2 * Copyright (c) 2006 Apple Computer, Inc. All Rights Reserved.
4 * @APPLE_LICENSE_OSREFERENCE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the
10 * License may not be used to create, or enable the creation or
11 * redistribution of, unlawful or unlicensed copies of an Apple operating
12 * system, or to circumvent, violate, or enable the circumvention or
13 * violation of, any terms of an Apple operating system software license
16 * Please obtain a copy of the License at
17 * http://www.opensource.apple.com/apsl/ and read it before using this
20 * The Original Code and all software distributed under the License are
21 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
22 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
23 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
24 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
25 * Please see the License for the specific language governing rights and
26 * limitations under the License.
28 * @APPLE_LICENSE_OSREFERENCE_HEADER_END@
31 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
32 * The Regents of the University of California. All rights reserved.
34 * Redistribution and use in source and binary forms, with or without
35 * modification, are permitted provided that the following conditions
37 * 1. Redistributions of source code must retain the above copyright
38 * notice, this list of conditions and the following disclaimer.
39 * 2. Redistributions in binary form must reproduce the above copyright
40 * notice, this list of conditions and the following disclaimer in the
41 * documentation and/or other materials provided with the distribution.
42 * 3. All advertising materials mentioning features or use of this software
43 * must display the following acknowledgement:
44 * This product includes software developed by the University of
45 * California, Berkeley and its contributors.
46 * 4. Neither the name of the University nor the names of its contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
63 * $FreeBSD: src/sys/netinet/tcp_subr.c,v 1.73.2.22 2001/08/22 00:59:12 silby Exp $
67 #include <sys/param.h>
68 #include <sys/systm.h>
69 #include <sys/callout.h>
70 #include <sys/kernel.h>
71 #include <sys/sysctl.h>
72 #include <sys/malloc.h>
75 #include <sys/domain.h>
78 #include <sys/kauth.h>
79 #include <sys/socket.h>
80 #include <sys/socketvar.h>
81 #include <sys/protosw.h>
82 #include <sys/random.h>
83 #include <sys/syslog.h>
84 #include <kern/locks.h>
88 #include <net/route.h>
92 #include <netinet/in.h>
93 #include <netinet/in_systm.h>
94 #include <netinet/ip.h>
96 #include <netinet/ip6.h>
98 #include <netinet/in_pcb.h>
100 #include <netinet6/in6_pcb.h>
102 #include <netinet/in_var.h>
103 #include <netinet/ip_var.h>
105 #include <netinet6/ip6_var.h>
107 #include <netinet/tcp.h>
108 #include <netinet/tcp_fsm.h>
109 #include <netinet/tcp_seq.h>
110 #include <netinet/tcp_timer.h>
111 #include <netinet/tcp_var.h>
113 #include <netinet6/tcp6_var.h>
115 #include <netinet/tcpip.h>
117 #include <netinet/tcp_debug.h>
119 #include <netinet6/ip6protosw.h>
122 #include <netinet6/ipsec.h>
124 #include <netinet6/ipsec6.h>
129 #include <sys/kdebug.h>
131 #define DBG_FNC_TCP_CLOSE NETDBG_CODE(DBG_NETTCP, ((5 << 8) | 2))
133 extern int tcp_lq_overflow
;
135 /* temporary: for testing */
137 extern int ipsec_bypass
;
138 extern lck_mtx_t
*sadb_mutex
;
141 int tcp_mssdflt
= TCP_MSS
;
142 SYSCTL_INT(_net_inet_tcp
, TCPCTL_MSSDFLT
, mssdflt
, CTLFLAG_RW
,
143 &tcp_mssdflt
, 0, "Default TCP Maximum Segment Size");
146 int tcp_v6mssdflt
= TCP6_MSS
;
147 SYSCTL_INT(_net_inet_tcp
, TCPCTL_V6MSSDFLT
, v6mssdflt
,
148 CTLFLAG_RW
, &tcp_v6mssdflt
, 0,
149 "Default TCP Maximum Segment Size for IPv6");
153 * Minimum MSS we accept and use. This prevents DoS attacks where
154 * we are forced to a ridiculous low MSS like 20 and send hundreds
155 * of packets instead of one. The effect scales with the available
156 * bandwidth and quickly saturates the CPU and network interface
157 * with packet generation and sending. Set to zero to disable MINMSS
158 * checking. This setting prevents us from sending too small packets.
160 int tcp_minmss
= TCP_MINMSS
;
161 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, minmss
, CTLFLAG_RW
,
162 &tcp_minmss
, 0, "Minmum TCP Maximum Segment Size");
165 * Number of TCP segments per second we accept from remote host
166 * before we start to calculate average segment size. If average
167 * segment size drops below the minimum TCP MSS we assume a DoS
168 * attack and reset+drop the connection. Care has to be taken not to
169 * set this value too small to not kill interactive type connections
170 * (telnet, SSH) which send many small packets.
172 #ifdef FIX_WORKAROUND_FOR_3894301
173 __private_extern__
int tcp_minmssoverload
= TCP_MINMSSOVERLOAD
;
175 __private_extern__
int tcp_minmssoverload
= 0;
177 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, minmssoverload
, CTLFLAG_RW
,
178 &tcp_minmssoverload
, 0, "Number of TCP Segments per Second allowed to"
179 "be under the MINMSS Size");
181 static int tcp_do_rfc1323
= 1;
182 SYSCTL_INT(_net_inet_tcp
, TCPCTL_DO_RFC1323
, rfc1323
, CTLFLAG_RW
,
183 &tcp_do_rfc1323
, 0, "Enable rfc1323 (high performance TCP) extensions");
185 static int tcp_do_rfc1644
= 0;
186 SYSCTL_INT(_net_inet_tcp
, TCPCTL_DO_RFC1644
, rfc1644
, CTLFLAG_RW
,
187 &tcp_do_rfc1644
, 0, "Enable rfc1644 (TTCP) extensions");
189 static int tcp_tcbhashsize
= 0;
190 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, tcbhashsize
, CTLFLAG_RD
,
191 &tcp_tcbhashsize
, 0, "Size of TCP control-block hashtable");
193 static int do_tcpdrain
= 0;
194 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, do_tcpdrain
, CTLFLAG_RW
, &do_tcpdrain
, 0,
195 "Enable tcp_drain routine for extra help when low on mbufs");
197 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, pcbcount
, CTLFLAG_RD
,
198 &tcbinfo
.ipi_count
, 0, "Number of active PCBs");
200 static int icmp_may_rst
= 1;
201 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, icmp_may_rst
, CTLFLAG_RW
, &icmp_may_rst
, 0,
202 "Certain ICMP unreachable messages may abort connections in SYN_SENT");
204 static int tcp_strict_rfc1948
= 0;
205 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, strict_rfc1948
, CTLFLAG_RW
,
206 &tcp_strict_rfc1948
, 0, "Determines if RFC1948 is followed exactly");
208 static int tcp_isn_reseed_interval
= 0;
209 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, isn_reseed_interval
, CTLFLAG_RW
,
210 &tcp_isn_reseed_interval
, 0, "Seconds between reseeding of ISN secret");
212 static void tcp_cleartaocache(void);
213 static void tcp_notify(struct inpcb
*, int);
214 struct zone
*sack_hole_zone
;
217 * Target size of TCP PCB hash tables. Must be a power of two.
