]> git.saurik.com Git - apple/xnu.git/blob - bsd/netinet/tcp_input.c
1d65c4355d014eef26fc05f41964f588c56518e5
[apple/xnu.git] / bsd / netinet / tcp_input.c
1 /*
2 * Copyright (c) 2000-2015 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
30 * The Regents of the University of California. All rights reserved.
31 *
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions
34 * are met:
35 * 1. Redistributions of source code must retain the above copyright
36 * notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in the
39 * documentation and/or other materials provided with the distribution.
40 * 3. All advertising materials mentioning features or use of this software
41 * must display the following acknowledgement:
42 * This product includes software developed by the University of
43 * California, Berkeley and its contributors.
44 * 4. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95
61 * $FreeBSD: src/sys/netinet/tcp_input.c,v 1.107.2.16 2001/08/22 00:59:12 silby Exp $
62 */
63 /*
64 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
65 * support for mandatory and extensible security protections. This notice
66 * is included in support of clause 2.2 (b) of the Apple Public License,
67 * Version 2.0.
68 */
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/kernel.h>
73 #include <sys/sysctl.h>
74 #include <sys/malloc.h>
75 #include <sys/mbuf.h>
76 #include <sys/proc.h> /* for proc0 declaration */
77 #include <sys/protosw.h>
78 #include <sys/socket.h>
79 #include <sys/socketvar.h>
80 #include <sys/syslog.h>
81 #include <sys/mcache.h>
82 #include <sys/kasl.h>
83 #include <kern/cpu_number.h> /* before tcp_seq.h, for tcp_random18() */
84
85 #include <machine/endian.h>
86
87 #include <net/if.h>
88 #include <net/if_types.h>
89 #include <net/route.h>
90 #include <net/ntstat.h>
91 #include <net/dlil.h>
92
93 #include <netinet/in.h>
94 #include <netinet/in_systm.h>
95 #include <netinet/ip.h>
96 #include <netinet/ip_icmp.h> /* for ICMP_BANDLIM */
97 #include <netinet/in_var.h>
98 #include <netinet/icmp_var.h> /* for ICMP_BANDLIM */
99 #include <netinet/in_pcb.h>
100 #include <netinet/ip_var.h>
101 #include <mach/sdt.h>
102 #if INET6
103 #include <netinet/ip6.h>
104 #include <netinet/icmp6.h>
105 #include <netinet6/nd6.h>
106 #include <netinet6/ip6_var.h>
107 #include <netinet6/in6_pcb.h>
108 #endif
109 #include <netinet/tcp.h>
110 #include <netinet/tcp_cache.h>
111 #include <netinet/tcp_fsm.h>
112 #include <netinet/tcp_seq.h>
113 #include <netinet/tcp_timer.h>
114 #include <netinet/tcp_var.h>
115 #include <netinet/tcp_cc.h>
116 #include <dev/random/randomdev.h>
117 #include <kern/zalloc.h>
118 #if INET6
119 #include <netinet6/tcp6_var.h>
120 #endif
121 #include <netinet/tcpip.h>
122 #if TCPDEBUG
123 #include <netinet/tcp_debug.h>
124 u_char tcp_saveipgen[40]; /* the size must be of max ip header, now IPv6 */
125 struct tcphdr tcp_savetcp;
126 #endif /* TCPDEBUG */
127
128 #if IPSEC
129 #include <netinet6/ipsec.h>
130 #if INET6
131 #include <netinet6/ipsec6.h>
132 #endif
133 #include <netkey/key.h>
134 #endif /*IPSEC*/
135
136 #if CONFIG_MACF_NET || CONFIG_MACF_SOCKET
137 #include <security/mac_framework.h>
138 #endif /* CONFIG_MACF_NET || CONFIG_MACF_SOCKET */
139
140 #include <sys/kdebug.h>
141 #include <netinet/lro_ext.h>
142 #if MPTCP
143 #include <netinet/mptcp_var.h>
144 #include <netinet/mptcp.h>
145 #include <netinet/mptcp_opt.h>
146 #endif /* MPTCP */
147
148 #include <corecrypto/ccaes.h>
149
150 #define DBG_LAYER_BEG NETDBG_CODE(DBG_NETTCP, 0)
151 #define DBG_LAYER_END NETDBG_CODE(DBG_NETTCP, 2)
152 #define DBG_FNC_TCP_INPUT NETDBG_CODE(DBG_NETTCP, (3 << 8))
153 #define DBG_FNC_TCP_NEWCONN NETDBG_CODE(DBG_NETTCP, (7 << 8))
154
155 tcp_cc tcp_ccgen;
156
157 struct tcpstat tcpstat;
158
159 static int log_in_vain = 0;
160 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain,
161 CTLFLAG_RW | CTLFLAG_LOCKED, &log_in_vain, 0,
162 "Log all incoming TCP connections");
163
164 static int blackhole = 0;
165 SYSCTL_INT(_net_inet_tcp, OID_AUTO, blackhole,
166 CTLFLAG_RW | CTLFLAG_LOCKED, &blackhole, 0,
167 "Do not send RST when dropping refused connections");
168
169 int tcp_delack_enabled = 3;
170 SYSCTL_INT(_net_inet_tcp, OID_AUTO, delayed_ack,
171 CTLFLAG_RW | CTLFLAG_LOCKED, &tcp_delack_enabled, 0,
172 "Delay ACK to try and piggyback it onto a data packet");
173
174 int tcp_lq_overflow = 1;
175 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcp_lq_overflow,
176 CTLFLAG_RW | CTLFLAG_LOCKED, &tcp_lq_overflow, 0,
177 "Listen Queue Overflow");
178
179 int tcp_recv_bg = 0;
180 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbg, CTLFLAG_RW | CTLFLAG_LOCKED,
181 &tcp_recv_bg, 0, "Receive background");
182
183 #if TCP_DROP_SYNFIN
184 static int drop_synfin = 1;
185 SYSCTL_INT(_net_inet_tcp, OID_AUTO, drop_synfin,
186 CTLFLAG_RW | CTLFLAG_LOCKED, &drop_synfin, 0,
187 "Drop TCP packets with SYN+FIN set");
188 #endif
189
190 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, reass, CTLFLAG_RW|CTLFLAG_LOCKED, 0,
191 "TCP Segment Reassembly Queue");
192
193 static int tcp_reass_overflows = 0;
194 SYSCTL_INT(_net_inet_tcp_reass, OID_AUTO, overflows,
195 CTLFLAG_RD | CTLFLAG_LOCKED, &tcp_reass_overflows, 0,
196 "Global number of TCP Segment Reassembly Queue Overflows");
197
198
199 __private_extern__ int slowlink_wsize = 8192;
200 SYSCTL_INT(_net_inet_tcp, OID_AUTO, slowlink_wsize,
201 CTLFLAG_RW | CTLFLAG_LOCKED,
202 &slowlink_wsize, 0, "Maximum advertised window size for slowlink");
203
204 int maxseg_unacked = 8;
205 SYSCTL_INT(_net_inet_tcp, OID_AUTO, maxseg_unacked,
206 CTLFLAG_RW | CTLFLAG_LOCKED, &maxseg_unacked, 0,
207 "Maximum number of outstanding segments left unacked");
208
209 int tcp_do_rfc3465 = 1;
210 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3465, CTLFLAG_RW | CTLFLAG_LOCKED,
211 &tcp_do_rfc3465, 0, "");
212
213 int tcp_do_rfc3465_lim2 = 1;
214 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3465_lim2,
215 CTLFLAG_RW | CTLFLAG_LOCKED, &tcp_do_rfc3465_lim2, 0,
216 "Appropriate bytes counting w/ L=2*SMSS");
217
218 int rtt_samples_per_slot = 20;
219
220 int tcp_allowed_iaj = ALLOWED_IAJ;
221 int tcp_acc_iaj_high_thresh = ACC_IAJ_HIGH_THRESH;
222 u_int32_t tcp_autorcvbuf_inc_shift = 3;
223 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recv_allowed_iaj,
224 CTLFLAG_RW | CTLFLAG_LOCKED, &tcp_allowed_iaj, 0,
225 "Allowed inter-packet arrival jiter");
226 #if (DEVELOPMENT || DEBUG)
227 SYSCTL_INT(_net_inet_tcp, OID_AUTO, acc_iaj_high_thresh,
228 CTLFLAG_RW | CTLFLAG_LOCKED, &tcp_acc_iaj_high_thresh, 0,
229 "Used in calculating maximum accumulated IAJ");
230
231 SYSCTL_INT(_net_inet_tcp, OID_AUTO, autorcvbufincshift,
232 CTLFLAG_RW | CTLFLAG_LOCKED, &tcp_autorcvbuf_inc_shift, 0,
233 "Shift for increment in receive socket buffer size");
234 #endif /* (DEVELOPMENT || DEBUG) */
235
236 u_int32_t tcp_do_autorcvbuf = 1;
237 SYSCTL_INT(_net_inet_tcp, OID_AUTO, doautorcvbuf,
238 CTLFLAG_RW | CTLFLAG_LOCKED, &tcp_do_autorcvbuf, 0,
239 "Enable automatic socket buffer tuning");
240
241 u_int32_t tcp_autorcvbuf_max = 512 * 1024;
242 SYSCTL_INT(_net_inet_tcp, OID_AUTO, autorcvbufmax,
243 CTLFLAG_RW | CTLFLAG_LOCKED, &tcp_autorcvbuf_max, 0,
244 "Maximum receive socket buffer size");
245
246 int sw_lro = 0;
247 SYSCTL_INT(_net_inet_tcp, OID_AUTO, lro, CTLFLAG_RW | CTLFLAG_LOCKED,
248 &sw_lro, 0, "Used to coalesce TCP packets");
249
250 int lrodebug = 0;
251 SYSCTL_INT(_net_inet_tcp, OID_AUTO, lrodbg,
252 CTLFLAG_RW | CTLFLAG_LOCKED, &lrodebug, 0,
253 "Used to debug SW LRO");
254
255 int lro_start = 4;
256 SYSCTL_INT(_net_inet_tcp, OID_AUTO, lro_startcnt,
257 CTLFLAG_RW | CTLFLAG_LOCKED, &lro_start, 0,
258 "Segments for starting LRO computed as power of 2");
259
260 extern int tcp_do_autosendbuf;
261
262 int limited_txmt = 1;
263 int early_rexmt = 1;
264 int sack_ackadv = 1;
265 int tcp_dsack_enable = 1;
266
267 #if (DEVELOPMENT || DEBUG)
268 SYSCTL_INT(_net_inet_tcp, OID_AUTO, limited_transmit,
269 CTLFLAG_RW | CTLFLAG_LOCKED, &limited_txmt, 0,
270 "Enable limited transmit");
271
272 SYSCTL_INT(_net_inet_tcp, OID_AUTO, early_rexmt,
273 CTLFLAG_RW | CTLFLAG_LOCKED, &early_rexmt, 0,
274 "Enable Early Retransmit");
275
276 SYSCTL_INT(_net_inet_tcp, OID_AUTO, sack_ackadv,
277 CTLFLAG_RW | CTLFLAG_LOCKED, &sack_ackadv, 0,
278 "Use SACK with cumulative ack advancement as a dupack");
279
280 SYSCTL_INT(_net_inet_tcp, OID_AUTO, dsack_enable,
281 CTLFLAG_RW | CTLFLAG_LOCKED, &tcp_dsack_enable, 0,
282 "use DSACK TCP option to report duplicate segments");
283 #endif /* (DEVELOPMENT || DEBUG) */
284
285 #if CONFIG_IFEF_NOWINDOWSCALE
286 int tcp_obey_ifef_nowindowscale = 0;
287 SYSCTL_INT(_net_inet_tcp, OID_AUTO, obey_ifef_nowindowscale,
288 CTLFLAG_RW | CTLFLAG_LOCKED,
289 &tcp_obey_ifef_nowindowscale, 0, "");
290 #endif
291
292 extern int tcp_TCPTV_MIN;
293 extern int tcp_acc_iaj_high;
294 extern int tcp_acc_iaj_react_limit;
295
296 int tcprexmtthresh = 3;
297
298 u_int32_t tcp_now;
299 struct timeval tcp_uptime; /* uptime when tcp_now was last updated */
300 lck_spin_t *tcp_uptime_lock; /* Used to sychronize updates to tcp_now */
301
302 struct inpcbhead tcb;
303 #define tcb6 tcb /* for KAME src sync over BSD*'s */
304 struct inpcbinfo tcbinfo;
305
306 static void tcp_dooptions(struct tcpcb *, u_char *, int, struct tcphdr *,
307 struct tcpopt *);
308 static void tcp_finalize_options(struct tcpcb *, struct tcpopt *, unsigned int);
309 static void tcp_pulloutofband(struct socket *,
310 struct tcphdr *, struct mbuf *, int);
311 static int tcp_reass(struct tcpcb *, struct tcphdr *, int *, struct mbuf *,
312 struct ifnet *);
313 static void tcp_xmit_timer(struct tcpcb *, int, u_int32_t, tcp_seq);
314 static inline unsigned int tcp_maxmtu(struct rtentry *);
315 static inline int tcp_stretch_ack_enable(struct tcpcb *tp);
316 static inline void tcp_adaptive_rwtimo_check(struct tcpcb *, int);
317
318 #if TRAFFIC_MGT
319 static inline void update_iaj_state(struct tcpcb *tp, uint32_t tlen,
320 int reset_size);
321 void compute_iaj(struct tcpcb *tp, int nlropkts, int lro_delay_factor);
322 static void compute_iaj_meat(struct tcpcb *tp, uint32_t cur_iaj);
323 #endif /* TRAFFIC_MGT */
324
325 #if INET6
326 static inline unsigned int tcp_maxmtu6(struct rtentry *);
327 #endif
328
329 static void tcp_sbrcv_grow(struct tcpcb *tp, struct sockbuf *sb,
330 struct tcpopt *to, u_int32_t tlen);
331
332 void tcp_sbrcv_trim(struct tcpcb *tp, struct sockbuf *sb);
333 static void tcp_sbsnd_trim(struct sockbuf *sbsnd);
334 static inline void tcp_sbrcv_tstmp_check(struct tcpcb *tp);
335 static inline void tcp_sbrcv_reserve(struct tcpcb *tp, struct sockbuf *sb,
336 u_int32_t newsize, u_int32_t idealsize);
337 static void tcp_bad_rexmt_restore_state(struct tcpcb *tp, struct tcphdr *th);
338 static void tcp_compute_rtt(struct tcpcb *tp, struct tcpopt *to,
339 struct tcphdr *th);
340 static void tcp_early_rexmt_check(struct tcpcb *tp, struct tcphdr *th);
341 static void tcp_bad_rexmt_check(struct tcpcb *tp, struct tcphdr *th,
342 struct tcpopt *to);
343 /*
344 * Constants used for resizing receive socket buffer
345 * when timestamps are not supported
346 */
347 #define TCPTV_RCVNOTS_QUANTUM 100
348 #define TCP_RCVNOTS_BYTELEVEL 204800
349
350 /*
351 * Constants used for limiting early retransmits
352 * to 10 per minute.
353 */
354 #define TCP_EARLY_REXMT_WIN (60 * TCP_RETRANSHZ) /* 60 seconds */
355 #define TCP_EARLY_REXMT_LIMIT 10
356
357 extern void ipfwsyslog( int level, const char *format,...);
358 extern int fw_verbose;
359
360 #if IPFIREWALL
361 extern void ipfw_stealth_stats_incr_tcp(void);
362
363 #define log_in_vain_log( a ) { \
364 if ( (log_in_vain == 3 ) && (fw_verbose == 2)) { /* Apple logging, log to ipfw.log */ \
365 ipfwsyslog a ; \
366 } else if ( (log_in_vain == 4 ) && (fw_verbose == 2)) { \
367 ipfw_stealth_stats_incr_tcp(); \
368 } \
369 else log a ; \
370 }
371 #else
372 #define log_in_vain_log( a ) { log a; }
373 #endif
374
375 int tcp_rcvunackwin = TCPTV_UNACKWIN;
376 int tcp_maxrcvidle = TCPTV_MAXRCVIDLE;
377 int tcp_rcvsspktcnt = TCP_RCV_SS_PKTCOUNT;
378 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rcvsspktcnt, CTLFLAG_RW | CTLFLAG_LOCKED,
379 &tcp_rcvsspktcnt, 0, "packets to be seen before receiver stretches acks");
380
381 #define DELAY_ACK(tp, th) \
382 (CC_ALGO(tp)->delay_ack != NULL && CC_ALGO(tp)->delay_ack(tp, th))
383
384 static int tcp_dropdropablreq(struct socket *head);
385 static void tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th);
386 static void update_base_rtt(struct tcpcb *tp, uint32_t rtt);
387 void tcp_set_background_cc(struct socket *so);
388 void tcp_set_foreground_cc(struct socket *so);
389 static void tcp_set_new_cc(struct socket *so, uint16_t cc_index);
390 static void tcp_bwmeas_check(struct tcpcb *tp);
391
392 #if TRAFFIC_MGT
393 void
394 reset_acc_iaj(struct tcpcb *tp)
395 {
396 tp->acc_iaj = 0;
397 tp->iaj_rwintop = 0;
398 CLEAR_IAJ_STATE(tp);
399 }
400
401 static inline void
402 update_iaj_state(struct tcpcb *tp, uint32_t size, int rst_size)
403 {
404 if (rst_size > 0)
405 tp->iaj_size = 0;
406 if (tp->iaj_size == 0 || size >= tp->iaj_size) {
407 tp->iaj_size = size;
408 tp->iaj_rcv_ts = tcp_now;
409 tp->iaj_small_pkt = 0;
410 }
411 }
412
413 /* For every 32 bit unsigned integer(v), this function will find the
414 * largest integer n such that (n*n <= v). This takes at most 16 iterations
415 * irrespective of the value of v and does not involve multiplications.
416 */
417 static inline int
418 isqrt(unsigned int val) {
419 unsigned int sqrt_cache[11] = {0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100};
420 unsigned int temp, g=0, b=0x8000, bshft=15;
421 if ( val <= 100) {
422 for (g = 0; g <= 10; ++g) {
423 if (sqrt_cache[g] > val) {
424 g--;
425 break;
426 } else if (sqrt_cache[g] == val) {
427 break;
428 }
429 }
430 } else {
431 do {
432 temp = (((g << 1) + b) << (bshft--));
433 if (val >= temp) {
434 g += b;
435 val -= temp;
436 }
437 b >>= 1;
438 } while ( b > 0 && val > 0);
439 }
440 return(g);
441 }
442
443 /*
444 * With LRO, roughly estimate the inter arrival time between
445 * each sub coalesced packet as an average. Count the delay
446 * cur_iaj to be the delay between the last packet received
447 * and the first packet of the LRO stream. Due to round off errors
448 * cur_iaj may be the same as lro_delay_factor. Averaging has
449 * round off errors too. lro_delay_factor may be close to 0
450 * in steady state leading to lower values fed to compute_iaj_meat.
451 */
452 void
453 compute_iaj(struct tcpcb *tp, int nlropkts, int lro_delay_factor)
454 {
455 uint32_t cur_iaj = tcp_now - tp->iaj_rcv_ts;
456 uint32_t timediff = 0;
457
458 if (cur_iaj >= lro_delay_factor) {
459 cur_iaj = cur_iaj - lro_delay_factor;
460 }
461
462 compute_iaj_meat(tp, cur_iaj);
463
464 if (nlropkts <= 1)
465 return;
466
467 nlropkts--;
468
469 timediff = lro_delay_factor/nlropkts;
470
471 while (nlropkts > 0)
472 {
473 compute_iaj_meat(tp, timediff);
474 nlropkts--;
475 }
476 }
477
478 static
479 void compute_iaj_meat(struct tcpcb *tp, uint32_t cur_iaj)
480 {
481 /* When accumulated IAJ reaches MAX_ACC_IAJ in milliseconds,
482 * throttle the receive window to a minimum of MIN_IAJ_WIN packets
483 */
484 #define MAX_ACC_IAJ (tcp_acc_iaj_high_thresh + tcp_acc_iaj_react_limit)
485 #define IAJ_DIV_SHIFT 4
486 #define IAJ_ROUNDUP_CONST (1 << (IAJ_DIV_SHIFT - 1))
487
488 uint32_t allowed_iaj, acc_iaj = 0;
489
490 uint32_t mean, temp;
491 int32_t cur_iaj_dev;
492
493 cur_iaj_dev = (cur_iaj - tp->avg_iaj);
494
495 /* Allow a jitter of "allowed_iaj" milliseconds. Some connections
496 * may have a constant jitter more than that. We detect this by
497 * using standard deviation.
498 */
499 allowed_iaj = tp->avg_iaj + tp->std_dev_iaj;
500 if (allowed_iaj < tcp_allowed_iaj)
501 allowed_iaj = tcp_allowed_iaj;
502
503 /* Initially when the connection starts, the senders congestion
504 * window is small. During this period we avoid throttling a
505 * connection because we do not have a good starting point for
506 * allowed_iaj. IAJ_IGNORE_PKTCNT is used to quietly gloss over
507 * the first few packets.
508 */
509 if (tp->iaj_pktcnt > IAJ_IGNORE_PKTCNT) {
510 if ( cur_iaj <= allowed_iaj ) {
511 if (tp->acc_iaj >= 2)
512 acc_iaj = tp->acc_iaj - 2;
513 else
514 acc_iaj = 0;
515
516 } else {
517 acc_iaj = tp->acc_iaj + (cur_iaj - allowed_iaj);
518 }
519
520 if (acc_iaj > MAX_ACC_IAJ)
521 acc_iaj = MAX_ACC_IAJ;
522 tp->acc_iaj = acc_iaj;
523 }
524
525 /* Compute weighted average where the history has a weight of
526 * 15 out of 16 and the current value has a weight of 1 out of 16.
527 * This will make the short-term measurements have more weight.
528 *
529 * The addition of 8 will help to round-up the value
530 * instead of round-down
531 */
532 tp->avg_iaj = (((tp->avg_iaj << IAJ_DIV_SHIFT) - tp->avg_iaj)
533 + cur_iaj + IAJ_ROUNDUP_CONST) >> IAJ_DIV_SHIFT;
534
535 /* Compute Root-mean-square of deviation where mean is a weighted
536 * average as described above.
537 */
538 temp = tp->std_dev_iaj * tp->std_dev_iaj;
539 mean = (((temp << IAJ_DIV_SHIFT) - temp)
540 + (cur_iaj_dev * cur_iaj_dev)
541 + IAJ_ROUNDUP_CONST) >> IAJ_DIV_SHIFT;
542
543 tp->std_dev_iaj = isqrt(mean);
544
545 DTRACE_TCP3(iaj, struct tcpcb *, tp, uint32_t, cur_iaj,
546 uint32_t, allowed_iaj);
547
548 return;
549 }
550 #endif /* TRAFFIC_MGT */
551
552 /* Check if enough amount of data has been acknowledged since
553 * bw measurement was started
554 */
555 static void
556 tcp_bwmeas_check(struct tcpcb *tp)
557 {
558 int32_t bw_meas_bytes;
559 uint32_t bw, bytes, elapsed_time;
560 bw_meas_bytes = tp->snd_una - tp->t_bwmeas->bw_start;
561 if ((tp->t_flagsext & TF_BWMEAS_INPROGRESS) != 0 &&
562 bw_meas_bytes >= (int32_t)(tp->t_bwmeas->bw_size)) {
563 bytes = bw_meas_bytes;
564 elapsed_time = tcp_now - tp->t_bwmeas->bw_ts;
565 if (elapsed_time > 0) {
566 bw = bytes / elapsed_time;
567 if ( bw > 0) {
568 if (tp->t_bwmeas->bw_sndbw > 0) {
569 tp->t_bwmeas->bw_sndbw =
570 (((tp->t_bwmeas->bw_sndbw << 3) - tp->t_bwmeas->bw_sndbw) + bw) >> 3;
571 } else {
572 tp->t_bwmeas->bw_sndbw = bw;
573 }
574 }
575 }
576 tp->t_flagsext &= ~(TF_BWMEAS_INPROGRESS);
577 }
578 }
579
580 static int
581 tcp_reass(struct tcpcb *tp, struct tcphdr *th, int *tlenp, struct mbuf *m,
582 struct ifnet *ifp)
583 {
584 struct tseg_qent *q;
585 struct tseg_qent *p = NULL;
586 struct tseg_qent *nq;
587 struct tseg_qent *te = NULL;
588 struct inpcb *inp = tp->t_inpcb;
589 struct socket *so = inp->inp_socket;
590 int flags = 0;
591 int dowakeup = 0;
592 struct mbuf *oodata = NULL;
593 int copy_oodata = 0;
594 u_int16_t qlimit;
595 boolean_t cell = IFNET_IS_CELLULAR(ifp);
596 boolean_t wifi = (!cell && IFNET_IS_WIFI(ifp));
597 boolean_t wired = (!wifi && IFNET_IS_WIRED(ifp));
598 boolean_t dsack_set = FALSE;
599
600 /*
601 * Call with th==0 after become established to
602 * force pre-ESTABLISHED data up to user socket.
603 */
604 if (th == NULL)
605 goto present;
606
607 /*
608 * If the reassembly queue already has entries or if we are going
609 * to add a new one, then the connection has reached a loss state.
610 * Reset the stretch-ack algorithm at this point.
611 */
612 tcp_reset_stretch_ack(tp);
613
614 #if TRAFFIC_MGT
615 if (tp->acc_iaj > 0)
616 reset_acc_iaj(tp);
617 #endif /* TRAFFIC_MGT */
618
619 /*
620 * Limit the number of segments in the reassembly queue to prevent
621 * holding on to too many segments (and thus running out of mbufs).
622 * Make sure to let the missing segment through which caused this
623 * queue. Always keep one global queue entry spare to be able to
624 * process the missing segment.
625 */
626 qlimit = min(max(100, so->so_rcv.sb_hiwat >> 10),
627 tcp_autorcvbuf_max >> 10);
628 if (th->th_seq != tp->rcv_nxt &&
629 (tp->t_reassqlen + 1) >= qlimit) {
630 tcp_reass_overflows++;
631 tcpstat.tcps_rcvmemdrop++;
632 m_freem(m);
633 *tlenp = 0;
634 return (0);
635 }
636
637 /* Allocate a new queue entry. If we can't, just drop the pkt. XXX */
638 te = (struct tseg_qent *) zalloc(tcp_reass_zone);
639 if (te == NULL) {
640 tcpstat.tcps_rcvmemdrop++;
641 m_freem(m);
642 return (0);
643 }
644 tp->t_reassqlen++;
645
646 /*
647 * Find a segment which begins after this one does.
648 */
649 LIST_FOREACH(q, &tp->t_segq, tqe_q) {
650 if (SEQ_GT(q->tqe_th->th_seq, th->th_seq))
651 break;
652 p = q;
653 }
654
655 /*
656 * If there is a preceding segment, it may provide some of
657 * our data already. If so, drop the data from the incoming
658 * segment. If it provides all of our data, drop us.
659 */
660 if (p != NULL) {
661 int i;
662 /* conversion to int (in i) handles seq wraparound */
663 i = p->tqe_th->th_seq + p->tqe_len - th->th_seq;
664 if (i > 0) {
665 if (TCP_DSACK_ENABLED(tp) && i > 1) {
666 /*
667 * Note duplicate data sequnce numbers
668 * to report in DSACK option
669 */
670 tp->t_dsack_lseq = th->th_seq;
671 tp->t_dsack_rseq = th->th_seq +
672 min(i, *tlenp);
673
674 /*
675 * Report only the first part of partial/
676 * non-contiguous duplicate sequence space
677 */
678 dsack_set = TRUE;
679 }
680 if (i >= *tlenp) {
681 tcpstat.tcps_rcvduppack++;
682 tcpstat.tcps_rcvdupbyte += *tlenp;
683 if (nstat_collect) {
684 nstat_route_rx(inp->inp_route.ro_rt,
685 1, *tlenp,
686 NSTAT_RX_FLAG_DUPLICATE);
687 INP_ADD_STAT(inp, cell, wifi, wired,
688 rxpackets, 1);
689 INP_ADD_STAT(inp, cell, wifi, wired,
690 rxbytes, *tlenp);
691 tp->t_stat.rxduplicatebytes += *tlenp;
692 }
693 m_freem(m);
694 zfree(tcp_reass_zone, te);
695 te = NULL;
696 tp->t_reassqlen--;
697 /*
698 * Try to present any queued data
699 * at the left window edge to the user.
700 * This is needed after the 3-WHS
701 * completes.
702 */
703 goto present;
704 }
705 m_adj(m, i);
706 *tlenp -= i;
707 th->th_seq += i;
708 }
709 }
710 tp->t_rcvoopack++;
711 tcpstat.tcps_rcvoopack++;
712 tcpstat.tcps_rcvoobyte += *tlenp;
713 if (nstat_collect) {
714 nstat_route_rx(inp->inp_route.ro_rt, 1, *tlenp,
715 NSTAT_RX_FLAG_OUT_OF_ORDER);
716 INP_ADD_STAT(inp, cell, wifi, wired, rxpackets, 1);
717 INP_ADD_STAT(inp, cell, wifi, wired, rxbytes, *tlenp);
718 tp->t_stat.rxoutoforderbytes += *tlenp;
719 }
720
721 /*
722 * While we overlap succeeding segments trim them or,
723 * if they are completely covered, dequeue them.
724 */
725 while (q) {
726 int i = (th->th_seq + *tlenp) - q->tqe_th->th_seq;
727 if (i <= 0)
728 break;
729
730 /*
731 * Report only the first part of partial/non-contiguous
732 * duplicate segment in dsack option. The variable
733 * dsack_set will be true if a previous entry has some of
734 * the duplicate sequence space.
735 */
736 if (TCP_DSACK_ENABLED(tp) && i > 1 && !dsack_set) {
737 if (tp->t_dsack_lseq == 0) {
738 tp->t_dsack_lseq = q->tqe_th->th_seq;
739 tp->t_dsack_rseq =
740 tp->t_dsack_lseq + min(i, q->tqe_len);
741 } else {
742 /*
743 * this segment overlaps data in multple
744 * entries in the reassembly queue, move
745 * the right sequence number further.
746 */
747 tp->t_dsack_rseq =
748 tp->t_dsack_rseq + min(i, q->tqe_len);
749 }
750 }
751 if (i < q->tqe_len) {
752 q->tqe_th->th_seq += i;
753 q->tqe_len -= i;
754 m_adj(q->tqe_m, i);
755 break;
756 }
757
758 nq = LIST_NEXT(q, tqe_q);
759 LIST_REMOVE(q, tqe_q);
760 m_freem(q->tqe_m);
761 zfree(tcp_reass_zone, q);
762 tp->t_reassqlen--;
763 q = nq;
764 }
765
766 /* Insert the new segment queue entry into place. */
767 te->tqe_m = m;
768 te->tqe_th = th;
769 te->tqe_len = *tlenp;
770
771 if (p == NULL) {
772 LIST_INSERT_HEAD(&tp->t_segq, te, tqe_q);
773 } else {
774 LIST_INSERT_AFTER(p, te, tqe_q);
775 }
776
777 /*
778 * New out-of-order data exists, and is pointed to by
779 * queue entry te. Set copy_oodata to 1 so out-of-order data
780 * can be copied off to sockbuf after in-order data
781 * is copied off.
782 */
783 if (!(so->so_state & SS_CANTRCVMORE))
784 copy_oodata = 1;
785
786 present:
787 /*
788 * Present data to user, advancing rcv_nxt through
789 * completed sequence space.
