]>
git.saurik.com Git - apple/xnu.git/blob - bsd/netinet/ip_dummynet.c
1d19216089209b27dd104141f8d09a97974b52ee
2 * Copyright (c) 2000 Apple Computer, Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
29 * Copyright (c) 1998-2002 Luigi Rizzo, Universita` di Pisa
30 * Portions Copyright (c) 2000 Akamba Corp.
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
42 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
43 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
44 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
45 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
46 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
47 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
48 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
49 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
50 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
51 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
54 * $FreeBSD: src/sys/netinet/ip_dummynet.c,v 1.84 2004/08/25 09:31:30 pjd Exp $
57 #define DUMMYNET_DEBUG
60 * This module implements IP dummynet, a bandwidth limiter/delay emulator
61 * used in conjunction with the ipfw package.
62 * Description of the data structures used is in ip_dummynet.h
63 * Here you mainly find the following blocks of code:
64 * + variable declarations;
65 * + heap management functions;
66 * + scheduler and dummynet functions;
67 * + configuration and initialization.
69 * NOTA BENE: critical sections are protected by the "dummynet lock".
71 * Most important Changes:
73 * 010124: Fixed WF2Q behaviour
74 * 010122: Fixed spl protection.
75 * 000601: WF2Q support
76 * 000106: large rewrite, use heaps to handle very many pipes.
77 * 980513: initial release
79 * include files marked with XXX are probably not needed
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/malloc.h>
86 #include <sys/queue.h> /* XXX */
87 #include <sys/kernel.h>
88 #include <sys/socket.h>
89 #include <sys/socketvar.h>
91 #include <sys/sysctl.h>
93 #include <net/route.h>
94 #include <net/kpi_protocol.h>
95 #include <netinet/in.h>
96 #include <netinet/in_systm.h>
97 #include <netinet/in_var.h>
98 #include <netinet/ip.h>
99 #include <netinet/ip_fw.h>
100 #include <netinet/ip_dummynet.h>
101 #include <netinet/ip_var.h>
104 #include <netinet/if_ether.h> /* for struct arpcom */
105 #include <net/bridge.h>
109 * We keep a private variable for the simulation time, but we could
110 * probably use an existing one ("softticks" in sys/kern/kern_timer.c)
112 static dn_key curr_time
= 0 ; /* current simulation time */
114 static int dn_hash_size
= 64 ; /* default hash size */
116 /* statistics on number of queue searches and search steps */
117 static int searches
, search_steps
;
118 static int pipe_expire
= 1 ; /* expire queue if empty */
119 static int dn_max_ratio
= 16 ; /* max queues/buckets ratio */
121 static int red_lookup_depth
= 256; /* RED - default lookup table depth */
122 static int red_avg_pkt_size
= 512; /* RED - default medium packet size */
123 static int red_max_pkt_size
= 1500; /* RED - default max packet size */
126 * Three heaps contain queues and pipes that the scheduler handles:
128 * ready_heap contains all dn_flow_queue related to fixed-rate pipes.
130 * wfq_ready_heap contains the pipes associated with WF2Q flows
132 * extract_heap contains pipes associated with delay lines.
135 static struct dn_heap ready_heap
, extract_heap
, wfq_ready_heap
;
137 static int heap_init(struct dn_heap
*h
, int size
) ;
138 static int heap_insert (struct dn_heap
*h
, dn_key key1
, void *p
);
139 static void heap_extract(struct dn_heap
*h
, void *obj
);
141 static void transmit_event(struct dn_pipe
*pipe
);
142 static void ready_event(struct dn_flow_queue
*q
);
144 static struct dn_pipe
*all_pipes
= NULL
; /* list of all pipes */
145 static struct dn_flow_set
*all_flow_sets
= NULL
;/* list of all flow_sets */
148 SYSCTL_NODE(_net_inet_ip
, OID_AUTO
, dummynet
,
149 CTLFLAG_RW
, 0, "Dummynet");
150 SYSCTL_INT(_net_inet_ip_dummynet
, OID_AUTO
, hash_size
,
151 CTLFLAG_RW
, &dn_hash_size
, 0, "Default hash table size");
152 SYSCTL_INT(_net_inet_ip_dummynet
, OID_AUTO
, curr_time
,
153 CTLFLAG_RD
, &curr_time
, 0, "Current tick");
154 SYSCTL_INT(_net_inet_ip_dummynet
, OID_AUTO
, ready_heap
,
155 CTLFLAG_RD
, &ready_heap
.size
, 0, "Size of ready heap");
156 SYSCTL_INT(_net_inet_ip_dummynet
, OID_AUTO
, extract_heap
,
157 CTLFLAG_RD
, &extract_heap
.size
, 0, "Size of extract heap");
158 SYSCTL_INT(_net_inet_ip_dummynet
, OID_AUTO
, searches
,
159 CTLFLAG_RD
, &searches
, 0, "Number of queue searches");
160 SYSCTL_INT(_net_inet_ip_dummynet
, OID_AUTO
, search_steps
,
161 CTLFLAG_RD
, &search_steps
, 0, "Number of queue search steps");
162 SYSCTL_INT(_net_inet_ip_dummynet
, OID_AUTO
, expire
,
163 CTLFLAG_RW
, &pipe_expire
, 0, "Expire queue if empty");
164 SYSCTL_INT(_net_inet_ip_dummynet
, OID_AUTO
, max_chain_len
,
165 CTLFLAG_RW
, &dn_max_ratio
, 0,
166 "Max ratio between dynamic queues and buckets");
167 SYSCTL_INT(_net_inet_ip_dummynet
, OID_AUTO
, red_lookup_depth
,
168 CTLFLAG_RD
, &red_lookup_depth
, 0, "Depth of RED lookup table");
169 SYSCTL_INT(_net_inet_ip_dummynet
, OID_AUTO
, red_avg_pkt_size
,
170 CTLFLAG_RD
, &red_avg_pkt_size
, 0, "RED Medium packet size");
171 SYSCTL_INT(_net_inet_ip_dummynet
, OID_AUTO
, red_max_pkt_size
,
172 CTLFLAG_RD
, &red_max_pkt_size
, 0, "RED Max packet size");
175 #ifdef DUMMYNET_DEBUG
176 int dummynet_debug
= 0;
178 SYSCTL_INT(_net_inet_ip_dummynet
, OID_AUTO
, debug
, CTLFLAG_RW
, &dummynet_debug
,
179 0, "control debugging printfs");
181 #define DPRINTF(X) if (dummynet_debug) printf X
187 lck_grp_t
*dn_mutex_grp
;
188 lck_grp_attr_t
*dn_mutex_grp_attr
;
189 lck_attr_t
*dn_mutex_attr
;
192 static int config_pipe(struct dn_pipe
*p
);
193 static int ip_dn_ctl(struct sockopt
*sopt
);
195 static void dummynet(void *);
196 static void dummynet_flush(void);
197 void dummynet_drain(void);
198 static ip_dn_io_t dummynet_io
;
199 static void dn_rule_delete(void *);
201 int if_tx_rdy(struct ifnet
*ifp
);
203 extern lck_mtx_t
*rt_mtx
; /* route global lock */
206 * Heap management functions.
208 * In the heap, first node is element 0. Children of i are 2i+1 and 2i+2.
209 * Some macros help finding parent/children so we can optimize them.
211 * heap_init() is called to expand the heap when needed.
212 * Increment size in blocks of 16 entries.
213 * XXX failure to allocate a new element is a pretty bad failure
214 * as we basically stall a whole queue forever!!
215 * Returns 1 on error, 0 on success
217 #define HEAP_FATHER(x) ( ( (x) - 1 ) / 2 )
218 #define HEAP_LEFT(x) ( 2*(x) + 1 )
219 #define HEAP_IS_LEFT(x) ( (x) & 1 )
220 #define HEAP_RIGHT(x) ( 2*(x) + 2 )
221 #define HEAP_SWAP(a, b, buffer) { buffer = a ; a = b ; b = buffer ; }
222 #define HEAP_INCREMENT 15
225 heap_init(struct dn_heap
*h
, int new_size
)
227 struct dn_heap_entry
*p
;
229 if (h
->size
>= new_size
) {
230 printf("dummynet: heap_init, Bogus call, have %d want %d\n",
234 new_size
= (new_size
+ HEAP_INCREMENT
) & ~HEAP_INCREMENT
;
235 p
= _MALLOC(new_size
* sizeof(*p
), M_DUMMYNET
, M_DONTWAIT
);
237 printf("dummynet: heap_init, resize %d failed\n", new_size
);
238 return 1 ; /* error */
241 bcopy(h
->p
, p
, h
->size
* sizeof(*p
) );
242 FREE(h
->p
, M_DUMMYNET
);
250 * Insert element in heap. Normally, p != NULL, we insert p in
251 * a new position and bubble up. If p == NULL, then the element is
252 * already in place, and key is the position where to start the
254 * Returns 1 on failure (cannot allocate new heap entry)
256 * If offset > 0 the position (index, int) of the element in the heap is
257 * also stored in the element itself at the given offset in bytes.
