2 * Copyright (c) 2000-2019 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
29 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
30 * The Regents of the University of California. All rights reserved.
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions
35 * 1. Redistributions of source code must retain the above copyright
36 * notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in the
39 * documentation and/or other materials provided with the distribution.
40 * 3. All advertising materials mentioning features or use of this software
41 * must display the following acknowledgement:
42 * This product includes software developed by the University of
43 * California, Berkeley and its contributors.
44 * 4. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * @(#)udp_usrreq.c 8.6 (Berkeley) 5/23/95
63 #include <sys/param.h>
64 #include <sys/systm.h>
65 #include <sys/kernel.h>
66 #include <sys/malloc.h>
68 #include <sys/domain.h>
69 #include <sys/protosw.h>
70 #include <sys/socket.h>
71 #include <sys/socketvar.h>
72 #include <sys/sysctl.h>
73 #include <sys/syslog.h>
74 #include <sys/mcache.h>
75 #include <net/ntstat.h>
77 #include <kern/zalloc.h>
78 #include <mach/boolean.h>
81 #include <net/if_types.h>
82 #include <net/route.h>
84 #include <net/net_api_stats.h>
86 #include <netinet/in.h>
87 #include <netinet/in_systm.h>
88 #include <netinet/in_tclass.h>
89 #include <netinet/ip.h>
91 #include <netinet/ip6.h>
93 #include <netinet/in_pcb.h>
94 #include <netinet/in_var.h>
95 #include <netinet/ip_var.h>
97 #include <netinet6/in6_pcb.h>
98 #include <netinet6/ip6_var.h>
99 #include <netinet6/udp6_var.h>
101 #include <netinet/ip_icmp.h>
102 #include <netinet/icmp_var.h>
103 #include <netinet/udp.h>
104 #include <netinet/udp_var.h>
105 #include <sys/kdebug.h>
108 #include <netinet6/ipsec.h>
109 #include <netinet6/esp.h>
110 extern int ipsec_bypass
;
111 extern int esp_udp_encap_port
;
115 #include <net/necp.h>
119 #include <netinet/flow_divert.h>
120 #endif /* FLOW_DIVERT */
123 #include <net/content_filter.h>
124 #endif /* CONTENT_FILTER */
126 #define DBG_LAYER_IN_BEG NETDBG_CODE(DBG_NETUDP, 0)
127 #define DBG_LAYER_IN_END NETDBG_CODE(DBG_NETUDP, 2)
128 #define DBG_LAYER_OUT_BEG NETDBG_CODE(DBG_NETUDP, 1)
129 #define DBG_LAYER_OUT_END NETDBG_CODE(DBG_NETUDP, 3)
130 #define DBG_FNC_UDP_INPUT NETDBG_CODE(DBG_NETUDP, (5 << 8))
131 #define DBG_FNC_UDP_OUTPUT NETDBG_CODE(DBG_NETUDP, (6 << 8) | 1)
134 * UDP protocol implementation.
135 * Per RFC 768, August, 1980.
138 static int udpcksum
= 1;
140 static int udpcksum
= 0; /* XXX */
142 SYSCTL_INT(_net_inet_udp
, UDPCTL_CHECKSUM
, checksum
,
143 CTLFLAG_RW
| CTLFLAG_LOCKED
, &udpcksum
, 0, "");
145 int udp_log_in_vain
= 0;
146 SYSCTL_INT(_net_inet_udp
, OID_AUTO
, log_in_vain
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
147 &udp_log_in_vain
, 0, "Log all incoming UDP packets");
149 static int blackhole
= 0;
150 SYSCTL_INT(_net_inet_udp
, OID_AUTO
, blackhole
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
151 &blackhole
, 0, "Do not send port unreachables for refused connects");
153 struct inpcbhead udb
; /* from udp_var.h */
154 #define udb6 udb /* for KAME src sync over BSD*'s */
155 struct inpcbinfo udbinfo
;
158 #define UDBHASHSIZE 16
161 /* Garbage collection performed during most recent udp_gc() run */
162 static boolean_t udp_gc_done
= FALSE
;
165 extern int fw_verbose
;
166 extern void ipfwsyslog(int level
, const char *format
, ...);
167 extern void ipfw_stealth_stats_incr_udp(void);
169 /* Apple logging, log to ipfw.log */
170 #define log_in_vain_log(a) { \
171 if ((udp_log_in_vain == 3) && (fw_verbose == 2)) { \
173 } else if ((udp_log_in_vain == 4) && (fw_verbose == 2)) { \
174 ipfw_stealth_stats_incr_udp(); \
179 #else /* !IPFIREWALL */
180 #define log_in_vain_log(a) { log a; }
181 #endif /* !IPFIREWALL */
183 static int udp_getstat SYSCTL_HANDLER_ARGS
;
184 struct udpstat udpstat
; /* from udp_var.h */
185 SYSCTL_PROC(_net_inet_udp
, UDPCTL_STATS
, stats
,
186 CTLTYPE_STRUCT
| CTLFLAG_RD
| CTLFLAG_LOCKED
,
187 0, 0, udp_getstat
, "S,udpstat",
188 "UDP statistics (struct udpstat, netinet/udp_var.h)");
190 SYSCTL_INT(_net_inet_udp
, OID_AUTO
, pcbcount
,
191 CTLFLAG_RD
| CTLFLAG_LOCKED
, &udbinfo
.ipi_count
, 0,
192 "Number of active PCBs");
194 __private_extern__
int udp_use_randomport
= 1;
195 SYSCTL_INT(_net_inet_udp
, OID_AUTO
, randomize_ports
,
196 CTLFLAG_RW
| CTLFLAG_LOCKED
, &udp_use_randomport
, 0,
197 "Randomize UDP port numbers");
201 struct sockaddr_in6 uin6_sin
;
202 u_char uin6_init_done
: 1;
205 struct ip6_hdr uip6_ip6
;
206 u_char uip6_init_done
: 1;
209 int udp_abort(struct socket
*);
210 int udp_attach(struct socket
*, int, struct proc
*);
211 int udp_bind(struct socket
*, struct sockaddr
*, struct proc
*);
212 int udp_connect(struct socket
*, struct sockaddr
*, struct proc
*);
213 int udp_connectx(struct socket
*, struct sockaddr
*,
214 struct sockaddr
*, struct proc
*, uint32_t, sae_associd_t
,
215 sae_connid_t
*, uint32_t, void *, uint32_t, struct uio
*, user_ssize_t
*);
216 int udp_detach(struct socket
*);
217 int udp_disconnect(struct socket
*);
218 int udp_disconnectx(struct socket
*, sae_associd_t
, sae_connid_t
);
219 int udp_send(struct socket
*, int, struct mbuf
*, struct sockaddr
*,
220 struct mbuf
*, struct proc
*);
221 static void udp_append(struct inpcb
*, struct ip
*, struct mbuf
*, int,
222 struct sockaddr_in
*, struct udp_in6
*, struct udp_ip6
*, struct ifnet
*);
224 static void udp_append(struct inpcb
*, struct ip
*, struct mbuf
*, int,
225 struct sockaddr_in
*, struct ifnet
*);
227 static int udp_input_checksum(struct mbuf
*, struct udphdr
*, int, int);
228 int udp_output(struct inpcb
*, struct mbuf
*, struct sockaddr
*,
229 struct mbuf
*, struct proc
*);
230 static void ip_2_ip6_hdr(struct ip6_hdr
*ip6
, struct ip
*ip
);
231 static void udp_gc(struct inpcbinfo
*);
233 struct pr_usrreqs udp_usrreqs
= {
234 .pru_abort
= udp_abort
,
235 .pru_attach
= udp_attach
,
236 .pru_bind
= udp_bind
,
237 .pru_connect
= udp_connect
,
238 .pru_connectx
= udp_connectx
,
239 .pru_control
= in_control
,
240 .pru_detach
= udp_detach
,
241 .pru_disconnect
= udp_disconnect
,
242 .pru_disconnectx
= udp_disconnectx
,
243 .pru_peeraddr
= in_getpeeraddr
,
244 .pru_send
= udp_send
,
245 .pru_shutdown
= udp_shutdown
,
246 .pru_sockaddr
= in_getsockaddr
,
247 .pru_sosend
= sosend
,
248 .pru_soreceive
= soreceive
,
249 .pru_soreceive_list
= soreceive_list
,
253 udp_init(struct protosw
*pp
, struct domain
*dp
)
256 static int udp_initialized
= 0;
258 struct inpcbinfo
*pcbinfo
;
260 VERIFY((pp
->pr_flags
& (PR_INITIALIZED
| PR_ATTACHED
)) == PR_ATTACHED
);
262 if (udp_initialized
) {
266 uint32_t pool_size
= (nmbclusters
<< MCLSHIFT
) >> MBSHIFT
;
267 if (pool_size
>= 96) {
268 /* Improves 10GbE UDP performance. */
269 udp_recvspace
= 786896;
272 udbinfo
.ipi_listhead
= &udb
;
273 udbinfo
.ipi_hashbase
= hashinit(UDBHASHSIZE
, M_PCB
,
274 &udbinfo
.ipi_hashmask
);
275 udbinfo
.ipi_porthashbase
= hashinit(UDBHASHSIZE
, M_PCB
,
276 &udbinfo
.ipi_porthashmask
);
277 str_size
= (vm_size_t
) sizeof(struct inpcb
);
278 udbinfo
.ipi_zone
= zinit(str_size
, 80000 * str_size
, 8192, "udpcb");
282 * allocate lock group attribute and group for udp pcb mutexes
284 pcbinfo
->ipi_lock_grp_attr
= lck_grp_attr_alloc_init();
285 pcbinfo
->ipi_lock_grp
= lck_grp_alloc_init("udppcb",
286 pcbinfo
->ipi_lock_grp_attr
);
287 pcbinfo
->ipi_lock_attr
= lck_attr_alloc_init();
288 if ((pcbinfo
->ipi_lock
= lck_rw_alloc_init(pcbinfo
->ipi_lock_grp
,
289 pcbinfo
->ipi_lock_attr
)) == NULL
) {
290 panic("%s: unable to allocate PCB lock\n", __func__
);
294 udbinfo
.ipi_gc
= udp_gc
;
295 in_pcbinfo_attach(&udbinfo
);
299 udp_input(struct mbuf
*m
, int iphlen
)
304 struct mbuf
*opts
= NULL
;
305 int len
, isbroadcast
;
307 struct sockaddr
*append_sa
;
308 struct inpcbinfo
*pcbinfo
= &udbinfo
;
309 struct sockaddr_in udp_in
;
310 struct ip_moptions
*imo
= NULL
;
311 int foundmembership
= 0, ret
= 0;
313 struct udp_in6 udp_in6
;
314 struct udp_ip6 udp_ip6
;
316 struct ifnet
*ifp
= m
->m_pkthdr
.rcvif
;
317 boolean_t cell
= IFNET_IS_CELLULAR(ifp
);
318 boolean_t wifi
= (!cell
&& IFNET_IS_WIFI(ifp
));
319 boolean_t wired
= (!wifi
&& IFNET_IS_WIRED(ifp
));
321 bzero(&udp_in
, sizeof(udp_in
));
322 udp_in
.sin_len
= sizeof(struct sockaddr_in
);
323 udp_in
.sin_family
= AF_INET
;
325 bzero(&udp_in6
, sizeof(udp_in6
));
326 udp_in6
.uin6_sin
.sin6_len
= sizeof(struct sockaddr_in6
);
327 udp_in6
.uin6_sin
.sin6_family
= AF_INET6
;
330 udpstat
.udps_ipackets
++;
332 KERNEL_DEBUG(DBG_FNC_UDP_INPUT
| DBG_FUNC_START
, 0, 0, 0, 0, 0);
334 /* Expect 32-bit aligned data pointer on strict-align platforms */
335 MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m
);
338 * Strip IP options, if any; should skip this,
339 * make available to user, and use on returned packets,
340 * but we don't yet have a way to check the checksum
341 * with options still present.
343 if (iphlen
> sizeof(struct ip
)) {
345 iphlen
= sizeof(struct ip
);
349 * Get IP and UDP header together in first mbuf.
351 ip
= mtod(m
, struct ip
*);
352 if (m
->m_len
< iphlen
+ sizeof(struct udphdr
)) {
353 m
= m_pullup(m
, iphlen
+ sizeof(struct udphdr
));
355 udpstat
.udps_hdrops
++;
356 KERNEL_DEBUG(DBG_FNC_UDP_INPUT
| DBG_FUNC_END
,
360 ip
= mtod(m
, struct ip
*);
362 uh
= (struct udphdr
*)(void *)((caddr_t
)ip
+ iphlen
);
364 /* destination port of 0 is illegal, based on RFC768. */
365 if (uh
->uh_dport
== 0) {
366 IF_UDP_STATINC(ifp
, port0
);
370 KERNEL_DEBUG(DBG_LAYER_IN_BEG
, uh
->uh_dport
, uh
->uh_sport
,
371 ip
->ip_src
.s_addr
, ip
->ip_dst
.s_addr
, uh
->uh_ulen
);
374 * Make mbuf data length reflect UDP length.
