]> git.saurik.com Git - apple/xnu.git/blob - bsd/kern/sysv_sem.c
24bc5cfada9665983a4ee330fb5d6e456f9c1dc3
[apple/xnu.git] / bsd / kern / sysv_sem.c
1 /*
2 * Copyright (c) 2000-2004 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_LICENSE_HEADER_START@
5 *
6 * The contents of this file constitute Original Code as defined in and
7 * are subject to the Apple Public Source License Version 1.1 (the
8 * "License"). You may not use this file except in compliance with the
9 * License. Please obtain a copy of the License at
10 * http://www.apple.com/publicsource and read it before using this file.
11 *
12 * This Original Code and all software distributed under the License are
13 * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
14 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
15 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the
17 * License for the specific language governing rights and limitations
18 * under the License.
19 *
20 * @APPLE_LICENSE_HEADER_END@
21 */
22 /*
23 * Implementation of SVID semaphores
24 *
25 * Author: Daniel Boulet
26 *
27 * This software is provided ``AS IS'' without any warranties of any kind.
28 */
29 /*
30 * John Bellardo modified the implementation for Darwin. 12/2000
31 */
32
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/kernel.h>
36 #include <sys/proc_internal.h>
37 #include <sys/kauth.h>
38 #include <sys/sem_internal.h>
39 #include <sys/malloc.h>
40 #include <mach/mach_types.h>
41
42 #include <sys/filedesc.h>
43 #include <sys/file_internal.h>
44 #include <sys/sysctl.h>
45 #include <sys/ipcs.h>
46 #include <sys/sysent.h>
47 #include <sys/sysproto.h>
48
49 #include <bsm/audit_kernel.h>
50
51
52 /* Uncomment this line to see the debugging output */
53 /* #define SEM_DEBUG */
54
55 #define M_SYSVSEM M_TEMP
56
57
58 /* Hard system limits to avoid resource starvation / DOS attacks.
59 * These are not needed if we can make the semaphore pages swappable.
60 */
61 static struct seminfo limitseminfo = {
62 SEMMAP, /* # of entries in semaphore map */
63 SEMMNI, /* # of semaphore identifiers */
64 SEMMNS, /* # of semaphores in system */
65 SEMMNU, /* # of undo structures in system */
66 SEMMSL, /* max # of semaphores per id */
67 SEMOPM, /* max # of operations per semop call */
68 SEMUME, /* max # of undo entries per process */
69 SEMUSZ, /* size in bytes of undo structure */
70 SEMVMX, /* semaphore maximum value */
71 SEMAEM /* adjust on exit max value */
72 };
73
74 /* Current system allocations. We use this structure to track how many
75 * resources we have allocated so far. This way we can set large hard limits
76 * and not allocate the memory for them up front.
77 */
78 struct seminfo seminfo = {
79 SEMMAP, /* Unused, # of entries in semaphore map */
80 0, /* # of semaphore identifiers */
81 0, /* # of semaphores in system */
82 0, /* # of undo entries in system */
83 SEMMSL, /* max # of semaphores per id */
84 SEMOPM, /* max # of operations per semop call */
85 SEMUME, /* max # of undo entries per process */
86 SEMUSZ, /* size in bytes of undo structure */
87 SEMVMX, /* semaphore maximum value */
88 SEMAEM /* adjust on exit max value */
89 };
90
91
92 static struct sem_undo *semu_alloc(struct proc *p);
93 static int semundo_adjust(struct proc *p, struct sem_undo **supptr,
94 int semid, int semnum, int adjval);
95 static void semundo_clear(int semid, int semnum);
96
97 /* XXX casting to (sy_call_t *) is bogus, as usual. */
98 static sy_call_t *semcalls[] = {
99 (sy_call_t *)semctl, (sy_call_t *)semget,
100 (sy_call_t *)semop, (sy_call_t *)semconfig
101 };
102
103 static int semtot = 0; /* # of used semaphores */
104 struct user_semid_ds *sema = NULL; /* semaphore id pool */
105 struct sem *sem_pool = NULL; /* semaphore pool */
106 static struct sem_undo *semu_list = NULL; /* active undo structures */
107 struct sem_undo *semu = NULL; /* semaphore undo pool */
108
109
110 void sysv_sem_lock_init(void);
111 static lck_grp_t *sysv_sem_subsys_lck_grp;
112 static lck_grp_attr_t *sysv_sem_subsys_lck_grp_attr;
113 static lck_attr_t *sysv_sem_subsys_lck_attr;
114 static lck_mtx_t sysv_sem_subsys_mutex;
115
116 #define SYSV_SEM_SUBSYS_LOCK() lck_mtx_lock(&sysv_sem_subsys_mutex)
117 #define SYSV_SEM_SUBSYS_UNLOCK() lck_mtx_unlock(&sysv_sem_subsys_mutex)
118
119
120 __private_extern__ void
121 sysv_sem_lock_init( void )
122 {
123
124 sysv_sem_subsys_lck_grp_attr = lck_grp_attr_alloc_init();
125 lck_grp_attr_setstat(sysv_sem_subsys_lck_grp_attr);
126
127 sysv_sem_subsys_lck_grp = lck_grp_alloc_init("sysv_shm_subsys_lock", sysv_sem_subsys_lck_grp_attr);
128
129 sysv_sem_subsys_lck_attr = lck_attr_alloc_init();
130 lck_attr_setdebug(sysv_sem_subsys_lck_attr);
131 lck_mtx_init(&sysv_sem_subsys_mutex, sysv_sem_subsys_lck_grp, sysv_sem_subsys_lck_attr);
132 }
133
134 static __inline__ user_time_t
135 sysv_semtime(void)
136 {
137 struct timeval tv;
138 microtime(&tv);
139 return (tv.tv_sec);
140 }
141
142 /*
143 * XXX conversion of internal user_time_t to external tume_t loses
144 * XXX precision; not an issue for us now, since we are only ever
145 * XXX setting 32 bits worth of time into it.
146 *
147 * pad field contents are not moved correspondingly; contents will be lost
148 *
149 * NOTE: Source and target may *NOT* overlap! (target is smaller)
150 */
151 static void
152 semid_ds_64to32(struct user_semid_ds *in, struct semid_ds *out)
153 {
154 out->sem_perm = in->sem_perm;
155 out->sem_base = (__int32_t)in->sem_base;
156 out->sem_nsems = in->sem_nsems;
157 out->sem_otime = in->sem_otime; /* XXX loses precision */
158 out->sem_ctime = in->sem_ctime; /* XXX loses precision */
159 }
160
161 /*
162 * pad field contents are not moved correspondingly; contents will be lost
163 *
164 * NOTE: Source and target may are permitted to overlap! (source is smaller);
165 * this works because we copy fields in order from the end of the struct to
166 * the beginning.
167 *
168 * XXX use CAST_USER_ADDR_T() for lack of a CAST_USER_TIME_T(); net effect
169 * XXX is the same.