219 * Note that this can be overridden by the kernel environment
220 * variable net.inet.tcp.tcbhashsize
223 #define TCBHASHSIZE 4096
227 * This is the actual shape of what we allocate using the zone
228 * allocator. Doing it this way allows us to protect both structures
229 * using the same generation count, and also eliminates the overhead
230 * of allocating tcpcbs separately. By hiding the structure here,
231 * we avoid changing most of the rest of the code (although it needs
232 * to be changed, eventually, for greater efficiency).
235 #define ALIGNM1 (ALIGNMENT - 1)
239 char align
[(sizeof(struct inpcb
) + ALIGNM1
) & ~ALIGNM1
];
246 static struct tcpcb dummy_tcb
;
249 extern struct inpcbhead time_wait_slots
[];
250 extern int cur_tw_slot
;
251 extern u_long
*delack_bitmask
;
252 extern u_long route_generation
;
255 int get_inpcb_str_size()
257 return sizeof(struct inpcb
);
261 int get_tcp_str_size()
263 return sizeof(struct tcpcb
);
266 int tcp_freeq(struct tcpcb
*tp
);
275 int hashsize
= TCBHASHSIZE
;
278 struct inpcbinfo
*pcbinfo
;
283 tcp_delacktime
= TCPTV_DELACK
;
284 tcp_keepinit
= TCPTV_KEEP_INIT
;
285 tcp_keepidle
= TCPTV_KEEP_IDLE
;
286 tcp_keepintvl
= TCPTV_KEEPINTVL
;
287 tcp_maxpersistidle
= TCPTV_KEEP_IDLE
;
289 read_random(&tcp_now
, sizeof(tcp_now
));
290 tcp_now
= tcp_now
& 0x7fffffff; /* Starts tcp internal 500ms clock at a random value */
294 tcbinfo
.listhead
= &tcb
;
296 if (!powerof2(hashsize
)) {
297 printf("WARNING: TCB hash size not a power of 2\n");
298 hashsize
= 512; /* safe default */
300 tcp_tcbhashsize
= hashsize
;
301 tcbinfo
.hashsize
= hashsize
;
302 tcbinfo
.hashbase
= hashinit(hashsize
, M_PCB
, &tcbinfo
.hashmask
);
303 tcbinfo
.porthashbase
= hashinit(hashsize
, M_PCB
,
304 &tcbinfo
.porthashmask
);
305 str_size
= (vm_size_t
) sizeof(struct inp_tp
);
306 tcbinfo
.ipi_zone
= (void *) zinit(str_size
, 120000*str_size
, 8192, "tcpcb");
307 sack_hole_zone
= zinit(str_size
, 120000*str_size
, 8192, "sack_hole zone");
308 tcp_reass_maxseg
= nmbclusters
/ 16;
311 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
313 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
315 if (max_protohdr
< TCP_MINPROTOHDR
)
316 max_protohdr
= TCP_MINPROTOHDR
;
317 if (max_linkhdr
+ TCP_MINPROTOHDR
> MHLEN
)
319 #undef TCP_MINPROTOHDR
320 dummy_tcb
.t_state
= TCP_NSTATES
;
321 dummy_tcb
.t_flags
= 0;
322 tcbinfo
.dummy_cb
= (caddr_t
) &dummy_tcb
;
325 * allocate lock group attribute and group for tcp pcb mutexes
327 pcbinfo
->mtx_grp_attr
= lck_grp_attr_alloc_init();
328 lck_grp_attr_setdefault(pcbinfo
->mtx_grp_attr
);
329 pcbinfo
->mtx_grp
= lck_grp_alloc_init("tcppcb", pcbinfo
->mtx_grp_attr
);
332 * allocate the lock attribute for tcp pcb mutexes
334 pcbinfo
->mtx_attr
= lck_attr_alloc_init();
335 lck_attr_setdefault(pcbinfo
->mtx_attr
);
337 if ((pcbinfo
->mtx
= lck_rw_alloc_init(pcbinfo
->mtx_grp
, pcbinfo
->mtx_attr
)) == NULL
) {
338 printf("tcp_init: mutex not alloced!\n");
339 return; /* pretty much dead if this fails... */
343 in_pcb_nat_init(&tcbinfo
, AF_INET
, IPPROTO_TCP
, SOCK_STREAM
);
345 delack_bitmask
= _MALLOC((4 * hashsize
)/32, M_PCB
, M_WAITOK
);
346 if (delack_bitmask
== 0)
347 panic("Delack Memory");
349 for (i
=0; i
< (tcbinfo
.hashsize
/ 32); i
++)
350 delack_bitmask
[i
] = 0;
352 for (i
=0; i
< N_TIME_WAIT_SLOTS
; i
++) {
353 LIST_INIT(&time_wait_slots
[i
]);
358 * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
359 * tcp_template used to store this data in mbufs, but we now recopy it out
360 * of the tcpcb each time to conserve mbufs.
363 tcp_fillheaders(tp
, ip_ptr
, tcp_ptr
)
368 struct inpcb
*inp
= tp
->t_inpcb
;
369 struct tcphdr
*tcp_hdr
= (struct tcphdr
*)tcp_ptr
;
372 if ((inp
->inp_vflag
& INP_IPV6
) != 0) {
375 ip6
= (struct ip6_hdr
*)ip_ptr
;
376 ip6
->ip6_flow
= (ip6
->ip6_flow
& ~IPV6_FLOWINFO_MASK
) |
377 (inp
->in6p_flowinfo
& IPV6_FLOWINFO_MASK
);
378 ip6
->ip6_vfc
= (ip6
->ip6_vfc
& ~IPV6_VERSION_MASK
) |
379 (IPV6_VERSION
& IPV6_VERSION_MASK
);
380 ip6
->ip6_nxt
= IPPROTO_TCP
;
381 ip6
->ip6_plen
= sizeof(struct tcphdr
);
382 ip6
->ip6_src
= inp
->in6p_laddr
;
383 ip6
->ip6_dst
= inp
->in6p_faddr
;
388 struct ip
*ip
= (struct ip
*) ip_ptr
;
390 ip
->ip_vhl
= IP_VHL_BORING
;
397 ip
->ip_p
= IPPROTO_TCP
;
398 ip
->ip_src
= inp
->inp_laddr
;
399 ip
->ip_dst
= inp
->inp_faddr
;
400 tcp_hdr
->th_sum
= in_pseudo(ip
->ip_src
.s_addr
, ip
->ip_dst
.s_addr
,
401 htons(sizeof(struct tcphdr
) + IPPROTO_TCP
));
404 tcp_hdr
->th_sport
= inp
->inp_lport
;
405 tcp_hdr
->th_dport
= inp
->inp_fport
;
410 tcp_hdr
->th_flags
= 0;
416 * Create template to be used to send tcp packets on a connection.