375 * If not enough data to reflect UDP length, drop.
377 len
= ntohs((u_short
)uh
->uh_ulen
);
378 if (ip
->ip_len
!= len
) {
379 if (len
> ip
->ip_len
|| len
< sizeof(struct udphdr
)) {
380 udpstat
.udps_badlen
++;
381 IF_UDP_STATINC(ifp
, badlength
);
384 m_adj(m
, len
- ip
->ip_len
);
385 /* ip->ip_len = len; */
388 * Save a copy of the IP header in case we want restore it
389 * for sending an ICMP error message in response.
394 * Checksum extended UDP header and data.
396 if (udp_input_checksum(m
, uh
, iphlen
, len
)) {
400 isbroadcast
= in_broadcast(ip
->ip_dst
, ifp
);
402 if (IN_MULTICAST(ntohl(ip
->ip_dst
.s_addr
)) || isbroadcast
) {
403 int reuse_sock
= 0, mcast_delivered
= 0;
405 lck_rw_lock_shared(pcbinfo
->ipi_lock
);
407 * Deliver a multicast or broadcast datagram to *all* sockets
408 * for which the local and remote addresses and ports match
409 * those of the incoming datagram. This allows more than
410 * one process to receive multi/broadcasts on the same port.
411 * (This really ought to be done for unicast datagrams as
412 * well, but that would cause problems with existing
413 * applications that open both address-specific sockets and
414 * a wildcard socket listening to the same port -- they would
415 * end up receiving duplicates of every unicast datagram.
416 * Those applications open the multiple sockets to overcome an
417 * inadequacy of the UDP socket interface, but for backwards
418 * compatibility we avoid the problem here rather than
419 * fixing the interface. Maybe 4.5BSD will remedy this?)
423 * Construct sockaddr format source address.
425 udp_in
.sin_port
= uh
->uh_sport
;
426 udp_in
.sin_addr
= ip
->ip_src
;
428 * Locate pcb(s) for datagram.
429 * (Algorithm copied from raw_intr().)
432 udp_in6
.uin6_init_done
= udp_ip6
.uip6_init_done
= 0;
434 LIST_FOREACH(inp
, &udb
, inp_list
) {
439 if (inp
->inp_socket
== NULL
) {
442 if (inp
!= sotoinpcb(inp
->inp_socket
)) {
443 panic("%s: bad so back ptr inp=%p\n",
448 if ((inp
->inp_vflag
& INP_IPV4
) == 0) {
452 if (inp_restricted_recv(inp
, ifp
)) {
456 if ((inp
->inp_moptions
== NULL
) &&
457 (ntohl(ip
->ip_dst
.s_addr
) !=
458 INADDR_ALLHOSTS_GROUP
) && (isbroadcast
== 0)) {
462 if (in_pcb_checkstate(inp
, WNT_ACQUIRE
, 0) ==
467 udp_lock(inp
->inp_socket
, 1, 0);
469 if (in_pcb_checkstate(inp
, WNT_RELEASE
, 1) ==
471 udp_unlock(inp
->inp_socket
, 1, 0);
475 if (inp
->inp_lport
!= uh
->uh_dport
) {
476 udp_unlock(inp
->inp_socket
, 1, 0);
479 if (inp
->inp_laddr
.s_addr
!= INADDR_ANY
) {
480 if (inp
->inp_laddr
.s_addr
!=
482 udp_unlock(inp
->inp_socket
, 1, 0);
486 if (inp
->inp_faddr
.s_addr
!= INADDR_ANY
) {
487 if (inp
->inp_faddr
.s_addr
!=
489 inp
->inp_fport
!= uh
->uh_sport
) {
490 udp_unlock(inp
->inp_socket
, 1, 0);
495 if (isbroadcast
== 0 && (ntohl(ip
->ip_dst
.s_addr
) !=
496 INADDR_ALLHOSTS_GROUP
)) {
497 struct sockaddr_in group
;
500 if ((imo
= inp
->inp_moptions
) == NULL
) {
501 udp_unlock(inp
->inp_socket
, 1, 0);
506 bzero(&group
, sizeof(struct sockaddr_in
));
507 group
.sin_len
= sizeof(struct sockaddr_in
);
508 group
.sin_family
= AF_INET
;
509 group
.sin_addr
= ip
->ip_dst
;
511 blocked
= imo_multi_filter(imo
, ifp
,
513 if (blocked
== MCAST_PASS
) {
518 if (!foundmembership
) {
519 udp_unlock(inp
->inp_socket
, 1, 0);
520 if (blocked
== MCAST_NOTSMEMBER
||
521 blocked
== MCAST_MUTED
) {
522 udpstat
.udps_filtermcast
++;
529 reuse_sock
= (inp
->inp_socket
->so_options
&
530 (SO_REUSEPORT
| SO_REUSEADDR
));
534 if (!necp_socket_is_allowed_to_send_recv_v4(inp
,
535 uh
->uh_dport
, uh
->uh_sport
, &ip
->ip_dst
,
536 &ip
->ip_src
, ifp
, NULL
, NULL
, NULL
)) {
537 /* do not inject data to pcb */
543 struct mbuf
*n
= NULL
;
546 n
= m_copy(m
, 0, M_COPYALL
);
549 udp_append(inp
, ip
, m
,
550 iphlen
+ sizeof(struct udphdr
),
551 &udp_in
, &udp_in6
, &udp_ip6
, ifp
);
553 udp_append(inp
, ip
, m
,
554 iphlen
+ sizeof(struct udphdr
),
561 udp_unlock(inp
->inp_socket
, 1, 0);
564 * Don't look for additional matches if this one does
565 * not have either the SO_REUSEPORT or SO_REUSEADDR
566 * socket options set. This heuristic avoids searching
567 * through all pcbs in the common case of a non-shared
568 * port. It assumes that an application will never
569 * clear these options after setting them.
571 if (reuse_sock
== 0 || m
== NULL
) {
576 * Expect 32-bit aligned data pointer on strict-align
579 MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m
);
581 * Recompute IP and UDP header pointers for new mbuf
583 ip
= mtod(m
, struct ip
*);
584 uh
= (struct udphdr
*)(void *)((caddr_t
)ip
+ iphlen
);
586 lck_rw_done(pcbinfo
->ipi_lock
);
588 if (mcast_delivered
== 0) {
590 * No matching pcb found; discard datagram.
591 * (No need to send an ICMP Port Unreachable
592 * for a broadcast or multicast datgram.)
594 udpstat
.udps_noportbcast
++;
595 IF_UDP_STATINC(ifp
, port_unreach
);
599 /* free the extra copy of mbuf or skipped by IPsec */
603 KERNEL_DEBUG(DBG_FNC_UDP_INPUT
| DBG_FUNC_END
, 0, 0, 0, 0, 0);
609 * UDP to port 4500 with a payload where the first four bytes are
610 * not zero is a UDP encapsulated IPsec packet. Packets where
611 * the payload is one byte and that byte is 0xFF are NAT keepalive
612 * packets. Decapsulate the ESP packet and carry on with IPsec input
613 * or discard the NAT keep-alive.
615 if (ipsec_bypass
== 0 && (esp_udp_encap_port
& 0xFFFF) != 0 &&
616 (uh
->uh_dport
== ntohs((u_short
)esp_udp_encap_port
) ||
617 uh
->uh_sport
== ntohs((u_short
)esp_udp_encap_port
))) {
618 int payload_len
= len
- sizeof(struct udphdr
) > 4 ? 4 :
619 len
- sizeof(struct udphdr
);
621 if (m
->m_len
< iphlen
+ sizeof(struct udphdr
) + payload_len
) {
622 if ((m
= m_pullup(m
, iphlen
+ sizeof(struct udphdr
) +
623 payload_len
)) == NULL
) {
624 udpstat
.udps_hdrops
++;
625 KERNEL_DEBUG(DBG_FNC_UDP_INPUT
| DBG_FUNC_END
,
630 * Expect 32-bit aligned data pointer on strict-align
633 MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m
);
635 ip
= mtod(m
, struct ip
*);
636 uh
= (struct udphdr
*)(void *)((caddr_t
)ip
+ iphlen
);
638 /* Check for NAT keepalive packet */
639 if (payload_len
== 1 && *(u_int8_t
*)
640 ((caddr_t
)uh
+ sizeof(struct udphdr
)) == 0xFF) {
642 KERNEL_DEBUG(DBG_FNC_UDP_INPUT
| DBG_FUNC_END
,
645 } else if (payload_len
== 4 && *(u_int32_t
*)(void *)
646 ((caddr_t
)uh
+ sizeof(struct udphdr
)) != 0) {
647 /* UDP encapsulated IPsec packet to pass through NAT */
648 KERNEL_DEBUG(DBG_FNC_UDP_INPUT
| DBG_FUNC_END
,
650 /* preserve the udp header */
651 esp4_input(m
, iphlen
+ sizeof(struct udphdr
));
658 * Locate pcb for datagram.
660 inp
= in_pcblookup_hash(&udbinfo
, ip
->ip_src
, uh
->uh_sport
,
661 ip
->ip_dst
, uh
->uh_dport
, 1, ifp
);
663 IF_UDP_STATINC(ifp
, port_unreach
);
665 if (udp_log_in_vain
) {
666 char buf
[MAX_IPv4_STR_LEN
];
667 char buf2
[MAX_IPv4_STR_LEN
];
669 /* check src and dst address */
670 if (udp_log_in_vain
< 3) {
671 log(LOG_INFO
, "Connection attempt to "
672 "UDP %s:%d from %s:%d\n", inet_ntop(AF_INET
,
673 &ip
->ip_dst
, buf
, sizeof(buf
)),
674 ntohs(uh
->uh_dport
), inet_ntop(AF_INET
,
675 &ip
->ip_src
, buf2
, sizeof(buf2
)),
676 ntohs(uh
->uh_sport
));
677 } else if (!(m
->m_flags
& (M_BCAST
| M_MCAST
)) &&
678 ip
->ip_dst
.s_addr
!= ip
->ip_src
.s_addr
) {
679 log_in_vain_log((LOG_INFO
,
680 "Stealth Mode connection attempt to "
681 "UDP %s:%d from %s:%d\n", inet_ntop(AF_INET
,
682 &ip
->ip_dst
, buf
, sizeof(buf
)),
683 ntohs(uh
->uh_dport
), inet_ntop(AF_INET
,
684 &ip
->ip_src
, buf2
, sizeof(buf2
)),
685 ntohs(uh
->uh_sport
)))
688 udpstat
.udps_noport
++;
689 if (m
->m_flags
& (M_BCAST
| M_MCAST
)) {
690 udpstat
.udps_noportbcast
++;
694 if (badport_bandlim(BANDLIM_ICMP_UNREACH
) < 0) {
697 #endif /* ICMP_BANDLIM */
699 if (ifp
&& ifp
->if_type
!= IFT_LOOP
) {
704 ip
->ip_len
+= iphlen
;
705 icmp_error(m
, ICMP_UNREACH
, ICMP_UNREACH_PORT
, 0, 0);
706 KERNEL_DEBUG(DBG_FNC_UDP_INPUT
| DBG_FUNC_END
, 0, 0, 0, 0, 0);
709 udp_lock(inp
->inp_socket
, 1, 0);
711 if (in_pcb_checkstate(inp
, WNT_RELEASE
, 1) == WNT_STOPUSING
) {
712 udp_unlock(inp
->inp_socket
, 1, 0);
713 IF_UDP_STATINC(ifp
, cleanup
);
717 if (!necp_socket_is_allowed_to_send_recv_v4(inp
, uh
->uh_dport
,
718 uh
->uh_sport
, &ip
->ip_dst
, &ip
->ip_src
, ifp
, NULL
, NULL
, NULL
)) {
719 udp_unlock(inp
->inp_socket
, 1, 0);
720 IF_UDP_STATINC(ifp
, badipsec
);
726 * Construct sockaddr format source address.
727 * Stuff source address and datagram in user buffer.