790 */
791 if (!TCPS_HAVEESTABLISHED(tp->t_state))
792 return (0);
793 q = LIST_FIRST(&tp->t_segq);
794 if (!q || q->tqe_th->th_seq != tp->rcv_nxt) {
795 /* Stop using LRO once out of order packets arrive */
796 if (tp->t_flagsext & TF_LRO_OFFLOADED) {
797 tcp_lro_remove_state(inp->inp_laddr, inp->inp_faddr,
798 th->th_dport, th->th_sport);
799 tp->t_flagsext &= ~TF_LRO_OFFLOADED;
800 }
801
802 /*
803 * continue processing if out-of-order data
804 * can be delivered
805 */
806 if (q && (so->so_flags & SOF_ENABLE_MSGS))
807 goto msg_unordered_delivery;
808
809 return (0);
810 }
811
812 /* lost packet was recovered, so ooo data can be returned */
813 tcpstat.tcps_recovered_pkts++;
814
815 do {
816 tp->rcv_nxt += q->tqe_len;
817 flags = q->tqe_th->th_flags & TH_FIN;
818 nq = LIST_NEXT(q, tqe_q);
819 LIST_REMOVE(q, tqe_q);
820 if (so->so_state & SS_CANTRCVMORE) {
821 m_freem(q->tqe_m);
822 } else {
823 so_recv_data_stat(so, q->tqe_m, 0); /* XXXX */
824 if (so->so_flags & SOF_ENABLE_MSGS) {
825 /*
826 * Append the inorder data as a message to the
827 * receive socket buffer. Also check to see if
828 * the data we are about to deliver is the same
829 * data that we wanted to pass up to the user
830 * out of order. If so, reset copy_oodata --
831 * the received data filled a gap, and
832 * is now in order!
833 */
834 if (q == te)
835 copy_oodata = 0;
836 }
837 if (sbappendstream_rcvdemux(so, q->tqe_m,
838 q->tqe_th->th_seq - (tp->irs + 1), 0))
839 dowakeup = 1;
840 if (tp->t_flagsext & TF_LRO_OFFLOADED) {
841 tcp_update_lro_seq(tp->rcv_nxt,
842 inp->inp_laddr, inp->inp_faddr,
843 th->th_dport, th->th_sport);
844 }
845 }
846 zfree(tcp_reass_zone, q);
847 tp->t_reassqlen--;
848 q = nq;
849 } while (q && q->tqe_th->th_seq == tp->rcv_nxt);
850
851 #if INET6
852 if ((inp->inp_vflag & INP_IPV6) != 0) {
853
854 KERNEL_DEBUG(DBG_LAYER_BEG,
855 ((inp->inp_fport << 16) | inp->inp_lport),
856 (((inp->in6p_laddr.s6_addr16[0] & 0xffff) << 16) |
857 (inp->in6p_faddr.s6_addr16[0] & 0xffff)),
858 0,0,0);
859 }
860 else
861 #endif
862 {
863 KERNEL_DEBUG(DBG_LAYER_BEG,
864 ((inp->inp_fport << 16) | inp->inp_lport),
865 (((inp->inp_laddr.s_addr & 0xffff) << 16) |
866 (inp->inp_faddr.s_addr & 0xffff)),
867 0,0,0);
868 }
869
870 msg_unordered_delivery:
871 /* Deliver out-of-order data as a message */
872 if (te && (so->so_flags & SOF_ENABLE_MSGS) && copy_oodata && te->tqe_len) {
873 /*
874 * make a copy of the mbuf to be delivered up to
875 * the user, and add it to the sockbuf
876 */
877 oodata = m_copym(te->tqe_m, 0, M_COPYALL, M_DONTWAIT);
878 if (oodata != NULL) {
879 if (sbappendmsgstream_rcv(&so->so_rcv, oodata,
880 te->tqe_th->th_seq - (tp->irs + 1), 1)) {
881 dowakeup = 1;
882 tcpstat.tcps_msg_unopkts++;
883 } else {
884 tcpstat.tcps_msg_unoappendfail++;
885 }
886 }
887 }
888
889 if (dowakeup)
890 sorwakeup(so); /* done with socket lock held */
891 return (flags);
892 }
893
894 /*
895 * Reduce congestion window -- used when ECN is seen or when a tail loss
896 * probe recovers the last packet.
897 */
898 static void
899 tcp_reduce_congestion_window(
900 struct tcpcb *tp)
901 {
902 /*
903 * If the current tcp cc module has
904 * defined a hook for tasks to run
905 * before entering FR, call it
906 */
907 if (CC_ALGO(tp)->pre_fr != NULL)
908 CC_ALGO(tp)->pre_fr(tp);
909 ENTER_FASTRECOVERY(tp);
910 if (tp->t_flags & TF_SENTFIN)
911 tp->snd_recover = tp->snd_max - 1;
912 else
913 tp->snd_recover = tp->snd_max;
914 tp->t_timer[TCPT_REXMT] = 0;
915 tp->t_timer[TCPT_PTO] = 0;
916 tp->t_rtttime = 0;
917 if (tp->t_flagsext & TF_CWND_NONVALIDATED) {
918 tcp_cc_adjust_nonvalidated_cwnd(tp);
919 } else {
920 tp->snd_cwnd = tp->snd_ssthresh +
921 tp->t_maxseg * tcprexmtthresh;
922 }
923 }
924
925 /*
926 * This function is called upon reception of data on a socket. It's purpose is
927 * to handle the adaptive keepalive timers that monitor whether the connection
928 * is making progress. First the adaptive read-timer, second the TFO probe-timer.
929 *
930 * The application wants to get an event if there is a stall during read.
931 * Set the initial keepalive timeout to be equal to twice RTO.
932 *
933 * If the outgoing interface is in marginal conditions, we need to
934 * enable read probes for that too.
935 */
936 static inline void
937 tcp_adaptive_rwtimo_check(struct tcpcb *tp, int tlen)
938 {
939 struct ifnet *outifp = tp->t_inpcb->inp_last_outifp;
940
941 if ((tp->t_adaptive_rtimo > 0 ||
942 (outifp != NULL &&
943 (outifp->if_eflags & IFEF_PROBE_CONNECTIVITY)))
944 && tlen > 0 &&
945 tp->t_state == TCPS_ESTABLISHED) {
946 tp->t_timer[TCPT_KEEP] = OFFSET_FROM_START(tp,
947 (TCP_REXMTVAL(tp) << 1));
948 tp->t_flagsext |= TF_DETECT_READSTALL;
949 tp->t_rtimo_probes = 0;
950 }
951 }
952
953 inline void
954 tcp_keepalive_reset(struct tcpcb *tp)
955 {
956 tp->t_timer[TCPT_KEEP] = OFFSET_FROM_START(tp,
957 TCP_CONN_KEEPIDLE(tp));
958 tp->t_flagsext &= ~(TF_DETECT_READSTALL);
959 tp->t_rtimo_probes = 0;
960 }
961
962 /*
963 * TCP input routine, follows pages 65-76 of the
964 * protocol specification dated September, 1981 very closely.
965 */
966 #if INET6
967 int
968 tcp6_input(struct mbuf **mp, int *offp, int proto)
969 {
970 #pragma unused(proto)
971 register struct mbuf *m = *mp;
972 uint32_t ia6_flags;
973 struct ifnet *ifp = m->m_pkthdr.rcvif;
974
975 IP6_EXTHDR_CHECK(m, *offp, sizeof(struct tcphdr), return IPPROTO_DONE);
976
977 /* Expect 32-bit aligned data pointer on strict-align platforms */
978 MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m);
979
980 /*
981 * draft-itojun-ipv6-tcp-to-anycast
982 * better place to put this in?
983 */
984 if (ip6_getdstifaddr_info(m, NULL, &ia6_flags) == 0) {
985 if (ia6_flags & IN6_IFF_ANYCAST) {
986 struct ip6_hdr *ip6;
987
988 ip6 = mtod(m, struct ip6_hdr *);
989 icmp6_error(m, ICMP6_DST_UNREACH,
990 ICMP6_DST_UNREACH_ADDR,
991 (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
992
993 IF_TCP_STATINC(ifp, icmp6unreach);
994
995 return (IPPROTO_DONE);
996 }
997 }
998
999 tcp_input(m, *offp);
1000 return (IPPROTO_DONE);
1001 }
1002 #endif
1003
1004 /* Depending on the usage of mbuf space in the system, this function
1005 * will return true or false. This is used to determine if a socket
1006 * buffer can take more memory from the system for auto-tuning or not.
1007 */
1008 u_int8_t
1009 tcp_cansbgrow(struct sockbuf *sb)
1010 {
1011 /* Calculate the host level space limit in terms of MSIZE buffers.
1012 * We can use a maximum of half of the available mbuf space for
1013 * socket buffers.
1014 */
1015 u_int32_t mblim = ((nmbclusters >> 1) << (MCLSHIFT - MSIZESHIFT));
1016
1017 /* Calculate per sb limit in terms of bytes. We optimize this limit
1018 * for upto 16 socket buffers.
1019 */
1020
1021 u_int32_t sbspacelim = ((nmbclusters >> 4) << MCLSHIFT);
1022
1023 if ((total_sbmb_cnt < mblim) &&
1024 (sb->sb_hiwat < sbspacelim)) {
1025 return(1);
1026 } else {
1027 OSIncrementAtomic64(&sbmb_limreached);
1028 }
1029 return(0);
1030 }
1031
1032 static void
1033 tcp_sbrcv_reserve(struct tcpcb *tp, struct sockbuf *sbrcv,
1034 u_int32_t newsize, u_int32_t idealsize)
1035 {
1036
1037 /* newsize should not exceed max */
1038 newsize = min(newsize, tcp_autorcvbuf_max);
1039
1040 /* The receive window scale negotiated at the
1041 * beginning of the connection will also set a
1042 * limit on the socket buffer size
1043 */
1044 newsize = min(newsize, TCP_MAXWIN << tp->rcv_scale);
1045
1046 /* Set new socket buffer size */
1047 if (newsize > sbrcv->sb_hiwat &&
1048 (sbreserve(sbrcv, newsize) == 1)) {
1049 sbrcv->sb_idealsize = min(max(sbrcv->sb_idealsize,
1050 (idealsize != 0) ? idealsize : newsize),
1051 tcp_autorcvbuf_max);
1052
1053 /* Again check the limit set by the advertised
1054 * window scale
1055 */
1056 sbrcv->sb_idealsize = min(sbrcv->sb_idealsize,
1057 TCP_MAXWIN << tp->rcv_scale);
1058 }
1059 }
1060
1061 /*
1062 * This function is used to grow a receive socket buffer. It
1063 * will take into account system-level memory usage and the
1064 * bandwidth available on the link to make a decision.
1065 */
1066 static void
1067 tcp_sbrcv_grow(struct tcpcb *tp, struct sockbuf *sbrcv,
1068 struct tcpopt *to, u_int32_t pktlen)
1069 {
1070 struct socket *so = sbrcv->sb_so;
1071
1072 /*
1073 * Do not grow the receive socket buffer if
1074 * - auto resizing is disabled, globally or on this socket
1075 * - the high water mark already reached the maximum
1076 * - the stream is in background and receive side is being
1077 * throttled
1078 * - if there are segments in reassembly queue indicating loss,
1079 * do not need to increase recv window during recovery as more
1080 * data is not going to be sent. A duplicate ack sent during
1081 * recovery should not change the receive window
1082 */
1083 if (tcp_do_autorcvbuf == 0 ||
1084 (sbrcv->sb_flags & SB_AUTOSIZE) == 0 ||
1085 tcp_cansbgrow(sbrcv) == 0 ||
1086 sbrcv->sb_hiwat >= tcp_autorcvbuf_max ||
1087 (tp->t_flagsext & TF_RECV_THROTTLE) ||
1088 (so->so_flags1 & SOF1_EXTEND_BK_IDLE_WANTED) ||
1089 !LIST_EMPTY(&tp->t_segq)) {
1090 /* Can not resize the socket buffer, just return */
1091 goto out;
1092 }
1093
1094 if (TSTMP_GT(tcp_now,
1095 tp->rfbuf_ts + TCPTV_RCVBUFIDLE)) {
1096 /* If there has been an idle period in the
1097 * connection, just restart the measurement
1098 */
1099 goto out;
1100 }
1101
1102 if (!TSTMP_SUPPORTED(tp)) {
1103 /*
1104 * Timestamp option is not supported on this connection.
1105 * If the connection reached a state to indicate that
1106 * the receive socket buffer needs to grow, increase
1107 * the high water mark.
1108 */
1109 if (TSTMP_GEQ(tcp_now,
1110 tp->rfbuf_ts + TCPTV_RCVNOTS_QUANTUM)) {
1111 if (tp->rfbuf_cnt >= TCP_RCVNOTS_BYTELEVEL) {
1112 tcp_sbrcv_reserve(tp, sbrcv,
1113 tcp_autorcvbuf_max, 0);
1114 }
1115 goto out;
1116 } else {
1117 tp->rfbuf_cnt += pktlen;
1118 return;
1119 }
1120 } else if (to->to_tsecr != 0) {
1121 /*
1122 * If the timestamp shows that one RTT has
1123 * completed, we can stop counting the
1124 * bytes. Here we consider increasing
1125 * the socket buffer if the bandwidth measured in
1126 * last rtt, is more than half of sb_hiwat, this will
1127 * help to scale the buffer according to the bandwidth
1128 * on the link.
1129 */
1130 if (TSTMP_GEQ(to->to_tsecr, tp->rfbuf_ts)) {
1131 if (tp->rfbuf_cnt > (sbrcv->sb_hiwat -
1132 (sbrcv->sb_hiwat >> 1))) {
1133 int32_t rcvbuf_inc, min_incr;
1134 /*
1135 * Increment the receive window by a
1136 * multiple of maximum sized segments.
1137 * This will prevent a connection from
1138 * sending smaller segments on wire if it
1139 * is limited by the receive window.
1140 *
1141 * Set the ideal size based on current
1142 * bandwidth measurements. We set the
1143 * ideal size on receive socket buffer to
1144 * be twice the bandwidth delay product.
1145 */
1146 rcvbuf_inc = (tp->rfbuf_cnt << 1)
1147 - sbrcv->sb_hiwat;
1148
1149 /*
1150 * Make the increment equal to 8 segments
1151 * at least
1152 */
1153 min_incr = tp->t_maxseg << tcp_autorcvbuf_inc_shift;
1154 if (rcvbuf_inc < min_incr)
1155 rcvbuf_inc = min_incr;
1156
1157 rcvbuf_inc =
1158 (rcvbuf_inc / tp->t_maxseg) * tp->t_maxseg;
1159 tcp_sbrcv_reserve(tp, sbrcv,
1160 sbrcv->sb_hiwat + rcvbuf_inc,
1161 (tp->rfbuf_cnt * 2));
1162 }
1163 goto out;
1164 } else {
1165 tp->rfbuf_cnt += pktlen;
1166 return;
1167 }
1168 }
1169 out:
1170 /* Restart the measurement */
1171 tp->rfbuf_ts = 0;
1172 tp->rfbuf_cnt = 0;
1173 return;
1174 }
1175
1176 /* This function will trim the excess space added to the socket buffer
1177 * to help a slow-reading app. The ideal-size of a socket buffer depends
1178 * on the link bandwidth or it is set by an application and we aim to
1179 * reach that size.
1180 */
1181 void
1182 tcp_sbrcv_trim(struct tcpcb *tp, struct sockbuf *sbrcv) {
1183 if (tcp_do_autorcvbuf == 1 && sbrcv->sb_idealsize > 0 &&
1184 sbrcv->sb_hiwat > sbrcv->sb_idealsize) {
1185 int32_t trim;
1186 /* compute the difference between ideal and current sizes */
1187 u_int32_t diff = sbrcv->sb_hiwat - sbrcv->sb_idealsize;
1188
1189 /* Compute the maximum advertised window for
1190 * this connection.
1191 */
1192 u_int32_t advwin = tp->rcv_adv - tp->rcv_nxt;
1193
1194 /* How much can we trim the receive socket buffer?
1195 * 1. it can not be trimmed beyond the max rcv win advertised
1196 * 2. if possible, leave 1/16 of bandwidth*delay to
1197 * avoid closing the win completely
1198 */
1199 u_int32_t leave = max(advwin, (sbrcv->sb_idealsize >> 4));
1200
1201 /* Sometimes leave can be zero, in that case leave at least
1202 * a few segments worth of space.
1203 */
1204 if (leave == 0)
1205 leave = tp->t_maxseg << tcp_autorcvbuf_inc_shift;
1206
1207 trim = sbrcv->sb_hiwat - (sbrcv->sb_cc + leave);
1208 trim = imin(trim, (int32_t)diff);
1209
1210 if (trim > 0)
1211 sbreserve(sbrcv, (sbrcv->sb_hiwat - trim));
1212 }
1213 }
1214
1215 /* We may need to trim the send socket buffer size for two reasons:
1216 * 1. if the rtt seen on the connection is climbing up, we do not
1217 * want to fill the buffers any more.
1218 * 2. if the congestion win on the socket backed off, there is no need
1219 * to hold more mbufs for that connection than what the cwnd will allow.
1220 */
1221 void
1222 tcp_sbsnd_trim(struct sockbuf *sbsnd) {
1223 if (tcp_do_autosendbuf == 1 &&
1224 ((sbsnd->sb_flags & (SB_AUTOSIZE | SB_TRIM)) ==
1225 (SB_AUTOSIZE | SB_TRIM)) &&
1226 (sbsnd->sb_idealsize > 0) &&
1227 (sbsnd->sb_hiwat > sbsnd->sb_idealsize)) {
1228 u_int32_t trim = 0;
1229 if (sbsnd->sb_cc <= sbsnd->sb_idealsize) {
1230 trim = sbsnd->sb_hiwat - sbsnd->sb_idealsize;
1231 } else {
1232 trim = sbsnd->sb_hiwat - sbsnd->sb_cc;
1233 }
1234 sbreserve(sbsnd, (sbsnd->sb_hiwat - trim));
1235 }
1236 if (sbsnd->sb_hiwat <= sbsnd->sb_idealsize)
1237 sbsnd->sb_flags &= ~(SB_TRIM);
1238 }
1239
1240 /*
1241 * If timestamp option was not negotiated on this connection
1242 * and this connection is on the receiving side of a stream
1243 * then we can not measure the delay on the link accurately.
1244 * Instead of enabling automatic receive socket buffer
1245 * resizing, just give more space to the receive socket buffer.
1246 */
1247 static inline void
1248 tcp_sbrcv_tstmp_check(struct tcpcb *tp) {
1249 struct socket *so = tp->t_inpcb->inp_socket;
1250 u_int32_t newsize = 2 * tcp_recvspace;
1251 struct sockbuf *sbrcv = &so->so_rcv;
1252
1253 if ((tp->t_flags & (TF_REQ_TSTMP | TF_RCVD_TSTMP)) !=
1254 (TF_REQ_TSTMP | TF_RCVD_TSTMP) &&
1255 (sbrcv->sb_flags & SB_AUTOSIZE) != 0) {
1256 tcp_sbrcv_reserve(tp, sbrcv, newsize, 0);
1257 }
1258 }
1259
1260 /* A receiver will evaluate the flow of packets on a connection
1261 * to see if it can reduce ack traffic. The receiver will start
1262 * stretching acks if all of the following conditions are met:
1263 * 1. tcp_delack_enabled is set to 3
1264 * 2. If the bytes received in the last 100ms is greater than a threshold
1265 * defined by maxseg_unacked
1266 * 3. If the connection has not been idle for tcp_maxrcvidle period.
1267 * 4. If the connection has seen enough packets to let the slow-start
1268 * finish after connection establishment or after some packet loss.
1269 *
1270 * The receiver will stop stretching acks if there is congestion/reordering
1271 * as indicated by packets on reassembly queue or an ECN. If the delayed-ack
1272 * timer fires while stretching acks, it means that the packet flow has gone
1273 * below the threshold defined by maxseg_unacked and the receiver will stop
1274 * stretching acks. The receiver gets no indication when slow-start is completed
1275 * or when the connection reaches an idle state. That is why we use
1276 * tcp_rcvsspktcnt to cover slow-start and tcp_maxrcvidle to identify idle
1277 * state.
1278 */
1279 static inline int
1280 tcp_stretch_ack_enable(struct tcpcb *tp)
1281 {
1282 if (!(tp->t_flagsext & (TF_NOSTRETCHACK|TF_DISABLE_STRETCHACK)) &&
1283 tp->rcv_by_unackwin >= (maxseg_unacked * tp->t_maxseg) &&
1284 TSTMP_GT(tp->rcv_unackwin + tcp_maxrcvidle, tcp_now) &&
1285 (!(tp->t_flagsext & TF_RCVUNACK_WAITSS) ||
1286 (tp->rcv_waitforss >= tcp_rcvsspktcnt))) {
1287 return(1);
1288 }
1289
1290 return(0);
1291 }
1292
1293 /*
1294 * Reset the state related to stretch-ack algorithm. This will make
1295 * the receiver generate an ack every other packet. The receiver
1296 * will start re-evaluating the rate at which packets come to decide
1297 * if it can benefit by lowering the ack traffic.
1298 */
1299 void
1300 tcp_reset_stretch_ack(struct tcpcb *tp)
1301 {
1302 tp->t_flags &= ~(TF_STRETCHACK);
1303 tp->rcv_by_unackwin = 0;
1304 tp->rcv_unackwin = tcp_now + tcp_rcvunackwin;
1305
1306 /*
1307 * When there is packet loss or packet re-ordering or CWR due to
1308 * ECN, the sender's congestion window is reduced. In these states,
1309 * generate an ack for every other packet for some time to allow
1310 * the sender's congestion window to grow.
1311 */
1312 tp->t_flagsext |= TF_RCVUNACK_WAITSS;
1313 tp->rcv_waitforss = 0;
1314 }
1315
1316 /*
1317 * The last packet was a retransmission, check if this ack
1318 * indicates that the retransmission was spurious.
1319 *
1320 * If the connection supports timestamps, we could use it to
1321 * detect if the last retransmit was not needed. Otherwise,
1322 * we check if the ACK arrived within RTT/2 window, then it
1323 * was a mistake to do the retransmit in the first place.
1324 *
1325 * This function will return 1 if it is a spurious retransmit,
1326 * 0 otherwise.
1327 */
1328 int
1329 tcp_detect_bad_rexmt(struct tcpcb *tp, struct tcphdr *th,
1330 struct tcpopt *to, u_int32_t rxtime)
1331 {
1332 int32_t tdiff, bad_rexmt_win;
1333 bad_rexmt_win = (tp->t_srtt >> (TCP_RTT_SHIFT + 1));
1334
1335 /* If the ack has ECN CE bit, then cwnd has to be adjusted */
1336 if (TCP_ECN_ENABLED(tp) && (th->th_flags & TH_ECE))
1337 return (0);
1338 if (TSTMP_SUPPORTED(tp)) {
1339 if (rxtime > 0 && (to->to_flags & TOF_TS)
1340 && to->to_tsecr != 0
1341 && TSTMP_LT(to->to_tsecr, rxtime))
1342 return (1);
1343 } else {
1344 if ((tp->t_rxtshift == 1
1345 || (tp->t_flagsext & TF_SENT_TLPROBE))
1346 && rxtime > 0) {
1347 tdiff = (int32_t)(tcp_now - rxtime);
1348 if (tdiff < bad_rexmt_win)
1349 return(1);
1350 }
1351 }
1352 return(0);
1353 }
1354
1355
1356 /*
1357 * Restore congestion window state if a spurious timeout
1358 * was detected.
1359 */
1360 static void
1361 tcp_bad_rexmt_restore_state(struct tcpcb *tp, struct tcphdr *th)
1362 {
1363 if (TSTMP_SUPPORTED(tp)) {
1364 u_int32_t fsize, acked;
1365 fsize = tp->snd_max - th->th_ack;
1366 acked = BYTES_ACKED(th, tp);
1367
1368 /*
1369 * Implement bad retransmit recovery as
1370 * described in RFC 4015.
1371 */
1372 tp->snd_ssthresh = tp->snd_ssthresh_prev;
1373
1374 /* Initialize cwnd to the initial window */
1375 if (CC_ALGO(tp)->cwnd_init != NULL)
1376 CC_ALGO(tp)->cwnd_init(tp);
1377
1378 tp->snd_cwnd = fsize + min(acked, tp->snd_cwnd);
1379
1380 } else {
1381 tp->snd_cwnd = tp->snd_cwnd_prev;
1382 tp->snd_ssthresh = tp->snd_ssthresh_prev;
1383 if (tp->t_flags & TF_WASFRECOVERY)
1384 ENTER_FASTRECOVERY(tp);
1385
1386 /* Do not use the loss flight size in this case */
1387 tp->t_lossflightsize = 0;
1388 }
1389 tp->snd_cwnd = max(tp->snd_cwnd, TCP_CC_CWND_INIT_BYTES);
1390 tp->snd_recover = tp->snd_recover_prev;
1391 tp->snd_nxt = tp->snd_max;
1392 tp->t_rxtshift = 0;
1393 tp->t_rxtstart = 0;
1394
1395 /* Fix send socket buffer to reflect the change in cwnd */
1396 tcp_bad_rexmt_fix_sndbuf(tp);
1397
1398 /*
1399 * This RTT might reflect the extra delay induced
1400 * by the network. Skip using this sample for RTO
1401 * calculation and mark the connection so we can
1402 * recompute RTT when the next eligible sample is
1403 * found.
1404 */
1405 tp->t_flagsext |= TF_RECOMPUTE_RTT;
1406 tp->t_badrexmt_time = tcp_now;
1407 tp->t_rtttime = 0;
1408 }
1409
1410 /*
1411 * If the previous packet was sent in retransmission timer, and it was
1412 * not needed, then restore the congestion window to the state before that
1413 * transmission.
1414 *
1415 * If the last packet was sent in tail loss probe timeout, check if that
1416 * recovered the last packet. If so, that will indicate a real loss and
1417 * the congestion window needs to be lowered.
1418 */
1419 static void
1420 tcp_bad_rexmt_check(struct tcpcb *tp, struct tcphdr *th, struct tcpopt *to)
1421 {
1422 if (tp->t_rxtshift > 0 &&
1423 tcp_detect_bad_rexmt(tp, th, to, tp->t_rxtstart)) {
1424 ++tcpstat.tcps_sndrexmitbad;
1425 tcp_bad_rexmt_restore_state(tp, th);
1426 tcp_ccdbg_trace(tp, th, TCP_CC_BAD_REXMT_RECOVERY);
1427 } else if ((tp->t_flagsext & TF_SENT_TLPROBE)
1428 && tp->t_tlphighrxt > 0
1429 && SEQ_GEQ(th->th_ack, tp->t_tlphighrxt)
1430 && !tcp_detect_bad_rexmt(tp, th, to, tp->t_tlpstart)) {
1431 /*
1432 * check DSACK information also to make sure that
1433 * the TLP was indeed needed
1434 */
1435 if (tcp_rxtseg_dsack_for_tlp(tp)) {
1436 /*
1437 * received a DSACK to indicate that TLP was
1438 * not needed
1439 */
1440 tcp_rxtseg_clean(tp);
1441 goto out;
1442 }
1443
1444 /*
1445 * The tail loss probe recovered the last packet and
1446 * we need to adjust the congestion window to take
1447 * this loss into account.
1448 */
1449 ++tcpstat.tcps_tlp_recoverlastpkt;
1450 if (!IN_FASTRECOVERY(tp)) {
1451 tcp_reduce_congestion_window(tp);
1452 EXIT_FASTRECOVERY(tp);
1453 }
1454 tcp_ccdbg_trace(tp, th, TCP_CC_TLP_RECOVER_LASTPACKET);
1455 } else if (tcp_rxtseg_detect_bad_rexmt(tp, th->th_ack)) {
1456 /*
1457 * All of the retransmitted segments were duplicated, this
1458 * can be an indication of bad fast retransmit.
1459 */
1460 tcpstat.tcps_dsack_badrexmt++;
1461 tcp_bad_rexmt_restore_state(tp, th);
1462 tcp_ccdbg_trace(tp, th, TCP_CC_DSACK_BAD_REXMT);
1463 tcp_rxtseg_clean(tp);
1464 }
1465 out:
1466 tp->t_flagsext &= ~(TF_SENT_TLPROBE);
1467 tp->t_tlphighrxt = 0;
1468 tp->t_tlpstart = 0;
1469
1470 /*
1471 * check if the latest ack was for a segment sent during PMTU
1472 * blackhole detection. If the timestamp on the ack is before
1473 * PMTU blackhole detection, then revert the size of the max
1474 * segment to previous size.
1475 */
1476 if (tp->t_rxtshift > 0 && (tp->t_flags & TF_BLACKHOLE) &&
1477 tp->t_pmtud_start_ts > 0 && TSTMP_SUPPORTED(tp)) {
1478 if ((to->to_flags & TOF_TS) && to->to_tsecr != 0
1479 && TSTMP_LT(to->to_tsecr, tp->t_pmtud_start_ts)) {
1480 tcp_pmtud_revert_segment_size(tp);
1481 }
1482 }
1483 if (tp->t_pmtud_start_ts > 0)
1484 tp->t_pmtud_start_ts = 0;
1485 }
1486
1487 /*
1488 * Check if early retransmit can be attempted according to RFC 5827.
1489 *
1490 * If packet reordering is detected on a connection, fast recovery will
1491 * be delayed until it is clear that the packet was lost and not reordered.
1492 * But reordering detection is done only when SACK is enabled.
1493 *
1494 * On connections that do not support SACK, there is a limit on the number
1495 * of early retransmits that can be done per minute. This limit is needed
1496 * to make sure that too many packets are not retransmitted when there is
1497 * packet reordering.
1498 */
1499 static void
1500 tcp_early_rexmt_check (struct tcpcb *tp, struct tcphdr *th)
1501 {
1502 u_int32_t obytes, snd_off;
1503 int32_t snd_len;
1504 struct socket *so = tp->t_inpcb->inp_socket;
1505
1506 if (early_rexmt && (SACK_ENABLED(tp) ||
1507 tp->t_early_rexmt_count < TCP_EARLY_REXMT_LIMIT) &&
1508 SEQ_GT(tp->snd_max, tp->snd_una) &&
1509 (tp->t_dupacks == 1 ||
1510 (SACK_ENABLED(tp) &&
1511 !TAILQ_EMPTY(&tp->snd_holes)))) {
1512 /*
1513 * If there are only a few outstanding
1514 * segments on the connection, we might need
1515 * to lower the retransmit threshold. This
1516 * will allow us to do Early Retransmit as
1517 * described in RFC 5827.
1518 */
1519 if (SACK_ENABLED(tp) &&
1520 !TAILQ_EMPTY(&tp->snd_holes)) {
1521 obytes = (tp->snd_max - tp->snd_fack) +
1522 tp->sackhint.sack_bytes_rexmit;
1523 } else {
1524 obytes = (tp->snd_max - tp->snd_una);
1525 }
1526
1527 /*
1528 * In order to lower retransmit threshold the
1529 * following two conditions must be met.
1530 * 1. the amount of outstanding data is less
1531 * than 4*SMSS bytes
1532 * 2. there is no unsent data ready for
1533 * transmission or the advertised window
1534 * will limit sending new segments.
1535 */
1536 snd_off = tp->snd_max - tp->snd_una;
1537 snd_len = min(so->so_snd.sb_cc, tp->snd_wnd) - snd_off;
1538 if (obytes < (tp->t_maxseg << 2) &&
1539 snd_len <= 0) {
1540 u_int32_t osegs;
1541
1542 osegs = obytes / tp->t_maxseg;
1543 if ((osegs * tp->t_maxseg) < obytes)
1544 osegs++;
1545
1546 /*
1547 * Since the connection might have already
1548 * received some dupacks, we add them to
1549 * to the outstanding segments count to get
1550 * the correct retransmit threshold.
1551 *
1552 * By checking for early retransmit after
1553 * receiving some duplicate acks when SACK
1554 * is supported, the connection will
1555 * enter fast recovery even if multiple
1556 * segments are lost in the same window.
