((port
= portwatch_ports
[i
]) != NULL
) {
1983 task_add_importance_watchport(task
, port
, &boost
);
1984 portwatch_boosts
+= boost
;
1988 if (portwatch_boosts
> 0) {
1989 task_importance_hold_internal_assertion(task
, portwatch_boosts
);
1995 if (apptype
== TASK_APPTYPE_APP_TAL
) {
1996 /* TAL starts off enabled by default */
1997 task
->requested_policy
.trp_tal_enabled
= 1;
2000 if (apptype
!= TASK_APPTYPE_NONE
) {
2001 task
->requested_policy
.trp_apptype
= apptype
;
2005 /* Remove this after launchd starts setting it properly */
2006 if (apptype
== TASK_APPTYPE_APP_DEFAULT
&& role
== TASK_UNSPECIFIED
) {
2007 task
->requested_policy
.trp_role
= TASK_FOREGROUND_APPLICATION
;
2010 if (role
!= TASK_UNSPECIFIED
) {
2011 task
->requested_policy
.trp_role
= role
;
2014 if (qos_clamp
!= THREAD_QOS_UNSPECIFIED
) {
2015 task
->requested_policy
.trp_qos_clamp
= qos_clamp
;
2018 task_policy_update_locked(task
, &pend_token
);
2022 /* Ensure the donor bit is updated to be in sync with the new live donor status */
2023 pend_token
.tpt_update_live_donor
= 1;
2025 task_policy_update_complete_unlocked(task
, &pend_token
);
2027 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
,
2028 (IMPORTANCE_CODE(IMP_TASK_APPTYPE
, apptype
)) | DBG_FUNC_END
,
2029 task_pid(task
), trequested_0(task
), trequested_1(task
),
2030 task_is_importance_receiver(task
), 0);
2034 * Inherit task role across exec
2037 proc_inherit_task_role(task_t new_task
,
2042 /* inherit the role from old task to new task */
2043 role
= proc_get_task_policy(old_task
, TASK_POLICY_ATTRIBUTE
, TASK_POLICY_ROLE
);
2044 proc_set_task_policy(new_task
, TASK_POLICY_ATTRIBUTE
, TASK_POLICY_ROLE
, role
);
2047 extern void *initproc
;
2050 * Compute the default main thread qos for a task
2053 task_compute_main_thread_qos(task_t task
)
2055 int primordial_qos
= THREAD_QOS_UNSPECIFIED
;
2057 int qos_clamp
= task
->requested_policy
.trp_qos_clamp
;
2059 switch (task
->requested_policy
.trp_apptype
) {
2060 case TASK_APPTYPE_APP_TAL
:
2061 case TASK_APPTYPE_APP_DEFAULT
:
2062 primordial_qos
= THREAD_QOS_USER_INTERACTIVE
;
2065 case TASK_APPTYPE_DAEMON_INTERACTIVE
:
2066 case TASK_APPTYPE_DAEMON_STANDARD
:
2067 case TASK_APPTYPE_DAEMON_ADAPTIVE
:
2068 primordial_qos
= THREAD_QOS_LEGACY
;
2071 case TASK_APPTYPE_DAEMON_BACKGROUND
:
2072 primordial_qos
= THREAD_QOS_BACKGROUND
;
2076 if (task
->bsd_info
== initproc
) {
2077 /* PID 1 gets a special case */
2078 primordial_qos
= MAX(primordial_qos
, THREAD_QOS_USER_INITIATED
);
2081 if (qos_clamp
!= THREAD_QOS_UNSPECIFIED
) {
2082 if (primordial_qos
!= THREAD_QOS_UNSPECIFIED
) {
2083 primordial_qos
= MIN(qos_clamp
, primordial_qos
);
2085 primordial_qos
= qos_clamp
;
2089 return primordial_qos
;
2093 /* for process_policy to check before attempting to set */
2095 proc_task_is_tal(task_t task
)
2097 return (task
->requested_policy
.trp_apptype
== TASK_APPTYPE_APP_TAL
) ? TRUE
: FALSE
;
2101 task_get_apptype(task_t task
)
2103 return task
->requested_policy
.trp_apptype
;
2107 task_is_daemon(task_t task
)
2109 switch (task
->requested_policy
.trp_apptype
) {
2110 case TASK_APPTYPE_DAEMON_INTERACTIVE
:
2111 case TASK_APPTYPE_DAEMON_STANDARD
:
2112 case TASK_APPTYPE_DAEMON_ADAPTIVE
:
2113 case TASK_APPTYPE_DAEMON_BACKGROUND
:
2121 task_is_app(task_t task
)
2123 switch (task
->requested_policy
.trp_apptype
) {
2124 case TASK_APPTYPE_APP_DEFAULT
:
2125 case TASK_APPTYPE_APP_TAL
:
2134 task_grab_latency_qos(task_t task
)
2136 return qos_latency_policy_package(proc_get_effective_task_policy(task
, TASK_POLICY_LATENCY_QOS
));
2139 /* update the darwin background action state in the flags field for libproc */
2141 proc_get_darwinbgstate(task_t task
, uint32_t * flagsp
)
2143 if (task
->requested_policy
.trp_ext_darwinbg
) {
2144 *flagsp
|= PROC_FLAG_EXT_DARWINBG
;
2147 if (task
->requested_policy
.trp_int_darwinbg
) {
2148 *flagsp
|= PROC_FLAG_DARWINBG
;
2152 if (task
->requested_policy
.trp_apptype
== TASK_APPTYPE_DAEMON_BACKGROUND
) {
2153 *flagsp
|= PROC_FLAG_IOS_APPLEDAEMON
;
2156 if (task
->requested_policy
.trp_apptype
== TASK_APPTYPE_DAEMON_ADAPTIVE
) {
2157 *flagsp
|= PROC_FLAG_IOS_IMPPROMOTION
;
2159 #endif /* CONFIG_EMBEDDED */
2161 if (task
->requested_policy
.trp_apptype
== TASK_APPTYPE_APP_DEFAULT
||
2162 task
->requested_policy
.trp_apptype
== TASK_APPTYPE_APP_TAL
) {
2163 *flagsp
|= PROC_FLAG_APPLICATION
;
2166 if (task
->requested_policy
.trp_apptype
== TASK_APPTYPE_DAEMON_ADAPTIVE
) {
2167 *flagsp
|= PROC_FLAG_ADAPTIVE
;
2170 if (task
->requested_policy
.trp_apptype
== TASK_APPTYPE_DAEMON_ADAPTIVE
&&
2171 task
->requested_policy
.trp_boosted
== 1) {
2172 *flagsp
|= PROC_FLAG_ADAPTIVE_IMPORTANT
;
2175 if (task_is_importance_donor(task
)) {
2176 *flagsp
|= PROC_FLAG_IMPORTANCE_DONOR
;
2179 if (task
->effective_policy
.tep_sup_active
) {
2180 *flagsp
|= PROC_FLAG_SUPPRESSED
;
2187 * Tracepoint data... Reading the tracepoint data can be somewhat complicated.
2188 * The current scheme packs as much data into a single tracepoint as it can.
2190 * Each task/thread requested/effective structure is 64 bits in size. Any
2191 * given tracepoint will emit either requested or effective data, but not both.
2193 * A tracepoint may emit any of task, thread, or task & thread data.
2195 * The type of data emitted varies with pointer size. Where possible, both
2196 * task and thread data are emitted. In LP32 systems, the first and second
2197 * halves of either the task or thread data is emitted.
2199 * The code uses uintptr_t array indexes instead of high/low to avoid
2200 * confusion WRT big vs little endian.
2202 * The truth table for the tracepoint data functions is below, and has the
2203 * following invariants:
2205 * 1) task and thread are uintptr_t*
2206 * 2) task may never be NULL
2210 * trequested_0(task, NULL) task[0] task[0]
2211 * trequested_1(task, NULL) task[1] NULL
2212 * trequested_0(task, thread) thread[0] task[0]
2213 * trequested_1(task, thread) thread[1] thread[0]
2215 * Basically, you get a full task or thread on LP32, and both on LP64.
2217 * The uintptr_t munging here is squicky enough to deserve a comment.