729 udp_in
.sin_port
= uh
->uh_sport
;
730 udp_in
.sin_addr
= ip
->ip_src
;
731 if ((inp
->inp_flags
& INP_CONTROLOPTS
) != 0 ||
732 (inp
->inp_socket
->so_options
& SO_TIMESTAMP
) != 0 ||
733 (inp
->inp_socket
->so_options
& SO_TIMESTAMP_MONOTONIC
) != 0 ||
734 (inp
->inp_socket
->so_options
& SO_TIMESTAMP_CONTINUOUS
) != 0) {
736 if (inp
->inp_vflag
& INP_IPV6
) {
739 ip_2_ip6_hdr(&udp_ip6
.uip6_ip6
, ip
);
740 savedflags
= inp
->inp_flags
;
741 inp
->inp_flags
&= ~INP_UNMAPPABLEOPTS
;
742 ret
= ip6_savecontrol(inp
, m
, &opts
);
743 inp
->inp_flags
= savedflags
;
747 ret
= ip_savecontrol(inp
, &opts
, ip
, m
);
750 udp_unlock(inp
->inp_socket
, 1, 0);
754 m_adj(m
, iphlen
+ sizeof(struct udphdr
));
756 KERNEL_DEBUG(DBG_LAYER_IN_END
, uh
->uh_dport
, uh
->uh_sport
,
757 save_ip
.ip_src
.s_addr
, save_ip
.ip_dst
.s_addr
, uh
->uh_ulen
);
760 if (inp
->inp_vflag
& INP_IPV6
) {
761 in6_sin_2_v4mapsin6(&udp_in
, &udp_in6
.uin6_sin
);
762 append_sa
= (struct sockaddr
*)&udp_in6
.uin6_sin
;
766 append_sa
= (struct sockaddr
*)&udp_in
;
769 INP_ADD_STAT(inp
, cell
, wifi
, wired
, rxpackets
, 1);
770 INP_ADD_STAT(inp
, cell
, wifi
, wired
, rxbytes
, m
->m_pkthdr
.len
);
771 inp_set_activity_bitmap(inp
);
773 so_recv_data_stat(inp
->inp_socket
, m
, 0);
774 if (sbappendaddr(&inp
->inp_socket
->so_rcv
, append_sa
,
775 m
, opts
, NULL
) == 0) {
776 udpstat
.udps_fullsock
++;
778 sorwakeup(inp
->inp_socket
);
780 udp_unlock(inp
->inp_socket
, 1, 0);
781 KERNEL_DEBUG(DBG_FNC_UDP_INPUT
| DBG_FUNC_END
, 0, 0, 0, 0, 0);
788 KERNEL_DEBUG(DBG_FNC_UDP_INPUT
| DBG_FUNC_END
, 0, 0, 0, 0, 0);
793 ip_2_ip6_hdr(struct ip6_hdr
*ip6
, struct ip
*ip
)
795 bzero(ip6
, sizeof(*ip6
));
797 ip6
->ip6_vfc
= IPV6_VERSION
;
798 ip6
->ip6_plen
= ip
->ip_len
;
799 ip6
->ip6_nxt
= ip
->ip_p
;
800 ip6
->ip6_hlim
= ip
->ip_ttl
;
801 if (ip
->ip_src
.s_addr
) {
802 ip6
->ip6_src
.s6_addr32
[2] = IPV6_ADDR_INT32_SMP
;
803 ip6
->ip6_src
.s6_addr32
[3] = ip
->ip_src
.s_addr
;
805 if (ip
->ip_dst
.s_addr
) {
806 ip6
->ip6_dst
.s6_addr32
[2] = IPV6_ADDR_INT32_SMP
;
807 ip6
->ip6_dst
.s6_addr32
[3] = ip
->ip_dst
.s_addr
;
813 * subroutine of udp_input(), mainly for source code readability.
817 udp_append(struct inpcb
*last
, struct ip
*ip
, struct mbuf
*n
, int off
,
818 struct sockaddr_in
*pudp_in
, struct udp_in6
*pudp_in6
,
819 struct udp_ip6
*pudp_ip6
, struct ifnet
*ifp
)
821 udp_append(struct inpcb
*last
, struct ip
*ip
, struct mbuf
*n
, int off
,
822 struct sockaddr_in
*pudp_in
, struct ifnet
*ifp
)
825 struct sockaddr
*append_sa
;
826 struct mbuf
*opts
= 0;
827 boolean_t cell
= IFNET_IS_CELLULAR(ifp
);
828 boolean_t wifi
= (!cell
&& IFNET_IS_WIFI(ifp
));
829 boolean_t wired
= (!wifi
&& IFNET_IS_WIRED(ifp
));
833 if (mac_inpcb_check_deliver(last
, n
, AF_INET
, SOCK_DGRAM
) != 0) {
837 #endif /* CONFIG_MACF_NET */
838 if ((last
->inp_flags
& INP_CONTROLOPTS
) != 0 ||
839 (last
->inp_socket
->so_options
& SO_TIMESTAMP
) != 0 ||
840 (last
->inp_socket
->so_options
& SO_TIMESTAMP_MONOTONIC
) != 0 ||
841 (last
->inp_socket
->so_options
& SO_TIMESTAMP_CONTINUOUS
) != 0) {
843 if (last
->inp_vflag
& INP_IPV6
) {
846 if (pudp_ip6
->uip6_init_done
== 0) {
847 ip_2_ip6_hdr(&pudp_ip6
->uip6_ip6
, ip
);
848 pudp_ip6
->uip6_init_done
= 1;
850 savedflags
= last
->inp_flags
;
851 last
->inp_flags
&= ~INP_UNMAPPABLEOPTS
;
852 ret
= ip6_savecontrol(last
, n
, &opts
);
854 last
->inp_flags
= savedflags
;
857 last
->inp_flags
= savedflags
;
861 ret
= ip_savecontrol(last
, &opts
, ip
, n
);
868 if (last
->inp_vflag
& INP_IPV6
) {
869 if (pudp_in6
->uin6_init_done
== 0) {
870 in6_sin_2_v4mapsin6(pudp_in
, &pudp_in6
->uin6_sin
);
871 pudp_in6
->uin6_init_done
= 1;
873 append_sa
= (struct sockaddr
*)&pudp_in6
->uin6_sin
;
876 append_sa
= (struct sockaddr
*)pudp_in
;
878 INP_ADD_STAT(last
, cell
, wifi
, wired
, rxpackets
, 1);
879 INP_ADD_STAT(last
, cell
, wifi
, wired
, rxbytes
,
881 inp_set_activity_bitmap(last
);
883 so_recv_data_stat(last
->inp_socket
, n
, 0);
885 if (sbappendaddr(&last
->inp_socket
->so_rcv
, append_sa
,
886 n
, opts
, NULL
) == 0) {
887 udpstat
.udps_fullsock
++;
889 sorwakeup(last
->inp_socket
);
898 * Notify a udp user of an asynchronous error;
899 * just wake up so that he can collect error status.
902 udp_notify(struct inpcb
*inp
, int errno
)
904 inp
->inp_socket
->so_error
= errno
;
905 sorwakeup(inp
->inp_socket
);
906 sowwakeup(inp
->inp_socket
);
910 udp_ctlinput(int cmd
, struct sockaddr
*sa
, void *vip
, __unused
struct ifnet
* ifp
)
913 void (*notify
)(struct inpcb
*, int) = udp_notify
;
914 struct in_addr faddr
;
915 struct inpcb
*inp
= NULL
;
917 faddr
= ((struct sockaddr_in
*)(void *)sa
)->sin_addr
;
918 if (sa
->sa_family
!= AF_INET
|| faddr
.s_addr
== INADDR_ANY
) {
922 if (PRC_IS_REDIRECT(cmd
)) {
924 notify
= in_rtchange
;
925 } else if (cmd
== PRC_HOSTDEAD
) {
927 } else if ((unsigned)cmd
>= PRC_NCMDS
|| inetctlerrmap
[cmd
] == 0) {
933 bcopy(((caddr_t
)ip
+ (ip
->ip_hl
<< 2)), &uh
, sizeof(uh
));
934 inp
= in_pcblookup_hash(&udbinfo
, faddr
, uh
.uh_dport
,
935 ip
->ip_src
, uh
.uh_sport
, 0, NULL
);
936 if (inp
!= NULL
&& inp
->inp_socket
!= NULL
) {
937 udp_lock(inp
->inp_socket
, 1, 0);
938 if (in_pcb_checkstate(inp
, WNT_RELEASE
, 1) ==
940 udp_unlock(inp
->inp_socket
, 1, 0);
943 (*notify
)(inp
, inetctlerrmap
[cmd
]);
944 udp_unlock(inp
->inp_socket
, 1, 0);
947 in_pcbnotifyall(&udbinfo
, faddr
, inetctlerrmap
[cmd
], notify
);
952 udp_ctloutput(struct socket
*so
, struct sockopt
*sopt
)
954 int error
= 0, optval
= 0;
957 /* Allow <SOL_SOCKET,SO_FLUSH> at this level */
958 if (sopt
->sopt_level
!= IPPROTO_UDP
&&
959 !(sopt
->sopt_level
== SOL_SOCKET
&& sopt
->sopt_name
== SO_FLUSH
)) {
960 return ip_ctloutput(so
, sopt
);
965 switch (sopt
->sopt_dir
) {
967 switch (sopt
->sopt_name
) {
969 /* This option is settable only for UDP over IPv4 */
970 if (!(inp
->inp_vflag
& INP_IPV4
)) {
975 if ((error
= sooptcopyin(sopt
, &optval
, sizeof(optval
),
976 sizeof(optval
))) != 0) {
981 inp
->inp_flags
|= INP_UDP_NOCKSUM
;
983 inp
->inp_flags
&= ~INP_UDP_NOCKSUM
;
986 case UDP_KEEPALIVE_OFFLOAD
:
988 struct udp_keepalive_offload ka
;
990 * If the socket is not connected, the stack will
991 * not know the destination address to put in the
992 * keepalive datagram. Return an error now instead
995 if (!(so
->so_state
& SS_ISCONNECTED
)) {
999 if (sopt
->sopt_valsize
!= sizeof(ka
)) {
1003 if ((error
= sooptcopyin(sopt
, &ka
, sizeof(ka
),
1004 sizeof(ka
))) != 0) {
1008 /* application should specify the type */
1009 if (ka
.ka_type
== 0) {
1013 if (ka
.ka_interval
== 0) {
1015 * if interval is 0, disable the offload
1018 if (inp
->inp_keepalive_data
!= NULL
) {
1019 FREE(inp
->inp_keepalive_data
,
1022 inp
->inp_keepalive_data
= NULL
;
1023 inp
->inp_keepalive_datalen
= 0;
1024 inp
->inp_keepalive_interval
= 0;
1025 inp
->inp_keepalive_type
= 0;
1026 inp
->inp_flags2
&= ~INP2_KEEPALIVE_OFFLOAD
;
1028 if (inp
->inp_keepalive_data
!= NULL
) {
1029 FREE(inp
->inp_keepalive_data
,
1031 inp
->inp_keepalive_data
= NULL
;
1034 inp
->inp_keepalive_datalen
= min(
1036 UDP_KEEPALIVE_OFFLOAD_DATA_SIZE
);
1037 if (inp
->inp_keepalive_datalen
> 0) {
1038 MALLOC(inp
->inp_keepalive_data
,
1040 inp
->inp_keepalive_datalen
,
1042 if (inp
->inp_keepalive_data
== NULL
) {
1043 inp
->inp_keepalive_datalen
= 0;
1048 inp
->inp_keepalive_data
,
1049 inp
->inp_keepalive_datalen
);
1051 inp
->inp_keepalive_datalen
= 0;
1053 inp
->inp_keepalive_interval
=
1054 min(UDP_KEEPALIVE_INTERVAL_MAX_SECONDS
,
1056 inp
->inp_keepalive_type
= ka
.ka_type
;
1057 inp
->inp_flags2
|= INP2_KEEPALIVE_OFFLOAD
;
1062 if ((error
= sooptcopyin(sopt
, &optval
, sizeof(optval
),
1063 sizeof(optval
))) != 0) {
1067 error
= inp_flush(inp
, optval
);
1071 error
= ENOPROTOOPT
;
1077 switch (sopt
->sopt_name
) {
1079 optval
= inp
->inp_flags
& INP_UDP_NOCKSUM
;
1083 error
= ENOPROTOOPT
;
1087 error
= sooptcopyout(sopt
, &optval
, sizeof(optval
));
1095 udp_pcblist SYSCTL_HANDLER_ARGS
1097 #pragma unused(oidp, arg1, arg2)
1099 struct inpcb
*inp
, **inp_list
;
1104 * The process of preparing the TCB list is too time-consuming and
1105 * resource-intensive to repeat twice on every request.
1107 lck_rw_lock_exclusive(udbinfo
.ipi_lock
);
1108 if (req
->oldptr
== USER_ADDR_NULL
) {
1109 n
= udbinfo
.ipi_count
;
1110 req
->oldidx
= 2 * (sizeof(xig
))
1111 + (n
+ n
/ 8) * sizeof(struct xinpcb
);
1112 lck_rw_done(udbinfo
.ipi_lock
);
1116 if (req
->newptr
!= USER_ADDR_NULL
) {
1117 lck_rw_done(udbinfo
.ipi_lock
);
1122 * OK, now we're committed to doing something.