1557 */
1558 osegs += tp->t_dupacks;
1559 if (osegs < 4) {
1560 tp->t_rexmtthresh =
1561 ((osegs - 1) > 1) ? (osegs - 1) : 1;
1562 tp->t_rexmtthresh =
1563 min(tp->t_rexmtthresh, tcprexmtthresh);
1564 tp->t_rexmtthresh =
1565 max(tp->t_rexmtthresh, tp->t_dupacks);
1566
1567 if (tp->t_early_rexmt_count == 0)
1568 tp->t_early_rexmt_win = tcp_now;
1569
1570 if (tp->t_flagsext & TF_SENT_TLPROBE) {
1571 tcpstat.tcps_tlp_recovery++;
1572 tcp_ccdbg_trace(tp, th,
1573 TCP_CC_TLP_RECOVERY);
1574 } else {
1575 tcpstat.tcps_early_rexmt++;
1576 tp->t_early_rexmt_count++;
1577 tcp_ccdbg_trace(tp, th,
1578 TCP_CC_EARLY_RETRANSMIT);
1579 }
1580 }
1581 }
1582 }
1583
1584 /*
1585 * If we ever sent a TLP probe, the acknowledgement will trigger
1586 * early retransmit because the value of snd_fack will be close
1587 * to snd_max. This will take care of adjustments to the
1588 * congestion window. So we can reset TF_SENT_PROBE flag.
1589 */
1590 tp->t_flagsext &= ~(TF_SENT_TLPROBE);
1591 tp->t_tlphighrxt = 0;
1592 tp->t_tlpstart = 0;
1593 }
1594
1595 static boolean_t
1596 tcp_tfo_syn(tp, to)
1597 struct tcpcb *tp;
1598 struct tcpopt *to;
1599 {
1600 u_char out[CCAES_BLOCK_SIZE];
1601 unsigned char len;
1602
1603 if (!(to->to_flags & (TOF_TFO | TOF_TFOREQ)) ||
1604 !(tcp_fastopen & TCP_FASTOPEN_SERVER))
1605 return (FALSE);
1606
1607 if ((to->to_flags & TOF_TFOREQ)) {
1608 tp->t_tfo_flags |= TFO_F_OFFER_COOKIE;
1609
1610 tp->t_tfo_stats |= TFO_S_COOKIEREQ_RECV;
1611 tcpstat.tcps_tfo_cookie_req_rcv++;
1612 return (FALSE);
1613 }
1614
1615 /* Ok, then it must be an offered cookie. We need to check that ... */
1616 tcp_tfo_gen_cookie(tp->t_inpcb, out, sizeof(out));
1617
1618 len = *to->to_tfo - TCPOLEN_FASTOPEN_REQ;
1619 to->to_tfo++;
1620 if (memcmp(out, to->to_tfo, len)) {
1621 /* Cookies are different! Let's return and offer a new cookie */
1622 tp->t_tfo_flags |= TFO_F_OFFER_COOKIE;
1623
1624 tp->t_tfo_stats |= TFO_S_COOKIE_INVALID;
1625 tcpstat.tcps_tfo_cookie_invalid++;
1626 return (FALSE);
1627 }
1628
1629 if (OSIncrementAtomic(&tcp_tfo_halfcnt) >= tcp_tfo_backlog) {
1630 /* Need to decrement again as we just increased it... */
1631 OSDecrementAtomic(&tcp_tfo_halfcnt);
1632 return (FALSE);
1633 }
1634
1635 tp->t_tfo_flags |= TFO_F_COOKIE_VALID;
1636
1637 tp->t_tfo_stats |= TFO_S_SYNDATA_RCV;
1638 tcpstat.tcps_tfo_syn_data_rcv++;
1639
1640 return (TRUE);
1641 }
1642
1643 static void
1644 tcp_tfo_synack(tp, to)
1645 struct tcpcb *tp;
1646 struct tcpopt *to;
1647 {
1648 if (to->to_flags & TOF_TFO) {
1649 unsigned char len = *to->to_tfo - TCPOLEN_FASTOPEN_REQ;
1650
1651 /*
1652 * If this happens, things have gone terribly wrong. len should
1653 * have been checked in tcp_dooptions.
1654 */
1655 VERIFY(len <= TFO_COOKIE_LEN_MAX);
1656
1657 to->to_tfo++;
1658
1659 tcp_cache_set_cookie(tp, to->to_tfo, len);
1660 tcp_heuristic_tfo_success(tp);
1661
1662 tp->t_tfo_stats |= TFO_S_COOKIE_RCV;
1663 tcpstat.tcps_tfo_cookie_rcv++;
1664 } else {
1665 /*
1666 * Thus, no cookie in the response, but we either asked for one
1667 * or sent SYN+DATA. Now, we need to check whether we had to
1668 * rexmit the SYN. If that's the case, it's better to start
1669 * backing of TFO-cookie requests.
1670 */
1671 if (tp->t_tfo_flags & TFO_F_SYN_LOSS)
1672 tcp_heuristic_inc_loss(tp, 1, 0);
1673 else
1674 tcp_heuristic_reset_loss(tp, 1, 0);
1675 }
1676 }
1677
1678 static void
1679 tcp_tfo_rcv_probe(struct tcpcb *tp, int tlen)
1680 {
1681 if (tlen == 0) {
1682 tp->t_tfo_probe_state = TFO_PROBE_PROBING;
1683
1684 /*
1685 * We send the probe out rather quickly (after one RTO). It does not
1686 * really hurt that much, it's only one additional segment on the wire.
1687 */
1688 tp->t_timer[TCPT_KEEP] = OFFSET_FROM_START(tp, (TCP_REXMTVAL(tp)));
1689 } else {
1690 /* If SYN/ACK+data, don't probe. We got the data! */
1691 tcp_heuristic_tfo_rcv_good(tp);
1692 }
1693 }
1694
1695 static void
1696 tcp_tfo_rcv_data(struct tcpcb *tp)
1697 {
1698 /* Transition from PROBING to NONE as data has been received */
1699 if (tp->t_tfo_probe_state >= TFO_PROBE_PROBING) {
1700 tp->t_tfo_probe_state = TFO_PROBE_NONE;
1701
1702 /* Data has been received - we are good to go! */
1703 tcp_heuristic_tfo_rcv_good(tp);
1704 }
1705 }
1706
1707 static void
1708 tcp_tfo_rcv_ack(struct tcpcb *tp, struct tcphdr *th)
1709 {
1710 if (tp->t_tfo_probe_state == TFO_PROBE_PROBING &&
1711 tp->t_tfo_probes > 0) {
1712 if (th->th_seq == tp->rcv_nxt) {
1713 /* No hole, so stop probing */
1714 tp->t_tfo_probe_state = TFO_PROBE_NONE;
1715 } else if (SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1716 /* There is a hole! Wait a bit for data... */
1717 tp->t_tfo_probe_state = TFO_PROBE_WAIT_DATA;
1718 tp->t_timer[TCPT_KEEP] = OFFSET_FROM_START(tp,
1719 TCP_REXMTVAL(tp));
1720 }
1721 }
1722 }
1723
1724 void
1725 tcp_input(m, off0)
1726 struct mbuf *m;
1727 int off0;
1728 {
1729 register struct tcphdr *th;
1730 register struct ip *ip = NULL;
1731 register struct inpcb *inp;
1732 u_char *optp = NULL;
1733 int optlen = 0;
1734 int tlen, off;
1735 int drop_hdrlen;
1736 register struct tcpcb *tp = 0;
1737 register int thflags;
1738 struct socket *so = 0;
1739 int todrop, acked, ourfinisacked, needoutput = 0;
1740 struct in_addr laddr;
1741 #if INET6
1742 struct in6_addr laddr6;
1743 #endif
1744 int dropsocket = 0;
1745 int iss = 0, nosock = 0;
1746 u_int32_t tiwin, sack_bytes_acked = 0;
1747 struct tcpopt to; /* options in this segment */
1748 #if TCPDEBUG
1749 short ostate = 0;
1750 #endif
1751 #if IPFIREWALL
1752 struct sockaddr_in *next_hop = NULL;
1753 struct m_tag *fwd_tag;
1754 #endif /* IPFIREWALL */
1755 u_char ip_ecn = IPTOS_ECN_NOTECT;
1756 unsigned int ifscope;
1757 uint8_t isconnected, isdisconnected;
1758 struct ifnet *ifp = m->m_pkthdr.rcvif;
1759 int pktf_sw_lro_pkt = (m->m_pkthdr.pkt_flags & PKTF_SW_LRO_PKT) ? 1 : 0;
1760 int nlropkts = (pktf_sw_lro_pkt == 1) ? m->m_pkthdr.lro_npkts : 1;
1761 int turnoff_lro = 0, win;
1762 #if MPTCP
1763 struct mptcb *mp_tp = NULL;
1764 #endif /* MPTCP */
1765 boolean_t cell = IFNET_IS_CELLULAR(ifp);
1766 boolean_t wifi = (!cell && IFNET_IS_WIFI(ifp));
1767 boolean_t wired = (!wifi && IFNET_IS_WIRED(ifp));
1768 boolean_t recvd_dsack = FALSE;
1769 struct tcp_respond_args tra;
1770
1771 #define TCP_INC_VAR(stat, npkts) do { \
1772 stat += npkts; \
1773 } while (0)
1774
1775 TCP_INC_VAR(tcpstat.tcps_rcvtotal, nlropkts);
1776 #if IPFIREWALL
1777 /* Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain. */
1778 if (!SLIST_EMPTY(&m->m_pkthdr.tags)) {
1779 fwd_tag = m_tag_locate(m, KERNEL_MODULE_TAG_ID,
1780 KERNEL_TAG_TYPE_IPFORWARD, NULL);
1781 } else {
1782 fwd_tag = NULL;
1783 }
1784 if (fwd_tag != NULL) {
1785 struct ip_fwd_tag *ipfwd_tag =
1786 (struct ip_fwd_tag *)(fwd_tag+1);
1787
1788 next_hop = ipfwd_tag->next_hop;
1789 m_tag_delete(m, fwd_tag);
1790 }
1791 #endif /* IPFIREWALL */
1792
1793 #if INET6
1794 struct ip6_hdr *ip6 = NULL;
1795 int isipv6;
1796 #endif /* INET6 */
1797 int rstreason; /* For badport_bandlim accounting purposes */
1798 struct proc *proc0=current_proc();
1799
1800 KERNEL_DEBUG(DBG_FNC_TCP_INPUT | DBG_FUNC_START,0,0,0,0,0);
1801
1802 #if INET6
1803 isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
1804 #endif
1805 bzero((char *)&to, sizeof(to));
1806
1807 #if INET6
1808 if (isipv6) {
1809 /*
1810 * Expect 32-bit aligned data pointer on
1811 * strict-align platforms
1812 */
1813 MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m);
1814
1815 /* IP6_EXTHDR_CHECK() is already done at tcp6_input() */
1816 ip6 = mtod(m, struct ip6_hdr *);
1817 tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0;
1818 th = (struct tcphdr *)(void *)((caddr_t)ip6 + off0);
1819
1820 if (tcp_input_checksum(AF_INET6, m, th, off0, tlen))
1821 goto dropnosock;
1822
1823 KERNEL_DEBUG(DBG_LAYER_BEG, ((th->th_dport << 16) | th->th_sport),
1824 (((ip6->ip6_src.s6_addr16[0]) << 16) | (ip6->ip6_dst.s6_addr16[0])),
1825 th->th_seq, th->th_ack, th->th_win);
1826 /*
1827 * Be proactive about unspecified IPv6 address in source.
1828 * As we use all-zero to indicate unbounded/unconnected pcb,
1829 * unspecified IPv6 address can be used to confuse us.
1830 *
1831 * Note that packets with unspecified IPv6 destination is
1832 * already dropped in ip6_input.
1833 */
1834 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
1835 /* XXX stat */
1836 IF_TCP_STATINC(ifp, unspecv6);
1837 goto dropnosock;
1838 }
1839 DTRACE_TCP5(receive, struct mbuf *, m, struct inpcb *, NULL,
1840 struct ip6_hdr *, ip6, struct tcpcb *, NULL,
1841 struct tcphdr *, th);
1842
1843 ip_ecn = (ntohl(ip6->ip6_flow) >> 20) & IPTOS_ECN_MASK;
1844 } else
1845 #endif /* INET6 */
1846 {
1847 /*
1848 * Get IP and TCP header together in first mbuf.
1849 * Note: IP leaves IP header in first mbuf.
1850 */
1851 if (off0 > sizeof (struct ip)) {
1852 ip_stripoptions(m, (struct mbuf *)0);
1853 off0 = sizeof(struct ip);
1854 }
1855 if (m->m_len < sizeof (struct tcpiphdr)) {
1856 if ((m = m_pullup(m, sizeof (struct tcpiphdr))) == 0) {
1857 tcpstat.tcps_rcvshort++;
1858 return;
1859 }
1860 }
1861
1862 /* Expect 32-bit aligned data pointer on strict-align platforms */
1863 MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m);
1864
1865 ip = mtod(m, struct ip *);
1866 th = (struct tcphdr *)(void *)((caddr_t)ip + off0);
1867 tlen = ip->ip_len;
1868
1869 if (tcp_input_checksum(AF_INET, m, th, off0, tlen))
1870 goto dropnosock;
1871
1872 #if INET6
1873 /* Re-initialization for later version check */
1874 ip->ip_v = IPVERSION;
1875 #endif
1876 ip_ecn = (ip->ip_tos & IPTOS_ECN_MASK);
1877
1878 DTRACE_TCP5(receive, struct mbuf *, m, struct inpcb *, NULL,
1879 struct ip *, ip, struct tcpcb *, NULL, struct tcphdr *, th);
1880
1881 KERNEL_DEBUG(DBG_LAYER_BEG, ((th->th_dport << 16) | th->th_sport),
1882 (((ip->ip_src.s_addr & 0xffff) << 16) | (ip->ip_dst.s_addr & 0xffff)),
1883 th->th_seq, th->th_ack, th->th_win);
1884
1885 }
1886
1887 /*
1888 * Check that TCP offset makes sense,
1889 * pull out TCP options and adjust length. XXX
1890 */
1891 off = th->th_off << 2;
1892 if (off < sizeof (struct tcphdr) || off > tlen) {
1893 tcpstat.tcps_rcvbadoff++;
1894 IF_TCP_STATINC(ifp, badformat);
1895 goto dropnosock;
1896 }
1897 tlen -= off; /* tlen is used instead of ti->ti_len */
1898 if (off > sizeof (struct tcphdr)) {
1899 #if INET6
1900 if (isipv6) {
1901 IP6_EXTHDR_CHECK(m, off0, off, return);
1902 ip6 = mtod(m, struct ip6_hdr *);
1903 th = (struct tcphdr *)(void *)((caddr_t)ip6 + off0);
1904 } else
1905 #endif /* INET6 */
1906 {
1907 if (m->m_len < sizeof(struct ip) + off) {
1908 if ((m = m_pullup(m, sizeof (struct ip) + off)) == 0) {
1909 tcpstat.tcps_rcvshort++;
1910 return;
1911 }
1912 ip = mtod(m, struct ip *);
1913 th = (struct tcphdr *)(void *)((caddr_t)ip + off0);
1914 }
1915 }
1916 optlen = off - sizeof (struct tcphdr);
1917 optp = (u_char *)(th + 1);
1918 /*
1919 * Do quick retrieval of timestamp options ("options
1920 * prediction?"). If timestamp is the only option and it's
1921 * formatted as recommended in RFC 1323 appendix A, we
1922 * quickly get the values now and not bother calling
1923 * tcp_dooptions(), etc.
1924 */
1925 if ((optlen == TCPOLEN_TSTAMP_APPA ||
1926 (optlen > TCPOLEN_TSTAMP_APPA &&
1927 optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
1928 *(u_int32_t *)(void *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
1929 (th->th_flags & TH_SYN) == 0) {
1930 to.to_flags |= TOF_TS;
1931 to.to_tsval = ntohl(*(u_int32_t *)(void *)(optp + 4));
1932 to.to_tsecr = ntohl(*(u_int32_t *)(void *)(optp + 8));
1933 optp = NULL; /* we've parsed the options */
1934 }
1935 }
1936 thflags = th->th_flags;
1937
1938 #if TCP_DROP_SYNFIN
1939 /*
1940 * If the drop_synfin option is enabled, drop all packets with
1941 * both the SYN and FIN bits set. This prevents e.g. nmap from
1942 * identifying the TCP/IP stack.
1943 *
1944 * This is a violation of the TCP specification.
1945 */
1946 if (drop_synfin && (thflags & (TH_SYN|TH_FIN)) == (TH_SYN|TH_FIN)) {
1947 IF_TCP_STATINC(ifp, synfin);
1948 goto dropnosock;
1949 }
1950 #endif
1951
1952 /*
1953 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options,
1954 * until after ip6_savecontrol() is called and before other functions
1955 * which don't want those proto headers.
1956 * Because ip6_savecontrol() is going to parse the mbuf to
1957 * search for data to be passed up to user-land, it wants mbuf
1958 * parameters to be unchanged.
1959 */
1960 drop_hdrlen = off0 + off;
1961
1962 /* Since this is an entry point for input processing of tcp packets, we
1963 * can update the tcp clock here.
1964 */
1965 calculate_tcp_clock();
1966
1967 /*
1968 * Record the interface where this segment arrived on; this does not
1969 * affect normal data output (for non-detached TCP) as it provides a
1970 * hint about which route and interface to use for sending in the
1971 * absence of a PCB, when scoped routing (and thus source interface
1972 * selection) are enabled.
1973 */
1974 if ((m->m_pkthdr.pkt_flags & PKTF_LOOP) || m->m_pkthdr.rcvif == NULL)
1975 ifscope = IFSCOPE_NONE;
1976 else
1977 ifscope = m->m_pkthdr.rcvif->if_index;
1978
1979 /*
1980 * Convert TCP protocol specific fields to host format.
1981 */
1982
1983 #if BYTE_ORDER != BIG_ENDIAN
1984 NTOHL(th->th_seq);
1985 NTOHL(th->th_ack);
1986 NTOHS(th->th_win);
1987 NTOHS(th->th_urp);
1988 #endif
1989
1990 /*
1991 * Locate pcb for segment.
1992 */
1993 findpcb:
1994
1995 isconnected = FALSE;
1996 isdisconnected = FALSE;
1997
1998 #if IPFIREWALL_FORWARD
1999 if (next_hop != NULL
2000 #if INET6
2001 && isipv6 == 0 /* IPv6 support is not yet */
2002 #endif /* INET6 */
2003 ) {
2004 /*
2005 * Diverted. Pretend to be the destination.
2006 * already got one like this?
2007 */
2008 inp = in_pcblookup_hash(&tcbinfo, ip->ip_src, th->th_sport,
2009 ip->ip_dst, th->th_dport, 0, m->m_pkthdr.rcvif);
2010 if (!inp) {
2011 /*
2012 * No, then it's new. Try find the ambushing socket
2013 */
2014 if (!next_hop->sin_port) {
2015 inp = in_pcblookup_hash(&tcbinfo, ip->ip_src,
2016 th->th_sport, next_hop->sin_addr,
2017 th->th_dport, 1, m->m_pkthdr.rcvif);
2018 } else {
2019 inp = in_pcblookup_hash(&tcbinfo,
2020 ip->ip_src, th->th_sport,
2021 next_hop->sin_addr,
2022 ntohs(next_hop->sin_port), 1,
2023 m->m_pkthdr.rcvif);
2024 }
2025 }
2026 } else
2027 #endif /* IPFIREWALL_FORWARD */
2028 {
2029 #if INET6
2030 if (isipv6)
2031 inp = in6_pcblookup_hash(&tcbinfo, &ip6->ip6_src, th->th_sport,
2032 &ip6->ip6_dst, th->th_dport, 1,
2033 m->m_pkthdr.rcvif);
2034 else
2035 #endif /* INET6 */
2036 inp = in_pcblookup_hash(&tcbinfo, ip->ip_src, th->th_sport,
2037 ip->ip_dst, th->th_dport, 1, m->m_pkthdr.rcvif);
2038 }
2039
2040 /*
2041 * Use the interface scope information from the PCB for outbound
2042 * segments. If the PCB isn't present and if scoped routing is
2043 * enabled, tcp_respond will use the scope of the interface where
2044 * the segment arrived on.
2045 */
2046 if (inp != NULL && (inp->inp_flags & INP_BOUND_IF))
2047 ifscope = inp->inp_boundifp->if_index;
2048
2049 /*
2050 * If the state is CLOSED (i.e., TCB does not exist) then
2051 * all data in the incoming segment is discarded.
2052 * If the TCB exists but is in CLOSED state, it is embryonic,
2053 * but should either do a listen or a connect soon.
2054 */
2055 if (inp == NULL) {
2056 if (log_in_vain) {
2057 #if INET6
2058 char dbuf[MAX_IPv6_STR_LEN], sbuf[MAX_IPv6_STR_LEN];
2059 #else /* INET6 */
2060 char dbuf[MAX_IPv4_STR_LEN], sbuf[MAX_IPv4_STR_LEN];
2061 #endif /* INET6 */
2062
2063 #if INET6
2064 if (isipv6) {
2065 inet_ntop(AF_INET6, &ip6->ip6_dst, dbuf, sizeof(dbuf));
2066 inet_ntop(AF_INET6, &ip6->ip6_src, sbuf, sizeof(sbuf));
2067 } else
2068 #endif
2069 {
2070 inet_ntop(AF_INET, &ip->ip_dst, dbuf, sizeof(dbuf));
2071 inet_ntop(AF_INET, &ip->ip_src, sbuf, sizeof(sbuf));
2072 }
2073 switch (log_in_vain) {
2074 case 1:
2075 if(thflags & TH_SYN)
2076 log(LOG_INFO,
2077 "Connection attempt to TCP %s:%d from %s:%d\n",
2078 dbuf, ntohs(th->th_dport),
2079 sbuf,
2080 ntohs(th->th_sport));
2081 break;
2082 case 2:
2083 log(LOG_INFO,
2084 "Connection attempt to TCP %s:%d from %s:%d flags:0x%x\n",
2085 dbuf, ntohs(th->th_dport), sbuf,
2086 ntohs(th->th_sport), thflags);
2087 break;
2088 case 3:
2089 case 4:
2090 if ((thflags & TH_SYN) && !(thflags & TH_ACK) &&
2091 !(m->m_flags & (M_BCAST | M_MCAST)) &&
2092 #if INET6
2093 ((isipv6 && !IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &ip6->ip6_src)) ||
2094 (!isipv6 && ip->ip_dst.s_addr != ip->ip_src.s_addr))
2095 #else
2096 ip->ip_dst.s_addr != ip->ip_src.s_addr
2097 #endif
2098 )
2099 log_in_vain_log((LOG_INFO,
2100 "Stealth Mode connection attempt to TCP %s:%d from %s:%d\n",
2101 dbuf, ntohs(th->th_dport),
2102 sbuf,
2103 ntohs(th->th_sport)));
2104 break;
2105 default:
2106 break;
2107 }
2108 }
2109 if (blackhole) {
2110 if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type != IFT_LOOP)
2111
2112 switch (blackhole) {
2113 case 1:
2114 if (thflags & TH_SYN)
2115 goto dropnosock;
2116 break;
2117 case 2:
2118 goto dropnosock;
2119 default:
2120 goto dropnosock;
2121 }
2122 }
2123 rstreason = BANDLIM_RST_CLOSEDPORT;
2124 IF_TCP_STATINC(ifp, noconnnolist);
2125 goto dropwithresetnosock;
2126 }
2127 so = inp->inp_socket;
2128 if (so == NULL) {
2129 /* This case shouldn't happen as the socket shouldn't be null
2130 * if inp_state isn't set to INPCB_STATE_DEAD
2131 * But just in case, we pretend we didn't find the socket if we hit this case
2132 * as this isn't cause for a panic (the socket might be leaked however)...
2133 */
2134 inp = NULL;
2135 #if TEMPDEBUG
2136 printf("tcp_input: no more socket for inp=%x. This shouldn't happen\n", inp);
2137 #endif
2138 goto dropnosock;
2139 }
2140
2141 tcp_lock(so, 1, 0);
2142 if (in_pcb_checkstate(inp, WNT_RELEASE, 1) == WNT_STOPUSING) {
2143 tcp_unlock(so, 1, (void *)2);
2144 inp = NULL; // pretend we didn't find it
2145 goto dropnosock;
2146 }
2147
2148 #if NECP
2149 #if INET6
2150 if (isipv6) {
2151 if (!necp_socket_is_allowed_to_send_recv_v6(inp, th->th_dport,
2152 th->th_sport,
2153 &ip6->ip6_dst,
2154 &ip6->ip6_src,
2155 ifp, NULL, NULL)) {
2156 IF_TCP_STATINC(ifp, badformatipsec);
2157 goto drop;
2158 }
2159 } else
2160 #endif
2161 {
2162 if (!necp_socket_is_allowed_to_send_recv_v4(inp, th->th_dport,
2163 th->th_sport,
2164 &ip->ip_dst,
2165 &ip->ip_src,
2166 ifp, NULL, NULL)) {
2167 IF_TCP_STATINC(ifp, badformatipsec);
2168 goto drop;
2169 }
2170 }
2171 #endif /* NECP */
2172
2173 tp = intotcpcb(inp);
2174 if (tp == 0) {
2175 rstreason = BANDLIM_RST_CLOSEDPORT;
2176 IF_TCP_STATINC(ifp, noconnlist);
2177 goto dropwithreset;
2178 }
2179 if (tp->t_state == TCPS_CLOSED)
2180 goto drop;
2181
2182 /* Unscale the window into a 32-bit value. */
2183 if ((thflags & TH_SYN) == 0)
2184 tiwin = th->th_win << tp->snd_scale;
2185 else
2186 tiwin = th->th_win;
2187
2188 #if CONFIG_MACF_NET
2189 if (mac_inpcb_check_deliver(inp, m, AF_INET, SOCK_STREAM))
2190 goto drop;
2191 #endif
2192
2193 /* Avoid processing packets while closing a listen socket */
2194 if (tp->t_state == TCPS_LISTEN &&
2195 (so->so_options & SO_ACCEPTCONN) == 0)
2196 goto drop;
2197
2198 if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
2199 #if TCPDEBUG
2200 if (so->so_options & SO_DEBUG) {
2201 ostate = tp->t_state;
2202 #if INET6
2203 if (isipv6)
2204 bcopy((char *)ip6, (char *)tcp_saveipgen,
2205 sizeof(*ip6));
2206 else
2207 #endif /* INET6 */
2208 bcopy((char *)ip, (char *)tcp_saveipgen, sizeof(*ip));
2209 tcp_savetcp = *th;
2210 }
2211 #endif
2212 if (so->so_options & SO_ACCEPTCONN) {
2213 register struct tcpcb *tp0 = tp;
2214 struct socket *so2;
2215 struct socket *oso;
2216 struct sockaddr_storage from;
2217 #if INET6
2218 struct inpcb *oinp = sotoinpcb(so);
2219 #endif /* INET6 */
2220 struct ifnet *head_ifscope;
2221 unsigned int head_nocell, head_recvanyif,
2222 head_noexpensive, head_awdl_unrestricted;
2223
2224 /* Get listener's bound-to-interface, if any */
2225 head_ifscope = (inp->inp_flags & INP_BOUND_IF) ?
2226 inp->inp_boundifp : NULL;
2227 /* Get listener's no-cellular information, if any */
2228 head_nocell = INP_NO_CELLULAR(inp);
2229 /* Get listener's recv-any-interface, if any */
2230 head_recvanyif = (inp->inp_flags & INP_RECV_ANYIF);
2231 /* Get listener's no-expensive information, if any */
2232 head_noexpensive = INP_NO_EXPENSIVE(inp);
2233 head_awdl_unrestricted = INP_AWDL_UNRESTRICTED(inp);
2234
2235 /*
2236 * If the state is LISTEN then ignore segment if it contains an RST.
2237 * If the segment contains an ACK then it is bad and send a RST.
2238 * If it does not contain a SYN then it is not interesting; drop it.
2239 * If it is from this socket, drop it, it must be forged.
2240 */
2241 if ((thflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
2242 IF_TCP_STATINC(ifp, listbadsyn);
2243
2244 if (thflags & TH_RST) {
2245 goto drop;
2246 }
2247 if (thflags & TH_ACK) {
2248 tp = NULL;
2249 tcpstat.tcps_badsyn++;
2250 rstreason = BANDLIM_RST_OPENPORT;
2251 goto dropwithreset;
2252 }
2253
2254 /* We come here if there is no SYN set */
2255 tcpstat.tcps_badsyn++;
2256 goto drop;
2257 }
2258 KERNEL_DEBUG(DBG_FNC_TCP_NEWCONN | DBG_FUNC_START,0,0,0,0,0);
2259 if (th->th_dport == th->th_sport) {
2260 #if INET6
2261 if (isipv6) {
2262 if (IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
2263 &ip6->ip6_src))
2264 goto drop;
2265 } else
2266 #endif /* INET6 */
2267 if (ip->ip_dst.s_addr == ip->ip_src.s_addr)
2268 goto drop;
2269 }
2270 /*
2271 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
2272 * in_broadcast() should never return true on a received
2273 * packet with M_BCAST not set.
2274 *
2275 * Packets with a multicast source address should also
2276 * be discarded.
2277 */
2278 if (m->m_flags & (M_BCAST|M_MCAST))
2279 goto drop;
2280 #if INET6
2281 if (isipv6) {
2282 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
2283 IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
2284 goto drop;
2285 } else
2286 #endif
2287 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
2288 IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
2289 ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
2290 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2291 goto drop;
2292
2293
2294 #if INET6
2295 /*
2296 * If deprecated address is forbidden,
2297 * we do not accept SYN to deprecated interface
2298 * address to prevent any new inbound connection from
2299 * getting established.
2300 * When we do not accept SYN, we send a TCP RST,
2301 * with deprecated source address (instead of dropping
2302 * it). We compromise it as it is much better for peer
2303 * to send a RST, and RST will be the final packet
2304 * for the exchange.
2305 *
2306 * If we do not forbid deprecated addresses, we accept
2307 * the SYN packet. RFC 4862 forbids dropping SYN in
2308 * this case.
2309 */
2310 if (isipv6 && !ip6_use_deprecated) {
2311 uint32_t ia6_flags;
2312
2313 if (ip6_getdstifaddr_info(m, NULL,
2314 &ia6_flags) == 0) {
2315 if (ia6_flags & IN6_IFF_DEPRECATED) {
2316 tp = NULL;
2317 rstreason = BANDLIM_RST_OPENPORT;
2318 IF_TCP_STATINC(ifp, deprecate6);
2319 goto dropwithreset;
2320 }
2321 }
2322 }
2323 #endif
2324 if (so->so_filt) {
2325 #if INET6
2326 if (isipv6) {
2327 struct sockaddr_in6 *sin6 = (struct sockaddr_in6*)&from;
2328
2329 sin6->sin6_len = sizeof(*sin6);
2330 sin6->sin6_family = AF_INET6;
2331 sin6->sin6_port = th->th_sport;
2332 sin6->sin6_flowinfo = 0;
2333 sin6->sin6_addr = ip6->ip6_src;
2334 sin6->sin6_scope_id = 0;
2335 }
2336 else
2337 #endif
2338 {
2339 struct sockaddr_in *sin = (struct sockaddr_in*)&from;
2340
2341 sin->sin_len = sizeof(*sin);
2342 sin->sin_family = AF_INET;
2343 sin->sin_port = th->th_sport;
2344 sin->sin_addr = ip->ip_src;
2345 }
2346 so2 = sonewconn(so, 0, (struct sockaddr*)&from);
2347 } else {
2348 so2 = sonewconn(so, 0, NULL);
2349 }
2350 if (so2 == 0) {
2351 tcpstat.tcps_listendrop++;
2352 if (tcp_dropdropablreq(so)) {
2353 if (so->so_filt)
2354 so2 = sonewconn(so, 0, (struct sockaddr*)&from);
2355 else
2356 so2 = sonewconn(so, 0, NULL);
2357 }
2358 if (!so2)
2359 goto drop;
2360 }
2361
2362 /* Point "inp" and "tp" in tandem to new socket */
2363 inp = (struct inpcb *)so2->so_pcb;
2364 tp = intotcpcb(inp);
2365
2366 oso = so;
2367 tcp_unlock(so, 0, 0); /* Unlock but keep a reference on listener for now */
2368
2369 so = so2;
2370 tcp_lock(so, 1, 0);
2371 /*
2372 * Mark socket as temporary until we're
2373 * committed to keeping it. The code at
2374 * ``drop'' and ``dropwithreset'' check the
2375 * flag dropsocket to see if the temporary
2376 * socket created here should be discarded.
