]> git.saurik.com Git - apple/xnu.git/blob - osfmk/kern/task_policy.c
2faf0f7cd11db54be8e3dc72a13727f30169590d
[apple/xnu.git] / osfmk / kern / task_policy.c
1 /*
2 * Copyright (c) 2000-2016 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28
29 #include <kern/policy_internal.h>
30 #include <mach/task_policy.h>
31
32 #include <mach/mach_types.h>
33 #include <mach/task_server.h>
34
35 #include <kern/host.h> /* host_priv_self() */
36 #include <mach/host_priv.h> /* host_get_special_port() */
37 #include <mach/host_special_ports.h> /* RESOURCE_NOTIFY_PORT */
38 #include <kern/sched.h>
39 #include <kern/task.h>
40 #include <mach/thread_policy.h>
41 #include <sys/errno.h>
42 #include <sys/resource.h>
43 #include <machine/limits.h>
44 #include <kern/ledger.h>
45 #include <kern/thread_call.h>
46 #include <kern/sfi.h>
47 #include <kern/coalition.h>
48 #if CONFIG_TELEMETRY
49 #include <kern/telemetry.h>
50 #endif
51 #if CONFIG_EMBEDDED
52 #include <kern/kalloc.h>
53 #include <sys/errno.h>
54 #endif /* CONFIG_EMBEDDED */
55
56 #if IMPORTANCE_INHERITANCE
57 #include <ipc/ipc_importance.h>
58 #if IMPORTANCE_TRACE
59 #include <mach/machine/sdt.h>
60 #endif /* IMPORTANCE_TRACE */
61 #endif /* IMPORTANCE_INHERITACE */
62
63 #include <sys/kdebug.h>
64
65 /*
66 * Task Policy
67 *
68 * This subsystem manages task and thread IO priority and backgrounding,
69 * as well as importance inheritance, process suppression, task QoS, and apptype.
70 * These properties have a suprising number of complex interactions, so they are
71 * centralized here in one state machine to simplify the implementation of those interactions.
72 *
73 * Architecture:
74 * Threads and tasks have two policy fields: requested, effective.
75 * Requested represents the wishes of each interface that influences task policy.
76 * Effective represents the distillation of that policy into a set of behaviors.
77 *
78 * Each thread making a modification in the policy system passes a 'pending' struct,
79 * which tracks updates that will be applied after dropping the policy engine lock.
80 *
81 * Each interface that has an input into the task policy state machine controls a field in requested.
82 * If the interface has a getter, it returns what is in the field in requested, but that is
83 * not necessarily what is actually in effect.
84 *
85 * All kernel subsystems that behave differently based on task policy call into
86 * the proc_get_effective_(task|thread)_policy functions, which return the decision of the task policy state machine
87 * for that subsystem by querying only the 'effective' field.
88 *
89 * Policy change operations:
90 * Here are the steps to change a policy on a task or thread:
91 * 1) Lock task
92 * 2) Change requested field for the relevant policy
93 * 3) Run a task policy update, which recalculates effective based on requested,
94 * then takes a diff between the old and new versions of requested and calls the relevant
95 * other subsystems to apply these changes, and updates the pending field.
96 * 4) Unlock task
97 * 5) Run task policy update complete, which looks at the pending field to update
98 * subsystems which cannot be touched while holding the task lock.
99 *
100 * To add a new requested policy, add the field in the requested struct, the flavor in task.h,
101 * the setter and getter in proc_(set|get)_task_policy*,
102 * then set up the effects of that behavior in task_policy_update*. If the policy manifests
103 * itself as a distinct effective policy, add it to the effective struct and add it to the
104 * proc_get_effective_task_policy accessor.
105 *
106 * Most policies are set via proc_set_task_policy, but policies that don't fit that interface
107 * roll their own lock/set/update/unlock/complete code inside this file.
108 *
109 *
110 * Suppression policy
111 *
112 * These are a set of behaviors that can be requested for a task. They currently have specific
113 * implied actions when they're enabled, but they may be made customizable in the future.
114 *
115 * When the affected task is boosted, we temporarily disable the suppression behaviors
116 * so that the affected process has a chance to run so it can call the API to permanently
117 * disable the suppression behaviors.
118 *
119 * Locking
120 *
121 * Changing task policy on a task takes the task lock.
122 * Changing task policy on a thread takes the thread mutex.
123 * Task policy changes that affect threads will take each thread's mutex to update it if necessary.
124 *
125 * Querying the effective policy does not take a lock, because callers
126 * may run in interrupt context or other place where locks are not OK.
127 *
128 * This means that any notification of state change needs to be externally synchronized.
129 * We do this by idempotent callouts after the state has changed to ask
130 * other subsystems to update their view of the world.
131 *
132 * TODO: Move all cpu/wakes/io monitor code into a separate file
133 * TODO: Move all importance code over to importance subsystem
134 * TODO: Move all taskwatch code into a separate file
135 * TODO: Move all VM importance code into a separate file
136 */
137
138 /* Task policy related helper functions */
139 static void proc_set_task_policy_locked(task_t task, int category, int flavor, int value, int value2);
140
141 static void task_policy_update_locked(task_t task, task_pend_token_t pend_token);
142 static void task_policy_update_internal_locked(task_t task, boolean_t in_create, task_pend_token_t pend_token);
143
144 /* For attributes that have two scalars as input/output */
145 static void proc_set_task_policy2(task_t task, int category, int flavor, int value1, int value2);
146 static void proc_get_task_policy2(task_t task, int category, int flavor, int *value1, int *value2);
147
148 static boolean_t task_policy_update_coalition_focal_tasks(task_t task, int prev_role, int next_role, task_pend_token_t pend_token);
149
150 static uint64_t task_requested_bitfield(task_t task);
151 static uint64_t task_effective_bitfield(task_t task);
152
153 /* Convenience functions for munging a policy bitfield into a tracepoint */
154 static uintptr_t trequested_0(task_t task);
155 static uintptr_t trequested_1(task_t task);
156 static uintptr_t teffective_0(task_t task);
157 static uintptr_t teffective_1(task_t task);
158
159 /* CPU limits helper functions */
160 static int task_set_cpuusage(task_t task, uint8_t percentage, uint64_t interval, uint64_t deadline, int scope, int entitled);
161 static int task_get_cpuusage(task_t task, uint8_t *percentagep, uint64_t *intervalp, uint64_t *deadlinep, int *scope);
162 static int task_enable_cpumon_locked(task_t task);
163 static int task_disable_cpumon(task_t task);
164 static int task_clear_cpuusage_locked(task_t task, int cpumon_entitled);
165 static int task_apply_resource_actions(task_t task, int type);
166 static void task_action_cpuusage(thread_call_param_t param0, thread_call_param_t param1);
167
168 #ifdef MACH_BSD
169 typedef struct proc * proc_t;
170 int proc_pid(void *proc);
171 extern int proc_selfpid(void);
172 extern char * proc_name_address(void *p);
173 extern char * proc_best_name(proc_t proc);
174
175 extern int proc_pidpathinfo_internal(proc_t p, uint64_t arg,
176 char *buffer, uint32_t buffersize,
177 int32_t *retval);
178 #endif /* MACH_BSD */
179
180
181 #if CONFIG_EMBEDDED
182 /* TODO: make CONFIG_TASKWATCH */
183 /* Taskwatch related helper functions */
184 static void set_thread_appbg(thread_t thread, int setbg, int importance);
185 static void add_taskwatch_locked(task_t task, task_watch_t * twp);
186 static void remove_taskwatch_locked(task_t task, task_watch_t * twp);
187 static void task_watch_lock(void);
188 static void task_watch_unlock(void);
189 static void apply_appstate_watchers(task_t task);
190
191 typedef struct task_watcher {
192 queue_chain_t tw_links; /* queueing of threads */
193 task_t tw_task; /* task that is being watched */
194 thread_t tw_thread; /* thread that is watching the watch_task */
195 int tw_state; /* the current app state of the thread */
196 int tw_importance; /* importance prior to backgrounding */
197 } task_watch_t;
198
199 typedef struct thread_watchlist {
200 thread_t thread; /* thread being worked on for taskwatch action */
201 int importance; /* importance to be restored if thread is being made active */
202 } thread_watchlist_t;
203
204 #endif /* CONFIG_EMBEDDED */
205
206 extern int memorystatus_update_priority_for_appnap(proc_t p, boolean_t is_appnap);
207
208 /* Importance Inheritance related helper functions */
209
210 #if IMPORTANCE_INHERITANCE
211
212 static void task_importance_mark_live_donor(task_t task, boolean_t donating);
213 static void task_importance_mark_receiver(task_t task, boolean_t receiving);
214 static void task_importance_mark_denap_receiver(task_t task, boolean_t denap);
215
216 static boolean_t task_is_marked_live_importance_donor(task_t task);
217 static boolean_t task_is_importance_receiver(task_t task);
218 static boolean_t task_is_importance_denap_receiver(task_t task);
219
220 static int task_importance_hold_internal_assertion(task_t target_task, uint32_t count);
221
222 static void task_add_importance_watchport(task_t task, mach_port_t port, int *boostp);
223 static void task_importance_update_live_donor(task_t target_task);
224
225 static void task_set_boost_locked(task_t task, boolean_t boost_active);
226
227 #endif /* IMPORTANCE_INHERITANCE */
228
229 #if IMPORTANCE_TRACE
230 #define __imptrace_only
231 #else /* IMPORTANCE_TRACE */
232 #define __imptrace_only __unused
233 #endif /* !IMPORTANCE_TRACE */
234
235 #if IMPORTANCE_INHERITANCE
236 #define __imp_only
237 #else
238 #define __imp_only __unused
239 #endif
240
241 /*
242 * Default parameters for certain policies
243 */
244
245 int proc_standard_daemon_tier = THROTTLE_LEVEL_TIER1;
246 int proc_suppressed_disk_tier = THROTTLE_LEVEL_TIER1;
247 int proc_tal_disk_tier = THROTTLE_LEVEL_TIER1;
248
249 int proc_graphics_timer_qos = (LATENCY_QOS_TIER_0 & 0xFF);
250
251 const int proc_default_bg_iotier = THROTTLE_LEVEL_TIER2;
252
253 /* Latency/throughput QoS fields remain zeroed, i.e. TIER_UNSPECIFIED at creation */
254 const struct task_requested_policy default_task_requested_policy = {
255 .trp_bg_iotier = proc_default_bg_iotier
256 };
257 const struct task_effective_policy default_task_effective_policy = {};
258
259 /*
260 * Default parameters for CPU usage monitor.
261 *
262 * Default setting is 50% over 3 minutes.
263 */
264 #define DEFAULT_CPUMON_PERCENTAGE 50
265 #define DEFAULT_CPUMON_INTERVAL (3 * 60)
266
267 uint8_t proc_max_cpumon_percentage;
268 uint64_t proc_max_cpumon_interval;
269
270
271 kern_return_t
272 qos_latency_policy_validate(task_latency_qos_t ltier)
273 {
274 if ((ltier != LATENCY_QOS_TIER_UNSPECIFIED) &&
275 ((ltier > LATENCY_QOS_TIER_5) || (ltier < LATENCY_QOS_TIER_0))) {
276 return KERN_INVALID_ARGUMENT;
277 }
278
279 return KERN_SUCCESS;
280 }
281
282 kern_return_t
283 qos_throughput_policy_validate(task_throughput_qos_t ttier)
284 {
285 if ((ttier != THROUGHPUT_QOS_TIER_UNSPECIFIED) &&
286 ((ttier > THROUGHPUT_QOS_TIER_5) || (ttier < THROUGHPUT_QOS_TIER_0))) {
287 return KERN_INVALID_ARGUMENT;
288 }
289
290 return KERN_SUCCESS;
291 }
292
293 static kern_return_t
294 task_qos_policy_validate(task_qos_policy_t qosinfo, mach_msg_type_number_t count)
295 {
296 if (count < TASK_QOS_POLICY_COUNT) {
297 return KERN_INVALID_ARGUMENT;
298 }
299
300 task_latency_qos_t ltier = qosinfo->task_latency_qos_tier;
301 task_throughput_qos_t ttier = qosinfo->task_throughput_qos_tier;
302
303 kern_return_t kr = qos_latency_policy_validate(ltier);
304
305 if (kr != KERN_SUCCESS) {
306 return kr;
307 }
308
309 kr = qos_throughput_policy_validate(ttier);
310
311 return kr;
312 }
313
314 uint32_t
315 qos_extract(uint32_t qv)
316 {
317 return qv & 0xFF;
318 }
319
320 uint32_t
321 qos_latency_policy_package(uint32_t qv)
322 {
323 return (qv == LATENCY_QOS_TIER_UNSPECIFIED) ? LATENCY_QOS_TIER_UNSPECIFIED : ((0xFF << 16) | qv);
324 }
325
326 uint32_t
327 qos_throughput_policy_package(uint32_t qv)
328 {
329 return (qv == THROUGHPUT_QOS_TIER_UNSPECIFIED) ? THROUGHPUT_QOS_TIER_UNSPECIFIED : ((0xFE << 16) | qv);
330 }
331
332 #define TASK_POLICY_SUPPRESSION_DISABLE 0x1
333 #define TASK_POLICY_SUPPRESSION_IOTIER2 0x2
334 #define TASK_POLICY_SUPPRESSION_NONDONOR 0x4
335 /* TEMPORARY boot-arg controlling task_policy suppression (App Nap) */
336 static boolean_t task_policy_suppression_flags = TASK_POLICY_SUPPRESSION_IOTIER2 |
337 TASK_POLICY_SUPPRESSION_NONDONOR;
338
339 kern_return_t
340 task_policy_set(
341 task_t task,
342 task_policy_flavor_t flavor,
343 task_policy_t policy_info,
344 mach_msg_type_number_t count)
345 {
346 kern_return_t result = KERN_SUCCESS;
347
348 if (task == TASK_NULL || task == kernel_task) {
349 return KERN_INVALID_ARGUMENT;
350 }
351
352 switch (flavor) {
353 case TASK_CATEGORY_POLICY: {
354 task_category_policy_t info = (task_category_policy_t)policy_info;
355
356 if (count < TASK_CATEGORY_POLICY_COUNT) {
357 return KERN_INVALID_ARGUMENT;
358 }
359
360 #if CONFIG_EMBEDDED
361 /* On embedded, you can't modify your own role. */
362 if (current_task() == task) {
363 return KERN_INVALID_ARGUMENT;
364 }
365 #endif
366
367 switch (info->role) {
368 case TASK_FOREGROUND_APPLICATION:
369 case TASK_BACKGROUND_APPLICATION:
370 case TASK_DEFAULT_APPLICATION:
371 proc_set_task_policy(task,
372 TASK_POLICY_ATTRIBUTE, TASK_POLICY_ROLE,
373 info->role);
374 break;
375
376 case TASK_CONTROL_APPLICATION:
377 if (task != current_task() || task->sec_token.val[0] != 0) {
378 result = KERN_INVALID_ARGUMENT;
379 } else {
380 proc_set_task_policy(task,
381 TASK_POLICY_ATTRIBUTE, TASK_POLICY_ROLE,
382 info->role);
383 }
384 break;
385
386 case TASK_GRAPHICS_SERVER:
387 /* TODO: Restrict this role to FCFS <rdar://problem/12552788> */
388 if (task != current_task() || task->sec_token.val[0] != 0) {
389 result = KERN_INVALID_ARGUMENT;
390 } else {
391 proc_set_task_policy(task,
392 TASK_POLICY_ATTRIBUTE, TASK_POLICY_ROLE,
393 info->role);
394 }
395 break;
396 default:
397 result = KERN_INVALID_ARGUMENT;
398 break;
399 } /* switch (info->role) */
400
401 break;
402 }
403
404 /* Desired energy-efficiency/performance "quality-of-service" */
405 case TASK_BASE_QOS_POLICY:
406 case TASK_OVERRIDE_QOS_POLICY:
407 {
408 task_qos_policy_t qosinfo = (task_qos_policy_t)policy_info;
409 kern_return_t kr = task_qos_policy_validate(qosinfo, count);
410
411 if (kr != KERN_SUCCESS) {
412 return kr;
413 }
414
415
416 uint32_t lqos = qos_extract(qosinfo->task_latency_qos_tier);
417 uint32_t tqos = qos_extract(qosinfo->task_throughput_qos_tier);
418
419 proc_set_task_policy2(task, TASK_POLICY_ATTRIBUTE,
420 flavor == TASK_BASE_QOS_POLICY ? TASK_POLICY_BASE_LATENCY_AND_THROUGHPUT_QOS : TASK_POLICY_OVERRIDE_LATENCY_AND_THROUGHPUT_QOS,
421 lqos, tqos);
422 }
423 break;
424
425 case TASK_BASE_LATENCY_QOS_POLICY:
426 {
427 task_qos_policy_t qosinfo = (task_qos_policy_t)policy_info;
428 kern_return_t kr = task_qos_policy_validate(qosinfo, count);
429
430 if (kr != KERN_SUCCESS) {
431 return kr;
432 }
433
434 uint32_t lqos = qos_extract(qosinfo->task_latency_qos_tier);
435
436 proc_set_task_policy(task, TASK_POLICY_ATTRIBUTE, TASK_BASE_LATENCY_QOS_POLICY, lqos);
437 }
438 break;
439
440 case TASK_BASE_THROUGHPUT_QOS_POLICY:
441 {
442 task_qos_policy_t qosinfo = (task_qos_policy_t)policy_info;
443 kern_return_t kr = task_qos_policy_validate(qosinfo, count);
444
445 if (kr != KERN_SUCCESS) {
446 return kr;
447 }
448
449 uint32_t tqos = qos_extract(qosinfo->task_throughput_qos_tier);
450
451 proc_set_task_policy(task, TASK_POLICY_ATTRIBUTE, TASK_BASE_THROUGHPUT_QOS_POLICY, tqos);
452 }
453 break;
454
455 case TASK_SUPPRESSION_POLICY:
456 {
457 #if CONFIG_EMBEDDED
458 /*
459 * Suppression policy is not enabled for embedded
460 * because apps aren't marked as denap receivers
461 */
462 result = KERN_INVALID_ARGUMENT;
463 break;
464 #else /* CONFIG_EMBEDDED */
465
466 task_suppression_policy_t info = (task_suppression_policy_t)policy_info;
467
468 if (count < TASK_SUPPRESSION_POLICY_COUNT) {
469 return KERN_INVALID_ARGUMENT;
470 }
471
472 struct task_qos_policy qosinfo;
473
474 qosinfo.task_latency_qos_tier = info->timer_throttle;
475 qosinfo.task_throughput_qos_tier = info->throughput_qos;
476
477 kern_return_t kr = task_qos_policy_validate(&qosinfo, TASK_QOS_POLICY_COUNT);
478
479 if (kr != KERN_SUCCESS) {
480 return kr;
481 }
482
483 /* TEMPORARY disablement of task suppression */
484 if (info->active &&
485 (task_policy_suppression_flags & TASK_POLICY_SUPPRESSION_DISABLE)) {
486 return KERN_SUCCESS;
487 }
488
489 struct task_pend_token pend_token = {};
490
491 task_lock(task);
492
493 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
494 (IMPORTANCE_CODE(IMP_TASK_SUPPRESSION, info->active)) | DBG_FUNC_START,
495 proc_selfpid(), task_pid(task), trequested_0(task),
496 trequested_1(task), 0);
497
498 task->requested_policy.trp_sup_active = (info->active) ? 1 : 0;
499 task->requested_policy.trp_sup_lowpri_cpu = (info->lowpri_cpu) ? 1 : 0;
500 task->requested_policy.trp_sup_timer = qos_extract(info->timer_throttle);
501 task->requested_policy.trp_sup_disk = (info->disk_throttle) ? 1 : 0;