2219 * The variables we are accessing are laid out in memory like this:
2221 * [ LP64 uintptr_t 0 ]
2222 * [ LP32 uintptr_t 0 ] [ LP32 uintptr_t 1 ]
2229 trequested_0(task_t task
)
2231 static_assert(sizeof(struct task_requested_policy
) == sizeof(uint64_t), "size invariant violated");
2233 uintptr_t* raw
= (uintptr_t*)&task
->requested_policy
;
2239 trequested_1(task_t task
)
2241 #if defined __LP64__
2245 uintptr_t* raw
= (uintptr_t*)(&task
->requested_policy
);
2251 teffective_0(task_t task
)
2253 uintptr_t* raw
= (uintptr_t*)&task
->effective_policy
;
2259 teffective_1(task_t task
)
2261 #if defined __LP64__
2265 uintptr_t* raw
= (uintptr_t*)(&task
->effective_policy
);
2270 /* dump pending for tracepoint */
2272 tpending(task_pend_token_t pend_token
)
2274 return *(uint32_t*)(void*)(pend_token
);
2278 task_requested_bitfield(task_t task
)
2281 struct task_requested_policy requested
= task
->requested_policy
;
2283 bits
|= (requested
.trp_int_darwinbg
? POLICY_REQ_INT_DARWIN_BG
: 0);
2284 bits
|= (requested
.trp_ext_darwinbg
? POLICY_REQ_EXT_DARWIN_BG
: 0);
2285 bits
|= (requested
.trp_int_iotier
? (((uint64_t)requested
.trp_int_iotier
) << POLICY_REQ_INT_IO_TIER_SHIFT
) : 0);
2286 bits
|= (requested
.trp_ext_iotier
? (((uint64_t)requested
.trp_ext_iotier
) << POLICY_REQ_EXT_IO_TIER_SHIFT
) : 0);
2287 bits
|= (requested
.trp_int_iopassive
? POLICY_REQ_INT_PASSIVE_IO
: 0);
2288 bits
|= (requested
.trp_ext_iopassive
? POLICY_REQ_EXT_PASSIVE_IO
: 0);
2289 bits
|= (requested
.trp_bg_iotier
? (((uint64_t)requested
.trp_bg_iotier
) << POLICY_REQ_BG_IOTIER_SHIFT
) : 0);
2290 bits
|= (requested
.trp_terminated
? POLICY_REQ_TERMINATED
: 0);
2292 bits
|= (requested
.trp_boosted
? POLICY_REQ_BOOSTED
: 0);
2293 bits
|= (requested
.trp_tal_enabled
? POLICY_REQ_TAL_ENABLED
: 0);
2294 bits
|= (requested
.trp_apptype
? (((uint64_t)requested
.trp_apptype
) << POLICY_REQ_APPTYPE_SHIFT
) : 0);
2295 bits
|= (requested
.trp_role
? (((uint64_t)requested
.trp_role
) << POLICY_REQ_ROLE_SHIFT
) : 0);
2297 bits
|= (requested
.trp_sup_active
? POLICY_REQ_SUP_ACTIVE
: 0);
2298 bits
|= (requested
.trp_sup_lowpri_cpu
? POLICY_REQ_SUP_LOWPRI_CPU
: 0);
2299 bits
|= (requested
.trp_sup_cpu
? POLICY_REQ_SUP_CPU
: 0);
2300 bits
|= (requested
.trp_sup_timer
? (((uint64_t)requested
.trp_sup_timer
) << POLICY_REQ_SUP_TIMER_THROTTLE_SHIFT
) : 0);
2301 bits
|= (requested
.trp_sup_throughput
? (((uint64_t)requested
.trp_sup_throughput
) << POLICY_REQ_SUP_THROUGHPUT_SHIFT
) : 0);
2302 bits
|= (requested
.trp_sup_disk
? POLICY_REQ_SUP_DISK_THROTTLE
: 0);
2303 bits
|= (requested
.trp_sup_bg_sockets
? POLICY_REQ_SUP_BG_SOCKETS
: 0);
2305 bits
|= (requested
.trp_base_latency_qos
? (((uint64_t)requested
.trp_base_latency_qos
) << POLICY_REQ_BASE_LATENCY_QOS_SHIFT
) : 0);
2306 bits
|= (requested
.trp_over_latency_qos
? (((uint64_t)requested
.trp_over_latency_qos
) << POLICY_REQ_OVER_LATENCY_QOS_SHIFT
) : 0);
2307 bits
|= (requested
.trp_base_through_qos
? (((uint64_t)requested
.trp_base_through_qos
) << POLICY_REQ_BASE_THROUGH_QOS_SHIFT
) : 0);
2308 bits
|= (requested
.trp_over_through_qos
? (((uint64_t)requested
.trp_over_through_qos
) << POLICY_REQ_OVER_THROUGH_QOS_SHIFT
) : 0);
2309 bits
|= (requested
.trp_sfi_managed
? POLICY_REQ_SFI_MANAGED
: 0);
2310 bits
|= (requested
.trp_qos_clamp
? (((uint64_t)requested
.trp_qos_clamp
) << POLICY_REQ_QOS_CLAMP_SHIFT
) : 0);
2316 task_effective_bitfield(task_t task
)
2319 struct task_effective_policy effective
= task
->effective_policy
;
2321 bits
|= (effective
.tep_io_tier
? (((uint64_t)effective
.tep_io_tier
) << POLICY_EFF_IO_TIER_SHIFT
) : 0);
2322 bits
|= (effective
.tep_io_passive
? POLICY_EFF_IO_PASSIVE
: 0);
2323 bits
|= (effective
.tep_darwinbg
? POLICY_EFF_DARWIN_BG
: 0);
2324 bits
|= (effective
.tep_lowpri_cpu
? POLICY_EFF_LOWPRI_CPU
: 0);
2325 bits
|= (effective
.tep_terminated
? POLICY_EFF_TERMINATED
: 0);
2326 bits
|= (effective
.tep_all_sockets_bg
? POLICY_EFF_ALL_SOCKETS_BG
: 0);
2327 bits
|= (effective
.tep_new_sockets_bg
? POLICY_EFF_NEW_SOCKETS_BG
: 0);
2328 bits
|= (effective
.tep_bg_iotier
? (((uint64_t)effective
.tep_bg_iotier
) << POLICY_EFF_BG_IOTIER_SHIFT
) : 0);
2329 bits
|= (effective
.tep_qos_ui_is_urgent
? POLICY_EFF_QOS_UI_IS_URGENT
: 0);
2331 bits
|= (effective
.tep_tal_engaged
? POLICY_EFF_TAL_ENGAGED
: 0);
2332 bits
|= (effective
.tep_watchers_bg
? POLICY_EFF_WATCHERS_BG
: 0);
2333 bits
|= (effective
.tep_sup_active
? POLICY_EFF_SUP_ACTIVE
: 0);
2334 bits
|= (effective
.tep_suppressed_cpu
? POLICY_EFF_SUP_CPU
: 0);
2335 bits
|= (effective
.tep_role
? (((uint64_t)effective
.tep_role
) << POLICY_EFF_ROLE_SHIFT
) : 0);
2336 bits
|= (effective
.tep_latency_qos
? (((uint64_t)effective
.tep_latency_qos
) << POLICY_EFF_LATENCY_QOS_SHIFT
) : 0);
2337 bits
|= (effective
.tep_through_qos
? (((uint64_t)effective
.tep_through_qos
) << POLICY_EFF_THROUGH_QOS_SHIFT
) : 0);
2338 bits
|= (effective
.tep_sfi_managed
? POLICY_EFF_SFI_MANAGED
: 0);
2339 bits
|= (effective
.tep_qos_ceiling
? (((uint64_t)effective
.tep_qos_ceiling
) << POLICY_EFF_QOS_CEILING_SHIFT
) : 0);
2346 * Resource usage and CPU related routines
2350 proc_get_task_ruse_cpu(task_t task
, uint32_t *policyp
, uint8_t *percentagep
, uint64_t *intervalp
, uint64_t *deadlinep
)
2358 error
= task_get_cpuusage(task
, percentagep
, intervalp
, deadlinep
, &scope
);
2362 * Reverse-map from CPU resource limit scopes back to policies (see comment below).
2364 if (scope
== TASK_RUSECPU_FLAGS_PERTHR_LIMIT
) {
2365 *policyp
= TASK_POLICY_RESOURCE_ATTRIBUTE_NOTIFY_EXC
;
2366 } else if (scope
== TASK_RUSECPU_FLAGS_PROC_LIMIT
) {
2367 *policyp
= TASK_POLICY_RESOURCE_ATTRIBUTE_THROTTLE
;
2368 } else if (scope
== TASK_RUSECPU_FLAGS_DEADLINE
) {
2369 *policyp
= TASK_POLICY_RESOURCE_ATTRIBUTE_NONE
;
2376 * Configure the default CPU usage monitor parameters.