2377 * We mark the socket as discardable until
2378 * we're committed to it below in TCPS_LISTEN.
2379 * There are some error conditions in which we
2380 * have to drop the temporary socket.
2381 */
2382 dropsocket++;
2383 /*
2384 * Inherit INP_BOUND_IF from listener; testing if
2385 * head_ifscope is non-NULL is sufficient, since it
2386 * can only be set to a non-zero value earlier if
2387 * the listener has such a flag set.
2388 */
2389 if (head_ifscope != NULL) {
2390 inp->inp_flags |= INP_BOUND_IF;
2391 inp->inp_boundifp = head_ifscope;
2392 } else {
2393 inp->inp_flags &= ~INP_BOUND_IF;
2394 }
2395 /*
2396 * Inherit restrictions from listener.
2397 */
2398 if (head_nocell)
2399 inp_set_nocellular(inp);
2400 if (head_noexpensive)
2401 inp_set_noexpensive(inp);
2402 if (head_awdl_unrestricted)
2403 inp_set_awdl_unrestricted(inp);
2404 /*
2405 * Inherit {IN,IN6}_RECV_ANYIF from listener.
2406 */
2407 if (head_recvanyif)
2408 inp->inp_flags |= INP_RECV_ANYIF;
2409 else
2410 inp->inp_flags &= ~INP_RECV_ANYIF;
2411 #if INET6
2412 if (isipv6)
2413 inp->in6p_laddr = ip6->ip6_dst;
2414 else {
2415 inp->inp_vflag &= ~INP_IPV6;
2416 inp->inp_vflag |= INP_IPV4;
2417 #endif /* INET6 */
2418 inp->inp_laddr = ip->ip_dst;
2419 #if INET6
2420 }
2421 #endif /* INET6 */
2422 inp->inp_lport = th->th_dport;
2423 if (in_pcbinshash(inp, 0) != 0) {
2424 /*
2425 * Undo the assignments above if we failed to
2426 * put the PCB on the hash lists.
2427 */
2428 #if INET6
2429 if (isipv6)
2430 inp->in6p_laddr = in6addr_any;
2431 else
2432 #endif /* INET6 */
2433 inp->inp_laddr.s_addr = INADDR_ANY;
2434 inp->inp_lport = 0;
2435 tcp_lock(oso, 0, 0); /* release ref on parent */
2436 tcp_unlock(oso, 1, 0);
2437 goto drop;
2438 }
2439 #if INET6
2440 if (isipv6) {
2441 /*
2442 * Inherit socket options from the listening
2443 * socket.
2444 * Note that in6p_inputopts are not (even
2445 * should not be) copied, since it stores
2446 * previously received options and is used to
2447 * detect if each new option is different than
2448 * the previous one and hence should be passed
2449 * to a user.
2450 * If we copied in6p_inputopts, a user would
2451 * not be able to receive options just after
2452 * calling the accept system call.
2453 */
2454 inp->inp_flags |=
2455 oinp->inp_flags & INP_CONTROLOPTS;
2456 if (oinp->in6p_outputopts)
2457 inp->in6p_outputopts =
2458 ip6_copypktopts(oinp->in6p_outputopts,
2459 M_NOWAIT);
2460 } else
2461 #endif /* INET6 */
2462 {
2463 inp->inp_options = ip_srcroute();
2464 inp->inp_ip_tos = oinp->inp_ip_tos;
2465 }
2466 tcp_lock(oso, 0, 0);
2467 #if IPSEC
2468 /* copy old policy into new socket's */
2469 if (sotoinpcb(oso)->inp_sp)
2470 {
2471 int error = 0;
2472 /* Is it a security hole here to silently fail to copy the policy? */
2473 if (inp->inp_sp != NULL)
2474 error = ipsec_init_policy(so, &inp->inp_sp);
2475 if (error != 0 || ipsec_copy_policy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
2476 printf("tcp_input: could not copy policy\n");
2477 }
2478 #endif
2479 /* inherit states from the listener */
2480 DTRACE_TCP4(state__change, void, NULL, struct inpcb *, inp,
2481 struct tcpcb *, tp, int32_t, TCPS_LISTEN);
2482 tp->t_state = TCPS_LISTEN;
2483 tp->t_flags |= tp0->t_flags & (TF_NOPUSH|TF_NOOPT|TF_NODELAY);
2484 tp->t_flagsext |= (tp0->t_flagsext & (TF_RXTFINDROP|TF_NOTIMEWAIT|TF_FASTOPEN));
2485 tp->t_keepinit = tp0->t_keepinit;
2486 tp->t_keepcnt = tp0->t_keepcnt;
2487 tp->t_keepintvl = tp0->t_keepintvl;
2488 tp->t_adaptive_wtimo = tp0->t_adaptive_wtimo;
2489 tp->t_adaptive_rtimo = tp0->t_adaptive_rtimo;
2490 tp->t_inpcb->inp_ip_ttl = tp0->t_inpcb->inp_ip_ttl;
2491 if ((so->so_flags & SOF_NOTSENT_LOWAT) != 0)
2492 tp->t_notsent_lowat = tp0->t_notsent_lowat;
2493
2494 /* now drop the reference on the listener */
2495 tcp_unlock(oso, 1, 0);
2496
2497 tcp_set_max_rwinscale(tp, so);
2498
2499 KERNEL_DEBUG(DBG_FNC_TCP_NEWCONN | DBG_FUNC_END,0,0,0,0,0);
2500 }
2501 }
2502 lck_mtx_assert(&((struct inpcb *)so->so_pcb)->inpcb_mtx,
2503 LCK_MTX_ASSERT_OWNED);
2504
2505 if (tp->t_state == TCPS_ESTABLISHED && tlen > 0) {
2506 /*
2507 * Evaluate the rate of arrival of packets to see if the
2508 * receiver can reduce the ack traffic. The algorithm to
2509 * stretch acks will be enabled if the connection meets
2510 * certain criteria defined in tcp_stretch_ack_enable function.
2511 */
2512 if ((tp->t_flagsext & TF_RCVUNACK_WAITSS) != 0) {
2513 TCP_INC_VAR(tp->rcv_waitforss, nlropkts);
2514 }
2515 if (tcp_stretch_ack_enable(tp)) {
2516 tp->t_flags |= TF_STRETCHACK;
2517 tp->t_flagsext &= ~(TF_RCVUNACK_WAITSS);
2518 tp->rcv_waitforss = 0;
2519 } else {
2520 tp->t_flags &= ~(TF_STRETCHACK);
2521 }
2522 if (TSTMP_GT(tp->rcv_unackwin, tcp_now)) {
2523 tp->rcv_by_unackwin += (tlen + off);
2524 } else {
2525 tp->rcv_unackwin = tcp_now + tcp_rcvunackwin;
2526 tp->rcv_by_unackwin = tlen + off;
2527 }
2528 }
2529
2530 /*
2531 * Keep track of how many bytes were received in the LRO packet
2532 */
2533 if ((pktf_sw_lro_pkt) && (nlropkts > 2)) {
2534 tp->t_lropktlen += tlen;
2535 }
2536 /*
2537 * Explicit Congestion Notification - Flag that we need to send ECT if
2538 * + The IP Congestion experienced flag was set.
2539 * + Socket is in established state
2540 * + We negotiated ECN in the TCP setup
2541 * + This isn't a pure ack (tlen > 0)
2542 * + The data is in the valid window
2543 *
2544 * TE_SENDECE will be cleared when we receive a packet with TH_CWR set.
2545 */
2546 if (ip_ecn == IPTOS_ECN_CE && tp->t_state == TCPS_ESTABLISHED &&
2547 TCP_ECN_ENABLED(tp) && tlen > 0 &&
2548 SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
2549 SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
2550 tp->t_ecn_recv_ce++;
2551 tcpstat.tcps_ecn_recv_ce++;
2552 INP_INC_IFNET_STAT(inp, ecn_recv_ce);
2553 /* Mark this connection as it received CE from network */
2554 tp->ecn_flags |= TE_RECV_ECN_CE;
2555 tp->ecn_flags |= TE_SENDECE;
2556 }
2557
2558 /*
2559 * Clear TE_SENDECE if TH_CWR is set. This is harmless, so we don't
2560 * bother doing extensive checks for state and whatnot.
2561 */
2562 if (thflags & TH_CWR) {
2563 tp->ecn_flags &= ~TE_SENDECE;
2564 tp->t_ecn_recv_cwr++;
2565 }
2566
2567 /*
2568 * If we received an explicit notification of congestion in
2569 * ip tos ecn bits or by the CWR bit in TCP header flags, reset
2570 * the ack-strteching state. We need to handle ECN notification if
2571 * an ECN setup SYN was sent even once.
2572 */
2573 if (tp->t_state == TCPS_ESTABLISHED
2574 && (tp->ecn_flags & TE_SETUPSENT)
2575 && (ip_ecn == IPTOS_ECN_CE || (thflags & TH_CWR))) {
2576 tcp_reset_stretch_ack(tp);
2577 CLEAR_IAJ_STATE(tp);
2578 }
2579
2580 if (ip_ecn == IPTOS_ECN_CE && tp->t_state == TCPS_ESTABLISHED &&
2581 !TCP_ECN_ENABLED(tp) && !(tp->ecn_flags & TE_CEHEURI_SET)) {
2582 tcpstat.tcps_ecn_fallback_ce++;
2583 tcp_heuristic_ecn_aggressive(tp);
2584 tp->ecn_flags |= TE_CEHEURI_SET;
2585 }
2586
2587 if (tp->t_state == TCPS_ESTABLISHED && TCP_ECN_ENABLED(tp) &&
2588 ip_ecn == IPTOS_ECN_CE && !(tp->ecn_flags & TE_CEHEURI_SET)) {
2589 if (inp->inp_stat->rxpackets < ECN_MIN_CE_PROBES) {
2590 tp->t_ecn_recv_ce_pkt++;
2591 } else if (tp->t_ecn_recv_ce_pkt > ECN_MAX_CE_RATIO) {
2592 tcpstat.tcps_ecn_fallback_ce++;
2593 tcp_heuristic_ecn_aggressive(tp);
2594 tp->ecn_flags |= TE_CEHEURI_SET;
2595 INP_INC_IFNET_STAT(inp,ecn_fallback_ce);
2596 } else {
2597 /* We tracked the first ECN_MIN_CE_PROBES segments, we
2598 * now know that the path is good.
2599 */
2600 tp->ecn_flags |= TE_CEHEURI_SET;
2601 }
2602 }
2603
2604 /*
2605 * Try to determine if we are receiving a packet after a long time.
2606 * Use our own approximation of idletime to roughly measure remote
2607 * end's idle time. Since slowstart is used after an idle period
2608 * we want to avoid doing LRO if the remote end is not up to date
2609 * on initial window support and starts with 1 or 2 packets as its IW.
2610 */
2611 if (sw_lro && (tp->t_flagsext & TF_LRO_OFFLOADED) &&
2612 ((tcp_now - tp->t_rcvtime) >= (TCP_IDLETIMEOUT(tp)))) {
2613 turnoff_lro = 1;
2614 }
2615
2616 /* Update rcvtime as a new segment was received on the connection */
2617 tp->t_rcvtime = tcp_now;
2618
2619 /*
2620 * Segment received on connection.
2621 * Reset idle time and keep-alive timer.
2622 */
2623 if (TCPS_HAVEESTABLISHED(tp->t_state))
2624 tcp_keepalive_reset(tp);
2625
2626 /*
2627 * Process options if not in LISTEN state,
2628 * else do it below (after getting remote address).
2629 */
2630 if (tp->t_state != TCPS_LISTEN && optp) {
2631 tcp_dooptions(tp, optp, optlen, th, &to);
2632 #if MPTCP
2633 if (mptcp_input_preproc(tp, m, drop_hdrlen) != 0) {
2634 tp->t_flags |= TF_ACKNOW;
2635 (void) tcp_output(tp);
2636 tcp_check_timer_state(tp);
2637 tcp_unlock(so, 1, 0);
2638 KERNEL_DEBUG(DBG_FNC_TCP_INPUT |
2639 DBG_FUNC_END,0,0,0,0,0);
2640 return;
2641 }
2642 #endif /* MPTCP */
2643 }
2644 if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
2645 if (!(thflags & TH_ACK) ||
2646 (SEQ_GT(th->th_ack, tp->iss) &&
2647 SEQ_LEQ(th->th_ack, tp->snd_max)))
2648 tcp_finalize_options(tp, &to, ifscope);
2649 }
2650
2651 #if TRAFFIC_MGT
2652 /*
2653 * Compute inter-packet arrival jitter. According to RFC 3550,
2654 * inter-packet arrival jitter is defined as the difference in
2655 * packet spacing at the receiver compared to the sender for a
2656 * pair of packets. When two packets of maximum segment size come
2657 * one after the other with consecutive sequence numbers, we
2658 * consider them as packets sent together at the sender and use
2659 * them as a pair to compute inter-packet arrival jitter. This
2660 * metric indicates the delay induced by the network components due
2661 * to queuing in edge/access routers.
2662 */
2663 if (tp->t_state == TCPS_ESTABLISHED &&
2664 (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK|TH_ECE|TH_PUSH)) == TH_ACK &&
2665 ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) &&
2666 ((to.to_flags & TOF_TS) == 0 ||
2667 TSTMP_GEQ(to.to_tsval, tp->ts_recent)) &&
2668 th->th_seq == tp->rcv_nxt &&
2669 LIST_EMPTY(&tp->t_segq)) {
2670 int seg_size = tlen;
2671 if (tp->iaj_pktcnt <= IAJ_IGNORE_PKTCNT) {
2672 TCP_INC_VAR(tp->iaj_pktcnt, nlropkts);
2673 }
2674
2675 if (m->m_pkthdr.pkt_flags & PKTF_SW_LRO_PKT) {
2676 seg_size = m->m_pkthdr.lro_pktlen;
2677 }
2678 if ( tp->iaj_size == 0 || seg_size > tp->iaj_size ||
2679 (seg_size == tp->iaj_size && tp->iaj_rcv_ts == 0)) {
2680 /*
2681 * State related to inter-arrival jitter is
2682 * uninitialized or we are trying to find a good
2683 * first packet to start computing the metric
2684 */
2685 update_iaj_state(tp, seg_size, 0);
2686 } else {
2687 if (seg_size == tp->iaj_size) {
2688 /*
2689 * Compute inter-arrival jitter taking
2690 * this packet as the second packet
2691 */
2692 if (pktf_sw_lro_pkt)
2693 compute_iaj(tp, nlropkts,
2694 m->m_pkthdr.lro_elapsed);
2695 else
2696 compute_iaj(tp, 1, 0);
2697 }
2698 if (seg_size < tp->iaj_size) {
2699 /*
2700 * There is a smaller packet in the stream.
2701 * Some times the maximum size supported
2702 * on a path can change if there is a new
2703 * link with smaller MTU. The receiver will
2704 * not know about this change. If there
2705 * are too many packets smaller than
2706 * iaj_size, we try to learn the iaj_size
2707 * again.
2708 */
2709 TCP_INC_VAR(tp->iaj_small_pkt, nlropkts);
2710 if (tp->iaj_small_pkt > RESET_IAJ_SIZE_THRESH) {
2711 update_iaj_state(tp, seg_size, 1);
2712 } else {
2713 CLEAR_IAJ_STATE(tp);
2714 }
2715 } else {
2716 update_iaj_state(tp, seg_size, 0);
2717 }
2718 }
2719 } else {
2720 CLEAR_IAJ_STATE(tp);
2721 }
2722 #endif /* TRAFFIC_MGT */
2723
2724 /*
2725 * Header prediction: check for the two common cases
2726 * of a uni-directional data xfer. If the packet has
2727 * no control flags, is in-sequence, the window didn't
2728 * change and we're not retransmitting, it's a
2729 * candidate. If the length is zero and the ack moved
2730 * forward, we're the sender side of the xfer. Just
2731 * free the data acked & wake any higher level process
2732 * that was blocked waiting for space. If the length
2733 * is non-zero and the ack didn't move, we're the
2734 * receiver side. If we're getting packets in-order
2735 * (the reassembly queue is empty), add the data to
2736 * the socket buffer and note that we need a delayed ack.
2737 * Make sure that the hidden state-flags are also off.
2738 * Since we check for TCPS_ESTABLISHED above, it can only
2739 * be TH_NEEDSYN.
2740 */
2741 if (tp->t_state == TCPS_ESTABLISHED &&
2742 (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK|TH_ECE|TH_CWR)) == TH_ACK &&
2743 ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) &&
2744 ((to.to_flags & TOF_TS) == 0 ||
2745 TSTMP_GEQ(to.to_tsval, tp->ts_recent)) &&
2746 th->th_seq == tp->rcv_nxt &&
2747 tiwin && tiwin == tp->snd_wnd &&
2748 tp->snd_nxt == tp->snd_max) {
2749
2750 /*
2751 * If last ACK falls within this segment's sequence numbers,
2752 * record the timestamp.
2753 * NOTE that the test is modified according to the latest
2754 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
2755 */
2756 if ((to.to_flags & TOF_TS) != 0 &&
2757 SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
2758 tp->ts_recent_age = tcp_now;
2759 tp->ts_recent = to.to_tsval;
2760 }
2761
2762 if (tlen == 0) {
2763 if (SEQ_GT(th->th_ack, tp->snd_una) &&
2764 SEQ_LEQ(th->th_ack, tp->snd_max) &&
2765 tp->snd_cwnd >= tp->snd_ssthresh &&
2766 (!IN_FASTRECOVERY(tp) &&
2767 ((!(SACK_ENABLED(tp)) &&
2768 tp->t_dupacks < tp->t_rexmtthresh) ||
2769 (SACK_ENABLED(tp) && to.to_nsacks == 0 &&
2770 TAILQ_EMPTY(&tp->snd_holes))))) {
2771 /*
2772 * this is a pure ack for outstanding data.
2773 */
2774 ++tcpstat.tcps_predack;
2775
2776 tcp_bad_rexmt_check(tp, th, &to),
2777
2778 /* Recalculate the RTT */
2779 tcp_compute_rtt(tp, &to, th);
2780
2781 VERIFY(SEQ_GEQ(th->th_ack, tp->snd_una));
2782 acked = BYTES_ACKED(th, tp);
2783 tcpstat.tcps_rcvackpack++;
2784 tcpstat.tcps_rcvackbyte += acked;
2785
2786 /*
2787 * Handle an ack that is in sequence during
2788 * congestion avoidance phase. The
2789 * calculations in this function
2790 * assume that snd_una is not updated yet.
2791 */
2792 if (CC_ALGO(tp)->congestion_avd != NULL)
2793 CC_ALGO(tp)->congestion_avd(tp, th);
2794 tcp_ccdbg_trace(tp, th, TCP_CC_INSEQ_ACK_RCVD);
2795 sbdrop(&so->so_snd, acked);
2796 if (so->so_flags & SOF_ENABLE_MSGS) {
2797 VERIFY(acked <= so->so_msg_state->msg_serial_bytes);
2798 so->so_msg_state->msg_serial_bytes -= acked;
2799 }
2800 tcp_sbsnd_trim(&so->so_snd);
2801
2802 if (SEQ_GT(tp->snd_una, tp->snd_recover) &&
2803 SEQ_LEQ(th->th_ack, tp->snd_recover))
2804 tp->snd_recover = th->th_ack - 1;
2805 tp->snd_una = th->th_ack;
2806
2807 /*
2808 * pull snd_wl2 up to prevent seq wrap relative
2809 * to th_ack.
2810 */
2811 tp->snd_wl2 = th->th_ack;
2812
2813 if (tp->t_dupacks > 0) {
2814 tp->t_dupacks = 0;
2815 tp->t_rexmtthresh = tcprexmtthresh;
2816 }
2817
2818 m_freem(m);
2819
2820 /*
2821 * If all outstanding data are acked, stop
2822 * retransmit timer, otherwise restart timer
2823 * using current (possibly backed-off) value.
2824 * If process is waiting for space,
2825 * wakeup/selwakeup/signal. If data
2826 * are ready to send, let tcp_output
2827 * decide between more output or persist.
2828 */
2829 if (tp->snd_una == tp->snd_max) {
2830 tp->t_timer[TCPT_REXMT] = 0;
2831 tp->t_timer[TCPT_PTO] = 0;
2832 } else if (tp->t_timer[TCPT_PERSIST] == 0) {
2833 tp->t_timer[TCPT_REXMT] =
2834 OFFSET_FROM_START(tp,
2835 tp->t_rxtcur);
2836 }
2837 if (!SLIST_EMPTY(&tp->t_rxt_segments) &&
2838 !TCP_DSACK_SEQ_IN_WINDOW(tp,
2839 tp->t_dsack_lastuna, tp->snd_una))
2840 tcp_rxtseg_clean(tp);
2841
2842 if ((tp->t_flagsext & TF_MEASURESNDBW) != 0 &&
2843 tp->t_bwmeas != NULL)
2844 tcp_bwmeas_check(tp);
2845 sowwakeup(so); /* has to be done with socket lock held */
2846 if ((so->so_snd.sb_cc) || (tp->t_flags & TF_ACKNOW)) {
2847 (void) tcp_output(tp);
2848 }
2849
2850 tcp_tfo_rcv_ack(tp, th);
2851
2852 tcp_check_timer_state(tp);
2853 tcp_unlock(so, 1, 0);
2854 KERNEL_DEBUG(DBG_FNC_TCP_INPUT | DBG_FUNC_END,0,0,0,0,0);
2855 return;
2856 }
2857 } else if (th->th_ack == tp->snd_una &&
2858 LIST_EMPTY(&tp->t_segq) &&
2859 tlen <= tcp_sbspace(tp)) {
2860 /*
2861 * this is a pure, in-sequence data packet
2862 * with nothing on the reassembly queue and
2863 * we have enough buffer space to take it.
2864 */
2865
2866 /*
2867 * If this is a connection in steady state, start
2868 * coalescing packets belonging to this flow.
2869 */
2870 if (turnoff_lro) {
2871 tcp_lro_remove_state(tp->t_inpcb->inp_laddr,
2872 tp->t_inpcb->inp_faddr,
2873 tp->t_inpcb->inp_lport,
2874 tp->t_inpcb->inp_fport);
2875 tp->t_flagsext &= ~TF_LRO_OFFLOADED;
2876 tp->t_idleat = tp->rcv_nxt;
2877 } else if (sw_lro && !pktf_sw_lro_pkt && !isipv6 &&
2878 (so->so_flags & SOF_USELRO) &&
2879 !IFNET_IS_CELLULAR(m->m_pkthdr.rcvif) &&
2880 (m->m_pkthdr.rcvif->if_type != IFT_LOOP) &&
2881 ((th->th_seq - tp->irs) >
2882 (tp->t_maxseg << lro_start)) &&
2883 ((tp->t_idleat == 0) || ((th->th_seq -
2884 tp->t_idleat) > (tp->t_maxseg << lro_start)))) {
2885 tp->t_flagsext |= TF_LRO_OFFLOADED;
2886 tcp_start_coalescing(ip, th, tlen);
2887 tp->t_idleat = 0;
2888 }
2889
2890 /* Clean receiver SACK report if present */
2891 if (SACK_ENABLED(tp) && tp->rcv_numsacks)
2892 tcp_clean_sackreport(tp);
2893 ++tcpstat.tcps_preddat;
2894 tp->rcv_nxt += tlen;
2895 /*
2896 * Pull snd_wl1 up to prevent seq wrap relative to
2897 * th_seq.
2898 */
2899 tp->snd_wl1 = th->th_seq;
2900 /*
2901 * Pull rcv_up up to prevent seq wrap relative to
2902 * rcv_nxt.
2903 */
2904 tp->rcv_up = tp->rcv_nxt;
2905 TCP_INC_VAR(tcpstat.tcps_rcvpack, nlropkts);
2906 tcpstat.tcps_rcvbyte += tlen;
2907 if (nstat_collect) {
2908 if (m->m_pkthdr.pkt_flags & PKTF_SW_LRO_PKT) {
2909 INP_ADD_STAT(inp, cell, wifi, wired,
2910 rxpackets, m->m_pkthdr.lro_npkts);
2911 } else {
2912 INP_ADD_STAT(inp, cell, wifi, wired,
2913 rxpackets, 1);
2914 }
2915 INP_ADD_STAT(inp, cell, wifi, wired,rxbytes,
2916 tlen);
2917 }
2918
2919 /*
2920 * Calculate the RTT on the receiver only if the
2921 * connection is in streaming mode and the last
2922 * packet was not an end-of-write
2923 */
2924 if ((tp->t_flags & TF_STRETCHACK) &&
2925 !(tp->t_flagsext & TF_STREAMEOW))
2926 tcp_compute_rtt(tp, &to, th);
2927
2928 tcp_sbrcv_grow(tp, &so->so_rcv, &to, tlen);
2929
2930 /*
2931 * Add data to socket buffer.
2932 */
2933 so_recv_data_stat(so, m, 0);
2934 m_adj(m, drop_hdrlen); /* delayed header drop */
2935
2936 /*
2937 * If message delivery (SOF_ENABLE_MSGS) is enabled on
2938 * this socket, deliver the packet received as an
2939 * in-order message with sequence number attached to it.
2940 */
2941 if (sbappendstream_rcvdemux(so, m,
2942 th->th_seq - (tp->irs + 1), 0)) {
2943 sorwakeup(so);
2944 }
2945 #if INET6
2946 if (isipv6) {
2947 KERNEL_DEBUG(DBG_LAYER_END, ((th->th_dport << 16) | th->th_sport),
2948 (((ip6->ip6_src.s6_addr16[0]) << 16) | (ip6->ip6_dst.s6_addr16[0])),
2949 th->th_seq, th->th_ack, th->th_win);
2950 }
2951 else
2952 #endif
2953 {
2954 KERNEL_DEBUG(DBG_LAYER_END, ((th->th_dport << 16) | th->th_sport),
2955 (((ip->ip_src.s_addr & 0xffff) << 16) | (ip->ip_dst.s_addr & 0xffff)),
2956 th->th_seq, th->th_ack, th->th_win);
2957 }
2958 TCP_INC_VAR(tp->t_unacksegs, nlropkts);
2959 if (DELAY_ACK(tp, th)) {
2960 if ((tp->t_flags & TF_DELACK) == 0) {
2961 tp->t_flags |= TF_DELACK;
2962 tp->t_timer[TCPT_DELACK] = OFFSET_FROM_START(tp, tcp_delack);
2963 }
2964 } else {
2965 tp->t_flags |= TF_ACKNOW;
2966 tcp_output(tp);
2967 }
2968
2969 tcp_adaptive_rwtimo_check(tp, tlen);
2970
2971 if (tlen > 0)
2972 tcp_tfo_rcv_data(tp);
2973
2974 tcp_check_timer_state(tp);
2975 tcp_unlock(so, 1, 0);
2976 KERNEL_DEBUG(DBG_FNC_TCP_INPUT | DBG_FUNC_END,0,0,0,0,0);
2977 return;
2978 }
2979 }
2980
2981 /*
2982 * Calculate amount of space in receive window,
2983 * and then do TCP input processing.
2984 * Receive window is amount of space in rcv queue,
2985 * but not less than advertised window.
2986 */
2987 lck_mtx_assert(&((struct inpcb *)so->so_pcb)->inpcb_mtx,
2988 LCK_MTX_ASSERT_OWNED);
2989 win = tcp_sbspace(tp);
2990 if (win < 0)
2991 win = 0;
2992 else { /* clip rcv window to 4K for modems */
2993 if (tp->t_flags & TF_SLOWLINK && slowlink_wsize > 0)
2994 win = min(win, slowlink_wsize);
2995 }
2996 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
2997 #if MPTCP
2998 /*
2999 * Ensure that the subflow receive window isn't greater
3000 * than the connection level receive window.
3001 */
3002 if ((tp->t_mpflags & TMPF_MPTCP_TRUE) &&
3003 (mp_tp = tptomptp(tp))) {
3004 MPT_LOCK(mp_tp);
3005 if (tp->rcv_wnd > mp_tp->mpt_rcvwnd) {
3006 tp->rcv_wnd = mp_tp->mpt_rcvwnd;
3007 tcpstat.tcps_mp_reducedwin++;
3008 }
3009 MPT_UNLOCK(mp_tp);
3010 }
3011 #endif /* MPTCP */
3012
3013 switch (tp->t_state) {
3014
3015 /*
3016 * Initialize tp->rcv_nxt, and tp->irs, select an initial
3017 * tp->iss, and send a segment:
3018 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
3019 * Also initialize tp->snd_nxt to tp->iss+1 and tp->snd_una to tp->iss.
3020 * Fill in remote peer address fields if not previously specified.
3021 * Enter SYN_RECEIVED state, and process any other fields of this
3022 * segment in this state.
3023 */
3024 case TCPS_LISTEN: {
3025 register struct sockaddr_in *sin;
3026 #if INET6
3027 register struct sockaddr_in6 *sin6;
3028 #endif
3029
3030 lck_mtx_assert(&((struct inpcb *)so->so_pcb)->inpcb_mtx,
3031 LCK_MTX_ASSERT_OWNED);
3032 #if INET6
3033 if (isipv6) {
3034 MALLOC(sin6, struct sockaddr_in6 *, sizeof *sin6,
3035 M_SONAME, M_NOWAIT);
3036 if (sin6 == NULL)
3037 goto drop;
3038 bzero(sin6, sizeof(*sin6));
3039 sin6->sin6_family = AF_INET6;
3040 sin6->sin6_len = sizeof(*sin6);
3041 sin6->sin6_addr = ip6->ip6_src;
3042 sin6->sin6_port = th->th_sport;
3043 laddr6 = inp->in6p_laddr;
3044 if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
3045 inp->in6p_laddr = ip6->ip6_dst;
3046 if (in6_pcbconnect(inp, (struct sockaddr *)sin6,
3047 proc0)) {
3048 inp->in6p_laddr = laddr6;
3049 FREE(sin6, M_SONAME);
3050 goto drop;
3051 }
3052 FREE(sin6, M_SONAME);
3053 } else
3054 #endif
3055 {
3056 lck_mtx_assert(
3057 &((struct inpcb *)so->so_pcb)->inpcb_mtx,
3058 LCK_MTX_ASSERT_OWNED);
3059 MALLOC(sin, struct sockaddr_in *, sizeof *sin, M_SONAME,
3060 M_NOWAIT);
3061 if (sin == NULL)
3062 goto drop;
3063 sin->sin_family = AF_INET;
3064 sin->sin_len = sizeof(*sin);
3065 sin->sin_addr = ip->ip_src;
3066 sin->sin_port = th->th_sport;
3067 bzero((caddr_t)sin->sin_zero, sizeof(sin->sin_zero));
3068 laddr = inp->inp_laddr;
3069 if (inp->inp_laddr.s_addr == INADDR_ANY)
3070 inp->inp_laddr = ip->ip_dst;
3071 if (in_pcbconnect(inp, (struct sockaddr *)sin, proc0,
3072 IFSCOPE_NONE, NULL)) {
3073 inp->inp_laddr = laddr;
3074 FREE(sin, M_SONAME);
3075 goto drop;
3076 }
3077 FREE(sin, M_SONAME);
3078 }
3079
3080 tcp_dooptions(tp, optp, optlen, th, &to);
3081 tcp_finalize_options(tp, &to, ifscope);
3082
3083 if (tfo_enabled(tp) && tcp_tfo_syn(tp, &to))
3084 isconnected = TRUE;
3085
3086 if (iss)
3087 tp->iss = iss;
3088 else {
3089 tp->iss = tcp_new_isn(tp);
3090 }
3091 tp->irs = th->th_seq;
3092 tcp_sendseqinit(tp);
3093 tcp_rcvseqinit(tp);
3094 tp->snd_recover = tp->snd_una;
3095 /*
3096 * Initialization of the tcpcb for transaction;
3097 * set SND.WND = SEG.WND,
3098 * initialize CCsend and CCrecv.