1124 gencnt
= udbinfo
.ipi_gencnt
;
1125 n
= udbinfo
.ipi_count
;
1127 bzero(&xig
, sizeof(xig
));
1128 xig
.xig_len
= sizeof(xig
);
1130 xig
.xig_gen
= gencnt
;
1131 xig
.xig_sogen
= so_gencnt
;
1132 error
= SYSCTL_OUT(req
, &xig
, sizeof(xig
));
1134 lck_rw_done(udbinfo
.ipi_lock
);
1138 * We are done if there is no pcb
1141 lck_rw_done(udbinfo
.ipi_lock
);
1145 inp_list
= _MALLOC(n
* sizeof(*inp_list
), M_TEMP
, M_WAITOK
);
1146 if (inp_list
== 0) {
1147 lck_rw_done(udbinfo
.ipi_lock
);
1151 for (inp
= LIST_FIRST(udbinfo
.ipi_listhead
), i
= 0; inp
&& i
< n
;
1152 inp
= LIST_NEXT(inp
, inp_list
)) {
1153 if (inp
->inp_gencnt
<= gencnt
&&
1154 inp
->inp_state
!= INPCB_STATE_DEAD
) {
1155 inp_list
[i
++] = inp
;
1161 for (i
= 0; i
< n
; i
++) {
1166 if (in_pcb_checkstate(inp
, WNT_ACQUIRE
, 0) == WNT_STOPUSING
) {
1169 udp_lock(inp
->inp_socket
, 1, 0);
1170 if (in_pcb_checkstate(inp
, WNT_RELEASE
, 1) == WNT_STOPUSING
) {
1171 udp_unlock(inp
->inp_socket
, 1, 0);
1174 if (inp
->inp_gencnt
> gencnt
) {
1175 udp_unlock(inp
->inp_socket
, 1, 0);
1179 bzero(&xi
, sizeof(xi
));
1180 xi
.xi_len
= sizeof(xi
);
1181 /* XXX should avoid extra copy */
1182 inpcb_to_compat(inp
, &xi
.xi_inp
);
1183 if (inp
->inp_socket
) {
1184 sotoxsocket(inp
->inp_socket
, &xi
.xi_socket
);
1187 udp_unlock(inp
->inp_socket
, 1, 0);
1189 error
= SYSCTL_OUT(req
, &xi
, sizeof(xi
));
1193 * Give the user an updated idea of our state.
1194 * If the generation differs from what we told
1195 * her before, she knows that something happened
1196 * while we were processing this request, and it
1197 * might be necessary to retry.
1199 bzero(&xig
, sizeof(xig
));
1200 xig
.xig_len
= sizeof(xig
);
1201 xig
.xig_gen
= udbinfo
.ipi_gencnt
;
1202 xig
.xig_sogen
= so_gencnt
;
1203 xig
.xig_count
= udbinfo
.ipi_count
;
1204 error
= SYSCTL_OUT(req
, &xig
, sizeof(xig
));
1206 FREE(inp_list
, M_TEMP
);
1207 lck_rw_done(udbinfo
.ipi_lock
);
1211 SYSCTL_PROC(_net_inet_udp
, UDPCTL_PCBLIST
, pcblist
,
1212 CTLTYPE_STRUCT
| CTLFLAG_RD
| CTLFLAG_LOCKED
, 0, 0, udp_pcblist
,
1213 "S,xinpcb", "List of active UDP sockets");
1215 #if !CONFIG_EMBEDDED
1218 udp_pcblist64 SYSCTL_HANDLER_ARGS
1220 #pragma unused(oidp, arg1, arg2)
1222 struct inpcb
*inp
, **inp_list
;
1227 * The process of preparing the TCB list is too time-consuming and
1228 * resource-intensive to repeat twice on every request.
1230 lck_rw_lock_shared(udbinfo
.ipi_lock
);
1231 if (req
->oldptr
== USER_ADDR_NULL
) {
1232 n
= udbinfo
.ipi_count
;
1234 2 * (sizeof(xig
)) + (n
+ n
/ 8) * sizeof(struct xinpcb64
);
1235 lck_rw_done(udbinfo
.ipi_lock
);
1239 if (req
->newptr
!= USER_ADDR_NULL
) {
1240 lck_rw_done(udbinfo
.ipi_lock
);
1245 * OK, now we're committed to doing something.
1247 gencnt
= udbinfo
.ipi_gencnt
;
1248 n
= udbinfo
.ipi_count
;
1250 bzero(&xig
, sizeof(xig
));
1251 xig
.xig_len
= sizeof(xig
);
1253 xig
.xig_gen
= gencnt
;
1254 xig
.xig_sogen
= so_gencnt
;
1255 error
= SYSCTL_OUT(req
, &xig
, sizeof(xig
));
1257 lck_rw_done(udbinfo
.ipi_lock
);
1261 * We are done if there is no pcb
1264 lck_rw_done(udbinfo
.ipi_lock
);
1268 inp_list
= _MALLOC(n
* sizeof(*inp_list
), M_TEMP
, M_WAITOK
);
1269 if (inp_list
== 0) {
1270 lck_rw_done(udbinfo
.ipi_lock
);
1274 for (inp
= LIST_FIRST(udbinfo
.ipi_listhead
), i
= 0; inp
&& i
< n
;
1275 inp
= LIST_NEXT(inp
, inp_list
)) {
1276 if (inp
->inp_gencnt
<= gencnt
&&
1277 inp
->inp_state
!= INPCB_STATE_DEAD
) {
1278 inp_list
[i
++] = inp
;
1284 for (i
= 0; i
< n
; i
++) {
1289 if (in_pcb_checkstate(inp
, WNT_ACQUIRE
, 0) == WNT_STOPUSING
) {
1292 udp_lock(inp
->inp_socket
, 1, 0);
1293 if (in_pcb_checkstate(inp
, WNT_RELEASE
, 1) == WNT_STOPUSING
) {
1294 udp_unlock(inp
->inp_socket
, 1, 0);
1297 if (inp
->inp_gencnt
> gencnt
) {
1298 udp_unlock(inp
->inp_socket
, 1, 0);
1302 bzero(&xi
, sizeof(xi
));
1303 xi
.xi_len
= sizeof(xi
);
1304 inpcb_to_xinpcb64(inp
, &xi
);
1305 if (inp
->inp_socket
) {
1306 sotoxsocket64(inp
->inp_socket
, &xi
.xi_socket
);
1309 udp_unlock(inp
->inp_socket
, 1, 0);
1311 error
= SYSCTL_OUT(req
, &xi
, sizeof(xi
));
1315 * Give the user an updated idea of our state.
1316 * If the generation differs from what we told
1317 * her before, she knows that something happened
1318 * while we were processing this request, and it
1319 * might be necessary to retry.
1321 bzero(&xig
, sizeof(xig
));
1322 xig
.xig_len
= sizeof(xig
);
1323 xig
.xig_gen
= udbinfo
.ipi_gencnt
;
1324 xig
.xig_sogen
= so_gencnt
;
1325 xig
.xig_count
= udbinfo
.ipi_count
;
1326 error
= SYSCTL_OUT(req
, &xig
, sizeof(xig
));
1328 FREE(inp_list
, M_TEMP
);
1329 lck_rw_done(udbinfo
.ipi_lock
);
1333 SYSCTL_PROC(_net_inet_udp
, OID_AUTO
, pcblist64
,
1334 CTLTYPE_STRUCT
| CTLFLAG_RD
| CTLFLAG_LOCKED
, 0, 0, udp_pcblist64
,
1335 "S,xinpcb64", "List of active UDP sockets");
1337 #endif /* !CONFIG_EMBEDDED */
1340 udp_pcblist_n SYSCTL_HANDLER_ARGS
1342 #pragma unused(oidp, arg1, arg2)
1343 return get_pcblist_n(IPPROTO_UDP
, req
, &udbinfo
);
1346 SYSCTL_PROC(_net_inet_udp
, OID_AUTO
, pcblist_n
,
1347 CTLTYPE_STRUCT
| CTLFLAG_RD
| CTLFLAG_LOCKED
, 0, 0, udp_pcblist_n
,
1348 "S,xinpcb_n", "List of active UDP sockets");
1350 __private_extern__
void
1351 udp_get_ports_used(uint32_t ifindex
, int protocol
, uint32_t flags
,
1354 inpcb_get_ports_used(ifindex
, protocol
, flags
, bitfield
,
1358 __private_extern__
uint32_t
1359 udp_count_opportunistic(unsigned int ifindex
, u_int32_t flags
)
1361 return inpcb_count_opportunistic(ifindex
, &udbinfo
, flags
);
1364 __private_extern__
uint32_t
1365 udp_find_anypcb_byaddr(struct ifaddr
*ifa
)
1367 return inpcb_find_anypcb_byaddr(ifa
, &udbinfo
);
1371 udp_check_pktinfo(struct mbuf
*control
, struct ifnet
**outif
,
1372 struct in_addr
*laddr
)
1374 struct cmsghdr
*cm
= 0;
1375 struct in_pktinfo
*pktinfo
;
1378 if (outif
!= NULL
) {
1383 * XXX: Currently, we assume all the optional information is stored
1386 if (control
->m_next
) {
1390 if (control
->m_len
< CMSG_LEN(0)) {
1394 for (cm
= M_FIRST_CMSGHDR(control
);
1395 is_cmsg_valid(control
, cm
);
1396 cm
= M_NXT_CMSGHDR(control
, cm
)) {
1397 if (cm
->cmsg_level
!= IPPROTO_IP
||
1398 cm
->cmsg_type
!= IP_PKTINFO
) {
1402 if (cm
->cmsg_len
!= CMSG_LEN(sizeof(struct in_pktinfo
))) {
1406 pktinfo
= (struct in_pktinfo
*)(void *)CMSG_DATA(cm
);
1408 /* Check for a valid ifindex in pktinfo */
1409 ifnet_head_lock_shared();
1411 if (pktinfo
->ipi_ifindex
> if_index
) {
1417 * If ipi_ifindex is specified it takes precedence
1418 * over ipi_spec_dst.
1420 if (pktinfo
->ipi_ifindex
) {
1421 ifp
= ifindex2ifnet
[pktinfo
->ipi_ifindex
];
1426 if (outif
!= NULL
) {
1427 ifnet_reference(ifp
);
1431 laddr
->s_addr
= INADDR_ANY
;
1438 * Use the provided ipi_spec_dst address for temp
1441 *laddr
= pktinfo
->ipi_spec_dst
;
1448 udp_output(struct inpcb
*inp
, struct mbuf
*m
, struct sockaddr
*addr
,
1449 struct mbuf
*control
, struct proc
*p
)
1451 struct udpiphdr
*ui
;
1452 int len
= m
->m_pkthdr
.len
;
1453 struct sockaddr_in
*sin
;
1454 struct in_addr origladdr
, laddr
, faddr
, pi_laddr
;
1455 u_short lport
, fport
;
1456 int error
= 0, udp_dodisconnect
= 0, pktinfo
= 0;
1457 struct socket
*so
= inp
->inp_socket
;
1459 struct mbuf
*inpopts
;
1460 struct ip_moptions
*mopts
;
1462 struct ip_out_args ipoa
;
1464 struct m_tag
*cfil_tag
= NULL
;
1465 bool cfil_faddr_use
= false;
1466 uint32_t cfil_so_state_change_cnt
= 0;
1467 short cfil_so_options
= 0;
1468 struct sockaddr
*cfil_faddr
= NULL
;
1471 bzero(&ipoa
, sizeof(ipoa
));
1472 ipoa
.ipoa_boundif
= IFSCOPE_NONE
;
1473 ipoa
.ipoa_flags
= IPOAF_SELECT_SRCIF
;
1475 struct ifnet
*outif
= NULL
;
1476 struct flowadv
*adv
= &ipoa
.ipoa_flowadv
;
1477 int sotc
= SO_TC_UNSPEC
;
1478 int netsvctype
= _NET_SERVICE_TYPE_UNSPEC
;
1479 struct ifnet
*origoutifp
= NULL
;
1482 /* Enable flow advisory only when connected */
1483 flowadv
= (so
->so_state
& SS_ISCONNECTED
) ? 1 : 0;
1484 pi_laddr
.s_addr
= INADDR_ANY
;
1486 KERNEL_DEBUG(DBG_FNC_UDP_OUTPUT
| DBG_FUNC_START
, 0, 0, 0, 0, 0);
1488 socket_lock_assert_owned(so
);
1492 * If socket is subject to UDP Content Filter and no addr is passed in,
1493 * retrieve CFIL saved state from mbuf and use it if necessary.
1495 if (so
->so_cfil_db
&& !addr
) {
1496 cfil_tag
= cfil_udp_get_socket_state(m
, &cfil_so_state_change_cnt
, &cfil_so_options
, &cfil_faddr
);
1498 sin
= (struct sockaddr_in
*)(void *)cfil_faddr
;
1499 if (inp
&& inp
->inp_faddr
.s_addr
== INADDR_ANY
) {
1501 * Socket is unconnected, simply use the saved faddr as 'addr' to go through
1502 * the connect/disconnect logic.