2378 * For tasks which have this mechanism activated: if any thread in the
2379 * process consumes more CPU than this, an EXC_RESOURCE exception will be generated.
2382 proc_init_cpumon_params(void)
2385 * The max CPU percentage can be configured via the boot-args and
2386 * a key in the device tree. The boot-args are honored first, then the
2389 if (!PE_parse_boot_argn("max_cpumon_percentage", &proc_max_cpumon_percentage
,
2390 sizeof(proc_max_cpumon_percentage
))) {
2391 uint64_t max_percentage
= 0ULL;
2393 if (!PE_get_default("kern.max_cpumon_percentage", &max_percentage
,
2394 sizeof(max_percentage
))) {
2395 max_percentage
= DEFAULT_CPUMON_PERCENTAGE
;
2398 assert(max_percentage
<= UINT8_MAX
);
2399 proc_max_cpumon_percentage
= (uint8_t) max_percentage
;
2402 if (proc_max_cpumon_percentage
> 100) {
2403 proc_max_cpumon_percentage
= 100;
2407 * The interval should be specified in seconds.
2409 * Like the max CPU percentage, the max CPU interval can be configured
2410 * via boot-args and the device tree.
2412 if (!PE_parse_boot_argn("max_cpumon_interval", &proc_max_cpumon_interval
,
2413 sizeof(proc_max_cpumon_interval
))) {
2414 if (!PE_get_default("kern.max_cpumon_interval", &proc_max_cpumon_interval
,
2415 sizeof(proc_max_cpumon_interval
))) {
2416 proc_max_cpumon_interval
= DEFAULT_CPUMON_INTERVAL
;
2420 proc_max_cpumon_interval
*= NSEC_PER_SEC
;
2422 /* TEMPORARY boot arg to control App suppression */
2423 PE_parse_boot_argn("task_policy_suppression_flags",
2424 &task_policy_suppression_flags
,
2425 sizeof(task_policy_suppression_flags
));
2427 /* adjust suppression disk policy if called for in boot arg */
2428 if (task_policy_suppression_flags
& TASK_POLICY_SUPPRESSION_IOTIER2
) {
2429 proc_suppressed_disk_tier
= THROTTLE_LEVEL_TIER2
;
2434 * Currently supported configurations for CPU limits.
2436 * Policy | Deadline-based CPU limit | Percentage-based CPU limit
2437 * -------------------------------------+--------------------------+------------------------------
2438 * PROC_POLICY_RSRCACT_THROTTLE | ENOTSUP | Task-wide scope only
2439 * PROC_POLICY_RSRCACT_SUSPEND | Task-wide scope only | ENOTSUP
2440 * PROC_POLICY_RSRCACT_TERMINATE | Task-wide scope only | ENOTSUP
2441 * PROC_POLICY_RSRCACT_NOTIFY_KQ | Task-wide scope only | ENOTSUP
2442 * PROC_POLICY_RSRCACT_NOTIFY_EXC | ENOTSUP | Per-thread scope only
2444 * A deadline-based CPU limit is actually a simple wallclock timer - the requested action is performed
2445 * after the specified amount of wallclock time has elapsed.
2447 * A percentage-based CPU limit performs the requested action after the specified amount of actual CPU time
2448 * has been consumed -- regardless of how much wallclock time has elapsed -- by either the task as an
2449 * aggregate entity (so-called "Task-wide" or "Proc-wide" scope, whereby the CPU time consumed by all threads
2450 * in the task are added together), or by any one thread in the task (so-called "per-thread" scope).
2452 * We support either deadline != 0 OR percentage != 0, but not both. The original intention in having them
2453 * share an API was to use actual CPU time as the basis of the deadline-based limit (as in: perform an action
2454 * after I have used some amount of CPU time; this is different than the recurring percentage/interval model)
2455 * but the potential consumer of the API at the time was insisting on wallclock time instead.
2457 * Currently, requesting notification via an exception is the only way to get per-thread scope for a
2458 * CPU limit. All other types of notifications force task-wide scope for the limit.
2461 proc_set_task_ruse_cpu(task_t task
, uint32_t policy
, uint8_t percentage
, uint64_t interval
, uint64_t deadline
,
2462 int cpumon_entitled
)
2468 * Enforce the matrix of supported configurations for policy, percentage, and deadline.
2471 // If no policy is explicitly given, the default is to throttle.
2472 case TASK_POLICY_RESOURCE_ATTRIBUTE_NONE
:
2473 case TASK_POLICY_RESOURCE_ATTRIBUTE_THROTTLE
:
2474 if (deadline
!= 0) {
2477 scope
= TASK_RUSECPU_FLAGS_PROC_LIMIT
;
2479 case TASK_POLICY_RESOURCE_ATTRIBUTE_SUSPEND
:
2480 case TASK_POLICY_RESOURCE_ATTRIBUTE_TERMINATE
:
2481 case TASK_POLICY_RESOURCE_ATTRIBUTE_NOTIFY_KQ
:
2482 if (percentage
!= 0) {
2485 scope
= TASK_RUSECPU_FLAGS_DEADLINE
;
2487 case TASK_POLICY_RESOURCE_ATTRIBUTE_NOTIFY_EXC
:
2488 if (deadline
!= 0) {
2491 scope
= TASK_RUSECPU_FLAGS_PERTHR_LIMIT
;
2492 #ifdef CONFIG_NOMONITORS
2494 #endif /* CONFIG_NOMONITORS */
2501 if (task
!= current_task()) {
2502 task
->policy_ru_cpu_ext
= policy
;
2504 task
->policy_ru_cpu
= policy
;
2506 error
= task_set_cpuusage(task
, percentage
, interval
, deadline
, scope
, cpumon_entitled
);
2511 /* TODO: get rid of these */
2512 #define TASK_POLICY_CPU_RESOURCE_USAGE 0
2513 #define TASK_POLICY_WIREDMEM_RESOURCE_USAGE 1
2514 #define TASK_POLICY_VIRTUALMEM_RESOURCE_USAGE 2
2515 #define TASK_POLICY_DISK_RESOURCE_USAGE 3
2516 #define TASK_POLICY_NETWORK_RESOURCE_USAGE 4
2517 #define TASK_POLICY_POWER_RESOURCE_USAGE 5
2519 #define TASK_POLICY_RESOURCE_USAGE_COUNT 6
2522 proc_clear_task_ruse_cpu(task_t task
, int cpumon_entitled
)
2526 void * bsdinfo
= NULL
;
2529 if (task
!= current_task()) {
2530 task
->policy_ru_cpu_ext
= TASK_POLICY_RESOURCE_ATTRIBUTE_DEFAULT
;
2532 task
->policy_ru_cpu
= TASK_POLICY_RESOURCE_ATTRIBUTE_DEFAULT
;
2535 error
= task_clear_cpuusage_locked(task
, cpumon_entitled
);
2540 action
= task
->applied_ru_cpu
;
2541 if (task
->applied_ru_cpu_ext
!= TASK_POLICY_RESOURCE_ATTRIBUTE_NONE
) {
2543 task
->applied_ru_cpu_ext
= TASK_POLICY_RESOURCE_ATTRIBUTE_NONE
;
2545 if (action
!= TASK_POLICY_RESOURCE_ATTRIBUTE_NONE
) {
2546 bsdinfo
= task
->bsd_info
;
2548 proc_restore_resource_actions(bsdinfo
, TASK_POLICY_CPU_RESOURCE_USAGE
, action
);
2558 /* used to apply resource limit related actions */
2560 task_apply_resource_actions(task_t task
, int type
)
2562 int action
= TASK_POLICY_RESOURCE_ATTRIBUTE_NONE
;
2563 void * bsdinfo
= NULL
;
2566 case TASK_POLICY_CPU_RESOURCE_USAGE
:
2568 case TASK_POLICY_WIREDMEM_RESOURCE_USAGE
:
2569 case TASK_POLICY_VIRTUALMEM_RESOURCE_USAGE
:
2570 case TASK_POLICY_DISK_RESOURCE_USAGE
:
2571 case TASK_POLICY_NETWORK_RESOURCE_USAGE
:
2572 case TASK_POLICY_POWER_RESOURCE_USAGE
:
2580 /* only cpu actions for now */
2583 if (task
->applied_ru_cpu_ext
== TASK_POLICY_RESOURCE_ATTRIBUTE_NONE
) {
2585 task
->applied_ru_cpu_ext
= task
->policy_ru_cpu_ext
;
2586 action
= task
->applied_ru_cpu_ext
;
2588 action
= task
->applied_ru_cpu_ext
;
2591 if (action
!= TASK_POLICY_RESOURCE_ATTRIBUTE_NONE
) {
2592 bsdinfo
= task
->bsd_info
;
2594 proc_apply_resource_actions(bsdinfo
, TASK_POLICY_CPU_RESOURCE_USAGE
, action
);
2603 * XXX This API is somewhat broken; we support multiple simultaneous CPU limits, but the get/set API
2604 * only allows for one at a time. This means that if there is a per-thread limit active, the other
2605 * "scopes" will not be accessible via this API. We could change it to pass in the scope of interest
2606 * to the caller, and prefer that, but there's no need for that at the moment.