3099 */
3100 tp->snd_wnd = tiwin; /* initial send-window */
3101 tp->t_flags |= TF_ACKNOW;
3102 tp->t_unacksegs = 0;
3103 DTRACE_TCP4(state__change, void, NULL, struct inpcb *, inp,
3104 struct tcpcb *, tp, int32_t, TCPS_SYN_RECEIVED);
3105 tp->t_state = TCPS_SYN_RECEIVED;
3106 tp->t_timer[TCPT_KEEP] = OFFSET_FROM_START(tp,
3107 TCP_CONN_KEEPINIT(tp));
3108 dropsocket = 0; /* committed to socket */
3109
3110 if (inp->inp_flowhash == 0)
3111 inp->inp_flowhash = inp_calc_flowhash(inp);
3112 #if INET6
3113 /* update flowinfo - RFC 6437 */
3114 if (inp->inp_flow == 0 &&
3115 inp->in6p_flags & IN6P_AUTOFLOWLABEL) {
3116 inp->inp_flow &= ~IPV6_FLOWLABEL_MASK;
3117 inp->inp_flow |=
3118 (htonl(inp->inp_flowhash) & IPV6_FLOWLABEL_MASK);
3119 }
3120 #endif /* INET6 */
3121
3122 /* reset the incomp processing flag */
3123 so->so_flags &= ~(SOF_INCOMP_INPROGRESS);
3124 tcpstat.tcps_accepts++;
3125 if ((thflags & (TH_ECE | TH_CWR)) == (TH_ECE | TH_CWR)) {
3126 /* ECN-setup SYN */
3127 tp->ecn_flags |= (TE_SETUPRECEIVED | TE_SENDIPECT);
3128 }
3129
3130 #if CONFIG_IFEF_NOWINDOWSCALE
3131 if (tcp_obey_ifef_nowindowscale && m->m_pkthdr.rcvif != NULL &&
3132 (m->m_pkthdr.rcvif->if_eflags & IFEF_NOWINDOWSCALE)) {
3133 /* Window scaling is not enabled on this interface */
3134 tp->t_flags &= ~TF_REQ_SCALE;
3135 }
3136 #endif
3137 goto trimthenstep6;
3138 }
3139
3140 /*
3141 * If the state is SYN_RECEIVED and the seg contains an ACK,
3142 * but not for our SYN/ACK, send a RST.
3143 */
3144 case TCPS_SYN_RECEIVED:
3145 if ((thflags & TH_ACK) &&
3146 (SEQ_LEQ(th->th_ack, tp->snd_una) ||
3147 SEQ_GT(th->th_ack, tp->snd_max))) {
3148 rstreason = BANDLIM_RST_OPENPORT;
3149 IF_TCP_STATINC(ifp, ooopacket);
3150 goto dropwithreset;
3151 }
3152
3153 /*
3154 * In SYN_RECEIVED state, if we recv some SYNS with
3155 * window scale and others without, window scaling should
3156 * be disabled. Otherwise the window advertised will be
3157 * lower if we assume scaling and the other end does not.
3158 */
3159 if ((thflags & TH_SYN) &&
3160 (tp->irs == th->th_seq) &&
3161 !(to.to_flags & TOF_SCALE))
3162 tp->t_flags &= ~TF_RCVD_SCALE;
3163 break;
3164
3165 /*
3166 * If the state is SYN_SENT:
3167 * if seg contains an ACK, but not for our SYN, drop the input.
3168 * if seg contains a RST, then drop the connection.
3169 * if seg does not contain SYN, then drop it.
3170 * Otherwise this is an acceptable SYN segment
3171 * initialize tp->rcv_nxt and tp->irs
3172 * if seg contains ack then advance tp->snd_una
3173 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
3174 * arrange for segment to be acked (eventually)
3175 * continue processing rest of data/controls, beginning with URG
3176 */
3177 case TCPS_SYN_SENT:
3178 if ((thflags & TH_ACK) &&
3179 (SEQ_LEQ(th->th_ack, tp->iss) ||
3180 SEQ_GT(th->th_ack, tp->snd_max))) {
3181 rstreason = BANDLIM_UNLIMITED;
3182 IF_TCP_STATINC(ifp, ooopacket);
3183 goto dropwithreset;
3184 }
3185 if (thflags & TH_RST) {
3186 if ((thflags & TH_ACK) != 0) {
3187 #if MPTCP
3188 if ((so->so_flags & SOF_MPTCP_FASTJOIN) &&
3189 SEQ_GT(th->th_ack, tp->iss+1)) {
3190 so->so_flags &= ~SOF_MPTCP_FASTJOIN;
3191 /* ignore the RST and retransmit SYN */
3192 goto drop;
3193 }
3194 #endif /* MPTCP */
3195 soevent(so,
3196 (SO_FILT_HINT_LOCKED |
3197 SO_FILT_HINT_CONNRESET));
3198 tp = tcp_drop(tp, ECONNREFUSED);
3199 postevent(so, 0, EV_RESET);
3200 }
3201 goto drop;
3202 }
3203 if ((thflags & TH_SYN) == 0)
3204 goto drop;
3205 tp->snd_wnd = th->th_win; /* initial send window */
3206
3207 tp->irs = th->th_seq;
3208 tcp_rcvseqinit(tp);
3209 if (thflags & TH_ACK) {
3210 tcpstat.tcps_connects++;
3211
3212 if ((thflags & (TH_ECE | TH_CWR)) == (TH_ECE)) {
3213 /* ECN-setup SYN-ACK */
3214 tp->ecn_flags |= TE_SETUPRECEIVED;
3215 if (TCP_ECN_ENABLED(tp)) {
3216 tcp_heuristic_reset_loss(tp, 0, 1);
3217 tcpstat.tcps_ecn_client_success++;
3218 }
3219 } else {
3220 if (tp->ecn_flags & TE_SETUPSENT &&
3221 tp->t_rxtshift == 0) {
3222 tcp_heuristic_reset_loss(tp, 0, 1);
3223 tcpstat.tcps_ecn_not_supported++;
3224 }
3225 if (tp->ecn_flags & TE_SETUPSENT &&
3226 tp->t_rxtshift > 0)
3227 tcp_heuristic_inc_loss(tp, 0, 1);
3228
3229 /* non-ECN-setup SYN-ACK */
3230 tp->ecn_flags &= ~TE_SENDIPECT;
3231 }
3232
3233 #if CONFIG_MACF_NET && CONFIG_MACF_SOCKET
3234 /* XXXMAC: recursive lock: SOCK_LOCK(so); */
3235 mac_socketpeer_label_associate_mbuf(m, so);
3236 /* XXXMAC: SOCK_UNLOCK(so); */
3237 #endif
3238 /* Do window scaling on this connection? */
3239 if (TCP_WINDOW_SCALE_ENABLED(tp)) {
3240 tp->snd_scale = tp->requested_s_scale;
3241 tp->rcv_scale = tp->request_r_scale;
3242 }
3243
3244 tp->rcv_adv += min(tp->rcv_wnd, TCP_MAXWIN << tp->rcv_scale);
3245 tp->snd_una++; /* SYN is acked */
3246 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
3247 tp->snd_nxt = tp->snd_una;
3248
3249 /*
3250 * We have sent more in the SYN than what is being
3251 * acked. (e.g., TFO)
3252 * We should restart the sending from what the receiver
3253 * has acknowledged immediately.
3254 */
3255 if (SEQ_GT(tp->snd_nxt, th->th_ack))
3256 tp->snd_nxt = th->th_ack;
3257
3258 /*
3259 * If there's data, delay ACK; if there's also a FIN
3260 * ACKNOW will be turned on later.
3261 */
3262 TCP_INC_VAR(tp->t_unacksegs, nlropkts);
3263 if (DELAY_ACK(tp, th) && tlen != 0 ) {
3264 if ((tp->t_flags & TF_DELACK) == 0) {
3265 tp->t_flags |= TF_DELACK;
3266 tp->t_timer[TCPT_DELACK] = OFFSET_FROM_START(tp, tcp_delack);
3267 }
3268 }
3269 else {
3270 tp->t_flags |= TF_ACKNOW;
3271 }
3272 /*
3273 * Received <SYN,ACK> in SYN_SENT[*] state.
3274 * Transitions:
3275 * SYN_SENT --> ESTABLISHED
3276 * SYN_SENT* --> FIN_WAIT_1
3277 */
3278 tp->t_starttime = tcp_now;
3279 tcp_sbrcv_tstmp_check(tp);
3280 if (tp->t_flags & TF_NEEDFIN) {
3281 DTRACE_TCP4(state__change, void, NULL,
3282 struct inpcb *, inp,
3283 struct tcpcb *, tp, int32_t,
3284 TCPS_FIN_WAIT_1);
3285 tp->t_state = TCPS_FIN_WAIT_1;
3286 tp->t_flags &= ~TF_NEEDFIN;
3287 thflags &= ~TH_SYN;
3288 } else {
3289 DTRACE_TCP4(state__change, void, NULL,
3290 struct inpcb *, inp, struct tcpcb *,
3291 tp, int32_t, TCPS_ESTABLISHED);
3292 tp->t_state = TCPS_ESTABLISHED;
3293 tp->t_timer[TCPT_KEEP] =
3294 OFFSET_FROM_START(tp,
3295 TCP_CONN_KEEPIDLE(tp));
3296 if (nstat_collect)
3297 nstat_route_connect_success(
3298 tp->t_inpcb->inp_route.ro_rt);
3299 }
3300 #if MPTCP
3301 /*
3302 * Do not send the connect notification for additional
3303 * subflows until ACK for 3-way handshake arrives.
3304 */
3305 if ((!(tp->t_mpflags & TMPF_MPTCP_TRUE)) &&
3306 (tp->t_mpflags & TMPF_SENT_JOIN)) {
3307 isconnected = FALSE;
3308 /* Start data xmit if fastjoin */
3309 if (mptcp_fastjoin && (so->so_flags & SOF_MPTCP_FASTJOIN)) {
3310 soevent(so, (SO_FILT_HINT_LOCKED |
3311 SO_FILT_HINT_MPFASTJ));
3312 }
3313 } else
3314 #endif /* MPTCP */
3315 isconnected = TRUE;
3316
3317 if (tp->t_tfo_flags & (TFO_F_COOKIE_REQ | TFO_F_COOKIE_SENT)) {
3318 tcp_tfo_synack(tp, &to);
3319
3320 if ((tp->t_tfo_stats & TFO_S_SYN_DATA_SENT) &&
3321 SEQ_LT(tp->snd_una, th->th_ack)) {
3322 tp->t_tfo_stats |= TFO_S_SYN_DATA_ACKED;
3323 tcpstat.tcps_tfo_syn_data_acked++;
3324
3325 if (!(tp->t_tfo_flags & TFO_F_NO_RCVPROBING))
3326 tcp_tfo_rcv_probe(tp, tlen);
3327 }
3328 }
3329 } else {
3330 /*
3331 * Received initial SYN in SYN-SENT[*] state => simul-
3332 * taneous open. If segment contains CC option and there is
3333 * a cached CC, apply TAO test; if it succeeds, connection is
3334 * half-synchronized. Otherwise, do 3-way handshake:
3335 * SYN-SENT -> SYN-RECEIVED
3336 * SYN-SENT* -> SYN-RECEIVED*
3337 */
3338 tp->t_flags |= TF_ACKNOW;
3339 tp->t_timer[TCPT_REXMT] = 0;
3340 DTRACE_TCP4(state__change, void, NULL, struct inpcb *, inp,
3341 struct tcpcb *, tp, int32_t, TCPS_SYN_RECEIVED);
3342 tp->t_state = TCPS_SYN_RECEIVED;
3343
3344 /*
3345 * During simultaneous open, TFO should not be used.
3346 * So, we disable it here, to prevent that data gets
3347 * sent on the SYN/ACK.
3348 */
3349 tcp_disable_tfo(tp);
3350 }
3351
3352 trimthenstep6:
3353 /*
3354 * Advance th->th_seq to correspond to first data byte.
3355 * If data, trim to stay within window,
3356 * dropping FIN if necessary.
3357 */
3358 th->th_seq++;
3359 if (tlen > tp->rcv_wnd) {
3360 todrop = tlen - tp->rcv_wnd;
3361 m_adj(m, -todrop);
3362 tlen = tp->rcv_wnd;
3363 thflags &= ~TH_FIN;
3364 tcpstat.tcps_rcvpackafterwin++;
3365 tcpstat.tcps_rcvbyteafterwin += todrop;
3366 }
3367 tp->snd_wl1 = th->th_seq - 1;
3368 tp->rcv_up = th->th_seq;
3369 /*
3370 * Client side of transaction: already sent SYN and data.
3371 * If the remote host used T/TCP to validate the SYN,
3372 * our data will be ACK'd; if so, enter normal data segment
3373 * processing in the middle of step 5, ack processing.
3374 * Otherwise, goto step 6.
3375 */
3376 if (thflags & TH_ACK)
3377 goto process_ACK;
3378 goto step6;
3379 /*
3380 * If the state is LAST_ACK or CLOSING or TIME_WAIT:
3381 * do normal processing.
3382 *
3383 * NB: Leftover from RFC1644 T/TCP. Cases to be reused later.
3384 */
3385 case TCPS_LAST_ACK:
3386 case TCPS_CLOSING:
3387 case TCPS_TIME_WAIT:
3388 break; /* continue normal processing */
3389
3390 /* Received a SYN while connection is already established.
3391 * This is a "half open connection and other anomalies" described
3392 * in RFC793 page 34, send an ACK so the remote reset the connection
3393 * or recovers by adjusting its sequence numberering
3394 */
3395 case TCPS_ESTABLISHED:
3396 if (thflags & TH_SYN)
3397 goto dropafterack;
3398 break;
3399 }
3400
3401 /*
3402 * States other than LISTEN or SYN_SENT.
3403 * First check the RST flag and sequence number since reset segments
3404 * are exempt from the timestamp and connection count tests. This
3405 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
3406 * below which allowed reset segments in half the sequence space
3407 * to fall though and be processed (which gives forged reset
3408 * segments with a random sequence number a 50 percent chance of
3409 * killing a connection).
3410 * Then check timestamp, if present.
3411 * Then check the connection count, if present.
3412 * Then check that at least some bytes of segment are within
3413 * receive window. If segment begins before rcv_nxt,
3414 * drop leading data (and SYN); if nothing left, just ack.
3415 *
3416 *
3417 * If the RST bit is set, check the sequence number to see
3418 * if this is a valid reset segment.
3419 * RFC 793 page 37:
3420 * In all states except SYN-SENT, all reset (RST) segments
3421 * are validated by checking their SEQ-fields. A reset is
3422 * valid if its sequence number is in the window.
3423 * Note: this does not take into account delayed ACKs, so
3424 * we should test against last_ack_sent instead of rcv_nxt.
3425 * The sequence number in the reset segment is normally an
3426 * echo of our outgoing acknowlegement numbers, but some hosts
3427 * send a reset with the sequence number at the rightmost edge
3428 * of our receive window, and we have to handle this case.
3429 * Note 2: Paul Watson's paper "Slipping in the Window" has shown
3430 * that brute force RST attacks are possible. To combat this,
3431 * we use a much stricter check while in the ESTABLISHED state,
3432 * only accepting RSTs where the sequence number is equal to
3433 * last_ack_sent. In all other states (the states in which a
3434 * RST is more likely), the more permissive check is used.
3435 * If we have multiple segments in flight, the intial reset
3436 * segment sequence numbers will be to the left of last_ack_sent,
3437 * but they will eventually catch up.
3438 * In any case, it never made sense to trim reset segments to
3439 * fit the receive window since RFC 1122 says:
3440 * 4.2.2.12 RST Segment: RFC-793 Section 3.4
3441 *
3442 * A TCP SHOULD allow a received RST segment to include data.
3443 *
3444 * DISCUSSION
3445 * It has been suggested that a RST segment could contain
3446 * ASCII text that encoded and explained the cause of the
3447 * RST. No standard has yet been established for such
3448 * data.
3449 *
3450 * If the reset segment passes the sequence number test examine
3451 * the state:
3452 * SYN_RECEIVED STATE:
3453 * If passive open, return to LISTEN state.
3454 * If active open, inform user that connection was refused.
3455 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2, CLOSE_WAIT STATES:
3456 * Inform user that connection was reset, and close tcb.
3457 * CLOSING, LAST_ACK STATES:
3458 * Close the tcb.
3459 * TIME_WAIT STATE:
3460 * Drop the segment - see Stevens, vol. 2, p. 964 and
3461 * RFC 1337.
3462 *
3463 * Radar 4803931: Allows for the case where we ACKed the FIN but
3464 * there is already a RST in flight from the peer.
3465 * In that case, accept the RST for non-established
3466 * state if it's one off from last_ack_sent.
3467
3468 */
3469 if (thflags & TH_RST) {
3470 if ((SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
3471 SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) ||
3472 (tp->rcv_wnd == 0 &&
3473 ((tp->last_ack_sent == th->th_seq) ||
3474 ((tp->last_ack_sent -1) == th->th_seq)))) {
3475 switch (tp->t_state) {
3476
3477 case TCPS_SYN_RECEIVED:
3478 IF_TCP_STATINC(ifp, rstinsynrcv);
3479 so->so_error = ECONNREFUSED;
3480 goto close;
3481
3482 case TCPS_ESTABLISHED:
3483 if (tp->last_ack_sent != th->th_seq) {
3484 tcpstat.tcps_badrst++;
3485 goto drop;
3486 }
3487 case TCPS_FIN_WAIT_1:
3488 case TCPS_CLOSE_WAIT:
3489 /*
3490 Drop through ...
3491 */
3492 case TCPS_FIN_WAIT_2:
3493 so->so_error = ECONNRESET;
3494 close:
3495 postevent(so, 0, EV_RESET);
3496 soevent(so,
3497 (SO_FILT_HINT_LOCKED |
3498 SO_FILT_HINT_CONNRESET));
3499
3500 tcpstat.tcps_drops++;
3501 tp = tcp_close(tp);
3502 break;
3503
3504 case TCPS_CLOSING:
3505 case TCPS_LAST_ACK:
3506 tp = tcp_close(tp);
3507 break;
3508
3509 case TCPS_TIME_WAIT:
3510 break;
3511 }
3512 }
3513 goto drop;
3514 }
3515
3516 /*
3517 * RFC 1323 PAWS: If we have a timestamp reply on this segment
3518 * and it's less than ts_recent, drop it.
3519 */
3520 if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
3521 TSTMP_LT(to.to_tsval, tp->ts_recent)) {
3522
3523 /* Check to see if ts_recent is over 24 days old. */
3524 if ((int)(tcp_now - tp->ts_recent_age) > TCP_PAWS_IDLE) {
3525 /*
3526 * Invalidate ts_recent. If this segment updates
3527 * ts_recent, the age will be reset later and ts_recent
3528 * will get a valid value. If it does not, setting
3529 * ts_recent to zero will at least satisfy the
3530 * requirement that zero be placed in the timestamp
3531 * echo reply when ts_recent isn't valid. The
3532 * age isn't reset until we get a valid ts_recent
3533 * because we don't want out-of-order segments to be
3534 * dropped when ts_recent is old.
3535 */
3536 tp->ts_recent = 0;
3537 } else {
3538 tcpstat.tcps_rcvduppack++;
3539 tcpstat.tcps_rcvdupbyte += tlen;
3540 tp->t_pawsdrop++;
3541 tcpstat.tcps_pawsdrop++;
3542
3543 /*
3544 * PAWS-drop when ECN is being used? That indicates
3545 * that ECT-marked packets take a different path, with
3546 * different congestion-characteristics.
3547 *
3548 * Only fallback when we did send less than 2GB as PAWS
3549 * really has no reason to kick in earlier.
3550 */
3551 if (TCP_ECN_ENABLED(tp) &&
3552 inp->inp_stat->rxbytes < 2147483648) {
3553 INP_INC_IFNET_STAT(inp, ecn_fallback_reorder);
3554 tcpstat.tcps_ecn_fallback_reorder++;
3555 tcp_heuristic_ecn_aggressive(tp);
3556 }
3557
3558 if (nstat_collect) {
3559 nstat_route_rx(tp->t_inpcb->inp_route.ro_rt,
3560 1, tlen, NSTAT_RX_FLAG_DUPLICATE);
3561 INP_ADD_STAT(inp, cell, wifi, wired,
3562 rxpackets, 1);
3563 INP_ADD_STAT(inp, cell, wifi, wired,
3564 rxbytes, tlen);
3565 tp->t_stat.rxduplicatebytes += tlen;
3566 }
3567 if (tlen > 0)
3568 goto dropafterack;
3569 goto drop;
3570 }
3571 }
3572
3573 /*
3574 * In the SYN-RECEIVED state, validate that the packet belongs to
3575 * this connection before trimming the data to fit the receive
3576 * window. Check the sequence number versus IRS since we know
3577 * the sequence numbers haven't wrapped. This is a partial fix
3578 * for the "LAND" DoS attack.
3579 */
3580 if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
3581 rstreason = BANDLIM_RST_OPENPORT;
3582 IF_TCP_STATINC(ifp, dospacket);
3583 goto dropwithreset;
3584 }
3585
3586 todrop = tp->rcv_nxt - th->th_seq;
3587 if (todrop > 0) {
3588 if (thflags & TH_SYN) {
3589 thflags &= ~TH_SYN;
3590 th->th_seq++;
3591 if (th->th_urp > 1)
3592 th->th_urp--;
3593 else
3594 thflags &= ~TH_URG;
3595 todrop--;
3596 }
3597 /*
3598 * Following if statement from Stevens, vol. 2, p. 960.
3599 */
3600 if (todrop > tlen
3601 || (todrop == tlen && (thflags & TH_FIN) == 0)) {
3602 /*
3603 * Any valid FIN must be to the left of the window.
3604 * At this point the FIN must be a duplicate or out
3605 * of sequence; drop it.
3606 */
3607 thflags &= ~TH_FIN;
3608
3609 /*
3610 * Send an ACK to resynchronize and drop any data.
3611 * But keep on processing for RST or ACK.
3612 */
3613 tp->t_flags |= TF_ACKNOW;
3614 if (todrop == 1) {
3615 /* This could be a keepalive */
3616 soevent(so, SO_FILT_HINT_LOCKED |
3617 SO_FILT_HINT_KEEPALIVE);
3618 }
3619 todrop = tlen;
3620 tcpstat.tcps_rcvduppack++;
3621 tcpstat.tcps_rcvdupbyte += todrop;
3622 } else {
3623 tcpstat.tcps_rcvpartduppack++;
3624 tcpstat.tcps_rcvpartdupbyte += todrop;
3625 }
3626
3627 if (TCP_DSACK_ENABLED(tp) && todrop > 1) {
3628 /*
3629 * Note the duplicate data sequence space so that
3630 * it can be reported in DSACK option.
3631 */
3632 tp->t_dsack_lseq = th->th_seq;
3633 tp->t_dsack_rseq = th->th_seq + todrop;
3634 tp->t_flags |= TF_ACKNOW;
3635 }
3636 if (nstat_collect) {
3637 nstat_route_rx(tp->t_inpcb->inp_route.ro_rt, 1,
3638 todrop, NSTAT_RX_FLAG_DUPLICATE);
3639 INP_ADD_STAT(inp, cell, wifi, wired, rxpackets, 1);
3640 INP_ADD_STAT(inp, cell, wifi, wired, rxbytes, todrop);
3641 tp->t_stat.rxduplicatebytes += todrop;
3642 }
3643 drop_hdrlen += todrop; /* drop from the top afterwards */
3644 th->th_seq += todrop;
3645 tlen -= todrop;
3646 if (th->th_urp > todrop)
3647 th->th_urp -= todrop;
3648 else {
3649 thflags &= ~TH_URG;
3650 th->th_urp = 0;
3651 }
3652 }
3653
3654 /*
3655 * If new data are received on a connection after the user
3656 * processes are gone, then RST the other end.
3657 * Send also a RST when we received a data segment after we've
3658 * sent our FIN when the socket is defunct.
3659 * Note that an MPTCP subflow socket would have SS_NOFDREF set
3660 * by default so check to make sure that we test for SOF_MP_SUBFLOW
3661 * socket flag (which would be cleared when the socket is closed.)
3662 */
3663 if (!(so->so_flags & SOF_MP_SUBFLOW) && tlen &&
3664 (((so->so_state & SS_NOFDREF) &&
3665 tp->t_state > TCPS_CLOSE_WAIT) ||
3666 ((so->so_flags & SOF_DEFUNCT) &&
3667 tp->t_state > TCPS_FIN_WAIT_1))) {
3668 tp = tcp_close(tp);
3669 tcpstat.tcps_rcvafterclose++;
3670 rstreason = BANDLIM_UNLIMITED;
3671 IF_TCP_STATINC(ifp, cleanup);
3672 goto dropwithreset;
3673 }
3674
3675 /*
3676 * If segment ends after window, drop trailing data
3677 * (and PUSH and FIN); if nothing left, just ACK.
3678 */
3679 todrop = (th->th_seq+tlen) - (tp->rcv_nxt+tp->rcv_wnd);
3680 if (todrop > 0) {
3681 tcpstat.tcps_rcvpackafterwin++;
3682 if (todrop >= tlen) {
3683 tcpstat.tcps_rcvbyteafterwin += tlen;
3684 /*
3685 * If a new connection request is received
3686 * while in TIME_WAIT, drop the old connection
3687 * and start over if the sequence numbers
3688 * are above the previous ones.
3689 */
3690 if (thflags & TH_SYN &&
3691 tp->t_state == TCPS_TIME_WAIT &&
3692 SEQ_GT(th->th_seq, tp->rcv_nxt)) {
3693 iss = tcp_new_isn(tp);
3694 tp = tcp_close(tp);
3695 tcp_unlock(so, 1, 0);
3696 goto findpcb;
3697 }
3698 /*
3699 * If window is closed can only take segments at
3700 * window edge, and have to drop data and PUSH from
3701 * incoming segments. Continue processing, but
3702 * remember to ack. Otherwise, drop segment
3703 * and ack.
3704 */
3705 if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
3706 tp->t_flags |= TF_ACKNOW;
3707 tcpstat.tcps_rcvwinprobe++;
3708 } else
3709 goto dropafterack;
3710 } else
3711 tcpstat.tcps_rcvbyteafterwin += todrop;
3712 m_adj(m, -todrop);
3713 tlen -= todrop;
3714 thflags &= ~(TH_PUSH|TH_FIN);
3715 }
3716
3717 /*
3718 * If last ACK falls within this segment's sequence numbers,
3719 * record its timestamp.
3720 * NOTE:
3721 * 1) That the test incorporates suggestions from the latest
3722 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
3723 * 2) That updating only on newer timestamps interferes with
3724 * our earlier PAWS tests, so this check should be solely
3725 * predicated on the sequence space of this segment.
3726 * 3) That we modify the segment boundary check to be
3727 * Last.ACK.Sent <= SEG.SEQ + SEG.Len
3728 * instead of RFC1323's
3729 * Last.ACK.Sent < SEG.SEQ + SEG.Len,
3730 * This modified check allows us to overcome RFC1323's
3731 * limitations as described in Stevens TCP/IP Illustrated
3732 * Vol. 2 p.869. In such cases, we can still calculate the
3733 * RTT correctly when RCV.NXT == Last.ACK.Sent.
3734 */
3735 if ((to.to_flags & TOF_TS) != 0 &&
3736 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
3737 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
3738 ((thflags & (TH_SYN|TH_FIN)) != 0))) {
3739 tp->ts_recent_age = tcp_now;
3740 tp->ts_recent = to.to_tsval;
3741 }
3742
3743 /*
3744 * If a SYN is in the window, then this is an
3745 * error and we send an RST and drop the connection.
3746 */
3747 if (thflags & TH_SYN) {
3748 tp = tcp_drop(tp, ECONNRESET);
3749 rstreason = BANDLIM_UNLIMITED;
3750 postevent(so, 0, EV_RESET);
3751 IF_TCP_STATINC(ifp, synwindow);
3752 goto dropwithreset;
3753 }
3754
3755 /*
3756 * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN
3757 * flag is on (half-synchronized state), then queue data for
3758 * later processing; else drop segment and return.
3759 */
3760 if ((thflags & TH_ACK) == 0) {
3761 if (tp->t_state == TCPS_SYN_RECEIVED ||
3762 (tp->t_flags & TF_NEEDSYN)) {
3763 if ((tfo_enabled(tp))) {
3764 /*
3765 * So, we received a valid segment while in
3766 * SYN-RECEIVED (TF_NEEDSYN is actually never
3767 * set, so this is dead code).
3768 * As this cannot be an RST (see that if a bit
3769 * higher), and it does not have the ACK-flag
3770 * set, we want to retransmit the SYN/ACK.
3771 * Thus, we have to reset snd_nxt to snd_una to
3772 * trigger the going back to sending of the
3773 * SYN/ACK. This is more consistent with the
3774 * behavior of tcp_output(), which expects
3775 * to send the segment that is pointed to by
3776 * snd_nxt.
3777 */
3778 tp->snd_nxt = tp->snd_una;
3779
3780 /*
3781 * We need to make absolutely sure that we are
3782 * going to reply upon a duplicate SYN-segment.
3783 */
3784 if (th->th_flags & TH_SYN)
3785 needoutput = 1;
3786 }
3787
3788 goto step6;
3789 } else if (tp->t_flags & TF_ACKNOW)
3790 goto dropafterack;
3791 else
3792 goto drop;
3793 }
3794
3795 /*
3796 * Ack processing.
3797 */
3798
3799 switch (tp->t_state) {
3800
3801 /*
3802 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
3803 * ESTABLISHED state and continue processing.
3804 * The ACK was checked above.
3805 */
3806 case TCPS_SYN_RECEIVED:
3807
3808 tcpstat.tcps_connects++;
3809
3810 /* Do window scaling? */
3811 if (TCP_WINDOW_SCALE_ENABLED(tp)) {
3812 tp->snd_scale = tp->requested_s_scale;
3813 tp->rcv_scale = tp->request_r_scale;
3814 tp->snd_wnd = th->th_win << tp->snd_scale;
3815 tiwin = tp->snd_wnd;
3816 }
3817 /*
3818 * Make transitions:
3819 * SYN-RECEIVED -> ESTABLISHED
3820 * SYN-RECEIVED* -> FIN-WAIT-1
3821 */
3822 tp->t_starttime = tcp_now;
3823 tcp_sbrcv_tstmp_check(tp);
3824 if (tp->t_flags & TF_NEEDFIN) {
3825 DTRACE_TCP4(state__change, void, NULL,
3826 struct inpcb *, inp,
3827 struct tcpcb *, tp, int32_t, TCPS_FIN_WAIT_1);
3828 tp->t_state = TCPS_FIN_WAIT_1;
3829 tp->t_flags &= ~TF_NEEDFIN;
3830 } else {
3831 DTRACE_TCP4(state__change, void, NULL,
3832 struct inpcb *, inp,
3833 struct tcpcb *, tp, int32_t, TCPS_ESTABLISHED);
3834 tp->t_state = TCPS_ESTABLISHED;
3835 tp->t_timer[TCPT_KEEP] = OFFSET_FROM_START(tp,
3836 TCP_CONN_KEEPIDLE(tp));
3837 if (nstat_collect)
3838 nstat_route_connect_success(
3839 tp->t_inpcb->inp_route.ro_rt);
3840 }
3841 /*
3842 * If segment contains data or ACK, will call tcp_reass()
3843 * later; if not, do so now to pass queued data to user.