259 #define SET_OFFSET(heap, node) \
260 if (heap->offset > 0) \
261 *((int *)((char *)(heap->p[node].object) + heap->offset)) = node ;
263 * RESET_OFFSET is used for sanity checks. It sets offset to an invalid value.
265 #define RESET_OFFSET(heap, node) \
266 if (heap->offset > 0) \
267 *((int *)((char *)(heap->p[node].object) + heap->offset)) = -1 ;
269 heap_insert(struct dn_heap
*h
, dn_key key1
, void *p
)
271 int son
= h
->elements
;
273 if (p
== NULL
) /* data already there, set starting point */
275 else { /* insert new element at the end, possibly resize */
277 if (son
== h
->size
) /* need resize... */
278 if (heap_init(h
, h
->elements
+1) )
279 return 1 ; /* failure... */
280 h
->p
[son
].object
= p
;
281 h
->p
[son
].key
= key1
;
284 while (son
> 0) { /* bubble up */
285 int father
= HEAP_FATHER(son
) ;
286 struct dn_heap_entry tmp
;
288 if (DN_KEY_LT( h
->p
[father
].key
, h
->p
[son
].key
) )
289 break ; /* found right position */
290 /* son smaller than father, swap and repeat */
291 HEAP_SWAP(h
->p
[son
], h
->p
[father
], tmp
) ;
300 * remove top element from heap, or obj if obj != NULL
303 heap_extract(struct dn_heap
*h
, void *obj
)
305 int child
, father
, max
= h
->elements
- 1 ;
308 printf("dummynet: warning, extract from empty heap 0x%p\n", h
);
311 father
= 0 ; /* default: move up smallest child */
312 if (obj
!= NULL
) { /* extract specific element, index is at offset */
314 panic("dummynet: heap_extract from middle not supported on this heap!!!\n");
315 father
= *((int *)((char *)obj
+ h
->offset
)) ;
316 if (father
< 0 || father
>= h
->elements
) {
317 printf("dummynet: heap_extract, father %d out of bound 0..%d\n",
318 father
, h
->elements
);
319 panic("dummynet: heap_extract");
322 RESET_OFFSET(h
, father
);
323 child
= HEAP_LEFT(father
) ; /* left child */
324 while (child
<= max
) { /* valid entry */
325 if (child
!= max
&& DN_KEY_LT(h
->p
[child
+1].key
, h
->p
[child
].key
) )
326 child
= child
+1 ; /* take right child, otherwise left */
327 h
->p
[father
] = h
->p
[child
] ;
328 SET_OFFSET(h
, father
);
330 child
= HEAP_LEFT(child
) ; /* left child for next loop */
335 * Fill hole with last entry and bubble up, reusing the insert code
337 h
->p
[father
] = h
->p
[max
] ;
338 heap_insert(h
, father
, NULL
); /* this one cannot fail */
344 * change object position and update references
345 * XXX this one is never used!
348 heap_move(struct dn_heap
*h
, dn_key new_key
, void *object
)
352 int max
= h
->elements
-1 ;
353 struct dn_heap_entry buf
;
356 panic("cannot move items on this heap");
358 i
= *((int *)((char *)object
+ h
->offset
));
359 if (DN_KEY_LT(new_key
, h
->p
[i
].key
) ) { /* must move up */
360 h
->p
[i
].key
= new_key
;
361 for (; i
>0 && DN_KEY_LT(new_key
, h
->p
[(temp
= HEAP_FATHER(i
))].key
) ;
362 i
= temp
) { /* bubble up */
363 HEAP_SWAP(h
->p
[i
], h
->p
[temp
], buf
) ;
366 } else { /* must move down */
367 h
->p
[i
].key
= new_key
;
368 while ( (temp
= HEAP_LEFT(i
)) <= max
) { /* found left child */
369 if ((temp
!= max
) && DN_KEY_GT(h
->p
[temp
].key
, h
->p
[temp
+1].key
))
370 temp
++ ; /* select child with min key */
371 if (DN_KEY_GT(new_key
, h
->p
[temp
].key
)) { /* go down */
372 HEAP_SWAP(h
->p
[i
], h
->p
[temp
], buf
) ;
381 #endif /* heap_move, unused */
384 * heapify() will reorganize data inside an array to maintain the
385 * heap property. It is needed when we delete a bunch of entries.
388 heapify(struct dn_heap
*h
)
392 for (i
= 0 ; i
< h
->elements
; i
++ )
393 heap_insert(h
, i
, NULL
) ;
397 * cleanup the heap and free data structure
400 heap_free(struct dn_heap
*h
)
403 FREE(h
->p
, M_DUMMYNET
);
404 bzero(h
, sizeof(*h
) );
408 * --- end of heap management functions ---
412 * Return the mbuf tag holding the dummynet state. As an optimization
413 * this is assumed to be the first tag on the list. If this turns out
414 * wrong we'll need to search the list.
416 static struct dn_pkt_tag
*
417 dn_tag_get(struct mbuf
*m
)
419 struct m_tag
*mtag
= m_tag_first(m
);
420 /* KASSERT(mtag != NULL &&
421 mtag->m_tag_id == KERNEL_MODULE_TAG_ID &&
422 mtag->m_tag_type == KERNEL_TAG_TYPE_DUMMYNET,
423 ("packet on dummynet queue w/o dummynet tag!"));
425 return (struct dn_pkt_tag
*)(mtag
+1);
429 * Scheduler functions:
431 * transmit_event() is called when the delay-line needs to enter
432 * the scheduler, either because of existing pkts getting ready,
433 * or new packets entering the queue. The event handled is the delivery
434 * time of the packet.
436 * ready_event() does something similar with fixed-rate queues, and the
437 * event handled is the finish time of the head pkt.
439 * wfq_ready_event() does something similar with WF2Q queues, and the
440 * event handled is the start time of the head pkt.
442 * In all cases, we make sure that the data structures are consistent
443 * before passing pkts out, because this might trigger recursive
444 * invocations of the procedures.
447 transmit_event(struct dn_pipe
*pipe
)
450 struct dn_pkt_tag
*pkt
;
453 lck_mtx_assert(dn_mutex
, LCK_MTX_ASSERT_OWNED
);
455 while ( (m
= pipe
->head
) ) {
457 if ( !DN_KEY_LEQ(pkt
->output_time
, curr_time
) )
460 * first unlink, then call procedures, since ip_input() can invoke
461 * ip_output() and viceversa, thus causing nested calls
463 pipe
->head
= m
->m_nextpkt
;
466 /* XXX: drop the lock for now to avoid LOR's */
467 lck_mtx_unlock(dn_mutex
);
468 switch (pkt
->dn_dir
) {
470 struct route tmp_rt
= pkt
->ro
;
471 (void)ip_output(m
, NULL
, NULL
, pkt
->flags
, NULL
);
473 rtfree(tmp_rt
.ro_rt
);
478 ip
= mtod(m
, struct ip
*);
479 ip
->ip_len
= htons(ip
->ip_len
);
480 ip
->ip_off
= htons(ip
->ip_off
);
481 proto_inject(PF_INET
, m
);
487 * The bridge requires/assumes the Ethernet header is
488 * contiguous in the first mbuf header. Insure this is true.
491 if (m
->m_len
< ETHER_HDR_LEN
&&
492 (m
= m_pullup(m
, ETHER_HDR_LEN
)) == NULL
) {
493 printf("dummynet/bridge: pullup fail, dropping pkt\n");
496 m
= bdg_forward_ptr(m
, pkt
->ifp
);
498 /* somebody unloaded the bridge module. Drop pkt */
500 printf("dummynet: dropping bridged packet trapped in pipe\n");
507 printf("dummynet: bad switch %d!\n", pkt
->dn_dir
);
511 lck_mtx_lock(dn_mutex
);
513 /* if there are leftover packets, put into the heap for next event */
514 if ( (m
= pipe
->head
) ) {
516 /* XXX should check errors on heap_insert, by draining the
517 * whole pipe p and hoping in the future we are more successful
519 heap_insert(&extract_heap
, pkt
->output_time
, pipe
);
524 * the following macro computes how many ticks we have to wait
525 * before being able to transmit a packet. The credit is taken from
526 * either a pipe (WF2Q) or a flow_queue (per-flow queueing)
528 #define SET_TICKS(_m, q, p) \
529 ((_m)->m_pkthdr.len*8*hz - (q)->numbytes + p->bandwidth - 1 ) / \
533 * extract pkt from queue, compute output time (could be now)
534 * and put into delay line (p_queue)
537 move_pkt(struct mbuf
*pkt
, struct dn_flow_queue
*q
,
538 struct dn_pipe
*p
, int len
)
540 struct dn_pkt_tag
*dt
= dn_tag_get(pkt
);
542 q
->head
= pkt
->m_nextpkt
;
544 q
->len_bytes
-= len
;
546 dt
->output_time
= curr_time
+ p
->delay
;
551 p
->tail
->m_nextpkt
= pkt
;
553 p
->tail
->m_nextpkt
= NULL
;
557 * ready_event() is invoked every time the queue must enter the
558 * scheduler, either because the first packet arrives, or because
559 * a previously scheduled event fired.