2609 task_get_cpuusage(task_t task
, uint8_t *percentagep
, uint64_t *intervalp
, uint64_t *deadlinep
, int *scope
)
2615 if ((task
->rusage_cpu_flags
& TASK_RUSECPU_FLAGS_PERTHR_LIMIT
) != 0) {
2616 *scope
= TASK_RUSECPU_FLAGS_PERTHR_LIMIT
;
2617 *percentagep
= task
->rusage_cpu_perthr_percentage
;
2618 *intervalp
= task
->rusage_cpu_perthr_interval
;
2619 } else if ((task
->rusage_cpu_flags
& TASK_RUSECPU_FLAGS_PROC_LIMIT
) != 0) {
2620 *scope
= TASK_RUSECPU_FLAGS_PROC_LIMIT
;
2621 *percentagep
= task
->rusage_cpu_percentage
;
2622 *intervalp
= task
->rusage_cpu_interval
;
2623 } else if ((task
->rusage_cpu_flags
& TASK_RUSECPU_FLAGS_DEADLINE
) != 0) {
2624 *scope
= TASK_RUSECPU_FLAGS_DEADLINE
;
2625 *deadlinep
= task
->rusage_cpu_deadline
;
2634 * Suspend the CPU usage monitor for the task. Return value indicates
2635 * if the mechanism was actually enabled.
2638 task_suspend_cpumon(task_t task
)
2642 task_lock_assert_owned(task
);
2644 if ((task
->rusage_cpu_flags
& TASK_RUSECPU_FLAGS_PERTHR_LIMIT
) == 0) {
2645 return KERN_INVALID_ARGUMENT
;
2648 #if CONFIG_TELEMETRY
2650 * Disable task-wide telemetry if it was ever enabled by the CPU usage
2651 * monitor's warning zone.
2653 telemetry_task_ctl_locked(task
, TF_CPUMON_WARNING
, 0);
2657 * Suspend monitoring for the task, and propagate that change to each thread.
2659 task
->rusage_cpu_flags
&= ~(TASK_RUSECPU_FLAGS_PERTHR_LIMIT
| TASK_RUSECPU_FLAGS_FATAL_CPUMON
);
2660 queue_iterate(&task
->threads
, thread
, thread_t
, task_threads
) {
2661 act_set_astledger(thread
);
2664 return KERN_SUCCESS
;
2668 * Remove all traces of the CPU monitor.
2671 task_disable_cpumon(task_t task
)
2675 task_lock_assert_owned(task
);
2677 kret
= task_suspend_cpumon(task
);
2682 /* Once we clear these values, the monitor can't be resumed */
2683 task
->rusage_cpu_perthr_percentage
= 0;
2684 task
->rusage_cpu_perthr_interval
= 0;
2686 return KERN_SUCCESS
;
2691 task_enable_cpumon_locked(task_t task
)
2694 task_lock_assert_owned(task
);
2696 if (task
->rusage_cpu_perthr_percentage
== 0 ||
2697 task
->rusage_cpu_perthr_interval
== 0) {
2698 return KERN_INVALID_ARGUMENT
;
2701 task
->rusage_cpu_flags
|= TASK_RUSECPU_FLAGS_PERTHR_LIMIT
;
2702 queue_iterate(&task
->threads
, thread
, thread_t
, task_threads
) {
2703 act_set_astledger(thread
);
2706 return KERN_SUCCESS
;
2710 task_resume_cpumon(task_t task
)
2719 kret
= task_enable_cpumon_locked(task
);
2726 /* duplicate values from bsd/sys/process_policy.h */
2727 #define PROC_POLICY_CPUMON_DISABLE 0xFF
2728 #define PROC_POLICY_CPUMON_DEFAULTS 0xFE
2731 task_set_cpuusage(task_t task
, uint8_t percentage
, uint64_t interval
, uint64_t deadline
, int scope
, int cpumon_entitled
)
2733 uint64_t abstime
= 0;
2734 uint64_t limittime
= 0;
2736 lck_mtx_assert(&task
->lock
, LCK_MTX_ASSERT_OWNED
);
2738 /* By default, refill once per second */
2739 if (interval
== 0) {
2740 interval
= NSEC_PER_SEC
;
2743 if (percentage
!= 0) {
2744 if (scope
== TASK_RUSECPU_FLAGS_PERTHR_LIMIT
) {
2745 boolean_t warn
= FALSE
;
2748 * A per-thread CPU limit on a task generates an exception
2749 * (LEDGER_ACTION_EXCEPTION) if any one thread in the task
2750 * exceeds the limit.
2753 if (percentage
== PROC_POLICY_CPUMON_DISABLE
) {
2754 if (cpumon_entitled
) {
2755 /* 25095698 - task_disable_cpumon() should be reliable */
2756 task_disable_cpumon(task
);
2761 * This task wishes to disable the CPU usage monitor, but it's
2762 * missing the required entitlement:
2763 * com.apple.private.kernel.override-cpumon
2765 * Instead, treat this as a request to reset its params
2766 * back to the defaults.
2769 percentage
= PROC_POLICY_CPUMON_DEFAULTS
;
2772 if (percentage
== PROC_POLICY_CPUMON_DEFAULTS
) {
2773 percentage
= proc_max_cpumon_percentage
;
2774 interval
= proc_max_cpumon_interval
;
2777 if (percentage
> 100) {
2782 * Passing in an interval of -1 means either:
2783 * - Leave the interval as-is, if there's already a per-thread
2785 * - Use the system default.
2787 if (interval
== -1ULL) {
2788 if (task
->rusage_cpu_flags
& TASK_RUSECPU_FLAGS_PERTHR_LIMIT
) {
2789 interval
= task
->rusage_cpu_perthr_interval
;
2791 interval
= proc_max_cpumon_interval
;
2796 * Enforce global caps on CPU usage monitor here if the process is not
2797 * entitled to escape the global caps.
2799 if ((percentage
> proc_max_cpumon_percentage
) && (cpumon_entitled
== 0)) {
2801 percentage
= proc_max_cpumon_percentage
;
2804 if ((interval
> proc_max_cpumon_interval
) && (cpumon_entitled
== 0)) {
2806 interval
= proc_max_cpumon_interval
;
2811 const char *procname
= "unknown";
2814 pid
= proc_selfpid();
2815 if (current_task()->bsd_info
!= NULL
) {
2816 procname
= proc_name_address(current_task()->bsd_info
);
2820 printf("process %s[%d] denied attempt to escape CPU monitor"
2821 " (missing required entitlement).\n", procname
, pid
);
2824 /* configure the limit values */
2825 task
->rusage_cpu_perthr_percentage
= percentage
;
2826 task
->rusage_cpu_perthr_interval
= interval
;
2828 /* and enable the CPU monitor */
2829 (void)task_enable_cpumon_locked(task
);
2830 } else if (scope
== TASK_RUSECPU_FLAGS_PROC_LIMIT
) {
2832 * Currently, a proc-wide CPU limit always blocks if the limit is
2833 * exceeded (LEDGER_ACTION_BLOCK).