3844 */
3845 if (tlen == 0 && (thflags & TH_FIN) == 0)
3846 (void) tcp_reass(tp, (struct tcphdr *)0, &tlen,
3847 NULL, ifp);
3848 tp->snd_wl1 = th->th_seq - 1;
3849
3850 #if MPTCP
3851 /*
3852 * Do not send the connect notification for additional subflows
3853 * until ACK for 3-way handshake arrives.
3854 */
3855 if ((!(tp->t_mpflags & TMPF_MPTCP_TRUE)) &&
3856 (tp->t_mpflags & TMPF_SENT_JOIN)) {
3857 isconnected = FALSE;
3858 } else
3859 #endif /* MPTCP */
3860 isconnected = TRUE;
3861 if ((tp->t_tfo_flags & TFO_F_COOKIE_VALID)) {
3862 /* Done this when receiving the SYN */
3863 isconnected = FALSE;
3864
3865 OSDecrementAtomic(&tcp_tfo_halfcnt);
3866
3867 /* Panic if something has gone terribly wrong. */
3868 VERIFY(tcp_tfo_halfcnt >= 0);
3869
3870 tp->t_tfo_flags &= ~TFO_F_COOKIE_VALID;
3871 }
3872
3873 /*
3874 * In case there is data in the send-queue (e.g., TFO is being
3875 * used, or connectx+data has been done), then if we would
3876 * "FALLTHROUGH", we would handle this ACK as if data has been
3877 * acknowledged. But, we have to prevent this. And this
3878 * can be prevented by increasing snd_una by 1, so that the
3879 * SYN is not considered as data (snd_una++ is actually also
3880 * done in SYN_SENT-state as part of the regular TCP stack).
3881 *
3882 * In case there is data on this ack as well, the data will be
3883 * handled by the label "dodata" right after step6.
3884 */
3885 if (so->so_snd.sb_cc) {
3886 tp->snd_una++; /* SYN is acked */
3887 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
3888 tp->snd_nxt = tp->snd_una;
3889
3890 /*
3891 * No duplicate-ACK handling is needed. So, we
3892 * directly advance to processing the ACK (aka,
3893 * updating the RTT estimation,...)
3894 *
3895 * But, we first need to handle eventual SACKs,
3896 * because TFO will start sending data with the
3897 * SYN/ACK, so it might be that the client
3898 * includes a SACK with its ACK.
3899 */
3900 if (SACK_ENABLED(tp) &&
3901 (to.to_nsacks > 0 ||
3902 !TAILQ_EMPTY(&tp->snd_holes)))
3903 tcp_sack_doack(tp, &to, th,
3904 &sack_bytes_acked);
3905
3906 goto process_ACK;
3907 }
3908
3909 /* FALLTHROUGH */
3910
3911 /*
3912 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
3913 * ACKs. If the ack is in the range
3914 * tp->snd_una < th->th_ack <= tp->snd_max
3915 * then advance tp->snd_una to th->th_ack and drop
3916 * data from the retransmission queue. If this ACK reflects
3917 * more up to date window information we update our window information.
3918 */
3919 case TCPS_ESTABLISHED:
3920 case TCPS_FIN_WAIT_1:
3921 case TCPS_FIN_WAIT_2:
3922 case TCPS_CLOSE_WAIT:
3923 case TCPS_CLOSING:
3924 case TCPS_LAST_ACK:
3925 case TCPS_TIME_WAIT:
3926 if (SEQ_GT(th->th_ack, tp->snd_max)) {
3927 tcpstat.tcps_rcvacktoomuch++;
3928 goto dropafterack;
3929 }
3930 if (SACK_ENABLED(tp) && to.to_nsacks > 0) {
3931 recvd_dsack = tcp_sack_process_dsack(tp, &to, th);
3932 /*
3933 * If DSACK is received and this packet has no
3934 * other SACK information, it can be dropped.
3935 * We do not want to treat it as a duplicate ack.
3936 */
3937 if (recvd_dsack &&
3938 SEQ_LEQ(th->th_ack, tp->snd_una) &&
3939 to.to_nsacks == 0) {
3940 tcp_bad_rexmt_check(tp, th, &to);
3941 goto drop;
3942 }
3943 }
3944
3945 if (SACK_ENABLED(tp) &&
3946 (to.to_nsacks > 0 || !TAILQ_EMPTY(&tp->snd_holes)))
3947 tcp_sack_doack(tp, &to, th, &sack_bytes_acked);
3948
3949 #if MPTCP
3950 if ((tp->t_mpuna) && (SEQ_GEQ(th->th_ack, tp->t_mpuna))) {
3951 if (tp->t_mpflags & TMPF_PREESTABLISHED) {
3952 /* MP TCP establishment succeeded */
3953 tp->t_mpuna = 0;
3954 if (tp->t_mpflags & TMPF_JOINED_FLOW) {
3955 if (tp->t_mpflags & TMPF_SENT_JOIN) {
3956 tp->t_mpflags &=
3957 ~TMPF_PREESTABLISHED;
3958 tp->t_mpflags |=
3959 TMPF_MPTCP_TRUE;
3960 so->so_flags |= SOF_MPTCP_TRUE;
3961 mptcplog((LOG_DEBUG, "MPTCP "
3962 "Sockets: %s \n",__func__),
3963 MPTCP_SOCKET_DBG,
3964 MPTCP_LOGLVL_LOG);
3965
3966 tp->t_timer[TCPT_JACK_RXMT] = 0;
3967 tp->t_mprxtshift = 0;
3968 isconnected = TRUE;
3969 } else {
3970 isconnected = FALSE;
3971 }
3972 } else {
3973 isconnected = TRUE;
3974 tp->t_mpflags &= ~TMPF_SENT_KEYS;
3975 }
3976 }
3977 }
3978 #endif /* MPTCP */
3979
3980 tcp_tfo_rcv_ack(tp, th);
3981
3982 /*
3983 * If we have outstanding data (other than
3984 * a window probe), this is a completely
3985 * duplicate ack (ie, window info didn't
3986 * change) and the ack is the biggest we've seen.
3987 */
3988 if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
3989 if (tlen == 0 && tiwin == tp->snd_wnd) {
3990 /*
3991 * If both ends send FIN at the same time,
3992 * then the ack will be a duplicate ack
3993 * but we have to process the FIN. Check
3994 * for this condition and process the FIN
3995 * instead of the dupack
3996 */
3997 if ((thflags & TH_FIN) &&
3998 (tp->t_flags & TF_SENTFIN) &&
3999 !TCPS_HAVERCVDFIN(tp->t_state) &&
4000 (th->th_ack + 1) == tp->snd_max)
4001 break;
4002 process_dupack:
4003 #if MPTCP
4004 /*
4005 * MPTCP options that are ignored must
4006 * not be treated as duplicate ACKs.
4007 */
4008 if (to.to_flags & TOF_MPTCP) {
4009 goto drop;
4010 }
4011
4012 if ((isconnected) && (tp->t_mpflags & TMPF_JOINED_FLOW)) {
4013 mptcplog((LOG_DEBUG, "MPTCP "
4014 "Sockets: bypass ack recovery\n"),
4015 MPTCP_SOCKET_DBG,
4016 MPTCP_LOGLVL_VERBOSE);
4017 break;
4018 }
4019 #endif /* MPTCP */
4020 /*
4021 * If a duplicate acknowledgement was seen
4022 * after ECN, it indicates packet loss in
4023 * addition to ECN. Reset INRECOVERY flag
4024 * so that we can process partial acks
4025 * correctly
4026 */
4027 if (tp->ecn_flags & TE_INRECOVERY)
4028 tp->ecn_flags &= ~TE_INRECOVERY;
4029
4030 tcpstat.tcps_rcvdupack++;
4031 ++tp->t_dupacks;
4032
4033 /*
4034 * Check if we need to reset the limit on
4035 * early retransmit
4036 */
4037 if (tp->t_early_rexmt_count > 0 &&
4038 TSTMP_GEQ(tcp_now,
4039 (tp->t_early_rexmt_win +
4040 TCP_EARLY_REXMT_WIN)))
4041 tp->t_early_rexmt_count = 0;
4042
4043 /*
4044 * Is early retransmit needed? We check for
4045 * this when the connection is waiting for
4046 * duplicate acks to enter fast recovery.
4047 */
4048 if (!IN_FASTRECOVERY(tp))
4049 tcp_early_rexmt_check(tp, th);
4050
4051 /*
4052 * If we've seen exactly rexmt threshold
4053 * of duplicate acks, assume a packet
4054 * has been dropped and retransmit it.
4055 * Kludge snd_nxt & the congestion
4056 * window so we send only this one
4057 * packet.
4058 *
4059 * We know we're losing at the current
4060 * window size so do congestion avoidance
4061 * (set ssthresh to half the current window
4062 * and pull our congestion window back to
4063 * the new ssthresh).
4064 *
4065 * Dup acks mean that packets have left the
4066 * network (they're now cached at the receiver)
4067 * so bump cwnd by the amount in the receiver
4068 * to keep a constant cwnd packets in the
4069 * network.
4070 */
4071 if (tp->t_timer[TCPT_REXMT] == 0 ||
4072 (th->th_ack != tp->snd_una
4073 && sack_bytes_acked == 0)) {
4074 tp->t_dupacks = 0;
4075 tp->t_rexmtthresh = tcprexmtthresh;
4076 } else if (tp->t_dupacks > tp->t_rexmtthresh ||
4077 IN_FASTRECOVERY(tp)) {
4078
4079 /*
4080 * If this connection was seeing packet
4081 * reordering, then recovery might be
4082 * delayed to disambiguate between
4083 * reordering and loss
4084 */
4085 if (SACK_ENABLED(tp) && !IN_FASTRECOVERY(tp) &&
4086 (tp->t_flagsext &
4087 (TF_PKTS_REORDERED|TF_DELAY_RECOVERY)) ==
4088 (TF_PKTS_REORDERED|TF_DELAY_RECOVERY)) {
4089 /*
4090 * Since the SACK information is already
4091 * updated, this ACK will be dropped
4092 */
4093 break;
4094 }
4095
4096 if (SACK_ENABLED(tp)
4097 && IN_FASTRECOVERY(tp)) {
4098 int awnd;
4099
4100 /*
4101 * Compute the amount of data in flight first.
4102 * We can inject new data into the pipe iff
4103 * we have less than 1/2 the original window's
4104 * worth of data in flight.
4105 */
4106 awnd = (tp->snd_nxt - tp->snd_fack) +
4107 tp->sackhint.sack_bytes_rexmit;
4108 if (awnd < tp->snd_ssthresh) {
4109 tp->snd_cwnd += tp->t_maxseg;
4110 if (tp->snd_cwnd > tp->snd_ssthresh)
4111 tp->snd_cwnd = tp->snd_ssthresh;
4112 }
4113 } else
4114 tp->snd_cwnd += tp->t_maxseg;
4115
4116 tcp_ccdbg_trace(tp, th, TCP_CC_IN_FASTRECOVERY);
4117
4118 (void) tcp_output(tp);
4119 goto drop;
4120 } else if (tp->t_dupacks == tp->t_rexmtthresh) {
4121 tcp_seq onxt = tp->snd_nxt;
4122
4123 /*
4124 * If we're doing sack, check to
4125 * see if we're already in sack
4126 * recovery. If we're not doing sack,
4127 * check to see if we're in newreno
4128 * recovery.
4129 */
4130 if (SACK_ENABLED(tp)) {
4131 if (IN_FASTRECOVERY(tp)) {
4132 tp->t_dupacks = 0;
4133 break;
4134 } else if (tp->t_flagsext & TF_DELAY_RECOVERY) {
4135 break;
4136 }
4137 } else {
4138 if (SEQ_LEQ(th->th_ack,
4139 tp->snd_recover)) {
4140 tp->t_dupacks = 0;
4141 break;
4142 }
4143 }
4144 if (tp->t_flags & TF_SENTFIN)
4145 tp->snd_recover = tp->snd_max - 1;
4146 else
4147 tp->snd_recover = tp->snd_max;
4148 tp->t_timer[TCPT_PTO] = 0;
4149 tp->t_rtttime = 0;
4150
4151 /*
4152 * If the connection has seen pkt
4153 * reordering, delay recovery until
4154 * it is clear that the packet
4155 * was lost.
4156 */
4157 if (SACK_ENABLED(tp) &&
4158 (tp->t_flagsext &
4159 (TF_PKTS_REORDERED|TF_DELAY_RECOVERY))
4160 == TF_PKTS_REORDERED &&
4161 !IN_FASTRECOVERY(tp) &&
4162 tp->t_reorderwin > 0 &&
4163 (tp->t_state == TCPS_ESTABLISHED ||
4164 tp->t_state == TCPS_FIN_WAIT_1)) {
4165 tp->t_timer[TCPT_DELAYFR] =
4166 OFFSET_FROM_START(tp,
4167 tp->t_reorderwin);
4168 tp->t_flagsext |= TF_DELAY_RECOVERY;
4169 tcpstat.tcps_delay_recovery++;
4170 tcp_ccdbg_trace(tp, th,
4171 TCP_CC_DELAY_FASTRECOVERY);
4172 break;
4173 }
4174
4175 tcp_rexmt_save_state(tp);
4176 /*
4177 * If the current tcp cc module has
4178 * defined a hook for tasks to run
4179 * before entering FR, call it
4180 */
4181 if (CC_ALGO(tp)->pre_fr != NULL)
4182 CC_ALGO(tp)->pre_fr(tp);
4183 ENTER_FASTRECOVERY(tp);
4184 tp->t_timer[TCPT_REXMT] = 0;
4185 if (TCP_ECN_ENABLED(tp))
4186 tp->ecn_flags |= TE_SENDCWR;
4187
4188 if (SACK_ENABLED(tp)) {
4189 tcpstat.tcps_sack_recovery_episode++;
4190 tp->t_sack_recovery_episode++;
4191 tp->sack_newdata = tp->snd_nxt;
4192 tp->snd_cwnd = tp->t_maxseg;
4193 tp->t_flagsext &=
4194 ~TF_CWND_NONVALIDATED;
4195 tcp_ccdbg_trace(tp, th,
4196 TCP_CC_ENTER_FASTRECOVERY);
4197 (void) tcp_output(tp);
4198 goto drop;
4199 }
4200 tp->snd_nxt = th->th_ack;
4201 tp->snd_cwnd = tp->t_maxseg;
4202 (void) tcp_output(tp);
4203 if (tp->t_flagsext & TF_CWND_NONVALIDATED) {
4204 tcp_cc_adjust_nonvalidated_cwnd(tp);
4205 } else {
4206 tp->snd_cwnd = tp->snd_ssthresh +
4207 tp->t_maxseg * tp->t_dupacks;
4208 }
4209 if (SEQ_GT(onxt, tp->snd_nxt))
4210 tp->snd_nxt = onxt;
4211 tcp_ccdbg_trace(tp, th,
4212 TCP_CC_ENTER_FASTRECOVERY);
4213 goto drop;
4214 } else if (limited_txmt &&
4215 ALLOW_LIMITED_TRANSMIT(tp) &&
4216 (!(SACK_ENABLED(tp)) || sack_bytes_acked > 0) &&
4217 (so->so_snd.sb_cc - (tp->snd_max - tp->snd_una)) > 0) {
4218 u_int32_t incr = (tp->t_maxseg * tp->t_dupacks);
4219
4220 /* Use Limited Transmit algorithm on the first two
4221 * duplicate acks when there is new data to transmit
4222 */
4223 tp->snd_cwnd += incr;
4224 tcpstat.tcps_limited_txt++;
4225 (void) tcp_output(tp);
4226
4227 tcp_ccdbg_trace(tp, th, TCP_CC_LIMITED_TRANSMIT);
4228
4229 /* Reset snd_cwnd back to normal */
4230 tp->snd_cwnd -= incr;
4231 }
4232 } else {
4233 tp->t_dupacks = 0;
4234 tp->t_rexmtthresh = tcprexmtthresh;
4235 }
4236 break;
4237 }
4238 /*
4239 * If the congestion window was inflated to account
4240 * for the other side's cached packets, retract it.
4241 */
4242 if (IN_FASTRECOVERY(tp)) {
4243 if (SEQ_LT(th->th_ack, tp->snd_recover)) {
4244 /*
4245 * If we received an ECE and entered
4246 * recovery, the subsequent ACKs should
4247 * not be treated as partial acks.
4248 */
4249 if (tp->ecn_flags & TE_INRECOVERY)
4250 goto process_ACK;
4251
4252 if (SACK_ENABLED(tp))
4253 tcp_sack_partialack(tp, th);
4254 else
4255 tcp_newreno_partial_ack(tp, th);
4256 tcp_ccdbg_trace(tp, th, TCP_CC_PARTIAL_ACK);
4257 } else {
4258 EXIT_FASTRECOVERY(tp);
4259 if (CC_ALGO(tp)->post_fr != NULL)
4260 CC_ALGO(tp)->post_fr(tp, th);
4261 tp->t_pipeack = 0;
4262 tcp_clear_pipeack_state(tp);
4263 tcp_ccdbg_trace(tp, th,
4264 TCP_CC_EXIT_FASTRECOVERY);
4265 }
4266 } else if ((tp->t_flagsext &
4267 (TF_PKTS_REORDERED|TF_DELAY_RECOVERY))
4268 == (TF_PKTS_REORDERED|TF_DELAY_RECOVERY)) {
4269 /*
4270 * If the ack acknowledges upto snd_recover or if
4271 * it acknowledges all the snd holes, exit
4272 * recovery and cancel the timer. Otherwise,
4273 * this is a partial ack. Wait for recovery timer
4274 * to enter recovery. The snd_holes have already
4275 * been updated.
4276 */
4277 if (SEQ_GEQ(th->th_ack, tp->snd_recover) ||
4278 TAILQ_EMPTY(&tp->snd_holes)) {
4279 tp->t_timer[TCPT_DELAYFR] = 0;
4280 tp->t_flagsext &= ~TF_DELAY_RECOVERY;
4281 EXIT_FASTRECOVERY(tp);
4282 tcp_ccdbg_trace(tp, th,
4283 TCP_CC_EXIT_FASTRECOVERY);
4284 }
4285 } else {
4286 /*
4287 * We were not in fast recovery. Reset the
4288 * duplicate ack counter.
4289 */
4290 tp->t_dupacks = 0;
4291 tp->t_rexmtthresh = tcprexmtthresh;
4292 }
4293
4294
4295 /*
4296 * If we reach this point, ACK is not a duplicate,
4297 * i.e., it ACKs something we sent.
4298 */
4299 if (tp->t_flags & TF_NEEDSYN) {
4300 /*
4301 * T/TCP: Connection was half-synchronized, and our
4302 * SYN has been ACK'd (so connection is now fully
4303 * synchronized). Go to non-starred state,
4304 * increment snd_una for ACK of SYN, and check if
4305 * we can do window scaling.
4306 */
4307 tp->t_flags &= ~TF_NEEDSYN;
4308 tp->snd_una++;
4309 /* Do window scaling? */
4310 if (TCP_WINDOW_SCALE_ENABLED(tp)) {
4311 tp->snd_scale = tp->requested_s_scale;
4312 tp->rcv_scale = tp->request_r_scale;
4313 }
4314 }
4315
4316 process_ACK:
4317 VERIFY(SEQ_GEQ(th->th_ack, tp->snd_una));
4318 acked = BYTES_ACKED(th, tp);
4319 tcpstat.tcps_rcvackpack++;
4320 tcpstat.tcps_rcvackbyte += acked;
4321
4322 /*
4323 * If the last packet was a retransmit, make sure
4324 * it was not spurious.
4325 *
4326 * This will also take care of congestion window
4327 * adjustment if a last packet was recovered due to a
4328 * tail loss probe.
4329 */
4330 tcp_bad_rexmt_check(tp, th, &to);
4331
4332 /* Recalculate the RTT */
4333 tcp_compute_rtt(tp, &to, th);
4334
4335 /*
4336 * If all outstanding data is acked, stop retransmit
4337 * timer and remember to restart (more output or persist).
4338 * If there is more data to be acked, restart retransmit
4339 * timer, using current (possibly backed-off) value.
4340 */
4341 if (th->th_ack == tp->snd_max) {
4342 tp->t_timer[TCPT_REXMT] = 0;
4343 tp->t_timer[TCPT_PTO] = 0;
4344 needoutput = 1;
4345 } else if (tp->t_timer[TCPT_PERSIST] == 0)
4346 tp->t_timer[TCPT_REXMT] = OFFSET_FROM_START(tp,
4347 tp->t_rxtcur);
4348
4349 /*
4350 * If no data (only SYN) was ACK'd, skip rest of ACK
4351 * processing.
4352 */
4353 if (acked == 0)
4354 goto step6;
4355
4356 /*
4357 * When outgoing data has been acked (except the SYN+data), we
4358 * mark this connection as "sending good" for TFO.
4359 */
4360 if ((tp->t_tfo_stats & TFO_S_SYN_DATA_SENT) &&
4361 !(tp->t_tfo_flags & TFO_F_NO_SNDPROBING) &&
4362 !(th->th_flags & TH_SYN))
4363 tcp_heuristic_tfo_snd_good(tp);
4364
4365 /*
4366 * If TH_ECE is received, make sure that ECN is enabled
4367 * on that connection and we have sent ECT on data packets.
4368 */
4369 if ((thflags & TH_ECE) != 0 && TCP_ECN_ENABLED(tp) &&
4370 (tp->ecn_flags & TE_SENDIPECT)) {
4371 /*
4372 * Reduce the congestion window if we haven't
4373 * done so.
4374 */
4375 if (!IN_FASTRECOVERY(tp)) {
4376 tcp_reduce_congestion_window(tp);
4377 tp->ecn_flags |= (TE_INRECOVERY|TE_SENDCWR);
4378 /*
4379 * Also note that the connection received
4380 * ECE atleast once
4381 */
4382 tp->ecn_flags |= TE_RECV_ECN_ECE;
4383 INP_INC_IFNET_STAT(inp, ecn_recv_ece);
4384 tcpstat.tcps_ecn_recv_ece++;
4385 tcp_ccdbg_trace(tp, th, TCP_CC_ECN_RCVD);
4386 }
4387 }
4388
4389 /*
4390 * When new data is acked, open the congestion window.
4391 * The specifics of how this is achieved are up to the
4392 * congestion control algorithm in use for this connection.
4393 *
4394 * The calculations in this function assume that snd_una is
4395 * not updated yet.
4396 */
4397 if (!IN_FASTRECOVERY(tp)) {
4398 if (CC_ALGO(tp)->ack_rcvd != NULL)
4399 CC_ALGO(tp)->ack_rcvd(tp, th);
4400 tcp_ccdbg_trace(tp, th, TCP_CC_ACK_RCVD);
4401 }
4402 if (acked > so->so_snd.sb_cc) {
4403 tp->snd_wnd -= so->so_snd.sb_cc;
4404 sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
4405 if (so->so_flags & SOF_ENABLE_MSGS) {
4406 so->so_msg_state->msg_serial_bytes -=
4407 (int)so->so_snd.sb_cc;
4408 }
4409 ourfinisacked = 1;
4410 } else {
4411 sbdrop(&so->so_snd, acked);
4412 if (so->so_flags & SOF_ENABLE_MSGS) {
4413 so->so_msg_state->msg_serial_bytes -=
4414 acked;
4415 }
4416 tcp_sbsnd_trim(&so->so_snd);
4417 tp->snd_wnd -= acked;
4418 ourfinisacked = 0;
4419 }
4420 /* detect una wraparound */
4421 if ( !IN_FASTRECOVERY(tp) &&
4422 SEQ_GT(tp->snd_una, tp->snd_recover) &&
4423 SEQ_LEQ(th->th_ack, tp->snd_recover))
4424 tp->snd_recover = th->th_ack - 1;
4425
4426 if (IN_FASTRECOVERY(tp) &&
4427 SEQ_GEQ(th->th_ack, tp->snd_recover))
4428 EXIT_FASTRECOVERY(tp);
4429
4430 tp->snd_una = th->th_ack;
4431 if (SACK_ENABLED(tp)) {
4432 if (SEQ_GT(tp->snd_una, tp->snd_recover))
4433 tp->snd_recover = tp->snd_una;
4434 }
4435 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
4436 tp->snd_nxt = tp->snd_una;
4437 if (!SLIST_EMPTY(&tp->t_rxt_segments) &&
4438 !TCP_DSACK_SEQ_IN_WINDOW(tp, tp->t_dsack_lastuna,
4439 tp->snd_una))
4440 tcp_rxtseg_clean(tp);
4441 if ((tp->t_flagsext & TF_MEASURESNDBW) != 0 &&
4442 tp->t_bwmeas != NULL)
4443 tcp_bwmeas_check(tp);
4444
4445 /*
4446 * sowwakeup must happen after snd_una, et al. are updated so that
4447 * the sequence numbers are in sync with so_snd
4448 */
4449 sowwakeup(so);
4450
4451 switch (tp->t_state) {
4452
4453 /*
4454 * In FIN_WAIT_1 STATE in addition to the processing
4455 * for the ESTABLISHED state if our FIN is now acknowledged
4456 * then enter FIN_WAIT_2.
4457 */
4458 case TCPS_FIN_WAIT_1:
4459 if (ourfinisacked) {
4460 /*
4461 * If we can't receive any more
4462 * data, then closing user can proceed.
4463 * Starting the TCPT_2MSL timer is contrary to the
4464 * specification, but if we don't get a FIN
4465 * we'll hang forever.
4466 */
4467 if (so->so_state & SS_CANTRCVMORE) {
4468 tp->t_timer[TCPT_2MSL] = OFFSET_FROM_START(tp,
4469 TCP_CONN_MAXIDLE(tp));
4470 isconnected = FALSE;
4471 isdisconnected = TRUE;
4472 }
4473 DTRACE_TCP4(state__change, void, NULL,
4474 struct inpcb *, inp,
4475 struct tcpcb *, tp,
4476 int32_t, TCPS_FIN_WAIT_2);
4477 tp->t_state = TCPS_FIN_WAIT_2;
4478 /* fall through and make sure we also recognize
4479 * data ACKed with the FIN
4480 */
4481 }
4482 tp->t_flags |= TF_ACKNOW;
4483 break;
4484
4485 /*
4486 * In CLOSING STATE in addition to the processing for
4487 * the ESTABLISHED state if the ACK acknowledges our FIN
4488 * then enter the TIME-WAIT state, otherwise ignore
4489 * the segment.
4490 */
4491 case TCPS_CLOSING:
4492 if (ourfinisacked) {
4493 DTRACE_TCP4(state__change, void, NULL,
4494 struct inpcb *, inp,
4495 struct tcpcb *, tp,
4496 int32_t, TCPS_TIME_WAIT);
4497 tp->t_state = TCPS_TIME_WAIT;
4498 tcp_canceltimers(tp);
4499 if (tp->t_flagsext & TF_NOTIMEWAIT) {
4500 tp->t_flags |= TF_CLOSING;
4501 } else {
4502 add_to_time_wait(tp, 2 * tcp_msl);
4503 }
4504 isconnected = FALSE;
4505 isdisconnected = TRUE;
4506 }
4507 tp->t_flags |= TF_ACKNOW;
4508 break;
4509
4510 /*
4511 * In LAST_ACK, we may still be waiting for data to drain
4512 * and/or to be acked, as well as for the ack of our FIN.
4513 * If our FIN is now acknowledged, delete the TCB,
4514 * enter the closed state and return.
4515 */
4516 case TCPS_LAST_ACK:
4517 if (ourfinisacked) {
4518 tp = tcp_close(tp);
4519 goto drop;
4520 }
4521 break;
4522
4523 /*
4524 * In TIME_WAIT state the only thing that should arrive
4525 * is a retransmission of the remote FIN. Acknowledge
4526 * it and restart the finack timer.
4527 */
4528 case TCPS_TIME_WAIT:
4529 add_to_time_wait(tp, 2 * tcp_msl);
4530 goto dropafterack;
4531 }
4532
4533 /*
4534 * If there is a SACK option on the ACK and we
4535 * haven't seen any duplicate acks before, count
4536 * it as a duplicate ack even if the cumulative
4537 * ack is advanced. If the receiver delayed an
4538 * ack and detected loss afterwards, then the ack
4539 * will advance cumulative ack and will also have
4540 * a SACK option. So counting it as one duplicate
4541 * ack is ok.
4542 */
4543 if (sack_ackadv == 1 &&
4544 tp->t_state == TCPS_ESTABLISHED &&
4545 SACK_ENABLED(tp) && sack_bytes_acked > 0 &&
4546 to.to_nsacks > 0 && tp->t_dupacks == 0 &&
4547 SEQ_LEQ(th->th_ack, tp->snd_una) && tlen == 0 &&
4548 !(tp->t_flagsext & TF_PKTS_REORDERED)) {
4549 tcpstat.tcps_sack_ackadv++;
4550 goto process_dupack;
4551 }
4552 }
4553
4554 step6:
4555 /*
4556 * Update window information.
4557 * Don't look at window if no ACK: TAC's send garbage on first SYN.
4558 */
4559 if ((thflags & TH_ACK) &&
4560 (SEQ_LT(tp->snd_wl1, th->th_seq) ||
4561 (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
4562 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
4563 /* keep track of pure window updates */
4564 if (tlen == 0 &&
4565 tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
4566 tcpstat.tcps_rcvwinupd++;
4567 tp->snd_wnd = tiwin;
4568 tp->snd_wl1 = th->th_seq;
4569 tp->snd_wl2 = th->th_ack;
4570 if (tp->snd_wnd > tp->max_sndwnd)
4571 tp->max_sndwnd = tp->snd_wnd;
4572 needoutput = 1;
4573 }
4574
4575 /*
4576 * Process segments with URG.
4577 */
4578 if ((thflags & TH_URG) && th->th_urp &&
4579 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
4580 /*
4581 * This is a kludge, but if we receive and accept
4582 * random urgent pointers, we'll crash in
4583 * soreceive. It's hard to imagine someone
4584 * actually wanting to send this much urgent data.
4585 */
4586 if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
4587 th->th_urp = 0; /* XXX */
4588 thflags &= ~TH_URG; /* XXX */
4589 goto dodata; /* XXX */
4590 }
4591 /*
4592 * If this segment advances the known urgent pointer,
4593 * then mark the data stream. This should not happen
4594 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
4595 * a FIN has been received from the remote side.
4596 * In these states we ignore the URG.
4597 *
4598 * According to RFC961 (Assigned Protocols),
4599 * the urgent pointer points to the last octet
4600 * of urgent data. We continue, however,
4601 * to consider it to indicate the first octet
4602 * of data past the urgent section as the original
4603 * spec states (in one of two places).
4604 */
4605 if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
4606 tp->rcv_up = th->th_seq + th->th_urp;
4607 so->so_oobmark = so->so_rcv.sb_cc +
4608 (tp->rcv_up - tp->rcv_nxt) - 1;
4609 if (so->so_oobmark == 0) {
4610 so->so_state |= SS_RCVATMARK;
4611 postevent(so, 0, EV_OOB);
4612 }
4613 sohasoutofband(so);
4614 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
4615 }
4616 /*
4617 * Remove out of band data so doesn't get presented to user.
4618 * This can happen independent of advancing the URG pointer,
4619 * but if two URG's are pending at once, some out-of-band
4620 * data may creep in... ick.