560 * On invokation, drain as many pkts as possible (could be 0) and then
561 * if there are leftover packets reinsert the pkt in the scheduler.
564 ready_event(struct dn_flow_queue
*q
)
567 struct dn_pipe
*p
= q
->fs
->pipe
;
570 lck_mtx_assert(dn_mutex
, LCK_MTX_ASSERT_OWNED
);
573 printf("dummynet: ready_event- pipe is gone\n");
576 p_was_empty
= (p
->head
== NULL
) ;
579 * schedule fixed-rate queues linked to this pipe:
580 * Account for the bw accumulated since last scheduling, then
581 * drain as many pkts as allowed by q->numbytes and move to
582 * the delay line (in p) computing output time.
583 * bandwidth==0 (no limit) means we can drain the whole queue,
584 * setting len_scaled = 0 does the job.
586 q
->numbytes
+= ( curr_time
- q
->sched_time
) * p
->bandwidth
;
587 while ( (pkt
= q
->head
) != NULL
) {
588 int len
= pkt
->m_pkthdr
.len
;
589 int len_scaled
= p
->bandwidth
? len
*8*hz
: 0 ;
590 if (len_scaled
> q
->numbytes
)
592 q
->numbytes
-= len_scaled
;
593 move_pkt(pkt
, q
, p
, len
);
596 * If we have more packets queued, schedule next ready event
597 * (can only occur when bandwidth != 0, otherwise we would have
598 * flushed the whole queue in the previous loop).
599 * To this purpose we record the current time and compute how many
600 * ticks to go for the finish time of the packet.
602 if ( (pkt
= q
->head
) != NULL
) { /* this implies bandwidth != 0 */
603 dn_key t
= SET_TICKS(pkt
, q
, p
); /* ticks i have to wait */
604 q
->sched_time
= curr_time
;
605 heap_insert(&ready_heap
, curr_time
+ t
, (void *)q
);
606 /* XXX should check errors on heap_insert, and drain the whole
607 * queue on error hoping next time we are luckier.
609 } else { /* RED needs to know when the queue becomes empty */
610 q
->q_time
= curr_time
;
614 * If the delay line was empty call transmit_event(p) now.
615 * Otherwise, the scheduler will take care of it.
622 * Called when we can transmit packets on WF2Q queues. Take pkts out of
623 * the queues at their start time, and enqueue into the delay line.
624 * Packets are drained until p->numbytes < 0. As long as
625 * len_scaled >= p->numbytes, the packet goes into the delay line
626 * with a deadline p->delay. For the last packet, if p->numbytes<0,
627 * there is an additional delay.
630 ready_event_wfq(struct dn_pipe
*p
)
632 int p_was_empty
= (p
->head
== NULL
) ;
633 struct dn_heap
*sch
= &(p
->scheduler_heap
);
634 struct dn_heap
*neh
= &(p
->not_eligible_heap
) ;
636 lck_mtx_assert(dn_mutex
, LCK_MTX_ASSERT_OWNED
);
638 if (p
->if_name
[0] == 0) /* tx clock is simulated */
639 p
->numbytes
+= ( curr_time
- p
->sched_time
) * p
->bandwidth
;
640 else { /* tx clock is for real, the ifq must be empty or this is a NOP */
641 if (p
->ifp
&& p
->ifp
->if_snd
.ifq_head
!= NULL
)
644 DPRINTF(("dummynet: pipe %d ready from %s --\n",
645 p
->pipe_nr
, p
->if_name
));
650 * While we have backlogged traffic AND credit, we need to do
651 * something on the queue.
653 while ( p
->numbytes
>=0 && (sch
->elements
>0 || neh
->elements
>0) ) {
654 if (sch
->elements
> 0) { /* have some eligible pkts to send out */
655 struct dn_flow_queue
*q
= sch
->p
[0].object
;
656 struct mbuf
*pkt
= q
->head
;
657 struct dn_flow_set
*fs
= q
->fs
;
658 u_int64_t len
= pkt
->m_pkthdr
.len
;
659 int len_scaled
= p
->bandwidth
? len
*8*hz
: 0 ;
661 heap_extract(sch
, NULL
); /* remove queue from heap */
662 p
->numbytes
-= len_scaled
;
663 move_pkt(pkt
, q
, p
, len
);
665 p
->V
+= (len
<<MY_M
) / p
->sum
; /* update V */
666 q
->S
= q
->F
; /* update start time */
667 if (q
->len
== 0) { /* Flow not backlogged any more */
669 heap_insert(&(p
->idle_heap
), q
->F
, q
);
670 } else { /* still backlogged */
672 * update F and position in backlogged queue, then
673 * put flow in not_eligible_heap (we will fix this later).
675 len
= (q
->head
)->m_pkthdr
.len
;
676 q
->F
+= (len
<<MY_M
)/(u_int64_t
) fs
->weight
;
677 if (DN_KEY_LEQ(q
->S
, p
->V
))
678 heap_insert(neh
, q
->S
, q
);
680 heap_insert(sch
, q
->F
, q
);
684 * now compute V = max(V, min(S_i)). Remember that all elements in sch
685 * have by definition S_i <= V so if sch is not empty, V is surely
686 * the max and we must not update it. Conversely, if sch is empty
687 * we only need to look at neh.
689 if (sch
->elements
== 0 && neh
->elements
> 0)
690 p
->V
= MAX64 ( p
->V
, neh
->p
[0].key
);
691 /* move from neh to sch any packets that have become eligible */
692 while (neh
->elements
> 0 && DN_KEY_LEQ(neh
->p
[0].key
, p
->V
) ) {
693 struct dn_flow_queue
*q
= neh
->p
[0].object
;
694 heap_extract(neh
, NULL
);
695 heap_insert(sch
, q
->F
, q
);
698 if (p
->if_name
[0] != '\0') {/* tx clock is from a real thing */
699 p
->numbytes
= -1 ; /* mark not ready for I/O */
703 if (sch
->elements
== 0 && neh
->elements
== 0 && p
->numbytes
>= 0
704 && p
->idle_heap
.elements
> 0) {
706 * no traffic and no events scheduled. We can get rid of idle-heap.
710 for (i
= 0 ; i
< p
->idle_heap
.elements
; i
++) {
711 struct dn_flow_queue
*q
= p
->idle_heap
.p
[i
].object
;
718 p
->idle_heap
.elements
= 0 ;
721 * If we are getting clocks from dummynet (not a real interface) and
722 * If we are under credit, schedule the next ready event.
723 * Also fix the delivery time of the last packet.
725 if (p
->if_name
[0]==0 && p
->numbytes
< 0) { /* this implies bandwidth >0 */
726 dn_key t
=0 ; /* number of ticks i have to wait */
728 if (p
->bandwidth
> 0)
729 t
= ( p
->bandwidth
-1 - p
->numbytes
) / p
->bandwidth
;
730 dn_tag_get(p
->tail
)->output_time
+= t
;
731 p
->sched_time
= curr_time
;
732 heap_insert(&wfq_ready_heap
, curr_time
+ t
, (void *)p
);
733 /* XXX should check errors on heap_insert, and drain the whole
734 * queue on error hoping next time we are luckier.
738 * If the delay line was empty call transmit_event(p) now.
739 * Otherwise, the scheduler will take care of it.
746 * This is called once per tick, or HZ times per second. It is used to
747 * increment the current tick counter and schedule expired events.
750 dummynet(void * __unused unused
)
752 void *p
; /* generic parameter to handler */
754 struct dn_heap
*heaps
[3];
758 heaps
[0] = &ready_heap
; /* fixed-rate queues */
759 heaps
[1] = &wfq_ready_heap
; /* wfq queues */
760 heaps
[2] = &extract_heap
; /* delay line */
762 lck_mtx_lock(dn_mutex
);
765 for (i
=0; i
< 3 ; i
++) {
767 while (h
->elements
> 0 && DN_KEY_LEQ(h
->p
[0].key
, curr_time
) ) {
768 if (h
->p
[0].key
> curr_time
)
769 printf("dummynet: warning, heap %d is %d ticks late\n",
770 i
, (int)(curr_time
- h
->p
[0].key
));
771 p
= h
->p
[0].object
; /* store a copy before heap_extract */
772 heap_extract(h
, NULL
); /* need to extract before processing */
776 struct dn_pipe
*pipe
= p
;
777 if (pipe
->if_name
[0] != '\0')
778 printf("dummynet: bad ready_event_wfq for pipe %s\n",
786 /* sweep pipes trying to expire idle flow_queues */
787 for (pe
= all_pipes
; pe
; pe
= pe
->next
)
788 if (pe
->idle_heap
.elements
> 0 &&
789 DN_KEY_LT(pe
->idle_heap
.p
[0].key
, pe
->V
) ) {
790 struct dn_flow_queue
*q
= pe
->idle_heap
.p
[0].object
;
792 heap_extract(&(pe
->idle_heap
), NULL
);
793 q
->S
= q
->F
+ 1 ; /* mark timestamp as invalid */
794 pe
->sum
-= q
->fs
->weight
;
797 lck_mtx_unlock(dn_mutex
);
799 timeout(dummynet
, NULL
, 1);
803 * called by an interface when tx_rdy occurs.