2835 task
->rusage_cpu_flags
|= TASK_RUSECPU_FLAGS_PROC_LIMIT
;
2836 task
->rusage_cpu_percentage
= percentage
;
2837 task
->rusage_cpu_interval
= interval
;
2839 limittime
= (interval
* percentage
) / 100;
2840 nanoseconds_to_absolutetime(limittime
, &abstime
);
2842 ledger_set_limit(task
->ledger
, task_ledgers
.cpu_time
, abstime
, 0);
2843 ledger_set_period(task
->ledger
, task_ledgers
.cpu_time
, interval
);
2844 ledger_set_action(task
->ledger
, task_ledgers
.cpu_time
, LEDGER_ACTION_BLOCK
);
2848 if (deadline
!= 0) {
2849 assert(scope
== TASK_RUSECPU_FLAGS_DEADLINE
);
2851 /* if already in use, cancel and wait for it to cleanout */
2852 if (task
->rusage_cpu_callt
!= NULL
) {
2854 thread_call_cancel_wait(task
->rusage_cpu_callt
);
2857 if (task
->rusage_cpu_callt
== NULL
) {
2858 task
->rusage_cpu_callt
= thread_call_allocate_with_priority(task_action_cpuusage
, (thread_call_param_t
)task
, THREAD_CALL_PRIORITY_KERNEL
);
2861 if (task
->rusage_cpu_callt
!= 0) {
2862 uint64_t save_abstime
= 0;
2864 task
->rusage_cpu_flags
|= TASK_RUSECPU_FLAGS_DEADLINE
;
2865 task
->rusage_cpu_deadline
= deadline
;
2867 nanoseconds_to_absolutetime(deadline
, &abstime
);
2868 save_abstime
= abstime
;
2869 clock_absolutetime_interval_to_deadline(save_abstime
, &abstime
);
2870 thread_call_enter_delayed(task
->rusage_cpu_callt
, abstime
);
2878 task_clear_cpuusage(task_t task
, int cpumon_entitled
)
2883 retval
= task_clear_cpuusage_locked(task
, cpumon_entitled
);
2890 task_clear_cpuusage_locked(task_t task
, int cpumon_entitled
)
2892 thread_call_t savecallt
;
2894 /* cancel percentage handling if set */
2895 if (task
->rusage_cpu_flags
& TASK_RUSECPU_FLAGS_PROC_LIMIT
) {
2896 task
->rusage_cpu_flags
&= ~TASK_RUSECPU_FLAGS_PROC_LIMIT
;
2897 ledger_set_limit(task
->ledger
, task_ledgers
.cpu_time
, LEDGER_LIMIT_INFINITY
, 0);
2898 task
->rusage_cpu_percentage
= 0;
2899 task
->rusage_cpu_interval
= 0;
2903 * Disable the CPU usage monitor.
2905 if (cpumon_entitled
) {
2906 task_disable_cpumon(task
);
2909 /* cancel deadline handling if set */
2910 if (task
->rusage_cpu_flags
& TASK_RUSECPU_FLAGS_DEADLINE
) {
2911 task
->rusage_cpu_flags
&= ~TASK_RUSECPU_FLAGS_DEADLINE
;
2912 if (task
->rusage_cpu_callt
!= 0) {
2913 savecallt
= task
->rusage_cpu_callt
;
2914 task
->rusage_cpu_callt
= NULL
;
2915 task
->rusage_cpu_deadline
= 0;
2917 thread_call_cancel_wait(savecallt
);
2918 thread_call_free(savecallt
);
2925 /* called by ledger unit to enforce action due to resource usage criteria being met */
2927 task_action_cpuusage(thread_call_param_t param0
, __unused thread_call_param_t param1
)
2929 task_t task
= (task_t
)param0
;
2930 (void)task_apply_resource_actions(task
, TASK_POLICY_CPU_RESOURCE_USAGE
);
2936 * Routines for taskwatch and pidbind
2941 lck_mtx_t task_watch_mtx
;
2944 task_watch_init(void)
2946 lck_mtx_init(&task_watch_mtx
, &task_lck_grp
, &task_lck_attr
);
2950 task_watch_lock(void)
2952 lck_mtx_lock(&task_watch_mtx
);
2956 task_watch_unlock(void)
2958 lck_mtx_unlock(&task_watch_mtx
);
2962 add_taskwatch_locked(task_t task
, task_watch_t
* twp
)
2964 queue_enter(&task
->task_watchers
, twp
, task_watch_t
*, tw_links
);
2965 task
->num_taskwatchers
++;
2969 remove_taskwatch_locked(task_t task
, task_watch_t
* twp
)
2971 queue_remove(&task
->task_watchers
, twp
, task_watch_t
*, tw_links
);
2972 task
->num_taskwatchers
--;
2977 proc_lf_pidbind(task_t curtask
, uint64_t tid
, task_t target_task
, int bind
)
2979 thread_t target_thread
= NULL
;
2980 int ret
= 0, setbg
= 0;
2981 task_watch_t
*twp
= NULL
;
2982 task_t task
= TASK_NULL
;
2984 target_thread
= task_findtid(curtask
, tid
);
2985 if (target_thread
== NULL
) {
2988 /* holds thread reference */
2991 /* task is still active ? */
2992 task_lock(target_task
);
2993 if (target_task
->active
== 0) {
2994 task_unlock(target_task
);
2998 task_unlock(target_task
);
3000 twp
= (task_watch_t
*)kalloc(sizeof(task_watch_t
));
3002 task_watch_unlock();
3007 bzero(twp
, sizeof(task_watch_t
));
3011 if (target_thread
->taskwatch
!= NULL
) {
3012 /* already bound to another task */
3013 task_watch_unlock();
3015 kfree(twp
, sizeof(task_watch_t
));
3020 task_reference(target_task
);
3022 setbg
= proc_get_effective_task_policy(target_task
, TASK_POLICY_WATCHERS_BG
);
3024 twp
->tw_task
= target_task
; /* holds the task reference */
3025 twp
->tw_thread
= target_thread
; /* holds the thread reference */
3026 twp
->tw_state
= setbg
;
3027 twp
->tw_importance
= target_thread
->importance
;
3029 add_taskwatch_locked(target_task
, twp
);
3031 target_thread
->taskwatch
= twp
;
3033 task_watch_unlock();
3036 set_thread_appbg(target_thread
, setbg
, INT_MIN
);
3039 /* retain the thread reference as it is in twp */
3040 target_thread
= NULL
;
3044 if ((twp
= target_thread
->taskwatch
) != NULL
) {
3045 task
= twp
->tw_task
;
3046 target_thread
->taskwatch
= NULL
;
3047 remove_taskwatch_locked(task
, twp
);
3049 task_watch_unlock();
3051 task_deallocate(task
); /* drop task ref in twp */
3052 set_thread_appbg(target_thread
, 0, twp
->tw_importance
);
3053 thread_deallocate(target_thread
); /* drop thread ref in twp */
3054 kfree(twp
, sizeof(task_watch_t
));
3056 task_watch_unlock();
3057 ret
= 0; /* return success if it not alredy bound */
3062 thread_deallocate(target_thread
); /* drop thread ref acquired in this routine */
3067 set_thread_appbg(thread_t thread
, int setbg
, __unused
int importance
)
3069 int enable
= (setbg
? TASK_POLICY_ENABLE
: TASK_POLICY_DISABLE
);
3071 proc_set_thread_policy(thread
, TASK_POLICY_ATTRIBUTE
, TASK_POLICY_PIDBIND_BG
, enable
);
3075 apply_appstate_watchers(task_t task
)
3077 int numwatchers
= 0, i
, j
, setbg
;
3078 thread_watchlist_t
* threadlist
;
3082 /* if no watchers on the list return */
3083 if ((numwatchers
= task
->num_taskwatchers
) == 0) {
3087 threadlist
= (thread_watchlist_t
*)kalloc(numwatchers
* sizeof(thread_watchlist_t
));
3088 if (threadlist
== NULL
) {
3092 bzero(threadlist
, numwatchers
* sizeof(thread_watchlist_t
));
3095 /*serialize application of app state changes */
3097 if (task
->watchapplying
!= 0) {
3098 lck_mtx_sleep(&task_watch_mtx
, LCK_SLEEP_DEFAULT
, &task
->watchapplying
, THREAD_UNINT
);
3099 task_watch_unlock();
3100 kfree(threadlist
, numwatchers
* sizeof(thread_watchlist_t
));
3104 if (numwatchers
!= task
->num_taskwatchers
) {
3105 task_watch_unlock();
3106 kfree(threadlist
, numwatchers
* sizeof(thread_watchlist_t
));
3110 setbg
= proc_get_effective_task_policy(task
, TASK_POLICY_WATCHERS_BG
);
3112 task
->watchapplying
= 1;
3114 queue_iterate(&task
->task_watchers
, twp
, task_watch_t
*, tw_links
) {
3115 threadlist
[i
].thread
= twp
->tw_thread
;
3116 thread_reference(threadlist
[i
].thread
);
3118 twp
->tw_importance
= twp
->tw_thread
->importance
;
3119 threadlist
[i
].importance
= INT_MIN
;
3121 threadlist
[i
].importance
= twp
->tw_importance
;
3124 if (i
> numwatchers
) {
3129 task_watch_unlock();
3131 for (j
= 0; j
< i
; j
++) {
3132 set_thread_appbg(threadlist
[j
].thread
, setbg
, threadlist
[j
].importance
);
3133 thread_deallocate(threadlist
[j
].thread
);
3135 kfree(threadlist
, numwatchers
* sizeof(thread_watchlist_t
));
3139 task
->watchapplying
= 0;
3140 thread_wakeup_one(&task
->watchapplying
);
3141 task_watch_unlock();
3145 thead_remove_taskwatch(thread_t thread
)
3151 if ((twp
= thread
->taskwatch
) != NULL
) {
3152 thread
->taskwatch
= NULL
;
3153 remove_taskwatch_locked(twp
->tw_task
, twp
);
3155 task_watch_unlock();
3157 thread_deallocate(twp
->tw_thread
);
3158 task_deallocate(twp
->tw_task
);
3159 importance
= twp
->tw_importance
;
3160 kfree(twp
, sizeof(task_watch_t
));
3161 /* remove the thread and networkbg */
3162 set_thread_appbg(thread
, 0, importance
);
3167 task_removewatchers(task_t task
)
3169 int numwatchers
= 0, i
, j
;
3170 task_watch_t
** twplist
= NULL
;
3171 task_watch_t
* twp
= NULL
;
3174 if ((numwatchers
= task
->num_taskwatchers
) == 0) {
3178 twplist
= (task_watch_t
**)kalloc(numwatchers
* sizeof(task_watch_t
*));
3179 if (twplist
== NULL
) {
3183 bzero(twplist
, numwatchers
* sizeof(task_watch_t
*));
3186 if (task
->num_taskwatchers
== 0) {
3187 task_watch_unlock();
3191 if (numwatchers
!= task
->num_taskwatchers
) {
3192 task_watch_unlock();
3193 kfree(twplist
, numwatchers
* sizeof(task_watch_t
*));
3199 while ((twp
= (task_watch_t
*)dequeue_head(&task
->task_watchers
)) != NULL
) {
3201 task
->num_taskwatchers
--;
3204 * Since the linkage is removed and thead state cleanup is already set up,
3205 * remove the refernce from the thread.
