2 * Copyright (c) 2000 Apple Computer, Inc. All rights reserved.
4 * @APPLE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. Please obtain a copy of the License at
10 * http://www.opensource.apple.com/apsl/ and read it before using this
13 * The Original Code and all software distributed under the License are
14 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
15 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
16 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
18 * Please see the License for the specific language governing rights and
19 * limitations under the License.
21 * @APPLE_LICENSE_HEADER_END@
24 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
25 * The Regents of the University of California. All rights reserved.
27 * Redistribution and use in source and binary forms, with or without
28 * modification, are permitted provided that the following conditions
30 * 1. Redistributions of source code must retain the above copyright
31 * notice, this list of conditions and the following disclaimer.
32 * 2. Redistributions in binary form must reproduce the above copyright
33 * notice, this list of conditions and the following disclaimer in the
34 * documentation and/or other materials provided with the distribution.
35 * 3. All advertising materials mentioning features or use of this software
36 * must display the following acknowledgement:
37 * This product includes software developed by the University of
38 * California, Berkeley and its contributors.
39 * 4. Neither the name of the University nor the names of its contributors
40 * may be used to endorse or promote products derived from this software
41 * without specific prior written permission.
43 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
44 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
45 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
46 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
47 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
48 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
49 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
50 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
51 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
52 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
56 * $FreeBSD: src/sys/netinet/tcp_subr.c,v 1.73.2.22 2001/08/22 00:59:12 silby Exp $
60 #include <sys/param.h>
61 #include <sys/systm.h>
62 #include <sys/callout.h>
63 #include <sys/kernel.h>
64 #include <sys/sysctl.h>
65 #include <sys/malloc.h>
68 #include <sys/domain.h>
71 #include <sys/kauth.h>
72 #include <sys/socket.h>
73 #include <sys/socketvar.h>
74 #include <sys/protosw.h>
75 #include <sys/random.h>
76 #include <sys/syslog.h>
77 #include <kern/locks.h>
81 #include <net/route.h>
85 #include <netinet/in.h>
86 #include <netinet/in_systm.h>
87 #include <netinet/ip.h>
89 #include <netinet/ip6.h>
91 #include <netinet/in_pcb.h>
93 #include <netinet6/in6_pcb.h>
95 #include <netinet/in_var.h>
96 #include <netinet/ip_var.h>
98 #include <netinet6/ip6_var.h>
100 #include <netinet/tcp.h>
101 #include <netinet/tcp_fsm.h>
102 #include <netinet/tcp_seq.h>
103 #include <netinet/tcp_timer.h>
104 #include <netinet/tcp_var.h>
106 #include <netinet6/tcp6_var.h>
108 #include <netinet/tcpip.h>
110 #include <netinet/tcp_debug.h>
112 #include <netinet6/ip6protosw.h>
115 #include <netinet6/ipsec.h>
117 #include <netinet6/ipsec6.h>
122 #include <sys/kdebug.h>
124 #define DBG_FNC_TCP_CLOSE NETDBG_CODE(DBG_NETTCP, ((5 << 8) | 2))
126 extern int tcp_lq_overflow
;
128 /* temporary: for testing */
130 extern int ipsec_bypass
;
131 extern lck_mtx_t
*sadb_mutex
;
134 int tcp_mssdflt
= TCP_MSS
;
135 SYSCTL_INT(_net_inet_tcp
, TCPCTL_MSSDFLT
, mssdflt
, CTLFLAG_RW
,
136 &tcp_mssdflt
, 0, "Default TCP Maximum Segment Size");
139 int tcp_v6mssdflt
= TCP6_MSS
;
140 SYSCTL_INT(_net_inet_tcp
, TCPCTL_V6MSSDFLT
, v6mssdflt
,
141 CTLFLAG_RW
, &tcp_v6mssdflt
, 0,
142 "Default TCP Maximum Segment Size for IPv6");
146 * Minimum MSS we accept and use. This prevents DoS attacks where
147 * we are forced to a ridiculous low MSS like 20 and send hundreds
148 * of packets instead of one. The effect scales with the available
149 * bandwidth and quickly saturates the CPU and network interface
150 * with packet generation and sending. Set to zero to disable MINMSS
151 * checking. This setting prevents us from sending too small packets.
153 int tcp_minmss
= TCP_MINMSS
;
154 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, minmss
, CTLFLAG_RW
,
155 &tcp_minmss
, 0, "Minmum TCP Maximum Segment Size");
158 * Number of TCP segments per second we accept from remote host
159 * before we start to calculate average segment size. If average
160 * segment size drops below the minimum TCP MSS we assume a DoS
161 * attack and reset+drop the connection. Care has to be taken not to
162 * set this value too small to not kill interactive type connections
163 * (telnet, SSH) which send many small packets.
165 #ifdef FIX_WORKAROUND_FOR_3894301
166 __private_extern__
int tcp_minmssoverload
= TCP_MINMSSOVERLOAD
;
168 __private_extern__
int tcp_minmssoverload
= 0;
170 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, minmssoverload
, CTLFLAG_RW
,
171 &tcp_minmssoverload
, 0, "Number of TCP Segments per Second allowed to"
172 "be under the MINMSS Size");
174 static int tcp_do_rfc1323
= 1;
175 SYSCTL_INT(_net_inet_tcp
, TCPCTL_DO_RFC1323
, rfc1323
, CTLFLAG_RW
,
176 &tcp_do_rfc1323
, 0, "Enable rfc1323 (high performance TCP) extensions");
178 static int tcp_do_rfc1644
= 0;
179 SYSCTL_INT(_net_inet_tcp
, TCPCTL_DO_RFC1644
, rfc1644
, CTLFLAG_RW
,
180 &tcp_do_rfc1644
, 0, "Enable rfc1644 (TTCP) extensions");
182 static int tcp_tcbhashsize
= 0;
183 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, tcbhashsize
, CTLFLAG_RD
,
184 &tcp_tcbhashsize
, 0, "Size of TCP control-block hashtable");
186 static int do_tcpdrain
= 0;
187 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, do_tcpdrain
, CTLFLAG_RW
, &do_tcpdrain
, 0,
188 "Enable tcp_drain routine for extra help when low on mbufs");
190 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, pcbcount
, CTLFLAG_RD
,
191 &tcbinfo
.ipi_count
, 0, "Number of active PCBs");
193 static int icmp_may_rst
= 1;
194 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, icmp_may_rst
, CTLFLAG_RW
, &icmp_may_rst
, 0,
195 "Certain ICMP unreachable messages may abort connections in SYN_SENT");
197 static int tcp_strict_rfc1948
= 0;
198 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, strict_rfc1948
, CTLFLAG_RW
,
199 &tcp_strict_rfc1948
, 0, "Determines if RFC1948 is followed exactly");
201 static int tcp_isn_reseed_interval
= 0;
202 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, isn_reseed_interval
, CTLFLAG_RW
,
203 &tcp_isn_reseed_interval
, 0, "Seconds between reseeding of ISN secret");
205 static void tcp_cleartaocache(void);
206 static void tcp_notify(struct inpcb
*, int);
209 * Target size of TCP PCB hash tables. Must be a power of two.