806 if_tx_rdy(struct ifnet
*ifp
)
810 lck_mtx_lock(dn_mutex
);
811 for (p
= all_pipes
; p
; p
= p
->next
)
816 sprintf(buf
, "%s%d",ifp
->if_name
, ifp
->if_unit
);
817 for (p
= all_pipes
; p
; p
= p
->next
)
818 if (!strcmp(p
->if_name
, buf
) ) {
820 DPRINTF(("dummynet: ++ tx rdy from %s (now found)\n", buf
));
825 DPRINTF(("dummynet: ++ tx rdy from %s%d - qlen %d\n", ifp
->if_name
,
826 ifp
->if_unit
, ifp
->if_snd
.ifq_len
));
827 p
->numbytes
= 0 ; /* mark ready for I/O */
830 lck_mtx_lock(dn_mutex
);
836 * Unconditionally expire empty queues in case of shortage.
837 * Returns the number of queues freed.
840 expire_queues(struct dn_flow_set
*fs
)
842 struct dn_flow_queue
*q
, *prev
;
843 int i
, initial_elements
= fs
->rq_elements
;
844 struct timeval timenow
;
846 getmicrotime(&timenow
);
848 if (fs
->last_expired
== timenow
.tv_sec
)
850 fs
->last_expired
= timenow
.tv_sec
;
851 for (i
= 0 ; i
<= fs
->rq_size
; i
++) /* last one is overflow */
852 for (prev
=NULL
, q
= fs
->rq
[i
] ; q
!= NULL
; )
853 if (q
->head
!= NULL
|| q
->S
!= q
->F
+1) {
856 } else { /* entry is idle, expire it */
857 struct dn_flow_queue
*old_q
= q
;
860 prev
->next
= q
= q
->next
;
862 fs
->rq
[i
] = q
= q
->next
;
864 FREE(old_q
, M_DUMMYNET
);
866 return initial_elements
- fs
->rq_elements
;
870 * If room, create a new queue and put at head of slot i;
871 * otherwise, create or use the default queue.
873 static struct dn_flow_queue
*
874 create_queue(struct dn_flow_set
*fs
, int i
)
876 struct dn_flow_queue
*q
;
878 if (fs
->rq_elements
> fs
->rq_size
* dn_max_ratio
&&
879 expire_queues(fs
) == 0) {
881 * No way to get room, use or create overflow queue.
884 if ( fs
->rq
[i
] != NULL
)
887 q
= _MALLOC(sizeof(*q
), M_DUMMYNET
, M_DONTWAIT
| M_ZERO
);
889 printf("dummynet: sorry, cannot allocate queue for new flow\n");
894 q
->next
= fs
->rq
[i
] ;
895 q
->S
= q
->F
+ 1; /* hack - mark timestamp as invalid */
902 * Given a flow_set and a pkt in last_pkt, find a matching queue
903 * after appropriate masking. The queue is moved to front
904 * so that further searches take less time.
906 static struct dn_flow_queue
*
907 find_queue(struct dn_flow_set
*fs
, struct ipfw_flow_id
*id
)
909 int i
= 0 ; /* we need i and q for new allocations */
910 struct dn_flow_queue
*q
, *prev
;
912 if ( !(fs
->flags_fs
& DN_HAVE_FLOW_MASK
) )
915 /* first, do the masking */
916 id
->dst_ip
&= fs
->flow_mask
.dst_ip
;
917 id
->src_ip
&= fs
->flow_mask
.src_ip
;
918 id
->dst_port
&= fs
->flow_mask
.dst_port
;
919 id
->src_port
&= fs
->flow_mask
.src_port
;
920 id
->proto
&= fs
->flow_mask
.proto
;
921 id
->flags
= 0 ; /* we don't care about this one */
922 /* then, hash function */
923 i
= ( (id
->dst_ip
) & 0xffff ) ^
924 ( (id
->dst_ip
>> 15) & 0xffff ) ^
925 ( (id
->src_ip
<< 1) & 0xffff ) ^
926 ( (id
->src_ip
>> 16 ) & 0xffff ) ^
927 (id
->dst_port
<< 1) ^ (id
->src_port
) ^
929 i
= i
% fs
->rq_size
;
930 /* finally, scan the current list for a match */
932 for (prev
=NULL
, q
= fs
->rq
[i
] ; q
; ) {
934 if (id
->dst_ip
== q
->id
.dst_ip
&&
935 id
->src_ip
== q
->id
.src_ip
&&
936 id
->dst_port
== q
->id
.dst_port
&&
937 id
->src_port
== q
->id
.src_port
&&
938 id
->proto
== q
->id
.proto
&&
939 id
->flags
== q
->id
.flags
)
941 else if (pipe_expire
&& q
->head
== NULL
&& q
->S
== q
->F
+1 ) {
942 /* entry is idle and not in any heap, expire it */
943 struct dn_flow_queue
*old_q
= q
;
946 prev
->next
= q
= q
->next
;
948 fs
->rq
[i
] = q
= q
->next
;
950 FREE(old_q
, M_DUMMYNET
);
956 if (q
&& prev
!= NULL
) { /* found and not in front */
957 prev
->next
= q
->next
;
958 q
->next
= fs
->rq
[i
] ;
962 if (q
== NULL
) { /* no match, need to allocate a new entry */
963 q
= create_queue(fs
, i
);
971 red_drops(struct dn_flow_set
*fs
, struct dn_flow_queue
*q
, int len
)
976 * RED calculates the average queue size (avg) using a low-pass filter
977 * with an exponential weighted (w_q) moving average:
978 * avg <- (1-w_q) * avg + w_q * q_size
979 * where q_size is the queue length (measured in bytes or * packets).
981 * If q_size == 0, we compute the idle time for the link, and set
982 * avg = (1 - w_q)^(idle/s)
983 * where s is the time needed for transmitting a medium-sized packet.
985 * Now, if avg < min_th the packet is enqueued.
986 * If avg > max_th the packet is dropped. Otherwise, the packet is
987 * dropped with probability P function of avg.
992 /* queue in bytes or packets ? */
993 u_int q_size
= (fs
->flags_fs
& DN_QSIZE_IS_BYTES
) ? q
->len_bytes
: q
->len
;
995 DPRINTF(("\ndummynet: %d q: %2u ", (int) curr_time
, q_size
));
997 /* average queue size estimation */
1000 * queue is not empty, avg <- avg + (q_size - avg) * w_q
1002 int diff
= SCALE(q_size
) - q
->avg
;
1003 int64_t v
= SCALE_MUL((int64_t) diff
, (int64_t) fs
->w_q
);
1008 * queue is empty, find for how long the queue has been
1009 * empty and use a lookup table for computing
1010 * (1 - * w_q)^(idle_time/s) where s is the time to send a
1012 * XXX check wraps...
1015 u_int t
= (curr_time
- q
->q_time
) / fs
->lookup_step
;
1017 q
->avg
= (t
< fs
->lookup_depth
) ?
1018 SCALE_MUL(q
->avg
, fs
->w_q_lookup
[t
]) : 0;
1021 DPRINTF(("dummynet: avg: %u ", SCALE_VAL(q
->avg
)));
1023 /* should i drop ? */
1025 if (q
->avg
< fs
->min_th
) {
1027 return 0; /* accept packet ; */
1029 if (q
->avg
>= fs
->max_th
) { /* average queue >= max threshold */
1030 if (fs
->flags_fs
& DN_IS_GENTLE_RED
) {
1032 * According to Gentle-RED, if avg is greater than max_th the
1033 * packet is dropped with a probability
1034 * p_b = c_3 * avg - c_4
1035 * where c_3 = (1 - max_p) / max_th, and c_4 = 1 - 2 * max_p
1037 p_b
= SCALE_MUL((int64_t) fs
->c_3
, (int64_t) q
->avg
) - fs
->c_4
;
1040 DPRINTF(("dummynet: - drop"));
1043 } else if (q
->avg
> fs
->min_th
) {
1045 * we compute p_b using the linear dropping function p_b = c_1 *
1046 * avg - c_2, where c_1 = max_p / (max_th - min_th), and c_2 =
1047 * max_p * min_th / (max_th - min_th)
1049 p_b
= SCALE_MUL((int64_t) fs
->c_1
, (int64_t) q
->avg
) - fs
->c_2
;
1051 if (fs
->flags_fs
& DN_QSIZE_IS_BYTES
)
1052 p_b
= (p_b
* len
) / fs
->max_pkt_size
;
1053 if (++q
->count
== 0)
1054 q
->random
= random() & 0xffff;
1057 * q->count counts packets arrived since last drop, so a greater
1058 * value of q->count means a greater packet drop probability.