417 * Allocates an mbuf and fills in a skeletal tcp/ip header. The only
418 * use for this function is in keepalives, which use tcp_respond.
427 m
= m_get(M_DONTWAIT
, MT_HEADER
);
430 m
->m_len
= sizeof(struct tcptemp
);
431 n
= mtod(m
, struct tcptemp
*);
433 tcp_fillheaders(tp
, (void *)&n
->tt_ipgen
, (void *)&n
->tt_t
);
438 * Send a single message to the TCP at address specified by
439 * the given TCP/IP header. If m == 0, then we make a copy
440 * of the tcpiphdr at ti and send directly to the addressed host.
441 * This is used to force keep alive messages out using the TCP
442 * template for a connection. If flags are given then we send
443 * a message back to the TCP which originated the * segment ti,
444 * and discard the mbuf containing it and any other attached mbufs.
446 * In any case the ack and sequence number of the transmitted
447 * segment are as specified by the parameters.
449 * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
452 tcp_respond(tp
, ipgen
, th
, m
, ack
, seq
, flags
)
455 register struct tcphdr
*th
;
456 register struct mbuf
*m
;
462 struct route
*ro
= 0;
467 struct route_in6
*ro6
= 0;
468 struct route_in6 sro6
;
475 isipv6
= IP_VHL_V(((struct ip
*)ipgen
)->ip_vhl
) == 6;
481 if (!(flags
& TH_RST
)) {
482 win
= sbspace(&tp
->t_inpcb
->inp_socket
->so_rcv
);
483 if (win
> (long)TCP_MAXWIN
<< tp
->rcv_scale
)
484 win
= (long)TCP_MAXWIN
<< tp
->rcv_scale
;
488 ro6
= &tp
->t_inpcb
->in6p_route
;
491 ro
= &tp
->t_inpcb
->inp_route
;
496 bzero(ro6
, sizeof *ro6
);
501 bzero(ro
, sizeof *ro
);
505 m
= m_gethdr(M_DONTWAIT
, MT_HEADER
);
509 m
->m_data
+= max_linkhdr
;
512 bcopy((caddr_t
)ip6
, mtod(m
, caddr_t
),
513 sizeof(struct ip6_hdr
));
514 ip6
= mtod(m
, struct ip6_hdr
*);
515 nth
= (struct tcphdr
*)(ip6
+ 1);
519 bcopy((caddr_t
)ip
, mtod(m
, caddr_t
), sizeof(struct ip
));
520 ip
= mtod(m
, struct ip
*);
521 nth
= (struct tcphdr
*)(ip
+ 1);
523 bcopy((caddr_t
)th
, (caddr_t
)nth
, sizeof(struct tcphdr
));
528 m
->m_data
= (caddr_t
)ipgen
;
529 /* m_len is set later */
531 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
534 xchg(ip6
->ip6_dst
, ip6
->ip6_src
, struct in6_addr
);
535 nth
= (struct tcphdr
*)(ip6
+ 1);
539 xchg(ip
->ip_dst
.s_addr
, ip
->ip_src
.s_addr
, n_long
);
540 nth
= (struct tcphdr
*)(ip
+ 1);
544 * this is usually a case when an extension header
545 * exists between the IPv6 header and the
548 nth
->th_sport
= th
->th_sport
;
549 nth
->th_dport
= th
->th_dport
;
551 xchg(nth
->th_dport
, nth
->th_sport
, n_short
);
556 ip6
->ip6_plen
= htons((u_short
)(sizeof (struct tcphdr
) +
558 tlen
+= sizeof (struct ip6_hdr
) + sizeof (struct tcphdr
);
562 tlen
+= sizeof (struct tcpiphdr
);
564 ip
->ip_ttl
= ip_defttl
;
567 m
->m_pkthdr
.len
= tlen
;
568 m
->m_pkthdr
.rcvif
= 0;
569 nth
->th_seq
= htonl(seq
);
570 nth
->th_ack
= htonl(ack
);
572 nth
->th_off
= sizeof (struct tcphdr
) >> 2;
573 nth
->th_flags
= flags
;
575 nth
->th_win
= htons((u_short
) (win
>> tp
->rcv_scale
));
577 nth
->th_win
= htons((u_short
)win
);
582 nth
->th_sum
= in6_cksum(m
, IPPROTO_TCP
,
583 sizeof(struct ip6_hdr
),
584 tlen
- sizeof(struct ip6_hdr
));
585 ip6
->ip6_hlim
= in6_selecthlim(tp
? tp
->t_inpcb
: NULL
,
592 nth
->th_sum
= in_pseudo(ip
->ip_src
.s_addr
, ip
->ip_dst
.s_addr
,
593 htons((u_short
)(tlen
- sizeof(struct ip
) + ip
->ip_p
)));
594 m
->m_pkthdr
.csum_flags
= CSUM_TCP
;
595 m
->m_pkthdr
.csum_data
= offsetof(struct tcphdr
, th_sum
);
598 if (tp
== NULL
|| (tp
->t_inpcb
->inp_socket
->so_options
& SO_DEBUG
))
599 tcp_trace(TA_OUTPUT
, 0, tp
, mtod(m
, void *), th
, 0);
602 if (ipsec_bypass
== 0 && ipsec_setsocket(m
, tp
? tp
->t_inpcb
->inp_socket
: NULL
) != 0) {
609 (void)ip6_output(m
, NULL
, ro6
, ipflags
, NULL
, NULL
, 0);
610 if (ro6
== &sro6
&& ro6
->ro_rt
) {
617 (void) ip_output_list(m
, 0, NULL
, ro
, ipflags
, NULL
);
618 if (ro
== &sro
&& ro
->ro_rt
) {
626 * Create a new TCP control block, making an
627 * empty reassembly queue and hooking it to the argument
628 * protocol control block. The `inp' parameter must have
629 * come from the zone allocator set up in tcp_init().
636 register struct tcpcb
*tp
;
637 register struct socket
*so
= inp
->inp_socket
;
639 int isipv6
= (inp
->inp_vflag
& INP_IPV6
) != 0;
642 if (so
->cached_in_sock_layer
== 0) {
643 it
= (struct inp_tp
*)inp
;
647 tp
= (struct tcpcb
*) inp
->inp_saved_ppcb
;
649 bzero((char *) tp
, sizeof(struct tcpcb
));
650 LIST_INIT(&tp
->t_segq
);
651 tp
->t_maxseg
= tp
->t_maxopd
=
653 isipv6
? tcp_v6mssdflt
:
658 tp
->t_flags
= (TF_REQ_SCALE
|TF_REQ_TSTMP
);
659 tp
->sack_enable
= tcp_do_sack
;
660 TAILQ_INIT(&tp
->snd_holes
);
661 tp
->t_inpcb
= inp
; /* XXX */
663 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
664 * rtt estimate. Set rttvar so that srtt + 4 * rttvar gives
665 * reasonable initial retransmit time.