211 * Note that this can be overridden by the kernel environment
212 * variable net.inet.tcp.tcbhashsize
215 #define TCBHASHSIZE 4096
219 * This is the actual shape of what we allocate using the zone
220 * allocator. Doing it this way allows us to protect both structures
221 * using the same generation count, and also eliminates the overhead
222 * of allocating tcpcbs separately. By hiding the structure here,
223 * we avoid changing most of the rest of the code (although it needs
224 * to be changed, eventually, for greater efficiency).
227 #define ALIGNM1 (ALIGNMENT - 1)
231 char align
[(sizeof(struct inpcb
) + ALIGNM1
) & ~ALIGNM1
];
235 struct callout inp_tp_rexmt
, inp_tp_persist
, inp_tp_keep
, inp_tp_2msl
;
236 struct callout inp_tp_delack
;
242 static struct tcpcb dummy_tcb
;
245 extern struct inpcbhead time_wait_slots
[];
246 extern int cur_tw_slot
;
247 extern u_long
*delack_bitmask
;
248 extern u_long route_generation
;
251 int get_inpcb_str_size()
253 return sizeof(struct inpcb
);
257 int get_tcp_str_size()
259 return sizeof(struct tcpcb
);
262 int tcp_freeq(struct tcpcb
*tp
);
271 int hashsize
= TCBHASHSIZE
;
274 struct inpcbinfo
*pcbinfo
;
279 tcp_delacktime
= TCPTV_DELACK
;
280 tcp_keepinit
= TCPTV_KEEP_INIT
;
281 tcp_keepidle
= TCPTV_KEEP_IDLE
;
282 tcp_keepintvl
= TCPTV_KEEPINTVL
;
283 tcp_maxpersistidle
= TCPTV_KEEP_IDLE
;
285 read_random(&tcp_now
, sizeof(tcp_now
));
286 tcp_now
= tcp_now
& 0x7fffffff; /* Starts tcp internal 500ms clock at a random value */
290 tcbinfo
.listhead
= &tcb
;
293 TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize
);
295 if (!powerof2(hashsize
)) {
296 printf("WARNING: TCB hash size not a power of 2\n");
297 hashsize
= 512; /* safe default */
299 tcp_tcbhashsize
= hashsize
;
300 tcbinfo
.hashsize
= hashsize
;
301 tcbinfo
.hashbase
= hashinit(hashsize
, M_PCB
, &tcbinfo
.hashmask
);
302 tcbinfo
.porthashbase
= hashinit(hashsize
, M_PCB
,
303 &tcbinfo
.porthashmask
);
305 str_size
= (vm_size_t
) sizeof(struct inp_tp
);
306 tcbinfo
.ipi_zone
= (void *) zinit(str_size
, 120000*str_size
, 8192, "tcpcb");
308 tcbinfo
.ipi_zone
= zinit("tcpcb", sizeof(struct inp_tp
), maxsockets
,
312 tcp_reass_maxseg
= nmbclusters
/ 16;
314 TUNABLE_INT_FETCH("net.inet.tcp.reass.maxsegments",
319 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
321 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
323 if (max_protohdr
< TCP_MINPROTOHDR
)
324 max_protohdr
= TCP_MINPROTOHDR
;
325 if (max_linkhdr
+ TCP_MINPROTOHDR
> MHLEN
)
327 #undef TCP_MINPROTOHDR
328 dummy_tcb
.t_state
= TCP_NSTATES
;
329 dummy_tcb
.t_flags
= 0;
330 tcbinfo
.dummy_cb
= (caddr_t
) &dummy_tcb
;
333 * allocate lock group attribute and group for tcp pcb mutexes
335 pcbinfo
->mtx_grp_attr
= lck_grp_attr_alloc_init();
336 lck_grp_attr_setdefault(pcbinfo
->mtx_grp_attr
);
337 pcbinfo
->mtx_grp
= lck_grp_alloc_init("tcppcb", pcbinfo
->mtx_grp_attr
);
340 * allocate the lock attribute for tcp pcb mutexes
342 pcbinfo
->mtx_attr
= lck_attr_alloc_init();
343 lck_attr_setdefault(pcbinfo
->mtx_attr
);
345 if ((pcbinfo
->mtx
= lck_rw_alloc_init(pcbinfo
->mtx_grp
, pcbinfo
->mtx_attr
)) == NULL
) {
346 printf("tcp_init: mutex not alloced!\n");
347 return; /* pretty much dead if this fails... */
351 in_pcb_nat_init(&tcbinfo
, AF_INET
, IPPROTO_TCP
, SOCK_STREAM
);
353 delack_bitmask
= _MALLOC((4 * hashsize
)/32, M_PCB
, M_WAITOK
);
354 if (delack_bitmask
== 0)
355 panic("Delack Memory");
357 for (i
=0; i
< (tcbinfo
.hashsize
/ 32); i
++)
358 delack_bitmask
[i
] = 0;
360 for (i
=0; i
< N_TIME_WAIT_SLOTS
; i
++) {
361 LIST_INIT(&time_wait_slots
[i
]);
366 * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
367 * tcp_template used to store this data in mbufs, but we now recopy it out
368 * of the tcpcb each time to conserve mbufs.
371 tcp_fillheaders(tp
, ip_ptr
, tcp_ptr
)
376 struct inpcb
*inp
= tp
->t_inpcb
;
377 struct tcphdr
*tcp_hdr
= (struct tcphdr
*)tcp_ptr
;
380 if ((inp
->inp_vflag
& INP_IPV6
) != 0) {
383 ip6
= (struct ip6_hdr
*)ip_ptr
;
384 ip6
->ip6_flow
= (ip6
->ip6_flow
& ~IPV6_FLOWINFO_MASK
) |
385 (inp
->in6p_flowinfo
& IPV6_FLOWINFO_MASK
);
386 ip6
->ip6_vfc
= (ip6
->ip6_vfc
& ~IPV6_VERSION_MASK
) |
387 (IPV6_VERSION
& IPV6_VERSION_MASK
);
388 ip6
->ip6_nxt
= IPPROTO_TCP
;
389 ip6
->ip6_plen
= sizeof(struct tcphdr
);
390 ip6
->ip6_src
= inp
->in6p_laddr
;
391 ip6
->ip6_dst
= inp
->in6p_faddr
;
396 struct ip
*ip
= (struct ip
*) ip_ptr
;
398 ip
->ip_vhl
= IP_VHL_BORING
;
405 ip
->ip_p
= IPPROTO_TCP
;
406 ip
->ip_src
= inp
->inp_laddr
;
407 ip
->ip_dst
= inp
->inp_faddr
;
408 tcp_hdr
->th_sum
= in_pseudo(ip
->ip_src
.s_addr
, ip
->ip_dst
.s_addr
,
409 htons(sizeof(struct tcphdr
) + IPPROTO_TCP
));
412 tcp_hdr
->th_sport
= inp
->inp_lport
;
413 tcp_hdr
->th_dport
= inp
->inp_fport
;
418 tcp_hdr
->th_flags
= 0;
424 * Create template to be used to send tcp packets on a connection.
425 * Allocates an mbuf and fills in a skeletal tcp/ip header. The only
426 * use for this function is in keepalives, which use tcp_respond.