502 task->requested_policy.trp_sup_throughput = qos_extract(info->throughput_qos);
503 task->requested_policy.trp_sup_cpu = (info->suppressed_cpu) ? 1 : 0;
504 task->requested_policy.trp_sup_bg_sockets = (info->background_sockets) ? 1 : 0;
505
506 task_policy_update_locked(task, &pend_token);
507
508 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
509 (IMPORTANCE_CODE(IMP_TASK_SUPPRESSION, info->active)) | DBG_FUNC_END,
510 proc_selfpid(), task_pid(task), trequested_0(task),
511 trequested_1(task), 0);
512
513 task_unlock(task);
514
515 task_policy_update_complete_unlocked(task, &pend_token);
516
517 break;
518
519 #endif /* CONFIG_EMBEDDED */
520 }
521
522 default:
523 result = KERN_INVALID_ARGUMENT;
524 break;
525 }
526
527 return result;
528 }
529
530 /* Sets BSD 'nice' value on the task */
531 kern_return_t
532 task_importance(
533 task_t task,
534 integer_t importance)
535 {
536 if (task == TASK_NULL || task == kernel_task) {
537 return KERN_INVALID_ARGUMENT;
538 }
539
540 task_lock(task);
541
542 if (!task->active) {
543 task_unlock(task);
544
545 return KERN_TERMINATED;
546 }
547
548 if (proc_get_effective_task_policy(task, TASK_POLICY_ROLE) >= TASK_CONTROL_APPLICATION) {
549 task_unlock(task);
550
551 return KERN_INVALID_ARGUMENT;
552 }
553
554 task->importance = importance;
555
556 struct task_pend_token pend_token = {};
557
558 task_policy_update_locked(task, &pend_token);
559
560 task_unlock(task);
561
562 task_policy_update_complete_unlocked(task, &pend_token);
563
564 return KERN_SUCCESS;
565 }
566
567 kern_return_t
568 task_policy_get(
569 task_t task,
570 task_policy_flavor_t flavor,
571 task_policy_t policy_info,
572 mach_msg_type_number_t *count,
573 boolean_t *get_default)
574 {
575 if (task == TASK_NULL || task == kernel_task) {
576 return KERN_INVALID_ARGUMENT;
577 }
578
579 switch (flavor) {
580 case TASK_CATEGORY_POLICY:
581 {
582 task_category_policy_t info = (task_category_policy_t)policy_info;
583
584 if (*count < TASK_CATEGORY_POLICY_COUNT) {
585 return KERN_INVALID_ARGUMENT;
586 }
587
588 if (*get_default) {
589 info->role = TASK_UNSPECIFIED;
590 } else {
591 info->role = proc_get_task_policy(task, TASK_POLICY_ATTRIBUTE, TASK_POLICY_ROLE);
592 }
593 break;
594 }
595
596 case TASK_BASE_QOS_POLICY: /* FALLTHRU */
597 case TASK_OVERRIDE_QOS_POLICY:
598 {
599 task_qos_policy_t info = (task_qos_policy_t)policy_info;
600
601 if (*count < TASK_QOS_POLICY_COUNT) {
602 return KERN_INVALID_ARGUMENT;
603 }
604
605 if (*get_default) {
606 info->task_latency_qos_tier = LATENCY_QOS_TIER_UNSPECIFIED;
607 info->task_throughput_qos_tier = THROUGHPUT_QOS_TIER_UNSPECIFIED;
608 } else if (flavor == TASK_BASE_QOS_POLICY) {
609 int value1, value2;
610
611 proc_get_task_policy2(task, TASK_POLICY_ATTRIBUTE, TASK_POLICY_BASE_LATENCY_AND_THROUGHPUT_QOS, &value1, &value2);
612
613 info->task_latency_qos_tier = qos_latency_policy_package(value1);
614 info->task_throughput_qos_tier = qos_throughput_policy_package(value2);
615 } else if (flavor == TASK_OVERRIDE_QOS_POLICY) {
616 int value1, value2;
617
618 proc_get_task_policy2(task, TASK_POLICY_ATTRIBUTE, TASK_POLICY_OVERRIDE_LATENCY_AND_THROUGHPUT_QOS, &value1, &value2);
619
620 info->task_latency_qos_tier = qos_latency_policy_package(value1);
621 info->task_throughput_qos_tier = qos_throughput_policy_package(value2);
622 }
623
624 break;
625 }
626
627 case TASK_POLICY_STATE:
628 {
629 task_policy_state_t info = (task_policy_state_t)policy_info;
630
631 if (*count < TASK_POLICY_STATE_COUNT) {
632 return KERN_INVALID_ARGUMENT;
633 }
634
635 /* Only root can get this info */
636 if (current_task()->sec_token.val[0] != 0) {
637 return KERN_PROTECTION_FAILURE;
638 }
639
640 if (*get_default) {
641 info->requested = 0;
642 info->effective = 0;
643 info->pending = 0;
644 info->imp_assertcnt = 0;
645 info->imp_externcnt = 0;
646 info->flags = 0;
647 info->imp_transitions = 0;
648 } else {
649 task_lock(task);
650
651 info->requested = task_requested_bitfield(task);
652 info->effective = task_effective_bitfield(task);
653 info->pending = 0;
654
655 info->tps_requested_policy = *(uint64_t*)(&task->requested_policy);
656 info->tps_effective_policy = *(uint64_t*)(&task->effective_policy);
657
658 info->flags = 0;
659 if (task->task_imp_base != NULL) {
660 info->imp_assertcnt = task->task_imp_base->iit_assertcnt;
661 info->imp_externcnt = IIT_EXTERN(task->task_imp_base);
662 info->flags |= (task_is_marked_importance_receiver(task) ? TASK_IMP_RECEIVER : 0);
663 info->flags |= (task_is_marked_importance_denap_receiver(task) ? TASK_DENAP_RECEIVER : 0);
664 info->flags |= (task_is_marked_importance_donor(task) ? TASK_IMP_DONOR : 0);
665 info->flags |= (task_is_marked_live_importance_donor(task) ? TASK_IMP_LIVE_DONOR : 0);
666 info->imp_transitions = task->task_imp_base->iit_transitions;
667 } else {
668 info->imp_assertcnt = 0;
669 info->imp_externcnt = 0;
670 info->imp_transitions = 0;
671 }
672 task_unlock(task);
673 }
674
675 break;
676 }
677
678 case TASK_SUPPRESSION_POLICY:
679 {
680 task_suppression_policy_t info = (task_suppression_policy_t)policy_info;
681
682 if (*count < TASK_SUPPRESSION_POLICY_COUNT) {
683 return KERN_INVALID_ARGUMENT;
684 }
685
686 task_lock(task);
687
688 if (*get_default) {
689 info->active = 0;
690 info->lowpri_cpu = 0;
691 info->timer_throttle = LATENCY_QOS_TIER_UNSPECIFIED;
692 info->disk_throttle = 0;
693 info->cpu_limit = 0;
694 info->suspend = 0;
695 info->throughput_qos = 0;
696 info->suppressed_cpu = 0;
697 } else {
698 info->active = task->requested_policy.trp_sup_active;
699 info->lowpri_cpu = task->requested_policy.trp_sup_lowpri_cpu;
700 info->timer_throttle = qos_latency_policy_package(task->requested_policy.trp_sup_timer);
701 info->disk_throttle = task->requested_policy.trp_sup_disk;
702 info->cpu_limit = 0;
703 info->suspend = 0;
704 info->throughput_qos = qos_throughput_policy_package(task->requested_policy.trp_sup_throughput);
705 info->suppressed_cpu = task->requested_policy.trp_sup_cpu;
706 info->background_sockets = task->requested_policy.trp_sup_bg_sockets;
707 }
708
709 task_unlock(task);
710 break;
711 }
712
713 default:
714 return KERN_INVALID_ARGUMENT;
715 }
716
717 return KERN_SUCCESS;
718 }
719
720 /*
721 * Called at task creation
722 * We calculate the correct effective but don't apply it to anything yet.
723 * The threads, etc will inherit from the task as they get created.
724 */
725 void
726 task_policy_create(task_t task, task_t parent_task)
727 {
728 task->requested_policy.trp_apptype = parent_task->requested_policy.trp_apptype;
729
730 task->requested_policy.trp_int_darwinbg = parent_task->requested_policy.trp_int_darwinbg;
731 task->requested_policy.trp_ext_darwinbg = parent_task->requested_policy.trp_ext_darwinbg;
732 task->requested_policy.trp_int_iotier = parent_task->requested_policy.trp_int_iotier;
733 task->requested_policy.trp_ext_iotier = parent_task->requested_policy.trp_ext_iotier;
734 task->requested_policy.trp_int_iopassive = parent_task->requested_policy.trp_int_iopassive;
735 task->requested_policy.trp_ext_iopassive = parent_task->requested_policy.trp_ext_iopassive;
736 task->requested_policy.trp_bg_iotier = parent_task->requested_policy.trp_bg_iotier;
737 task->requested_policy.trp_terminated = parent_task->requested_policy.trp_terminated;
738 task->requested_policy.trp_qos_clamp = parent_task->requested_policy.trp_qos_clamp;
739
740 if (task->requested_policy.trp_apptype == TASK_APPTYPE_DAEMON_ADAPTIVE && !task_is_exec_copy(task)) {
741 /* Do not update the apptype for exec copy task */
742 if (parent_task->requested_policy.trp_boosted) {
743 task->requested_policy.trp_apptype = TASK_APPTYPE_DAEMON_INTERACTIVE;
744 task_importance_mark_donor(task, TRUE);
745 } else {
746 task->requested_policy.trp_apptype = TASK_APPTYPE_DAEMON_BACKGROUND;
747 task_importance_mark_receiver(task, FALSE);
748 }
749 }
750
751 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
752 (IMPORTANCE_CODE(IMP_UPDATE, (IMP_UPDATE_TASK_CREATE | TASK_POLICY_TASK))) | DBG_FUNC_START,
753 task_pid(task), teffective_0(task),
754 teffective_1(task), task->priority, 0);
755
756 task_policy_update_internal_locked(task, TRUE, NULL);
757
758 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
759 (IMPORTANCE_CODE(IMP_UPDATE, (IMP_UPDATE_TASK_CREATE | TASK_POLICY_TASK))) | DBG_FUNC_END,
760 task_pid(task), teffective_0(task),
761 teffective_1(task), task->priority, 0);
762
763 task_importance_update_live_donor(task);
764 }
765
766
767 static void
768 task_policy_update_locked(task_t task, task_pend_token_t pend_token)
769 {
770 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
771 (IMPORTANCE_CODE(IMP_UPDATE, TASK_POLICY_TASK) | DBG_FUNC_START),
772 task_pid(task), teffective_0(task),
773 teffective_1(task), task->priority, 0);
774
775 task_policy_update_internal_locked(task, FALSE, pend_token);
776
777 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
778 (IMPORTANCE_CODE(IMP_UPDATE, TASK_POLICY_TASK)) | DBG_FUNC_END,
779 task_pid(task), teffective_0(task),
780 teffective_1(task), task->priority, 0);
781 }
782
783 /*
784 * One state update function TO RULE THEM ALL
785 *
786 * This function updates the task or thread effective policy fields
787 * and pushes the results to the relevant subsystems.
788 *
789 * Must call update_complete after unlocking the task,
790 * as some subsystems cannot be updated while holding the task lock.
791 *
792 * Called with task locked, not thread
793 */
794
795 static void
796 task_policy_update_internal_locked(task_t task, boolean_t in_create, task_pend_token_t pend_token)
797 {
798 /*
799 * Step 1:
800 * Gather requested policy
801 */
802
803 struct task_requested_policy requested = task->requested_policy;
804
805 /*
806 * Step 2:
807 * Calculate new effective policies from requested policy and task state
808 * Rules:
809 * Don't change requested, it won't take effect
810 */
811
812 struct task_effective_policy next = {};
813
814 /* Update task role */
815 next.tep_role = requested.trp_role;
816
817 /* Set task qos clamp and ceiling */
818 next.tep_qos_clamp = requested.trp_qos_clamp;
819
820 if (requested.trp_apptype == TASK_APPTYPE_APP_DEFAULT ||
821 requested.trp_apptype == TASK_APPTYPE_APP_TAL) {
822 switch (next.tep_role) {
823 case TASK_FOREGROUND_APPLICATION:
824 /* Foreground apps get urgent scheduler priority */
825 next.tep_qos_ui_is_urgent = 1;
826 next.tep_qos_ceiling = THREAD_QOS_UNSPECIFIED;
827 break;
828
829 case TASK_BACKGROUND_APPLICATION:
830 /* This is really 'non-focal but on-screen' */
831 next.tep_qos_ceiling = THREAD_QOS_UNSPECIFIED;
832 break;
833
834 case TASK_DEFAULT_APPLICATION:
835 /* This is 'may render UI but we don't know if it's focal/nonfocal' */
836 next.tep_qos_ceiling = THREAD_QOS_UNSPECIFIED;
837 break;
838
839 case TASK_NONUI_APPLICATION:
840 /* i.e. 'off-screen' */
841 next.tep_qos_ceiling = THREAD_QOS_LEGACY;
842 break;
843
844 case TASK_CONTROL_APPLICATION:
845 case TASK_GRAPHICS_SERVER:
846 next.tep_qos_ui_is_urgent = 1;
847 next.tep_qos_ceiling = THREAD_QOS_UNSPECIFIED;
848 break;
849
850 case TASK_THROTTLE_APPLICATION:
851 /* i.e. 'TAL launch' */
852 next.tep_qos_ceiling = THREAD_QOS_UTILITY;
853 break;
854
855 case TASK_DARWINBG_APPLICATION:
856 /* i.e. 'DARWIN_BG throttled background application' */
857 next.tep_qos_ceiling = THREAD_QOS_BACKGROUND;
858 break;
859
860 case TASK_UNSPECIFIED:
861 default:
862 /* Apps that don't have an application role get
863 * USER_INTERACTIVE and USER_INITIATED squashed to LEGACY */
864 next.tep_qos_ceiling = THREAD_QOS_LEGACY;
865 break;
866 }
867 } else {
868 /* Daemons get USER_INTERACTIVE squashed to USER_INITIATED */
869 next.tep_qos_ceiling = THREAD_QOS_USER_INITIATED;
870 }
871
872 /* Calculate DARWIN_BG */
873 boolean_t wants_darwinbg = FALSE;
874 boolean_t wants_all_sockets_bg = FALSE; /* Do I want my existing sockets to be bg */
875 boolean_t wants_watchersbg = FALSE; /* Do I want my pidbound threads to be bg */
876
877 /*
878 * If DARWIN_BG has been requested at either level, it's engaged.
879 * Only true DARWIN_BG changes cause watchers to transition.
880 *
881 * Backgrounding due to apptype does.
882 */
883 if (requested.trp_int_darwinbg || requested.trp_ext_darwinbg ||
884 next.tep_role == TASK_DARWINBG_APPLICATION) {
885 wants_watchersbg = wants_all_sockets_bg = wants_darwinbg = TRUE;
886 }
887
888 /*
889 * Deprecated TAL implementation for TAL apptype
890 * Background TAL apps are throttled when TAL is enabled
891 */
892 if (requested.trp_apptype == TASK_APPTYPE_APP_TAL &&
893 requested.trp_role == TASK_BACKGROUND_APPLICATION &&
894 requested.trp_tal_enabled == 1) {
895 next.tep_tal_engaged = 1;
896 }
897
898 /* New TAL implementation based on TAL role alone, works for all apps */
899 if ((requested.trp_apptype == TASK_APPTYPE_APP_DEFAULT ||
900 requested.trp_apptype == TASK_APPTYPE_APP_TAL) &&
901 requested.trp_role == TASK_THROTTLE_APPLICATION) {
902 next.tep_tal_engaged = 1;
903 }
904
905 /* Adaptive daemons are DARWIN_BG unless boosted, and don't get network throttled. */
906 if (requested.trp_apptype == TASK_APPTYPE_DAEMON_ADAPTIVE &&
907 requested.trp_boosted == 0) {
908 wants_darwinbg = TRUE;
909 }
910
911 /* Background daemons are always DARWIN_BG, no exceptions, and don't get network throttled. */
912 if (requested.trp_apptype == TASK_APPTYPE_DAEMON_BACKGROUND) {
913 wants_darwinbg = TRUE;
914 }
915
916 if (next.tep_qos_clamp == THREAD_QOS_BACKGROUND || next.tep_qos_clamp == THREAD_QOS_MAINTENANCE) {
917 wants_darwinbg = TRUE;
918 }
919
920 /* Calculate side effects of DARWIN_BG */
921
922 if (wants_darwinbg) {
923 next.tep_darwinbg = 1;
924 /* darwinbg tasks always create bg sockets, but we don't always loop over all sockets */
925 next.tep_new_sockets_bg = 1;
926 next.tep_lowpri_cpu = 1;
927 }
928
929 if (wants_all_sockets_bg) {
930 next.tep_all_sockets_bg = 1;
931 }
932
933 if (wants_watchersbg) {
934 next.tep_watchers_bg = 1;
935 }
936
937 /* Calculate low CPU priority */
938
939 boolean_t wants_lowpri_cpu = FALSE;
940
941 if (wants_darwinbg) {
942 wants_lowpri_cpu = TRUE;
943 }
944
945 if (next.tep_tal_engaged) {
946 wants_lowpri_cpu = TRUE;
947 }
948
949 if (requested.trp_sup_lowpri_cpu && requested.trp_boosted == 0) {
950 wants_lowpri_cpu = TRUE;
951 }
952
953 if (wants_lowpri_cpu) {
954 next.tep_lowpri_cpu = 1;
955 }
956
957 /* Calculate IO policy */
958
959 /* Update BG IO policy (so we can see if it has changed) */
960 next.tep_bg_iotier = requested.trp_bg_iotier;
961
962 int iopol = THROTTLE_LEVEL_TIER0;
963
964 if (wants_darwinbg) {
965 iopol = MAX(iopol, requested.trp_bg_iotier);
966 }
967
968 if (requested.trp_apptype == TASK_APPTYPE_DAEMON_STANDARD) {
969 iopol = MAX(iopol, proc_standard_daemon_tier);
970 }
971
972 if (requested.trp_sup_disk && requested.trp_boosted == 0) {
973 iopol = MAX(iopol, proc_suppressed_disk_tier);
974 }
975
976 if (next.tep_tal_engaged) {
977 iopol = MAX(iopol, proc_tal_disk_tier);
978 }
979
980 if (next.tep_qos_clamp != THREAD_QOS_UNSPECIFIED) {
981 iopol = MAX(iopol, thread_qos_policy_params.qos_iotier[next.tep_qos_clamp]);
982 }
983
984 iopol = MAX(iopol, requested.trp_int_iotier);
985 iopol = MAX(iopol, requested.trp_ext_iotier);
986
987 next.tep_io_tier = iopol;
988
989 /* Calculate Passive IO policy */
990
991 if (requested.trp_ext_iopassive || requested.trp_int_iopassive) {
992 next.tep_io_passive = 1;
993 }
994
995 /* Calculate suppression-active flag */
996 boolean_t appnap_transition = FALSE;
997
998 if (requested.trp_sup_active && requested.trp_boosted == 0) {
999 next.tep_sup_active = 1;
1000 }
1001
1002 if (task->effective_policy.tep_sup_active != next.tep_sup_active) {
1003 appnap_transition = TRUE;
1004 }
1005
1006 /* Calculate timer QOS */
1007 int latency_qos = requested.trp_base_latency_qos;
1008
1009 if (requested.trp_sup_timer && requested.trp_boosted == 0) {
1010 latency_qos = requested.trp_sup_timer;
1011 }
1012
1013 if (next.tep_qos_clamp != THREAD_QOS_UNSPECIFIED) {
1014 latency_qos = MAX(latency_qos, (int)thread_qos_policy_params.qos_latency_qos[next.tep_qos_clamp]);
1015 }
1016
1017 if (requested.trp_over_latency_qos != 0) {
1018 latency_qos = requested.trp_over_latency_qos;
1019 }
1020
1021 /* Treat the windowserver special */
1022 if (requested.trp_role == TASK_GRAPHICS_SERVER) {
1023 latency_qos = proc_graphics_timer_qos;
1024 }
1025
1026 next.tep_latency_qos = latency_qos;
1027
1028 /* Calculate throughput QOS */
1029 int through_qos = requested.trp_base_through_qos;
1030
1031 if (requested.trp_sup_throughput && requested.trp_boosted == 0) {
1032 through_qos = requested.trp_sup_throughput;
1033 }
1034
1035 if (next.tep_qos_clamp != THREAD_QOS_UNSPECIFIED) {
1036 through_qos = MAX(through_qos, (int)thread_qos_policy_params.qos_through_qos[next.tep_qos_clamp]);
1037 }
1038
1039 if (requested.trp_over_through_qos != 0) {
1040 through_qos = requested.trp_over_through_qos;
1041 }
1042
1043 next.tep_through_qos = through_qos;
1044
1045 /* Calculate suppressed CPU priority */
1046 if (requested.trp_sup_cpu && requested.trp_boosted == 0) {
1047 next.tep_suppressed_cpu = 1;
1048 }
1049
1050 /*
1051 * Calculate background sockets
1052 * Don't take into account boosting to limit transition frequency.