667 tp
->t_srtt
= TCPTV_SRTTBASE
;
668 tp
->t_rttvar
= ((TCPTV_RTOBASE
- TCPTV_SRTTBASE
) << TCP_RTTVAR_SHIFT
) / 4;
669 tp
->t_rttmin
= TCPTV_MIN
;
670 tp
->t_rxtcur
= TCPTV_RTOBASE
;
671 tp
->snd_cwnd
= TCP_MAXWIN
<< TCP_MAX_WINSHIFT
;
672 tp
->snd_ssthresh
= TCP_MAXWIN
<< TCP_MAX_WINSHIFT
;
675 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
676 * because the socket may be bound to an IPv6 wildcard address,
677 * which may match an IPv4-mapped IPv6 address.
679 inp
->inp_ip_ttl
= ip_defttl
;
680 inp
->inp_ppcb
= (caddr_t
)tp
;
681 return (tp
); /* XXX */
685 * Drop a TCP connection, reporting
686 * the specified error. If connection is synchronized,
687 * then send a RST to peer.
691 register struct tcpcb
*tp
;
694 struct socket
*so
= tp
->t_inpcb
->inp_socket
;
696 if (TCPS_HAVERCVDSYN(tp
->t_state
)) {
697 tp
->t_state
= TCPS_CLOSED
;
698 (void) tcp_output(tp
);
699 tcpstat
.tcps_drops
++;
701 tcpstat
.tcps_conndrops
++;
702 if (errno
== ETIMEDOUT
&& tp
->t_softerror
)
703 errno
= tp
->t_softerror
;
704 so
->so_error
= errno
;
705 return (tcp_close(tp
));
709 * Close a TCP control block:
710 * discard all space held by the tcp
711 * discard internet protocol block
712 * wake up any sleepers
716 register struct tcpcb
*tp
;
718 struct inpcb
*inp
= tp
->t_inpcb
;
719 struct socket
*so
= inp
->inp_socket
;
721 int isipv6
= (inp
->inp_vflag
& INP_IPV6
) != 0;
723 register struct rtentry
*rt
;
726 if ( inp
->inp_ppcb
== NULL
) /* tcp_close was called previously, bail */
729 /* Clear the timers before we delete the PCB. */
732 for (i
= 0; i
< TCPT_NTIMERS
; i
++) {
737 KERNEL_DEBUG(DBG_FNC_TCP_CLOSE
| DBG_FUNC_START
, tp
,0,0,0,0);
740 case TCPS_ESTABLISHED
:
741 case TCPS_FIN_WAIT_1
:
743 case TCPS_CLOSE_WAIT
:
750 * If we got enough samples through the srtt filter,
751 * save the rtt and rttvar in the routing entry.
752 * 'Enough' is arbitrarily defined as the 16 samples.
753 * 16 samples is enough for the srtt filter to converge
754 * to within 5% of the correct value; fewer samples and
755 * we could save a very bogus rtt.
757 * Don't update the default route's characteristics and don't
758 * update anything that the user "locked".
760 if (tp
->t_rttupdated
>= 16) {
761 register u_long i
= 0;
764 struct sockaddr_in6
*sin6
;
766 if ((rt
= inp
->in6p_route
.ro_rt
) == NULL
)
768 sin6
= (struct sockaddr_in6
*)rt_key(rt
);
769 if (IN6_IS_ADDR_UNSPECIFIED(&sin6
->sin6_addr
))
774 rt
= inp
->inp_route
.ro_rt
;
776 ((struct sockaddr_in
*)rt_key(rt
))->sin_addr
.s_addr
777 == INADDR_ANY
|| rt
->generation_id
!= route_generation
) {
778 if (tp
->t_state
>= TCPS_CLOSE_WAIT
)
779 tp
->t_state
= TCPS_CLOSING
;
784 if ((rt
->rt_rmx
.rmx_locks
& RTV_RTT
) == 0) {
786 (RTM_RTTUNIT
/ (PR_SLOWHZ
* TCP_RTT_SCALE
));
787 if (rt
->rt_rmx
.rmx_rtt
&& i
)
789 * filter this update to half the old & half
790 * the new values, converting scale.
791 * See route.h and tcp_var.h for a
792 * description of the scaling constants.
795 (rt
->rt_rmx
.rmx_rtt
+ i
) / 2;
797 rt
->rt_rmx
.rmx_rtt
= i
;
798 tcpstat
.tcps_cachedrtt
++;
800 if ((rt
->rt_rmx
.rmx_locks
& RTV_RTTVAR
) == 0) {
802 (RTM_RTTUNIT
/ (PR_SLOWHZ
* TCP_RTTVAR_SCALE
));
803 if (rt
->rt_rmx
.rmx_rttvar
&& i
)
804 rt
->rt_rmx
.rmx_rttvar
=
805 (rt
->rt_rmx
.rmx_rttvar
+ i
) / 2;
807 rt
->rt_rmx
.rmx_rttvar
= i
;
808 tcpstat
.tcps_cachedrttvar
++;
811 * The old comment here said:
812 * update the pipelimit (ssthresh) if it has been updated
813 * already or if a pipesize was specified & the threshhold
814 * got below half the pipesize. I.e., wait for bad news
815 * before we start updating, then update on both good
818 * But we want to save the ssthresh even if no pipesize is
819 * specified explicitly in the route, because such
820 * connections still have an implicit pipesize specified
821 * by the global tcp_sendspace. In the absence of a reliable
822 * way to calculate the pipesize, it will have to do.
824 i
= tp
->snd_ssthresh
;
825 if (rt
->rt_rmx
.rmx_sendpipe
!= 0)
826 dosavessthresh
= (i
< rt
->rt_rmx
.rmx_sendpipe
/ 2);
828 dosavessthresh
= (i
< so
->so_snd
.sb_hiwat
/ 2);
829 if (((rt
->rt_rmx
.rmx_locks
& RTV_SSTHRESH
) == 0 &&
830 i
!= 0 && rt
->rt_rmx
.rmx_ssthresh
!= 0)
833 * convert the limit from user data bytes to
834 * packets then to packet data bytes.