435 m
= m_get(M_DONTWAIT
, MT_HEADER
);
438 m
->m_len
= sizeof(struct tcptemp
);
439 n
= mtod(m
, struct tcptemp
*);
441 tcp_fillheaders(tp
, (void *)&n
->tt_ipgen
, (void *)&n
->tt_t
);
446 * Send a single message to the TCP at address specified by
447 * the given TCP/IP header. If m == 0, then we make a copy
448 * of the tcpiphdr at ti and send directly to the addressed host.
449 * This is used to force keep alive messages out using the TCP
450 * template for a connection. If flags are given then we send
451 * a message back to the TCP which originated the * segment ti,
452 * and discard the mbuf containing it and any other attached mbufs.
454 * In any case the ack and sequence number of the transmitted
455 * segment are as specified by the parameters.
457 * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
460 tcp_respond(tp
, ipgen
, th
, m
, ack
, seq
, flags
)
463 register struct tcphdr
*th
;
464 register struct mbuf
*m
;
470 struct route
*ro
= 0;
475 struct route_in6
*ro6
= 0;
476 struct route_in6 sro6
;
483 isipv6
= IP_VHL_V(((struct ip
*)ipgen
)->ip_vhl
) == 6;
489 if (!(flags
& TH_RST
)) {
490 win
= sbspace(&tp
->t_inpcb
->inp_socket
->so_rcv
);
491 if (win
> (long)TCP_MAXWIN
<< tp
->rcv_scale
)
492 win
= (long)TCP_MAXWIN
<< tp
->rcv_scale
;
496 ro6
= &tp
->t_inpcb
->in6p_route
;
499 ro
= &tp
->t_inpcb
->inp_route
;
504 bzero(ro6
, sizeof *ro6
);
509 bzero(ro
, sizeof *ro
);
513 m
= m_gethdr(M_DONTWAIT
, MT_HEADER
);
517 m
->m_data
+= max_linkhdr
;
520 bcopy((caddr_t
)ip6
, mtod(m
, caddr_t
),
521 sizeof(struct ip6_hdr
));
522 ip6
= mtod(m
, struct ip6_hdr
*);
523 nth
= (struct tcphdr
*)(ip6
+ 1);
527 bcopy((caddr_t
)ip
, mtod(m
, caddr_t
), sizeof(struct ip
));
528 ip
= mtod(m
, struct ip
*);
529 nth
= (struct tcphdr
*)(ip
+ 1);
531 bcopy((caddr_t
)th
, (caddr_t
)nth
, sizeof(struct tcphdr
));
536 m
->m_data
= (caddr_t
)ipgen
;
537 /* m_len is set later */
539 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
542 xchg(ip6
->ip6_dst
, ip6
->ip6_src
, struct in6_addr
);
543 nth
= (struct tcphdr
*)(ip6
+ 1);
547 xchg(ip
->ip_dst
.s_addr
, ip
->ip_src
.s_addr
, n_long
);
548 nth
= (struct tcphdr
*)(ip
+ 1);
552 * this is usually a case when an extension header
553 * exists between the IPv6 header and the
556 nth
->th_sport
= th
->th_sport
;
557 nth
->th_dport
= th
->th_dport
;
559 xchg(nth
->th_dport
, nth
->th_sport
, n_short
);
564 ip6
->ip6_plen
= htons((u_short
)(sizeof (struct tcphdr
) +
566 tlen
+= sizeof (struct ip6_hdr
) + sizeof (struct tcphdr
);
570 tlen
+= sizeof (struct tcpiphdr
);
572 ip
->ip_ttl
= ip_defttl
;
575 m
->m_pkthdr
.len
= tlen
;
576 m
->m_pkthdr
.rcvif
= 0;
577 nth
->th_seq
= htonl(seq
);
578 nth
->th_ack
= htonl(ack
);
580 nth
->th_off
= sizeof (struct tcphdr
) >> 2;
581 nth
->th_flags
= flags
;
583 nth
->th_win
= htons((u_short
) (win
>> tp
->rcv_scale
));
585 nth
->th_win
= htons((u_short
)win
);
590 nth
->th_sum
= in6_cksum(m
, IPPROTO_TCP
,
591 sizeof(struct ip6_hdr
),
592 tlen
- sizeof(struct ip6_hdr
));
593 ip6
->ip6_hlim
= in6_selecthlim(tp
? tp
->t_inpcb
: NULL
,
600 nth
->th_sum
= in_pseudo(ip
->ip_src
.s_addr
, ip
->ip_dst
.s_addr
,
601 htons((u_short
)(tlen
- sizeof(struct ip
) + ip
->ip_p
)));
602 m
->m_pkthdr
.csum_flags
= CSUM_TCP
;
603 m
->m_pkthdr
.csum_data
= offsetof(struct tcphdr
, th_sum
);
606 if (tp
== NULL
|| (tp
->t_inpcb
->inp_socket
->so_options
& SO_DEBUG
))
607 tcp_trace(TA_OUTPUT
, 0, tp
, mtod(m
, void *), th
, 0);
610 if (ipsec_bypass
== 0 && ipsec_setsocket(m
, tp
? tp
->t_inpcb
->inp_socket
: NULL
) != 0) {
617 (void)ip6_output(m
, NULL
, ro6
, ipflags
, NULL
, NULL
, 0);
618 if (ro6
== &sro6
&& ro6
->ro_rt
) {
625 (void) ip_output_list(m
, 0, NULL
, ro
, ipflags
, NULL
);
626 if (ro
== &sro
&& ro
->ro_rt
) {
634 * Create a new TCP control block, making an
635 * empty reassembly queue and hooking it to the argument
636 * protocol control block. The `inp' parameter must have
637 * come from the zone allocator set up in tcp_init().
644 register struct tcpcb
*tp
;
645 register struct socket
*so
= inp
->inp_socket
;
647 int isipv6
= (inp
->inp_vflag
& INP_IPV6
) != 0;
650 if (so
->cached_in_sock_layer
== 0) {
651 it
= (struct inp_tp
*)inp
;
655 tp
= (struct tcpcb
*) inp
->inp_saved_ppcb
;
657 bzero((char *) tp
, sizeof(struct tcpcb
));
658 LIST_INIT(&tp
->t_segq
);
659 tp
->t_maxseg
= tp
->t_maxopd
=
661 isipv6
? tcp_v6mssdflt
:
666 /* Set up our timeouts. */
667 callout_init(tp
->tt_rexmt
= &it
->inp_tp_rexmt
);
668 callout_init(tp
->tt_persist
= &it
->inp_tp_persist
);
669 callout_init(tp
->tt_keep
= &it
->inp_tp_keep
);
670 callout_init(tp
->tt_2msl
= &it
->inp_tp_2msl
);
671 callout_init(tp
->tt_delack
= &it
->inp_tp_delack
);
675 tp
->t_flags
= (TF_REQ_SCALE
|TF_REQ_TSTMP
);
677 tp
->t_flags
|= TF_REQ_CC
;
678 tp
->t_inpcb
= inp
; /* XXX */
680 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
681 * rtt estimate. Set rttvar so that srtt + 4 * rttvar gives
682 * reasonable initial retransmit time.