1053 */
1054 if (requested.trp_sup_bg_sockets) {
1055 next.tep_all_sockets_bg = 1;
1056 next.tep_new_sockets_bg = 1;
1057 }
1058
1059 /* Apply SFI Managed class bit */
1060 next.tep_sfi_managed = requested.trp_sfi_managed;
1061
1062 /* Calculate 'live donor' status for live importance */
1063 switch (requested.trp_apptype) {
1064 case TASK_APPTYPE_APP_TAL:
1065 case TASK_APPTYPE_APP_DEFAULT:
1066 if (requested.trp_ext_darwinbg == 1 ||
1067 (next.tep_sup_active == 1 &&
1068 (task_policy_suppression_flags & TASK_POLICY_SUPPRESSION_NONDONOR)) ||
1069 next.tep_role == TASK_DARWINBG_APPLICATION) {
1070 next.tep_live_donor = 0;
1071 } else {
1072 next.tep_live_donor = 1;
1073 }
1074 break;
1075
1076 case TASK_APPTYPE_DAEMON_INTERACTIVE:
1077 case TASK_APPTYPE_DAEMON_STANDARD:
1078 case TASK_APPTYPE_DAEMON_ADAPTIVE:
1079 case TASK_APPTYPE_DAEMON_BACKGROUND:
1080 default:
1081 next.tep_live_donor = 0;
1082 break;
1083 }
1084
1085 if (requested.trp_terminated) {
1086 /*
1087 * Shoot down the throttles that slow down exit or response to SIGTERM
1088 * We don't need to shoot down:
1089 * passive (don't want to cause others to throttle)
1090 * all_sockets_bg (don't need to iterate FDs on every exit)
1091 * new_sockets_bg (doesn't matter for exiting process)
1092 * pidsuspend (jetsam-ed BG process shouldn't run again)
1093 * watchers_bg (watcher threads don't need to be unthrottled)
1094 * latency_qos (affects userspace timers only)
1095 */
1096
1097 next.tep_terminated = 1;
1098 next.tep_darwinbg = 0;
1099 next.tep_lowpri_cpu = 0;
1100 next.tep_io_tier = THROTTLE_LEVEL_TIER0;
1101 next.tep_tal_engaged = 0;
1102 next.tep_role = TASK_UNSPECIFIED;
1103 next.tep_suppressed_cpu = 0;
1104 }
1105
1106 /*
1107 * Step 3:
1108 * Swap out old policy for new policy
1109 */
1110
1111 struct task_effective_policy prev = task->effective_policy;
1112
1113 /* This is the point where the new values become visible to other threads */
1114 task->effective_policy = next;
1115
1116 /* Don't do anything further to a half-formed task */
1117 if (in_create) {
1118 return;
1119 }
1120
1121 if (task == kernel_task) {
1122 panic("Attempting to set task policy on kernel_task");
1123 }
1124
1125 /*
1126 * Step 4:
1127 * Pend updates that can't be done while holding the task lock
1128 */
1129
1130 if (prev.tep_all_sockets_bg != next.tep_all_sockets_bg) {
1131 pend_token->tpt_update_sockets = 1;
1132 }
1133
1134 /* Only re-scan the timer list if the qos level is getting less strong */
1135 if (prev.tep_latency_qos > next.tep_latency_qos) {
1136 pend_token->tpt_update_timers = 1;
1137 }
1138
1139 #if CONFIG_EMBEDDED
1140 if (prev.tep_watchers_bg != next.tep_watchers_bg) {
1141 pend_token->tpt_update_watchers = 1;
1142 }
1143 #endif /* CONFIG_EMBEDDED */
1144
1145 if (prev.tep_live_donor != next.tep_live_donor) {
1146 pend_token->tpt_update_live_donor = 1;
1147 }
1148
1149 /*
1150 * Step 5:
1151 * Update other subsystems as necessary if something has changed
1152 */
1153
1154 boolean_t update_threads = FALSE, update_sfi = FALSE;
1155
1156 /*
1157 * Check for the attributes that thread_policy_update_internal_locked() consults,
1158 * and trigger thread policy re-evaluation.
1159 */
1160 if (prev.tep_io_tier != next.tep_io_tier ||
1161 prev.tep_bg_iotier != next.tep_bg_iotier ||
1162 prev.tep_io_passive != next.tep_io_passive ||
1163 prev.tep_darwinbg != next.tep_darwinbg ||
1164 prev.tep_qos_clamp != next.tep_qos_clamp ||
1165 prev.tep_qos_ceiling != next.tep_qos_ceiling ||
1166 prev.tep_qos_ui_is_urgent != next.tep_qos_ui_is_urgent ||
1167 prev.tep_latency_qos != next.tep_latency_qos ||
1168 prev.tep_through_qos != next.tep_through_qos ||
1169 prev.tep_lowpri_cpu != next.tep_lowpri_cpu ||
1170 prev.tep_new_sockets_bg != next.tep_new_sockets_bg ||
1171 prev.tep_terminated != next.tep_terminated) {
1172 update_threads = TRUE;
1173 }
1174
1175 /*
1176 * Check for the attributes that sfi_thread_classify() consults,
1177 * and trigger SFI re-evaluation.
1178 */
1179 if (prev.tep_latency_qos != next.tep_latency_qos ||
1180 prev.tep_role != next.tep_role ||
1181 prev.tep_sfi_managed != next.tep_sfi_managed) {
1182 update_sfi = TRUE;
1183 }
1184
1185 /* Reflect task role transitions into the coalition role counters */
1186 if (prev.tep_role != next.tep_role) {
1187 if (task_policy_update_coalition_focal_tasks(task, prev.tep_role, next.tep_role, pend_token)) {
1188 update_sfi = TRUE;
1189 }
1190 }
1191
1192 boolean_t update_priority = FALSE;
1193
1194 int priority = BASEPRI_DEFAULT;
1195 int max_priority = MAXPRI_USER;
1196
1197 if (next.tep_lowpri_cpu) {
1198 priority = MAXPRI_THROTTLE;
1199 max_priority = MAXPRI_THROTTLE;
1200 } else if (next.tep_suppressed_cpu) {
1201 priority = MAXPRI_SUPPRESSED;
1202 max_priority = MAXPRI_SUPPRESSED;
1203 } else {
1204 switch (next.tep_role) {
1205 case TASK_CONTROL_APPLICATION:
1206 priority = BASEPRI_CONTROL;
1207 break;
1208 case TASK_GRAPHICS_SERVER:
1209 priority = BASEPRI_GRAPHICS;
1210 max_priority = MAXPRI_RESERVED;
1211 break;
1212 default:
1213 break;
1214 }
1215
1216 /* factor in 'nice' value */
1217 priority += task->importance;
1218
1219 if (task->effective_policy.tep_qos_clamp != THREAD_QOS_UNSPECIFIED) {
1220 int qos_clamp_priority = thread_qos_policy_params.qos_pri[task->effective_policy.tep_qos_clamp];
1221
1222 priority = MIN(priority, qos_clamp_priority);
1223 max_priority = MIN(max_priority, qos_clamp_priority);
1224 }
1225
1226 if (priority > max_priority) {
1227 priority = max_priority;
1228 } else if (priority < MINPRI) {
1229 priority = MINPRI;
1230 }
1231 }
1232
1233 assert(priority <= max_priority);
1234
1235 /* avoid extra work if priority isn't changing */
1236 if (priority != task->priority ||
1237 max_priority != task->max_priority) {
1238 /* update the scheduling priority for the task */
1239 task->max_priority = max_priority;
1240 task->priority = priority;
1241 update_priority = TRUE;
1242 }
1243
1244 /* Loop over the threads in the task:
1245 * only once
1246 * only if necessary
1247 * with one thread mutex hold per thread
1248 */
1249 if (update_threads || update_priority || update_sfi) {
1250 thread_t thread;
1251
1252 queue_iterate(&task->threads, thread, thread_t, task_threads) {
1253 struct task_pend_token thread_pend_token = {};
1254
1255 if (update_sfi) {
1256 thread_pend_token.tpt_update_thread_sfi = 1;
1257 }
1258
1259 if (update_priority || update_threads) {
1260 thread_policy_update_tasklocked(thread,
1261 task->priority, task->max_priority,
1262 &thread_pend_token);
1263 }
1264
1265 assert(!thread_pend_token.tpt_update_sockets);
1266
1267 // Slightly risky, as we still hold the task lock...
1268 thread_policy_update_complete_unlocked(thread, &thread_pend_token);
1269 }
1270 }
1271
1272 /*
1273 * Use the app-nap transitions to influence the
1274 * transition of the process within the jetsam band
1275 * [and optionally its live-donor status]
1276 * On macOS only.
1277 */
1278 if (appnap_transition == TRUE) {
1279 if (task->effective_policy.tep_sup_active == 1) {
1280 memorystatus_update_priority_for_appnap(((proc_t) task->bsd_info), TRUE);
1281 } else {
1282 memorystatus_update_priority_for_appnap(((proc_t) task->bsd_info), FALSE);
1283 }
1284 }
1285 }
1286
1287
1288 /*
1289 * Yet another layering violation. We reach out and bang on the coalition directly.
1290 */
1291 static boolean_t
1292 task_policy_update_coalition_focal_tasks(task_t task,
1293 int prev_role,
1294 int next_role,
1295 task_pend_token_t pend_token)
1296 {
1297 boolean_t sfi_transition = FALSE;
1298 uint32_t new_count = 0;
1299
1300 /* task moving into/out-of the foreground */
1301 if (prev_role != TASK_FOREGROUND_APPLICATION && next_role == TASK_FOREGROUND_APPLICATION) {
1302 if (task_coalition_adjust_focal_count(task, 1, &new_count) && (new_count == 1)) {
1303 sfi_transition = TRUE;
1304 pend_token->tpt_update_tg_ui_flag = TRUE;
1305 }
1306 } else if (prev_role == TASK_FOREGROUND_APPLICATION && next_role != TASK_FOREGROUND_APPLICATION) {
1307 if (task_coalition_adjust_focal_count(task, -1, &new_count) && (new_count == 0)) {
1308 sfi_transition = TRUE;
1309 pend_token->tpt_update_tg_ui_flag = TRUE;
1310 }
1311 }
1312
1313 /* task moving into/out-of background */
1314 if (prev_role != TASK_BACKGROUND_APPLICATION && next_role == TASK_BACKGROUND_APPLICATION) {
1315 if (task_coalition_adjust_nonfocal_count(task, 1, &new_count) && (new_count == 1)) {
1316 sfi_transition = TRUE;
1317 }
1318 } else if (prev_role == TASK_BACKGROUND_APPLICATION && next_role != TASK_BACKGROUND_APPLICATION) {
1319 if (task_coalition_adjust_nonfocal_count(task, -1, &new_count) && (new_count == 0)) {
1320 sfi_transition = TRUE;
1321 }
1322 }
1323
1324 if (sfi_transition) {
1325 pend_token->tpt_update_coal_sfi = 1;
1326 }
1327 return sfi_transition;
1328 }
1329
1330 #if CONFIG_SCHED_SFI
1331
1332 /* coalition object is locked */
1333 static void
1334 task_sfi_reevaluate_cb(coalition_t coal, void *ctx, task_t task)
1335 {
1336 thread_t thread;
1337
1338 /* unused for now */
1339 (void)coal;
1340
1341 /* skip the task we're re-evaluating on behalf of: it's already updated */
1342 if (task == (task_t)ctx) {
1343 return;
1344 }
1345
1346 task_lock(task);
1347
1348 queue_iterate(&task->threads, thread, thread_t, task_threads) {
1349 sfi_reevaluate(thread);
1350 }
1351
1352 task_unlock(task);
1353 }
1354 #endif /* CONFIG_SCHED_SFI */
1355
1356 /*
1357 * Called with task unlocked to do things that can't be done while holding the task lock
1358 */
1359 void
1360 task_policy_update_complete_unlocked(task_t task, task_pend_token_t pend_token)
1361 {
1362 #ifdef MACH_BSD
1363 if (pend_token->tpt_update_sockets) {
1364 proc_apply_task_networkbg(task->bsd_info, THREAD_NULL);
1365 }
1366 #endif /* MACH_BSD */
1367
1368 /* The timer throttle has been removed or reduced, we need to look for expired timers and fire them */
1369 if (pend_token->tpt_update_timers) {
1370 ml_timer_evaluate();
1371 }
1372
1373 #if CONFIG_EMBEDDED
1374 if (pend_token->tpt_update_watchers) {
1375 apply_appstate_watchers(task);
1376 }
1377 #endif /* CONFIG_EMBEDDED */
1378
1379 if (pend_token->tpt_update_live_donor) {
1380 task_importance_update_live_donor(task);
1381 }
1382
1383 #if CONFIG_SCHED_SFI
1384 /* use the resource coalition for SFI re-evaluation */
1385 if (pend_token->tpt_update_coal_sfi) {
1386 coalition_for_each_task(task->coalition[COALITION_TYPE_RESOURCE],
1387 (void *)task, task_sfi_reevaluate_cb);
1388 }
1389 #endif /* CONFIG_SCHED_SFI */
1390
1391 }
1392
1393 /*
1394 * Initiate a task policy state transition
1395 *
1396 * Everything that modifies requested except functions that need to hold the task lock
1397 * should use this function
1398 *
1399 * Argument validation should be performed before reaching this point.
1400 *
1401 * TODO: Do we need to check task->active?
1402 */
1403 void
1404 proc_set_task_policy(task_t task,
1405 int category,
1406 int flavor,
1407 int value)
1408 {
1409 struct task_pend_token pend_token = {};
1410
1411 task_lock(task);
1412
1413 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
1414 (IMPORTANCE_CODE(flavor, (category | TASK_POLICY_TASK))) | DBG_FUNC_START,
1415 task_pid(task), trequested_0(task),
1416 trequested_1(task), value, 0);
1417
1418 proc_set_task_policy_locked(task, category, flavor, value, 0);
1419
1420 task_policy_update_locked(task, &pend_token);
1421
1422
1423 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
1424 (IMPORTANCE_CODE(flavor, (category | TASK_POLICY_TASK))) | DBG_FUNC_END,
1425 task_pid(task), trequested_0(task),
1426 trequested_1(task), tpending(&pend_token), 0);
1427
1428 task_unlock(task);
1429
1430 task_policy_update_complete_unlocked(task, &pend_token);
1431 }
1432
1433 /*
1434 * Variant of proc_set_task_policy() that sets two scalars in the requested policy structure.
1435 * Same locking rules apply.
1436 */
1437 void
1438 proc_set_task_policy2(task_t task,
1439 int category,
1440 int flavor,
1441 int value,
1442 int value2)
1443 {
1444 struct task_pend_token pend_token = {};
1445
1446 task_lock(task);
1447
1448 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
1449 (IMPORTANCE_CODE(flavor, (category | TASK_POLICY_TASK))) | DBG_FUNC_START,
1450 task_pid(task), trequested_0(task),
1451 trequested_1(task), value, 0);
1452
1453 proc_set_task_policy_locked(task, category, flavor, value, value2);
1454
1455 task_policy_update_locked(task, &pend_token);
1456
1457 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
1458 (IMPORTANCE_CODE(flavor, (category | TASK_POLICY_TASK))) | DBG_FUNC_END,
1459 task_pid(task), trequested_0(task),
1460 trequested_1(task), tpending(&pend_token), 0);
1461
1462 task_unlock(task);
1463
1464 task_policy_update_complete_unlocked(task, &pend_token);
1465 }
1466
1467 /*
1468 * Set the requested state for a specific flavor to a specific value.