170 */
171 static void
172 semid_ds_32to64(struct semid_ds *in, struct user_semid_ds *out)
173 {
174 out->sem_ctime = in->sem_ctime;
175 out->sem_otime = in->sem_otime;
176 out->sem_nsems = in->sem_nsems;
177 out->sem_base = (void *)in->sem_base;
178 out->sem_perm = in->sem_perm;
179 }
180
181
182 /*
183 * Entry point for all SEM calls
184 *
185 * In Darwin this is no longer the entry point. It will be removed after
186 * the code has been tested better.
187 */
188 /* XXX actually varargs. */
189 int
190 semsys(struct proc *p, struct semsys_args *uap, register_t *retval)
191 {
192
193 /* The individual calls handling the locking now */
194
195 if (uap->which >= sizeof(semcalls)/sizeof(semcalls[0]))
196 return (EINVAL);
197 return ((*semcalls[uap->which])(p, &uap->a2, retval));
198 }
199
200 /*
201 * Lock or unlock the entire semaphore facility.
202 *
203 * This will probably eventually evolve into a general purpose semaphore
204 * facility status enquiry mechanism (I don't like the "read /dev/kmem"
205 * approach currently taken by ipcs and the amount of info that we want
206 * to be able to extract for ipcs is probably beyond what the capability
207 * of the getkerninfo facility.
208 *
209 * At the time that the current version of semconfig was written, ipcs is
210 * the only user of the semconfig facility. It uses it to ensure that the
211 * semaphore facility data structures remain static while it fishes around
212 * in /dev/kmem.
213 */
214
215 int
216 semconfig(__unused struct proc *p, struct semconfig_args *uap, register_t *retval)
217 {
218 int eval = 0;
219
220 switch (uap->flag) {
221 case SEM_CONFIG_FREEZE:
222 SYSV_SEM_SUBSYS_LOCK();
223 break;
224
225 case SEM_CONFIG_THAW:
226 SYSV_SEM_SUBSYS_UNLOCK();
227 break;
228
229 default:
230 printf("semconfig: unknown flag parameter value (%d) - ignored\n",
231 uap->flag);
232 eval = EINVAL;
233 break;
234 }
235
236 *retval = 0;
237 return(eval);
238 }
239
240 /*
241 * Expand the semu array to the given capacity. If the expansion fails
242 * return 0, otherwise return 1.
243 *
244 * Assumes we already have the subsystem lock.
245 */
246 static int
247 grow_semu_array(int newSize)
248 {
249 register int i;
250 register struct sem_undo *newSemu;
251
252 if (newSize <= seminfo.semmnu)
253 return 1;
254 if (newSize > limitseminfo.semmnu) /* enforce hard limit */
255 {
256 #ifdef SEM_DEBUG
257 printf("undo structure hard limit of %d reached, requested %d\n",
258 limitseminfo.semmnu, newSize);
259 #endif
260 return 0;
261 }
262 newSize = (newSize/SEMMNU_INC + 1) * SEMMNU_INC;
263 newSize = newSize > limitseminfo.semmnu ? limitseminfo.semmnu : newSize;
264
265 #ifdef SEM_DEBUG
266 printf("growing semu[] from %d to %d\n", seminfo.semmnu, newSize);
267 #endif
268 MALLOC(newSemu, struct sem_undo *, sizeof (struct sem_undo) * newSize,
269 M_SYSVSEM, M_WAITOK | M_ZERO);
270 if (NULL == newSemu)
271 {
272 #ifdef SEM_DEBUG
273 printf("allocation failed. no changes made.\n");
274 #endif
275 return 0;
276 }
277
278 /* copy the old data to the new array */
279 for (i = 0; i < seminfo.semmnu; i++)
280 {
281 newSemu[i] = semu[i];
282 }
283 /*
284 * The new elements (from newSemu[i] to newSemu[newSize-1]) have their
285 * "un_proc" set to 0 (i.e. NULL) by the M_ZERO flag to MALLOC() above,
286 * so they're already marked as "not in use".
287 */
288
289 /* Clean up the old array */
290 if (semu)
291 FREE(semu, M_SYSVSEM);
292
293 semu = newSemu;
294 seminfo.semmnu = newSize;
295 #ifdef SEM_DEBUG
296 printf("expansion successful\n");
297 #endif
298 return 1;
299 }
300
301 /*
302 * Expand the sema array to the given capacity. If the expansion fails
303 * we return 0, otherwise we return 1.
304 *
305 * Assumes we already have the subsystem lock.
306 */
307 static int
308 grow_sema_array(int newSize)
309 {
310 register struct user_semid_ds *newSema;
311 register int i;
312
313 if (newSize <= seminfo.semmni)
314 return 0;
315 if (newSize > limitseminfo.semmni) /* enforce hard limit */
316 {
317 #ifdef SEM_DEBUG
318 printf("identifier hard limit of %d reached, requested %d\n",
319 limitseminfo.semmni, newSize);
320 #endif
321 return 0;
322 }
323 newSize = (newSize/SEMMNI_INC + 1) * SEMMNI_INC;
324 newSize = newSize > limitseminfo.semmni ? limitseminfo.semmni : newSize;
325
326 #ifdef SEM_DEBUG
327 printf("growing sema[] from %d to %d\n", seminfo.semmni, newSize);
328 #endif
329 MALLOC(newSema, struct user_semid_ds *,
330 sizeof (struct user_semid_ds) * newSize,
331 M_SYSVSEM, M_WAITOK | M_ZERO);
332 if (NULL == newSema)
333 {
334 #ifdef SEM_DEBUG
335 printf("allocation failed. no changes made.\n");
336 #endif
337 return 0;
338 }
339
340 /* copy over the old ids */
341 for (i = 0; i < seminfo.semmni; i++)
342 {
343 newSema[i] = sema[i];
344 /* This is a hack. What we really want to be able to
345 * do is change the value a process is waiting on
346 * without waking it up, but I don't know how to do
347 * this with the existing code, so we wake up the
348 * process and let it do a lot of work to determine the
349 * semaphore set is really not available yet, and then
350 * sleep on the correct, reallocated user_semid_ds pointer.
351 */
352 if (sema[i].sem_perm.mode & SEM_ALLOC)
353 wakeup((caddr_t)&sema[i]);
354 }
355 /*
356 * The new elements (from newSema[i] to newSema[newSize-1]) have their
357 * "sem_base" and "sem_perm.mode" set to 0 (i.e. NULL) by the M_ZERO
358 * flag to MALLOC() above, so they're already marked as "not in use".
359 */
360
361 /* Clean up the old array */
362 if (sema)
363 FREE(sema, M_SYSVSEM);
364
365 sema = newSema;
366 seminfo.semmni = newSize;
367 #ifdef SEM_DEBUG
368 printf("expansion successful\n");
369 #endif
370 return 1;
371 }
372
373 /*
374 * Expand the sem_pool array to the given capacity. If the expansion fails
375 * we return 0 (fail), otherwise we return 1 (success).
376 *
377 * Assumes we already hold the subsystem lock.