836 i
= (i
+ tp
->t_maxseg
/ 2) / tp
->t_maxseg
;
839 i
*= (u_long
)(tp
->t_maxseg
+
841 (isipv6
? sizeof (struct ip6_hdr
) +
842 sizeof (struct tcphdr
) :
844 sizeof (struct tcpiphdr
)
849 if (rt
->rt_rmx
.rmx_ssthresh
)
850 rt
->rt_rmx
.rmx_ssthresh
=
851 (rt
->rt_rmx
.rmx_ssthresh
+ i
) / 2;
853 rt
->rt_rmx
.rmx_ssthresh
= i
;
854 tcpstat
.tcps_cachedssthresh
++;
857 rt
= inp
->inp_route
.ro_rt
;
860 * mark route for deletion if no information is
863 if ((tp
->t_flags
& TF_LQ_OVERFLOW
) && tcp_lq_overflow
&&
864 ((rt
->rt_rmx
.rmx_locks
& RTV_RTT
) == 0)){
865 if (rt
->rt_rmx
.rmx_rtt
== 0)
866 rt
->rt_flags
|= RTF_DELCLONE
;
870 /* free the reassembly queue, if any */
871 (void) tcp_freeq(tp
);
873 tcp_free_sackholes(tp
);
876 if (so
->cached_in_sock_layer
)
877 inp
->inp_saved_ppcb
= (caddr_t
) tp
;
880 soisdisconnected(so
);
882 if (INP_CHECK_SOCKAF(so
, AF_INET6
))
887 tcpstat
.tcps_closed
++;
888 KERNEL_DEBUG(DBG_FNC_TCP_CLOSE
| DBG_FUNC_END
, tcpstat
.tcps_closed
,0,0,0,0);
889 return ((struct tcpcb
*)0);
897 register struct tseg_qent
*q
;
900 while((q
= LIST_FIRST(&tp
->t_segq
)) != NULL
) {
901 LIST_REMOVE(q
, tqe_q
);
914 * ###LD 05/19/04 locking issue, tcpdrain is disabled, deadlock situation with tcbinfo.mtx
920 struct tseg_qent
*te
;
923 * Walk the tcpbs, if existing, and flush the reassembly queue,
925 * XXX: The "Net/3" implementation doesn't imply that the TCP
926 * reassembly queue should be flushed, but in a situation
927 * where we're really low on mbufs, this is potentially
930 lck_rw_lock_exclusive(tcbinfo
.mtx
);
931 for (inpb
= LIST_FIRST(tcbinfo
.listhead
); inpb
;
932 inpb
= LIST_NEXT(inpb
, inp_list
)) {
933 if ((tcpb
= intotcpcb(inpb
))) {
934 while ((te
= LIST_FIRST(&tcpb
->t_segq
))
936 LIST_REMOVE(te
, tqe_q
);
943 lck_rw_done(tcbinfo
.mtx
);
949 * Notify a tcp user of an asynchronous error;
950 * store error as soft error, but wake up user
951 * (for now, won't do anything until can select for soft error).
953 * Do not wake up user since there currently is no mechanism for
954 * reporting soft errors (yet - a kqueue filter may be added).
957 tcp_notify(inp
, error
)
963 if (inp
== NULL
|| (inp
->inp_state
== INPCB_STATE_DEAD
))
964 return; /* pcb is gone already */
966 tp
= (struct tcpcb
*)inp
->inp_ppcb
;
969 * Ignore some errors if we are hooked up.
970 * If connection hasn't completed, has retransmitted several times,
971 * and receives a second error, give up now. This is better
972 * than waiting a long time to establish a connection that
973 * can never complete.
975 if (tp
->t_state
== TCPS_ESTABLISHED
&&
976 (error
== EHOSTUNREACH
|| error
== ENETUNREACH
||
977 error
== EHOSTDOWN
)) {
979 } else if (tp
->t_state
< TCPS_ESTABLISHED
&& tp
->t_rxtshift
> 3 &&
983 tp
->t_softerror
= error
;
985 wakeup((caddr_t
) &so
->so_timeo
);
992 tcp_pcblist SYSCTL_HANDLER_ARGS
995 struct inpcb
*inp
, **inp_list
;
1000 * The process of preparing the TCB list is too time-consuming and
1001 * resource-intensive to repeat twice on every request.
1003 lck_rw_lock_shared(tcbinfo
.mtx
);
1004 if (req
->oldptr
== USER_ADDR_NULL
) {
1005 n
= tcbinfo
.ipi_count
;
1006 req
->oldidx
= 2 * (sizeof xig
)
1007 + (n
+ n
/8) * sizeof(struct xtcpcb
);
1008 lck_rw_done(tcbinfo
.mtx
);
1012 if (req
->newptr
!= USER_ADDR_NULL
) {
1013 lck_rw_done(tcbinfo
.mtx
);
1018 * OK, now we're committed to doing something.
1020 gencnt
= tcbinfo
.ipi_gencnt
;
1021 n
= tcbinfo
.ipi_count
;
1023 bzero(&xig
, sizeof(xig
));
1024 xig
.xig_len
= sizeof xig
;
1026 xig
.xig_gen
= gencnt
;
1027 xig
.xig_sogen
= so_gencnt
;
1028 error
= SYSCTL_OUT(req
, &xig
, sizeof xig
);
1030 lck_rw_done(tcbinfo
.mtx
);
1034 * We are done if there is no pcb
1037 lck_rw_done(tcbinfo
.mtx
);
1041 inp_list
= _MALLOC(n
* sizeof *inp_list
, M_TEMP
, M_WAITOK
);
1042 if (inp_list
== 0) {
1043 lck_rw_done(tcbinfo
.mtx
);
1047 for (inp
= LIST_FIRST(tcbinfo
.listhead
), i
= 0; inp
&& i
< n
;
1048 inp
= LIST_NEXT(inp
, inp_list
)) {
1050 if (inp
->inp_gencnt
<= gencnt
&& inp
->inp_state
!= INPCB_STATE_DEAD
)
1052 if (inp
->inp_gencnt
<= gencnt
&& !prison_xinpcb(req
->p
, inp
))
1054 inp_list
[i
++] = inp
;
1059 for (i
= 0; i
< n
; i
++) {
1061 if (inp
->inp_gencnt
<= gencnt
&& inp
->inp_state
!= INPCB_STATE_DEAD
) {
1065 bzero(&xt
, sizeof(xt
));
1066 xt
.xt_len
= sizeof xt
;
1067 /* XXX should avoid extra copy */
1068 inpcb_to_compat(inp
, &xt
.xt_inp
);
1069 inp_ppcb
= inp
->inp_ppcb
;
1070 if (inp_ppcb
!= NULL
) {
1071 bcopy(inp_ppcb
, &xt
.xt_tp
, sizeof xt
.xt_tp
);
1074 bzero((char *) &xt
.xt_tp
, sizeof xt
.xt_tp
);
1075 if (inp
->inp_socket
)
1076 sotoxsocket(inp
->inp_socket
, &xt
.xt_socket
);
1077 error
= SYSCTL_OUT(req
, &xt
, sizeof xt
);
1082 * Give the user an updated idea of our state.
1083 * If the generation differs from what we told
1084 * her before, she knows that something happened
1085 * while we were processing this request, and it
1086 * might be necessary to retry.