3207 twp
->tw_thread
->taskwatch
= NULL
; /* removed linkage, clear thread holding ref */
3209 if ((task
->num_taskwatchers
== 0) || (i
> numwatchers
)) {
3214 task_watch_unlock();
3216 for (j
= 0; j
< i
; j
++) {
3218 /* remove thread and network bg */
3219 set_thread_appbg(twp
->tw_thread
, 0, twp
->tw_importance
);
3220 thread_deallocate(twp
->tw_thread
);
3221 task_deallocate(twp
->tw_task
);
3222 kfree(twp
, sizeof(task_watch_t
));
3226 kfree(twplist
, numwatchers
* sizeof(task_watch_t
*));
3228 #endif /* CONFIG_EMBEDDED */
3231 * Routines for importance donation/inheritance/boosting
3235 task_importance_update_live_donor(task_t target_task
)
3237 #if IMPORTANCE_INHERITANCE
3239 ipc_importance_task_t task_imp
;
3241 task_imp
= ipc_importance_for_task(target_task
, FALSE
);
3242 if (IIT_NULL
!= task_imp
) {
3243 ipc_importance_task_update_live_donor(task_imp
);
3244 ipc_importance_task_release(task_imp
);
3246 #endif /* IMPORTANCE_INHERITANCE */
3250 task_importance_mark_donor(task_t task
, boolean_t donating
)
3252 #if IMPORTANCE_INHERITANCE
3253 ipc_importance_task_t task_imp
;
3255 task_imp
= ipc_importance_for_task(task
, FALSE
);
3256 if (IIT_NULL
!= task_imp
) {
3257 ipc_importance_task_mark_donor(task_imp
, donating
);
3258 ipc_importance_task_release(task_imp
);
3260 #endif /* IMPORTANCE_INHERITANCE */
3264 task_importance_mark_live_donor(task_t task
, boolean_t live_donating
)
3266 #if IMPORTANCE_INHERITANCE
3267 ipc_importance_task_t task_imp
;
3269 task_imp
= ipc_importance_for_task(task
, FALSE
);
3270 if (IIT_NULL
!= task_imp
) {
3271 ipc_importance_task_mark_live_donor(task_imp
, live_donating
);
3272 ipc_importance_task_release(task_imp
);
3274 #endif /* IMPORTANCE_INHERITANCE */
3278 task_importance_mark_receiver(task_t task
, boolean_t receiving
)
3280 #if IMPORTANCE_INHERITANCE
3281 ipc_importance_task_t task_imp
;
3283 task_imp
= ipc_importance_for_task(task
, FALSE
);
3284 if (IIT_NULL
!= task_imp
) {
3285 ipc_importance_task_mark_receiver(task_imp
, receiving
);
3286 ipc_importance_task_release(task_imp
);
3288 #endif /* IMPORTANCE_INHERITANCE */
3292 task_importance_mark_denap_receiver(task_t task
, boolean_t denap
)
3294 #if IMPORTANCE_INHERITANCE
3295 ipc_importance_task_t task_imp
;
3297 task_imp
= ipc_importance_for_task(task
, FALSE
);
3298 if (IIT_NULL
!= task_imp
) {
3299 ipc_importance_task_mark_denap_receiver(task_imp
, denap
);
3300 ipc_importance_task_release(task_imp
);
3302 #endif /* IMPORTANCE_INHERITANCE */
3306 task_importance_reset(__imp_only task_t task
)
3308 #if IMPORTANCE_INHERITANCE
3309 ipc_importance_task_t task_imp
;
3311 /* TODO: Lower importance downstream before disconnect */
3312 task_imp
= task
->task_imp_base
;
3313 ipc_importance_reset(task_imp
, FALSE
);
3314 task_importance_update_live_donor(task
);
3315 #endif /* IMPORTANCE_INHERITANCE */
3319 task_importance_init_from_parent(__imp_only task_t new_task
, __imp_only task_t parent_task
)
3321 #if IMPORTANCE_INHERITANCE
3322 ipc_importance_task_t new_task_imp
= IIT_NULL
;
3324 new_task
->task_imp_base
= NULL
;
3329 if (task_is_marked_importance_donor(parent_task
)) {
3330 new_task_imp
= ipc_importance_for_task(new_task
, FALSE
);
3331 assert(IIT_NULL
!= new_task_imp
);
3332 ipc_importance_task_mark_donor(new_task_imp
, TRUE
);
3334 if (task_is_marked_live_importance_donor(parent_task
)) {
3335 if (IIT_NULL
== new_task_imp
) {
3336 new_task_imp
= ipc_importance_for_task(new_task
, FALSE
);
3338 assert(IIT_NULL
!= new_task_imp
);
3339 ipc_importance_task_mark_live_donor(new_task_imp
, TRUE
);
3341 /* Do not inherit 'receiver' on fork, vfexec or true spawn */
3342 if (task_is_exec_copy(new_task
) &&
3343 task_is_marked_importance_receiver(parent_task
)) {
3344 if (IIT_NULL
== new_task_imp
) {
3345 new_task_imp
= ipc_importance_for_task(new_task
, FALSE
);
3347 assert(IIT_NULL
!= new_task_imp
);
3348 ipc_importance_task_mark_receiver(new_task_imp
, TRUE
);
3350 if (task_is_marked_importance_denap_receiver(parent_task
)) {
3351 if (IIT_NULL
== new_task_imp
) {
3352 new_task_imp
= ipc_importance_for_task(new_task
, FALSE
);
3354 assert(IIT_NULL
!= new_task_imp
);
3355 ipc_importance_task_mark_denap_receiver(new_task_imp
, TRUE
);
3357 if (IIT_NULL
!= new_task_imp
) {
3358 assert(new_task
->task_imp_base
== new_task_imp
);
3359 ipc_importance_task_release(new_task_imp
);
3361 #endif /* IMPORTANCE_INHERITANCE */
3364 #if IMPORTANCE_INHERITANCE
3366 * Sets the task boost bit to the provided value. Does NOT run the update function.
3368 * Task lock must be held.