1469 *
1470 * TODO:
1471 * Verify that arguments to non iopol things are 1 or 0
1472 */
1473 static void
1474 proc_set_task_policy_locked(task_t task,
1475 int category,
1476 int flavor,
1477 int value,
1478 int value2)
1479 {
1480 int tier, passive;
1481
1482 struct task_requested_policy requested = task->requested_policy;
1483
1484 switch (flavor) {
1485 /* Category: EXTERNAL and INTERNAL */
1486
1487 case TASK_POLICY_DARWIN_BG:
1488 if (category == TASK_POLICY_EXTERNAL) {
1489 requested.trp_ext_darwinbg = value;
1490 } else {
1491 requested.trp_int_darwinbg = value;
1492 }
1493 break;
1494
1495 case TASK_POLICY_IOPOL:
1496 proc_iopol_to_tier(value, &tier, &passive);
1497 if (category == TASK_POLICY_EXTERNAL) {
1498 requested.trp_ext_iotier = tier;
1499 requested.trp_ext_iopassive = passive;
1500 } else {
1501 requested.trp_int_iotier = tier;
1502 requested.trp_int_iopassive = passive;
1503 }
1504 break;
1505
1506 case TASK_POLICY_IO:
1507 if (category == TASK_POLICY_EXTERNAL) {
1508 requested.trp_ext_iotier = value;
1509 } else {
1510 requested.trp_int_iotier = value;
1511 }
1512 break;
1513
1514 case TASK_POLICY_PASSIVE_IO:
1515 if (category == TASK_POLICY_EXTERNAL) {
1516 requested.trp_ext_iopassive = value;
1517 } else {
1518 requested.trp_int_iopassive = value;
1519 }
1520 break;
1521
1522 /* Category: INTERNAL */
1523
1524 case TASK_POLICY_DARWIN_BG_IOPOL:
1525 assert(category == TASK_POLICY_INTERNAL);
1526 proc_iopol_to_tier(value, &tier, &passive);
1527 requested.trp_bg_iotier = tier;
1528 break;
1529
1530 /* Category: ATTRIBUTE */
1531
1532 case TASK_POLICY_TAL:
1533 assert(category == TASK_POLICY_ATTRIBUTE);
1534 requested.trp_tal_enabled = value;
1535 break;
1536
1537 case TASK_POLICY_BOOST:
1538 assert(category == TASK_POLICY_ATTRIBUTE);
1539 requested.trp_boosted = value;
1540 break;
1541
1542 case TASK_POLICY_ROLE:
1543 assert(category == TASK_POLICY_ATTRIBUTE);
1544 requested.trp_role = value;
1545 break;
1546
1547 case TASK_POLICY_TERMINATED:
1548 assert(category == TASK_POLICY_ATTRIBUTE);
1549 requested.trp_terminated = value;
1550 break;
1551
1552 case TASK_BASE_LATENCY_QOS_POLICY:
1553 assert(category == TASK_POLICY_ATTRIBUTE);
1554 requested.trp_base_latency_qos = value;
1555 break;
1556
1557 case TASK_BASE_THROUGHPUT_QOS_POLICY:
1558 assert(category == TASK_POLICY_ATTRIBUTE);
1559 requested.trp_base_through_qos = value;
1560 break;
1561
1562 case TASK_POLICY_SFI_MANAGED:
1563 assert(category == TASK_POLICY_ATTRIBUTE);
1564 requested.trp_sfi_managed = value;
1565 break;
1566
1567 case TASK_POLICY_BASE_LATENCY_AND_THROUGHPUT_QOS:
1568 assert(category == TASK_POLICY_ATTRIBUTE);
1569 requested.trp_base_latency_qos = value;
1570 requested.trp_base_through_qos = value2;
1571 break;
1572
1573 case TASK_POLICY_OVERRIDE_LATENCY_AND_THROUGHPUT_QOS:
1574 assert(category == TASK_POLICY_ATTRIBUTE);
1575 requested.trp_over_latency_qos = value;
1576 requested.trp_over_through_qos = value2;
1577 break;
1578
1579 default:
1580 panic("unknown task policy: %d %d %d %d", category, flavor, value, value2);
1581 break;
1582 }
1583
1584 task->requested_policy = requested;
1585 }
1586
1587 /*
1588 * Gets what you set. Effective values may be different.
1589 */
1590 int
1591 proc_get_task_policy(task_t task,
1592 int category,
1593 int flavor)
1594 {
1595 int value = 0;
1596
1597 task_lock(task);
1598
1599 struct task_requested_policy requested = task->requested_policy;
1600
1601 switch (flavor) {
1602 case TASK_POLICY_DARWIN_BG:
1603 if (category == TASK_POLICY_EXTERNAL) {
1604 value = requested.trp_ext_darwinbg;
1605 } else {
1606 value = requested.trp_int_darwinbg;
1607 }
1608 break;
1609 case TASK_POLICY_IOPOL:
1610 if (category == TASK_POLICY_EXTERNAL) {
1611 value = proc_tier_to_iopol(requested.trp_ext_iotier,
1612 requested.trp_ext_iopassive);
1613 } else {
1614 value = proc_tier_to_iopol(requested.trp_int_iotier,
1615 requested.trp_int_iopassive);
1616 }
1617 break;
1618 case TASK_POLICY_IO:
1619 if (category == TASK_POLICY_EXTERNAL) {
1620 value = requested.trp_ext_iotier;
1621 } else {
1622 value = requested.trp_int_iotier;
1623 }
1624 break;
1625 case TASK_POLICY_PASSIVE_IO:
1626 if (category == TASK_POLICY_EXTERNAL) {
1627 value = requested.trp_ext_iopassive;
1628 } else {
1629 value = requested.trp_int_iopassive;
1630 }
1631 break;
1632 case TASK_POLICY_DARWIN_BG_IOPOL:
1633 assert(category == TASK_POLICY_ATTRIBUTE);
1634 value = proc_tier_to_iopol(requested.trp_bg_iotier, 0);
1635 break;
1636 case TASK_POLICY_ROLE:
1637 assert(category == TASK_POLICY_ATTRIBUTE);
1638 value = requested.trp_role;
1639 break;
1640 case TASK_POLICY_SFI_MANAGED:
1641 assert(category == TASK_POLICY_ATTRIBUTE);
1642 value = requested.trp_sfi_managed;
1643 break;
1644 default:
1645 panic("unknown policy_flavor %d", flavor);
1646 break;
1647 }
1648
1649 task_unlock(task);
1650
1651 return value;
1652 }
1653
1654 /*
1655 * Variant of proc_get_task_policy() that returns two scalar outputs.
1656 */
1657 void
1658 proc_get_task_policy2(task_t task,
1659 __assert_only int category,
1660 int flavor,
1661 int *value1,
1662 int *value2)
1663 {
1664 task_lock(task);
1665
1666 struct task_requested_policy requested = task->requested_policy;
1667
1668 switch (flavor) {
1669 case TASK_POLICY_BASE_LATENCY_AND_THROUGHPUT_QOS:
1670 assert(category == TASK_POLICY_ATTRIBUTE);
1671 *value1 = requested.trp_base_latency_qos;
1672 *value2 = requested.trp_base_through_qos;
1673 break;
1674
1675 case TASK_POLICY_OVERRIDE_LATENCY_AND_THROUGHPUT_QOS:
1676 assert(category == TASK_POLICY_ATTRIBUTE);
1677 *value1 = requested.trp_over_latency_qos;
1678 *value2 = requested.trp_over_through_qos;
1679 break;
1680
1681 default:
1682 panic("unknown policy_flavor %d", flavor);
1683 break;
1684 }
1685
1686 task_unlock(task);
1687 }
1688
1689 /*
1690 * Function for querying effective state for relevant subsystems
1691 * Gets what is actually in effect, for subsystems which pull policy instead of receive updates.
1692 *
1693 * ONLY the relevant subsystem should query this.
1694 * NEVER take a value from the 'effective' function and stuff it into a setter.
1695 *
1696 * NOTE: This accessor does not take the task lock.
1697 * Notifications of state updates need to be externally synchronized with state queries.
1698 * This routine *MUST* remain interrupt safe, as it is potentially invoked
1699 * within the context of a timer interrupt. It is also called in KDP context for stackshot.
1700 */
1701 int
1702 proc_get_effective_task_policy(task_t task,
1703 int flavor)
1704 {
1705 int value = 0;
1706
1707 switch (flavor) {
1708 case TASK_POLICY_DARWIN_BG:
1709 /*
1710 * This backs the KPI call proc_pidbackgrounded to find
1711 * out if a pid is backgrounded.
1712 * It is used to communicate state to the VM system, as well as
1713 * prioritizing requests to the graphics system.
1714 * Returns 1 for background mode, 0 for normal mode
1715 */
1716 value = task->effective_policy.tep_darwinbg;
1717 break;
1718 case TASK_POLICY_ALL_SOCKETS_BG:
1719 /*
1720 * do_background_socket() calls this to determine what it should do to the proc's sockets
1721 * Returns 1 for background mode, 0 for normal mode
1722 *
1723 * This consults both thread and task so un-DBGing a thread while the task is BG
1724 * doesn't get you out of the network throttle.
1725 */
1726 value = task->effective_policy.tep_all_sockets_bg;
1727 break;
1728 case TASK_POLICY_SUP_ACTIVE:
1729 /*
1730 * Is the task in AppNap? This is used to determine the urgency
1731 * that's passed to the performance management subsystem for threads
1732 * that are running at a priority <= MAXPRI_THROTTLE.
1733 */
1734 value = task->effective_policy.tep_sup_active;
1735 break;
1736 case TASK_POLICY_LATENCY_QOS:
1737 /*
1738 * timer arming calls into here to find out the timer coalescing level
1739 * Returns a QoS tier (0-6)
1740 */
1741 value = task->effective_policy.tep_latency_qos;
1742 break;
1743 case TASK_POLICY_THROUGH_QOS:
1744 /*
1745 * This value is passed into the urgency callout from the scheduler
1746 * to the performance management subsystem.
1747 * Returns a QoS tier (0-6)
1748 */
1749 value = task->effective_policy.tep_through_qos;
1750 break;
1751 case TASK_POLICY_ROLE:
1752 /*
1753 * This controls various things that ask whether a process is foreground,
1754 * like SFI, VM, access to GPU, etc
1755 */
1756 value = task->effective_policy.tep_role;
1757 break;
1758 case TASK_POLICY_WATCHERS_BG:
1759 /*
1760 * This controls whether or not a thread watching this process should be BG.
1761 */
1762 value = task->effective_policy.tep_watchers_bg;
1763 break;
1764 case TASK_POLICY_SFI_MANAGED:
1765 /*
1766 * This controls whether or not a process is targeted for specific control by thermald.
1767 */
1768 value = task->effective_policy.tep_sfi_managed;
1769 break;
1770 default:
1771 panic("unknown policy_flavor %d", flavor);
1772 break;
1773 }
1774
1775 return value;
1776 }
1777
1778 /*
1779 * Convert from IOPOL_* values to throttle tiers.
1780 *
1781 * TODO: Can this be made more compact, like an array lookup
1782 * Note that it is possible to support e.g. IOPOL_PASSIVE_STANDARD in the future
1783 */
1784
1785 void
1786 proc_iopol_to_tier(int iopolicy, int *tier, int *passive)
1787 {
1788 *passive = 0;
1789 *tier = 0;
1790 switch (iopolicy) {
1791 case IOPOL_IMPORTANT:
1792 *tier = THROTTLE_LEVEL_TIER0;
1793 break;
1794 case IOPOL_PASSIVE:
1795 *tier = THROTTLE_LEVEL_TIER0;
1796 *passive = 1;
1797 break;
1798 case IOPOL_STANDARD:
1799 *tier = THROTTLE_LEVEL_TIER1;
1800 break;
1801 case IOPOL_UTILITY:
1802 *tier = THROTTLE_LEVEL_TIER2;
1803 break;
1804 case IOPOL_THROTTLE:
1805 *tier = THROTTLE_LEVEL_TIER3;
1806 break;
1807 default:
1808 panic("unknown I/O policy %d", iopolicy);
1809 break;
1810 }
1811 }
1812
1813 int
1814 proc_tier_to_iopol(int tier, int passive)
1815 {
1816 if (passive == 1) {
1817 switch (tier) {
1818 case THROTTLE_LEVEL_TIER0:
1819 return IOPOL_PASSIVE;
1820 default:
1821 panic("unknown passive tier %d", tier);
1822 return IOPOL_DEFAULT;
1823 }
1824 } else {
1825 switch (tier) {
1826 case THROTTLE_LEVEL_NONE:
1827 case THROTTLE_LEVEL_TIER0:
1828 return IOPOL_DEFAULT;
1829 case THROTTLE_LEVEL_TIER1:
1830 return IOPOL_STANDARD;
1831 case THROTTLE_LEVEL_TIER2:
1832 return IOPOL_UTILITY;
1833 case THROTTLE_LEVEL_TIER3:
1834 return IOPOL_THROTTLE;
1835 default:
1836 panic("unknown tier %d", tier);
1837 return IOPOL_DEFAULT;
1838 }
1839 }
1840 }
1841
1842 int
1843 proc_darwin_role_to_task_role(int darwin_role, int* task_role)
1844 {
1845 integer_t role = TASK_UNSPECIFIED;
1846
1847 switch (darwin_role) {
1848 case PRIO_DARWIN_ROLE_DEFAULT:
1849 role = TASK_UNSPECIFIED;
1850 break;
1851 case PRIO_DARWIN_ROLE_UI_FOCAL:
1852 role = TASK_FOREGROUND_APPLICATION;
1853 break;
1854 case PRIO_DARWIN_ROLE_UI:
1855 role = TASK_DEFAULT_APPLICATION;
1856 break;
1857 case PRIO_DARWIN_ROLE_NON_UI:
1858 role = TASK_NONUI_APPLICATION;
1859 break;
1860 case PRIO_DARWIN_ROLE_UI_NON_FOCAL:
1861 role = TASK_BACKGROUND_APPLICATION;
1862 break;
1863 case PRIO_DARWIN_ROLE_TAL_LAUNCH:
1864 role = TASK_THROTTLE_APPLICATION;
1865 break;
1866 case PRIO_DARWIN_ROLE_DARWIN_BG:
1867 role = TASK_DARWINBG_APPLICATION;
1868 break;
1869 default:
1870 return EINVAL;
1871 }
1872
1873 *task_role = role;
1874
1875 return 0;
1876 }
1877
1878 int
1879 proc_task_role_to_darwin_role(int task_role)
1880 {
1881 switch (task_role) {
1882 case TASK_FOREGROUND_APPLICATION:
1883 return PRIO_DARWIN_ROLE_UI_FOCAL;
1884 case TASK_BACKGROUND_APPLICATION:
1885 return PRIO_DARWIN_ROLE_UI_NON_FOCAL;
1886 case TASK_NONUI_APPLICATION:
1887 return PRIO_DARWIN_ROLE_NON_UI;
1888 case TASK_DEFAULT_APPLICATION:
1889 return PRIO_DARWIN_ROLE_UI;
1890 case TASK_THROTTLE_APPLICATION:
1891 return PRIO_DARWIN_ROLE_TAL_LAUNCH;
1892 case TASK_DARWINBG_APPLICATION:
1893 return PRIO_DARWIN_ROLE_DARWIN_BG;
1894 case TASK_UNSPECIFIED:
1895 default:
1896 return PRIO_DARWIN_ROLE_DEFAULT;
1897 }
1898 }
1899
1900
1901 /* TODO: remove this variable when interactive daemon audit period is over */
1902 extern boolean_t ipc_importance_interactive_receiver;
1903
1904 /*
1905 * Called at process exec to initialize the apptype, qos clamp, and qos seed of a process
1906 *
1907 * TODO: Make this function more table-driven instead of ad-hoc
1908 */
1909 void
1910 proc_set_task_spawnpolicy(task_t task, int apptype, int qos_clamp, int role,
1911 ipc_port_t * portwatch_ports, int portwatch_count)
1912 {
1913 struct task_pend_token pend_token = {};
1914
1915 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
1916 (IMPORTANCE_CODE(IMP_TASK_APPTYPE, apptype)) | DBG_FUNC_START,
1917 task_pid(task), trequested_0(task), trequested_1(task),
1918 apptype, 0);
1919
1920 switch (apptype) {
1921 case TASK_APPTYPE_APP_TAL:
1922 case TASK_APPTYPE_APP_DEFAULT:
1923 /* Apps become donors via the 'live-donor' flag instead of the static donor flag */
1924 task_importance_mark_donor(task, FALSE);
1925 task_importance_mark_live_donor(task, TRUE);
1926 task_importance_mark_receiver(task, FALSE);
1927 #if CONFIG_EMBEDDED
1928 task_importance_mark_denap_receiver(task, FALSE);
1929 #else
1930 /* Apps are de-nap recievers on desktop for suppression behaviors */
1931 task_importance_mark_denap_receiver(task, TRUE);
1932 #endif /* CONFIG_EMBEDDED */
1933 break;
1934
1935 case TASK_APPTYPE_DAEMON_INTERACTIVE:
1936 task_importance_mark_donor(task, TRUE);
1937 task_importance_mark_live_donor(task, FALSE);
1938
1939 /*
1940 * A boot arg controls whether interactive daemons are importance receivers.
1941 * Normally, they are not. But for testing their behavior as an adaptive
1942 * daemon, the boot-arg can be set.
1943 *
1944 * TODO: remove this when the interactive daemon audit period is over.