4621 */
4622 if (th->th_urp <= (u_int32_t)tlen
4623 #if SO_OOBINLINE
4624 && (so->so_options & SO_OOBINLINE) == 0
4625 #endif
4626 )
4627 tcp_pulloutofband(so, th, m,
4628 drop_hdrlen); /* hdr drop is delayed */
4629 } else {
4630 /*
4631 * If no out of band data is expected,
4632 * pull receive urgent pointer along
4633 * with the receive window.
4634 */
4635 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
4636 tp->rcv_up = tp->rcv_nxt;
4637 }
4638 dodata:
4639
4640 /* Set socket's connect or disconnect state correcly before doing data.
4641 * The following might unlock the socket if there is an upcall or a socket
4642 * filter.
4643 */
4644 if (isconnected) {
4645 soisconnected(so);
4646 } else if (isdisconnected) {
4647 soisdisconnected(so);
4648 }
4649
4650 /* Let's check the state of pcb just to make sure that it did not get closed
4651 * when we unlocked above
4652 */
4653 if (inp->inp_state == INPCB_STATE_DEAD) {
4654 /* Just drop the packet that we are processing and return */
4655 goto drop;
4656 }
4657
4658 /*
4659 * Process the segment text, merging it into the TCP sequencing queue,
4660 * and arranging for acknowledgment of receipt if necessary.
4661 * This process logically involves adjusting tp->rcv_wnd as data
4662 * is presented to the user (this happens in tcp_usrreq.c,
4663 * case PRU_RCVD). If a FIN has already been received on this
4664 * connection then we just ignore the text.
4665 *
4666 * If we are in SYN-received state and got a valid TFO cookie, we want
4667 * to process the data.
4668 */
4669 if ((tlen || (thflags & TH_FIN)) &&
4670 TCPS_HAVERCVDFIN(tp->t_state) == 0 &&
4671 (TCPS_HAVEESTABLISHED(tp->t_state) ||
4672 (tp->t_state == TCPS_SYN_RECEIVED &&
4673 (tp->t_tfo_flags & TFO_F_COOKIE_VALID)))) {
4674 tcp_seq save_start = th->th_seq;
4675 tcp_seq save_end = th->th_seq + tlen;
4676 m_adj(m, drop_hdrlen); /* delayed header drop */
4677 /*
4678 * Insert segment which includes th into TCP reassembly queue
4679 * with control block tp. Set thflags to whether reassembly now
4680 * includes a segment with FIN. This handles the common case
4681 * inline (segment is the next to be received on an established
4682 * connection, and the queue is empty), avoiding linkage into
4683 * and removal from the queue and repetition of various
4684 * conversions.
4685 * Set DELACK for segments received in order, but ack
4686 * immediately when segments are out of order (so
4687 * fast retransmit can work).
4688 */
4689 if (th->th_seq == tp->rcv_nxt && LIST_EMPTY(&tp->t_segq)) {
4690 TCP_INC_VAR(tp->t_unacksegs, nlropkts);
4691 /*
4692 * Calculate the RTT on the receiver only if the
4693 * connection is in streaming mode and the last
4694 * packet was not an end-of-write
4695 */
4696 if ((tp->t_flags & TF_STRETCHACK) &&
4697 !(tp->t_flagsext & TF_STREAMEOW))
4698 tcp_compute_rtt(tp, &to, th);
4699
4700 if (DELAY_ACK(tp, th) &&
4701 ((tp->t_flags & TF_ACKNOW) == 0) ) {
4702 if ((tp->t_flags & TF_DELACK) == 0) {
4703 tp->t_flags |= TF_DELACK;
4704 tp->t_timer[TCPT_DELACK] =
4705 OFFSET_FROM_START(tp, tcp_delack);
4706 }
4707 }
4708 else {
4709 tp->t_flags |= TF_ACKNOW;
4710 }
4711 tp->rcv_nxt += tlen;
4712 thflags = th->th_flags & TH_FIN;
4713 TCP_INC_VAR(tcpstat.tcps_rcvpack, nlropkts);
4714 tcpstat.tcps_rcvbyte += tlen;
4715 if (nstat_collect) {
4716 if (m->m_pkthdr.pkt_flags & PKTF_SW_LRO_PKT) {
4717 INP_ADD_STAT(inp, cell, wifi, wired,
4718 rxpackets, m->m_pkthdr.lro_npkts);
4719 } else {
4720 INP_ADD_STAT(inp, cell, wifi, wired,
4721 rxpackets, 1);
4722 }
4723 INP_ADD_STAT(inp, cell, wifi, wired,
4724 rxbytes, tlen);
4725 }
4726 tcp_sbrcv_grow(tp, &so->so_rcv, &to, tlen);
4727 so_recv_data_stat(so, m, drop_hdrlen);
4728
4729 if (sbappendstream_rcvdemux(so, m,
4730 th->th_seq - (tp->irs + 1), 0)) {
4731 sorwakeup(so);
4732 }
4733 } else {
4734 thflags = tcp_reass(tp, th, &tlen, m, ifp);
4735 tp->t_flags |= TF_ACKNOW;
4736 }
4737
4738 if (tlen > 0 && SACK_ENABLED(tp))
4739 tcp_update_sack_list(tp, save_start, save_end);
4740
4741 tcp_adaptive_rwtimo_check(tp, tlen);
4742
4743 if (tlen > 0)
4744 tcp_tfo_rcv_data(tp);
4745
4746 if (tp->t_flags & TF_DELACK)
4747 {
4748 #if INET6
4749 if (isipv6) {
4750 KERNEL_DEBUG(DBG_LAYER_END, ((th->th_dport << 16) | th->th_sport),
4751 (((ip6->ip6_src.s6_addr16[0]) << 16) | (ip6->ip6_dst.s6_addr16[0])),
4752 th->th_seq, th->th_ack, th->th_win);
4753 }
4754 else
4755 #endif
4756 {
4757 KERNEL_DEBUG(DBG_LAYER_END, ((th->th_dport << 16) | th->th_sport),
4758 (((ip->ip_src.s_addr & 0xffff) << 16) | (ip->ip_dst.s_addr & 0xffff)),
4759 th->th_seq, th->th_ack, th->th_win);
4760 }
4761
4762 }
4763 } else {
4764 m_freem(m);
4765 thflags &= ~TH_FIN;
4766 }
4767
4768 /*
4769 * If FIN is received ACK the FIN and let the user know
4770 * that the connection is closing.
4771 */
4772 if (thflags & TH_FIN) {
4773 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
4774 socantrcvmore(so);
4775 postevent(so, 0, EV_FIN);
4776 /*
4777 * If connection is half-synchronized
4778 * (ie NEEDSYN flag on) then delay ACK,
4779 * so it may be piggybacked when SYN is sent.
4780 * Otherwise, since we received a FIN then no
4781 * more input can be expected, send ACK now.
4782 */
4783 TCP_INC_VAR(tp->t_unacksegs, nlropkts);
4784 if (DELAY_ACK(tp, th) && (tp->t_flags & TF_NEEDSYN)) {
4785 if ((tp->t_flags & TF_DELACK) == 0) {
4786 tp->t_flags |= TF_DELACK;
4787 tp->t_timer[TCPT_DELACK] = OFFSET_FROM_START(tp, tcp_delack);
4788 }
4789 } else {
4790 tp->t_flags |= TF_ACKNOW;
4791 }
4792 tp->rcv_nxt++;
4793 }
4794 switch (tp->t_state) {
4795
4796 /*
4797 * In SYN_RECEIVED and ESTABLISHED STATES
4798 * enter the CLOSE_WAIT state.
4799 */
4800 case TCPS_SYN_RECEIVED:
4801 tp->t_starttime = tcp_now;
4802 case TCPS_ESTABLISHED:
4803 DTRACE_TCP4(state__change, void, NULL, struct inpcb *, inp,
4804 struct tcpcb *, tp, int32_t, TCPS_CLOSE_WAIT);
4805 tp->t_state = TCPS_CLOSE_WAIT;
4806 break;
4807
4808 /*
4809 * If still in FIN_WAIT_1 STATE FIN has not been acked so
4810 * enter the CLOSING state.
4811 */
4812 case TCPS_FIN_WAIT_1:
4813 DTRACE_TCP4(state__change, void, NULL, struct inpcb *, inp,
4814 struct tcpcb *, tp, int32_t, TCPS_CLOSING);
4815 tp->t_state = TCPS_CLOSING;
4816 break;
4817
4818 /*
4819 * In FIN_WAIT_2 state enter the TIME_WAIT state,
4820 * starting the time-wait timer, turning off the other
4821 * standard timers.
4822 */
4823 case TCPS_FIN_WAIT_2:
4824 DTRACE_TCP4(state__change, void, NULL,
4825 struct inpcb *, inp,
4826 struct tcpcb *, tp,
4827 int32_t, TCPS_TIME_WAIT);
4828 tp->t_state = TCPS_TIME_WAIT;
4829 tcp_canceltimers(tp);
4830 tp->t_flags |= TF_ACKNOW;
4831 if (tp->t_flagsext & TF_NOTIMEWAIT) {
4832 tp->t_flags |= TF_CLOSING;
4833 } else {
4834 add_to_time_wait(tp, 2 * tcp_msl);
4835 }
4836 soisdisconnected(so);
4837 break;
4838
4839 /*
4840 * In TIME_WAIT state restart the 2 MSL time_wait timer.
4841 */
4842 case TCPS_TIME_WAIT:
4843 add_to_time_wait(tp, 2 * tcp_msl);
4844 break;
4845 }
4846 }
4847 #if TCPDEBUG
4848 if (so->so_options & SO_DEBUG)
4849 tcp_trace(TA_INPUT, ostate, tp, (void *)tcp_saveipgen,
4850 &tcp_savetcp, 0);
4851 #endif
4852
4853 /*
4854 * Return any desired output.
4855 */
4856 if (needoutput || (tp->t_flags & TF_ACKNOW)) {
4857 (void) tcp_output(tp);
4858 }
4859
4860 tcp_check_timer_state(tp);
4861
4862
4863 tcp_unlock(so, 1, 0);
4864 KERNEL_DEBUG(DBG_FNC_TCP_INPUT | DBG_FUNC_END,0,0,0,0,0);
4865 return;
4866
4867 dropafterack:
4868 /*
4869 * Generate an ACK dropping incoming segment if it occupies
4870 * sequence space, where the ACK reflects our state.
4871 *
4872 * We can now skip the test for the RST flag since all
4873 * paths to this code happen after packets containing
4874 * RST have been dropped.
4875 *
4876 * In the SYN-RECEIVED state, don't send an ACK unless the
4877 * segment we received passes the SYN-RECEIVED ACK test.
4878 * If it fails send a RST. This breaks the loop in the
4879 * "LAND" DoS attack, and also prevents an ACK storm
4880 * between two listening ports that have been sent forged
4881 * SYN segments, each with the source address of the other.
4882 */
4883 if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
4884 (SEQ_GT(tp->snd_una, th->th_ack) ||
4885 SEQ_GT(th->th_ack, tp->snd_max)) ) {
4886 rstreason = BANDLIM_RST_OPENPORT;
4887 IF_TCP_STATINC(ifp, dospacket);
4888 goto dropwithreset;
4889 }
4890 #if TCPDEBUG
4891 if (so->so_options & SO_DEBUG)
4892 tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
4893 &tcp_savetcp, 0);
4894 #endif
4895 m_freem(m);
4896 tp->t_flags |= TF_ACKNOW;
4897 (void) tcp_output(tp);
4898
4899 /* Don't need to check timer state as we should have done it during tcp_output */
4900 tcp_unlock(so, 1, 0);
4901 KERNEL_DEBUG(DBG_FNC_TCP_INPUT | DBG_FUNC_END,0,0,0,0,0);
4902 return;
4903 dropwithresetnosock:
4904 nosock = 1;
4905 dropwithreset:
4906 /*
4907 * Generate a RST, dropping incoming segment.
4908 * Make ACK acceptable to originator of segment.
4909 * Don't bother to respond if destination was broadcast/multicast.
4910 */
4911 if ((thflags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST))
4912 goto drop;
4913 #if INET6
4914 if (isipv6) {
4915 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
4916 IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
4917 goto drop;
4918 } else
4919 #endif /* INET6 */
4920 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
4921 IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
4922 ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
4923 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
4924 goto drop;
4925 /* IPv6 anycast check is done at tcp6_input() */
4926
4927 /*
4928 * Perform bandwidth limiting.
4929 */
4930 #if ICMP_BANDLIM
4931 if (badport_bandlim(rstreason) < 0)
4932 goto drop;
4933 #endif
4934
4935 #if TCPDEBUG
4936 if (tp == 0 || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
4937 tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
4938 &tcp_savetcp, 0);
4939 #endif
4940 bzero(&tra, sizeof(tra));
4941 tra.ifscope = ifscope;
4942 tra.awdl_unrestricted = 1;
4943 if (thflags & TH_ACK)
4944 /* mtod() below is safe as long as hdr dropping is delayed */
4945 tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0, th->th_ack,
4946 TH_RST, &tra);
4947 else {
4948 if (thflags & TH_SYN)
4949 tlen++;
4950 /* mtod() below is safe as long as hdr dropping is delayed */
4951 tcp_respond(tp, mtod(m, void *), th, m, th->th_seq+tlen,
4952 (tcp_seq)0, TH_RST|TH_ACK, &tra);
4953 }
4954 /* destroy temporarily created socket */
4955 if (dropsocket) {
4956 (void) soabort(so);
4957 tcp_unlock(so, 1, 0);
4958 } else if ((inp != NULL) && (nosock == 0)) {
4959 tcp_unlock(so, 1, 0);
4960 }
4961 KERNEL_DEBUG(DBG_FNC_TCP_INPUT | DBG_FUNC_END,0,0,0,0,0);
4962 return;
4963 dropnosock:
4964 nosock = 1;
4965 drop:
4966 /*
4967 * Drop space held by incoming segment and return.
4968 */
4969 #if TCPDEBUG
4970 if (tp == 0 || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
4971 tcp_trace(TA_DROP, ostate, tp, (void *)tcp_saveipgen,
4972 &tcp_savetcp, 0);
4973 #endif
4974 m_freem(m);
4975 /* destroy temporarily created socket */
4976 if (dropsocket) {
4977 (void) soabort(so);
4978 tcp_unlock(so, 1, 0);
4979 }
4980 else if (nosock == 0) {
4981 tcp_unlock(so, 1, 0);
4982 }
4983 KERNEL_DEBUG(DBG_FNC_TCP_INPUT | DBG_FUNC_END,0,0,0,0,0);
4984 return;
4985 }
4986
4987 /*
4988 * Parse TCP options and place in tcpopt.
4989 */
4990 static void
4991 tcp_dooptions(struct tcpcb *tp, u_char *cp, int cnt, struct tcphdr *th,
4992 struct tcpopt *to)
4993 {
4994 u_short mss = 0;
4995 int opt, optlen;
4996
4997 for (; cnt > 0; cnt -= optlen, cp += optlen) {
4998 opt = cp[0];
4999 if (opt == TCPOPT_EOL)
5000 break;
5001 if (opt == TCPOPT_NOP)
5002 optlen = 1;
5003 else {
5004 if (cnt < 2)
5005 break;
5006 optlen = cp[1];
5007 if (optlen < 2 || optlen > cnt)
5008 break;
5009 }
5010 switch (opt) {
5011
5012 default:
5013 continue;
5014
5015 case TCPOPT_MAXSEG:
5016 if (optlen != TCPOLEN_MAXSEG)
5017 continue;
5018 if (!(th->th_flags & TH_SYN))
5019 continue;
5020 bcopy((char *) cp + 2, (char *) &mss, sizeof(mss));
5021 NTOHS(mss);
5022 to->to_mss = mss;
5023 to->to_flags |= TOF_MSS;
5024 break;
5025
5026 case TCPOPT_WINDOW:
5027 if (optlen != TCPOLEN_WINDOW)
5028 continue;
5029 if (!(th->th_flags & TH_SYN))
5030 continue;
5031 to->to_flags |= TOF_SCALE;
5032 to->to_requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT);
5033 break;
5034
5035 case TCPOPT_TIMESTAMP:
5036 if (optlen != TCPOLEN_TIMESTAMP)
5037 continue;
5038 to->to_flags |= TOF_TS;
5039 bcopy((char *)cp + 2,
5040 (char *)&to->to_tsval, sizeof(to->to_tsval));
5041 NTOHL(to->to_tsval);
5042 bcopy((char *)cp + 6,
5043 (char *)&to->to_tsecr, sizeof(to->to_tsecr));
5044 NTOHL(to->to_tsecr);
5045 /* Re-enable sending Timestamps if we received them */
5046 if (!(tp->t_flags & TF_REQ_TSTMP) &&
5047 tcp_do_rfc1323 == 1)
5048 tp->t_flags |= TF_REQ_TSTMP;
5049 break;
5050 case TCPOPT_SACK_PERMITTED:
5051 if (!tcp_do_sack ||
5052 optlen != TCPOLEN_SACK_PERMITTED)
5053 continue;
5054 if (th->th_flags & TH_SYN)
5055 to->to_flags |= TOF_SACK;
5056 break;
5057 case TCPOPT_SACK:
5058 if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0)
5059 continue;
5060 to->to_nsacks = (optlen - 2) / TCPOLEN_SACK;
5061 to->to_sacks = cp + 2;
5062 tcpstat.tcps_sack_rcv_blocks++;
5063
5064 break;
5065 case TCPOPT_FASTOPEN:
5066 if (optlen == TCPOLEN_FASTOPEN_REQ) {
5067 if (tp->t_state != TCPS_LISTEN)
5068 continue;
5069
5070 to->to_flags |= TOF_TFOREQ;
5071 } else {
5072 if (optlen < TCPOLEN_FASTOPEN_REQ ||
5073 (optlen - TCPOLEN_FASTOPEN_REQ) > TFO_COOKIE_LEN_MAX ||
5074 (optlen - TCPOLEN_FASTOPEN_REQ) < TFO_COOKIE_LEN_MIN)
5075 continue;
5076 if (tp->t_state != TCPS_LISTEN &&
5077 tp->t_state != TCPS_SYN_SENT)
5078 continue;
5079
5080 to->to_flags |= TOF_TFO;
5081 to->to_tfo = cp + 1;
5082 }
5083
5084 break;
5085 #if MPTCP
5086 case TCPOPT_MULTIPATH:
5087 tcp_do_mptcp_options(tp, cp, th, to, optlen);
5088 break;
5089 #endif /* MPTCP */
5090 }
5091 }
5092 }
5093
5094 static void
5095 tcp_finalize_options(struct tcpcb *tp, struct tcpopt *to, unsigned int ifscope)
5096 {
5097 if (to->to_flags & TOF_TS) {
5098 tp->t_flags |= TF_RCVD_TSTMP;
5099 tp->ts_recent = to->to_tsval;
5100 tp->ts_recent_age = tcp_now;
5101
5102 }
5103 if (to->to_flags & TOF_MSS)
5104 tcp_mss(tp, to->to_mss, ifscope);
5105 if (SACK_ENABLED(tp)) {
5106 if (!(to->to_flags & TOF_SACK))
5107 tp->t_flagsext &= ~(TF_SACK_ENABLE);
5108 else
5109 tp->t_flags |= TF_SACK_PERMIT;
5110 }
5111 if (to->to_flags & TOF_SCALE) {
5112 tp->t_flags |= TF_RCVD_SCALE;
5113 tp->requested_s_scale = to->to_requested_s_scale;
5114
5115 /* Re-enable window scaling, if the option is received */
5116 if (tp->request_r_scale > 0)
5117 tp->t_flags |= TF_REQ_SCALE;
5118 }
5119 }
5120
5121 /*
5122 * Pull out of band byte out of a segment so
5123 * it doesn't appear in the user's data queue.
5124 * It is still reflected in the segment length for
5125 * sequencing purposes.
5126 */
5127 static void
5128 tcp_pulloutofband(so, th, m, off)
5129 struct socket *so;
5130 struct tcphdr *th;
5131 register struct mbuf *m;
5132 int off; /* delayed to be droped hdrlen */
5133 {
5134 int cnt = off + th->th_urp - 1;
5135
5136 while (cnt >= 0) {
5137 if (m->m_len > cnt) {
5138 char *cp = mtod(m, caddr_t) + cnt;
5139 struct tcpcb *tp = sototcpcb(so);
5140
5141 tp->t_iobc = *cp;
5142 tp->t_oobflags |= TCPOOB_HAVEDATA;
5143 bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
5144 m->m_len--;
5145 if (m->m_flags & M_PKTHDR)
5146 m->m_pkthdr.len--;
5147 return;
5148 }
5149 cnt -= m->m_len;
5150 m = m->m_next;
5151 if (m == 0)
5152 break;
5153 }
5154 panic("tcp_pulloutofband");
5155 }
5156
5157 uint32_t
5158 get_base_rtt(struct tcpcb *tp)
5159 {
5160 uint32_t base_rtt = 0, i;
5161 for (i = 0; i < N_RTT_BASE; ++i) {
5162 if (tp->rtt_hist[i] != 0 &&
5163 (base_rtt == 0 || tp->rtt_hist[i] < base_rtt))
5164 base_rtt = tp->rtt_hist[i];
5165 }
5166 return base_rtt;
5167 }
5168
5169 /* Each value of RTT base represents the minimum RTT seen in a minute.
5170 * We keep upto N_RTT_BASE minutes worth of history.
5171 */
5172 void
5173 update_base_rtt(struct tcpcb *tp, uint32_t rtt)
5174 {
5175 int32_t i, qdelay;
5176 u_int32_t base_rtt;
5177
5178 if (++tp->rtt_count >= rtt_samples_per_slot) {
5179 #if TRAFFIC_MGT
5180 /*
5181 * If the recv side is being throttled, check if the
5182 * current RTT is closer to the base RTT seen in
5183 * first (recent) two slots. If so, unthrottle the stream.
5184 */
5185 if (tp->t_flagsext & TF_RECV_THROTTLE) {
5186 base_rtt = min(tp->rtt_hist[0], tp->rtt_hist[1]);
5187 qdelay = tp->t_rttcur - base_rtt;
5188 if (qdelay < target_qdelay)
5189 tp->t_flagsext &= ~(TF_RECV_THROTTLE);
5190 }
5191 #endif /* TRAFFIC_MGT */
5192
5193 for (i = (N_RTT_BASE-1); i > 0; --i) {
5194 tp->rtt_hist[i] = tp->rtt_hist[i-1];
5195 }
5196 tp->rtt_hist[0] = rtt;
5197 tp->rtt_count = 0;
5198 } else {
5199 tp->rtt_hist[0] = min(tp->rtt_hist[0], rtt);
5200 }
5201 }
5202
5203 /*
5204 * If we have a timestamp reply, update smoothed RTT. If no timestamp is
5205 * present but transmit timer is running and timed sequence number was
5206 * acked, update smoothed RTT.
5207 *
5208 * If timestamps are supported, a receiver can update RTT even if
5209 * there is no outstanding data.
5210 *
5211 * Some boxes send broken timestamp replies during the SYN+ACK phase,
5212 * ignore timestamps of 0or we could calculate a huge RTT and blow up
5213 * the retransmit timer.
5214 */
5215 static void
5216 tcp_compute_rtt(struct tcpcb *tp, struct tcpopt *to, struct tcphdr *th)
5217 {
5218 int rtt = 0;
5219 VERIFY(to != NULL && th != NULL);
5220 if (tp->t_rtttime != 0 && SEQ_GT(th->th_ack, tp->t_rtseq)) {
5221 u_int32_t pipe_ack_val;
5222 rtt = tcp_now - tp->t_rtttime;
5223 /*
5224 * Compute pipe ack -- the amount of data acknowledged
5225 * in the last RTT
5226 */
5227 if (SEQ_GT(th->th_ack, tp->t_pipeack_lastuna)) {
5228 pipe_ack_val = th->th_ack - tp->t_pipeack_lastuna;
5229 /* Update the sample */
5230 tp->t_pipeack_sample[tp->t_pipeack_ind++] =
5231 pipe_ack_val;
5232 tp->t_pipeack_ind %= TCP_PIPEACK_SAMPLE_COUNT;
5233
5234 /* Compute the max of the pipeack samples */
5235 pipe_ack_val = tcp_get_max_pipeack(tp);
5236 tp->t_pipeack = (pipe_ack_val >
5237 TCP_CC_CWND_INIT_BYTES) ?
5238 pipe_ack_val : 0;
5239 }
5240 /* start another measurement */
5241 tp->t_rtttime = 0;
5242 }
5243 if (((to->to_flags & TOF_TS) != 0) &&
5244 (to->to_tsecr != 0) &&
5245 TSTMP_GEQ(tcp_now, to->to_tsecr)) {
5246 tcp_xmit_timer(tp, (tcp_now - to->to_tsecr),
5247 to->to_tsecr, th->th_ack);
5248 } else if (rtt > 0) {
5249 tcp_xmit_timer(tp, rtt, 0, th->th_ack);
5250 }
5251 }
5252
5253 /*
5254 * Collect new round-trip time estimate
5255 * and update averages and current timeout.
5256 */
5257 static void
5258 tcp_xmit_timer(register struct tcpcb *tp, int rtt,
5259 u_int32_t tsecr, tcp_seq th_ack)
5260 {
5261 register int delta;
5262
5263 if (tp->t_flagsext & TF_RECOMPUTE_RTT) {
5264 if (SEQ_GT(th_ack, tp->snd_una) &&
5265 SEQ_LEQ(th_ack, tp->snd_max) &&
5266 (tsecr == 0 ||
5267 TSTMP_GEQ(tsecr, tp->t_badrexmt_time))) {
5268 /*
5269 * We received a new ACk after a
5270 * spurious timeout. Adapt retransmission
5271 * timer as described in rfc 4015.
5272 */
5273 tp->t_flagsext &= ~(TF_RECOMPUTE_RTT);
5274 tp->t_badrexmt_time = 0;
5275 tp->t_srtt = max(tp->t_srtt_prev, rtt);
5276 tp->t_srtt = tp->t_srtt << TCP_RTT_SHIFT;
5277 tp->t_rttvar = max(tp->t_rttvar_prev, (rtt >> 1));
5278 tp->t_rttvar = tp->t_rttvar << TCP_RTTVAR_SHIFT;
5279
5280 if (tp->t_rttbest > (tp->t_srtt + tp->t_rttvar))
5281 tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
5282
5283 goto compute_rto;
5284 } else {
5285 return;
5286 }
5287 }
5288
5289 tcpstat.tcps_rttupdated++;
5290 tp->t_rttupdated++;
5291
5292 if (rtt > 0) {
5293 tp->t_rttcur = rtt;
5294 update_base_rtt(tp, rtt);
5295 }
5296
5297 if (tp->t_srtt != 0) {
5298 /*
5299 * srtt is stored as fixed point with 5 bits after the
5300 * binary point (i.e., scaled by 32). The following magic
5301 * is equivalent to the smoothing algorithm in rfc793 with
5302 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
5303 * point).
5304 *
5305 * Freebsd adjusts rtt to origin 0 by subtracting 1
5306 * from the provided rtt value. This was required because
5307 * of the way t_rtttime was initiailised to 1 before.
5308 * Since we changed t_rtttime to be based on
5309 * tcp_now, this extra adjustment is not needed.
5310 */
5311 delta = (rtt << TCP_DELTA_SHIFT)
5312 - (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
5313
5314 if ((tp->t_srtt += delta) <= 0)
5315 tp->t_srtt = 1;
5316
5317 /*
5318 * We accumulate a smoothed rtt variance (actually, a
5319 * smoothed mean difference), then set the retransmit
5320 * timer to smoothed rtt + 4 times the smoothed variance.
5321 * rttvar is stored as fixed point with 4 bits after the
5322 * binary point (scaled by 16). The following is
5323 * equivalent to rfc793 smoothing with an alpha of .75
5324 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces
5325 * rfc793's wired-in beta.
5326 */
5327 if (delta < 0)
5328 delta = -delta;
5329 delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
5330 if ((tp->t_rttvar += delta) <= 0)
5331 tp->t_rttvar = 1;
5332 if (tp->t_rttbest == 0 ||
5333 tp->t_rttbest > (tp->t_srtt + tp->t_rttvar))
5334 tp->t_rttbest = tp->t_srtt + tp->t_rttvar;
5335 } else {
5336 /*
5337 * No rtt measurement yet - use the unsmoothed rtt.
5338 * Set the variance to half the rtt (so our first
5339 * retransmit happens at 3*rtt).
5340 */
5341 tp->t_srtt = rtt << TCP_RTT_SHIFT;
5342 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
5343 }
5344
5345 compute_rto:
5346 nstat_route_rtt(tp->t_inpcb->inp_route.ro_rt, tp->t_srtt,
5347 tp->t_rttvar);
5348 tp->t_rxtshift = 0;
5349 tp->t_rxtstart = 0;
5350
5351 /*
5352 * the retransmit should happen at rtt + 4 * rttvar.
5353 * Because of the way we do the smoothing, srtt and rttvar
5354 * will each average +1/2 tick of bias. When we compute
5355 * the retransmit timer, we want 1/2 tick of rounding and
5356 * 1 extra tick because of +-1/2 tick uncertainty in the
5357 * firing of the timer. The bias will give us exactly the
5358 * 1.5 tick we need. But, because the bias is
5359 * statistical, we have to test that we don't drop below
5360 * the minimum feasible timer (which is 2 ticks).
5361 */
5362 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
5363 max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX,
5364 TCP_ADD_REXMTSLOP(tp));
5365
5366 /*
5367 * We received an ack for a packet that wasn't retransmitted;
5368 * it is probably safe to discard any error indications we've
5369 * received recently. This isn't quite right, but close enough
5370 * for now (a route might have failed after we sent a segment,
5371 * and the return path might not be symmetrical).
5372 */
5373 tp->t_softerror = 0;
5374 }
5375
5376 static inline unsigned int
5377 tcp_maxmtu(struct rtentry *rt)
5378 {
5379 unsigned int maxmtu;
5380
5381 RT_LOCK_ASSERT_HELD(rt);
5382 if (rt->rt_rmx.rmx_mtu == 0)
5383 maxmtu = rt->rt_ifp->if_mtu;
5384 else
5385 maxmtu = MIN(rt->rt_rmx.rmx_mtu, rt->rt_ifp->if_mtu);
5386
5387 return (maxmtu);
5388 }
5389
5390 #if INET6
5391 static inline unsigned int
5392 tcp_maxmtu6(struct rtentry *rt)
5393 {
5394 unsigned int maxmtu;
5395 struct nd_ifinfo *ndi = NULL;
5396
5397 RT_LOCK_ASSERT_HELD(rt);
5398 if ((ndi = ND_IFINFO(rt->rt_ifp)) != NULL && !ndi->initialized)
5399 ndi = NULL;
5400 if (ndi != NULL)
5401 lck_mtx_lock(&ndi->lock);
5402 if (rt->rt_rmx.rmx_mtu == 0)
5403 maxmtu = IN6_LINKMTU(rt->rt_ifp);
5404 else
5405 maxmtu = MIN(rt->rt_rmx.rmx_mtu, IN6_LINKMTU(rt->rt_ifp));
5406 if (ndi != NULL)
5407 lck_mtx_unlock(&ndi->lock);
5408
5409 return (maxmtu);
5410 }
5411 #endif
5412
5413 /*
5414 * Determine a reasonable value for maxseg size.
5415 * If the route is known, check route for mtu.
5416 * If none, use an mss that can be handled on the outgoing
5417 * interface without forcing IP to fragment; if bigger than
5418 * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
5419 * to utilize large mbufs. If no route is found, route has no mtu,
5420 * or the destination isn't local, use a default, hopefully conservative
5421 * size (usually 512 or the default IP max size, but no more than the mtu
5422 * of the interface), as we can't discover anything about intervening
5423 * gateways or networks. We also initialize the congestion/slow start
5424 * window. While looking at the routing entry, we also initialize
5425 * other path-dependent parameters from pre-set or cached values
5426 * in the routing entry.