1088 bzero(&xig
, sizeof(xig
));
1089 xig
.xig_len
= sizeof xig
;
1090 xig
.xig_gen
= tcbinfo
.ipi_gencnt
;
1091 xig
.xig_sogen
= so_gencnt
;
1092 xig
.xig_count
= tcbinfo
.ipi_count
;
1093 error
= SYSCTL_OUT(req
, &xig
, sizeof xig
);
1095 FREE(inp_list
, M_TEMP
);
1096 lck_rw_done(tcbinfo
.mtx
);
1100 SYSCTL_PROC(_net_inet_tcp
, TCPCTL_PCBLIST
, pcblist
, CTLFLAG_RD
, 0, 0,
1101 tcp_pcblist
, "S,xtcpcb", "List of active TCP connections");
1105 tcp_getcred(SYSCTL_HANDLER_ARGS
)
1107 struct sockaddr_in addrs
[2];
1111 error
= suser(req
->p
);
1114 error
= SYSCTL_IN(req
, addrs
, sizeof(addrs
));
1118 inp
= in_pcblookup_hash(&tcbinfo
, addrs
[1].sin_addr
, addrs
[1].sin_port
,
1119 addrs
[0].sin_addr
, addrs
[0].sin_port
, 0, NULL
);
1120 if (inp
== NULL
|| inp
->inp_socket
== NULL
) {
1124 error
= SYSCTL_OUT(req
, inp
->inp_socket
->so_cred
, sizeof(*(kauth_cred_t
)0);
1130 SYSCTL_PROC(_net_inet_tcp
, OID_AUTO
, getcred
, CTLTYPE_OPAQUE
|CTLFLAG_RW
,
1131 0, 0, tcp_getcred
, "S,ucred", "Get the ucred of a TCP connection");
1135 tcp6_getcred(SYSCTL_HANDLER_ARGS
)
1137 struct sockaddr_in6 addrs
[2];
1139 int error
, s
, mapped
= 0;
1141 error
= suser(req
->p
);
1144 error
= SYSCTL_IN(req
, addrs
, sizeof(addrs
));
1147 if (IN6_IS_ADDR_V4MAPPED(&addrs
[0].sin6_addr
)) {
1148 if (IN6_IS_ADDR_V4MAPPED(&addrs
[1].sin6_addr
))
1155 inp
= in_pcblookup_hash(&tcbinfo
,
1156 *(struct in_addr
*)&addrs
[1].sin6_addr
.s6_addr
[12],
1158 *(struct in_addr
*)&addrs
[0].sin6_addr
.s6_addr
[12],
1162 inp
= in6_pcblookup_hash(&tcbinfo
, &addrs
[1].sin6_addr
,
1164 &addrs
[0].sin6_addr
, addrs
[0].sin6_port
,
1166 if (inp
== NULL
|| inp
->inp_socket
== NULL
) {
1170 error
= SYSCTL_OUT(req
, inp
->inp_socket
->so_cred
,
1171 sizeof(*(kauth_cred_t
)0);
1177 SYSCTL_PROC(_net_inet6_tcp6
, OID_AUTO
, getcred
, CTLTYPE_OPAQUE
|CTLFLAG_RW
,
1179 tcp6_getcred
, "S,ucred", "Get the ucred of a TCP6 connection");
1181 #endif /* __APPLE__*/
1184 tcp_ctlinput(cmd
, sa
, vip
)
1186 struct sockaddr
*sa
;
1189 struct ip
*ip
= vip
;
1191 struct in_addr faddr
;
1194 void (*notify
)(struct inpcb
*, int) = tcp_notify
;
1197 faddr
= ((struct sockaddr_in
*)sa
)->sin_addr
;
1198 if (sa
->sa_family
!= AF_INET
|| faddr
.s_addr
== INADDR_ANY
)
1201 if (cmd
== PRC_QUENCH
)
1202 notify
= tcp_quench
;
1203 else if (icmp_may_rst
&& (cmd
== PRC_UNREACH_ADMIN_PROHIB
||
1204 cmd
== PRC_UNREACH_PORT
) && ip
)
1205 notify
= tcp_drop_syn_sent
;
1206 else if (cmd
== PRC_MSGSIZE
)
1207 notify
= tcp_mtudisc
;
1208 else if (PRC_IS_REDIRECT(cmd
)) {
1210 notify
= in_rtchange
;
1211 } else if (cmd
== PRC_HOSTDEAD
)
1213 else if ((unsigned)cmd
> PRC_NCMDS
|| inetctlerrmap
[cmd
] == 0)
1216 th
= (struct tcphdr
*)((caddr_t
)ip
1217 + (IP_VHL_HL(ip
->ip_vhl
) << 2));
1218 inp
= in_pcblookup_hash(&tcbinfo
, faddr
, th
->th_dport
,
1219 ip
->ip_src
, th
->th_sport
, 0, NULL
);
1220 if (inp
!= NULL
&& inp
->inp_socket
!= NULL
) {
1221 tcp_lock(inp
->inp_socket
, 1, 0);
1222 if (in_pcb_checkstate(inp
, WNT_RELEASE
, 1) == WNT_STOPUSING
) {
1223 tcp_unlock(inp
->inp_socket
, 1, 0);
1226 icmp_seq
= htonl(th
->th_seq
);
1227 tp
= intotcpcb(inp
);
1228 if (SEQ_GEQ(icmp_seq
, tp
->snd_una
) &&
1229 SEQ_LT(icmp_seq
, tp
->snd_max
))
1230 (*notify
)(inp
, inetctlerrmap
[cmd
]);
1231 tcp_unlock(inp
->inp_socket
, 1, 0);
1234 in_pcbnotifyall(&tcbinfo
, faddr
, inetctlerrmap
[cmd
], notify
);
1239 tcp6_ctlinput(cmd
, sa
, d
)
1241 struct sockaddr
*sa
;
1245 void (*notify
)(struct inpcb
*, int) = tcp_notify
;
1246 struct ip6_hdr
*ip6
;
1248 struct ip6ctlparam
*ip6cp
= NULL
;
1249 const struct sockaddr_in6
*sa6_src
= NULL
;
1251 struct tcp_portonly
{
1256 if (sa
->sa_family
!= AF_INET6
||
1257 sa
->sa_len
!= sizeof(struct sockaddr_in6
))
1260 if (cmd
== PRC_QUENCH
)
1261 notify
= tcp_quench
;
1262 else if (cmd
== PRC_MSGSIZE
)
1263 notify
= tcp_mtudisc
;
1264 else if (!PRC_IS_REDIRECT(cmd
) &&
1265 ((unsigned)cmd
> PRC_NCMDS
|| inet6ctlerrmap
[cmd
] == 0))
1268 /* if the parameter is from icmp6, decode it. */
1270 ip6cp
= (struct ip6ctlparam
*)d
;
1272 ip6
= ip6cp
->ip6c_ip6
;
1273 off
= ip6cp
->ip6c_off
;
1274 sa6_src
= ip6cp
->ip6c_src
;
1278 off
= 0; /* fool gcc */
1284 * XXX: We assume that when IPV6 is non NULL,
1285 * M and OFF are valid.
1288 /* check if we can safely examine src and dst ports */
1289 if (m
->m_pkthdr
.len
< off
+ sizeof(*thp
))
1292 bzero(&th
, sizeof(th
));
1293 m_copydata(m
, off
, sizeof(*thp
), (caddr_t
)&th
);
1295 in6_pcbnotify(&tcbinfo
, sa
, th
.th_dport
,
1296 (struct sockaddr
*)ip6cp
->ip6c_src
,
1297 th
.th_sport
, cmd
, notify
);
1299 in6_pcbnotify(&tcbinfo
, sa
, 0, (struct sockaddr
*)sa6_src
,
1306 * Following is where TCP initial sequence number generation occurs.