1945 */
1946 task_importance_mark_receiver(task, /* FALSE */ ipc_importance_interactive_receiver);
1947 task_importance_mark_denap_receiver(task, FALSE);
1948 break;
1949
1950 case TASK_APPTYPE_DAEMON_STANDARD:
1951 task_importance_mark_donor(task, TRUE);
1952 task_importance_mark_live_donor(task, FALSE);
1953 task_importance_mark_receiver(task, FALSE);
1954 task_importance_mark_denap_receiver(task, FALSE);
1955 break;
1956
1957 case TASK_APPTYPE_DAEMON_ADAPTIVE:
1958 task_importance_mark_donor(task, FALSE);
1959 task_importance_mark_live_donor(task, FALSE);
1960 task_importance_mark_receiver(task, TRUE);
1961 task_importance_mark_denap_receiver(task, FALSE);
1962 break;
1963
1964 case TASK_APPTYPE_DAEMON_BACKGROUND:
1965 task_importance_mark_donor(task, FALSE);
1966 task_importance_mark_live_donor(task, FALSE);
1967 task_importance_mark_receiver(task, FALSE);
1968 task_importance_mark_denap_receiver(task, FALSE);
1969 break;
1970
1971 case TASK_APPTYPE_NONE:
1972 break;
1973 }
1974
1975 if (portwatch_ports != NULL && apptype == TASK_APPTYPE_DAEMON_ADAPTIVE) {
1976 int portwatch_boosts = 0;
1977
1978 for (int i = 0; i < portwatch_count; i++) {
1979 ipc_port_t port = NULL;
1980
1981 if ((port = portwatch_ports[i]) != NULL) {
1982 int boost = 0;
1983 task_add_importance_watchport(task, port, &boost);
1984 portwatch_boosts += boost;
1985 }
1986 }
1987
1988 if (portwatch_boosts > 0) {
1989 task_importance_hold_internal_assertion(task, portwatch_boosts);
1990 }
1991 }
1992
1993 task_lock(task);
1994
1995 if (apptype == TASK_APPTYPE_APP_TAL) {
1996 /* TAL starts off enabled by default */
1997 task->requested_policy.trp_tal_enabled = 1;
1998 }
1999
2000 if (apptype != TASK_APPTYPE_NONE) {
2001 task->requested_policy.trp_apptype = apptype;
2002 }
2003
2004 #if CONFIG_EMBEDDED
2005 /* Remove this after launchd starts setting it properly */
2006 if (apptype == TASK_APPTYPE_APP_DEFAULT && role == TASK_UNSPECIFIED) {
2007 task->requested_policy.trp_role = TASK_FOREGROUND_APPLICATION;
2008 } else
2009 #endif
2010 if (role != TASK_UNSPECIFIED) {
2011 task->requested_policy.trp_role = role;
2012 }
2013
2014 if (qos_clamp != THREAD_QOS_UNSPECIFIED) {
2015 task->requested_policy.trp_qos_clamp = qos_clamp;
2016 }
2017
2018 task_policy_update_locked(task, &pend_token);
2019
2020 task_unlock(task);
2021
2022 /* Ensure the donor bit is updated to be in sync with the new live donor status */
2023 pend_token.tpt_update_live_donor = 1;
2024
2025 task_policy_update_complete_unlocked(task, &pend_token);
2026
2027 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
2028 (IMPORTANCE_CODE(IMP_TASK_APPTYPE, apptype)) | DBG_FUNC_END,
2029 task_pid(task), trequested_0(task), trequested_1(task),
2030 task_is_importance_receiver(task), 0);
2031 }
2032
2033 /*
2034 * Inherit task role across exec
2035 */
2036 void
2037 proc_inherit_task_role(task_t new_task,
2038 task_t old_task)
2039 {
2040 int role;
2041
2042 /* inherit the role from old task to new task */
2043 role = proc_get_task_policy(old_task, TASK_POLICY_ATTRIBUTE, TASK_POLICY_ROLE);
2044 proc_set_task_policy(new_task, TASK_POLICY_ATTRIBUTE, TASK_POLICY_ROLE, role);
2045 }
2046
2047 extern void *initproc;
2048
2049 /*
2050 * Compute the default main thread qos for a task
2051 */
2052 int
2053 task_compute_main_thread_qos(task_t task)
2054 {
2055 int primordial_qos = THREAD_QOS_UNSPECIFIED;
2056
2057 int qos_clamp = task->requested_policy.trp_qos_clamp;
2058
2059 switch (task->requested_policy.trp_apptype) {
2060 case TASK_APPTYPE_APP_TAL:
2061 case TASK_APPTYPE_APP_DEFAULT:
2062 primordial_qos = THREAD_QOS_USER_INTERACTIVE;
2063 break;
2064
2065 case TASK_APPTYPE_DAEMON_INTERACTIVE:
2066 case TASK_APPTYPE_DAEMON_STANDARD:
2067 case TASK_APPTYPE_DAEMON_ADAPTIVE:
2068 primordial_qos = THREAD_QOS_LEGACY;
2069 break;
2070
2071 case TASK_APPTYPE_DAEMON_BACKGROUND:
2072 primordial_qos = THREAD_QOS_BACKGROUND;
2073 break;
2074 }
2075
2076 if (task->bsd_info == initproc) {
2077 /* PID 1 gets a special case */
2078 primordial_qos = MAX(primordial_qos, THREAD_QOS_USER_INITIATED);
2079 }
2080
2081 if (qos_clamp != THREAD_QOS_UNSPECIFIED) {
2082 if (primordial_qos != THREAD_QOS_UNSPECIFIED) {
2083 primordial_qos = MIN(qos_clamp, primordial_qos);
2084 } else {
2085 primordial_qos = qos_clamp;
2086 }
2087 }
2088
2089 return primordial_qos;
2090 }
2091
2092
2093 /* for process_policy to check before attempting to set */
2094 boolean_t
2095 proc_task_is_tal(task_t task)
2096 {
2097 return (task->requested_policy.trp_apptype == TASK_APPTYPE_APP_TAL) ? TRUE : FALSE;
2098 }
2099
2100 int
2101 task_get_apptype(task_t task)
2102 {
2103 return task->requested_policy.trp_apptype;
2104 }
2105
2106 boolean_t
2107 task_is_daemon(task_t task)
2108 {
2109 switch (task->requested_policy.trp_apptype) {
2110 case TASK_APPTYPE_DAEMON_INTERACTIVE:
2111 case TASK_APPTYPE_DAEMON_STANDARD:
2112 case TASK_APPTYPE_DAEMON_ADAPTIVE:
2113 case TASK_APPTYPE_DAEMON_BACKGROUND:
2114 return TRUE;
2115 default:
2116 return FALSE;
2117 }
2118 }
2119
2120 boolean_t
2121 task_is_app(task_t task)
2122 {
2123 switch (task->requested_policy.trp_apptype) {
2124 case TASK_APPTYPE_APP_DEFAULT:
2125 case TASK_APPTYPE_APP_TAL:
2126 return TRUE;
2127 default:
2128 return FALSE;
2129 }
2130 }
2131
2132 /* for telemetry */
2133 integer_t
2134 task_grab_latency_qos(task_t task)
2135 {
2136 return qos_latency_policy_package(proc_get_effective_task_policy(task, TASK_POLICY_LATENCY_QOS));
2137 }
2138
2139 /* update the darwin background action state in the flags field for libproc */
2140 int
2141 proc_get_darwinbgstate(task_t task, uint32_t * flagsp)
2142 {
2143 if (task->requested_policy.trp_ext_darwinbg) {
2144 *flagsp |= PROC_FLAG_EXT_DARWINBG;
2145 }
2146
2147 if (task->requested_policy.trp_int_darwinbg) {
2148 *flagsp |= PROC_FLAG_DARWINBG;
2149 }
2150
2151 #if CONFIG_EMBEDDED
2152 if (task->requested_policy.trp_apptype == TASK_APPTYPE_DAEMON_BACKGROUND) {
2153 *flagsp |= PROC_FLAG_IOS_APPLEDAEMON;
2154 }
2155
2156 if (task->requested_policy.trp_apptype == TASK_APPTYPE_DAEMON_ADAPTIVE) {
2157 *flagsp |= PROC_FLAG_IOS_IMPPROMOTION;
2158 }
2159 #endif /* CONFIG_EMBEDDED */
2160
2161 if (task->requested_policy.trp_apptype == TASK_APPTYPE_APP_DEFAULT ||
2162 task->requested_policy.trp_apptype == TASK_APPTYPE_APP_TAL) {
2163 *flagsp |= PROC_FLAG_APPLICATION;
2164 }
2165
2166 if (task->requested_policy.trp_apptype == TASK_APPTYPE_DAEMON_ADAPTIVE) {
2167 *flagsp |= PROC_FLAG_ADAPTIVE;
2168 }
2169
2170 if (task->requested_policy.trp_apptype == TASK_APPTYPE_DAEMON_ADAPTIVE &&
2171 task->requested_policy.trp_boosted == 1) {
2172 *flagsp |= PROC_FLAG_ADAPTIVE_IMPORTANT;
2173 }
2174
2175 if (task_is_importance_donor(task)) {
2176 *flagsp |= PROC_FLAG_IMPORTANCE_DONOR;
2177 }
2178
2179 if (task->effective_policy.tep_sup_active) {
2180 *flagsp |= PROC_FLAG_SUPPRESSED;
2181 }
2182
2183 return 0;
2184 }
2185
2186 /*
2187 * Tracepoint data... Reading the tracepoint data can be somewhat complicated.
2188 * The current scheme packs as much data into a single tracepoint as it can.
2189 *
2190 * Each task/thread requested/effective structure is 64 bits in size. Any
2191 * given tracepoint will emit either requested or effective data, but not both.
2192 *
2193 * A tracepoint may emit any of task, thread, or task & thread data.
2194 *
2195 * The type of data emitted varies with pointer size. Where possible, both
2196 * task and thread data are emitted. In LP32 systems, the first and second
2197 * halves of either the task or thread data is emitted.
2198 *
2199 * The code uses uintptr_t array indexes instead of high/low to avoid
2200 * confusion WRT big vs little endian.
2201 *
2202 * The truth table for the tracepoint data functions is below, and has the
2203 * following invariants:
2204 *
2205 * 1) task and thread are uintptr_t*
2206 * 2) task may never be NULL
2207 *
2208 *
2209 * LP32 LP64
2210 * trequested_0(task, NULL) task[0] task[0]
2211 * trequested_1(task, NULL) task[1] NULL
2212 * trequested_0(task, thread) thread[0] task[0]
2213 * trequested_1(task, thread) thread[1] thread[0]
2214 *
2215 * Basically, you get a full task or thread on LP32, and both on LP64.
2216 *
2217 * The uintptr_t munging here is squicky enough to deserve a comment.
2218 *
2219 * The variables we are accessing are laid out in memory like this:
2220 *
2221 * [ LP64 uintptr_t 0 ]
2222 * [ LP32 uintptr_t 0 ] [ LP32 uintptr_t 1 ]
2223 *
2224 * 1 2 3 4 5 6 7 8
2225 *
2226 */
2227
2228 static uintptr_t
2229 trequested_0(task_t task)
2230 {
2231 static_assert(sizeof(struct task_requested_policy) == sizeof(uint64_t), "size invariant violated");
2232
2233 uintptr_t* raw = (uintptr_t*)&task->requested_policy;
2234
2235 return raw[0];
2236 }
2237
2238 static uintptr_t
2239 trequested_1(task_t task)
2240 {
2241 #if defined __LP64__
2242 (void)task;
2243 return 0;
2244 #else
2245 uintptr_t* raw = (uintptr_t*)(&task->requested_policy);
2246 return raw[1];
2247 #endif
2248 }
2249
2250 static uintptr_t
2251 teffective_0(task_t task)
2252 {
2253 uintptr_t* raw = (uintptr_t*)&task->effective_policy;
2254
2255 return raw[0];
2256 }
2257
2258 static uintptr_t
2259 teffective_1(task_t task)
2260 {
2261 #if defined __LP64__
2262 (void)task;
2263 return 0;
2264 #else
2265 uintptr_t* raw = (uintptr_t*)(&task->effective_policy);
2266 return raw[1];
2267 #endif
2268 }
2269
2270 /* dump pending for tracepoint */
2271 uint32_t
2272 tpending(task_pend_token_t pend_token)
2273 {
2274 return *(uint32_t*)(void*)(pend_token);
2275 }
2276
2277 uint64_t
2278 task_requested_bitfield(task_t task)
2279 {
2280 uint64_t bits = 0;
2281 struct task_requested_policy requested = task->requested_policy;
2282
2283 bits |= (requested.trp_int_darwinbg ? POLICY_REQ_INT_DARWIN_BG : 0);
2284 bits |= (requested.trp_ext_darwinbg ? POLICY_REQ_EXT_DARWIN_BG : 0);
2285 bits |= (requested.trp_int_iotier ? (((uint64_t)requested.trp_int_iotier) << POLICY_REQ_INT_IO_TIER_SHIFT) : 0);
2286 bits |= (requested.trp_ext_iotier ? (((uint64_t)requested.trp_ext_iotier) << POLICY_REQ_EXT_IO_TIER_SHIFT) : 0);
2287 bits |= (requested.trp_int_iopassive ? POLICY_REQ_INT_PASSIVE_IO : 0);
2288 bits |= (requested.trp_ext_iopassive ? POLICY_REQ_EXT_PASSIVE_IO : 0);
2289 bits |= (requested.trp_bg_iotier ? (((uint64_t)requested.trp_bg_iotier) << POLICY_REQ_BG_IOTIER_SHIFT) : 0);
2290 bits |= (requested.trp_terminated ? POLICY_REQ_TERMINATED : 0);
2291
2292 bits |= (requested.trp_boosted ? POLICY_REQ_BOOSTED : 0);
2293 bits |= (requested.trp_tal_enabled ? POLICY_REQ_TAL_ENABLED : 0);
2294 bits |= (requested.trp_apptype ? (((uint64_t)requested.trp_apptype) << POLICY_REQ_APPTYPE_SHIFT) : 0);
2295 bits |= (requested.trp_role ? (((uint64_t)requested.trp_role) << POLICY_REQ_ROLE_SHIFT) : 0);
2296
2297 bits |= (requested.trp_sup_active ? POLICY_REQ_SUP_ACTIVE : 0);
2298 bits |= (requested.trp_sup_lowpri_cpu ? POLICY_REQ_SUP_LOWPRI_CPU : 0);
2299 bits |= (requested.trp_sup_cpu ? POLICY_REQ_SUP_CPU : 0);
2300 bits |= (requested.trp_sup_timer ? (((uint64_t)requested.trp_sup_timer) << POLICY_REQ_SUP_TIMER_THROTTLE_SHIFT) : 0);
2301 bits |= (requested.trp_sup_throughput ? (((uint64_t)requested.trp_sup_throughput) << POLICY_REQ_SUP_THROUGHPUT_SHIFT) : 0);
2302 bits |= (requested.trp_sup_disk ? POLICY_REQ_SUP_DISK_THROTTLE : 0);
2303 bits |= (requested.trp_sup_bg_sockets ? POLICY_REQ_SUP_BG_SOCKETS : 0);
2304
2305 bits |= (requested.trp_base_latency_qos ? (((uint64_t)requested.trp_base_latency_qos) << POLICY_REQ_BASE_LATENCY_QOS_SHIFT) : 0);
2306 bits |= (requested.trp_over_latency_qos ? (((uint64_t)requested.trp_over_latency_qos) << POLICY_REQ_OVER_LATENCY_QOS_SHIFT) : 0);
2307 bits |= (requested.trp_base_through_qos ? (((uint64_t)requested.trp_base_through_qos) << POLICY_REQ_BASE_THROUGH_QOS_SHIFT) : 0);
2308 bits |= (requested.trp_over_through_qos ? (((uint64_t)requested.trp_over_through_qos) << POLICY_REQ_OVER_THROUGH_QOS_SHIFT) : 0);
2309 bits |= (requested.trp_sfi_managed ? POLICY_REQ_SFI_MANAGED : 0);
2310 bits |= (requested.trp_qos_clamp ? (((uint64_t)requested.trp_qos_clamp) << POLICY_REQ_QOS_CLAMP_SHIFT) : 0);
2311
2312 return bits;
2313 }
2314
2315 uint64_t
2316 task_effective_bitfield(task_t task)
2317 {
2318 uint64_t bits = 0;
2319 struct task_effective_policy effective = task->effective_policy;
2320
2321 bits |= (effective.tep_io_tier ? (((uint64_t)effective.tep_io_tier) << POLICY_EFF_IO_TIER_SHIFT) : 0);
2322 bits |= (effective.tep_io_passive ? POLICY_EFF_IO_PASSIVE : 0);
2323 bits |= (effective.tep_darwinbg ? POLICY_EFF_DARWIN_BG : 0);
2324 bits |= (effective.tep_lowpri_cpu ? POLICY_EFF_LOWPRI_CPU : 0);
2325 bits |= (effective.tep_terminated ? POLICY_EFF_TERMINATED : 0);
2326 bits |= (effective.tep_all_sockets_bg ? POLICY_EFF_ALL_SOCKETS_BG : 0);
2327 bits |= (effective.tep_new_sockets_bg ? POLICY_EFF_NEW_SOCKETS_BG : 0);
2328 bits |= (effective.tep_bg_iotier ? (((uint64_t)effective.tep_bg_iotier) << POLICY_EFF_BG_IOTIER_SHIFT) : 0);
2329 bits |= (effective.tep_qos_ui_is_urgent ? POLICY_EFF_QOS_UI_IS_URGENT : 0);
2330
2331 bits |= (effective.tep_tal_engaged ? POLICY_EFF_TAL_ENGAGED : 0);
2332 bits |= (effective.tep_watchers_bg ? POLICY_EFF_WATCHERS_BG : 0);
2333 bits |= (effective.tep_sup_active ? POLICY_EFF_SUP_ACTIVE : 0);
2334 bits |= (effective.tep_suppressed_cpu ? POLICY_EFF_SUP_CPU : 0);
2335 bits |= (effective.tep_role ? (((uint64_t)effective.tep_role) << POLICY_EFF_ROLE_SHIFT) : 0);
2336 bits |= (effective.tep_latency_qos ? (((uint64_t)effective.tep_latency_qos) << POLICY_EFF_LATENCY_QOS_SHIFT) : 0);
2337 bits |= (effective.tep_through_qos ? (((uint64_t)effective.tep_through_qos) << POLICY_EFF_THROUGH_QOS_SHIFT) : 0);
2338 bits |= (effective.tep_sfi_managed ? POLICY_EFF_SFI_MANAGED : 0);
2339 bits |= (effective.tep_qos_ceiling ? (((uint64_t)effective.tep_qos_ceiling) << POLICY_EFF_QOS_CEILING_SHIFT) : 0);
2340
2341 return bits;
2342 }
2343
2344
2345 /*
2346 * Resource usage and CPU related routines
2347 */
2348
2349 int
2350 proc_get_task_ruse_cpu(task_t task, uint32_t *policyp, uint8_t *percentagep, uint64_t *intervalp, uint64_t *deadlinep)
2351 {
2352 int error = 0;
2353 int scope;
2354
2355 task_lock(task);
2356
2357
2358 error = task_get_cpuusage(task, percentagep, intervalp, deadlinep, &scope);
2359 task_unlock(task);
2360
2361 /*
2362 * Reverse-map from CPU resource limit scopes back to policies (see comment below).
2363 */
2364 if (scope == TASK_RUSECPU_FLAGS_PERTHR_LIMIT) {
2365 *policyp = TASK_POLICY_RESOURCE_ATTRIBUTE_NOTIFY_EXC;
2366 } else if (scope == TASK_RUSECPU_FLAGS_PROC_LIMIT) {
2367 *policyp = TASK_POLICY_RESOURCE_ATTRIBUTE_THROTTLE;
2368 } else if (scope == TASK_RUSECPU_FLAGS_DEADLINE) {
2369 *policyp = TASK_POLICY_RESOURCE_ATTRIBUTE_NONE;
2370 }
2371
2372 return error;
2373 }
2374
2375 /*
2376 * Configure the default CPU usage monitor parameters.
2377 *
2378 * For tasks which have this mechanism activated: if any thread in the
2379 * process consumes more CPU than this, an EXC_RESOURCE exception will be generated.
2380 */
2381 void
2382 proc_init_cpumon_params(void)
2383 {
2384 /*
2385 * The max CPU percentage can be configured via the boot-args and
2386 * a key in the device tree. The boot-args are honored first, then the
2387 * device tree.
2388 */
2389 if (!PE_parse_boot_argn("max_cpumon_percentage", &proc_max_cpumon_percentage,
2390 sizeof(proc_max_cpumon_percentage))) {
2391 uint64_t max_percentage = 0ULL;
2392
2393 if (!PE_get_default("kern.max_cpumon_percentage", &max_percentage,
2394 sizeof(max_percentage))) {
2395 max_percentage = DEFAULT_CPUMON_PERCENTAGE;
2396 }
2397
2398 assert(max_percentage <= UINT8_MAX);
2399 proc_max_cpumon_percentage = (uint8_t) max_percentage;
2400 }
2401
2402 if (proc_max_cpumon_percentage > 100) {
2403 proc_max_cpumon_percentage = 100;
2404 }
2405
2406 /*
2407 * The interval should be specified in seconds.
2408 *
2409 * Like the max CPU percentage, the max CPU interval can be configured
2410 * via boot-args and the device tree.