684 tp
->t_srtt
= TCPTV_SRTTBASE
;
685 tp
->t_rttvar
= ((TCPTV_RTOBASE
- TCPTV_SRTTBASE
) << TCP_RTTVAR_SHIFT
) / 4;
686 tp
->t_rttmin
= TCPTV_MIN
;
687 tp
->t_rxtcur
= TCPTV_RTOBASE
;
688 tp
->snd_cwnd
= TCP_MAXWIN
<< TCP_MAX_WINSHIFT
;
689 tp
->snd_ssthresh
= TCP_MAXWIN
<< TCP_MAX_WINSHIFT
;
691 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
692 * because the socket may be bound to an IPv6 wildcard address,
693 * which may match an IPv4-mapped IPv6 address.
695 inp
->inp_ip_ttl
= ip_defttl
;
696 inp
->inp_ppcb
= (caddr_t
)tp
;
697 return (tp
); /* XXX */
701 * Drop a TCP connection, reporting
702 * the specified error. If connection is synchronized,
703 * then send a RST to peer.
707 register struct tcpcb
*tp
;
710 struct socket
*so
= tp
->t_inpcb
->inp_socket
;
715 case TCPS_ESTABLISHED
:
716 case TCPS_FIN_WAIT_1
:
718 case TCPS_CLOSE_WAIT
:
724 if (TCPS_HAVERCVDSYN(tp
->t_state
)) {
725 tp
->t_state
= TCPS_CLOSED
;
726 (void) tcp_output(tp
);
727 tcpstat
.tcps_drops
++;
729 tcpstat
.tcps_conndrops
++;
730 if (errno
== ETIMEDOUT
&& tp
->t_softerror
)
731 errno
= tp
->t_softerror
;
732 so
->so_error
= errno
;
733 return (tcp_close(tp
));
737 * Close a TCP control block:
738 * discard all space held by the tcp
739 * discard internet protocol block
740 * wake up any sleepers
744 register struct tcpcb
*tp
;
746 register struct tseg_qent
*q
;
747 struct inpcb
*inp
= tp
->t_inpcb
;
748 struct socket
*so
= inp
->inp_socket
;
750 int isipv6
= (inp
->inp_vflag
& INP_IPV6
) != 0;
752 register struct rtentry
*rt
;
755 if ( inp
->inp_ppcb
== NULL
) /* tcp_close was called previously, bail */
760 * Make sure that all of our timers are stopped before we
763 callout_stop(tp
->tt_rexmt
);
764 callout_stop(tp
->tt_persist
);
765 callout_stop(tp
->tt_keep
);
766 callout_stop(tp
->tt_2msl
);
767 callout_stop(tp
->tt_delack
);
769 /* Clear the timers before we delete the PCB. */
772 for (i
= 0; i
< TCPT_NTIMERS
; i
++) {
778 KERNEL_DEBUG(DBG_FNC_TCP_CLOSE
| DBG_FUNC_START
, tp
,0,0,0,0);
781 case TCPS_ESTABLISHED
:
782 case TCPS_FIN_WAIT_1
:
784 case TCPS_CLOSE_WAIT
:
791 * If we got enough samples through the srtt filter,
792 * save the rtt and rttvar in the routing entry.
793 * 'Enough' is arbitrarily defined as the 16 samples.
794 * 16 samples is enough for the srtt filter to converge
795 * to within 5% of the correct value; fewer samples and
796 * we could save a very bogus rtt.
798 * Don't update the default route's characteristics and don't
799 * update anything that the user "locked".
801 if (tp
->t_rttupdated
>= 16) {
802 register u_long i
= 0;
805 struct sockaddr_in6
*sin6
;
807 if ((rt
= inp
->in6p_route
.ro_rt
) == NULL
)
809 sin6
= (struct sockaddr_in6
*)rt_key(rt
);
810 if (IN6_IS_ADDR_UNSPECIFIED(&sin6
->sin6_addr
))
815 rt
= inp
->inp_route
.ro_rt
;
817 ((struct sockaddr_in
*)rt_key(rt
))->sin_addr
.s_addr
818 == INADDR_ANY
|| rt
->generation_id
!= route_generation
) {
819 if (tp
->t_state
>= TCPS_CLOSE_WAIT
)
820 tp
->t_state
= TCPS_CLOSING
;
825 if ((rt
->rt_rmx
.rmx_locks
& RTV_RTT
) == 0) {
827 (RTM_RTTUNIT
/ (PR_SLOWHZ
* TCP_RTT_SCALE
));
828 if (rt
->rt_rmx
.rmx_rtt
&& i
)
830 * filter this update to half the old & half
831 * the new values, converting scale.
832 * See route.h and tcp_var.h for a
833 * description of the scaling constants.
836 (rt
->rt_rmx
.rmx_rtt
+ i
) / 2;
838 rt
->rt_rmx
.rmx_rtt
= i
;
839 tcpstat
.tcps_cachedrtt
++;
841 if ((rt
->rt_rmx
.rmx_locks
& RTV_RTTVAR
) == 0) {
843 (RTM_RTTUNIT
/ (PR_SLOWHZ
* TCP_RTTVAR_SCALE
));
844 if (rt
->rt_rmx
.rmx_rttvar
&& i
)
845 rt
->rt_rmx
.rmx_rttvar
=
846 (rt
->rt_rmx
.rmx_rttvar
+ i
) / 2;
848 rt
->rt_rmx
.rmx_rttvar
= i
;
849 tcpstat
.tcps_cachedrttvar
++;
852 * The old comment here said:
853 * update the pipelimit (ssthresh) if it has been updated
854 * already or if a pipesize was specified & the threshhold
855 * got below half the pipesize. I.e., wait for bad news
856 * before we start updating, then update on both good
859 * But we want to save the ssthresh even if no pipesize is
860 * specified explicitly in the route, because such
861 * connections still have an implicit pipesize specified
862 * by the global tcp_sendspace. In the absence of a reliable
863 * way to calculate the pipesize, it will have to do.
865 i
= tp
->snd_ssthresh
;
866 if (rt
->rt_rmx
.rmx_sendpipe
!= 0)
867 dosavessthresh
= (i
< rt
->rt_rmx
.rmx_sendpipe
/ 2);
869 dosavessthresh
= (i
< so
->so_snd
.sb_hiwat
/ 2);
870 if (((rt
->rt_rmx
.rmx_locks
& RTV_SSTHRESH
) == 0 &&
871 i
!= 0 && rt
->rt_rmx
.rmx_ssthresh
!= 0)
874 * convert the limit from user data bytes to
875 * packets then to packet data bytes.