1308 * There are two places where we must use initial sequence numbers:
1309 * 1. In SYN-ACK packets.
1310 * 2. In SYN packets.
1312 * The ISNs in SYN-ACK packets have no monotonicity requirement,
1313 * and should be as unpredictable as possible to avoid the possibility
1314 * of spoofing and/or connection hijacking. To satisfy this
1315 * requirement, SYN-ACK ISNs are generated via the arc4random()
1316 * function. If exact RFC 1948 compliance is requested via sysctl,
1317 * these ISNs will be generated just like those in SYN packets.
1319 * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1320 * depends on this property. In addition, these ISNs should be
1321 * unguessable so as to prevent connection hijacking. To satisfy
1322 * the requirements of this situation, the algorithm outlined in
1323 * RFC 1948 is used to generate sequence numbers.
1325 * For more information on the theory of operation, please see
1328 * Implementation details:
1330 * Time is based off the system timer, and is corrected so that it
1331 * increases by one megabyte per second. This allows for proper
1332 * recycling on high speed LANs while still leaving over an hour
1335 * Two sysctls control the generation of ISNs:
1337 * net.inet.tcp.isn_reseed_interval controls the number of seconds
1338 * between seeding of isn_secret. This is normally set to zero,
1339 * as reseeding should not be necessary.
1341 * net.inet.tcp.strict_rfc1948 controls whether RFC 1948 is followed
1342 * strictly. When strict compliance is requested, reseeding is
1343 * disabled and SYN-ACKs will be generated in the same manner as
1344 * SYNs. Strict mode is disabled by default.
1348 #define ISN_BYTES_PER_SECOND 1048576
1350 u_char isn_secret
[32];
1351 int isn_last_reseed
;
1358 u_int32_t md5_buffer
[4];
1360 struct timeval timenow
;
1362 /* Use arc4random for SYN-ACKs when not in exact RFC1948 mode. */
1363 if (((tp
->t_state
== TCPS_LISTEN
) || (tp
->t_state
== TCPS_TIME_WAIT
))
1364 && tcp_strict_rfc1948
== 0)
1368 return arc4random();
1370 getmicrotime(&timenow
);
1372 /* Seed if this is the first use, reseed if requested. */
1373 if ((isn_last_reseed
== 0) ||
1374 ((tcp_strict_rfc1948
== 0) && (tcp_isn_reseed_interval
> 0) &&
1375 (((u_int
)isn_last_reseed
+ (u_int
)tcp_isn_reseed_interval
*hz
)
1376 < (u_int
)timenow
.tv_sec
))) {
1378 read_random(&isn_secret
, sizeof(isn_secret
));
1380 read_random_unlimited(&isn_secret
, sizeof(isn_secret
));
1382 isn_last_reseed
= timenow
.tv_sec
;
1385 /* Compute the md5 hash and return the ISN. */
1387 MD5Update(&isn_ctx
, (u_char
*) &tp
->t_inpcb
->inp_fport
, sizeof(u_short
));
1388 MD5Update(&isn_ctx
, (u_char
*) &tp
->t_inpcb
->inp_lport
, sizeof(u_short
));
1390 if ((tp
->t_inpcb
->inp_vflag
& INP_IPV6
) != 0) {
1391 MD5Update(&isn_ctx
, (u_char
*) &tp
->t_inpcb
->in6p_faddr
,
1392 sizeof(struct in6_addr
));
1393 MD5Update(&isn_ctx
, (u_char
*) &tp
->t_inpcb
->in6p_laddr
,
1394 sizeof(struct in6_addr
));
1398 MD5Update(&isn_ctx
, (u_char
*) &tp
->t_inpcb
->inp_faddr
,
1399 sizeof(struct in_addr
));
1400 MD5Update(&isn_ctx
, (u_char
*) &tp
->t_inpcb
->inp_laddr
,
1401 sizeof(struct in_addr
));
1403 MD5Update(&isn_ctx
, (u_char
*) &isn_secret
, sizeof(isn_secret
));
1404 MD5Final((u_char
*) &md5_buffer
, &isn_ctx
);
1405 new_isn
= (tcp_seq
) md5_buffer
[0];
1406 new_isn
+= timenow
.tv_sec
* (ISN_BYTES_PER_SECOND
/ hz
);
1411 * When a source quench is received, close congestion window
1412 * to one segment. We will gradually open it again as we proceed.
1420 struct tcpcb
*tp
= intotcpcb(inp
);
1423 tp
->snd_cwnd
= tp
->t_maxseg
;
1427 * When a specific ICMP unreachable message is received and the
1428 * connection state is SYN-SENT, drop the connection. This behavior
1429 * is controlled by the icmp_may_rst sysctl.
1432 tcp_drop_syn_sent(inp
, errno
)
1436 struct tcpcb
*tp
= intotcpcb(inp
);
1438 if (tp
&& tp
->t_state
== TCPS_SYN_SENT
)
1439 tcp_drop(tp
, errno
);
1443 * When `need fragmentation' ICMP is received, update our idea of the MSS
1444 * based on the new value in the route. Also nudge TCP to send something,
1445 * since we know the packet we just sent was dropped.
1446 * This duplicates some code in the tcp_mss() function in tcp_input.c.
1454 struct tcpcb
*tp
= intotcpcb(inp
);
1456 struct rmxp_tao
*taop
;
1457 struct socket
*so
= inp
->inp_socket
;
1461 int isipv6
= (tp
->t_inpcb
->inp_vflag
& INP_IPV6
) != 0;
1467 rt
= tcp_rtlookup6(inp
);
1470 rt
= tcp_rtlookup(inp
);
1471 if (!rt
|| !rt
->rt_rmx
.rmx_mtu
) {
1472 tp
->t_maxopd
= tp
->t_maxseg
=
1474 isipv6
? tcp_v6mssdflt
:
1479 taop
= rmx_taop(rt
->rt_rmx
);
1480 offered
= taop
->tao_mssopt
;
1481 mss
= rt
->rt_rmx
.rmx_mtu
-
1484 sizeof(struct ip6_hdr
) + sizeof(struct tcphdr
) :
1486 sizeof(struct tcpiphdr
)
1493 mss
= min(mss
, offered
);
1495 * XXX - The above conditional probably violates the TCP
1496 * spec. The problem is that, since we don't know the
1497 * other end's MSS, we are supposed to use a conservative
1498 * default. But, if we do that, then MTU discovery will
1499 * never actually take place, because the conservative
1500 * default is much less than the MTUs typically seen
1501 * on the Internet today. For the moment, we'll sweep
1502 * this under the carpet.
1504 * The conservative default might not actually be a problem
1505 * if the only case this occurs is when sending an initial
1506 * SYN with options and data to a host we've never talked
1507 * to before. Then, they will reply with an MSS value which
1508 * will get recorded and the new parameters should get
1509 * recomputed. For Further Study.