5427 *
5428 * Also take into account the space needed for options that we
5429 * send regularly. Make maxseg shorter by that amount to assure
5430 * that we can send maxseg amount of data even when the options
5431 * are present. Store the upper limit of the length of options plus
5432 * data in maxopd.
5433 *
5434 * NOTE that this routine is only called when we process an incoming
5435 * segment, for outgoing segments only tcp_mssopt is called.
5436 *
5437 */
5438 void
5439 tcp_mss(tp, offer, input_ifscope)
5440 struct tcpcb *tp;
5441 int offer;
5442 unsigned int input_ifscope;
5443 {
5444 register struct rtentry *rt;
5445 struct ifnet *ifp;
5446 register int rtt, mss;
5447 u_int32_t bufsize;
5448 struct inpcb *inp;
5449 struct socket *so;
5450 struct rmxp_tao *taop;
5451 int origoffer = offer;
5452 u_int32_t sb_max_corrected;
5453 int isnetlocal = 0;
5454 #if INET6
5455 int isipv6;
5456 int min_protoh;
5457 #endif
5458
5459 inp = tp->t_inpcb;
5460 #if INET6
5461 isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
5462 min_protoh = isipv6 ? sizeof (struct ip6_hdr) + sizeof (struct tcphdr)
5463 : sizeof (struct tcpiphdr);
5464 #else
5465 #define min_protoh (sizeof (struct tcpiphdr))
5466 #endif
5467
5468 #if INET6
5469 if (isipv6) {
5470 rt = tcp_rtlookup6(inp, input_ifscope);
5471 }
5472 else
5473 #endif /* INET6 */
5474 {
5475 rt = tcp_rtlookup(inp, input_ifscope);
5476 }
5477 isnetlocal = (tp->t_flags & TF_LOCAL);
5478
5479 if (rt == NULL) {
5480 tp->t_maxopd = tp->t_maxseg =
5481 #if INET6
5482 isipv6 ? tcp_v6mssdflt :
5483 #endif /* INET6 */
5484 tcp_mssdflt;
5485 return;
5486 }
5487 ifp = rt->rt_ifp;
5488 /*
5489 * Slower link window correction:
5490 * If a value is specificied for slowlink_wsize use it for
5491 * PPP links believed to be on a serial modem (speed <128Kbps).
5492 * Excludes 9600bps as it is the default value adversized
5493 * by pseudo-devices over ppp.
5494 */
5495 if (ifp->if_type == IFT_PPP && slowlink_wsize > 0 &&
5496 ifp->if_baudrate > 9600 && ifp->if_baudrate <= 128000) {
5497 tp->t_flags |= TF_SLOWLINK;
5498 }
5499 so = inp->inp_socket;
5500
5501 taop = rmx_taop(rt->rt_rmx);
5502 /*
5503 * Offer == -1 means that we didn't receive SYN yet,
5504 * use cached value in that case;
5505 */
5506 if (offer == -1)
5507 offer = taop->tao_mssopt;
5508 /*
5509 * Offer == 0 means that there was no MSS on the SYN segment,
5510 * in this case we use tcp_mssdflt.
5511 */
5512 if (offer == 0)
5513 offer =
5514 #if INET6
5515 isipv6 ? tcp_v6mssdflt :
5516 #endif /* INET6 */
5517 tcp_mssdflt;
5518 else {
5519 /*
5520 * Prevent DoS attack with too small MSS. Round up
5521 * to at least minmss.
5522 */
5523 offer = max(offer, tcp_minmss);
5524 /*
5525 * Sanity check: make sure that maxopd will be large
5526 * enough to allow some data on segments even is the
5527 * all the option space is used (40bytes). Otherwise
5528 * funny things may happen in tcp_output.
5529 */
5530 offer = max(offer, 64);
5531 }
5532 taop->tao_mssopt = offer;
5533
5534 /*
5535 * While we're here, check if there's an initial rtt
5536 * or rttvar. Convert from the route-table units
5537 * to scaled multiples of the slow timeout timer.
5538 */
5539 if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt) != 0) {
5540 tcp_getrt_rtt(tp, rt);
5541 } else {
5542 tp->t_rttmin = isnetlocal ? tcp_TCPTV_MIN : TCPTV_REXMTMIN;
5543 }
5544
5545 #if INET6
5546 mss = (isipv6 ? tcp_maxmtu6(rt) : tcp_maxmtu(rt));
5547 #else
5548 mss = tcp_maxmtu(rt);
5549 #endif
5550
5551 #if NECP
5552 // At this point, the mss is just the MTU. Adjust if necessary.
5553 mss = necp_socket_get_effective_mtu(inp, mss);
5554 #endif /* NECP */
5555
5556 mss -= min_protoh;
5557
5558 if (rt->rt_rmx.rmx_mtu == 0) {
5559 #if INET6
5560 if (isipv6) {
5561 if (!isnetlocal)
5562 mss = min(mss, tcp_v6mssdflt);
5563 } else
5564 #endif /* INET6 */
5565 if (!isnetlocal)
5566 mss = min(mss, tcp_mssdflt);
5567 }
5568
5569 mss = min(mss, offer);
5570 /*
5571 * maxopd stores the maximum length of data AND options
5572 * in a segment; maxseg is the amount of data in a normal
5573 * segment. We need to store this value (maxopd) apart
5574 * from maxseg, because now every segment carries options
5575 * and thus we normally have somewhat less data in segments.
5576 */
5577 tp->t_maxopd = mss;
5578
5579 /*
5580 * origoffer==-1 indicates, that no segments were received yet.
5581 * In this case we just guess.
5582 */
5583 if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
5584 (origoffer == -1 ||
5585 (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP))
5586 mss -= TCPOLEN_TSTAMP_APPA;
5587
5588 #if MPTCP
5589 mss -= mptcp_adj_mss(tp, FALSE);
5590 #endif /* MPTCP */
5591 tp->t_maxseg = mss;
5592
5593 /*
5594 * Calculate corrected value for sb_max; ensure to upgrade the
5595 * numerator for large sb_max values else it will overflow.
5596 */
5597 sb_max_corrected = (sb_max * (u_int64_t)MCLBYTES) / (MSIZE + MCLBYTES);
5598
5599 /*
5600 * If there's a pipesize (ie loopback), change the socket
5601 * buffer to that size only if it's bigger than the current
5602 * sockbuf size. Make the socket buffers an integral
5603 * number of mss units; if the mss is larger than
5604 * the socket buffer, decrease the mss.
5605 */
5606 #if RTV_SPIPE
5607 bufsize = rt->rt_rmx.rmx_sendpipe;
5608 if (bufsize < so->so_snd.sb_hiwat)
5609 #endif
5610 bufsize = so->so_snd.sb_hiwat;
5611 if (bufsize < mss)
5612 mss = bufsize;
5613 else {
5614 bufsize = (((bufsize + (u_int64_t)mss - 1) / (u_int64_t)mss) * (u_int64_t)mss);
5615 if (bufsize > sb_max_corrected)
5616 bufsize = sb_max_corrected;
5617 (void)sbreserve(&so->so_snd, bufsize);
5618 }
5619 tp->t_maxseg = mss;
5620
5621 #if RTV_RPIPE
5622 bufsize = rt->rt_rmx.rmx_recvpipe;
5623 if (bufsize < so->so_rcv.sb_hiwat)
5624 #endif
5625 bufsize = so->so_rcv.sb_hiwat;
5626 if (bufsize > mss) {
5627 bufsize = (((bufsize + (u_int64_t)mss - 1) / (u_int64_t)mss) * (u_int64_t)mss);
5628 if (bufsize > sb_max_corrected)
5629 bufsize = sb_max_corrected;
5630 (void)sbreserve(&so->so_rcv, bufsize);
5631 }
5632
5633 set_tcp_stream_priority(so);
5634
5635 if (rt->rt_rmx.rmx_ssthresh) {
5636 /*
5637 * There's some sort of gateway or interface
5638 * buffer limit on the path. Use this to set
5639 * slow-start threshold, but set the threshold to
5640 * no less than 2*mss.
5641 */
5642 tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
5643 tcpstat.tcps_usedssthresh++;
5644 } else {
5645 tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
5646 }
5647
5648 /*
5649 * Set the slow-start flight size depending on whether this
5650 * is a local network or not.
5651 */
5652 if (CC_ALGO(tp)->cwnd_init != NULL)
5653 CC_ALGO(tp)->cwnd_init(tp);
5654
5655 tcp_ccdbg_trace(tp, NULL, TCP_CC_CWND_INIT);
5656
5657 /* Route locked during lookup above */
5658 RT_UNLOCK(rt);
5659 }
5660
5661 /*
5662 * Determine the MSS option to send on an outgoing SYN.
5663 */
5664 int
5665 tcp_mssopt(tp)
5666 struct tcpcb *tp;
5667 {
5668 struct rtentry *rt;
5669 int mss;
5670 #if INET6
5671 int isipv6;
5672 int min_protoh;
5673 #endif
5674
5675 #if INET6
5676 isipv6 = ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
5677 min_protoh = isipv6 ? sizeof (struct ip6_hdr) + sizeof (struct tcphdr)
5678 : sizeof (struct tcpiphdr);
5679 #else
5680 #define min_protoh (sizeof (struct tcpiphdr))
5681 #endif
5682
5683 #if INET6
5684 if (isipv6)
5685 rt = tcp_rtlookup6(tp->t_inpcb, IFSCOPE_NONE);
5686 else
5687 #endif /* INET6 */
5688 rt = tcp_rtlookup(tp->t_inpcb, IFSCOPE_NONE);
5689 if (rt == NULL) {
5690 return (
5691 #if INET6
5692 isipv6 ? tcp_v6mssdflt :
5693 #endif /* INET6 */
5694 tcp_mssdflt);
5695 }
5696 /*
5697 * Slower link window correction:
5698 * If a value is specificied for slowlink_wsize use it for PPP links
5699 * believed to be on a serial modem (speed <128Kbps). Excludes 9600bps as
5700 * it is the default value adversized by pseudo-devices over ppp.
5701 */
5702 if (rt->rt_ifp->if_type == IFT_PPP && slowlink_wsize > 0 &&
5703 rt->rt_ifp->if_baudrate > 9600 && rt->rt_ifp->if_baudrate <= 128000) {
5704 tp->t_flags |= TF_SLOWLINK;
5705 }
5706
5707 #if INET6
5708 mss = (isipv6 ? tcp_maxmtu6(rt) : tcp_maxmtu(rt));
5709 #else
5710 mss = tcp_maxmtu(rt);
5711 #endif
5712 /* Route locked during lookup above */
5713 RT_UNLOCK(rt);
5714
5715 #if NECP
5716 // At this point, the mss is just the MTU. Adjust if necessary.
5717 mss = necp_socket_get_effective_mtu(tp->t_inpcb, mss);
5718 #endif /* NECP */
5719
5720 return (mss - min_protoh);
5721 }
5722
5723 /*
5724 * On a partial ack arrives, force the retransmission of the
5725 * next unacknowledged segment. Do not clear tp->t_dupacks.
5726 * By setting snd_nxt to th_ack, this forces retransmission timer to
5727 * be started again.
5728 */
5729 static void
5730 tcp_newreno_partial_ack(tp, th)
5731 struct tcpcb *tp;
5732 struct tcphdr *th;
5733 {
5734 tcp_seq onxt = tp->snd_nxt;
5735 u_int32_t ocwnd = tp->snd_cwnd;
5736 tp->t_timer[TCPT_REXMT] = 0;
5737 tp->t_timer[TCPT_PTO] = 0;
5738 tp->t_rtttime = 0;
5739 tp->snd_nxt = th->th_ack;
5740 /*
5741 * Set snd_cwnd to one segment beyond acknowledged offset
5742 * (tp->snd_una has not yet been updated when this function
5743 * is called)
5744 */
5745 tp->snd_cwnd = tp->t_maxseg + BYTES_ACKED(th, tp);
5746 tp->t_flags |= TF_ACKNOW;
5747 (void) tcp_output(tp);
5748 tp->snd_cwnd = ocwnd;
5749 if (SEQ_GT(onxt, tp->snd_nxt))
5750 tp->snd_nxt = onxt;
5751 /*
5752 * Partial window deflation. Relies on fact that tp->snd_una
5753 * not updated yet.
5754 */
5755 if (tp->snd_cwnd > BYTES_ACKED(th, tp))
5756 tp->snd_cwnd -= BYTES_ACKED(th, tp);
5757 else
5758 tp->snd_cwnd = 0;
5759 tp->snd_cwnd += tp->t_maxseg;
5760
5761 }
5762
5763 /*
5764 * Drop a random TCP connection that hasn't been serviced yet and
5765 * is eligible for discard. There is a one in qlen chance that
5766 * we will return a null, saying that there are no dropable
5767 * requests. In this case, the protocol specific code should drop
5768 * the new request. This insures fairness.
5769 *
5770 * The listening TCP socket "head" must be locked
5771 */
5772 static int
5773 tcp_dropdropablreq(struct socket *head)
5774 {
5775 struct socket *so, *sonext;
5776 unsigned int i, j, qlen;
5777 static u_int32_t rnd = 0;
5778 static u_int64_t old_runtime;
5779 static unsigned int cur_cnt, old_cnt;
5780 u_int64_t now_sec;
5781 struct inpcb *inp = NULL;
5782 struct tcpcb *tp;
5783
5784 if ((head->so_options & SO_ACCEPTCONN) == 0)
5785 return (0);
5786
5787 if (TAILQ_EMPTY(&head->so_incomp))
5788 return (0);
5789
5790 /*
5791 * Check if there is any socket in the incomp queue
5792 * that is closed because of a reset from the peer and is
5793 * waiting to be garbage collected. If so, pick that as
5794 * the victim
5795 */
5796 TAILQ_FOREACH_SAFE(so, &head->so_incomp, so_list, sonext) {
5797 inp = sotoinpcb(so);
5798 tp = intotcpcb(inp);
5799 if (tp != NULL && tp->t_state == TCPS_CLOSED &&
5800 so->so_head != NULL &&
5801 (so->so_state & (SS_INCOMP|SS_CANTSENDMORE|SS_CANTRCVMORE)) ==
5802 (SS_INCOMP|SS_CANTSENDMORE|SS_CANTRCVMORE)) {
5803 /*
5804 * The listen socket is already locked but we
5805 * can lock this socket here without lock ordering
5806 * issues because it is in the incomp queue and
5807 * is not visible to others.
5808 */
5809 if (lck_mtx_try_lock(&inp->inpcb_mtx)) {
5810 so->so_usecount++;
5811 goto found_victim;
5812 } else {
5813 continue;
5814 }
5815 }
5816 }
5817
5818 so = TAILQ_FIRST(&head->so_incomp);
5819
5820 now_sec = net_uptime();
5821 if ((i = (now_sec - old_runtime)) != 0) {
5822 old_runtime = now_sec;
5823 old_cnt = cur_cnt / i;
5824 cur_cnt = 0;
5825 }
5826
5827
5828 qlen = head->so_incqlen;
5829 if (rnd == 0)
5830 rnd = RandomULong();
5831
5832 if (++cur_cnt > qlen || old_cnt > qlen) {
5833 rnd = (314159 * rnd + 66329) & 0xffff;
5834 j = ((qlen + 1) * rnd) >> 16;
5835
5836 while (j-- && so)
5837 so = TAILQ_NEXT(so, so_list);
5838 }
5839 /* Find a connection that is not already closing (or being served) */
5840 while (so) {
5841 inp = (struct inpcb *)so->so_pcb;
5842
5843 sonext = TAILQ_NEXT(so, so_list);
5844
5845 if (in_pcb_checkstate(inp, WNT_ACQUIRE, 0)
5846 != WNT_STOPUSING) {
5847 /*
5848 * Avoid the issue of a socket being accepted
5849 * by one input thread and being dropped by
5850 * another input thread. If we can't get a hold
5851 * on this mutex, then grab the next socket in
5852 * line.
5853 */
5854 if (lck_mtx_try_lock(&inp->inpcb_mtx)) {
5855 so->so_usecount++;
5856 if ((so->so_usecount == 2) &&
5857 (so->so_state & SS_INCOMP) &&
5858 !(so->so_flags & SOF_INCOMP_INPROGRESS)) {
5859 break;
5860 } else {
5861 /*
5862 * don't use if being accepted or
5863 * used in any other way
5864 */
5865 in_pcb_checkstate(inp, WNT_RELEASE, 1);
5866 tcp_unlock(so, 1, 0);
5867 }
5868 } else {
5869 /*
5870 * do not try to lock the inp in
5871 * in_pcb_checkstate because the lock
5872 * is already held in some other thread.
5873 * Only drop the inp_wntcnt reference.
5874 */
5875 in_pcb_checkstate(inp, WNT_RELEASE, 1);
5876 }
5877 }
5878 so = sonext;
5879
5880 }
5881 if (so == NULL) {
5882 return (0);
5883 }
5884
5885 /* Makes sure socket is still in the right state to be discarded */
5886
5887 if (in_pcb_checkstate(inp, WNT_RELEASE, 1) == WNT_STOPUSING) {
5888 tcp_unlock(so, 1, 0);
5889 return (0);
5890 }
5891
5892 found_victim:
5893 if (so->so_usecount != 2 || !(so->so_state & SS_INCOMP)) {
5894 /* do not discard: that socket is being accepted */
5895 tcp_unlock(so, 1, 0);
5896 return (0);
5897 }
5898
5899 TAILQ_REMOVE(&head->so_incomp, so, so_list);
5900 tcp_unlock(head, 0, 0);
5901
5902 lck_mtx_assert(&inp->inpcb_mtx, LCK_MTX_ASSERT_OWNED);
5903 tp = sototcpcb(so);
5904 so->so_flags |= SOF_OVERFLOW;
5905 so->so_head = NULL;
5906
5907 tcp_close(tp);
5908 if (inp->inp_wantcnt > 0 && inp->inp_wantcnt != WNT_STOPUSING) {
5909 /*
5910 * Some one has a wantcnt on this pcb. Since WNT_ACQUIRE
5911 * doesn't require a lock, it could have happened while
5912 * we are holding the lock. This pcb will have to
5913 * be garbage collected later.
5914 * Release the reference held for so_incomp queue
5915 */
5916 so->so_usecount--;
5917 tcp_unlock(so, 1, 0);
5918 } else {
5919 /*
5920 * Unlock this socket and leave the reference on.
5921 * We need to acquire the pcbinfo lock in order to
5922 * fully dispose it off
5923 */
5924 tcp_unlock(so, 0, 0);
5925
5926 lck_rw_lock_exclusive(tcbinfo.ipi_lock);
5927
5928 tcp_lock(so, 0, 0);
5929 /* Release the reference held for so_incomp queue */
5930 so->so_usecount--;
5931
5932 if (so->so_usecount != 1 ||
5933 (inp->inp_wantcnt > 0 &&
5934 inp->inp_wantcnt != WNT_STOPUSING)) {
5935 /*
5936 * There is an extra wantcount or usecount
5937 * that must have been added when the socket
5938 * was unlocked. This socket will have to be
5939 * garbage collected later
5940 */
5941 tcp_unlock(so, 1, 0);
5942 } else {
5943
5944 /* Drop the reference held for this function */
5945 so->so_usecount--;
5946
5947 in_pcbdispose(inp);
5948 }
5949 lck_rw_done(tcbinfo.ipi_lock);
5950 }
5951 tcpstat.tcps_drops++;
5952
5953 tcp_lock(head, 0, 0);
5954 head->so_incqlen--;
5955 head->so_qlen--;
5956 return(1);
5957 }
5958
5959 /* Set background congestion control on a socket */
5960 void
5961 tcp_set_background_cc(struct socket *so)
5962 {
5963 tcp_set_new_cc(so, TCP_CC_ALGO_BACKGROUND_INDEX);
5964 }
5965
5966 /* Set foreground congestion control on a socket */
5967 void
5968 tcp_set_foreground_cc(struct socket *so)
5969 {
5970 if (tcp_use_newreno)
5971 tcp_set_new_cc(so, TCP_CC_ALGO_NEWRENO_INDEX);
5972 else
5973 tcp_set_new_cc(so, TCP_CC_ALGO_CUBIC_INDEX);
5974 }
5975
5976 static void
5977 tcp_set_new_cc(struct socket *so, uint16_t cc_index)
5978 {
5979 struct inpcb *inp = sotoinpcb(so);
5980 struct tcpcb *tp = intotcpcb(inp);
5981 u_char old_cc_index = 0;
5982 if (tp->tcp_cc_index != cc_index) {
5983
5984 old_cc_index = tp->tcp_cc_index;
5985
5986 if (CC_ALGO(tp)->cleanup != NULL)
5987 CC_ALGO(tp)->cleanup(tp);
5988 tp->tcp_cc_index = cc_index;
5989
5990 tcp_cc_allocate_state(tp);
5991
5992 if (CC_ALGO(tp)->switch_to != NULL)
5993 CC_ALGO(tp)->switch_to(tp, old_cc_index);
5994
5995 tcp_ccdbg_trace(tp, NULL, TCP_CC_CHANGE_ALGO);
5996 }
5997 }
5998
5999 void
6000 tcp_set_recv_bg(struct socket *so)
6001 {
6002 if (!IS_TCP_RECV_BG(so))
6003 so->so_traffic_mgt_flags |= TRAFFIC_MGT_TCP_RECVBG;
6004
6005 /* Unset Large Receive Offload on background sockets */
6006 so_set_lro(so, SO_TC_BK);
6007 }
6008
6009 void
6010 tcp_clear_recv_bg(struct socket *so)
6011 {
6012 if (IS_TCP_RECV_BG(so))
6013 so->so_traffic_mgt_flags &= ~(TRAFFIC_MGT_TCP_RECVBG);
6014
6015 /*
6016 * Set/unset use of Large Receive Offload depending on
6017 * the traffic class
6018 */
6019 so_set_lro(so, so->so_traffic_class);
6020 }
6021
6022 void
6023 inp_fc_unthrottle_tcp(struct inpcb *inp)
6024 {
6025 struct tcpcb *tp = inp->inp_ppcb;
6026 /*
6027 * Back off the slow-start threshold and enter
6028 * congestion avoidance phase
6029 */
6030 if (CC_ALGO(tp)->pre_fr != NULL)
6031 CC_ALGO(tp)->pre_fr(tp);
6032
6033 tp->snd_cwnd = tp->snd_ssthresh;
6034 tp->t_flagsext &= ~TF_CWND_NONVALIDATED;
6035 /*
6036 * Restart counting for ABC as we changed the
6037 * congestion window just now.
6038 */
6039 tp->t_bytes_acked = 0;
6040
6041 /* Reset retransmit shift as we know that the reason
6042 * for delay in sending a packet is due to flow
6043 * control on the outgoing interface. There is no need
6044 * to backoff retransmit timer.
6045 */
6046 tp->t_rxtshift = 0;
6047 tp->t_rtttime = 0;
6048
6049 /*
6050 * Start the output stream again. Since we are
6051 * not retransmitting data, do not reset the
6052 * retransmit timer or rtt calculation.
6053 */
6054 tcp_output(tp);
6055 }
6056
6057 static int
6058 tcp_getstat SYSCTL_HANDLER_ARGS
6059 {
6060 #pragma unused(oidp, arg1, arg2)
6061
6062 int error;
6063
6064 proc_t caller = PROC_NULL;
6065 proc_t caller_parent = PROC_NULL;
6066 char command_name[MAXCOMLEN + 1] = "";
6067 char parent_name[MAXCOMLEN + 1] = "";
6068
6069 if ((caller = proc_self()) != PROC_NULL) {
6070 /* get process name */
6071 strlcpy(command_name, caller->p_comm, sizeof(command_name));
6072
6073 /* get parent process name if possible */
6074 if ((caller_parent = proc_find(caller->p_ppid)) != PROC_NULL) {
6075 strlcpy(parent_name, caller_parent->p_comm,
6076 sizeof(parent_name));
6077 proc_rele(caller_parent);
6078 }
6079
6080 if ((escape_str(command_name, strlen(command_name),
6081 sizeof(command_name)) == 0) &&
6082 (escape_str(parent_name, strlen(parent_name),
6083 sizeof(parent_name)) == 0)) {
6084 kern_asl_msg(LOG_DEBUG, "messagetracer",
6085 5,
6086 "com.apple.message.domain",
6087 "com.apple.kernel.tcpstat", /* 1 */
6088 "com.apple.message.signature",
6089 "tcpstat", /* 2 */
6090 "com.apple.message.signature2", command_name, /* 3 */
6091 "com.apple.message.signature3", parent_name, /* 4 */
6092 "com.apple.message.summarize", "YES", /* 5 */
6093 NULL);
6094 }
6095 }
6096 if (caller != PROC_NULL)
6097 proc_rele(caller);
6098
6099 if (req->oldptr == 0) {
6100 req->oldlen= (size_t)sizeof(struct tcpstat);
6101 }
6102
6103 error = SYSCTL_OUT(req, &tcpstat, MIN(sizeof (tcpstat), req->oldlen));
6104
6105 return (error);
6106
6107 }
6108
6109 /*
6110 * Checksum extended TCP header and data.
6111 */
6112 int
6113 tcp_input_checksum(int af, struct mbuf *m, struct tcphdr *th, int off, int tlen)
6114 {
6115 struct ifnet *ifp = m->m_pkthdr.rcvif;
6116
6117 switch (af) {
6118 case AF_INET: {
6119 struct ip *ip = mtod(m, struct ip *);
6120 struct ipovly *ipov = (struct ipovly *)ip;
6121
6122 if (m->m_pkthdr.pkt_flags & PKTF_SW_LRO_DID_CSUM)
6123 return (0);
6124
6125 if ((hwcksum_rx || (ifp->if_flags & IFF_LOOPBACK) ||
6126 (m->m_pkthdr.pkt_flags & PKTF_LOOP)) &&
6127 (m->m_pkthdr.csum_flags & CSUM_DATA_VALID)) {
6128 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) {
6129 th->th_sum = m->m_pkthdr.csum_rx_val;
6130 } else {
6131 uint16_t sum = m->m_pkthdr.csum_rx_val;
6132 uint16_t start = m->m_pkthdr.csum_rx_start;
6133
6134 /*
6135 * Perform 1's complement adjustment of octets
6136 * that got included/excluded in the hardware-
6137 * calculated checksum value. Ignore cases
6138 * where the value includes or excludes the IP
6139 * header span, as the sum for those octets
6140 * would already be 0xffff and thus no-op.
6141 */
6142 if ((m->m_pkthdr.csum_flags & CSUM_PARTIAL) &&
6143 start != 0 && (off - start) != off) {
6144 #if BYTE_ORDER != BIG_ENDIAN
6145 if (start < off) {
6146 HTONS(ip->ip_len);
6147 HTONS(ip->ip_off);
6148 }
6149 #endif
6150 /* callee folds in sum */
6151 sum = m_adj_sum16(m, start, off, sum);
6152 #if BYTE_ORDER != BIG_ENDIAN
6153 if (start < off) {
6154 NTOHS(ip->ip_off);
6155 NTOHS(ip->ip_len);
6156 }
6157 #endif
6158 }
6159
6160 /* callee folds in sum */
6161 th->th_sum = in_pseudo(ip->ip_src.s_addr,
6162 ip->ip_dst.s_addr,
6163 sum + htonl(tlen + IPPROTO_TCP));
6164 }
6165 th->th_sum ^= 0xffff;
6166 } else {
6167 uint16_t ip_sum;
6168 int len;
6169 char b[9];
6170
6171 bcopy(ipov->ih_x1, b, sizeof (ipov->ih_x1));
6172 bzero(ipov->ih_x1, sizeof (ipov->ih_x1));
6173 ip_sum = ipov->ih_len;
6174 ipov->ih_len = (u_short)tlen;
6175 #if BYTE_ORDER != BIG_ENDIAN
6176 HTONS(ipov->ih_len);
6177 #endif
6178 len = sizeof (struct ip) + tlen;
6179 th->th_sum = in_cksum(m, len);
6180 bcopy(b, ipov->ih_x1, sizeof (ipov->ih_x1));
6181 ipov->ih_len = ip_sum;
6182
6183 tcp_in_cksum_stats(len);
6184 }
6185 break;
6186 }
6187 #if INET6
6188 case AF_INET6: {
6189 struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
6190
6191 if (m->m_pkthdr.pkt_flags & PKTF_SW_LRO_DID_CSUM)
6192 return (0);
6193
6194 if ((hwcksum_rx || (ifp->if_flags & IFF_LOOPBACK) ||
6195 (m->m_pkthdr.pkt_flags & PKTF_LOOP)) &&
6196 (m->m_pkthdr.csum_flags & CSUM_DATA_VALID)) {
6197 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) {
6198 th->th_sum = m->m_pkthdr.csum_rx_val;
6199 } else {
6200 uint16_t sum = m->m_pkthdr.csum_rx_val;
6201 uint16_t start = m->m_pkthdr.csum_rx_start;
6202
6203 /*
6204 * Perform 1's complement adjustment of octets
6205 * that got included/excluded in the hardware-
6206 * calculated checksum value.
6207 */
6208 if ((m->m_pkthdr.csum_flags & CSUM_PARTIAL) &&
6209 start != off) {
6210 uint16_t s, d;
6211
6212 if (IN6_IS_SCOPE_EMBED(&ip6->ip6_src)) {
6213 s = ip6->ip6_src.s6_addr16[1];
6214 ip6->ip6_src.s6_addr16[1] = 0 ;
6215 }
6216 if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst)) {
6217 d = ip6->ip6_dst.s6_addr16[1];
6218 ip6->ip6_dst.s6_addr16[1] = 0;
6219 }
6220
6221 /* callee folds in sum */
6222 sum = m_adj_sum16(m, start, off, sum);
6223
6224 if (IN6_IS_SCOPE_EMBED(&ip6->ip6_src))
6225 ip6->ip6_src.s6_addr16[1] = s;
6226 if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst))
6227 ip6->ip6_dst.s6_addr16[1] = d;
6228 }
6229
6230 th->th_sum = in6_pseudo(
6231 &ip6->ip6_src, &ip6->ip6_dst,
6232 sum + htonl(tlen + IPPROTO_TCP));
6233 }
6234 th->th_sum ^= 0xffff;
6235 } else {
6236 tcp_in6_cksum_stats(tlen);
6237 th->th_sum = in6_cksum(m, IPPROTO_TCP, off, tlen);
6238 }
6239 break;
6240 }
6241 #endif /* INET6 */
6242 default:
6243 VERIFY(0);
6244 /* NOTREACHED */
6245 }
6246
6247 if (th->th_sum != 0) {
6248 tcpstat.tcps_rcvbadsum++;
6249 IF_TCP_STATINC(ifp, badformat);
6250 return (-1);
6251 }
6252
6253 return (0);
6254 }
6255
6256 SYSCTL_PROC(_net_inet_tcp, TCPCTL_STATS, stats,
6257 CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0, tcp_getstat,
6258 "S,tcpstat", "TCP statistics (struct tcpstat, netinet/tcp_var.h)");
6259
6260 static int
6261 sysctl_rexmtthresh SYSCTL_HANDLER_ARGS
6262 {
6263 #pragma unused(arg1, arg2)
6264
6265 int error, val = tcprexmtthresh;
6266
6267 error = sysctl_handle_int(oidp, &val, 0, req);
6268 if (error || !req->newptr)
6269 return (error);
6270
6271 /*
6272 * Constrain the number of duplicate ACKs
6273 * to consider for TCP fast retransmit
6274 * to either 2 or 3
6275 */
6276
6277 if (val < 2 || val > 3)
6278 return (EINVAL);
6279
6280 tcprexmtthresh = val;
6281
6282 return (0);
6283 }
6284
6285 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, rexmt_thresh, CTLTYPE_INT | CTLFLAG_RW |
6286 CTLFLAG_LOCKED, &tcprexmtthresh, 0, &sysctl_rexmtthresh, "I",
6287 "Duplicate ACK Threshold for Fast Retransmit");
6288