877 i
= (i
+ tp
->t_maxseg
/ 2) / tp
->t_maxseg
;
880 i
*= (u_long
)(tp
->t_maxseg
+
882 (isipv6
? sizeof (struct ip6_hdr
) +
883 sizeof (struct tcphdr
) :
885 sizeof (struct tcpiphdr
)
890 if (rt
->rt_rmx
.rmx_ssthresh
)
891 rt
->rt_rmx
.rmx_ssthresh
=
892 (rt
->rt_rmx
.rmx_ssthresh
+ i
) / 2;
894 rt
->rt_rmx
.rmx_ssthresh
= i
;
895 tcpstat
.tcps_cachedssthresh
++;
898 rt
= inp
->inp_route
.ro_rt
;
901 * mark route for deletion if no information is
904 if ((tp
->t_flags
& TF_LQ_OVERFLOW
) && tcp_lq_overflow
&&
905 ((rt
->rt_rmx
.rmx_locks
& RTV_RTT
) == 0)){
906 if (rt
->rt_rmx
.rmx_rtt
== 0)
907 rt
->rt_flags
|= RTF_DELCLONE
;
911 /* free the reassembly queue, if any */
912 (void) tcp_freeq(tp
);
915 if (so
->cached_in_sock_layer
)
916 inp
->inp_saved_ppcb
= (caddr_t
) tp
;
919 soisdisconnected(so
);
921 if (INP_CHECK_SOCKAF(so
, AF_INET6
))
926 tcpstat
.tcps_closed
++;
927 KERNEL_DEBUG(DBG_FNC_TCP_CLOSE
| DBG_FUNC_END
, tcpstat
.tcps_closed
,0,0,0,0);
928 return ((struct tcpcb
*)0);
936 register struct tseg_qent
*q
;
939 while((q
= LIST_FIRST(&tp
->t_segq
)) != NULL
) {
940 LIST_REMOVE(q
, tqe_q
);
953 * ###LD 05/19/04 locking issue, tcpdrain is disabled, deadlock situation with tcbinfo.mtx
959 struct tseg_qent
*te
;
962 * Walk the tcpbs, if existing, and flush the reassembly queue,
964 * XXX: The "Net/3" implementation doesn't imply that the TCP
965 * reassembly queue should be flushed, but in a situation
966 * where we're really low on mbufs, this is potentially
969 lck_rw_lock_exclusive(tcbinfo
.mtx
);
970 for (inpb
= LIST_FIRST(tcbinfo
.listhead
); inpb
;
971 inpb
= LIST_NEXT(inpb
, inp_list
)) {
972 if ((tcpb
= intotcpcb(inpb
))) {
973 while ((te
= LIST_FIRST(&tcpb
->t_segq
))
975 LIST_REMOVE(te
, tqe_q
);
982 lck_rw_done(tcbinfo
.mtx
);
988 * Notify a tcp user of an asynchronous error;
989 * store error as soft error, but wake up user
990 * (for now, won't do anything until can select for soft error).
992 * Do not wake up user since there currently is no mechanism for
993 * reporting soft errors (yet - a kqueue filter may be added).
996 tcp_notify(inp
, error
)
1002 if (inp
== NULL
|| (inp
->inp_state
== INPCB_STATE_DEAD
))
1003 return; /* pcb is gone already */
1005 tp
= (struct tcpcb
*)inp
->inp_ppcb
;
1008 * Ignore some errors if we are hooked up.
1009 * If connection hasn't completed, has retransmitted several times,
1010 * and receives a second error, give up now. This is better
1011 * than waiting a long time to establish a connection that
1012 * can never complete.
1014 if (tp
->t_state
== TCPS_ESTABLISHED
&&
1015 (error
== EHOSTUNREACH
|| error
== ENETUNREACH
||
1016 error
== EHOSTDOWN
)) {
1018 } else if (tp
->t_state
< TCPS_ESTABLISHED
&& tp
->t_rxtshift
> 3 &&
1020 tcp_drop(tp
, error
);
1022 tp
->t_softerror
= error
;
1024 wakeup((caddr_t
) &so
->so_timeo
);
1031 tcp_pcblist SYSCTL_HANDLER_ARGS
1034 struct inpcb
*inp
, **inp_list
;
1039 * The process of preparing the TCB list is too time-consuming and
1040 * resource-intensive to repeat twice on every request.
1042 lck_rw_lock_shared(tcbinfo
.mtx
);
1043 if (req
->oldptr
== USER_ADDR_NULL
) {
1044 n
= tcbinfo
.ipi_count
;
1045 req
->oldidx
= 2 * (sizeof xig
)
1046 + (n
+ n
/8) * sizeof(struct xtcpcb
);
1047 lck_rw_done(tcbinfo
.mtx
);
1051 if (req
->newptr
!= USER_ADDR_NULL
) {
1052 lck_rw_done(tcbinfo
.mtx
);
1057 * OK, now we're committed to doing something.
1059 gencnt
= tcbinfo
.ipi_gencnt
;
1060 n
= tcbinfo
.ipi_count
;
1062 bzero(&xig
, sizeof(xig
));
1063 xig
.xig_len
= sizeof xig
;
1065 xig
.xig_gen
= gencnt
;
1066 xig
.xig_sogen
= so_gencnt
;
1067 error
= SYSCTL_OUT(req
, &xig
, sizeof xig
);
1069 lck_rw_done(tcbinfo
.mtx
);
1073 * We are done if there is no pcb
1076 lck_rw_done(tcbinfo
.mtx
);
1080 inp_list
= _MALLOC(n
* sizeof *inp_list
, M_TEMP
, M_WAITOK
);
1081 if (inp_list
== 0) {
1082 lck_rw_done(tcbinfo
.mtx
);
1086 for (inp
= LIST_FIRST(tcbinfo
.listhead
), i
= 0; inp
&& i
< n
;
1087 inp
= LIST_NEXT(inp
, inp_list
)) {
1089 if (inp
->inp_gencnt
<= gencnt
&& inp
->inp_state
!= INPCB_STATE_DEAD
)
1091 if (inp
->inp_gencnt
<= gencnt
&& !prison_xinpcb(req
->p
, inp
))
1093 inp_list
[i
++] = inp
;
1098 for (i
= 0; i
< n
; i
++) {
1100 if (inp
->inp_gencnt
<= gencnt
&& inp
->inp_state
!= INPCB_STATE_DEAD
) {
1104 bzero(&xt
, sizeof(xt
));
1105 xt
.xt_len
= sizeof xt
;
1106 /* XXX should avoid extra copy */
1107 inpcb_to_compat(inp
, &xt
.xt_inp
);
1108 inp_ppcb
= inp
->inp_ppcb
;
1109 if (inp_ppcb
!= NULL
) {
1110 bcopy(inp_ppcb
, &xt
.xt_tp
, sizeof xt
.xt_tp
);
1113 bzero((char *) &xt
.xt_tp
, sizeof xt
.xt_tp
);
1114 if (inp
->inp_socket
)
1115 sotoxsocket(inp
->inp_socket
, &xt
.xt_socket
);
1116 error
= SYSCTL_OUT(req
, &xt
, sizeof xt
);
1121 * Give the user an updated idea of our state.
1122 * If the generation differs from what we told
1123 * her before, she knows that something happened
1124 * while we were processing this request, and it
1125 * might be necessary to retry.