3371 task_set_boost_locked(task_t task
, boolean_t boost_active
)
3373 #if IMPORTANCE_TRACE
3374 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
, (IMPORTANCE_CODE(IMP_BOOST
, (boost_active
? IMP_BOOSTED
: IMP_UNBOOSTED
)) | DBG_FUNC_START
),
3375 proc_selfpid(), task_pid(task
), trequested_0(task
), trequested_1(task
), 0);
3376 #endif /* IMPORTANCE_TRACE */
3378 task
->requested_policy
.trp_boosted
= boost_active
;
3380 #if IMPORTANCE_TRACE
3381 if (boost_active
== TRUE
) {
3382 DTRACE_BOOST2(boost
, task_t
, task
, int, task_pid(task
));
3384 DTRACE_BOOST2(unboost
, task_t
, task
, int, task_pid(task
));
3386 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
, (IMPORTANCE_CODE(IMP_BOOST
, (boost_active
? IMP_BOOSTED
: IMP_UNBOOSTED
)) | DBG_FUNC_END
),
3387 proc_selfpid(), task_pid(task
),
3388 trequested_0(task
), trequested_1(task
), 0);
3389 #endif /* IMPORTANCE_TRACE */
3393 * Sets the task boost bit to the provided value and applies the update.
3395 * Task lock must be held. Must call update complete after unlocking the task.
3398 task_update_boost_locked(task_t task
, boolean_t boost_active
, task_pend_token_t pend_token
)
3400 task_set_boost_locked(task
, boost_active
);
3402 task_policy_update_locked(task
, pend_token
);
3406 * Check if this task should donate importance.
3408 * May be called without taking the task lock. In that case, donor status can change
3409 * so you must check only once for each donation event.
3412 task_is_importance_donor(task_t task
)
3414 if (task
->task_imp_base
== IIT_NULL
) {
3417 return ipc_importance_task_is_donor(task
->task_imp_base
);
3421 * Query the status of the task's donor mark.
3424 task_is_marked_importance_donor(task_t task
)
3426 if (task
->task_imp_base
== IIT_NULL
) {
3429 return ipc_importance_task_is_marked_donor(task
->task_imp_base
);
3433 * Query the status of the task's live donor and donor mark.
3436 task_is_marked_live_importance_donor(task_t task
)
3438 if (task
->task_imp_base
== IIT_NULL
) {
3441 return ipc_importance_task_is_marked_live_donor(task
->task_imp_base
);
3446 * This routine may be called without holding task lock
3447 * since the value of imp_receiver can never be unset.
3450 task_is_importance_receiver(task_t task
)
3452 if (task
->task_imp_base
== IIT_NULL
) {
3455 return ipc_importance_task_is_marked_receiver(task
->task_imp_base
);
3459 * Query the task's receiver mark.
3462 task_is_marked_importance_receiver(task_t task
)
3464 if (task
->task_imp_base
== IIT_NULL
) {
3467 return ipc_importance_task_is_marked_receiver(task
->task_imp_base
);
3471 * This routine may be called without holding task lock
3472 * since the value of de-nap receiver can never be unset.
3475 task_is_importance_denap_receiver(task_t task
)
3477 if (task
->task_imp_base
== IIT_NULL
) {
3480 return ipc_importance_task_is_denap_receiver(task
->task_imp_base
);
3484 * Query the task's de-nap receiver mark.
3487 task_is_marked_importance_denap_receiver(task_t task
)
3489 if (task
->task_imp_base
== IIT_NULL
) {
3492 return ipc_importance_task_is_marked_denap_receiver(task
->task_imp_base
);
3496 * This routine may be called without holding task lock
3497 * since the value of imp_receiver can never be unset.
3500 task_is_importance_receiver_type(task_t task
)
3502 if (task
->task_imp_base
== IIT_NULL
) {
3505 return task_is_importance_receiver(task
) ||
3506 task_is_importance_denap_receiver(task
);
3510 * External importance assertions are managed by the process in userspace
3511 * Internal importance assertions are the responsibility of the kernel
3512 * Assertions are changed from internal to external via task_importance_externalize_assertion
3516 task_importance_hold_internal_assertion(task_t target_task
, uint32_t count
)
3518 ipc_importance_task_t task_imp
;
3521 /* may be first time, so allow for possible importance setup */
3522 task_imp
= ipc_importance_for_task(target_task
, FALSE
);
3523 if (IIT_NULL
== task_imp
) {
3526 ret
= ipc_importance_task_hold_internal_assertion(task_imp
, count
);
3527 ipc_importance_task_release(task_imp
);
3529 return (KERN_SUCCESS
!= ret
) ? ENOTSUP
: 0;
3533 task_importance_hold_file_lock_assertion(task_t target_task
, uint32_t count
)
3535 ipc_importance_task_t task_imp
;
3538 /* may be first time, so allow for possible importance setup */
3539 task_imp
= ipc_importance_for_task(target_task
, FALSE
);
3540 if (IIT_NULL
== task_imp
) {
3543 ret
= ipc_importance_task_hold_file_lock_assertion(task_imp
, count
);
3544 ipc_importance_task_release(task_imp
);
3546 return (KERN_SUCCESS
!= ret
) ? ENOTSUP
: 0;
3550 task_importance_hold_legacy_external_assertion(task_t target_task
, uint32_t count
)
3552 ipc_importance_task_t task_imp
;
3555 /* must already have set up an importance */
3556 task_imp
= target_task
->task_imp_base
;
3557 if (IIT_NULL
== task_imp
) {
3560 ret
= ipc_importance_task_hold_legacy_external_assertion(task_imp
, count
);
3561 return (KERN_SUCCESS
!= ret
) ? ENOTSUP
: 0;
3565 task_importance_drop_file_lock_assertion(task_t target_task
, uint32_t count
)
3567 ipc_importance_task_t task_imp
;
3570 /* must already have set up an importance */
3571 task_imp
= target_task
->task_imp_base
;
3572 if (IIT_NULL
== task_imp
) {
3575 ret
= ipc_importance_task_drop_file_lock_assertion(target_task
->task_imp_base
, count
);
3576 return (KERN_SUCCESS
!= ret
) ? EOVERFLOW
: 0;
3580 task_importance_drop_legacy_external_assertion(task_t target_task
, uint32_t count
)
3582 ipc_importance_task_t task_imp
;
3585 /* must already have set up an importance */
3586 task_imp
= target_task
->task_imp_base
;
3587 if (IIT_NULL
== task_imp
) {
3590 ret
= ipc_importance_task_drop_legacy_external_assertion(task_imp
, count
);
3591 return (KERN_SUCCESS
!= ret
) ? EOVERFLOW
: 0;
3595 task_add_importance_watchport(task_t task
, mach_port_t port
, int *boostp
)
3599 __imptrace_only
int released_pid
= 0;
3600 __imptrace_only
int pid
= task_pid(task
);
3602 ipc_importance_task_t release_imp_task
= IIT_NULL
;
3604 if (IP_VALID(port
) != 0) {
3605 ipc_importance_task_t new_imp_task
= ipc_importance_for_task(task
, FALSE
);
3610 * The port must have been marked tempowner already.
3611 * This also filters out ports whose receive rights
3612 * are already enqueued in a message, as you can't
3613 * change the right's destination once it's already
3616 if (port
->ip_tempowner
!= 0) {
3617 assert(port
->ip_impdonation
!= 0);
3619 boost
= port
->ip_impcount
;
3620 if (IIT_NULL
!= port
->ip_imp_task
) {
3622 * if this port is already bound to a task,
3623 * release the task reference and drop any
3624 * watchport-forwarded boosts
3626 release_imp_task
= port
->ip_imp_task
;
3627 port
->ip_imp_task
= IIT_NULL
;
3630 /* mark the port is watching another task (reference held in port->ip_imp_task) */
3631 if (ipc_importance_task_is_marked_receiver(new_imp_task
)) {
3632 port
->ip_imp_task
= new_imp_task
;
3633 new_imp_task
= IIT_NULL
;
3638 if (IIT_NULL
!= new_imp_task
) {
3639 ipc_importance_task_release(new_imp_task
);
3642 if (IIT_NULL
!= release_imp_task
) {
3644 ipc_importance_task_drop_internal_assertion(release_imp_task
, boost
);
3647 // released_pid = task_pid(release_imp_task); /* TODO: Need ref-safe way to get pid */
3648 ipc_importance_task_release(release_imp_task
);
3650 #if IMPORTANCE_TRACE
3651 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE
, (IMPORTANCE_CODE(IMP_WATCHPORT
, 0)) | DBG_FUNC_NONE
,
3652 proc_selfpid(), pid
, boost
, released_pid
, 0);
3653 #endif /* IMPORTANCE_TRACE */
3660 #endif /* IMPORTANCE_INHERITANCE */
3663 * Routines for VM to query task importance
3668 * Order to be considered while estimating importance
3669 * for low memory notification and purging purgeable memory.