2411 */
2412 if (!PE_parse_boot_argn("max_cpumon_interval", &proc_max_cpumon_interval,
2413 sizeof(proc_max_cpumon_interval))) {
2414 if (!PE_get_default("kern.max_cpumon_interval", &proc_max_cpumon_interval,
2415 sizeof(proc_max_cpumon_interval))) {
2416 proc_max_cpumon_interval = DEFAULT_CPUMON_INTERVAL;
2417 }
2418 }
2419
2420 proc_max_cpumon_interval *= NSEC_PER_SEC;
2421
2422 /* TEMPORARY boot arg to control App suppression */
2423 PE_parse_boot_argn("task_policy_suppression_flags",
2424 &task_policy_suppression_flags,
2425 sizeof(task_policy_suppression_flags));
2426
2427 /* adjust suppression disk policy if called for in boot arg */
2428 if (task_policy_suppression_flags & TASK_POLICY_SUPPRESSION_IOTIER2) {
2429 proc_suppressed_disk_tier = THROTTLE_LEVEL_TIER2;
2430 }
2431 }
2432
2433 /*
2434 * Currently supported configurations for CPU limits.
2435 *
2436 * Policy | Deadline-based CPU limit | Percentage-based CPU limit
2437 * -------------------------------------+--------------------------+------------------------------
2438 * PROC_POLICY_RSRCACT_THROTTLE | ENOTSUP | Task-wide scope only
2439 * PROC_POLICY_RSRCACT_SUSPEND | Task-wide scope only | ENOTSUP
2440 * PROC_POLICY_RSRCACT_TERMINATE | Task-wide scope only | ENOTSUP
2441 * PROC_POLICY_RSRCACT_NOTIFY_KQ | Task-wide scope only | ENOTSUP
2442 * PROC_POLICY_RSRCACT_NOTIFY_EXC | ENOTSUP | Per-thread scope only
2443 *
2444 * A deadline-based CPU limit is actually a simple wallclock timer - the requested action is performed
2445 * after the specified amount of wallclock time has elapsed.
2446 *
2447 * A percentage-based CPU limit performs the requested action after the specified amount of actual CPU time
2448 * has been consumed -- regardless of how much wallclock time has elapsed -- by either the task as an
2449 * aggregate entity (so-called "Task-wide" or "Proc-wide" scope, whereby the CPU time consumed by all threads
2450 * in the task are added together), or by any one thread in the task (so-called "per-thread" scope).
2451 *
2452 * We support either deadline != 0 OR percentage != 0, but not both. The original intention in having them
2453 * share an API was to use actual CPU time as the basis of the deadline-based limit (as in: perform an action
2454 * after I have used some amount of CPU time; this is different than the recurring percentage/interval model)
2455 * but the potential consumer of the API at the time was insisting on wallclock time instead.
2456 *
2457 * Currently, requesting notification via an exception is the only way to get per-thread scope for a
2458 * CPU limit. All other types of notifications force task-wide scope for the limit.
2459 */
2460 int
2461 proc_set_task_ruse_cpu(task_t task, uint32_t policy, uint8_t percentage, uint64_t interval, uint64_t deadline,
2462 int cpumon_entitled)
2463 {
2464 int error = 0;
2465 int scope;
2466
2467 /*
2468 * Enforce the matrix of supported configurations for policy, percentage, and deadline.
2469 */
2470 switch (policy) {
2471 // If no policy is explicitly given, the default is to throttle.
2472 case TASK_POLICY_RESOURCE_ATTRIBUTE_NONE:
2473 case TASK_POLICY_RESOURCE_ATTRIBUTE_THROTTLE:
2474 if (deadline != 0) {
2475 return ENOTSUP;
2476 }
2477 scope = TASK_RUSECPU_FLAGS_PROC_LIMIT;
2478 break;
2479 case TASK_POLICY_RESOURCE_ATTRIBUTE_SUSPEND:
2480 case TASK_POLICY_RESOURCE_ATTRIBUTE_TERMINATE:
2481 case TASK_POLICY_RESOURCE_ATTRIBUTE_NOTIFY_KQ:
2482 if (percentage != 0) {
2483 return ENOTSUP;
2484 }
2485 scope = TASK_RUSECPU_FLAGS_DEADLINE;
2486 break;
2487 case TASK_POLICY_RESOURCE_ATTRIBUTE_NOTIFY_EXC:
2488 if (deadline != 0) {
2489 return ENOTSUP;
2490 }
2491 scope = TASK_RUSECPU_FLAGS_PERTHR_LIMIT;
2492 #ifdef CONFIG_NOMONITORS
2493 return error;
2494 #endif /* CONFIG_NOMONITORS */
2495 break;
2496 default:
2497 return EINVAL;
2498 }
2499
2500 task_lock(task);
2501 if (task != current_task()) {
2502 task->policy_ru_cpu_ext = policy;
2503 } else {
2504 task->policy_ru_cpu = policy;
2505 }
2506 error = task_set_cpuusage(task, percentage, interval, deadline, scope, cpumon_entitled);
2507 task_unlock(task);
2508 return error;
2509 }
2510
2511 /* TODO: get rid of these */
2512 #define TASK_POLICY_CPU_RESOURCE_USAGE 0
2513 #define TASK_POLICY_WIREDMEM_RESOURCE_USAGE 1
2514 #define TASK_POLICY_VIRTUALMEM_RESOURCE_USAGE 2
2515 #define TASK_POLICY_DISK_RESOURCE_USAGE 3
2516 #define TASK_POLICY_NETWORK_RESOURCE_USAGE 4
2517 #define TASK_POLICY_POWER_RESOURCE_USAGE 5
2518
2519 #define TASK_POLICY_RESOURCE_USAGE_COUNT 6
2520
2521 int
2522 proc_clear_task_ruse_cpu(task_t task, int cpumon_entitled)
2523 {
2524 int error = 0;
2525 int action;
2526 void * bsdinfo = NULL;
2527
2528 task_lock(task);
2529 if (task != current_task()) {
2530 task->policy_ru_cpu_ext = TASK_POLICY_RESOURCE_ATTRIBUTE_DEFAULT;
2531 } else {
2532 task->policy_ru_cpu = TASK_POLICY_RESOURCE_ATTRIBUTE_DEFAULT;
2533 }
2534
2535 error = task_clear_cpuusage_locked(task, cpumon_entitled);
2536 if (error != 0) {
2537 goto out;
2538 }
2539
2540 action = task->applied_ru_cpu;
2541 if (task->applied_ru_cpu_ext != TASK_POLICY_RESOURCE_ATTRIBUTE_NONE) {
2542 /* reset action */
2543 task->applied_ru_cpu_ext = TASK_POLICY_RESOURCE_ATTRIBUTE_NONE;
2544 }
2545 if (action != TASK_POLICY_RESOURCE_ATTRIBUTE_NONE) {
2546 bsdinfo = task->bsd_info;
2547 task_unlock(task);
2548 proc_restore_resource_actions(bsdinfo, TASK_POLICY_CPU_RESOURCE_USAGE, action);
2549 goto out1;
2550 }
2551
2552 out:
2553 task_unlock(task);
2554 out1:
2555 return error;
2556 }
2557
2558 /* used to apply resource limit related actions */
2559 static int
2560 task_apply_resource_actions(task_t task, int type)
2561 {
2562 int action = TASK_POLICY_RESOURCE_ATTRIBUTE_NONE;
2563 void * bsdinfo = NULL;
2564
2565 switch (type) {
2566 case TASK_POLICY_CPU_RESOURCE_USAGE:
2567 break;
2568 case TASK_POLICY_WIREDMEM_RESOURCE_USAGE:
2569 case TASK_POLICY_VIRTUALMEM_RESOURCE_USAGE:
2570 case TASK_POLICY_DISK_RESOURCE_USAGE:
2571 case TASK_POLICY_NETWORK_RESOURCE_USAGE:
2572 case TASK_POLICY_POWER_RESOURCE_USAGE:
2573 return 0;
2574
2575 default:
2576 return 1;
2577 }
2578 ;
2579
2580 /* only cpu actions for now */
2581 task_lock(task);
2582
2583 if (task->applied_ru_cpu_ext == TASK_POLICY_RESOURCE_ATTRIBUTE_NONE) {
2584 /* apply action */
2585 task->applied_ru_cpu_ext = task->policy_ru_cpu_ext;
2586 action = task->applied_ru_cpu_ext;
2587 } else {
2588 action = task->applied_ru_cpu_ext;
2589 }
2590
2591 if (action != TASK_POLICY_RESOURCE_ATTRIBUTE_NONE) {
2592 bsdinfo = task->bsd_info;
2593 task_unlock(task);
2594 proc_apply_resource_actions(bsdinfo, TASK_POLICY_CPU_RESOURCE_USAGE, action);
2595 } else {
2596 task_unlock(task);
2597 }
2598
2599 return 0;
2600 }
2601
2602 /*
2603 * XXX This API is somewhat broken; we support multiple simultaneous CPU limits, but the get/set API
2604 * only allows for one at a time. This means that if there is a per-thread limit active, the other
2605 * "scopes" will not be accessible via this API. We could change it to pass in the scope of interest
2606 * to the caller, and prefer that, but there's no need for that at the moment.
2607 */
2608 static int
2609 task_get_cpuusage(task_t task, uint8_t *percentagep, uint64_t *intervalp, uint64_t *deadlinep, int *scope)
2610 {
2611 *percentagep = 0;
2612 *intervalp = 0;
2613 *deadlinep = 0;
2614
2615 if ((task->rusage_cpu_flags & TASK_RUSECPU_FLAGS_PERTHR_LIMIT) != 0) {
2616 *scope = TASK_RUSECPU_FLAGS_PERTHR_LIMIT;
2617 *percentagep = task->rusage_cpu_perthr_percentage;
2618 *intervalp = task->rusage_cpu_perthr_interval;
2619 } else if ((task->rusage_cpu_flags & TASK_RUSECPU_FLAGS_PROC_LIMIT) != 0) {
2620 *scope = TASK_RUSECPU_FLAGS_PROC_LIMIT;
2621 *percentagep = task->rusage_cpu_percentage;
2622 *intervalp = task->rusage_cpu_interval;
2623 } else if ((task->rusage_cpu_flags & TASK_RUSECPU_FLAGS_DEADLINE) != 0) {
2624 *scope = TASK_RUSECPU_FLAGS_DEADLINE;
2625 *deadlinep = task->rusage_cpu_deadline;
2626 } else {
2627 *scope = 0;
2628 }
2629
2630 return 0;
2631 }
2632
2633 /*
2634 * Suspend the CPU usage monitor for the task. Return value indicates
2635 * if the mechanism was actually enabled.
2636 */
2637 int
2638 task_suspend_cpumon(task_t task)
2639 {
2640 thread_t thread;
2641
2642 task_lock_assert_owned(task);
2643
2644 if ((task->rusage_cpu_flags & TASK_RUSECPU_FLAGS_PERTHR_LIMIT) == 0) {
2645 return KERN_INVALID_ARGUMENT;
2646 }
2647
2648 #if CONFIG_TELEMETRY
2649 /*
2650 * Disable task-wide telemetry if it was ever enabled by the CPU usage
2651 * monitor's warning zone.
2652 */
2653 telemetry_task_ctl_locked(task, TF_CPUMON_WARNING, 0);
2654 #endif
2655
2656 /*
2657 * Suspend monitoring for the task, and propagate that change to each thread.
2658 */
2659 task->rusage_cpu_flags &= ~(TASK_RUSECPU_FLAGS_PERTHR_LIMIT | TASK_RUSECPU_FLAGS_FATAL_CPUMON);
2660 queue_iterate(&task->threads, thread, thread_t, task_threads) {
2661 act_set_astledger(thread);
2662 }
2663
2664 return KERN_SUCCESS;
2665 }
2666
2667 /*
2668 * Remove all traces of the CPU monitor.
2669 */
2670 int
2671 task_disable_cpumon(task_t task)
2672 {
2673 int kret;
2674
2675 task_lock_assert_owned(task);
2676
2677 kret = task_suspend_cpumon(task);
2678 if (kret) {
2679 return kret;
2680 }
2681
2682 /* Once we clear these values, the monitor can't be resumed */
2683 task->rusage_cpu_perthr_percentage = 0;
2684 task->rusage_cpu_perthr_interval = 0;
2685
2686 return KERN_SUCCESS;
2687 }
2688
2689
2690 static int
2691 task_enable_cpumon_locked(task_t task)
2692 {
2693 thread_t thread;
2694 task_lock_assert_owned(task);
2695
2696 if (task->rusage_cpu_perthr_percentage == 0 ||
2697 task->rusage_cpu_perthr_interval == 0) {
2698 return KERN_INVALID_ARGUMENT;
2699 }
2700
2701 task->rusage_cpu_flags |= TASK_RUSECPU_FLAGS_PERTHR_LIMIT;
2702 queue_iterate(&task->threads, thread, thread_t, task_threads) {
2703 act_set_astledger(thread);
2704 }
2705
2706 return KERN_SUCCESS;
2707 }
2708
2709 int
2710 task_resume_cpumon(task_t task)
2711 {
2712 kern_return_t kret;
2713
2714 if (!task) {
2715 return EINVAL;
2716 }
2717
2718 task_lock(task);
2719 kret = task_enable_cpumon_locked(task);
2720 task_unlock(task);
2721
2722 return kret;
2723 }
2724
2725
2726 /* duplicate values from bsd/sys/process_policy.h */
2727 #define PROC_POLICY_CPUMON_DISABLE 0xFF
2728 #define PROC_POLICY_CPUMON_DEFAULTS 0xFE
2729
2730 static int
2731 task_set_cpuusage(task_t task, uint8_t percentage, uint64_t interval, uint64_t deadline, int scope, int cpumon_entitled)
2732 {
2733 uint64_t abstime = 0;
2734 uint64_t limittime = 0;
2735
2736 lck_mtx_assert(&task->lock, LCK_MTX_ASSERT_OWNED);
2737
2738 /* By default, refill once per second */
2739 if (interval == 0) {
2740 interval = NSEC_PER_SEC;
2741 }
2742
2743 if (percentage != 0) {
2744 if (scope == TASK_RUSECPU_FLAGS_PERTHR_LIMIT) {
2745 boolean_t warn = FALSE;
2746
2747 /*
2748 * A per-thread CPU limit on a task generates an exception
2749 * (LEDGER_ACTION_EXCEPTION) if any one thread in the task
2750 * exceeds the limit.
2751 */
2752
2753 if (percentage == PROC_POLICY_CPUMON_DISABLE) {
2754 if (cpumon_entitled) {
2755 /* 25095698 - task_disable_cpumon() should be reliable */
2756 task_disable_cpumon(task);
2757 return 0;
2758 }
2759
2760 /*
2761 * This task wishes to disable the CPU usage monitor, but it's
2762 * missing the required entitlement:
2763 * com.apple.private.kernel.override-cpumon
2764 *
2765 * Instead, treat this as a request to reset its params
2766 * back to the defaults.
2767 */
2768 warn = TRUE;
2769 percentage = PROC_POLICY_CPUMON_DEFAULTS;
2770 }
2771
2772 if (percentage == PROC_POLICY_CPUMON_DEFAULTS) {
2773 percentage = proc_max_cpumon_percentage;
2774 interval = proc_max_cpumon_interval;
2775 }
2776
2777 if (percentage > 100) {
2778 percentage = 100;
2779 }
2780
2781 /*
2782 * Passing in an interval of -1 means either:
2783 * - Leave the interval as-is, if there's already a per-thread
2784 * limit configured
2785 * - Use the system default.
2786 */
2787 if (interval == -1ULL) {
2788 if (task->rusage_cpu_flags & TASK_RUSECPU_FLAGS_PERTHR_LIMIT) {
2789 interval = task->rusage_cpu_perthr_interval;
2790 } else {
2791 interval = proc_max_cpumon_interval;
2792 }
2793 }
2794
2795 /*
2796 * Enforce global caps on CPU usage monitor here if the process is not
2797 * entitled to escape the global caps.
2798 */
2799 if ((percentage > proc_max_cpumon_percentage) && (cpumon_entitled == 0)) {
2800 warn = TRUE;
2801 percentage = proc_max_cpumon_percentage;
2802 }
2803
2804 if ((interval > proc_max_cpumon_interval) && (cpumon_entitled == 0)) {
2805 warn = TRUE;
2806 interval = proc_max_cpumon_interval;
2807 }
2808
2809 if (warn) {
2810 int pid = 0;
2811 const char *procname = "unknown";
2812
2813 #ifdef MACH_BSD
2814 pid = proc_selfpid();
2815 if (current_task()->bsd_info != NULL) {
2816 procname = proc_name_address(current_task()->bsd_info);
2817 }
2818 #endif
2819
2820 printf("process %s[%d] denied attempt to escape CPU monitor"
2821 " (missing required entitlement).\n", procname, pid);
2822 }
2823
2824 /* configure the limit values */
2825 task->rusage_cpu_perthr_percentage = percentage;
2826 task->rusage_cpu_perthr_interval = interval;
2827
2828 /* and enable the CPU monitor */
2829 (void)task_enable_cpumon_locked(task);
2830 } else if (scope == TASK_RUSECPU_FLAGS_PROC_LIMIT) {
2831 /*
2832 * Currently, a proc-wide CPU limit always blocks if the limit is
2833 * exceeded (LEDGER_ACTION_BLOCK).
2834 */
2835 task->rusage_cpu_flags |= TASK_RUSECPU_FLAGS_PROC_LIMIT;
2836 task->rusage_cpu_percentage = percentage;
2837 task->rusage_cpu_interval = interval;
2838
2839 limittime = (interval * percentage) / 100;
2840 nanoseconds_to_absolutetime(limittime, &abstime);
2841
2842 ledger_set_limit(task->ledger, task_ledgers.cpu_time, abstime, 0);
2843 ledger_set_period(task->ledger, task_ledgers.cpu_time, interval);
2844 ledger_set_action(task->ledger, task_ledgers.cpu_time, LEDGER_ACTION_BLOCK);
2845 }
2846 }
2847
2848 if (deadline != 0) {
2849 assert(scope == TASK_RUSECPU_FLAGS_DEADLINE);
2850
2851 /* if already in use, cancel and wait for it to cleanout */
2852 if (task->rusage_cpu_callt != NULL) {
2853 task_unlock(task);
2854 thread_call_cancel_wait(task->rusage_cpu_callt);
2855 task_lock(task);
2856 }
2857 if (task->rusage_cpu_callt == NULL) {
2858 task->rusage_cpu_callt = thread_call_allocate_with_priority(task_action_cpuusage, (thread_call_param_t)task, THREAD_CALL_PRIORITY_KERNEL);
2859 }
2860 /* setup callout */
2861 if (task->rusage_cpu_callt != 0) {
2862 uint64_t save_abstime = 0;
2863
2864 task->rusage_cpu_flags |= TASK_RUSECPU_FLAGS_DEADLINE;
2865 task->rusage_cpu_deadline = deadline;
2866
2867 nanoseconds_to_absolutetime(deadline, &abstime);
2868 save_abstime = abstime;
2869 clock_absolutetime_interval_to_deadline(save_abstime, &abstime);
2870 thread_call_enter_delayed(task->rusage_cpu_callt, abstime);
2871 }
2872 }
2873
2874 return 0;
2875 }
2876
2877 int
2878 task_clear_cpuusage(task_t task, int cpumon_entitled)
2879 {
2880 int retval = 0;
2881
2882 task_lock(task);
2883 retval = task_clear_cpuusage_locked(task, cpumon_entitled);
2884 task_unlock(task);
2885
2886 return retval;
2887 }
2888
2889 static int
2890 task_clear_cpuusage_locked(task_t task, int cpumon_entitled)
2891 {
2892 thread_call_t savecallt;
2893
2894 /* cancel percentage handling if set */
2895 if (task->rusage_cpu_flags & TASK_RUSECPU_FLAGS_PROC_LIMIT) {
2896 task->rusage_cpu_flags &= ~TASK_RUSECPU_FLAGS_PROC_LIMIT;
2897 ledger_set_limit(task->ledger, task_ledgers.cpu_time, LEDGER_LIMIT_INFINITY, 0);
2898 task->rusage_cpu_percentage = 0;
2899 task->rusage_cpu_interval = 0;
2900 }
2901
2902 /*
2903 * Disable the CPU usage monitor.