1127 bzero(&xig
, sizeof(xig
));
1128 xig
.xig_len
= sizeof xig
;
1129 xig
.xig_gen
= tcbinfo
.ipi_gencnt
;
1130 xig
.xig_sogen
= so_gencnt
;
1131 xig
.xig_count
= tcbinfo
.ipi_count
;
1132 error
= SYSCTL_OUT(req
, &xig
, sizeof xig
);
1134 FREE(inp_list
, M_TEMP
);
1135 lck_rw_done(tcbinfo
.mtx
);
1139 SYSCTL_PROC(_net_inet_tcp
, TCPCTL_PCBLIST
, pcblist
, CTLFLAG_RD
, 0, 0,
1140 tcp_pcblist
, "S,xtcpcb", "List of active TCP connections");
1144 tcp_getcred(SYSCTL_HANDLER_ARGS
)
1146 struct sockaddr_in addrs
[2];
1150 error
= suser(req
->p
);
1153 error
= SYSCTL_IN(req
, addrs
, sizeof(addrs
));
1157 inp
= in_pcblookup_hash(&tcbinfo
, addrs
[1].sin_addr
, addrs
[1].sin_port
,
1158 addrs
[0].sin_addr
, addrs
[0].sin_port
, 0, NULL
);
1159 if (inp
== NULL
|| inp
->inp_socket
== NULL
) {
1163 error
= SYSCTL_OUT(req
, inp
->inp_socket
->so_cred
, sizeof(*(kauth_cred_t
)0);
1169 SYSCTL_PROC(_net_inet_tcp
, OID_AUTO
, getcred
, CTLTYPE_OPAQUE
|CTLFLAG_RW
,
1170 0, 0, tcp_getcred
, "S,ucred", "Get the ucred of a TCP connection");
1174 tcp6_getcred(SYSCTL_HANDLER_ARGS
)
1176 struct sockaddr_in6 addrs
[2];
1178 int error
, s
, mapped
= 0;
1180 error
= suser(req
->p
);
1183 error
= SYSCTL_IN(req
, addrs
, sizeof(addrs
));
1186 if (IN6_IS_ADDR_V4MAPPED(&addrs
[0].sin6_addr
)) {
1187 if (IN6_IS_ADDR_V4MAPPED(&addrs
[1].sin6_addr
))
1194 inp
= in_pcblookup_hash(&tcbinfo
,
1195 *(struct in_addr
*)&addrs
[1].sin6_addr
.s6_addr
[12],
1197 *(struct in_addr
*)&addrs
[0].sin6_addr
.s6_addr
[12],
1201 inp
= in6_pcblookup_hash(&tcbinfo
, &addrs
[1].sin6_addr
,
1203 &addrs
[0].sin6_addr
, addrs
[0].sin6_port
,
1205 if (inp
== NULL
|| inp
->inp_socket
== NULL
) {
1209 error
= SYSCTL_OUT(req
, inp
->inp_socket
->so_cred
,
1210 sizeof(*(kauth_cred_t
)0);
1216 SYSCTL_PROC(_net_inet6_tcp6
, OID_AUTO
, getcred
, CTLTYPE_OPAQUE
|CTLFLAG_RW
,
1218 tcp6_getcred
, "S,ucred", "Get the ucred of a TCP6 connection");
1220 #endif /* __APPLE__*/
1223 tcp_ctlinput(cmd
, sa
, vip
)
1225 struct sockaddr
*sa
;
1228 struct ip
*ip
= vip
;
1230 struct in_addr faddr
;
1233 void (*notify
)(struct inpcb
*, int) = tcp_notify
;
1237 faddr
= ((struct sockaddr_in
*)sa
)->sin_addr
;
1238 if (sa
->sa_family
!= AF_INET
|| faddr
.s_addr
== INADDR_ANY
)
1241 if (cmd
== PRC_QUENCH
)
1242 notify
= tcp_quench
;
1243 else if (icmp_may_rst
&& (cmd
== PRC_UNREACH_ADMIN_PROHIB
||
1244 cmd
== PRC_UNREACH_PORT
) && ip
)
1245 notify
= tcp_drop_syn_sent
;
1246 else if (cmd
== PRC_MSGSIZE
)
1247 notify
= tcp_mtudisc
;
1248 else if (PRC_IS_REDIRECT(cmd
)) {
1250 notify
= in_rtchange
;
1251 } else if (cmd
== PRC_HOSTDEAD
)
1253 else if ((unsigned)cmd
> PRC_NCMDS
|| inetctlerrmap
[cmd
] == 0)
1256 th
= (struct tcphdr
*)((caddr_t
)ip
1257 + (IP_VHL_HL(ip
->ip_vhl
) << 2));
1258 inp
= in_pcblookup_hash(&tcbinfo
, faddr
, th
->th_dport
,
1259 ip
->ip_src
, th
->th_sport
, 0, NULL
);
1260 if (inp
!= NULL
&& inp
->inp_socket
!= NULL
) {
1261 tcp_lock(inp
->inp_socket
, 1, 0);
1262 if (in_pcb_checkstate(inp
, WNT_RELEASE
, 1) == WNT_STOPUSING
) {
1263 tcp_unlock(inp
->inp_socket
, 1, 0);
1266 icmp_seq
= htonl(th
->th_seq
);
1267 tp
= intotcpcb(inp
);
1268 if (SEQ_GEQ(icmp_seq
, tp
->snd_una
) &&
1269 SEQ_LT(icmp_seq
, tp
->snd_max
))
1270 (*notify
)(inp
, inetctlerrmap
[cmd
]);
1271 tcp_unlock(inp
->inp_socket
, 1, 0);
1274 in_pcbnotifyall(&tcbinfo
, faddr
, inetctlerrmap
[cmd
], notify
);
1279 tcp6_ctlinput(cmd
, sa
, d
)
1281 struct sockaddr
*sa
;
1285 void (*notify
)(struct inpcb
*, int) = tcp_notify
;
1286 struct ip6_hdr
*ip6
;
1288 struct ip6ctlparam
*ip6cp
= NULL
;
1289 const struct sockaddr_in6
*sa6_src
= NULL
;
1291 struct tcp_portonly
{
1296 if (sa
->sa_family
!= AF_INET6
||
1297 sa
->sa_len
!= sizeof(struct sockaddr_in6
))
1300 if (cmd
== PRC_QUENCH
)
1301 notify
= tcp_quench
;
1302 else if (cmd
== PRC_MSGSIZE
)
1303 notify
= tcp_mtudisc
;
1304 else if (!PRC_IS_REDIRECT(cmd
) &&
1305 ((unsigned)cmd
> PRC_NCMDS
|| inet6ctlerrmap
[cmd
] == 0))
1308 /* if the parameter is from icmp6, decode it. */
1310 ip6cp
= (struct ip6ctlparam
*)d
;
1312 ip6
= ip6cp
->ip6c_ip6
;
1313 off
= ip6cp
->ip6c_off
;
1314 sa6_src
= ip6cp
->ip6c_src
;
1318 off
= 0; /* fool gcc */
1324 * XXX: We assume that when IPV6 is non NULL,
1325 * M and OFF are valid.
1328 /* check if we can safely examine src and dst ports */
1329 if (m
->m_pkthdr
.len
< off
+ sizeof(*thp
))
1332 bzero(&th
, sizeof(th
));
1333 m_copydata(m
, off
, sizeof(*thp
), (caddr_t
)&th
);
1335 in6_pcbnotify(&tcbinfo
, sa
, th
.th_dport
,
1336 (struct sockaddr
*)ip6cp
->ip6c_src
,
1337 th
.th_sport
, cmd
, notify
);
1339 in6_pcbnotify(&tcbinfo
, sa
, 0, (struct sockaddr
*)sa6_src
,
1346 * Following is where TCP initial sequence number generation occurs.