378 */
379 static int
380 grow_sem_pool(int new_pool_size)
381 {
382 struct sem *new_sem_pool = NULL;
383 struct sem *sem_free;
384 int i;
385
386 if (new_pool_size < semtot)
387 return 0;
388 /* enforce hard limit */
389 if (new_pool_size > limitseminfo.semmns) {
390 #ifdef SEM_DEBUG
391 printf("semaphore hard limit of %d reached, requested %d\n",
392 limitseminfo.semmns, new_pool_size);
393 #endif
394 return 0;
395 }
396
397 new_pool_size = (new_pool_size/SEMMNS_INC + 1) * SEMMNS_INC;
398 new_pool_size = new_pool_size > limitseminfo.semmns ? limitseminfo.semmns : new_pool_size;
399
400 #ifdef SEM_DEBUG
401 printf("growing sem_pool array from %d to %d\n", seminfo.semmns, new_pool_size);
402 #endif
403 MALLOC(new_sem_pool, struct sem *, sizeof (struct sem) * new_pool_size,
404 M_SYSVSEM, M_WAITOK | M_ZERO);
405 if (NULL == new_sem_pool) {
406 #ifdef SEM_DEBUG
407 printf("allocation failed. no changes made.\n");
408 #endif
409 return 0;
410 }
411
412 /* We have our new memory, now copy the old contents over */
413 if (sem_pool)
414 for(i = 0; i < seminfo.semmns; i++)
415 new_sem_pool[i] = sem_pool[i];
416
417 /* Update our id structures to point to the new semaphores */
418 for(i = 0; i < seminfo.semmni; i++) {
419 if (sema[i].sem_perm.mode & SEM_ALLOC) /* ID in use */
420 sema[i].sem_base += (new_sem_pool - sem_pool);
421 }
422
423 sem_free = sem_pool;
424 sem_pool = new_sem_pool;
425
426 /* clean up the old array */
427 if (sem_free != NULL)
428 FREE(sem_free, M_SYSVSEM);
429
430 seminfo.semmns = new_pool_size;
431 #ifdef SEM_DEBUG
432 printf("expansion complete\n");
433 #endif
434 return 1;
435 }
436
437 /*
438 * Allocate a new sem_undo structure for a process
439 * (returns ptr to structure or NULL if no more room)
440 *
441 * Assumes we already hold the subsystem lock.
442 */
443
444 static struct sem_undo *
445 semu_alloc(struct proc *p)
446 {
447 register int i;
448 register struct sem_undo *suptr;
449 register struct sem_undo **supptr;
450 int attempt;
451
452 /*
453 * Try twice to allocate something.
454 * (we'll purge any empty structures after the first pass so
455 * two passes are always enough)
456 */
457
458 for (attempt = 0; attempt < 2; attempt++) {
459 /*
460 * Look for a free structure.
461 * Fill it in and return it if we find one.
462 */
463
464 for (i = 0; i < seminfo.semmnu; i++) {
465 suptr = SEMU(i);
466 if (suptr->un_proc == NULL) {
467 suptr->un_next = semu_list;
468 semu_list = suptr;
469 suptr->un_cnt = 0;
470 suptr->un_ent = NULL;
471 suptr->un_proc = p;
472 return(suptr);
473 }
474 }
475
476 /*
477 * We didn't find a free one, if this is the first attempt
478 * then try to free some structures.
479 */
480
481 if (attempt == 0) {
482 /* All the structures are in use - try to free some */
483 int did_something = 0;
484
485 supptr = &semu_list;
486 while ((suptr = *supptr) != NULL) {
487 if (suptr->un_cnt == 0) {
488 suptr->un_proc = NULL;
489 *supptr = suptr->un_next;
490 did_something = 1;
491 } else
492 supptr = &(suptr->un_next);
493 }
494
495 /* If we didn't free anything. Try expanding
496 * the semu[] array. If that doesn't work
497 * then fail. We expand last to get the
498 * most reuse out of existing resources.
499 */
500 if (!did_something)
501 if (!grow_semu_array(seminfo.semmnu + 1))
502 return(NULL);
503 } else {
504 /*
505 * The second pass failed even though we freed
506 * something after the first pass!
507 * This is IMPOSSIBLE!
508 */
509 panic("semu_alloc - second attempt failed");
510 }
511 }
512 return (NULL);
513 }
514
515 /*
516 * Adjust a particular entry for a particular proc
517 *
518 * Assumes we already hold the subsystem lock.
519 */
520 static int
521 semundo_adjust(struct proc *p, struct sem_undo **supptr, int semid,
522 int semnum, int adjval)
523 {
524 register struct sem_undo *suptr;
525 register struct undo *sueptr, **suepptr, *new_sueptr;
526 int i;
527
528 /*
529 * Look for and remember the sem_undo if the caller doesn't provide it
530 */
531
532 suptr = *supptr;
533 if (suptr == NULL) {
534 for (suptr = semu_list; suptr != NULL;
535 suptr = suptr->un_next) {
536 if (suptr->un_proc == p) {
537 *supptr = suptr;
538 break;
539 }
540 }
541 if (suptr == NULL) {
542 if (adjval == 0)
543 return(0);
544 suptr = semu_alloc(p);
545 if (suptr == NULL)
546 return(ENOSPC);
547 *supptr = suptr;
548 }
549 }
550
551 /*
552 * Look for the requested entry and adjust it (delete if adjval becomes
553 * 0).
554 */
555 new_sueptr = NULL;
556 for (i = 0, suepptr = &suptr->un_ent, sueptr = suptr->un_ent;
557 i < suptr->un_cnt;
558 i++, suepptr = &sueptr->une_next, sueptr = sueptr->une_next) {
559 if (sueptr->une_id != semid || sueptr->une_num != semnum)
560 continue;
561 if (adjval == 0)
562 sueptr->une_adjval = 0;
563 else
564 sueptr->une_adjval += adjval;
565 if (sueptr->une_adjval == 0) {
566 suptr->un_cnt--;
567 *suepptr = sueptr->une_next;
568 FREE(sueptr, M_SYSVSEM);
569 sueptr = NULL;
570 }
571 return 0;
572 }
573
574 /* Didn't find the right entry - create it */
575 if (adjval == 0) {
576 /* no adjustment: no need for a new entry */
577 return 0;
578 }
579
580 if (suptr->un_cnt == limitseminfo.semume) {
581 /* reached the limit number of semaphore undo entries */
582 return EINVAL;
583 }
584
585 /* allocate a new semaphore undo entry */
586 MALLOC(new_sueptr, struct undo *, sizeof (struct undo),
587 M_SYSVSEM, M_WAITOK);
588 if (new_sueptr == NULL) {
589 return ENOMEM;
590 }
591
592 /* fill in the new semaphore undo entry */
593 new_sueptr->une_next = suptr->un_ent;
594 suptr->un_ent = new_sueptr;
595 suptr->un_cnt++;
596 new_sueptr->une_adjval = adjval;
597 new_sueptr->une_id = semid;
598 new_sueptr->une_num = semnum;
599
600 return 0;
601 }
602
603 /* Assumes we already hold the subsystem lock.