2904 */
2905 if (cpumon_entitled) {
2906 task_disable_cpumon(task);
2907 }
2908
2909 /* cancel deadline handling if set */
2910 if (task->rusage_cpu_flags & TASK_RUSECPU_FLAGS_DEADLINE) {
2911 task->rusage_cpu_flags &= ~TASK_RUSECPU_FLAGS_DEADLINE;
2912 if (task->rusage_cpu_callt != 0) {
2913 savecallt = task->rusage_cpu_callt;
2914 task->rusage_cpu_callt = NULL;
2915 task->rusage_cpu_deadline = 0;
2916 task_unlock(task);
2917 thread_call_cancel_wait(savecallt);
2918 thread_call_free(savecallt);
2919 task_lock(task);
2920 }
2921 }
2922 return 0;
2923 }
2924
2925 /* called by ledger unit to enforce action due to resource usage criteria being met */
2926 static void
2927 task_action_cpuusage(thread_call_param_t param0, __unused thread_call_param_t param1)
2928 {
2929 task_t task = (task_t)param0;
2930 (void)task_apply_resource_actions(task, TASK_POLICY_CPU_RESOURCE_USAGE);
2931 return;
2932 }
2933
2934
2935 /*
2936 * Routines for taskwatch and pidbind
2937 */
2938
2939 #if CONFIG_EMBEDDED
2940
2941 lck_mtx_t task_watch_mtx;
2942
2943 void
2944 task_watch_init(void)
2945 {
2946 lck_mtx_init(&task_watch_mtx, &task_lck_grp, &task_lck_attr);
2947 }
2948
2949 static void
2950 task_watch_lock(void)
2951 {
2952 lck_mtx_lock(&task_watch_mtx);
2953 }
2954
2955 static void
2956 task_watch_unlock(void)
2957 {
2958 lck_mtx_unlock(&task_watch_mtx);
2959 }
2960
2961 static void
2962 add_taskwatch_locked(task_t task, task_watch_t * twp)
2963 {
2964 queue_enter(&task->task_watchers, twp, task_watch_t *, tw_links);
2965 task->num_taskwatchers++;
2966 }
2967
2968 static void
2969 remove_taskwatch_locked(task_t task, task_watch_t * twp)
2970 {
2971 queue_remove(&task->task_watchers, twp, task_watch_t *, tw_links);
2972 task->num_taskwatchers--;
2973 }
2974
2975
2976 int
2977 proc_lf_pidbind(task_t curtask, uint64_t tid, task_t target_task, int bind)
2978 {
2979 thread_t target_thread = NULL;
2980 int ret = 0, setbg = 0;
2981 task_watch_t *twp = NULL;
2982 task_t task = TASK_NULL;
2983
2984 target_thread = task_findtid(curtask, tid);
2985 if (target_thread == NULL) {
2986 return ESRCH;
2987 }
2988 /* holds thread reference */
2989
2990 if (bind != 0) {
2991 /* task is still active ? */
2992 task_lock(target_task);
2993 if (target_task->active == 0) {
2994 task_unlock(target_task);
2995 ret = ESRCH;
2996 goto out;
2997 }
2998 task_unlock(target_task);
2999
3000 twp = (task_watch_t *)kalloc(sizeof(task_watch_t));
3001 if (twp == NULL) {
3002 task_watch_unlock();
3003 ret = ENOMEM;
3004 goto out;
3005 }
3006
3007 bzero(twp, sizeof(task_watch_t));
3008
3009 task_watch_lock();
3010
3011 if (target_thread->taskwatch != NULL) {
3012 /* already bound to another task */
3013 task_watch_unlock();
3014
3015 kfree(twp, sizeof(task_watch_t));
3016 ret = EBUSY;
3017 goto out;
3018 }
3019
3020 task_reference(target_task);
3021
3022 setbg = proc_get_effective_task_policy(target_task, TASK_POLICY_WATCHERS_BG);
3023
3024 twp->tw_task = target_task; /* holds the task reference */
3025 twp->tw_thread = target_thread; /* holds the thread reference */
3026 twp->tw_state = setbg;
3027 twp->tw_importance = target_thread->importance;
3028
3029 add_taskwatch_locked(target_task, twp);
3030
3031 target_thread->taskwatch = twp;
3032
3033 task_watch_unlock();
3034
3035 if (setbg) {
3036 set_thread_appbg(target_thread, setbg, INT_MIN);
3037 }
3038
3039 /* retain the thread reference as it is in twp */
3040 target_thread = NULL;
3041 } else {
3042 /* unbind */
3043 task_watch_lock();
3044 if ((twp = target_thread->taskwatch) != NULL) {
3045 task = twp->tw_task;
3046 target_thread->taskwatch = NULL;
3047 remove_taskwatch_locked(task, twp);
3048
3049 task_watch_unlock();
3050
3051 task_deallocate(task); /* drop task ref in twp */
3052 set_thread_appbg(target_thread, 0, twp->tw_importance);
3053 thread_deallocate(target_thread); /* drop thread ref in twp */
3054 kfree(twp, sizeof(task_watch_t));
3055 } else {
3056 task_watch_unlock();
3057 ret = 0; /* return success if it not alredy bound */
3058 goto out;
3059 }
3060 }
3061 out:
3062 thread_deallocate(target_thread); /* drop thread ref acquired in this routine */
3063 return ret;
3064 }
3065
3066 static void
3067 set_thread_appbg(thread_t thread, int setbg, __unused int importance)
3068 {
3069 int enable = (setbg ? TASK_POLICY_ENABLE : TASK_POLICY_DISABLE);
3070
3071 proc_set_thread_policy(thread, TASK_POLICY_ATTRIBUTE, TASK_POLICY_PIDBIND_BG, enable);
3072 }
3073
3074 static void
3075 apply_appstate_watchers(task_t task)
3076 {
3077 int numwatchers = 0, i, j, setbg;
3078 thread_watchlist_t * threadlist;
3079 task_watch_t * twp;
3080
3081 retry:
3082 /* if no watchers on the list return */
3083 if ((numwatchers = task->num_taskwatchers) == 0) {
3084 return;
3085 }
3086
3087 threadlist = (thread_watchlist_t *)kalloc(numwatchers * sizeof(thread_watchlist_t));
3088 if (threadlist == NULL) {
3089 return;
3090 }
3091
3092 bzero(threadlist, numwatchers * sizeof(thread_watchlist_t));
3093
3094 task_watch_lock();
3095 /*serialize application of app state changes */
3096
3097 if (task->watchapplying != 0) {
3098 lck_mtx_sleep(&task_watch_mtx, LCK_SLEEP_DEFAULT, &task->watchapplying, THREAD_UNINT);
3099 task_watch_unlock();
3100 kfree(threadlist, numwatchers * sizeof(thread_watchlist_t));
3101 goto retry;
3102 }
3103
3104 if (numwatchers != task->num_taskwatchers) {
3105 task_watch_unlock();
3106 kfree(threadlist, numwatchers * sizeof(thread_watchlist_t));
3107 goto retry;
3108 }
3109
3110 setbg = proc_get_effective_task_policy(task, TASK_POLICY_WATCHERS_BG);
3111
3112 task->watchapplying = 1;
3113 i = 0;
3114 queue_iterate(&task->task_watchers, twp, task_watch_t *, tw_links) {
3115 threadlist[i].thread = twp->tw_thread;
3116 thread_reference(threadlist[i].thread);
3117 if (setbg != 0) {
3118 twp->tw_importance = twp->tw_thread->importance;
3119 threadlist[i].importance = INT_MIN;
3120 } else {
3121 threadlist[i].importance = twp->tw_importance;
3122 }
3123 i++;
3124 if (i > numwatchers) {
3125 break;
3126 }
3127 }
3128
3129 task_watch_unlock();
3130
3131 for (j = 0; j < i; j++) {
3132 set_thread_appbg(threadlist[j].thread, setbg, threadlist[j].importance);
3133 thread_deallocate(threadlist[j].thread);
3134 }
3135 kfree(threadlist, numwatchers * sizeof(thread_watchlist_t));
3136
3137
3138 task_watch_lock();
3139 task->watchapplying = 0;
3140 thread_wakeup_one(&task->watchapplying);
3141 task_watch_unlock();
3142 }
3143
3144 void
3145 thead_remove_taskwatch(thread_t thread)
3146 {
3147 task_watch_t * twp;
3148 int importance = 0;
3149
3150 task_watch_lock();
3151 if ((twp = thread->taskwatch) != NULL) {
3152 thread->taskwatch = NULL;
3153 remove_taskwatch_locked(twp->tw_task, twp);
3154 }
3155 task_watch_unlock();
3156 if (twp != NULL) {
3157 thread_deallocate(twp->tw_thread);
3158 task_deallocate(twp->tw_task);
3159 importance = twp->tw_importance;
3160 kfree(twp, sizeof(task_watch_t));
3161 /* remove the thread and networkbg */
3162 set_thread_appbg(thread, 0, importance);
3163 }
3164 }
3165
3166 void
3167 task_removewatchers(task_t task)
3168 {
3169 int numwatchers = 0, i, j;
3170 task_watch_t ** twplist = NULL;
3171 task_watch_t * twp = NULL;
3172
3173 retry:
3174 if ((numwatchers = task->num_taskwatchers) == 0) {
3175 return;
3176 }
3177
3178 twplist = (task_watch_t **)kalloc(numwatchers * sizeof(task_watch_t *));
3179 if (twplist == NULL) {
3180 return;
3181 }
3182
3183 bzero(twplist, numwatchers * sizeof(task_watch_t *));
3184
3185 task_watch_lock();
3186 if (task->num_taskwatchers == 0) {
3187 task_watch_unlock();
3188 goto out;
3189 }
3190
3191 if (numwatchers != task->num_taskwatchers) {
3192 task_watch_unlock();
3193 kfree(twplist, numwatchers * sizeof(task_watch_t *));
3194 numwatchers = 0;
3195 goto retry;
3196 }
3197
3198 i = 0;
3199 while ((twp = (task_watch_t *)dequeue_head(&task->task_watchers)) != NULL) {
3200 twplist[i] = twp;
3201 task->num_taskwatchers--;
3202
3203 /*
3204 * Since the linkage is removed and thead state cleanup is already set up,
3205 * remove the refernce from the thread.
3206 */
3207 twp->tw_thread->taskwatch = NULL; /* removed linkage, clear thread holding ref */
3208 i++;
3209 if ((task->num_taskwatchers == 0) || (i > numwatchers)) {
3210 break;
3211 }
3212 }
3213
3214 task_watch_unlock();
3215
3216 for (j = 0; j < i; j++) {
3217 twp = twplist[j];
3218 /* remove thread and network bg */
3219 set_thread_appbg(twp->tw_thread, 0, twp->tw_importance);
3220 thread_deallocate(twp->tw_thread);
3221 task_deallocate(twp->tw_task);
3222 kfree(twp, sizeof(task_watch_t));
3223 }
3224
3225 out:
3226 kfree(twplist, numwatchers * sizeof(task_watch_t *));
3227 }
3228 #endif /* CONFIG_EMBEDDED */
3229
3230 /*
3231 * Routines for importance donation/inheritance/boosting
3232 */
3233
3234 static void
3235 task_importance_update_live_donor(task_t target_task)
3236 {
3237 #if IMPORTANCE_INHERITANCE
3238
3239 ipc_importance_task_t task_imp;
3240
3241 task_imp = ipc_importance_for_task(target_task, FALSE);
3242 if (IIT_NULL != task_imp) {
3243 ipc_importance_task_update_live_donor(task_imp);
3244 ipc_importance_task_release(task_imp);
3245 }
3246 #endif /* IMPORTANCE_INHERITANCE */
3247 }
3248
3249 void
3250 task_importance_mark_donor(task_t task, boolean_t donating)
3251 {
3252 #if IMPORTANCE_INHERITANCE
3253 ipc_importance_task_t task_imp;
3254
3255 task_imp = ipc_importance_for_task(task, FALSE);
3256 if (IIT_NULL != task_imp) {
3257 ipc_importance_task_mark_donor(task_imp, donating);
3258 ipc_importance_task_release(task_imp);
3259 }
3260 #endif /* IMPORTANCE_INHERITANCE */
3261 }
3262
3263 void
3264 task_importance_mark_live_donor(task_t task, boolean_t live_donating)
3265 {
3266 #if IMPORTANCE_INHERITANCE
3267 ipc_importance_task_t task_imp;
3268
3269 task_imp = ipc_importance_for_task(task, FALSE);
3270 if (IIT_NULL != task_imp) {
3271 ipc_importance_task_mark_live_donor(task_imp, live_donating);
3272 ipc_importance_task_release(task_imp);
3273 }
3274 #endif /* IMPORTANCE_INHERITANCE */
3275 }
3276
3277 void
3278 task_importance_mark_receiver(task_t task, boolean_t receiving)
3279 {
3280 #if IMPORTANCE_INHERITANCE
3281 ipc_importance_task_t task_imp;
3282
3283 task_imp = ipc_importance_for_task(task, FALSE);
3284 if (IIT_NULL != task_imp) {
3285 ipc_importance_task_mark_receiver(task_imp, receiving);
3286 ipc_importance_task_release(task_imp);
3287 }
3288 #endif /* IMPORTANCE_INHERITANCE */
3289 }
3290
3291 void
3292 task_importance_mark_denap_receiver(task_t task, boolean_t denap)
3293 {
3294 #if IMPORTANCE_INHERITANCE
3295 ipc_importance_task_t task_imp;
3296
3297 task_imp = ipc_importance_for_task(task, FALSE);
3298 if (IIT_NULL != task_imp) {
3299 ipc_importance_task_mark_denap_receiver(task_imp, denap);
3300 ipc_importance_task_release(task_imp);
3301 }
3302 #endif /* IMPORTANCE_INHERITANCE */
3303 }
3304
3305 void
3306 task_importance_reset(__imp_only task_t task)
3307 {
3308 #if IMPORTANCE_INHERITANCE
3309 ipc_importance_task_t task_imp;
3310
3311 /* TODO: Lower importance downstream before disconnect */
3312 task_imp = task->task_imp_base;
3313 ipc_importance_reset(task_imp, FALSE);
3314 task_importance_update_live_donor(task);
3315 #endif /* IMPORTANCE_INHERITANCE */
3316 }
3317
3318 void
3319 task_importance_init_from_parent(__imp_only task_t new_task, __imp_only task_t parent_task)
3320 {
3321 #if IMPORTANCE_INHERITANCE
3322 ipc_importance_task_t new_task_imp = IIT_NULL;
3323
3324 new_task->task_imp_base = NULL;
3325 if (!parent_task) {
3326 return;
3327 }
3328
3329 if (task_is_marked_importance_donor(parent_task)) {
3330 new_task_imp = ipc_importance_for_task(new_task, FALSE);
3331 assert(IIT_NULL != new_task_imp);
3332 ipc_importance_task_mark_donor(new_task_imp, TRUE);
3333 }
3334 if (task_is_marked_live_importance_donor(parent_task)) {
3335 if (IIT_NULL == new_task_imp) {
3336 new_task_imp = ipc_importance_for_task(new_task, FALSE);
3337 }
3338 assert(IIT_NULL != new_task_imp);
3339 ipc_importance_task_mark_live_donor(new_task_imp, TRUE);
3340 }
3341 /* Do not inherit 'receiver' on fork, vfexec or true spawn */
3342 if (task_is_exec_copy(new_task) &&
3343 task_is_marked_importance_receiver(parent_task)) {
3344 if (IIT_NULL == new_task_imp) {
3345 new_task_imp = ipc_importance_for_task(new_task, FALSE);
3346 }
3347 assert(IIT_NULL != new_task_imp);
3348 ipc_importance_task_mark_receiver(new_task_imp, TRUE);
3349 }
3350 if (task_is_marked_importance_denap_receiver(parent_task)) {
3351 if (IIT_NULL == new_task_imp) {
3352 new_task_imp = ipc_importance_for_task(new_task, FALSE);
3353 }
3354 assert(IIT_NULL != new_task_imp);
3355 ipc_importance_task_mark_denap_receiver(new_task_imp, TRUE);
3356 }
3357 if (IIT_NULL != new_task_imp) {
3358 assert(new_task->task_imp_base == new_task_imp);
3359 ipc_importance_task_release(new_task_imp);
3360 }
3361 #endif /* IMPORTANCE_INHERITANCE */
3362 }
3363
3364 #if IMPORTANCE_INHERITANCE
3365 /*
3366 * Sets the task boost bit to the provided value. Does NOT run the update function.
3367 *
3368 * Task lock must be held.
3369 */
3370 static void
3371 task_set_boost_locked(task_t task, boolean_t boost_active)
3372 {
3373 #if IMPORTANCE_TRACE
3374 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, (IMPORTANCE_CODE(IMP_BOOST, (boost_active ? IMP_BOOSTED : IMP_UNBOOSTED)) | DBG_FUNC_START),
3375 proc_selfpid(), task_pid(task), trequested_0(task), trequested_1(task), 0);
3376 #endif /* IMPORTANCE_TRACE */
3377
3378 task->requested_policy.trp_boosted = boost_active;
3379
3380 #if IMPORTANCE_TRACE
3381 if (boost_active == TRUE) {
3382 DTRACE_BOOST2(boost, task_t, task, int, task_pid(task));
3383 } else {
3384 DTRACE_BOOST2(unboost, task_t, task, int, task_pid(task));
3385 }
3386 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, (IMPORTANCE_CODE(IMP_BOOST, (boost_active ? IMP_BOOSTED : IMP_UNBOOSTED)) | DBG_FUNC_END),
3387 proc_selfpid(), task_pid(task),
3388 trequested_0(task), trequested_1(task), 0);
3389 #endif /* IMPORTANCE_TRACE */
3390 }
3391
3392 /*
3393 * Sets the task boost bit to the provided value and applies the update.
3394 *
3395 * Task lock must be held. Must call update complete after unlocking the task.
3396 */
3397 void
3398 task_update_boost_locked(task_t task, boolean_t boost_active, task_pend_token_t pend_token)
3399 {
3400 task_set_boost_locked(task, boost_active);
3401
3402 task_policy_update_locked(task, pend_token);
3403 }
3404
3405 /*
3406 * Check if this task should donate importance.
3407 *
3408 * May be called without taking the task lock. In that case, donor status can change
3409 * so you must check only once for each donation event.
