2 * Copyright (c) 2000-2010 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
30 #include <i386/rtclock_asm.h>
31 #include <i386/proc_reg.h>
32 #include <i386/eflags.h>
34 #include <i386/postcode.h>
35 #include <i386/apic.h>
36 #include <i386/vmx/vmx_asm.h>
42 ** Entry - %rdi contains pointer to 64 bit structure.
44 ** Exit - 64 bit structure filled in.
47 ENTRY(ml_get_timebase)
59 * Convert between various timer units
61 * This code converts 64-bit time units to other units.
62 * For example, the TSC is converted to HPET units.
64 * Time is a 64-bit integer that is some number of ticks.
65 * Conversion is 64-bit fixed point number which is composed
66 * of a 32 bit integer and a 32 bit fraction.
68 * The time ticks are multiplied by the conversion factor. The
69 * calculations are done as a 128-bit value but both the high
70 * and low words are dropped. The high word is overflow and the
71 * low word is the fraction part of the result.
73 * We return a 64-bit value.
75 * Note that we can use this function to multiply 2 conversion factors.
76 * We do this in order to calculate the multiplier used to convert
77 * directly between any two units.
79 * uint64_t tmrCvt(uint64_t time, // %rdi
80 * uint64_t conversion) // %rsi
85 mulq %rsi /* result is %rdx:%rax */
86 shrdq $32,%rdx,%rax /* %rdx:%rax >>= 32 */
90 * void _rtc_nanotime_adjust(
91 * uint64_t tsc_base_delta, // %rdi
92 * rtc_nanotime_t *dst); // %rsi
94 ENTRY(_rtc_nanotime_adjust)
95 movl RNT_GENERATION(%rsi),%eax /* get current generation */
96 movl $0,RNT_GENERATION(%rsi) /* flag data as being updated */
97 addq %rdi,RNT_TSC_BASE(%rsi)
99 incl %eax /* next generation */
101 incl %eax /* skip 0, which is a flag */
102 1: movl %eax,RNT_GENERATION(%rsi) /* update generation */
107 * uint64_t _rtc_nanotime_read(rtc_nanotime_t *rntp);
109 * This is the same as the commpage nanotime routine, except that it uses the
110 * kernel internal "rtc_nanotime_info" data instead of the commpage data.
111 * These two copies of data are kept in sync by rtc_clock_napped().
113 * Warning! There are several copies of this code in the trampolines found in
114 * osfmk/x86_64/idt64.s, coming from the various TIMER macros in rtclock_asm.h.
115 * They're all kept in sync by using the RTC_NANOTIME_READ() macro.
117 * The algorithm we use is:
119 * ns = ((((rdtsc - rnt_tsc_base)<<rnt_shift)*rnt_tsc_scale) / 2**32) + rnt_ns_base;
121 * rnt_shift, a constant computed during initialization, is the smallest value for which:
123 * (tscFreq << rnt_shift) > SLOW_TSC_THRESHOLD
125 * Where SLOW_TSC_THRESHOLD is about 10e9. Since most processor's tscFreqs are greater
126 * than 1GHz, rnt_shift is usually 0. rnt_tsc_scale is also a 32-bit constant:
128 * rnt_tsc_scale = (10e9 * 2**32) / (tscFreq << rnt_shift);
130 * On 64-bit processors this algorithm could be simplified by doing a 64x64 bit
131 * multiply of rdtsc by tscFCvtt2n:
133 * ns = (((rdtsc - rnt_tsc_base) * tscFCvtt2n) / 2**32) + rnt_ns_base;
135 * We don't do so in order to use the same algorithm in 32- and 64-bit mode.
136 * When U32 goes away, we should reconsider.
138 * Since this routine is not synchronized and can be called in any context,
139 * we use a generation count to guard against seeing partially updated data.
140 * In addition, the _rtc_nanotime_store() routine zeroes the generation before
141 * updating the data, and stores the nonzero generation only after all fields
142 * have been stored. Because IA32 guarantees that stores by one processor
143 * must be seen in order by another, we can avoid using a lock. We spin while
144 * the generation is zero.
146 * unint64_t _rtc_nanotime_read(
147 * rtc_nanotime_t *rntp); // %rdi
150 ENTRY(_rtc_nanotime_read)
152 PAL_RTC_NANOTIME_READ_FAST()
157 * extern uint64_t _rtc_tsc_to_nanoseconds(
158 * uint64_t value, // %rdi
159 * pal_rtc_nanotime_t *rntp); // %rsi
161 * Converts TSC units to nanoseconds, using an abbreviated form of the above
162 * algorithm. Note that while we could have simply used tmrCvt(value,tscFCvtt2n),
163 * which would avoid the need for this asm, doing so is a bit more risky since
164 * we'd be using a different algorithm with possibly different rounding etc.
167 ENTRY(_rtc_tsc_to_nanoseconds)
168 movq %rdi,%rax /* copy value (in TSC units) to convert */
169 movl RNT_SHIFT(%rsi),%ecx
170 movl RNT_SCALE(%rsi),%edx
171 shlq %cl,%rax /* tscUnits << shift */
172 mulq %rdx /* (tscUnits << shift) * scale */
173 shrdq $32,%rdx,%rax /* %rdx:%rax >>= 32 */
178 Entry(call_continuation)
179 movq %rdi,%rcx /* get continuation */
180 movq %rsi,%rdi /* continuation param */
181 movq %rdx,%rsi /* wait result */
182 movq %gs:CPU_KERNEL_STACK,%rsp /* set the stack */
183 xorq %rbp,%rbp /* zero frame pointer */
184 call *%rcx /* call continuation */
185 movq %gs:CPU_ACTIVE_THREAD,%rdi
186 call EXT(thread_terminate)
188 Entry(x86_init_wrapper)
194 * Generate a 64-bit quantity with possibly random characteristics, intended for use
195 * before the kernel entropy pool is available. The processor's RNG is used if
196 * available, and a value derived from the Time Stamp Counter is returned if not.
197 * Multiple invocations may result in well-correlated values if sourced from the TSC.
199 Entry(ml_early_random)
204 test $(1 << 30), %ecx
206 RDRAND_RAX /* RAX := 64 bits of DRBG entropy */
210 rdtsc /* EDX:EAX := TSC */
211 /* Distribute low order bits */
218 /* Incorporate ASLR entropy, if any */
226 ror %cl, %edx /* Right rotate EDX (TSC&0xFF ^ (TSC>>8 & 0xFF))&1F */
235 * __vmxon -- Enter VMX Operation
236 * int __vmxon(addr64_t v);
242 mov $(VMX_FAIL_INVALID), %ecx
243 mov $(VMX_FAIL_VALID), %edx
244 mov $(VMX_SUCCEED), %eax
246 cmovcl %ecx, %eax /* CF = 1, ZF = 0 */
247 cmovzl %edx, %eax /* CF = 0, ZF = 1 */
254 * __vmxoff -- Leave VMX Operation
255 * int __vmxoff(void);
260 mov $(VMX_FAIL_INVALID), %ecx
261 mov $(VMX_FAIL_VALID), %edx
262 mov $(VMX_SUCCEED), %eax
264 cmovcl %ecx, %eax /* CF = 1, ZF = 0 */
265 cmovzl %edx, %eax /* CF = 0, ZF = 1 */
270 #endif /* CONFIG_VMX */