1504 addr
= (struct sockaddr
*)cfil_faddr
;
1505 } else if ((so
->so_state_change_cnt
!= cfil_so_state_change_cnt
) &&
1506 (inp
->inp_fport
!= sin
->sin_port
||
1507 inp
->inp_faddr
.s_addr
!= sin
->sin_addr
.s_addr
)) {
1509 * Socket is connected but socket state and dest addr/port changed.
1510 * We need to use the saved faddr info.
1512 cfil_faddr_use
= true;
1518 if (control
!= NULL
) {
1519 sotc
= so_tc_from_control(control
, &netsvctype
);
1520 VERIFY(outif
== NULL
);
1521 error
= udp_check_pktinfo(control
, &outif
, &pi_laddr
);
1528 if (outif
!= NULL
) {
1529 ipoa
.ipoa_boundif
= outif
->if_index
;
1532 if (sotc
== SO_TC_UNSPEC
) {
1533 sotc
= so
->so_traffic_class
;
1534 netsvctype
= so
->so_netsvctype
;
1537 KERNEL_DEBUG(DBG_LAYER_OUT_BEG
, inp
->inp_fport
, inp
->inp_lport
,
1538 inp
->inp_laddr
.s_addr
, inp
->inp_faddr
.s_addr
,
1539 (htons((u_short
)len
+ sizeof(struct udphdr
))));
1541 if (len
+ sizeof(struct udpiphdr
) > IP_MAXPACKET
) {
1546 if (flowadv
&& INP_WAIT_FOR_IF_FEEDBACK(inp
)) {
1548 * The socket is flow-controlled, drop the packets
1549 * until the inp is not flow controlled
1555 * If socket was bound to an ifindex, tell ip_output about it.
1556 * If the ancillary IP_PKTINFO option contains an interface index,
1557 * it takes precedence over the one specified by IP_BOUND_IF.
1559 if (ipoa
.ipoa_boundif
== IFSCOPE_NONE
&&
1560 (inp
->inp_flags
& INP_BOUND_IF
)) {
1561 VERIFY(inp
->inp_boundifp
!= NULL
);
1562 ifnet_reference(inp
->inp_boundifp
); /* for this routine */
1563 if (outif
!= NULL
) {
1564 ifnet_release(outif
);
1566 outif
= inp
->inp_boundifp
;
1567 ipoa
.ipoa_boundif
= outif
->if_index
;
1569 if (INP_NO_CELLULAR(inp
)) {
1570 ipoa
.ipoa_flags
|= IPOAF_NO_CELLULAR
;
1572 if (INP_NO_EXPENSIVE(inp
)) {
1573 ipoa
.ipoa_flags
|= IPOAF_NO_EXPENSIVE
;
1575 if (INP_NO_CONSTRAINED(inp
)) {
1576 ipoa
.ipoa_flags
|= IPOAF_NO_CONSTRAINED
;
1578 if (INP_AWDL_UNRESTRICTED(inp
)) {
1579 ipoa
.ipoa_flags
|= IPOAF_AWDL_UNRESTRICTED
;
1581 ipoa
.ipoa_sotc
= sotc
;
1582 ipoa
.ipoa_netsvctype
= netsvctype
;
1583 soopts
|= IP_OUTARGS
;
1586 * If there was a routing change, discard cached route and check
1587 * that we have a valid source address. Reacquire a new source
1588 * address if INADDR_ANY was specified.
1590 * If we are using cfil saved state, go through this cache cleanup
1591 * so that we can get a new route.
1593 if (ROUTE_UNUSABLE(&inp
->inp_route
)
1598 struct in_ifaddr
*ia
= NULL
;
1600 ROUTE_RELEASE(&inp
->inp_route
);
1602 /* src address is gone? */
1603 if (inp
->inp_laddr
.s_addr
!= INADDR_ANY
&&
1604 (ia
= ifa_foraddr(inp
->inp_laddr
.s_addr
)) == NULL
) {
1605 if (!(inp
->inp_flags
& INP_INADDR_ANY
) ||
1606 (so
->so_state
& SS_ISCONNECTED
)) {
1609 * If the source address is gone, return an
1611 * - the source was specified
1612 * - the socket was already connected
1614 soevent(so
, (SO_FILT_HINT_LOCKED
|
1615 SO_FILT_HINT_NOSRCADDR
));
1616 error
= EADDRNOTAVAIL
;
1619 /* new src will be set later */
1620 inp
->inp_laddr
.s_addr
= INADDR_ANY
;
1621 inp
->inp_last_outifp
= NULL
;
1625 IFA_REMREF(&ia
->ia_ifa
);
1630 * IP_PKTINFO option check. If a temporary scope or src address
1631 * is provided, use it for this packet only and make sure we forget
1632 * it after sending this datagram.
1634 if (pi_laddr
.s_addr
!= INADDR_ANY
||
1635 (ipoa
.ipoa_boundif
!= IFSCOPE_NONE
&& pktinfo
)) {
1636 /* temp src address for this datagram only */
1638 origladdr
.s_addr
= INADDR_ANY
;
1639 /* we don't want to keep the laddr or route */
1640 udp_dodisconnect
= 1;
1641 /* remember we don't care about src addr */
1642 inp
->inp_flags
|= INP_INADDR_ANY
;
1644 origladdr
= laddr
= inp
->inp_laddr
;
1647 origoutifp
= inp
->inp_last_outifp
;
1648 faddr
= inp
->inp_faddr
;
1649 lport
= inp
->inp_lport
;
1650 fport
= inp
->inp_fport
;
1653 if (cfil_faddr_use
) {
1654 faddr
= ((struct sockaddr_in
*)(void *)cfil_faddr
)->sin_addr
;
1655 fport
= ((struct sockaddr_in
*)(void *)cfil_faddr
)->sin_port
;
1660 sin
= (struct sockaddr_in
*)(void *)addr
;
1661 if (faddr
.s_addr
!= INADDR_ANY
) {
1667 * In case we don't have a local port set, go through
1668 * the full connect. We don't have a local port yet
1669 * (i.e., we can't be looked up), so it's not an issue
1670 * if the input runs at the same time we do this.
1672 /* if we have a source address specified, use that */
1673 if (pi_laddr
.s_addr
!= INADDR_ANY
) {
1674 inp
->inp_laddr
= pi_laddr
;
1677 * If a scope is specified, use it. Scope from
1678 * IP_PKTINFO takes precendence over the the scope
1679 * set via INP_BOUND_IF.
1681 error
= in_pcbconnect(inp
, addr
, p
, ipoa
.ipoa_boundif
,
1687 laddr
= inp
->inp_laddr
;
1688 lport
= inp
->inp_lport
;
1689 faddr
= inp
->inp_faddr
;
1690 fport
= inp
->inp_fport
;
1691 udp_dodisconnect
= 1;
1693 /* synch up in case in_pcbladdr() overrides */
1694 if (outif
!= NULL
&& ipoa
.ipoa_boundif
!= IFSCOPE_NONE
) {
1695 ipoa
.ipoa_boundif
= outif
->if_index
;
1701 * We have a full address and a local port; use those
1702 * info to build the packet without changing the pcb
1703 * and interfering with the input path. See 3851370.
1705 * Scope from IP_PKTINFO takes precendence over the
1706 * the scope set via INP_BOUND_IF.
1708 if (laddr
.s_addr
== INADDR_ANY
) {
1709 if ((error
= in_pcbladdr(inp
, addr
, &laddr
,
1710 ipoa
.ipoa_boundif
, &outif
, 0)) != 0) {
1714 * from pcbconnect: remember we don't
1715 * care about src addr.
1717 inp
->inp_flags
|= INP_INADDR_ANY
;
1719 /* synch up in case in_pcbladdr() overrides */
1720 if (outif
!= NULL
&&
1721 ipoa
.ipoa_boundif
!= IFSCOPE_NONE
) {
1722 ipoa
.ipoa_boundif
= outif
->if_index
;
1726 faddr
= sin
->sin_addr
;
1727 fport
= sin
->sin_port
;
1730 if (faddr
.s_addr
== INADDR_ANY
) {
1737 mac_mbuf_label_associate_inpcb(inp
, m
);
1738 #endif /* CONFIG_MACF_NET */
1740 if (inp
->inp_flowhash
== 0) {
1741 inp
->inp_flowhash
= inp_calc_flowhash(inp
);
1744 if (fport
== htons(53) && !(so
->so_flags1
& SOF1_DNS_COUNTED
)) {
1745 so
->so_flags1
|= SOF1_DNS_COUNTED
;
1746 INC_ATOMIC_INT64_LIM(net_api_stats
.nas_socket_inet_dgram_dns
);
1750 * Calculate data length and get a mbuf
1751 * for UDP and IP headers.
1753 M_PREPEND(m
, sizeof(struct udpiphdr
), M_DONTWAIT
, 1);
1760 * Fill in mbuf with extended UDP header
1761 * and addresses and length put into network format.
1763 ui
= mtod(m
, struct udpiphdr
*);
1764 bzero(ui
->ui_x1
, sizeof(ui
->ui_x1
)); /* XXX still needed? */
1765 ui
->ui_pr
= IPPROTO_UDP
;
1768 ui
->ui_sport
= lport
;
1769 ui
->ui_dport
= fport
;
1770 ui
->ui_ulen
= htons((u_short
)len
+ sizeof(struct udphdr
));
1773 * Set up checksum to pseudo header checksum and output datagram.
1775 * Treat flows to be CLAT46'd as IPv6 flow and compute checksum
1776 * no matter what, as IPv6 mandates checksum for UDP.
1778 * Here we only compute the one's complement sum of the pseudo header.
1779 * The payload computation and final complement is delayed to much later
1780 * in IP processing to decide if remaining computation needs to be done
1783 * That is communicated by setting CSUM_UDP in csum_flags.
1784 * The offset of checksum from the start of ULP header is communicated
1785 * through csum_data.
1787 * Note since this already contains the pseudo checksum header, any
1788 * later operation at IP layer that modify the values used here must
1789 * update the checksum as well (for example NAT etc).