1348 * There are two places where we must use initial sequence numbers:
1349 * 1. In SYN-ACK packets.
1350 * 2. In SYN packets.
1352 * The ISNs in SYN-ACK packets have no monotonicity requirement,
1353 * and should be as unpredictable as possible to avoid the possibility
1354 * of spoofing and/or connection hijacking. To satisfy this
1355 * requirement, SYN-ACK ISNs are generated via the arc4random()
1356 * function. If exact RFC 1948 compliance is requested via sysctl,
1357 * these ISNs will be generated just like those in SYN packets.
1359 * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1360 * depends on this property. In addition, these ISNs should be
1361 * unguessable so as to prevent connection hijacking. To satisfy
1362 * the requirements of this situation, the algorithm outlined in
1363 * RFC 1948 is used to generate sequence numbers.
1365 * For more information on the theory of operation, please see
1368 * Implementation details:
1370 * Time is based off the system timer, and is corrected so that it
1371 * increases by one megabyte per second. This allows for proper
1372 * recycling on high speed LANs while still leaving over an hour
1375 * Two sysctls control the generation of ISNs:
1377 * net.inet.tcp.isn_reseed_interval controls the number of seconds
1378 * between seeding of isn_secret. This is normally set to zero,
1379 * as reseeding should not be necessary.
1381 * net.inet.tcp.strict_rfc1948 controls whether RFC 1948 is followed
1382 * strictly. When strict compliance is requested, reseeding is
1383 * disabled and SYN-ACKs will be generated in the same manner as
1384 * SYNs. Strict mode is disabled by default.
1388 #define ISN_BYTES_PER_SECOND 1048576
1390 u_char isn_secret
[32];
1391 int isn_last_reseed
;
1398 u_int32_t md5_buffer
[4];
1400 struct timeval time
;
1402 /* Use arc4random for SYN-ACKs when not in exact RFC1948 mode. */
1403 if (((tp
->t_state
== TCPS_LISTEN
) || (tp
->t_state
== TCPS_TIME_WAIT
))
1404 && tcp_strict_rfc1948
== 0)
1408 return arc4random();
1411 /* Seed if this is the first use, reseed if requested. */
1412 if ((isn_last_reseed
== 0) ||
1413 ((tcp_strict_rfc1948
== 0) && (tcp_isn_reseed_interval
> 0) &&
1414 (((u_int
)isn_last_reseed
+ (u_int
)tcp_isn_reseed_interval
*hz
)
1415 < (u_int
)time
.tv_sec
))) {
1417 read_random(&isn_secret
, sizeof(isn_secret
));
1419 read_random_unlimited(&isn_secret
, sizeof(isn_secret
));
1421 isn_last_reseed
= time
.tv_sec
;
1424 /* Compute the md5 hash and return the ISN. */
1426 MD5Update(&isn_ctx
, (u_char
*) &tp
->t_inpcb
->inp_fport
, sizeof(u_short
));
1427 MD5Update(&isn_ctx
, (u_char
*) &tp
->t_inpcb
->inp_lport
, sizeof(u_short
));
1429 if ((tp
->t_inpcb
->inp_vflag
& INP_IPV6
) != 0) {
1430 MD5Update(&isn_ctx
, (u_char
*) &tp
->t_inpcb
->in6p_faddr
,
1431 sizeof(struct in6_addr
));
1432 MD5Update(&isn_ctx
, (u_char
*) &tp
->t_inpcb
->in6p_laddr
,
1433 sizeof(struct in6_addr
));
1437 MD5Update(&isn_ctx
, (u_char
*) &tp
->t_inpcb
->inp_faddr
,
1438 sizeof(struct in_addr
));
1439 MD5Update(&isn_ctx
, (u_char
*) &tp
->t_inpcb
->inp_laddr
,
1440 sizeof(struct in_addr
));
1442 MD5Update(&isn_ctx
, (u_char
*) &isn_secret
, sizeof(isn_secret
));
1443 MD5Final((u_char
*) &md5_buffer
, &isn_ctx
);
1444 new_isn
= (tcp_seq
) md5_buffer
[0];
1445 new_isn
+= time
.tv_sec
* (ISN_BYTES_PER_SECOND
/ hz
);
1450 * When a source quench is received, close congestion window
1451 * to one segment. We will gradually open it again as we proceed.
1454 tcp_quench(inp
, errno
)
1458 struct tcpcb
*tp
= intotcpcb(inp
);
1461 tp
->snd_cwnd
= tp
->t_maxseg
;
1465 * When a specific ICMP unreachable message is received and the
1466 * connection state is SYN-SENT, drop the connection. This behavior
1467 * is controlled by the icmp_may_rst sysctl.
1470 tcp_drop_syn_sent(inp
, errno
)
1474 struct tcpcb
*tp
= intotcpcb(inp
);
1476 if (tp
&& tp
->t_state
== TCPS_SYN_SENT
)
1477 tcp_drop(tp
, errno
);
1481 * When `need fragmentation' ICMP is received, update our idea of the MSS
1482 * based on the new value in the route. Also nudge TCP to send something,
1483 * since we know the packet we just sent was dropped.
1484 * This duplicates some code in the tcp_mss() function in tcp_input.c.
1487 tcp_mtudisc(inp
, errno
)
1491 struct tcpcb
*tp
= intotcpcb(inp
);
1493 struct rmxp_tao
*taop
;
1494 struct socket
*so
= inp
->inp_socket
;
1498 int isipv6
= (tp
->t_inpcb
->inp_vflag
& INP_IPV6
) != 0;
1504 rt
= tcp_rtlookup6(inp
);
1507 rt
= tcp_rtlookup(inp
);
1508 if (!rt
|| !rt
->rt_rmx
.rmx_mtu
) {
1509 tp
->t_maxopd
= tp
->t_maxseg
=
1511 isipv6
? tcp_v6mssdflt
:
1516 taop
= rmx_taop(rt
->rt_rmx
);
1517 offered
= taop
->tao_mssopt
;
1518 mss
= rt
->rt_rmx
.rmx_mtu
-
1521 sizeof(struct ip6_hdr
) + sizeof(struct tcphdr
) :
1523 sizeof(struct tcpiphdr
)
1530 mss
= min(mss
, offered
);
1532 * XXX - The above conditional probably violates the TCP
1533 * spec. The problem is that, since we don't know the
1534 * other end's MSS, we are supposed to use a conservative
1535 * default. But, if we do that, then MTU discovery will
1536 * never actually take place, because the conservative
1537 * default is much less than the MTUs typically seen
1538 * on the Internet today. For the moment, we'll sweep
1539 * this under the carpet.
1541 * The conservative default might not actually be a problem
1542 * if the only case this occurs is when sending an initial
1543 * SYN with options and data to a host we've never talked
1544 * to before. Then, they will reply with an MSS value which
1545 * will get recorded and the new parameters should get
1546 * recomputed. For Further Study.