1060 if (SCALE_MUL(p_b
, SCALE((int64_t) q
->count
)) > q
->random
) {
1062 DPRINTF(("dummynet: - red drop"));
1063 /* after a drop we calculate a new random value */
1064 q
->random
= random() & 0xffff;
1065 return 1; /* drop */
1068 /* end of RED algorithm */
1069 return 0 ; /* accept */
1073 struct dn_flow_set
*
1074 locate_flowset(int pipe_nr
, struct ip_fw
*rule
)
1076 struct dn_flow_set
*fs
;
1077 ipfw_insn
*cmd
= rule
->cmd
+ rule
->act_ofs
;
1079 if (cmd
->opcode
== O_LOG
)
1082 bcopy(& ((ipfw_insn_pipe
*)cmd
)->pipe_ptr
, &fs
, sizeof(fs
));
1087 if (cmd
->opcode
== O_QUEUE
) {
1088 for (fs
=all_flow_sets
; fs
&& fs
->fs_nr
!= pipe_nr
; fs
=fs
->next
)
1093 for (p1
= all_pipes
; p1
&& p1
->pipe_nr
!= pipe_nr
; p1
= p1
->next
)
1098 /* record for the future */
1099 bcopy(&fs
, & ((ipfw_insn_pipe
*)cmd
)->pipe_ptr
, sizeof(fs
));
1105 * dummynet hook for packets. Below 'pipe' is a pipe or a queue
1106 * depending on whether WF2Q or fixed bw is used.
1108 * pipe_nr pipe or queue the packet is destined for.
1109 * dir where shall we send the packet after dummynet.
1110 * m the mbuf with the packet
1111 * ifp the 'ifp' parameter from the caller.
1112 * NULL in ip_input, destination interface in ip_output,
1113 * real_dst in bdg_forward
1114 * ro route parameter (only used in ip_output, NULL otherwise)
1115 * dst destination address, only used by ip_output
1116 * rule matching rule, in case of multiple passes
1117 * flags flags from the caller, only used in ip_output
1121 dummynet_io(struct mbuf
*m
, int pipe_nr
, int dir
, struct ip_fw_args
*fwa
)
1123 struct dn_pkt_tag
*pkt
;
1125 struct dn_flow_set
*fs
;
1126 struct dn_pipe
*pipe
;
1127 u_int64_t len
= m
->m_pkthdr
.len
;
1128 struct dn_flow_queue
*q
= NULL
;
1132 ipfw_insn
*cmd
= fwa
->rule
->cmd
+ fwa
->rule
->act_ofs
;
1134 if (cmd
->opcode
== O_LOG
)
1136 is_pipe
= (cmd
->opcode
== O_PIPE
);
1138 is_pipe
= (fwa
->rule
->fw_flg
& IP_FW_F_COMMAND
) == IP_FW_F_PIPE
;
1143 lck_mtx_lock(dn_mutex
);
1146 * This is a dummynet rule, so we expect an O_PIPE or O_QUEUE rule.
1148 fs
= locate_flowset(pipe_nr
, fwa
->rule
);
1150 goto dropit
; /* this queue/pipe does not exist! */
1152 if (pipe
== NULL
) { /* must be a queue, try find a matching pipe */
1153 for (pipe
= all_pipes
; pipe
&& pipe
->pipe_nr
!= fs
->parent_nr
;
1159 printf("dummynet: no pipe %d for queue %d, drop pkt\n",
1160 fs
->parent_nr
, fs
->fs_nr
);
1164 q
= find_queue(fs
, &(fwa
->f_id
));
1166 goto dropit
; /* cannot allocate queue */
1168 * update statistics, then check reasons to drop pkt
1170 q
->tot_bytes
+= len
;
1172 if ( fs
->plr
&& random() < fs
->plr
)
1173 goto dropit
; /* random pkt drop */
1174 if ( fs
->flags_fs
& DN_QSIZE_IS_BYTES
) {
1175 if (q
->len_bytes
> fs
->qsize
)
1176 goto dropit
; /* queue size overflow */
1178 if (q
->len
>= fs
->qsize
)
1179 goto dropit
; /* queue count overflow */
1181 if ( fs
->flags_fs
& DN_IS_RED
&& red_drops(fs
, q
, len
) )
1184 /* XXX expensive to zero, see if we can remove it*/
1185 mtag
= m_tag_alloc(KERNEL_MODULE_TAG_ID
, KERNEL_TAG_TYPE_DUMMYNET
,
1186 sizeof(struct dn_pkt_tag
), M_NOWAIT
);
1188 goto dropit
; /* cannot allocate packet header */
1189 m_tag_prepend(m
, mtag
); /* attach to mbuf chain */
1191 pkt
= (struct dn_pkt_tag
*)(mtag
+1);
1192 bzero(pkt
, sizeof(struct dn_pkt_tag
));
1193 /* ok, i can handle the pkt now... */
1194 /* build and enqueue packet + parameters */
1195 pkt
->rule
= fwa
->rule
;
1198 pkt
->ifp
= fwa
->oif
;
1199 if (dir
== DN_TO_IP_OUT
) {
1201 * We need to copy *ro because for ICMP pkts (and maybe others)
1202 * the caller passed a pointer into the stack; dst might also be
1203 * a pointer into *ro so it needs to be updated.
1205 lck_mtx_lock(rt_mtx
);
1206 pkt
->ro
= *(fwa
->ro
);
1208 fwa
->ro
->ro_rt
->rt_refcnt
++ ;
1209 if (fwa
->dst
== (struct sockaddr_in
*)&fwa
->ro
->ro_dst
) /* dst points into ro */
1210 fwa
->dst
= (struct sockaddr_in
*)&(pkt
->ro
.ro_dst
) ;
1211 lck_mtx_unlock(rt_mtx
);
1213 pkt
->dn_dst
= fwa
->dst
;
1214 pkt
->flags
= fwa
->flags
;
1216 if (q
->head
== NULL
)
1219 q
->tail
->m_nextpkt
= m
;
1222 q
->len_bytes
+= len
;
1224 if ( q
->head
!= m
) /* flow was not idle, we are done */
1227 * If we reach this point the flow was previously idle, so we need
1228 * to schedule it. This involves different actions for fixed-rate or
1233 * Fixed-rate queue: just insert into the ready_heap.
1236 if (pipe
->bandwidth
)
1237 t
= SET_TICKS(m
, q
, pipe
);
1238 q
->sched_time
= curr_time
;
1239 if (t
== 0) /* must process it now */
1242 heap_insert(&ready_heap
, curr_time
+ t
, q
);
1245 * WF2Q. First, compute start time S: if the flow was idle (S=F+1)
1246 * set S to the virtual time V for the controlling pipe, and update
1247 * the sum of weights for the pipe; otherwise, remove flow from
1248 * idle_heap and set S to max(F,V).
1249 * Second, compute finish time F = S + len/weight.
1250 * Third, if pipe was idle, update V=max(S, V).
1251 * Fourth, count one more backlogged flow.
1253 if (DN_KEY_GT(q
->S
, q
->F
)) { /* means timestamps are invalid */
1255 pipe
->sum
+= fs
->weight
; /* add weight of new queue */
1257 heap_extract(&(pipe
->idle_heap
), q
);
1258 q
->S
= MAX64(q
->F
, pipe
->V
) ;
1260 q
->F
= q
->S
+ ( len
<<MY_M
)/(u_int64_t
) fs
->weight
;
1262 if (pipe
->not_eligible_heap
.elements
== 0 &&
1263 pipe
->scheduler_heap
.elements
== 0)
1264 pipe
->V
= MAX64 ( q
->S
, pipe
->V
);
1267 * Look at eligibility. A flow is not eligibile if S>V (when
1268 * this happens, it means that there is some other flow already
1269 * scheduled for the same pipe, so the scheduler_heap cannot be
1270 * empty). If the flow is not eligible we just store it in the
1271 * not_eligible_heap. Otherwise, we store in the scheduler_heap
1272 * and possibly invoke ready_event_wfq() right now if there is
1274 * Note that for all flows in scheduler_heap (SCH), S_i <= V,
1275 * and for all flows in not_eligible_heap (NEH), S_i > V .