604 */
605 static void
606 semundo_clear(int semid, int semnum)
607 {
608 struct sem_undo *suptr;
609
610 for (suptr = semu_list; suptr != NULL; suptr = suptr->un_next) {
611 struct undo *sueptr;
612 struct undo **suepptr;
613 int i = 0;
614
615 sueptr = suptr->un_ent;
616 suepptr = &suptr->un_ent;
617 while (i < suptr->un_cnt) {
618 if (sueptr->une_id == semid) {
619 if (semnum == -1 || sueptr->une_num == semnum) {
620 suptr->un_cnt--;
621 *suepptr = sueptr->une_next;
622 FREE(sueptr, M_SYSVSEM);
623 sueptr = *suepptr;
624 continue;
625 }
626 if (semnum != -1)
627 break;
628 }
629 i++;
630 suepptr = &sueptr->une_next;
631 sueptr = sueptr->une_next;
632 }
633 }
634 }
635
636 /*
637 * Note that the user-mode half of this passes a union coerced to a
638 * user_addr_t. The union contains either an int or a pointer, and
639 * so we have to coerce it back, variant on whether the calling
640 * process is 64 bit or not. The coercion works for the 'val' element
641 * because the alignment is the same in user and kernel space.
642 */
643 int
644 semctl(struct proc *p, struct semctl_args *uap, register_t *retval)
645 {
646 int semid = uap->semid;
647 int semnum = uap->semnum;
648 int cmd = uap->cmd;
649 user_semun_t user_arg = (user_semun_t)uap->arg;
650 kauth_cred_t cred = kauth_cred_get();
651 int i, rval, eval;
652 struct user_semid_ds sbuf;
653 struct user_semid_ds *semaptr;
654 struct user_semid_ds uds;
655
656
657 AUDIT_ARG(svipc_cmd, cmd);
658 AUDIT_ARG(svipc_id, semid);
659
660 SYSV_SEM_SUBSYS_LOCK();
661
662 #ifdef SEM_DEBUG
663 printf("call to semctl(%d, %d, %d, 0x%qx)\n", semid, semnum, cmd, user_arg);
664 #endif
665
666 semid = IPCID_TO_IX(semid);
667
668 if (semid < 0 || semid >= seminfo.semmni) {
669 #ifdef SEM_DEBUG
670 printf("Invalid semid\n");
671 #endif
672 eval = EINVAL;
673 goto semctlout;
674 }
675
676 semaptr = &sema[semid];
677 if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 ||
678 semaptr->sem_perm.seq != IPCID_TO_SEQ(uap->semid)) {
679 eval = EINVAL;
680 goto semctlout;
681 }
682
683 eval = 0;
684 rval = 0;
685
686 switch (cmd) {
687 case IPC_RMID:
688 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_M)))
689 goto semctlout;
690
691 semaptr->sem_perm.cuid = kauth_cred_getuid(cred);
692 semaptr->sem_perm.uid = kauth_cred_getuid(cred);
693 semtot -= semaptr->sem_nsems;
694 for (i = semaptr->sem_base - sem_pool; i < semtot; i++)
695 sem_pool[i] = sem_pool[i + semaptr->sem_nsems];
696 for (i = 0; i < seminfo.semmni; i++) {
697 if ((sema[i].sem_perm.mode & SEM_ALLOC) &&
698 sema[i].sem_base > semaptr->sem_base)
699 sema[i].sem_base -= semaptr->sem_nsems;
700 }
701 semaptr->sem_perm.mode = 0;
702 semundo_clear(semid, -1);
703 wakeup((caddr_t)semaptr);
704 break;
705
706 case IPC_SET:
707 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_M)))
708 goto semctlout;
709
710 if (IS_64BIT_PROCESS(p)) {
711 eval = copyin(user_arg.buf, &sbuf, sizeof(struct user_semid_ds));
712 } else {
713 eval = copyin(user_arg.buf, &sbuf, sizeof(struct semid_ds));
714 /* convert in place; ugly, but safe */
715 semid_ds_32to64((struct semid_ds *)&sbuf, &sbuf);
716 }
717
718 if (eval != 0) {
719 goto semctlout;
720 }
721
722 semaptr->sem_perm.uid = sbuf.sem_perm.uid;
723 semaptr->sem_perm.gid = sbuf.sem_perm.gid;
724 semaptr->sem_perm.mode = (semaptr->sem_perm.mode & ~0777) |
725 (sbuf.sem_perm.mode & 0777);
726 semaptr->sem_ctime = sysv_semtime();
727 break;
728
729 case IPC_STAT:
730 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
731 goto semctlout;
732 bcopy(semaptr, &uds, sizeof(struct user_semid_ds));
733 if (IS_64BIT_PROCESS(p)) {
734 eval = copyout(&uds, user_arg.buf, sizeof(struct user_semid_ds));
735 } else {
736 struct semid_ds semid_ds32;
737 semid_ds_64to32(&uds, &semid_ds32);
738 eval = copyout(&semid_ds32, user_arg.buf, sizeof(struct semid_ds));
739 }
740 break;
741
742 case GETNCNT:
743 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
744 goto semctlout;
745 if (semnum < 0 || semnum >= semaptr->sem_nsems) {
746 eval = EINVAL;
747 goto semctlout;
748 }
749 rval = semaptr->sem_base[semnum].semncnt;
750 break;
751
752 case GETPID:
753 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
754 goto semctlout;
755 if (semnum < 0 || semnum >= semaptr->sem_nsems) {
756 eval = EINVAL;
757 goto semctlout;
758 }
759 rval = semaptr->sem_base[semnum].sempid;
760 break;
761
762 case GETVAL:
763 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
764 goto semctlout;
765 if (semnum < 0 || semnum >= semaptr->sem_nsems) {
766 eval = EINVAL;
767 goto semctlout;
768 }
769 rval = semaptr->sem_base[semnum].semval;
770 break;
771
772 case GETALL:
773 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
774 goto semctlout;
775 /* XXXXXXXXXXXXXXXX TBD XXXXXXXXXXXXXXXX */
776 for (i = 0; i < semaptr->sem_nsems; i++) {
777 /* XXX could be done in one go... */
778 eval = copyout((caddr_t)&semaptr->sem_base[i].semval,
779 user_arg.array + (i * sizeof(unsigned short)),
780 sizeof(unsigned short));
781 if (eval != 0)
782 break;
783 }
784 break;
785
786 case GETZCNT:
787 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
788 goto semctlout;
789 if (semnum < 0 || semnum >= semaptr->sem_nsems) {
790 eval = EINVAL;
791 goto semctlout;
792 }
793 rval = semaptr->sem_base[semnum].semzcnt;
794 break;
795
796 case SETVAL:
797 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_W)))
798 {
799 #ifdef SEM_DEBUG
800 printf("Invalid credentials for write\n");
801 #endif
802 goto semctlout;
803 }
804 if (semnum < 0 || semnum >= semaptr->sem_nsems)
805 {
806 #ifdef SEM_DEBUG
807 printf("Invalid number out of range for set\n");
808 #endif
809 eval = EINVAL;
810 goto semctlout;
811 }
812 /*
813 * Cast down a pointer instead of using 'val' member directly
814 * to avoid introducing endieness and a pad field into the
815 * header file. Ugly, but it works.