1511 if (tp
->t_maxopd
<= mss
)
1515 if ((tp
->t_flags
& (TF_REQ_TSTMP
|TF_NOOPT
)) == TF_REQ_TSTMP
&&
1516 (tp
->t_flags
& TF_RCVD_TSTMP
) == TF_RCVD_TSTMP
)
1517 mss
-= TCPOLEN_TSTAMP_APPA
;
1519 if (so
->so_snd
.sb_hiwat
< mss
)
1520 mss
= so
->so_snd
.sb_hiwat
;
1524 tcpstat
.tcps_mturesent
++;
1526 tp
->snd_nxt
= tp
->snd_una
;
1532 * Look-up the routing entry to the peer of this inpcb. If no route
1533 * is found and it cannot be allocated the return NULL. This routine
1534 * is called by TCP routines that access the rmx structure and by tcp_mss
1535 * to get the interface MTU.
1544 ro
= &inp
->inp_route
;
1548 if (rt
== NULL
|| !(rt
->rt_flags
& RTF_UP
) || rt
->generation_id
!= route_generation
) {
1549 /* No route yet, so try to acquire one */
1550 if (inp
->inp_faddr
.s_addr
!= INADDR_ANY
) {
1551 ro
->ro_dst
.sa_family
= AF_INET
;
1552 ro
->ro_dst
.sa_len
= sizeof(struct sockaddr_in
);
1553 ((struct sockaddr_in
*) &ro
->ro_dst
)->sin_addr
=
1567 struct route_in6
*ro6
;
1570 ro6
= &inp
->in6p_route
;
1572 if (rt
== NULL
|| !(rt
->rt_flags
& RTF_UP
)) {
1573 /* No route yet, so try to acquire one */
1574 if (!IN6_IS_ADDR_UNSPECIFIED(&inp
->in6p_faddr
)) {
1575 struct sockaddr_in6
*dst6
;
1577 dst6
= (struct sockaddr_in6
*)&ro6
->ro_dst
;
1578 dst6
->sin6_family
= AF_INET6
;
1579 dst6
->sin6_len
= sizeof(*dst6
);
1580 dst6
->sin6_addr
= inp
->in6p_faddr
;
1581 rtalloc((struct route
*)ro6
);
1590 /* compute ESP/AH header size for TCP, including outer IP header. */
1592 ipsec_hdrsiz_tcp(tp
)
1600 struct ip6_hdr
*ip6
= NULL
;
1604 if ((tp
== NULL
) || ((inp
= tp
->t_inpcb
) == NULL
))
1606 MGETHDR(m
, M_DONTWAIT
, MT_DATA
);
1610 lck_mtx_lock(sadb_mutex
);
1612 if ((inp
->inp_vflag
& INP_IPV6
) != 0) {
1613 ip6
= mtod(m
, struct ip6_hdr
*);
1614 th
= (struct tcphdr
*)(ip6
+ 1);
1615 m
->m_pkthdr
.len
= m
->m_len
=
1616 sizeof(struct ip6_hdr
) + sizeof(struct tcphdr
);
1617 tcp_fillheaders(tp
, ip6
, th
);
1618 hdrsiz
= ipsec6_hdrsiz(m
, IPSEC_DIR_OUTBOUND
, inp
);
1622 ip
= mtod(m
, struct ip
*);
1623 th
= (struct tcphdr
*)(ip
+ 1);
1624 m
->m_pkthdr
.len
= m
->m_len
= sizeof(struct tcpiphdr
);
1625 tcp_fillheaders(tp
, ip
, th
);
1626 hdrsiz
= ipsec4_hdrsiz(m
, IPSEC_DIR_OUTBOUND
, inp
);
1628 lck_mtx_unlock(sadb_mutex
);
1635 * Return a pointer to the cached information about the remote host.
1636 * The cached information is stored in the protocol specific part of
1637 * the route metrics.
1640 tcp_gettaocache(inp
)
1646 if ((inp
->inp_vflag
& INP_IPV6
) != 0)
1647 rt
= tcp_rtlookup6(inp
);
1650 rt
= tcp_rtlookup(inp
);
1652 /* Make sure this is a host route and is up. */
1654 (rt
->rt_flags
& (RTF_UP
|RTF_HOST
)) != (RTF_UP
|RTF_HOST
))
1657 return rmx_taop(rt
->rt_rmx
);
1661 * Clear all the TAO cache entries, called from tcp_init.
1664 * This routine is just an empty one, because we assume that the routing
1665 * routing tables are initialized at the same time when TCP, so there is
1666 * nothing in the cache left over.
1674 tcp_lock(so
, refcount
, lr
)
1682 __asm__
volatile("mflr %0" : "=r" (lr_saved
));
1688 lck_mtx_lock(((struct inpcb
*)so
->so_pcb
)->inpcb_mtx
);
1691 panic("tcp_lock: so=%x NO PCB! lr=%x\n", so
, lr_saved
);
1692 lck_mtx_lock(so
->so_proto
->pr_domain
->dom_mtx
);
1695 if (so
->so_usecount
< 0)
1696 panic("tcp_lock: so=%x so_pcb=%x lr=%x ref=%x\n",
1697 so
, so
->so_pcb
, lr_saved
, so
->so_usecount
);
1701 so
->reserved3
= (void *)lr_saved
;
1706 tcp_unlock(so
, refcount
, lr
)
1714 __asm__
volatile("mflr %0" : "=r" (lr_saved
));
1719 #ifdef MORE_TCPLOCK_DEBUG
1720 printf("tcp_unlock: so=%x sopcb=%x lock=%x ref=%x lr=%x\n",
1721 so
, so
->so_pcb
, ((struct inpcb
*)so
->so_pcb
)->inpcb_mtx
, so
->so_usecount
, lr_saved
);
1726 if (so
->so_usecount
< 0)
1727 panic("tcp_unlock: so=%x usecount=%x\n", so
, so
->so_usecount
);
1728 if (so
->so_pcb
== NULL
) {
1729 panic("tcp_unlock: so=%x NO PCB usecount=%x lr=%x\n", so
, so
->so_usecount
, lr_saved
);
1730 lck_mtx_unlock(so
->so_proto
->pr_domain
->dom_mtx
);
1733 lck_mtx_assert(((struct inpcb
*)so
->so_pcb
)->inpcb_mtx
, LCK_MTX_ASSERT_OWNED
);
1734 lck_mtx_unlock(((struct inpcb
*)so
->so_pcb
)->inpcb_mtx
);
1736 so
->reserved4
= (void *)lr_saved
;
1741 tcp_getlock(so
, locktype
)
1745 struct inpcb
*inp
= sotoinpcb(so
);
1748 if (so
->so_usecount
< 0)
1749 panic("tcp_getlock: so=%x usecount=%x\n", so
, so
->so_usecount
);
1750 return(inp
->inpcb_mtx
);
1753 panic("tcp_getlock: so=%x NULL so_pcb\n", so
);
1754 return (so
->so_proto
->pr_domain
->dom_mtx
);