1276 * So when we need to compute max( V, min(S_i) ) forall i in SCH+NEH,
1277 * we only need to look into NEH.
1279 if (DN_KEY_GT(q
->S
, pipe
->V
) ) { /* not eligible */
1280 if (pipe
->scheduler_heap
.elements
== 0)
1281 printf("dummynet: ++ ouch! not eligible but empty scheduler!\n");
1282 heap_insert(&(pipe
->not_eligible_heap
), q
->S
, q
);
1284 heap_insert(&(pipe
->scheduler_heap
), q
->F
, q
);
1285 if (pipe
->numbytes
>= 0) { /* pipe is idle */
1286 if (pipe
->scheduler_heap
.elements
!= 1)
1287 printf("dummynet: OUCH! pipe should have been idle!\n");
1288 DPRINTF(("dummynet: waking up pipe %d at %d\n",
1289 pipe
->pipe_nr
, (int)(q
->F
>> MY_M
)));
1290 pipe
->sched_time
= curr_time
;
1291 ready_event_wfq(pipe
);
1296 lck_mtx_unlock(dn_mutex
);
1302 lck_mtx_unlock(dn_mutex
);
1304 return ( (fs
&& (fs
->flags_fs
& DN_NOERROR
)) ? 0 : ENOBUFS
);
1308 * Below, the rtfree is only needed when (pkt->dn_dir == DN_TO_IP_OUT)
1309 * Doing this would probably save us the initial bzero of dn_pkt
1311 #define DN_FREE_PKT(_m) do { \
1312 struct m_tag *tag = m_tag_locate(m, KERNEL_MODULE_TAG_ID, KERNEL_TAG_TYPE_DUMMYNET, NULL); \
1314 struct dn_pkt_tag *n = (struct dn_pkt_tag *)(tag+1); \
1316 rtfree(n->ro.ro_rt); \
1318 m_tag_delete(_m, tag); \
1323 * Dispose all packets and flow_queues on a flow_set.
1324 * If all=1, also remove red lookup table and other storage,
1325 * including the descriptor itself.
1326 * For the one in dn_pipe MUST also cleanup ready_heap...
1329 purge_flow_set(struct dn_flow_set
*fs
, int all
)
1331 struct dn_flow_queue
*q
, *qn
;
1334 lck_mtx_assert(dn_mutex
, LCK_MTX_ASSERT_OWNED
);
1336 for (i
= 0 ; i
<= fs
->rq_size
; i
++ ) {
1337 for (q
= fs
->rq
[i
] ; q
; q
= qn
) {
1338 struct mbuf
*m
, *mnext
;
1341 while ((m
= mnext
) != NULL
) {
1342 mnext
= m
->m_nextpkt
;
1346 FREE(q
, M_DUMMYNET
);
1350 fs
->rq_elements
= 0 ;
1352 /* RED - free lookup table */
1354 FREE(fs
->w_q_lookup
, M_DUMMYNET
);
1356 FREE(fs
->rq
, M_DUMMYNET
);
1357 /* if this fs is not part of a pipe, free it */
1358 if (fs
->pipe
&& fs
!= &(fs
->pipe
->fs
) )
1359 FREE(fs
, M_DUMMYNET
);
1364 * Dispose all packets queued on a pipe (not a flow_set).
1365 * Also free all resources associated to a pipe, which is about
1369 purge_pipe(struct dn_pipe
*pipe
)
1371 struct mbuf
*m
, *mnext
;
1373 purge_flow_set( &(pipe
->fs
), 1 );
1376 while ((m
= mnext
) != NULL
) {
1377 mnext
= m
->m_nextpkt
;
1381 heap_free( &(pipe
->scheduler_heap
) );
1382 heap_free( &(pipe
->not_eligible_heap
) );
1383 heap_free( &(pipe
->idle_heap
) );
1387 * Delete all pipes and heaps returning memory. Must also
1388 * remove references from all ipfw rules to all pipes.
1393 struct dn_pipe
*curr_p
, *p
;
1394 struct dn_flow_set
*fs
, *curr_fs
;
1396 lck_mtx_lock(dn_mutex
);
1398 /* remove all references to pipes ...*/
1399 flush_pipe_ptrs(NULL
);
1400 /* prevent future matches... */
1403 fs
= all_flow_sets
;
1404 all_flow_sets
= NULL
;
1405 /* and free heaps so we don't have unwanted events */
1406 heap_free(&ready_heap
);
1407 heap_free(&wfq_ready_heap
);
1408 heap_free(&extract_heap
);
1411 * Now purge all queued pkts and delete all pipes
1413 /* scan and purge all flow_sets. */
1417 purge_flow_set(curr_fs
, 1);
1423 FREE(curr_p
, M_DUMMYNET
);
1425 lck_mtx_unlock(dn_mutex
);
1429 extern struct ip_fw
*ip_fw_default_rule
;
1431 dn_rule_delete_fs(struct dn_flow_set
*fs
, void *r
)
1434 struct dn_flow_queue
*q
;
1437 for (i
= 0 ; i
<= fs
->rq_size
; i
++) /* last one is ovflow */
1438 for (q
= fs
->rq
[i
] ; q
; q
= q
->next
)
1439 for (m
= q
->head
; m
; m
= m
->m_nextpkt
) {
1440 struct dn_pkt_tag
*pkt
= dn_tag_get(m
) ;
1442 pkt
->rule
= ip_fw_default_rule
;
1446 * when a firewall rule is deleted, scan all queues and remove the flow-id
1447 * from packets matching this rule.
1450 dn_rule_delete(void *r
)
1453 struct dn_flow_set
*fs
;
1454 struct dn_pkt_tag
*pkt
;
1457 lck_mtx_lock(dn_mutex
);
1460 * If the rule references a queue (dn_flow_set), then scan
1461 * the flow set, otherwise scan pipes. Should do either, but doing
1462 * both does not harm.
1464 for ( fs
= all_flow_sets
; fs
; fs
= fs
->next
)
1465 dn_rule_delete_fs(fs
, r
);
1466 for ( p
= all_pipes
; p
; p
= p
->next
) {
1468 dn_rule_delete_fs(fs
, r
);
1469 for (m
= p
->head
; m
; m
= m
->m_nextpkt
) {
1470 pkt
= dn_tag_get(m
) ;
1472 pkt
->rule
= ip_fw_default_rule
;
1475 lck_mtx_unlock(dn_mutex
);
1479 * setup RED parameters
1482 config_red(struct dn_flow_set
*p
, struct dn_flow_set
* x
)
1487 x
->min_th
= SCALE(p
->min_th
);
1488 x
->max_th
= SCALE(p
->max_th
);
1489 x
->max_p
= p
->max_p
;
1491 x
->c_1
= p
->max_p
/ (p
->max_th
- p
->min_th
);
1492 x
->c_2
= SCALE_MUL(x
->c_1
, SCALE(p
->min_th
));
1493 if (x
->flags_fs
& DN_IS_GENTLE_RED
) {
1494 x
->c_3
= (SCALE(1) - p
->max_p
) / p
->max_th
;
1495 x
->c_4
= (SCALE(1) - 2 * p
->max_p
);
1498 /* if the lookup table already exist, free and create it again */
1499 if (x
->w_q_lookup
) {
1500 FREE(x
->w_q_lookup
, M_DUMMYNET
);
1501 x
->w_q_lookup
= NULL
;
1503 if (red_lookup_depth
== 0) {
1504 printf("\ndummynet: net.inet.ip.dummynet.red_lookup_depth must be > 0\n");
1505 FREE(x
, M_DUMMYNET
);
1508 x
->lookup_depth
= red_lookup_depth
;
1509 x
->w_q_lookup
= (u_int
*) _MALLOC(x
->lookup_depth
* sizeof(int),
1510 M_DUMMYNET
, M_DONTWAIT
);
1511 if (x
->w_q_lookup
== NULL
) {
1512 printf("dummynet: sorry, cannot allocate red lookup table\n");
1513 FREE(x
, M_DUMMYNET
);
1517 /* fill the lookup table with (1 - w_q)^x */
1518 x
->lookup_step
= p
->lookup_step
;
1519 x
->lookup_weight
= p
->lookup_weight
;
1520 x
->w_q_lookup
[0] = SCALE(1) - x
->w_q
;
1521 for (i
= 1; i
< x
->lookup_depth
; i
++)
1522 x
->w_q_lookup
[i
] = SCALE_MUL(x
->w_q_lookup
[i
- 1], x
->lookup_weight
);
1523 if (red_avg_pkt_size
< 1)
1524 red_avg_pkt_size
= 512 ;
1525 x
->avg_pkt_size
= red_avg_pkt_size
;
1526 if (red_max_pkt_size
< 1)
1527 red_max_pkt_size
= 1500 ;
1528 x
->max_pkt_size
= red_max_pkt_size
;
1533 alloc_hash(struct dn_flow_set
*x
, struct dn_flow_set
*pfs
)
1535 if (x
->flags_fs
& DN_HAVE_FLOW_MASK
) { /* allocate some slots */
1536 int l
= pfs
->rq_size
;
1542 else if (l
> DN_MAX_HASH_SIZE
)
1543 l
= DN_MAX_HASH_SIZE
;
1545 } else /* one is enough for null mask */
1547 x
->rq
= _MALLOC((1 + x
->rq_size
) * sizeof(struct dn_flow_queue
*),
1548 M_DUMMYNET
, M_DONTWAIT
| M_ZERO
);
1549 if (x
->rq
== NULL
) {
1550 printf("dummynet: sorry, cannot allocate queue\n");
1558 set_fs_parms(struct dn_flow_set
*x
, struct dn_flow_set
*src
)
1560 x
->flags_fs
= src
->flags_fs
;
1561 x
->qsize
= src
->qsize
;
1563 x
->flow_mask
= src
->flow_mask
;
1564 if (x
->flags_fs
& DN_QSIZE_IS_BYTES
) {
1565 if (x
->qsize
> 1024*1024)
1566 x
->qsize
= 1024*1024 ;
1573 /* configuring RED */
1574 if ( x
->flags_fs
& DN_IS_RED
)
1575 config_red(src
, x
) ; /* XXX should check errors */
1579 * setup pipe or queue parameters.