816 */
817 semaptr->sem_base[semnum].semval = CAST_DOWN(int,user_arg.buf);
818 semundo_clear(semid, semnum);
819 wakeup((caddr_t)semaptr);
820 break;
821
822 case SETALL:
823 if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_W)))
824 goto semctlout;
825 /*** XXXXXXXXXXXX TBD ********/
826 for (i = 0; i < semaptr->sem_nsems; i++) {
827 /* XXX could be done in one go... */
828 eval = copyin(user_arg.array + (i * sizeof(unsigned short)),
829 (caddr_t)&semaptr->sem_base[i].semval,
830 sizeof(unsigned short));
831 if (eval != 0)
832 break;
833 }
834 semundo_clear(semid, -1);
835 wakeup((caddr_t)semaptr);
836 break;
837
838 default:
839 eval = EINVAL;
840 goto semctlout;
841 }
842
843 if (eval == 0)
844 *retval = rval;
845 semctlout:
846 SYSV_SEM_SUBSYS_UNLOCK();
847 return(eval);
848 }
849
850 int
851 semget(__unused struct proc *p, struct semget_args *uap, register_t *retval)
852 {
853 int semid, eval;
854 int key = uap->key;
855 int nsems = uap->nsems;
856 int semflg = uap->semflg;
857 kauth_cred_t cred = kauth_cred_get();
858
859 #ifdef SEM_DEBUG
860 if (key != IPC_PRIVATE)
861 printf("semget(0x%x, %d, 0%o)\n", key, nsems, semflg);
862 else
863 printf("semget(IPC_PRIVATE, %d, 0%o)\n", nsems, semflg);
864 #endif
865
866
867 SYSV_SEM_SUBSYS_LOCK();
868
869
870 if (key != IPC_PRIVATE) {
871 for (semid = 0; semid < seminfo.semmni; semid++) {
872 if ((sema[semid].sem_perm.mode & SEM_ALLOC) &&
873 sema[semid].sem_perm.key == key)
874 break;
875 }
876 if (semid < seminfo.semmni) {
877 #ifdef SEM_DEBUG
878 printf("found public key\n");
879 #endif
880 if ((eval = ipcperm(cred, &sema[semid].sem_perm,
881 semflg & 0700)))
882 goto semgetout;
883 if (nsems < 0 || sema[semid].sem_nsems < nsems) {
884 #ifdef SEM_DEBUG
885 printf("too small\n");
886 #endif
887 eval = EINVAL;
888 goto semgetout;
889 }
890 if ((semflg & IPC_CREAT) && (semflg & IPC_EXCL)) {
891 #ifdef SEM_DEBUG
892 printf("not exclusive\n");
893 #endif
894 eval = EEXIST;
895 goto semgetout;
896 }
897 goto found;
898 }
899 }
900
901 #ifdef SEM_DEBUG
902 printf("need to allocate an id for the request\n");
903 #endif
904 if (key == IPC_PRIVATE || (semflg & IPC_CREAT)) {
905 if (nsems <= 0 || nsems > limitseminfo.semmsl) {
906 #ifdef SEM_DEBUG
907 printf("nsems out of range (0<%d<=%d)\n", nsems,
908 seminfo.semmsl);
909 #endif
910 eval = EINVAL;
911 goto semgetout;
912 }
913 if (nsems > seminfo.semmns - semtot) {
914 #ifdef SEM_DEBUG
915 printf("not enough semaphores left (need %d, got %d)\n",
916 nsems, seminfo.semmns - semtot);
917 #endif
918 if (!grow_sem_pool(semtot + nsems)) {
919 #ifdef SEM_DEBUG
920 printf("failed to grow the sem array\n");
921 #endif
922 eval = ENOSPC;
923 goto semgetout;
924 }
925 }
926 for (semid = 0; semid < seminfo.semmni; semid++) {
927 if ((sema[semid].sem_perm.mode & SEM_ALLOC) == 0)
928 break;
929 }
930 if (semid == seminfo.semmni) {
931 #ifdef SEM_DEBUG
932 printf("no more id's available\n");
933 #endif
934 if (!grow_sema_array(seminfo.semmni + 1))
935 {
936 #ifdef SEM_DEBUG
937 printf("failed to grow sema array\n");
938 #endif
939 eval = ENOSPC;
940 goto semgetout;
941 }
942 }
943 #ifdef SEM_DEBUG
944 printf("semid %d is available\n", semid);
945 #endif
946 sema[semid].sem_perm.key = key;
947 sema[semid].sem_perm.cuid = kauth_cred_getuid(cred);
948 sema[semid].sem_perm.uid = kauth_cred_getuid(cred);
949 sema[semid].sem_perm.cgid = cred->cr_gid;
950 sema[semid].sem_perm.gid = cred->cr_gid;
951 sema[semid].sem_perm.mode = (semflg & 0777) | SEM_ALLOC;
952 sema[semid].sem_perm.seq =
953 (sema[semid].sem_perm.seq + 1) & 0x7fff;
954 sema[semid].sem_nsems = nsems;
955 sema[semid].sem_otime = 0;
956 sema[semid].sem_ctime = sysv_semtime();
957 sema[semid].sem_base = &sem_pool[semtot];
958 semtot += nsems;
959 bzero(sema[semid].sem_base,
960 sizeof(sema[semid].sem_base[0])*nsems);
961 #ifdef SEM_DEBUG
962 printf("sembase = 0x%x, next = 0x%x\n", sema[semid].sem_base,
963 &sem_pool[semtot]);
964 #endif
965 } else {
966 #ifdef SEM_DEBUG
967 printf("didn't find it and wasn't asked to create it\n");
968 #endif
969 eval = ENOENT;
970 goto semgetout;
971 }
972
973 found:
974 *retval = IXSEQ_TO_IPCID(semid, sema[semid].sem_perm);
975 AUDIT_ARG(svipc_id, *retval);
976 #ifdef SEM_DEBUG
977 printf("semget is done, returning %d\n", *retval);
978 #endif
979 eval = 0;
980
981 semgetout:
982 SYSV_SEM_SUBSYS_UNLOCK();
983 return(eval);
984 }
985
986 int
987 semop(struct proc *p, struct semop_args *uap, register_t *retval)
988 {
989 int semid = uap->semid;
990 int nsops = uap->nsops;
991 struct sembuf sops[MAX_SOPS];
992 register struct user_semid_ds *semaptr;
993 register struct sembuf *sopptr = NULL; /* protected by 'semptr' */
994 register struct sem *semptr = NULL; /* protected by 'if' */
995 struct sem_undo *suptr = NULL;
996 int i, j, eval;
997 int do_wakeup, do_undos;
998
999 AUDIT_ARG(svipc_id, uap->semid);
1000
1001 SYSV_SEM_SUBSYS_LOCK();
1002
1003 #ifdef SEM_DEBUG
1004 printf("call to semop(%d, 0x%x, %d)\n", semid, sops, nsops);
1005 #endif
1006
1007 semid = IPCID_TO_IX(semid); /* Convert back to zero origin */
1008
1009 if (semid < 0 || semid >= seminfo.semmni) {
1010 eval = EINVAL;
1011 goto semopout;
1012 }
1013
1014 semaptr = &sema[semid];
1015 if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0) {
1016 eval = EINVAL;
1017 goto semopout;
1018 }
1019 if (semaptr->sem_perm.seq != IPCID_TO_SEQ(uap->semid)) {
1020 eval = EINVAL;
1021 goto semopout;
1022 }
1023
1024 if ((eval = ipcperm(kauth_cred_get(), &semaptr->sem_perm, IPC_W))) {
1025 #ifdef SEM_DEBUG
1026 printf("eval = %d from ipaccess\n", eval);
1027 #endif
1028 goto semopout;
1029 }
1030
1031 if (nsops < 0 || nsops > MAX_SOPS) {
1032 #ifdef SEM_DEBUG
1033 printf("too many sops (max=%d, nsops=%d)\n", MAX_SOPS, nsops);
1034 #endif
1035 eval = E2BIG;
1036 goto semopout;
1037 }
1038
1039 /* OK for LP64, since sizeof(struct sembuf) is currently invariant */
1040 if ((eval = copyin(uap->sops, &sops, nsops * sizeof(struct sembuf))) != 0) {
1041 #ifdef SEM_DEBUG
1042 printf("eval = %d from copyin(%08x, %08x, %ld)\n", eval,
1043 uap->sops, &sops, nsops * sizeof(struct sembuf));
1044 #endif
1045 goto semopout;
1046 }
1047
1048 /*
1049 * Loop trying to satisfy the vector of requests.