3410 */
3411 boolean_t
3412 task_is_importance_donor(task_t task)
3413 {
3414 if (task->task_imp_base == IIT_NULL) {
3415 return FALSE;
3416 }
3417 return ipc_importance_task_is_donor(task->task_imp_base);
3418 }
3419
3420 /*
3421 * Query the status of the task's donor mark.
3422 */
3423 boolean_t
3424 task_is_marked_importance_donor(task_t task)
3425 {
3426 if (task->task_imp_base == IIT_NULL) {
3427 return FALSE;
3428 }
3429 return ipc_importance_task_is_marked_donor(task->task_imp_base);
3430 }
3431
3432 /*
3433 * Query the status of the task's live donor and donor mark.
3434 */
3435 boolean_t
3436 task_is_marked_live_importance_donor(task_t task)
3437 {
3438 if (task->task_imp_base == IIT_NULL) {
3439 return FALSE;
3440 }
3441 return ipc_importance_task_is_marked_live_donor(task->task_imp_base);
3442 }
3443
3444
3445 /*
3446 * This routine may be called without holding task lock
3447 * since the value of imp_receiver can never be unset.
3448 */
3449 boolean_t
3450 task_is_importance_receiver(task_t task)
3451 {
3452 if (task->task_imp_base == IIT_NULL) {
3453 return FALSE;
3454 }
3455 return ipc_importance_task_is_marked_receiver(task->task_imp_base);
3456 }
3457
3458 /*
3459 * Query the task's receiver mark.
3460 */
3461 boolean_t
3462 task_is_marked_importance_receiver(task_t task)
3463 {
3464 if (task->task_imp_base == IIT_NULL) {
3465 return FALSE;
3466 }
3467 return ipc_importance_task_is_marked_receiver(task->task_imp_base);
3468 }
3469
3470 /*
3471 * This routine may be called without holding task lock
3472 * since the value of de-nap receiver can never be unset.
3473 */
3474 boolean_t
3475 task_is_importance_denap_receiver(task_t task)
3476 {
3477 if (task->task_imp_base == IIT_NULL) {
3478 return FALSE;
3479 }
3480 return ipc_importance_task_is_denap_receiver(task->task_imp_base);
3481 }
3482
3483 /*
3484 * Query the task's de-nap receiver mark.
3485 */
3486 boolean_t
3487 task_is_marked_importance_denap_receiver(task_t task)
3488 {
3489 if (task->task_imp_base == IIT_NULL) {
3490 return FALSE;
3491 }
3492 return ipc_importance_task_is_marked_denap_receiver(task->task_imp_base);
3493 }
3494
3495 /*
3496 * This routine may be called without holding task lock
3497 * since the value of imp_receiver can never be unset.
3498 */
3499 boolean_t
3500 task_is_importance_receiver_type(task_t task)
3501 {
3502 if (task->task_imp_base == IIT_NULL) {
3503 return FALSE;
3504 }
3505 return task_is_importance_receiver(task) ||
3506 task_is_importance_denap_receiver(task);
3507 }
3508
3509 /*
3510 * External importance assertions are managed by the process in userspace
3511 * Internal importance assertions are the responsibility of the kernel
3512 * Assertions are changed from internal to external via task_importance_externalize_assertion
3513 */
3514
3515 int
3516 task_importance_hold_internal_assertion(task_t target_task, uint32_t count)
3517 {
3518 ipc_importance_task_t task_imp;
3519 kern_return_t ret;
3520
3521 /* may be first time, so allow for possible importance setup */
3522 task_imp = ipc_importance_for_task(target_task, FALSE);
3523 if (IIT_NULL == task_imp) {
3524 return EOVERFLOW;
3525 }
3526 ret = ipc_importance_task_hold_internal_assertion(task_imp, count);
3527 ipc_importance_task_release(task_imp);
3528
3529 return (KERN_SUCCESS != ret) ? ENOTSUP : 0;
3530 }
3531
3532 int
3533 task_importance_hold_file_lock_assertion(task_t target_task, uint32_t count)
3534 {
3535 ipc_importance_task_t task_imp;
3536 kern_return_t ret;
3537
3538 /* may be first time, so allow for possible importance setup */
3539 task_imp = ipc_importance_for_task(target_task, FALSE);
3540 if (IIT_NULL == task_imp) {
3541 return EOVERFLOW;
3542 }
3543 ret = ipc_importance_task_hold_file_lock_assertion(task_imp, count);
3544 ipc_importance_task_release(task_imp);
3545
3546 return (KERN_SUCCESS != ret) ? ENOTSUP : 0;
3547 }
3548
3549 int
3550 task_importance_hold_legacy_external_assertion(task_t target_task, uint32_t count)
3551 {
3552 ipc_importance_task_t task_imp;
3553 kern_return_t ret;
3554
3555 /* must already have set up an importance */
3556 task_imp = target_task->task_imp_base;
3557 if (IIT_NULL == task_imp) {
3558 return EOVERFLOW;
3559 }
3560 ret = ipc_importance_task_hold_legacy_external_assertion(task_imp, count);
3561 return (KERN_SUCCESS != ret) ? ENOTSUP : 0;
3562 }
3563
3564 int
3565 task_importance_drop_file_lock_assertion(task_t target_task, uint32_t count)
3566 {
3567 ipc_importance_task_t task_imp;
3568 kern_return_t ret;
3569
3570 /* must already have set up an importance */
3571 task_imp = target_task->task_imp_base;
3572 if (IIT_NULL == task_imp) {
3573 return EOVERFLOW;
3574 }
3575 ret = ipc_importance_task_drop_file_lock_assertion(target_task->task_imp_base, count);
3576 return (KERN_SUCCESS != ret) ? EOVERFLOW : 0;
3577 }
3578
3579 int
3580 task_importance_drop_legacy_external_assertion(task_t target_task, uint32_t count)
3581 {
3582 ipc_importance_task_t task_imp;
3583 kern_return_t ret;
3584
3585 /* must already have set up an importance */
3586 task_imp = target_task->task_imp_base;
3587 if (IIT_NULL == task_imp) {
3588 return EOVERFLOW;
3589 }
3590 ret = ipc_importance_task_drop_legacy_external_assertion(task_imp, count);
3591 return (KERN_SUCCESS != ret) ? EOVERFLOW : 0;
3592 }
3593
3594 static void
3595 task_add_importance_watchport(task_t task, mach_port_t port, int *boostp)
3596 {
3597 int boost = 0;
3598
3599 __imptrace_only int released_pid = 0;
3600 __imptrace_only int pid = task_pid(task);
3601
3602 ipc_importance_task_t release_imp_task = IIT_NULL;
3603
3604 if (IP_VALID(port) != 0) {
3605 ipc_importance_task_t new_imp_task = ipc_importance_for_task(task, FALSE);
3606
3607 ip_lock(port);
3608
3609 /*
3610 * The port must have been marked tempowner already.
3611 * This also filters out ports whose receive rights
3612 * are already enqueued in a message, as you can't
3613 * change the right's destination once it's already
3614 * on its way.
3615 */
3616 if (port->ip_tempowner != 0) {
3617 assert(port->ip_impdonation != 0);
3618
3619 boost = port->ip_impcount;
3620 if (IIT_NULL != port->ip_imp_task) {
3621 /*
3622 * if this port is already bound to a task,
3623 * release the task reference and drop any
3624 * watchport-forwarded boosts
3625 */
3626 release_imp_task = port->ip_imp_task;
3627 port->ip_imp_task = IIT_NULL;
3628 }
3629
3630 /* mark the port is watching another task (reference held in port->ip_imp_task) */
3631 if (ipc_importance_task_is_marked_receiver(new_imp_task)) {
3632 port->ip_imp_task = new_imp_task;
3633 new_imp_task = IIT_NULL;
3634 }
3635 }
3636 ip_unlock(port);
3637
3638 if (IIT_NULL != new_imp_task) {
3639 ipc_importance_task_release(new_imp_task);
3640 }
3641
3642 if (IIT_NULL != release_imp_task) {
3643 if (boost > 0) {
3644 ipc_importance_task_drop_internal_assertion(release_imp_task, boost);
3645 }
3646
3647 // released_pid = task_pid(release_imp_task); /* TODO: Need ref-safe way to get pid */
3648 ipc_importance_task_release(release_imp_task);
3649 }
3650 #if IMPORTANCE_TRACE
3651 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, (IMPORTANCE_CODE(IMP_WATCHPORT, 0)) | DBG_FUNC_NONE,
3652 proc_selfpid(), pid, boost, released_pid, 0);
3653 #endif /* IMPORTANCE_TRACE */
3654 }
3655
3656 *boostp = boost;
3657 return;
3658 }
3659
3660 #endif /* IMPORTANCE_INHERITANCE */
3661
3662 /*
3663 * Routines for VM to query task importance
3664 */
3665
3666
3667 /*
3668 * Order to be considered while estimating importance
3669 * for low memory notification and purging purgeable memory.
3670 */
3671 #define TASK_IMPORTANCE_FOREGROUND 4
3672 #define TASK_IMPORTANCE_NOTDARWINBG 1
3673
3674
3675 /*
3676 * (Un)Mark the task as a privileged listener for memory notifications.
3677 * if marked, this task will be among the first to be notified amongst
3678 * the bulk of all other tasks when the system enters a pressure level
3679 * of interest to this task.
3680 */
3681 int
3682 task_low_mem_privileged_listener(task_t task, boolean_t new_value, boolean_t *old_value)
3683 {
3684 if (old_value != NULL) {
3685 *old_value = (boolean_t)task->low_mem_privileged_listener;
3686 } else {
3687 task_lock(task);
3688 task->low_mem_privileged_listener = (uint32_t)new_value;
3689 task_unlock(task);
3690 }
3691
3692 return 0;
3693 }
3694
3695 /*
3696 * Checks if the task is already notified.
3697 *
3698 * Condition: task lock should be held while calling this function.
3699 */
3700 boolean_t
3701 task_has_been_notified(task_t task, int pressurelevel)
3702 {
3703 if (task == NULL) {
3704 return FALSE;
3705 }
3706
3707 if (pressurelevel == kVMPressureWarning) {
3708 return task->low_mem_notified_warn ? TRUE : FALSE;
3709 } else if (pressurelevel == kVMPressureCritical) {
3710 return task->low_mem_notified_critical ? TRUE : FALSE;
3711 } else {
3712 return TRUE;
3713 }
3714 }
3715
3716
3717 /*
3718 * Checks if the task is used for purging.
3719 *
3720 * Condition: task lock should be held while calling this function.
3721 */
3722 boolean_t
3723 task_used_for_purging(task_t task, int pressurelevel)
3724 {
3725 if (task == NULL) {
3726 return FALSE;
3727 }
3728
3729 if (pressurelevel == kVMPressureWarning) {
3730 return task->purged_memory_warn ? TRUE : FALSE;
3731 } else if (pressurelevel == kVMPressureCritical) {
3732 return task->purged_memory_critical ? TRUE : FALSE;
3733 } else {
3734 return TRUE;
3735 }
3736 }
3737
3738
3739 /*
3740 * Mark the task as notified with memory notification.
3741 *
3742 * Condition: task lock should be held while calling this function.
3743 */
3744 void
3745 task_mark_has_been_notified(task_t task, int pressurelevel)
3746 {
3747 if (task == NULL) {
3748 return;
3749 }
3750
3751 if (pressurelevel == kVMPressureWarning) {
3752 task->low_mem_notified_warn = 1;
3753 } else if (pressurelevel == kVMPressureCritical) {
3754 task->low_mem_notified_critical = 1;
3755 }
3756 }
3757
3758
3759 /*
3760 * Mark the task as purged.
3761 *
3762 * Condition: task lock should be held while calling this function.
3763 */
3764 void
3765 task_mark_used_for_purging(task_t task, int pressurelevel)
3766 {
3767 if (task == NULL) {
3768 return;
3769 }
3770
3771 if (pressurelevel == kVMPressureWarning) {
3772 task->purged_memory_warn = 1;
3773 } else if (pressurelevel == kVMPressureCritical) {
3774 task->purged_memory_critical = 1;
3775 }
3776 }
3777
3778
3779 /*
3780 * Mark the task eligible for low memory notification.
3781 *
3782 * Condition: task lock should be held while calling this function.
3783 */
3784 void
3785 task_clear_has_been_notified(task_t task, int pressurelevel)
3786 {
3787 if (task == NULL) {
3788 return;
3789 }
3790
3791 if (pressurelevel == kVMPressureWarning) {
3792 task->low_mem_notified_warn = 0;
3793 } else if (pressurelevel == kVMPressureCritical) {
3794 task->low_mem_notified_critical = 0;
3795 }
3796 }
3797
3798
3799 /*
3800 * Mark the task eligible for purging its purgeable memory.
3801 *
3802 * Condition: task lock should be held while calling this function.
3803 */
3804 void
3805 task_clear_used_for_purging(task_t task)
3806 {
3807 if (task == NULL) {
3808 return;
3809 }
3810
3811 task->purged_memory_warn = 0;
3812 task->purged_memory_critical = 0;
3813 }
3814
3815
3816 /*
3817 * Estimate task importance for purging its purgeable memory
3818 * and low memory notification.
3819 *
3820 * Importance is calculated in the following order of criteria:
3821 * -Task role : Background vs Foreground
3822 * -Boost status: Not boosted vs Boosted
3823 * -Darwin BG status.
3824 *
3825 * Returns: Estimated task importance. Less important task will have lower
3826 * estimated importance.
3827 */
3828 int
3829 task_importance_estimate(task_t task)
3830 {
3831 int task_importance = 0;
3832
3833 if (task == NULL) {
3834 return 0;
3835 }
3836
3837 if (proc_get_effective_task_policy(task, TASK_POLICY_ROLE) == TASK_FOREGROUND_APPLICATION) {
3838 task_importance += TASK_IMPORTANCE_FOREGROUND;
3839 }
3840
3841 if (proc_get_effective_task_policy(task, TASK_POLICY_DARWIN_BG) == 0) {
3842 task_importance += TASK_IMPORTANCE_NOTDARWINBG;
3843 }
3844
3845 return task_importance;
3846 }
3847
3848 boolean_t
3849 task_has_assertions(task_t task)
3850 {
3851 return task->task_imp_base->iit_assertcnt? TRUE : FALSE;
3852 }
3853
3854
3855 kern_return_t
3856 send_resource_violation(typeof(send_cpu_usage_violation) sendfunc,
3857 task_t violator,
3858 struct ledger_entry_info *linfo,
3859 resource_notify_flags_t flags)
3860 {
3861 #ifndef MACH_BSD
3862 return KERN_NOT_SUPPORTED;
3863 #else
3864 kern_return_t kr = KERN_SUCCESS;
3865 proc_t proc = NULL;
3866 posix_path_t proc_path = "";
3867 proc_name_t procname = "<unknown>";
3868 int pid = -1;
3869 clock_sec_t secs;
3870 clock_nsec_t nsecs;
3871 mach_timespec_t timestamp;
3872 thread_t curthread = current_thread();
3873 ipc_port_t dstport = MACH_PORT_NULL;
3874
3875 if (!violator) {
3876 kr = KERN_INVALID_ARGUMENT; goto finish;
3877 }
3878
3879 /* extract violator information */
3880 task_lock(violator);
3881 if (!(proc = get_bsdtask_info(violator))) {
3882 task_unlock(violator);
3883 kr = KERN_INVALID_ARGUMENT; goto finish;
3884 }
3885 (void)mig_strncpy(procname, proc_best_name(proc), sizeof(procname));
3886 pid = task_pid(violator);
3887 if (flags & kRNFatalLimitFlag) {
3888 kr = proc_pidpathinfo_internal(proc, 0, proc_path,
3889 sizeof(proc_path), NULL);
3890 }
3891 task_unlock(violator);
3892 if (kr) {
3893 goto finish;
3894 }
3895
3896 /* violation time ~ now */
3897 clock_get_calendar_nanotime(&secs, &nsecs);
3898 timestamp.tv_sec = (int32_t)secs;
3899 timestamp.tv_nsec = (int32_t)nsecs;
3900 /* 25567702 tracks widening mach_timespec_t */
3901
3902 /* send message */
3903 kr = host_get_special_port(host_priv_self(), HOST_LOCAL_NODE,
3904 HOST_RESOURCE_NOTIFY_PORT, &dstport);
3905 if (kr) {
3906 goto finish;
3907 }
3908
3909 thread_set_honor_qlimit(curthread);
3910 kr = sendfunc(dstport,
3911 procname, pid, proc_path, timestamp,
3912 linfo->lei_balance, linfo->lei_last_refill,
3913 linfo->lei_limit, linfo->lei_refill_period,
3914 flags);
3915 thread_clear_honor_qlimit(curthread);
3916
3917 ipc_port_release_send(dstport);
3918
3919 finish:
3920 return kr;
3921 #endif /* MACH_BSD */
3922 }
3923
3924
3925 /*
3926 * Resource violations trace four 64-bit integers. For K32, two additional
3927 * codes are allocated, the first with the low nibble doubled. So if the K64
3928 * code is 0x042, the K32 codes would be 0x044 and 0x45.
3929 */
3930 #ifdef __LP64__
3931 void
3932 trace_resource_violation(uint16_t code,
3933 struct ledger_entry_info *linfo)
3934 {
3935 KERNEL_DBG_IST_SANE(KDBG_CODE(DBG_MACH, DBG_MACH_RESOURCE, code),
3936 linfo->lei_balance, linfo->lei_last_refill,
3937 linfo->lei_limit, linfo->lei_refill_period);
3938 }
3939 #else /* K32 */
3940 /* TODO: create/find a trace_two_LLs() for K32 systems */
3941 #define MASK32 0xffffffff
3942 void
3943 trace_resource_violation(uint16_t code,
3944 struct ledger_entry_info *linfo)
3945 {
3946 int8_t lownibble = (code & 0x3) * 2;
3947 int16_t codeA = (code & 0xffc) | lownibble;
3948 int16_t codeB = codeA + 1;
3949
3950 int32_t balance_high = (linfo->lei_balance >> 32) & MASK32;
3951 int32_t balance_low = linfo->lei_balance & MASK32;
3952 int32_t last_refill_high = (linfo->lei_last_refill >> 32) & MASK32;
3953 int32_t last_refill_low = linfo->lei_last_refill & MASK32;
3954
3955 int32_t limit_high = (linfo->lei_limit >> 32) & MASK32;
3956 int32_t limit_low = linfo->lei_limit & MASK32;
3957 int32_t refill_period_high = (linfo->lei_refill_period >> 32) & MASK32;
3958 int32_t refill_period_low = linfo->lei_refill_period & MASK32;
3959
3960 KERNEL_DBG_IST_SANE(KDBG_CODE(DBG_MACH, DBG_MACH_RESOURCE, codeA),
3961 balance_high, balance_low,
3962 last_refill_high, last_refill_low);
3963 KERNEL_DBG_IST_SANE(KDBG_CODE(DBG_MACH, DBG_MACH_RESOURCE, codeB),
3964 limit_high, limit_low,
3965 refill_period_high, refill_period_low);
3966 }
3967 #endif /* K64/K32 */