1583 config_pipe(struct dn_pipe
*p
)
1586 struct dn_flow_set
*pfs
= &(p
->fs
);
1587 struct dn_flow_queue
*q
;
1590 * The config program passes parameters as follows:
1591 * bw = bits/second (0 means no limits),
1592 * delay = ms, must be translated into ticks.
1593 * qsize = slots/bytes
1595 p
->delay
= ( p
->delay
* hz
) / 1000 ;
1596 /* We need either a pipe number or a flow_set number */
1597 if (p
->pipe_nr
== 0 && pfs
->fs_nr
== 0)
1599 if (p
->pipe_nr
!= 0 && pfs
->fs_nr
!= 0)
1601 if (p
->pipe_nr
!= 0) { /* this is a pipe */
1602 struct dn_pipe
*x
, *a
, *b
;
1604 lck_mtx_lock(dn_mutex
);
1606 for (a
= NULL
, b
= all_pipes
; b
&& b
->pipe_nr
< p
->pipe_nr
;
1607 a
= b
, b
= b
->next
) ;
1609 if (b
== NULL
|| b
->pipe_nr
!= p
->pipe_nr
) { /* new pipe */
1610 x
= _MALLOC(sizeof(struct dn_pipe
), M_DUMMYNET
, M_DONTWAIT
| M_ZERO
) ;
1612 lck_mtx_unlock(dn_mutex
);
1613 printf("dummynet: no memory for new pipe\n");
1616 x
->pipe_nr
= p
->pipe_nr
;
1618 /* idle_heap is the only one from which we extract from the middle.
1620 x
->idle_heap
.size
= x
->idle_heap
.elements
= 0 ;
1621 x
->idle_heap
.offset
=OFFSET_OF(struct dn_flow_queue
, heap_pos
);
1624 /* Flush accumulated credit for all queues */
1625 for (i
= 0; i
<= x
->fs
.rq_size
; i
++)
1626 for (q
= x
->fs
.rq
[i
]; q
; q
= q
->next
)
1630 x
->bandwidth
= p
->bandwidth
;
1631 x
->numbytes
= 0; /* just in case... */
1632 bcopy(p
->if_name
, x
->if_name
, sizeof(p
->if_name
) );
1633 x
->ifp
= NULL
; /* reset interface ptr */
1634 x
->delay
= p
->delay
;
1635 set_fs_parms(&(x
->fs
), pfs
);
1638 if ( x
->fs
.rq
== NULL
) { /* a new pipe */
1639 r
= alloc_hash(&(x
->fs
), pfs
) ;
1641 lck_mtx_unlock(dn_mutex
);
1642 FREE(x
, M_DUMMYNET
);
1651 lck_mtx_unlock(dn_mutex
);
1652 } else { /* config queue */
1653 struct dn_flow_set
*x
, *a
, *b
;
1655 lck_mtx_lock(dn_mutex
);
1656 /* locate flow_set */
1657 for (a
=NULL
, b
=all_flow_sets
; b
&& b
->fs_nr
< pfs
->fs_nr
;
1658 a
= b
, b
= b
->next
) ;
1660 if (b
== NULL
|| b
->fs_nr
!= pfs
->fs_nr
) { /* new */
1661 if (pfs
->parent_nr
== 0) { /* need link to a pipe */
1662 lck_mtx_unlock(dn_mutex
);
1665 x
= _MALLOC(sizeof(struct dn_flow_set
), M_DUMMYNET
, M_DONTWAIT
| M_ZERO
);
1667 lck_mtx_unlock(dn_mutex
);
1668 printf("dummynet: no memory for new flow_set\n");
1671 x
->fs_nr
= pfs
->fs_nr
;
1672 x
->parent_nr
= pfs
->parent_nr
;
1673 x
->weight
= pfs
->weight
;
1676 else if (x
->weight
> 100)
1679 /* Change parent pipe not allowed; must delete and recreate */
1680 if (pfs
->parent_nr
!= 0 && b
->parent_nr
!= pfs
->parent_nr
) {
1681 lck_mtx_unlock(dn_mutex
);
1686 set_fs_parms(x
, pfs
);
1688 if ( x
->rq
== NULL
) { /* a new flow_set */
1689 r
= alloc_hash(x
, pfs
) ;
1691 lck_mtx_unlock(dn_mutex
);
1692 FREE(x
, M_DUMMYNET
);
1701 lck_mtx_unlock(dn_mutex
);
1707 * Helper function to remove from a heap queues which are linked to
1708 * a flow_set about to be deleted.
1711 fs_remove_from_heap(struct dn_heap
*h
, struct dn_flow_set
*fs
)
1713 int i
= 0, found
= 0 ;
1714 for (; i
< h
->elements
;)
1715 if ( ((struct dn_flow_queue
*)h
->p
[i
].object
)->fs
== fs
) {
1717 h
->p
[i
] = h
->p
[h
->elements
] ;
1726 * helper function to remove a pipe from a heap (can be there at most once)
1729 pipe_remove_from_heap(struct dn_heap
*h
, struct dn_pipe
*p
)
1731 if (h
->elements
> 0) {
1733 for (i
=0; i
< h
->elements
; i
++ ) {
1734 if (h
->p
[i
].object
== p
) { /* found it */
1736 h
->p
[i
] = h
->p
[h
->elements
] ;
1745 * drain all queues. Called in case of severe mbuf shortage.
1750 struct dn_flow_set
*fs
;
1752 struct mbuf
*m
, *mnext
;
1754 lck_mtx_assert(dn_mutex
, LCK_MTX_ASSERT_OWNED
);
1756 heap_free(&ready_heap
);
1757 heap_free(&wfq_ready_heap
);
1758 heap_free(&extract_heap
);
1759 /* remove all references to this pipe from flow_sets */
1760 for (fs
= all_flow_sets
; fs
; fs
= fs
->next
)
1761 purge_flow_set(fs
, 0);
1763 for (p
= all_pipes
; p
; p
= p
->next
) {
1764 purge_flow_set(&(p
->fs
), 0);
1767 while ((m
= mnext
) != NULL
) {
1768 mnext
= m
->m_nextpkt
;
1771 p
->head
= p
->tail
= NULL
;
1776 * Fully delete a pipe or a queue, cleaning up associated info.