1050 * If we reach a point where we must wait, any requests already
1051 * performed are rolled back and we go to sleep until some other
1052 * process wakes us up. At this point, we start all over again.
1053 *
1054 * This ensures that from the perspective of other tasks, a set
1055 * of requests is atomic (never partially satisfied).
1056 */
1057 do_undos = 0;
1058
1059 for (;;) {
1060 do_wakeup = 0;
1061
1062 for (i = 0; i < nsops; i++) {
1063 sopptr = &sops[i];
1064
1065 if (sopptr->sem_num >= semaptr->sem_nsems) {
1066 eval = EFBIG;
1067 goto semopout;
1068 }
1069
1070 semptr = &semaptr->sem_base[sopptr->sem_num];
1071
1072 #ifdef SEM_DEBUG
1073 printf("semop: semaptr=%x, sem_base=%x, semptr=%x, sem[%d]=%d : op=%d, flag=%s\n",
1074 semaptr, semaptr->sem_base, semptr,
1075 sopptr->sem_num, semptr->semval, sopptr->sem_op,
1076 (sopptr->sem_flg & IPC_NOWAIT) ? "nowait" : "wait");
1077 #endif
1078
1079 if (sopptr->sem_op < 0) {
1080 if (semptr->semval + sopptr->sem_op < 0) {
1081 #ifdef SEM_DEBUG
1082 printf("semop: can't do it now\n");
1083 #endif
1084 break;
1085 } else {
1086 semptr->semval += sopptr->sem_op;
1087 if (semptr->semval == 0 &&
1088 semptr->semzcnt > 0)
1089 do_wakeup = 1;
1090 }
1091 if (sopptr->sem_flg & SEM_UNDO)
1092 do_undos = 1;
1093 } else if (sopptr->sem_op == 0) {
1094 if (semptr->semval > 0) {
1095 #ifdef SEM_DEBUG
1096 printf("semop: not zero now\n");
1097 #endif
1098 break;
1099 }
1100 } else {
1101 if (semptr->semncnt > 0)
1102 do_wakeup = 1;
1103 semptr->semval += sopptr->sem_op;
1104 if (sopptr->sem_flg & SEM_UNDO)
1105 do_undos = 1;
1106 }
1107 }
1108
1109 /*
1110 * Did we get through the entire vector?
1111 */
1112 if (i >= nsops)
1113 goto done;
1114
1115 /*
1116 * No ... rollback anything that we've already done
1117 */
1118 #ifdef SEM_DEBUG
1119 printf("semop: rollback 0 through %d\n", i-1);
1120 #endif
1121 for (j = 0; j < i; j++)
1122 semaptr->sem_base[sops[j].sem_num].semval -=
1123 sops[j].sem_op;
1124
1125 /*
1126 * If the request that we couldn't satisfy has the
1127 * NOWAIT flag set then return with EAGAIN.
1128 */
1129 if (sopptr->sem_flg & IPC_NOWAIT) {
1130 eval = EAGAIN;
1131 goto semopout;
1132 }
1133
1134 if (sopptr->sem_op == 0)
1135 semptr->semzcnt++;
1136 else
1137 semptr->semncnt++;
1138
1139 #ifdef SEM_DEBUG
1140 printf("semop: good night!\n");
1141 #endif
1142 /* Release our lock on the semaphore subsystem so
1143 * another thread can get at the semaphore we are
1144 * waiting for. We will get the lock back after we
1145 * wake up.
1146 */
1147 eval = msleep((caddr_t)semaptr, &sysv_sem_subsys_mutex , (PZERO - 4) | PCATCH,
1148 "semwait", 0);
1149
1150 #ifdef SEM_DEBUG
1151 printf("semop: good morning (eval=%d)!\n", eval);
1152 #endif
1153 if (eval != 0) {
1154 eval = EINTR;
1155 }
1156
1157 /*
1158 * IMPORTANT: while we were asleep, the semaphore array might
1159 * have been reallocated somewhere else (see grow_sema_array()).
1160 * When we wake up, we have to re-lookup the semaphore
1161 * structures and re-validate them.
1162 */
1163
1164 suptr = NULL; /* sem_undo may have been reallocated */
1165 semaptr = &sema[semid]; /* sema may have been reallocated */
1166
1167 /*
1168 * Make sure that the semaphore still exists
1169 */
1170 if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 ||
1171 semaptr->sem_perm.seq != IPCID_TO_SEQ(uap->semid) ||
1172 sopptr->sem_num >= semaptr->sem_nsems) {
1173 if (eval == EINTR) {
1174 /*
1175 * EINTR takes precedence over the fact that
1176 * the semaphore disappeared while we were
1177 * sleeping...
1178 */
1179 } else {
1180 /*
1181 * The man page says to return EIDRM.
1182 * Unfortunately, BSD doesn't define that code!
1183 */
1184 #ifdef EIDRM
1185 eval = EIDRM;
1186 #else
1187 eval = EINVAL;
1188 #endif
1189 }
1190 goto semopout;
1191 }
1192
1193 /*
1194 * The semaphore is still alive. Readjust the count of
1195 * waiting processes. semptr needs to be recomputed
1196 * because the sem[] may have been reallocated while
1197 * we were sleeping, updating our sem_base pointer.
1198 */
1199 semptr = &semaptr->sem_base[sopptr->sem_num];
1200 if (sopptr->sem_op == 0)
1201 semptr->semzcnt--;
1202 else
1203 semptr->semncnt--;
1204
1205 if (eval != 0) { /* EINTR */
1206 goto semopout;
1207 }
1208 }
1209
1210 done:
1211 /*
1212 * Process any SEM_UNDO requests.