3671 #define TASK_IMPORTANCE_FOREGROUND 4
3672 #define TASK_IMPORTANCE_NOTDARWINBG 1
3676 * (Un)Mark the task as a privileged listener for memory notifications.
3677 * if marked, this task will be among the first to be notified amongst
3678 * the bulk of all other tasks when the system enters a pressure level
3679 * of interest to this task.
3682 task_low_mem_privileged_listener(task_t task
, boolean_t new_value
, boolean_t
*old_value
)
3684 if (old_value
!= NULL
) {
3685 *old_value
= (boolean_t
)task
->low_mem_privileged_listener
;
3688 task
->low_mem_privileged_listener
= (uint32_t)new_value
;
3696 * Checks if the task is already notified.
3698 * Condition: task lock should be held while calling this function.
3701 task_has_been_notified(task_t task
, int pressurelevel
)
3707 if (pressurelevel
== kVMPressureWarning
) {
3708 return task
->low_mem_notified_warn
? TRUE
: FALSE
;
3709 } else if (pressurelevel
== kVMPressureCritical
) {
3710 return task
->low_mem_notified_critical
? TRUE
: FALSE
;
3718 * Checks if the task is used for purging.
3720 * Condition: task lock should be held while calling this function.
3723 task_used_for_purging(task_t task
, int pressurelevel
)
3729 if (pressurelevel
== kVMPressureWarning
) {
3730 return task
->purged_memory_warn
? TRUE
: FALSE
;
3731 } else if (pressurelevel
== kVMPressureCritical
) {
3732 return task
->purged_memory_critical
? TRUE
: FALSE
;
3740 * Mark the task as notified with memory notification.
3742 * Condition: task lock should be held while calling this function.
3745 task_mark_has_been_notified(task_t task
, int pressurelevel
)
3751 if (pressurelevel
== kVMPressureWarning
) {
3752 task
->low_mem_notified_warn
= 1;
3753 } else if (pressurelevel
== kVMPressureCritical
) {
3754 task
->low_mem_notified_critical
= 1;
3760 * Mark the task as purged.
3762 * Condition: task lock should be held while calling this function.
3765 task_mark_used_for_purging(task_t task
, int pressurelevel
)
3771 if (pressurelevel
== kVMPressureWarning
) {
3772 task
->purged_memory_warn
= 1;
3773 } else if (pressurelevel
== kVMPressureCritical
) {
3774 task
->purged_memory_critical
= 1;
3780 * Mark the task eligible for low memory notification.
3782 * Condition: task lock should be held while calling this function.
3785 task_clear_has_been_notified(task_t task
, int pressurelevel
)
3791 if (pressurelevel
== kVMPressureWarning
) {
3792 task
->low_mem_notified_warn
= 0;
3793 } else if (pressurelevel
== kVMPressureCritical
) {
3794 task
->low_mem_notified_critical
= 0;
3800 * Mark the task eligible for purging its purgeable memory.
3802 * Condition: task lock should be held while calling this function.
3805 task_clear_used_for_purging(task_t task
)
3811 task
->purged_memory_warn
= 0;
3812 task
->purged_memory_critical
= 0;
3817 * Estimate task importance for purging its purgeable memory
3818 * and low memory notification.
3820 * Importance is calculated in the following order of criteria:
3821 * -Task role : Background vs Foreground
3822 * -Boost status: Not boosted vs Boosted
3823 * -Darwin BG status.
3825 * Returns: Estimated task importance. Less important task will have lower
3826 * estimated importance.
3829 task_importance_estimate(task_t task
)
3831 int task_importance
= 0;
3837 if (proc_get_effective_task_policy(task
, TASK_POLICY_ROLE
) == TASK_FOREGROUND_APPLICATION
) {
3838 task_importance
+= TASK_IMPORTANCE_FOREGROUND
;
3841 if (proc_get_effective_task_policy(task
, TASK_POLICY_DARWIN_BG
) == 0) {
3842 task_importance
+= TASK_IMPORTANCE_NOTDARWINBG
;
3845 return task_importance
;
3849 task_has_assertions(task_t task
)
3851 return task
->task_imp_base
->iit_assertcnt
? TRUE
: FALSE
;
3856 send_resource_violation(typeof(send_cpu_usage_violation
) sendfunc
,
3858 struct ledger_entry_info
*linfo
,
3859 resource_notify_flags_t flags
)
3862 return KERN_NOT_SUPPORTED
;
3864 kern_return_t kr
= KERN_SUCCESS
;
3866 posix_path_t proc_path
= "";
3867 proc_name_t procname
= "<unknown>";
3871 mach_timespec_t timestamp
;
3872 thread_t curthread
= current_thread();
3873 ipc_port_t dstport
= MACH_PORT_NULL
;
3876 kr
= KERN_INVALID_ARGUMENT
; goto finish
;
3879 /* extract violator information */
3880 task_lock(violator
);
3881 if (!(proc
= get_bsdtask_info(violator
))) {
3882 task_unlock(violator
);
3883 kr
= KERN_INVALID_ARGUMENT
; goto finish
;
3885 (void)mig_strncpy(procname
, proc_best_name(proc
), sizeof(procname
));
3886 pid
= task_pid(violator
);
3887 if (flags
& kRNFatalLimitFlag
) {
3888 kr
= proc_pidpathinfo_internal(proc
, 0, proc_path
,
3889 sizeof(proc_path
), NULL
);
3891 task_unlock(violator
);
3896 /* violation time ~ now */
3897 clock_get_calendar_nanotime(&secs
, &nsecs
);
3898 timestamp
.tv_sec
= (int32_t)secs
;
3899 timestamp
.tv_nsec
= (int32_t)nsecs
;
3900 /* 25567702 tracks widening mach_timespec_t */
3903 kr
= host_get_special_port(host_priv_self(), HOST_LOCAL_NODE
,
3904 HOST_RESOURCE_NOTIFY_PORT
, &dstport
);
3909 thread_set_honor_qlimit(curthread
);
3910 kr
= sendfunc(dstport
,
3911 procname
, pid
, proc_path
, timestamp
,
3912 linfo
->lei_balance
, linfo
->lei_last_refill
,
3913 linfo
->lei_limit
, linfo
->lei_refill_period
,
3915 thread_clear_honor_qlimit(curthread
);
3917 ipc_port_release_send(dstport
);
3921 #endif /* MACH_BSD */
3926 * Resource violations trace four 64-bit integers. For K32, two additional
3927 * codes are allocated, the first with the low nibble doubled. So if the K64
3928 * code is 0x042, the K32 codes would be 0x044 and 0x45.
3932 trace_resource_violation(uint16_t code
,
3933 struct ledger_entry_info
*linfo
)
3935 KERNEL_DBG_IST_SANE(KDBG_CODE(DBG_MACH
, DBG_MACH_RESOURCE
, code
),
3936 linfo
->lei_balance
, linfo
->lei_last_refill
,
3937 linfo
->lei_limit
, linfo
->lei_refill_period
);
3940 /* TODO: create/find a trace_two_LLs() for K32 systems */
3941 #define MASK32 0xffffffff
3943 trace_resource_violation(uint16_t code
,
3944 struct ledger_entry_info
*linfo
)
3946 int8_t lownibble
= (code
& 0x3) * 2;
3947 int16_t codeA
= (code
& 0xffc) | lownibble
;
3948 int16_t codeB
= codeA
+ 1;
3950 int32_t balance_high
= (linfo
->lei_balance
>> 32) & MASK32
;
3951 int32_t balance_low
= linfo
->lei_balance
& MASK32
;
3952 int32_t last_refill_high
= (linfo
->lei_last_refill
>> 32) & MASK32
;
3953 int32_t last_refill_low
= linfo
->lei_last_refill
& MASK32
;
3955 int32_t limit_high
= (linfo
->lei_limit
>> 32) & MASK32
;
3956 int32_t limit_low
= linfo
->lei_limit
& MASK32
;
3957 int32_t refill_period_high
= (linfo
->lei_refill_period
>> 32) & MASK32
;
3958 int32_t refill_period_low
= linfo
->lei_refill_period
& MASK32
;
3960 KERNEL_DBG_IST_SANE(KDBG_CODE(DBG_MACH
, DBG_MACH_RESOURCE
, codeA
),
3961 balance_high
, balance_low
,
3962 last_refill_high
, last_refill_low
);
3963 KERNEL_DBG_IST_SANE(KDBG_CODE(DBG_MACH
, DBG_MACH_RESOURCE
, codeB
),
3964 limit_high
, limit_low
,
3965 refill_period_high
, refill_period_low
);
3967 #endif /* K64/K32 */