1779 delete_pipe(struct dn_pipe
*p
)
1781 if (p
->pipe_nr
== 0 && p
->fs
.fs_nr
== 0)
1783 if (p
->pipe_nr
!= 0 && p
->fs
.fs_nr
!= 0)
1785 if (p
->pipe_nr
!= 0) { /* this is an old-style pipe */
1786 struct dn_pipe
*a
, *b
;
1787 struct dn_flow_set
*fs
;
1789 lck_mtx_lock(dn_mutex
);
1791 for (a
= NULL
, b
= all_pipes
; b
&& b
->pipe_nr
< p
->pipe_nr
;
1792 a
= b
, b
= b
->next
) ;
1793 if (b
== NULL
|| (b
->pipe_nr
!= p
->pipe_nr
) ) {
1794 lck_mtx_unlock(dn_mutex
);
1795 return EINVAL
; /* not found */
1798 /* unlink from list of pipes */
1800 all_pipes
= b
->next
;
1803 /* remove references to this pipe from the ip_fw rules. */
1804 flush_pipe_ptrs(&(b
->fs
));
1806 /* remove all references to this pipe from flow_sets */
1807 for (fs
= all_flow_sets
; fs
; fs
= fs
->next
)
1808 if (fs
->pipe
== b
) {
1809 printf("dummynet: ++ ref to pipe %d from fs %d\n",
1810 p
->pipe_nr
, fs
->fs_nr
);
1812 purge_flow_set(fs
, 0);
1814 fs_remove_from_heap(&ready_heap
, &(b
->fs
));
1815 purge_pipe(b
); /* remove all data associated to this pipe */
1816 /* remove reference to here from extract_heap and wfq_ready_heap */
1817 pipe_remove_from_heap(&extract_heap
, b
);
1818 pipe_remove_from_heap(&wfq_ready_heap
, b
);
1819 lck_mtx_unlock(dn_mutex
);
1821 FREE(b
, M_DUMMYNET
);
1822 } else { /* this is a WF2Q queue (dn_flow_set) */
1823 struct dn_flow_set
*a
, *b
;
1825 lck_mtx_lock(dn_mutex
);
1827 for (a
= NULL
, b
= all_flow_sets
; b
&& b
->fs_nr
< p
->fs
.fs_nr
;
1828 a
= b
, b
= b
->next
) ;
1829 if (b
== NULL
|| (b
->fs_nr
!= p
->fs
.fs_nr
) ) {
1830 lck_mtx_unlock(dn_mutex
);
1831 return EINVAL
; /* not found */
1835 all_flow_sets
= b
->next
;
1838 /* remove references to this flow_set from the ip_fw rules. */
1841 if (b
->pipe
!= NULL
) {
1842 /* Update total weight on parent pipe and cleanup parent heaps */
1843 b
->pipe
->sum
-= b
->weight
* b
->backlogged
;
1844 fs_remove_from_heap(&(b
->pipe
->not_eligible_heap
), b
);
1845 fs_remove_from_heap(&(b
->pipe
->scheduler_heap
), b
);
1846 #if 1 /* XXX should i remove from idle_heap as well ? */
1847 fs_remove_from_heap(&(b
->pipe
->idle_heap
), b
);
1850 purge_flow_set(b
, 1);
1851 lck_mtx_unlock(dn_mutex
);
1857 * helper function used to copy data from kernel in DUMMYNET_GET
1860 dn_copy_set(struct dn_flow_set
*set
, char *bp
)
1863 struct dn_flow_queue
*q
, *qp
= (struct dn_flow_queue
*)bp
;
1865 lck_mtx_assert(dn_mutex
, LCK_MTX_ASSERT_OWNED
);
1867 for (i
= 0 ; i
<= set
->rq_size
; i
++)
1868 for (q
= set
->rq
[i
] ; q
; q
= q
->next
, qp
++ ) {
1869 if (q
->hash_slot
!= i
)
1870 printf("dummynet: ++ at %d: wrong slot (have %d, "
1871 "should be %d)\n", copied
, q
->hash_slot
, i
);
1873 printf("dummynet: ++ at %d: wrong fs ptr (have %p, should be %p)\n",
1876 bcopy(q
, qp
, sizeof( *q
) );
1877 /* cleanup pointers */
1879 qp
->head
= qp
->tail
= NULL
;
1882 if (copied
!= set
->rq_elements
)
1883 printf("dummynet: ++ wrong count, have %d should be %d\n",
1884 copied
, set
->rq_elements
);
1891 struct dn_flow_set
*set
;
1895 lck_mtx_assert(dn_mutex
, LCK_MTX_ASSERT_OWNED
);
1898 * compute size of data structures: list of pipes and flow_sets.
1900 for (p
= all_pipes
, size
= 0 ; p
; p
= p
->next
)
1901 size
+= sizeof( *p
) +
1902 p
->fs
.rq_elements
* sizeof(struct dn_flow_queue
);
1903 for (set
= all_flow_sets
; set
; set
= set
->next
)
1904 size
+= sizeof ( *set
) +
1905 set
->rq_elements
* sizeof(struct dn_flow_queue
);
1910 dummynet_get(struct sockopt
*sopt
)
1912 char *buf
, *bp
; /* bp is the "copy-pointer" */
1914 struct dn_flow_set
*set
;
1918 /* XXX lock held too long */
1919 lck_mtx_lock(dn_mutex
);
1921 * XXX: Ugly, but we need to allocate memory with M_WAITOK flag and we
1922 * cannot use this flag while holding a mutex.
1924 for (i
= 0; i
< 10; i
++) {
1925 size
= dn_calc_size();
1926 lck_mtx_unlock(dn_mutex
);
1927 buf
= _MALLOC(size
, M_TEMP
, M_WAITOK
);
1928 lck_mtx_lock(dn_mutex
);
1929 if (size
== dn_calc_size())
1935 lck_mtx_unlock(dn_mutex
);
1938 for (p
= all_pipes
, bp
= buf
; p
; p
= p
->next
) {
1939 struct dn_pipe
*pipe_bp
= (struct dn_pipe
*)bp
;
1942 * copy pipe descriptor into *bp, convert delay back to ms,
1943 * then copy the flow_set descriptor(s) one at a time.
1944 * After each flow_set, copy the queue descriptor it owns.
1946 bcopy(p
, bp
, sizeof( *p
) );
1947 pipe_bp
->delay
= (pipe_bp
->delay
* 1000) / hz
;
1949 * XXX the following is a hack based on ->next being the
1950 * first field in dn_pipe and dn_flow_set. The correct
1951 * solution would be to move the dn_flow_set to the beginning
1952 * of struct dn_pipe.
1954 pipe_bp
->next
= (struct dn_pipe
*)DN_IS_PIPE
;
1955 /* clean pointers */
1956 pipe_bp
->head
= pipe_bp
->tail
= NULL
;
1957 pipe_bp
->fs
.next
= NULL
;
1958 pipe_bp
->fs
.pipe
= NULL
;
1959 pipe_bp
->fs
.rq
= NULL
;
1961 bp
+= sizeof( *p
) ;
1962 bp
= dn_copy_set( &(p
->fs
), bp
);
1964 for (set
= all_flow_sets
; set
; set
= set
->next
) {
1965 struct dn_flow_set
*fs_bp
= (struct dn_flow_set
*)bp
;
1966 bcopy(set
, bp
, sizeof( *set
) );
1967 /* XXX same hack as above */
1968 fs_bp
->next
= (struct dn_flow_set
*)DN_IS_QUEUE
;
1969 fs_bp
->pipe
= NULL
;
1971 bp
+= sizeof( *set
) ;
1972 bp
= dn_copy_set( set
, bp
);
1974 lck_mtx_unlock(dn_mutex
);
1976 error
= sooptcopyout(sopt
, buf
, size
);
1982 * Handler for the various dummynet socket options (get, flush, config, del)
1985 ip_dn_ctl(struct sockopt
*sopt
)
1988 struct dn_pipe
*p
, tmp_pipe
;
1990 /* Disallow sets in really-really secure mode. */
1991 if (sopt
->sopt_dir
== SOPT_SET
&& securelevel
>= 3)
1994 switch (sopt
->sopt_name
) {
1996 printf("dummynet: -- unknown option %d", sopt
->sopt_name
);
1999 case IP_DUMMYNET_GET
:
2000 error
= dummynet_get(sopt
);
2003 case IP_DUMMYNET_FLUSH
:
2007 case IP_DUMMYNET_CONFIGURE
:
2009 error
= sooptcopyin(sopt
, p
, sizeof *p
, sizeof *p
);
2012 error
= config_pipe(p
);
2015 case IP_DUMMYNET_DEL
: /* remove a pipe or queue */
2017 error
= sooptcopyin(sopt
, p
, sizeof *p
, sizeof *p
);
2021 error
= delete_pipe(p
);
2031 dn_mutex_grp_attr
= lck_grp_attr_alloc_init();
2032 dn_mutex_grp
= lck_grp_alloc_init("dn", dn_mutex_grp_attr
);
2033 dn_mutex_attr
= lck_attr_alloc_init();
2034 lck_attr_setdefault(dn_mutex_attr
);
2036 if ((dn_mutex
= lck_mtx_alloc_init(dn_mutex_grp
, dn_mutex_attr
)) == NULL
) {
2037 printf("ip_dn_init: can't alloc dn_mutex\n");
2042 all_flow_sets
= NULL
;
2043 ready_heap
.size
= ready_heap
.elements
= 0 ;
2044 ready_heap
.offset
= 0 ;
2046 wfq_ready_heap
.size
= wfq_ready_heap
.elements
= 0 ;
2047 wfq_ready_heap
.offset
= 0 ;
2049 extract_heap
.size
= extract_heap
.elements
= 0 ;
2050 extract_heap
.offset
= 0 ;
2051 ip_dn_ctl_ptr
= ip_dn_ctl
;
2052 ip_dn_io_ptr
= dummynet_io
;
2053 ip_dn_ruledel_ptr
= dn_rule_delete
;
2055 timeout(dummynet
, NULL
, 1);