1213 */
1214 if (do_undos) {
1215 for (i = 0; i < nsops; i++) {
1216 /*
1217 * We only need to deal with SEM_UNDO's for non-zero
1218 * op's.
1219 */
1220 int adjval;
1221
1222 if ((sops[i].sem_flg & SEM_UNDO) == 0)
1223 continue;
1224 adjval = sops[i].sem_op;
1225 if (adjval == 0)
1226 continue;
1227 eval = semundo_adjust(p, &suptr, semid,
1228 sops[i].sem_num, -adjval);
1229 if (eval == 0)
1230 continue;
1231
1232 /*
1233 * Oh-Oh! We ran out of either sem_undo's or undo's.
1234 * Rollback the adjustments to this point and then
1235 * rollback the semaphore ups and down so we can return
1236 * with an error with all structures restored. We
1237 * rollback the undo's in the exact reverse order that
1238 * we applied them. This guarantees that we won't run
1239 * out of space as we roll things back out.
1240 */
1241 for (j = i - 1; j >= 0; j--) {
1242 if ((sops[j].sem_flg & SEM_UNDO) == 0)
1243 continue;
1244 adjval = sops[j].sem_op;
1245 if (adjval == 0)
1246 continue;
1247 if (semundo_adjust(p, &suptr, semid,
1248 sops[j].sem_num, adjval) != 0)
1249 panic("semop - can't undo undos");
1250 }
1251
1252 for (j = 0; j < nsops; j++)
1253 semaptr->sem_base[sops[j].sem_num].semval -=
1254 sops[j].sem_op;
1255
1256 #ifdef SEM_DEBUG
1257 printf("eval = %d from semundo_adjust\n", eval);
1258 #endif
1259 goto semopout;
1260 } /* loop through the sops */
1261 } /* if (do_undos) */
1262
1263 /* We're definitely done - set the sempid's */
1264 for (i = 0; i < nsops; i++) {
1265 sopptr = &sops[i];
1266 semptr = &semaptr->sem_base[sopptr->sem_num];
1267 semptr->sempid = p->p_pid;
1268 }
1269
1270 if (do_wakeup) {
1271 #ifdef SEM_DEBUG
1272 printf("semop: doing wakeup\n");
1273 #ifdef SEM_WAKEUP
1274 sem_wakeup((caddr_t)semaptr);
1275 #else
1276 wakeup((caddr_t)semaptr);
1277 #endif
1278 printf("semop: back from wakeup\n");
1279 #else
1280 wakeup((caddr_t)semaptr);
1281 #endif
1282 }
1283 #ifdef SEM_DEBUG
1284 printf("semop: done\n");
1285 #endif
1286 *retval = 0;
1287 eval = 0;
1288 semopout:
1289 SYSV_SEM_SUBSYS_UNLOCK();
1290 return(eval);
1291 }
1292
1293 /*
1294 * Go through the undo structures for this process and apply the adjustments to
1295 * semaphores.
1296 */
1297 void
1298 semexit(struct proc *p)
1299 {
1300 register struct sem_undo *suptr;
1301 register struct sem_undo **supptr;
1302 int did_something;
1303
1304 /* If we have not allocated our semaphores yet there can't be
1305 * anything to undo, but we need the lock to prevent
1306 * dynamic memory race conditions.
1307 */
1308 SYSV_SEM_SUBSYS_LOCK();
1309
1310 if (!sem_pool)
1311 {
1312 SYSV_SEM_SUBSYS_UNLOCK();
1313 return;
1314 }
1315 did_something = 0;
1316
1317 /*
1318 * Go through the chain of undo vectors looking for one
1319 * associated with this process.
1320 */
1321
1322 for (supptr = &semu_list; (suptr = *supptr) != NULL;
1323 supptr = &suptr->un_next) {
1324 if (suptr->un_proc == p)
1325 break;
1326 }
1327
1328 if (suptr == NULL)
1329 goto unlock;
1330
1331 #ifdef SEM_DEBUG
1332 printf("proc @%08x has undo structure with %d entries\n", p,
1333 suptr->un_cnt);
1334 #endif
1335
1336 /*
1337 * If there are any active undo elements then process them.
1338 */
1339 if (suptr->un_cnt > 0) {
1340 while (suptr->un_ent != NULL) {
1341 struct undo *sueptr;
1342 int semid;
1343 int semnum;
1344 int adjval;
1345 struct user_semid_ds *semaptr;
1346
1347 sueptr = suptr->un_ent;
1348 semid = sueptr->une_id;
1349 semnum = sueptr->une_num;
1350 adjval = sueptr->une_adjval;
1351
1352 semaptr = &sema[semid];
1353 if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0)
1354 panic("semexit - semid not allocated");
1355 if (semnum >= semaptr->sem_nsems)
1356 panic("semexit - semnum out of range");
1357
1358 #ifdef SEM_DEBUG
1359 printf("semexit: %08x id=%d num=%d(adj=%d) ; sem=%d\n",
1360 suptr->un_proc,
1361 semid,
1362 semnum,
1363 adjval,
1364 semaptr->sem_base[semnum].semval);
1365 #endif
1366
1367 if (adjval < 0) {
1368 if (semaptr->sem_base[semnum].semval < -adjval)
1369 semaptr->sem_base[semnum].semval = 0;
1370 else
1371 semaptr->sem_base[semnum].semval +=
1372 adjval;
1373 } else
1374 semaptr->sem_base[semnum].semval += adjval;
1375
1376 /* Maybe we should build a list of semaptr's to wake
1377 * up, finish all access to data structures, release the
1378 * subsystem lock, and wake all the processes. Something
1379 * to think about. It wouldn't buy us anything unless
1380 * wakeup had the potential to block, or the syscall
1381 * funnel state was changed to allow multiple threads
1382 * in the BSD code at once.
1383 */
1384 #ifdef SEM_WAKEUP
1385 sem_wakeup((caddr_t)semaptr);
1386 #else
1387 wakeup((caddr_t)semaptr);
1388 #endif
1389 #ifdef SEM_DEBUG
1390 printf("semexit: back from wakeup\n");
1391 #endif
1392 suptr->un_cnt--;
1393 suptr->un_ent = sueptr->une_next;
1394 FREE(sueptr, M_SYSVSEM);
1395 sueptr = NULL;
1396 }
1397 }
1398
1399 /*
1400 * Deallocate the undo vector.
1401 */
1402 #ifdef SEM_DEBUG
1403 printf("removing vector\n");
1404 #endif
1405 suptr->un_proc = NULL;
1406 *supptr = suptr->un_next;
1407
1408 unlock:
1409 /*
1410 * There is a semaphore leak (i.e. memory leak) in this code.
1411 * We should be deleting the IPC_PRIVATE semaphores when they are
1412 * no longer needed, and we dont. We would have to track which processes
1413 * know about which IPC_PRIVATE semaphores, updating the list after
1414 * every fork. We can't just delete them semaphore when the process
1415 * that created it dies, because that process may well have forked
1416 * some children. So we need to wait until all of it's children have
1417 * died, and so on. Maybe we should tag each IPC_PRIVATE sempahore
1418 * with the creating group ID, count the number of processes left in
1419 * that group, and delete the semaphore when the group is gone.