1548 if (tp
->t_maxopd
<= mss
)
1552 if ((tp
->t_flags
& (TF_REQ_TSTMP
|TF_NOOPT
)) == TF_REQ_TSTMP
&&
1553 (tp
->t_flags
& TF_RCVD_TSTMP
) == TF_RCVD_TSTMP
)
1554 mss
-= TCPOLEN_TSTAMP_APPA
;
1555 if ((tp
->t_flags
& (TF_REQ_CC
|TF_NOOPT
)) == TF_REQ_CC
&&
1556 (tp
->t_flags
& TF_RCVD_CC
) == TF_RCVD_CC
)
1557 mss
-= TCPOLEN_CC_APPA
;
1559 if (so
->so_snd
.sb_hiwat
< mss
)
1560 mss
= so
->so_snd
.sb_hiwat
;
1564 tcpstat
.tcps_mturesent
++;
1566 tp
->snd_nxt
= tp
->snd_una
;
1572 * Look-up the routing entry to the peer of this inpcb. If no route
1573 * is found and it cannot be allocated the return NULL. This routine
1574 * is called by TCP routines that access the rmx structure and by tcp_mss
1575 * to get the interface MTU.
1584 ro
= &inp
->inp_route
;
1588 if (rt
== NULL
|| !(rt
->rt_flags
& RTF_UP
) || rt
->generation_id
!= route_generation
) {
1589 /* No route yet, so try to acquire one */
1590 if (inp
->inp_faddr
.s_addr
!= INADDR_ANY
) {
1591 ro
->ro_dst
.sa_family
= AF_INET
;
1592 ro
->ro_dst
.sa_len
= sizeof(struct sockaddr_in
);
1593 ((struct sockaddr_in
*) &ro
->ro_dst
)->sin_addr
=
1607 struct route_in6
*ro6
;
1610 ro6
= &inp
->in6p_route
;
1612 if (rt
== NULL
|| !(rt
->rt_flags
& RTF_UP
)) {
1613 /* No route yet, so try to acquire one */
1614 if (!IN6_IS_ADDR_UNSPECIFIED(&inp
->in6p_faddr
)) {
1615 struct sockaddr_in6
*dst6
;
1617 dst6
= (struct sockaddr_in6
*)&ro6
->ro_dst
;
1618 dst6
->sin6_family
= AF_INET6
;
1619 dst6
->sin6_len
= sizeof(*dst6
);
1620 dst6
->sin6_addr
= inp
->in6p_faddr
;
1621 rtalloc((struct route
*)ro6
);
1630 /* compute ESP/AH header size for TCP, including outer IP header. */
1632 ipsec_hdrsiz_tcp(tp
)
1640 struct ip6_hdr
*ip6
= NULL
;
1644 if ((tp
== NULL
) || ((inp
= tp
->t_inpcb
) == NULL
))
1646 MGETHDR(m
, M_DONTWAIT
, MT_DATA
);
1650 lck_mtx_lock(sadb_mutex
);
1652 if ((inp
->inp_vflag
& INP_IPV6
) != 0) {
1653 ip6
= mtod(m
, struct ip6_hdr
*);
1654 th
= (struct tcphdr
*)(ip6
+ 1);
1655 m
->m_pkthdr
.len
= m
->m_len
=
1656 sizeof(struct ip6_hdr
) + sizeof(struct tcphdr
);
1657 tcp_fillheaders(tp
, ip6
, th
);
1658 hdrsiz
= ipsec6_hdrsiz(m
, IPSEC_DIR_OUTBOUND
, inp
);
1662 ip
= mtod(m
, struct ip
*);
1663 th
= (struct tcphdr
*)(ip
+ 1);
1664 m
->m_pkthdr
.len
= m
->m_len
= sizeof(struct tcpiphdr
);
1665 tcp_fillheaders(tp
, ip
, th
);
1666 hdrsiz
= ipsec4_hdrsiz(m
, IPSEC_DIR_OUTBOUND
, inp
);
1668 lck_mtx_unlock(sadb_mutex
);
1675 * Return a pointer to the cached information about the remote host.
1676 * The cached information is stored in the protocol specific part of
1677 * the route metrics.
1680 tcp_gettaocache(inp
)
1686 if ((inp
->inp_vflag
& INP_IPV6
) != 0)
1687 rt
= tcp_rtlookup6(inp
);
1690 rt
= tcp_rtlookup(inp
);
1692 /* Make sure this is a host route and is up. */
1694 (rt
->rt_flags
& (RTF_UP
|RTF_HOST
)) != (RTF_UP
|RTF_HOST
))
1697 return rmx_taop(rt
->rt_rmx
);
1701 * Clear all the TAO cache entries, called from tcp_init.
1704 * This routine is just an empty one, because we assume that the routing
1705 * routing tables are initialized at the same time when TCP, so there is
1706 * nothing in the cache left over.
1714 tcp_lock(so
, refcount
, lr
)
1722 __asm__
volatile("mflr %0" : "=r" (lr_saved
));
1728 lck_mtx_lock(((struct inpcb
*)so
->so_pcb
)->inpcb_mtx
);
1731 panic("tcp_lock: so=%x NO PCB! lr=%x\n", so
, lr_saved
);
1732 lck_mtx_lock(so
->so_proto
->pr_domain
->dom_mtx
);
1735 if (so
->so_usecount
< 0)
1736 panic("tcp_lock: so=%x so_pcb=%x lr=%x ref=%x\n",
1737 so
, so
->so_pcb
, lr_saved
, so
->so_usecount
);
1741 so
->reserved3
= (void *)lr_saved
;
1746 tcp_unlock(so
, refcount
, lr
)
1754 __asm__
volatile("mflr %0" : "=r" (lr_saved
));
1759 #ifdef MORE_TCPLOCK_DEBUG
1760 printf("tcp_unlock: so=%x sopcb=%x lock=%x ref=%x lr=%x\n",
1761 so
, so
->so_pcb
, ((struct inpcb
*)so
->so_pcb
)->inpcb_mtx
, so
->so_usecount
, lr_saved
);
1766 if (so
->so_usecount
< 0)
1767 panic("tcp_unlock: so=%x usecount=%x\n", so
, so
->so_usecount
);
1768 if (so
->so_pcb
== NULL
) {
1769 panic("tcp_unlock: so=%x NO PCB usecount=%x lr=%x\n", so
, so
->so_usecount
, lr_saved
);
1770 lck_mtx_unlock(so
->so_proto
->pr_domain
->dom_mtx
);
1773 lck_mtx_assert(((struct inpcb
*)so
->so_pcb
)->inpcb_mtx
, LCK_MTX_ASSERT_OWNED
);
1774 lck_mtx_unlock(((struct inpcb
*)so
->so_pcb
)->inpcb_mtx
);
1776 so
->reserved4
= (void *)lr_saved
;
1781 tcp_getlock(so
, locktype
)
1785 struct inpcb
*inp
= sotoinpcb(so
);
1788 if (so
->so_usecount
< 0)
1789 panic("tcp_getlock: so=%x usecount=%x\n", so
, so
->so_usecount
);
1790 return(inp
->inpcb_mtx
);
1793 panic("tcp_getlock: so=%x NULL so_pcb\n", so
);
1794 return (so
->so_proto
->pr_domain
->dom_mtx
);