1791 if ((inp
->inp_flags2
& INP2_CLAT46_FLOW
) ||
1792 (udpcksum
&& !(inp
->inp_flags
& INP_UDP_NOCKSUM
))) {
1793 ui
->ui_sum
= in_pseudo(ui
->ui_src
.s_addr
, ui
->ui_dst
.s_addr
,
1794 htons((u_short
)len
+ sizeof(struct udphdr
) + IPPROTO_UDP
));
1795 m
->m_pkthdr
.csum_flags
= (CSUM_UDP
| CSUM_ZERO_INVERT
);
1796 m
->m_pkthdr
.csum_data
= offsetof(struct udphdr
, uh_sum
);
1800 ((struct ip
*)ui
)->ip_len
= sizeof(struct udpiphdr
) + len
;
1801 ((struct ip
*)ui
)->ip_ttl
= inp
->inp_ip_ttl
; /* XXX */
1802 ((struct ip
*)ui
)->ip_tos
= inp
->inp_ip_tos
; /* XXX */
1803 udpstat
.udps_opackets
++;
1805 KERNEL_DEBUG(DBG_LAYER_OUT_END
, ui
->ui_dport
, ui
->ui_sport
,
1806 ui
->ui_src
.s_addr
, ui
->ui_dst
.s_addr
, ui
->ui_ulen
);
1810 necp_kernel_policy_id policy_id
;
1811 necp_kernel_policy_id skip_policy_id
;
1812 u_int32_t route_rule_id
;
1815 * We need a route to perform NECP route rule checks
1817 if (net_qos_policy_restricted
!= 0 &&
1818 ROUTE_UNUSABLE(&inp
->inp_route
)) {
1819 struct sockaddr_in to
;
1820 struct sockaddr_in from
;
1822 ROUTE_RELEASE(&inp
->inp_route
);
1824 bzero(&from
, sizeof(struct sockaddr_in
));
1825 from
.sin_family
= AF_INET
;
1826 from
.sin_len
= sizeof(struct sockaddr_in
);
1827 from
.sin_addr
= laddr
;
1829 bzero(&to
, sizeof(struct sockaddr_in
));
1830 to
.sin_family
= AF_INET
;
1831 to
.sin_len
= sizeof(struct sockaddr_in
);
1832 to
.sin_addr
= faddr
;
1834 inp
->inp_route
.ro_dst
.sa_family
= AF_INET
;
1835 inp
->inp_route
.ro_dst
.sa_len
= sizeof(struct sockaddr_in
);
1836 ((struct sockaddr_in
*)(void *)&inp
->inp_route
.ro_dst
)->sin_addr
=
1839 rtalloc_scoped(&inp
->inp_route
, ipoa
.ipoa_boundif
);
1841 inp_update_necp_policy(inp
, (struct sockaddr
*)&from
,
1842 (struct sockaddr
*)&to
, ipoa
.ipoa_boundif
);
1843 inp
->inp_policyresult
.results
.qos_marking_gencount
= 0;
1846 if (!necp_socket_is_allowed_to_send_recv_v4(inp
, lport
, fport
,
1847 &laddr
, &faddr
, NULL
, &policy_id
, &route_rule_id
, &skip_policy_id
)) {
1848 error
= EHOSTUNREACH
;
1852 necp_mark_packet_from_socket(m
, inp
, policy_id
, route_rule_id
, skip_policy_id
);
1854 if (net_qos_policy_restricted
!= 0) {
1855 necp_socket_update_qos_marking(inp
,
1856 inp
->inp_route
.ro_rt
, NULL
, route_rule_id
);
1860 if ((so
->so_flags1
& SOF1_QOSMARKING_ALLOWED
)) {
1861 ipoa
.ipoa_flags
|= IPOAF_QOSMARKING_ALLOWED
;
1865 if (inp
->inp_sp
!= NULL
&& ipsec_setsocket(m
, inp
->inp_socket
) != 0) {
1871 inpopts
= inp
->inp_options
;
1873 if (cfil_tag
&& (inp
->inp_socket
->so_options
!= cfil_so_options
)) {
1874 soopts
|= (cfil_so_options
& (SO_DONTROUTE
| SO_BROADCAST
));
1877 soopts
|= (inp
->inp_socket
->so_options
& (SO_DONTROUTE
| SO_BROADCAST
));
1879 mopts
= inp
->inp_moptions
;
1880 if (mopts
!= NULL
) {
1882 IMO_ADDREF_LOCKED(mopts
);
1883 if (IN_MULTICAST(ntohl(ui
->ui_dst
.s_addr
)) &&
1884 mopts
->imo_multicast_ifp
!= NULL
) {
1885 /* no reference needed */
1886 inp
->inp_last_outifp
= mopts
->imo_multicast_ifp
;
1891 /* Copy the cached route and take an extra reference */
1892 inp_route_copyout(inp
, &ro
);
1894 set_packet_service_class(m
, so
, sotc
, 0);
1895 m
->m_pkthdr
.pkt_flowsrc
= FLOWSRC_INPCB
;
1896 m
->m_pkthdr
.pkt_flowid
= inp
->inp_flowhash
;
1897 m
->m_pkthdr
.pkt_proto
= IPPROTO_UDP
;
1898 m
->m_pkthdr
.pkt_flags
|= (PKTF_FLOW_ID
| PKTF_FLOW_LOCALSRC
);
1900 m
->m_pkthdr
.pkt_flags
|= PKTF_FLOW_ADV
;
1902 m
->m_pkthdr
.tx_udp_pid
= so
->last_pid
;
1903 if (so
->so_flags
& SOF_DELEGATED
) {
1904 m
->m_pkthdr
.tx_udp_e_pid
= so
->e_pid
;
1906 m
->m_pkthdr
.tx_udp_e_pid
= 0;
1909 if (ipoa
.ipoa_boundif
!= IFSCOPE_NONE
) {
1910 ipoa
.ipoa_flags
|= IPOAF_BOUND_IF
;
1913 if (laddr
.s_addr
!= INADDR_ANY
) {
1914 ipoa
.ipoa_flags
|= IPOAF_BOUND_SRCADDR
;
1917 inp
->inp_sndinprog_cnt
++;
1919 socket_unlock(so
, 0);
1920 error
= ip_output(m
, inpopts
, &ro
, soopts
, mopts
, &ipoa
);
1923 if (mopts
!= NULL
) {
1927 if (error
== 0 && nstat_collect
) {
1928 boolean_t cell
, wifi
, wired
;
1930 if (ro
.ro_rt
!= NULL
) {
1931 cell
= IFNET_IS_CELLULAR(ro
.ro_rt
->rt_ifp
);
1932 wifi
= (!cell
&& IFNET_IS_WIFI(ro
.ro_rt
->rt_ifp
));
1933 wired
= (!wifi
&& IFNET_IS_WIRED(ro
.ro_rt
->rt_ifp
));
1935 cell
= wifi
= wired
= FALSE
;
1937 INP_ADD_STAT(inp
, cell
, wifi
, wired
, txpackets
, 1);
1938 INP_ADD_STAT(inp
, cell
, wifi
, wired
, txbytes
, len
);
1939 inp_set_activity_bitmap(inp
);
1942 if (flowadv
&& (adv
->code
== FADV_FLOW_CONTROLLED
||
1943 adv
->code
== FADV_SUSPENDED
)) {
1945 * return a hint to the application that
1946 * the packet has been dropped
1949 inp_set_fc_state(inp
, adv
->code
);
1952 VERIFY(inp
->inp_sndinprog_cnt
> 0);
1953 if (--inp
->inp_sndinprog_cnt
== 0) {
1954 inp
->inp_flags
&= ~(INP_FC_FEEDBACK
);
1955 if (inp
->inp_sndingprog_waiters
> 0) {
1956 wakeup(&inp
->inp_sndinprog_cnt
);
1960 /* Synchronize PCB cached route */
1961 inp_route_copyin(inp
, &ro
);
1964 if (udp_dodisconnect
) {
1965 /* Always discard the cached route for unconnected socket */
1966 ROUTE_RELEASE(&inp
->inp_route
);
1967 in_pcbdisconnect(inp
);
1968 inp
->inp_laddr
= origladdr
; /* XXX rehash? */
1969 /* no reference needed */
1970 inp
->inp_last_outifp
= origoutifp
;
1971 } else if (inp
->inp_route
.ro_rt
!= NULL
) {
1972 struct rtentry
*rt
= inp
->inp_route
.ro_rt
;
1973 struct ifnet
*outifp
;
1975 if (rt
->rt_flags
& (RTF_MULTICAST
| RTF_BROADCAST
)) {
1976 rt
= NULL
; /* unusable */
1980 * Discard temporary route for cfil case
1982 if (cfil_faddr_use
) {
1983 rt
= NULL
; /* unusable */
1988 * Always discard if it is a multicast or broadcast route.
1991 ROUTE_RELEASE(&inp
->inp_route
);
1995 * If the destination route is unicast, update outifp with
1996 * that of the route interface used by IP.
1999 (outifp
= rt
->rt_ifp
) != inp
->inp_last_outifp
) {
2000 inp
->inp_last_outifp
= outifp
; /* no reference needed */
2002 so
->so_pktheadroom
= P2ROUNDUP(
2003 sizeof(struct udphdr
) +
2005 ifnet_hdrlen(outifp
) +
2006 ifnet_mbuf_packetpreamblelen(outifp
),
2010 ROUTE_RELEASE(&inp
->inp_route
);
2014 * If output interface was cellular/expensive, and this socket is
2015 * denied access to it, generate an event.
2017 if (error
!= 0 && (ipoa
.ipoa_retflags
& IPOARF_IFDENIED
) &&
2018 (INP_NO_CELLULAR(inp
) || INP_NO_EXPENSIVE(inp
) || INP_NO_CONSTRAINED(inp
))) {
2019 soevent(so
, (SO_FILT_HINT_LOCKED
| SO_FILT_HINT_IFDENIED
));
2023 KERNEL_DEBUG(DBG_FNC_UDP_OUTPUT
| DBG_FUNC_END
, error
, 0, 0, 0, 0);
2029 if (outif
!= NULL
) {
2030 ifnet_release(outif
);
2035 m_tag_free(cfil_tag
);
2042 u_int32_t udp_sendspace
= 9216; /* really max datagram size */
2043 /* 187 1K datagrams (approx 192 KB) */
2044 u_int32_t udp_recvspace
= 187 * (1024 +
2046 sizeof(struct sockaddr_in6
)
2048 sizeof(struct sockaddr_in
)
2052 /* Check that the values of udp send and recv space do not exceed sb_max */
2054 sysctl_udp_sospace(struct sysctl_oid
*oidp
, void *arg1
, int arg2
,
2055 struct sysctl_req
*req
)
2057 #pragma unused(arg1, arg2)
2058 u_int32_t new_value
= 0, *space_p
= NULL
;
2059 int changed
= 0, error
= 0;
2060 u_quad_t sb_effective_max
= (sb_max
/ (MSIZE
+ MCLBYTES
)) * MCLBYTES
;
2062 switch (oidp
->oid_number
) {
2063 case UDPCTL_RECVSPACE
:
2064 space_p
= &udp_recvspace
;
2066 case UDPCTL_MAXDGRAM
:
2067 space_p
= &udp_sendspace
;
2072 error
= sysctl_io_number(req
, *space_p
, sizeof(u_int32_t
),
2073 &new_value
, &changed
);
2075 if (new_value
> 0 && new_value
<= sb_effective_max
) {
2076 *space_p
= new_value
;
2084 SYSCTL_PROC(_net_inet_udp
, UDPCTL_RECVSPACE
, recvspace
,
2085 CTLTYPE_INT
| CTLFLAG_RW
| CTLFLAG_LOCKED
, &udp_recvspace
, 0,
2086 &sysctl_udp_sospace
, "IU", "Maximum incoming UDP datagram size");
2088 SYSCTL_PROC(_net_inet_udp
, UDPCTL_MAXDGRAM
, maxdgram
,
2089 CTLTYPE_INT
| CTLFLAG_RW
| CTLFLAG_LOCKED
, &udp_sendspace
, 0,
2090 &sysctl_udp_sospace
, "IU", "Maximum outgoing UDP datagram size");
2093 udp_abort(struct socket
*so
)
2097 inp
= sotoinpcb(so
);
2099 panic("%s: so=%p null inp\n", __func__
, so
);
2102 soisdisconnected(so
);
2108 udp_attach(struct socket
*so
, int proto
, struct proc
*p
)
2110 #pragma unused(proto)
2114 inp
= sotoinpcb(so
);
2116 panic("%s so=%p inp=%p\n", __func__
, so
, inp
);
2119 error
= in_pcballoc(so
, &udbinfo
, p
);
2123 error
= soreserve(so
, udp_sendspace
, udp_recvspace
);
2127 inp
= (struct inpcb
*)so
->so_pcb
;
2128 inp
->inp_vflag
|= INP_IPV4
;
2129 inp
->inp_ip_ttl
= ip_defttl
;
2130 if (nstat_collect
) {
2131 nstat_udp_new_pcb(inp
);
2137 udp_bind(struct socket
*so
, struct sockaddr
*nam
, struct proc
*p
)
2142 if (nam
->sa_family
!= 0 && nam
->sa_family
!= AF_INET
&&
2143 nam
->sa_family
!= AF_INET6
) {
2144 return EAFNOSUPPORT
;
2147 inp
= sotoinpcb(so
);
2151 error
= in_pcbbind(inp
, nam
, p
);
2154 /* Update NECP client with bind result if not in middle of connect */
2156 (inp
->inp_flags2
& INP2_CONNECT_IN_PROGRESS
) &&
2157 !uuid_is_null(inp
->necp_client_uuid
)) {
2158 socket_unlock(so
, 0);
2159 necp_client_assign_from_socket(so
->last_pid
, inp
->necp_client_uuid
, inp
);
2168 udp_connect(struct socket
*so
, struct sockaddr
*nam
, struct proc
*p
)
2173 inp
= sotoinpcb(so
);
2177 if (inp
->inp_faddr
.s_addr
!= INADDR_ANY
) {
2181 if (!(so
->so_flags1
& SOF1_CONNECT_COUNTED
)) {
2182 so
->so_flags1
|= SOF1_CONNECT_COUNTED
;
2183 INC_ATOMIC_INT64_LIM(net_api_stats
.nas_socket_inet_dgram_connected
);
2188 if (necp_socket_should_use_flow_divert(inp
)) {
2189 uint32_t fd_ctl_unit
=
2190 necp_socket_get_flow_divert_control_unit(inp
);
2191 if (fd_ctl_unit
> 0) {
2192 error
= flow_divert_pcb_init(so
, fd_ctl_unit
);
2194 error
= flow_divert_connect_out(so
, nam
, p
);
2201 #endif /* FLOW_DIVERT */
2204 error
= in_pcbconnect(inp
, nam
, p
, IFSCOPE_NONE
, NULL
);
2207 /* Update NECP client with connected five-tuple */
2208 if (!uuid_is_null(inp
->necp_client_uuid
)) {
2209 socket_unlock(so
, 0);
2210 necp_client_assign_from_socket(so
->last_pid
, inp
->necp_client_uuid
, inp
);
2216 if (inp
->inp_flowhash
== 0) {
2217 inp
->inp_flowhash
= inp_calc_flowhash(inp
);
2224 udp_connectx_common(struct socket
*so
, int af
, struct sockaddr
*src
, struct sockaddr
*dst
,
2225 struct proc
*p
, uint32_t ifscope
, sae_associd_t aid
, sae_connid_t
*pcid
,
2226 uint32_t flags
, void *arg
, uint32_t arglen
,
2227 struct uio
*uio
, user_ssize_t
*bytes_written
)
2229 #pragma unused(aid, flags, arg, arglen)
2230 struct inpcb
*inp
= sotoinpcb(so
);
2232 user_ssize_t datalen
= 0;
2238 VERIFY(dst
!= NULL
);
2240 ASSERT(!(inp
->inp_flags2
& INP2_CONNECT_IN_PROGRESS
));
2241 inp
->inp_flags2
|= INP2_CONNECT_IN_PROGRESS
;
2244 inp_update_necp_policy(inp
, src
, dst
, ifscope
);
2247 /* bind socket to the specified interface, if requested */
2248 if (ifscope
!= IFSCOPE_NONE
&&
2249 (error
= inp_bindif(inp
, ifscope
, NULL
)) != 0) {
2253 /* if source address and/or port is specified, bind to it */
2255 error
= sobindlock(so
, src
, 0); /* already locked */
2263 error
= udp_connect(so
, dst
, p
);
2267 error
= udp6_connect(so
, dst
, p
);
2280 * If there is data, copy it. DATA_IDEMPOTENT is ignored.