1420 * Until that code gets implemented we will leak IPC_PRIVATE semaphores.
1421 * There is an upper bound on the size of our semaphore array, so
1422 * leaking the semaphores should not work as a DOS attack.
1423 *
1424 * Please note that the original BSD code this file is based on had the
1425 * same leaky semaphore problem.
1426 */
1427
1428 SYSV_SEM_SUBSYS_UNLOCK();
1429 }
1430
1431
1432 /* (struct sysctl_oid *oidp, void *arg1, int arg2, \
1433 struct sysctl_req *req) */
1434 static int
1435 sysctl_seminfo(__unused struct sysctl_oid *oidp, void *arg1,
1436 __unused int arg2, struct sysctl_req *req)
1437 {
1438 int error = 0;
1439
1440 error = SYSCTL_OUT(req, arg1, sizeof(int));
1441 if (error || req->newptr == USER_ADDR_NULL)
1442 return(error);
1443
1444 SYSV_SEM_SUBSYS_LOCK();
1445
1446 /* Set the values only if shared memory is not initialised */
1447 if ((sem_pool == NULL) &&
1448 (sema == NULL) &&
1449 (semu == NULL) &&
1450 (semu_list == NULL)) {
1451 if ((error = SYSCTL_IN(req, arg1, sizeof(int)))) {
1452 goto out;
1453 }
1454 } else
1455 error = EINVAL;
1456 out:
1457 SYSV_SEM_SUBSYS_UNLOCK();
1458 return(error);
1459
1460 }
1461
1462 /* SYSCTL_NODE(_kern, KERN_SYSV, sysv, CTLFLAG_RW, 0, "SYSV"); */
1463 extern struct sysctl_oid_list sysctl__kern_sysv_children;
1464 SYSCTL_PROC(_kern_sysv, KSYSV_SEMMNI, semmni, CTLTYPE_INT | CTLFLAG_RW,
1465 &limitseminfo.semmni, 0, &sysctl_seminfo ,"I","semmni");
1466
1467 SYSCTL_PROC(_kern_sysv, KSYSV_SEMMNS, semmns, CTLTYPE_INT | CTLFLAG_RW,
1468 &limitseminfo.semmns, 0, &sysctl_seminfo ,"I","semmns");
1469
1470 SYSCTL_PROC(_kern_sysv, KSYSV_SEMMNU, semmnu, CTLTYPE_INT | CTLFLAG_RW,
1471 &limitseminfo.semmnu, 0, &sysctl_seminfo ,"I","semmnu");
1472
1473 SYSCTL_PROC(_kern_sysv, KSYSV_SEMMSL, semmsl, CTLTYPE_INT | CTLFLAG_RW,
1474 &limitseminfo.semmsl, 0, &sysctl_seminfo ,"I","semmsl");
1475
1476 SYSCTL_PROC(_kern_sysv, KSYSV_SEMUNE, semume, CTLTYPE_INT | CTLFLAG_RW,
1477 &limitseminfo.semume, 0, &sysctl_seminfo ,"I","semume");
1478
1479
1480 static int
1481 IPCS_sem_sysctl(__unused struct sysctl_oid *oidp, __unused void *arg1,
1482 __unused int arg2, struct sysctl_req *req)
1483 {
1484 int error;
1485 int cursor;
1486 union {
1487 struct IPCS_command u32;
1488 struct user_IPCS_command u64;
1489 } ipcs;
1490 struct semid_ds semid_ds32; /* post conversion, 32 bit version */
1491 void *semid_dsp;
1492 size_t ipcs_sz = sizeof(struct user_IPCS_command);
1493 size_t semid_ds_sz = sizeof(struct user_semid_ds);
1494 struct proc *p = current_proc();
1495
1496 /* Copy in the command structure */
1497 if ((error = SYSCTL_IN(req, &ipcs, ipcs_sz)) != 0) {
1498 return(error);
1499 }
1500
1501 if (!IS_64BIT_PROCESS(p)) {
1502 ipcs_sz = sizeof(struct IPCS_command);
1503 semid_ds_sz = sizeof(struct semid_ds);
1504 }
1505
1506 /* Let us version this interface... */
1507 if (ipcs.u64.ipcs_magic != IPCS_MAGIC) {
1508 return(EINVAL);
1509 }
1510
1511 SYSV_SEM_SUBSYS_LOCK();
1512 switch(ipcs.u64.ipcs_op) {
1513 case IPCS_SEM_CONF: /* Obtain global configuration data */
1514 if (ipcs.u64.ipcs_datalen != sizeof(struct seminfo)) {
1515 error = ERANGE;
1516 break;
1517 }
1518 if (ipcs.u64.ipcs_cursor != 0) { /* fwd. compat. */
1519 error = EINVAL;
1520 break;
1521 }
1522 error = copyout(&seminfo, ipcs.u64.ipcs_data, ipcs.u64.ipcs_datalen);
1523 break;
1524
1525 case IPCS_SEM_ITER: /* Iterate over existing segments */
1526 cursor = ipcs.u64.ipcs_cursor;
1527 if (cursor < 0 || cursor >= seminfo.semmni) {
1528 error = ERANGE;
1529 break;
1530 }
1531 if (ipcs.u64.ipcs_datalen != (int)semid_ds_sz ) {
1532 error = EINVAL;
1533 break;
1534 }
1535 for( ; cursor < seminfo.semmni; cursor++) {
1536 if (sema[cursor].sem_perm.mode & SEM_ALLOC)
1537 break;
1538 continue;
1539 }
1540 if (cursor == seminfo.semmni) {
1541 error = ENOENT;
1542 break;
1543 }
1544
1545 semid_dsp = &sema[cursor]; /* default: 64 bit */
1546
1547 /*
1548 * If necessary, convert the 64 bit kernel segment
1549 * descriptor to a 32 bit user one.
1550 */
1551 if (!IS_64BIT_PROCESS(p)) {
1552 semid_ds_64to32(semid_dsp, &semid_ds32);
1553 semid_dsp = &semid_ds32;
1554 }
1555 error = copyout(semid_dsp, ipcs.u64.ipcs_data, ipcs.u64.ipcs_datalen);
1556 if (!error) {
1557 /* update cursor */
1558 ipcs.u64.ipcs_cursor = cursor + 1;
1559 error = SYSCTL_OUT(req, &ipcs, ipcs_sz);
1560 }
1561 break;
1562
1563 default:
1564 error = EINVAL;
1565 break;
1566 }
1567 SYSV_SEM_SUBSYS_UNLOCK();
1568 return(error);
1569 }
1570
1571 SYSCTL_DECL(_kern_sysv_ipcs);
1572 SYSCTL_PROC(_kern_sysv_ipcs, OID_AUTO, sem, CTLFLAG_RW|CTLFLAG_ANYBODY,
1573 0, 0, IPCS_sem_sysctl,
1574 "S,IPCS_sem_command",
1575 "ipcs sem command interface");