2281 * CONNECT_RESUME_ON_READ_WRITE is ignored.
2284 socket_unlock(so
, 0);
2286 VERIFY(bytes_written
!= NULL
);
2288 datalen
= uio_resid(uio
);
2289 error
= so
->so_proto
->pr_usrreqs
->pru_sosend(so
, NULL
,
2290 (uio_t
)uio
, NULL
, NULL
, 0);
2293 /* If error returned is EMSGSIZE, for example, disconnect */
2294 if (error
== 0 || error
== EWOULDBLOCK
) {
2295 *bytes_written
= datalen
- uio_resid(uio
);
2297 (void) so
->so_proto
->pr_usrreqs
->pru_disconnectx(so
,
2298 SAE_ASSOCID_ANY
, SAE_CONNID_ANY
);
2301 * mask the EWOULDBLOCK error so that the caller
2302 * knows that atleast the connect was successful.
2304 if (error
== EWOULDBLOCK
) {
2309 if (error
== 0 && pcid
!= NULL
) {
2310 *pcid
= 1; /* there is only 1 connection for UDP */
2313 inp
->inp_flags2
&= ~INP2_CONNECT_IN_PROGRESS
;
2318 udp_connectx(struct socket
*so
, struct sockaddr
*src
,
2319 struct sockaddr
*dst
, struct proc
*p
, uint32_t ifscope
,
2320 sae_associd_t aid
, sae_connid_t
*pcid
, uint32_t flags
, void *arg
,
2321 uint32_t arglen
, struct uio
*uio
, user_ssize_t
*bytes_written
)
2323 return udp_connectx_common(so
, AF_INET
, src
, dst
,
2324 p
, ifscope
, aid
, pcid
, flags
, arg
, arglen
, uio
, bytes_written
);
2328 udp_detach(struct socket
*so
)
2332 inp
= sotoinpcb(so
);
2334 panic("%s: so=%p null inp\n", __func__
, so
);
2339 * If this is a socket that does not want to wakeup the device
2340 * for it's traffic, the application might be waiting for
2341 * close to complete before going to sleep. Send a notification
2342 * for this kind of sockets
2344 if (so
->so_options
& SO_NOWAKEFROMSLEEP
) {
2345 socket_post_kev_msg_closed(so
);
2349 inp
->inp_state
= INPCB_STATE_DEAD
;
2354 udp_disconnect(struct socket
*so
)
2358 inp
= sotoinpcb(so
);
2361 || (necp_socket_should_use_flow_divert(inp
))
2364 return inp
== NULL
? EINVAL
: EPROTOTYPE
;
2366 if (inp
->inp_faddr
.s_addr
== INADDR_ANY
) {
2370 in_pcbdisconnect(inp
);
2372 /* reset flow controlled state, just in case */
2373 inp_reset_fc_state(inp
);
2375 inp
->inp_laddr
.s_addr
= INADDR_ANY
;
2376 so
->so_state
&= ~SS_ISCONNECTED
; /* XXX */
2377 inp
->inp_last_outifp
= NULL
;
2383 udp_disconnectx(struct socket
*so
, sae_associd_t aid
, sae_connid_t cid
)
2386 if (aid
!= SAE_ASSOCID_ANY
&& aid
!= SAE_ASSOCID_ALL
) {
2390 return udp_disconnect(so
);
2394 udp_send(struct socket
*so
, int flags
, struct mbuf
*m
,
2395 struct sockaddr
*addr
, struct mbuf
*control
, struct proc
*p
)
2398 #pragma unused(flags)
2399 #endif /* !(FLOW_DIVERT) */
2402 inp
= sotoinpcb(so
);
2407 if (control
!= NULL
) {
2415 if (necp_socket_should_use_flow_divert(inp
)) {
2416 /* Implicit connect */
2417 return flow_divert_implicit_data_out(so
, flags
, m
, addr
,
2420 #endif /* FLOW_DIVERT */
2423 return udp_output(inp
, m
, addr
, control
, p
);
2427 udp_shutdown(struct socket
*so
)
2431 inp
= sotoinpcb(so
);
2440 udp_lock(struct socket
*so
, int refcount
, void *debug
)
2444 if (debug
== NULL
) {
2445 lr_saved
= __builtin_return_address(0);
2450 if (so
->so_pcb
!= NULL
) {
2451 LCK_MTX_ASSERT(&((struct inpcb
*)so
->so_pcb
)->inpcb_mtx
,
2452 LCK_MTX_ASSERT_NOTOWNED
);
2453 lck_mtx_lock(&((struct inpcb
*)so
->so_pcb
)->inpcb_mtx
);
2455 panic("%s: so=%p NO PCB! lr=%p lrh= %s\n", __func__
,
2456 so
, lr_saved
, solockhistory_nr(so
));
2463 so
->lock_lr
[so
->next_lock_lr
] = lr_saved
;
2464 so
->next_lock_lr
= (so
->next_lock_lr
+ 1) % SO_LCKDBG_MAX
;
2469 udp_unlock(struct socket
*so
, int refcount
, void *debug
)
2473 if (debug
== NULL
) {
2474 lr_saved
= __builtin_return_address(0);
2480 VERIFY(so
->so_usecount
> 0);
2483 if (so
->so_pcb
== NULL
) {
2484 panic("%s: so=%p NO PCB! lr=%p lrh= %s\n", __func__
,
2485 so
, lr_saved
, solockhistory_nr(so
));
2488 LCK_MTX_ASSERT(&((struct inpcb
*)so
->so_pcb
)->inpcb_mtx
,
2489 LCK_MTX_ASSERT_OWNED
);
2490 so
->unlock_lr
[so
->next_unlock_lr
] = lr_saved
;
2491 so
->next_unlock_lr
= (so
->next_unlock_lr
+ 1) % SO_LCKDBG_MAX
;
2492 lck_mtx_unlock(&((struct inpcb
*)so
->so_pcb
)->inpcb_mtx
);
2498 udp_getlock(struct socket
*so
, int flags
)
2500 #pragma unused(flags)
2501 struct inpcb
*inp
= sotoinpcb(so
);
2503 if (so
->so_pcb
== NULL
) {
2504 panic("%s: so=%p NULL so_pcb lrh= %s\n", __func__
,
2505 so
, solockhistory_nr(so
));
2508 return &inp
->inpcb_mtx
;
2512 * UDP garbage collector callback (inpcb_timer_func_t).
2514 * Returns > 0 to keep timer active.
2517 udp_gc(struct inpcbinfo
*ipi
)
2519 struct inpcb
*inp
, *inpnxt
;
2522 if (lck_rw_try_lock_exclusive(ipi
->ipi_lock
) == FALSE
) {
2523 if (udp_gc_done
== TRUE
) {
2524 udp_gc_done
= FALSE
;
2525 /* couldn't get the lock, must lock next time */
2526 atomic_add_32(&ipi
->ipi_gc_req
.intimer_fast
, 1);
2529 lck_rw_lock_exclusive(ipi
->ipi_lock
);
2534 for (inp
= udb
.lh_first
; inp
!= NULL
; inp
= inpnxt
) {
2535 inpnxt
= inp
->inp_list
.le_next
;
2538 * Skip unless it's STOPUSING; garbage collector will
2539 * be triggered by in_pcb_checkstate() upon setting
2540 * wantcnt to that value. If the PCB is already dead,
2541 * keep gc active to anticipate wantcnt changing.
2543 if (inp
->inp_wantcnt
!= WNT_STOPUSING
) {
2548 * Skip if busy, no hurry for cleanup. Keep gc active
2549 * and try the lock again during next round.
2551 if (!socket_try_lock(inp
->inp_socket
)) {
2552 atomic_add_32(&ipi
->ipi_gc_req
.intimer_fast
, 1);
2557 * Keep gc active unless usecount is 0.
2559 so
= inp
->inp_socket
;
2560 if (so
->so_usecount
== 0) {
2561 if (inp
->inp_state
!= INPCB_STATE_DEAD
) {
2563 if (SOCK_CHECK_DOM(so
, PF_INET6
)) {
2571 socket_unlock(so
, 0);
2572 atomic_add_32(&ipi
->ipi_gc_req
.intimer_fast
, 1);
2575 lck_rw_done(ipi
->ipi_lock
);
2579 udp_getstat SYSCTL_HANDLER_ARGS
2581 #pragma unused(oidp, arg1, arg2)
2582 if (req
->oldptr
== USER_ADDR_NULL
) {
2583 req
->oldlen
= (size_t)sizeof(struct udpstat
);
2586 return SYSCTL_OUT(req
, &udpstat
, MIN(sizeof(udpstat
), req
->oldlen
));
2590 udp_in_cksum_stats(u_int32_t len
)
2592 udpstat
.udps_rcv_swcsum
++;
2593 udpstat
.udps_rcv_swcsum_bytes
+= len
;
2597 udp_out_cksum_stats(u_int32_t len
)
2599 udpstat
.udps_snd_swcsum
++;
2600 udpstat
.udps_snd_swcsum_bytes
+= len
;
2605 udp_in6_cksum_stats(u_int32_t len
)
2607 udpstat
.udps_rcv6_swcsum
++;
2608 udpstat
.udps_rcv6_swcsum_bytes
+= len
;
2612 udp_out6_cksum_stats(u_int32_t len
)
2614 udpstat
.udps_snd6_swcsum
++;
2615 udpstat
.udps_snd6_swcsum_bytes
+= len
;
2620 * Checksum extended UDP header and data.
2623 udp_input_checksum(struct mbuf
*m
, struct udphdr
*uh
, int off
, int ulen
)
2625 struct ifnet
*ifp
= m
->m_pkthdr
.rcvif
;
2626 struct ip
*ip
= mtod(m
, struct ip
*);
2627 struct ipovly
*ipov
= (struct ipovly
*)ip
;
2629 if (uh
->uh_sum
== 0) {
2630 udpstat
.udps_nosum
++;
2634 /* ip_stripoptions() must have been called before we get here */
2635 ASSERT((ip
->ip_hl
<< 2) == sizeof(*ip
));
2637 if ((hwcksum_rx
|| (ifp
->if_flags
& IFF_LOOPBACK
) ||
2638 (m
->m_pkthdr
.pkt_flags
& PKTF_LOOP
)) &&
2639 (m
->m_pkthdr
.csum_flags
& CSUM_DATA_VALID
)) {
2640 if (m
->m_pkthdr
.csum_flags
& CSUM_PSEUDO_HDR
) {
2641 uh
->uh_sum
= m
->m_pkthdr
.csum_rx_val
;
2643 uint32_t sum
= m
->m_pkthdr
.csum_rx_val
;
2644 uint32_t start
= m
->m_pkthdr
.csum_rx_start
;
2645 int32_t trailer
= (m_pktlen(m
) - (off
+ ulen
));
2648 * Perform 1's complement adjustment of octets
2649 * that got included/excluded in the hardware-
2650 * calculated checksum value. Ignore cases
2651 * where the value already includes the entire
2652 * IP header span, as the sum for those octets
2653 * would already be 0 by the time we get here;
2654 * IP has already performed its header checksum
2655 * checks. If we do need to adjust, restore
2656 * the original fields in the IP header when
2657 * computing the adjustment value. Also take
2658 * care of any trailing bytes and subtract out
2659 * their partial sum.
2661 ASSERT(trailer
>= 0);
2662 if ((m
->m_pkthdr
.csum_flags
& CSUM_PARTIAL
) &&
2663 ((start
!= 0 && start
!= off
) || trailer
!= 0)) {
2664 uint32_t swbytes
= (uint32_t)trailer
;
2667 ip
->ip_len
+= sizeof(*ip
);
2668 #if BYTE_ORDER != BIG_ENDIAN
2671 #endif /* BYTE_ORDER != BIG_ENDIAN */
2673 /* callee folds in sum */
2674 sum
= m_adj_sum16(m
, start
, off
, ulen
, sum
);
2676 swbytes
+= (off
- start
);
2678 swbytes
+= (start
- off
);
2682 #if BYTE_ORDER != BIG_ENDIAN
2685 #endif /* BYTE_ORDER != BIG_ENDIAN */
2686 ip
->ip_len
-= sizeof(*ip
);
2690 udp_in_cksum_stats(swbytes
);
2697 /* callee folds in sum */
2698 uh
->uh_sum
= in_pseudo(ip
->ip_src
.s_addr
,
2699 ip
->ip_dst
.s_addr
, sum
+ htonl(ulen
+ IPPROTO_UDP
));
2701 uh
->uh_sum
^= 0xffff;
2706 bcopy(ipov
->ih_x1
, b
, sizeof(ipov
->ih_x1
));
2707 bzero(ipov
->ih_x1
, sizeof(ipov
->ih_x1
));
2708 ip_sum
= ipov
->ih_len
;
2709 ipov
->ih_len
= uh
->uh_ulen
;
2710 uh
->uh_sum
= in_cksum(m
, ulen
+ sizeof(struct ip
));
2711 bcopy(b
, ipov
->ih_x1
, sizeof(ipov
->ih_x1
));
2712 ipov
->ih_len
= ip_sum
;
2714 udp_in_cksum_stats(ulen
);
2717 if (uh
->uh_sum
!= 0) {
2718 udpstat
.udps_badsum
++;
2719 IF_UDP_STATINC(ifp
, badchksum
);
2727 udp_fill_keepalive_offload_frames(ifnet_t ifp
,
2728 struct ifnet_keepalive_offload_frame
*frames_array
,
2729 u_int32_t frames_array_count
, size_t frame_data_offset
,
2730 u_int32_t
*used_frames_count
)
2734 u_int32_t frame_index
= *used_frames_count
;
2736 if (ifp
== NULL
|| frames_array
== NULL
||
2737 frames_array_count
== 0 ||
2738 frame_index
>= frames_array_count
||
2739 frame_data_offset
>= IFNET_KEEPALIVE_OFFLOAD_FRAME_DATA_SIZE
) {
2743 lck_rw_lock_shared(udbinfo
.ipi_lock
);
2744 gencnt
= udbinfo
.ipi_gencnt
;
2745 LIST_FOREACH(inp
, udbinfo
.ipi_listhead
, inp_list
) {
2748 struct ifnet_keepalive_offload_frame
*frame
;
2749 struct mbuf
*m
= NULL
;
2751 if (frame_index
>= frames_array_count
) {
2755 if (inp
->inp_gencnt
> gencnt
||
2756 inp
->inp_state
== INPCB_STATE_DEAD
) {
2760 if ((so
= inp
->inp_socket
) == NULL
||
2761 (so
->so_state
& SS_DEFUNCT
)) {
2765 * check for keepalive offload flag without socket
2766 * lock to avoid a deadlock
2768 if (!(inp
->inp_flags2
& INP2_KEEPALIVE_OFFLOAD
)) {
2773 if (!(inp
->inp_vflag
& (INP_IPV4
| INP_IPV6
))) {
2774 udp_unlock(so
, 1, 0);
2777 if ((inp
->inp_vflag
& INP_IPV4
) &&
2778 (inp
->inp_laddr
.s_addr
== INADDR_ANY
||
2779 inp
->inp_faddr
.s_addr
== INADDR_ANY
)) {
2780 udp_unlock(so
, 1, 0);
2783 if ((inp
->inp_vflag
& INP_IPV6
) &&
2784 (IN6_IS_ADDR_UNSPECIFIED(&inp
->in6p_laddr
) ||
2785 IN6_IS_ADDR_UNSPECIFIED(&inp
->in6p_faddr
))) {
2786 udp_unlock(so
, 1, 0);
2789 if (inp
->inp_lport
== 0 || inp
->inp_fport
== 0) {
2790 udp_unlock(so
, 1, 0);
2793 if (inp
->inp_last_outifp
== NULL
||
2794 inp
->inp_last_outifp
->if_index
!= ifp
->if_index
) {
2795 udp_unlock(so
, 1, 0);
2798 if ((inp
->inp_vflag
& INP_IPV4
)) {
2799 if ((frame_data_offset
+ sizeof(struct udpiphdr
) +
2800 inp
->inp_keepalive_datalen
) >
2801 IFNET_KEEPALIVE_OFFLOAD_FRAME_DATA_SIZE
) {
2802 udp_unlock(so
, 1, 0);
2805 if ((sizeof(struct udpiphdr
) +
2806 inp
->inp_keepalive_datalen
) > _MHLEN
) {
2807 udp_unlock(so
, 1, 0);
2811 if ((frame_data_offset
+ sizeof(struct ip6_hdr
) +
2812 sizeof(struct udphdr
) +
2813 inp
->inp_keepalive_datalen
) >
2814 IFNET_KEEPALIVE_OFFLOAD_FRAME_DATA_SIZE
) {
2815 udp_unlock(so
, 1, 0);
2818 if ((sizeof(struct ip6_hdr
) + sizeof(struct udphdr
) +
2819 inp
->inp_keepalive_datalen
) > _MHLEN
) {
2820 udp_unlock(so
, 1, 0);
2824 MGETHDR(m
, M_WAIT
, MT_HEADER
);
2826 udp_unlock(so
, 1, 0);
2830 * This inp has all the information that is needed to
2831 * generate an offload frame.
2833 if (inp
->inp_vflag
& INP_IPV4
) {
2837 frame
= &frames_array
[frame_index
];
2838 frame
->length
= frame_data_offset
+
2839 sizeof(struct udpiphdr
) +
2840 inp
->inp_keepalive_datalen
;
2842 IFNET_KEEPALIVE_OFFLOAD_FRAME_ETHERTYPE_IPV4
;
2843 frame
->interval
= inp
->inp_keepalive_interval
;
2844 switch (inp
->inp_keepalive_type
) {
2845 case UDP_KEEPALIVE_OFFLOAD_TYPE_AIRPLAY
:
2847 IFNET_KEEPALIVE_OFFLOAD_FRAME_AIRPLAY
;
2852 data
= mtod(m
, u_int8_t
*);
2853 bzero(data
, sizeof(struct udpiphdr
));
2854 ip
= (__typeof__(ip
))(void *)data
;
2855 udp
= (__typeof__(udp
))(void *) (data
+
2857 m
->m_len
= sizeof(struct udpiphdr
);
2858 data
= data
+ sizeof(struct udpiphdr
);
2859 if (inp
->inp_keepalive_datalen
> 0 &&
2860 inp
->inp_keepalive_data
!= NULL
) {
2861 bcopy(inp
->inp_keepalive_data
, data
,
2862 inp
->inp_keepalive_datalen
);
2863 m
->m_len
+= inp
->inp_keepalive_datalen
;
2865 m
->m_pkthdr
.len
= m
->m_len
;
2867 ip
->ip_v
= IPVERSION
;
2868 ip
->ip_hl
= (sizeof(struct ip
) >> 2);
2869 ip
->ip_p
= IPPROTO_UDP
;
2870 ip
->ip_len
= htons(sizeof(struct udpiphdr
) +
2871 (u_short
)inp
->inp_keepalive_datalen
);
2872 ip
->ip_ttl
= inp
->inp_ip_ttl
;
2873 ip
->ip_tos
|= (inp
->inp_ip_tos
& ~IPTOS_ECN_MASK
);
2874 ip
->ip_src
= inp
->inp_laddr
;
2875 ip
->ip_dst
= inp
->inp_faddr
;
2876 ip
->ip_sum
= in_cksum_hdr_opt(ip
);
2878 udp
->uh_sport
= inp
->inp_lport
;
2879 udp
->uh_dport
= inp
->inp_fport
;
2880 udp
->uh_ulen
= htons(sizeof(struct udphdr
) +
2881 (u_short
)inp
->inp_keepalive_datalen
);
2883 if (!(inp
->inp_flags
& INP_UDP_NOCKSUM
)) {
2884 udp
->uh_sum
= in_pseudo(ip
->ip_src
.s_addr
,
2886 htons(sizeof(struct udphdr
) +
2887 (u_short
)inp
->inp_keepalive_datalen
+
2889 m
->m_pkthdr
.csum_flags
=
2890 (CSUM_UDP
| CSUM_ZERO_INVERT
);
2891 m
->m_pkthdr
.csum_data
= offsetof(struct udphdr
,
2894 m
->m_pkthdr
.pkt_proto
= IPPROTO_UDP
;
2895 in_delayed_cksum(m
);
2896 bcopy(m
->m_data
, frame
->data
+ frame_data_offset
,
2899 struct ip6_hdr
*ip6
;
2900 struct udphdr
*udp6
;
2902 VERIFY(inp
->inp_vflag
& INP_IPV6
);
2903 frame
= &frames_array
[frame_index
];
2904 frame
->length
= frame_data_offset
+
2905 sizeof(struct ip6_hdr
) +
2906 sizeof(struct udphdr
) +
2907 inp
->inp_keepalive_datalen
;
2909 IFNET_KEEPALIVE_OFFLOAD_FRAME_ETHERTYPE_IPV6
;
2910 frame
->interval
= inp
->inp_keepalive_interval
;
2911 switch (inp
->inp_keepalive_type
) {
2912 case UDP_KEEPALIVE_OFFLOAD_TYPE_AIRPLAY
:
2914 IFNET_KEEPALIVE_OFFLOAD_FRAME_AIRPLAY
;
2919 data
= mtod(m
, u_int8_t
*);
2920 bzero(data
, sizeof(struct ip6_hdr
) + sizeof(struct udphdr
));
2921 ip6
= (__typeof__(ip6
))(void *)data
;
2922 udp6
= (__typeof__(udp6
))(void *)(data
+
2923 sizeof(struct ip6_hdr
));
2924 m
->m_len
= sizeof(struct ip6_hdr
) +
2925 sizeof(struct udphdr
);
2926 data
= data
+ (sizeof(struct ip6_hdr
) +
2927 sizeof(struct udphdr
));
2928 if (inp
->inp_keepalive_datalen
> 0 &&
2929 inp
->inp_keepalive_data
!= NULL
) {
2930 bcopy(inp
->inp_keepalive_data
, data
,
2931 inp
->inp_keepalive_datalen
);
2932 m
->m_len
+= inp
->inp_keepalive_datalen
;
2934 m
->m_pkthdr
.len
= m
->m_len
;
2935 ip6
->ip6_flow
= inp
->inp_flow
& IPV6_FLOWINFO_MASK
;
2936 ip6
->ip6_flow
= ip6
->ip6_flow
& ~IPV6_FLOW_ECN_MASK
;
2937 ip6
->ip6_vfc
&= ~IPV6_VERSION_MASK
;
2938 ip6
->ip6_vfc
|= IPV6_VERSION
;
2939 ip6
->ip6_nxt
= IPPROTO_UDP
;
2940 ip6
->ip6_hlim
= ip6_defhlim
;
2941 ip6
->ip6_plen
= htons(sizeof(struct udphdr
) +
2942 (u_short
)inp
->inp_keepalive_datalen
);
2943 ip6
->ip6_src
= inp
->in6p_laddr
;
2944 if (IN6_IS_SCOPE_EMBED(&ip6
->ip6_src
)) {
2945 ip6
->ip6_src
.s6_addr16
[1] = 0;
2948 ip6
->ip6_dst
= inp
->in6p_faddr
;
2949 if (IN6_IS_SCOPE_EMBED(&ip6
->ip6_dst
)) {
2950 ip6
->ip6_dst
.s6_addr16
[1] = 0;
2953 udp6
->uh_sport
= inp
->in6p_lport
;
2954 udp6
->uh_dport
= inp
->in6p_fport
;
2955 udp6
->uh_ulen
= htons(sizeof(struct udphdr
) +
2956 (u_short
)inp
->inp_keepalive_datalen
);
2957 if (!(inp
->inp_flags
& INP_UDP_NOCKSUM
)) {
2958 udp6
->uh_sum
= in6_pseudo(&ip6
->ip6_src
,
2960 htonl(sizeof(struct udphdr
) +
2961 (u_short
)inp
->inp_keepalive_datalen
+
2963 m
->m_pkthdr
.csum_flags
=
2964 (CSUM_UDPIPV6
| CSUM_ZERO_INVERT
);
2965 m
->m_pkthdr
.csum_data
= offsetof(struct udphdr
,
2968 m
->m_pkthdr
.pkt_proto
= IPPROTO_UDP
;
2969 in6_delayed_cksum(m
);
2970 bcopy(m
->m_data
, frame
->data
+ frame_data_offset
,
2978 udp_unlock(so
, 1, 0);
2980 lck_rw_done(udbinfo
.ipi_lock
);
2981 *used_frames_count
= frame_index
;